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Abstract

The interaction driven metal-to-insulator transition, widely known as Mott

transition, is still an open problem in electronic correlation physics. In this

thesis, we use quantum many-body approaches within the framework of dy-

namical mean-field theory (DMFT) to understand issues related to the Mott

transition. Specifically, diagrammatic perturbation theory based approxi-

mations have been made for the self-energy associated with the impurity

problem in this context. We apply our approaches to the single band Hub-

bard model, which is a standard and simplest model to study Mott transition

physics.

One of our approximation for the self-energy is the iterated perturbation

theory (IPT), where a second order diagram constructed using Hartree prop-

agators is used as an ansatz for the self-energy in the particle-hole symmetric

case. Though IPT has been extensively used earlier for the Hubbard model,

here we develop an improved implementation that can capture the sharp fea-

tures of the spectral function near the Mott transition. We use analytical

approaches as well to predict the residue of the pole that arises in the self-

energy at the chemical potential in the Mott insulating and the coexistence

regimes. We make successful comparison with pressure dependent resistivity

iii



experiments on Se-doped NiS2 and resistivity hysteresis found in V2O3 . We

discuss the optical conductivity in great detail and point out an anomaly

that arises in the specific heat calculation.

The second approach, which underlies a major part of this thesis, is an-

other diagrammatic approximation, known as the local moment approach

(LMA) for the impurity solver within DMFT. The LMA considers a spin-

symmetry broken mean field as its starting point in contrast to the Hartree

limit used in IPT. The self-energy ansatz here incorporates spin-flip dynamics

to all orders through random phase approximation (RPA). In order to restore

the spin-independent Fermi liquid metallic phase, we impose the condition

of adiabatic continuity to the non-interacting limit. With this approach, we

study properties for the particle-hole symmetric and asymmetric cases both

at zero and finite temperature. In the zero temperature symmetric case, we

find Mott transition and coexistence regime, similar to what we have already

seen in IPT (though values are different). In the metallic regime, apart from

the Fermi liquid at very low frequencies, we find a strong correlation induced

universal scaling regime which is very different from the renormalized non-

interacting limit and extends all the way to infinity as we approach the Mott

insulator. We find similar strong-coupling universality in the asymmetric and

the finite temperature cases as well. We report the doping dependence of the

spectra and compare that to our IPT results. Very interestingly, we find a

large T -linear regime in the temperature dependence of resistivity along with

presence of negligibly small T 2-regime, specially in the vicinity of a doped

Mott insulator. We show that this happens due to the marginal Fermi liquid

nature of the self-energy that emerges from our theory. Thus we infer that,



presence of local transverse spin-flip scattering can bring a possible scenario

where one can indeed observe linear temperature dependence of resistivity

extending over a decade or more (in temperature). This could be relevant

for understanding the “normal” state of high temperature cuprate supercon-

ductors.

The last chapter in this thesis deviates from the other chapters in terms

of the techniques, but does conform to the theme of this thesis namely Mott

transition physics. In this, we examine the out-of-equilibrium physics associ-

ated with the Mott transition, namely hysteresis and avalanches in the resis-

tivity as observed in experiments on transition metal oxides. Since hysteresis

is a non-equilibrium phenomenon involving inhomogeneities, the DMFT be-

comes inappropriate as it is a single-site equilibrium approach. Motivated

by recent resistance experiments on VO2 thin films by Sharoni et al (2008),

we formulate an approach that may produce the correct statistical behavior

associated with the avalanche sizes in the resistance hysteresis experiments

(e.g. device size effect, power law behavior). In our approach we use a map-

ping from the random-field Ising model to a resistor network model. By

this scheme we find reasonable agreement with experiments. We also discuss

possibilities to get more quantitative agreement and predict results (e.g. de-

pendence of power law exponent on the contrast ratio) that can be verified

in future experiments.
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Chapter 0

Introduction

0.1 Condensed matter physics: a field with

wide applications

Physics is a subject of understanding the laws of nature. However, it does

not remain limited by finding or explaining such laws. Rather the triumph

of modern physics comes after the application or implementation of such

laws. Applications ranging from rocket science to today’s internet and mo-

bile technology owe to physics in this sense. Since condensed matter physics

offers a materials-based approach and all objects that we deal with in our

daily life are made of different materials with different physical and chemi-

cal states, it has become one of the essential subjects of research underlying

our modern technology. Moreover, experiments and tests of theories in this

branch are easily accessible compared to that in other contemporary fields,

e.g. high-energy and particle physics, and cosmology. Surprisingly many

1
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high-energy physics aspects have been realized or potentially realizable in

many low-energy solid state materials, e.g. Anderson-Higgs mechanism in

superconductors [1], Dirac electrons in graphene [2], Majorana fermions in

topological superconductors or the Moor-Read state in fractional quantum

Hall effect [3]. Furthermore, the recent anti-de Sitter/conformal field the-

ory (AdS-CFT) correspondence of the string theory could be a breakthrough

approach to understand strongly-correlated condensed matter systems, e.g.

superfluid-insulator transition near the quantum criticality [4]. Therefore

the field of condensed matter physics promises table-top experimental real-

izations of phenomena with a wide range of energy, length and time scales.

0.2 Early successes in condensed matter physics:

From Drudé model to density functional

theory

The Drudé [6, 7] model was one of the initial successes that could describe

the behavior of most metals. For instance, the residual resistivity at low

temperature, the temperature independence of magnetic susceptibility, and

the linear temperature dependence of the specific heat at low temperature

in many metals (see Fig. 1) can be described through the non-interacting

free electron gas picture. Later nearly free electron (NFE) model or the

band theory [8] which incorporated the periodic potential of the lattice could
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(a) (b)

(c)

Fig. 1: Behavior of (a) resistivity, (b) susceptibility and (c) specific heat in metals
with temperature, follows the Drudé model. However, the T 2 behavior of resistivity
(as in (a) for potassium with two different impurity concentrations) has been later
explained using the Fermi liquid theory. Reproduced from Kittel’s Introduction to

Solid State Physics [5].
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not only describe metals, but turned out to be a powerful approach for de-

scribing non-metallic materials, termed as insulators and semiconductors.

Band structure calculations have been extended to more realistic situation

for many-body electrons by taking the electronic exchange mechanisms and

the Coulomb interactions into account in a mean-field way. This is known

as the Hartree-Fock theory where the many-body wave functions are written

in terms of Slater determinants. However, working with Slater determinants

could be extremely expensive for a real material having large number of elec-

trons (∼ 1022). An alternative method was developed by W. Kohn and L.

J. Sham [9], which enables one to write the many-body ground state energy

as a unique functional of the electronic density. This treatment is known as

the density functional theory (DFT) and has become successful in predicting

ground state for several materials over the last few decades. However, DFT

fails to explain wide range of materials that have been described in the next

section.

0.3 Strongly correlated electron systems

(SCES): an interesting paradigm

Despite huge success of the band theory and the DFT for a range of materials,

there remain many classes of solid state materials that are not amenable to

these approaches and hence demand new theories. In 1937, de Boer and

Verwey [10] reported transparent insulating behavior for transition metal

oxides like NiO and CoO even though their incomplete d-shells predict them
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to be metals from the band theory picture. Nevil Mott [11, 12] argued that

the Coulombic repulsion between electrons prevents metallicity and hence

such materials are coined as Mott insulators. Mott insulator can arise from a

Fermi liquid metal due to change in the interaction strength and such a metal-

to-insulator transition (MIT) is known as the Mott transition (see Sec. 0.5

for a detailed discussion). The metals that undergo Mott transitions often

show high resistivity and specific heat coefficient (see Fig. 2 for experimental

results on V2O3 compounds). Thus they are ‘bad metals’ even though they

show good Fermi liquid properties.

(a) (b)

Fig. 2: (a) High resistivity coefficient in V2O3. Reproduced from Ref. 13. (b) High
specific heat coefficients (γ = C/T ) for different dopings as functions of squared
temperature (from Ref. 14).

Subsequently an interesting feature was found in resistivity experiments

on some transition metal compounds containing magnetic impurities. Fig. 3(a)

shows that a minimum occurs in the resistivity at a specific temperature in

Mo-Nb alloys with dilute impurity of Fe ions. This resistivity minimum
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remained a paradox until 1964, when Jun Kondo first showed that the min-

imum arises due to a competition between electron-phonon scattering and

spin-spin scattering (that gives rise to a logarithmic dependence of resistivity

on temperature [15]). Thereafter this effect was named as the Kondo effect.

However, the role of impurity still bears open issues in the context of two

classes of materials, namely the Heavy fermions and the Kondo insulators.

A new era of rich physics emerged after the discovery of the high Tc

superconductors. For instance, there are metallic regime that shows linear

T -dependence of resistivity (Fig. 3(b)). This sort of non-T 2 behavior is be-

lieved to arise from an underlying quantum critical point and a non-Fermi

liquid (NFL) ground state. Similar NFL behavior has been observed in the

resistivity of heavy fermion metals like CuCe2Si2 and YbRh2Si2 in the vicin-

ity of the quantum critical point (QCP). In those materials, resistivity shows

a fractional power law of temperature: ρ(T ) = T ǫ,where 1 ≤ ǫ < 2.

This sort of behavior occurs mainly due to strong electron-electron inter-

action and all such materials belong to the class called strongly correlated

electron systems (SCES) have led to the emergence of a separate paradigm

in the field of condensed matter physics. The naming comes from the fact

that the electron-electron interaction or correlation becomes comparable or

dominant over the electron’s kinetic energy in such systems. Apart from the

above-mentioned examples, strong correlations have been found to be preva-

lent in fullerenes [16], graphenes [17] and soft-matter [18] like polymers.
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(a) (b)

Fig. 3: (a) Resistivity minima observed in Mo-Nb alloy for different doping with di-
lute concentration Fe as magnetic impurity, reproduced from the book The Kondo

Problem to Heavy Fermions by Hewson [19]. (b) Linear behavior of resistivity with
temperature in different high-Tc superconductors, reproduced from Ref. [20].

Fig. 4: ρ(T ) = T ǫ behavior with 1 ≤ ǫ < 2. (a) CuCe2Si2. (b) YbRh2Si2.
Experiments done by Gegenwart et al. [21, 22]
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0.4 Microscopic Fermi liquid theory

The low temperature behavior of a large subset of the strongly correlated

systems has been observed to be the same as conventional metals or semi-

conductors, albeit with renormalized parameters, like a large effective mass or

a large density of states. Such conventional behavior emerges despite strong

electron-electron interactions present in some d or f orbital systems, such as

CeAl3. Lev Landau in 1956 came up with a phenomenological Fermi liquid

theory [23, 24] which put the renormalized non-interacting limit on a firm

formal footing. The phenomenological idea was that the low energy excita-

tion spectrum due to interactions has a one-to-one correspondence with the

non-interacting state and the former state can be achieved by adiabatically1

switching on the interaction. His empirical arguments were later validated by

Abrikosov and Khalatnikov [25] using the formalism of diagrammatic pertur-

bation theory and which has come to be known as microscopic Fermi liquid

theory. The non-interacting single particle propagator (Green’s function) can

be written as

G(k, ω) = 1

ω − ǫk + µ+ iη
(1)

where η → 0+, µ is the chemical potential, and ǫk is the non-interacting

dispersion relation (ǫk = ~
2k2/(2m) for Fermi gases with particle mass m.)

Interactions modify the above equation by an extra term Σ(k, ω), known as

the self-energy:

G(k, ω) =
1

ω − ǫk + µ− Σ(k, ω) + iη
(2)

1In a loose sense, it means very slowly
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For states close to the Fermi surface, the real and imaginary parts of Σ(k, ω)

can be written as Taylor series expansions:

ReΣ(k, ω) = ReΣ(k = kF , ω = µ)− b(kF )(ω − µ)

−O((ω − µ))2 + a(kF )(k − kF ) +O((k − kF )
2) (3)

ImΣ(k, ω) = −Γ(ω − µ))2 +O((ω − µ))3

ζ(kF )(k − kF )
2 +O((k − kF )

3) (4)

This expansion when substituted in the Green’s function yields a renormal-

ized Green’s function,

GR(k, ω) ≃ ZkF

ω − ǫ∗(k− kF ) + i[ZkF
{Γ(ω − µ)2 − ζ(kF )(k− kF )2}]

(5)

where

ZkF
=

1

1 + b(kF )
(6)

and

ǫ∗(k− kF ) ≃ ZkF
[ǫ0 + a(k)(k− kF )] (7)

ZkF
is called the quasiparticle weight or quasiparticle residue. Thus if we

ignore the k dependence (such a situation will be discussed in a forthcoming

section), then as ω → µ, the imaginary part of the self-energy becomes

ImΣ(ω) ∝ −(ω − µ)2 (8)
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whereas the real part behaves as

ReΣ(ω) ∝ −(ω − µ) + const. (9)

and

Z =

[
1− ∂ReΣ(ω)

∂ω

]−1

. (10)

0.4.1 Luttinger theorem

In 1960, Luttinger showed that for a Fermi liquid (FL), the volume of the

Fermi surface (FS) remains the same though its shape may change due to

interaction [26]. This is known as the Luttinger theorem, and the later work

by Langer and Ambegaokar (1961) and by Langreth (1966) gave a generalized

Friedel sum-rule for a FL :

Im

∫ µ

−∞

dω G(ω)
∂Σ(ω)

∂ω
= 0 . (11)

0.5 Mott transition and Hubbard model

The correlation or the interaction driven metal to insulator transition (MIT)

is known as the Mott transition. Hence, as mentioned before, the insulator

in this context is a Mott insulator. Transition metal oxides, e.g. V2O3, VO2,

NiS2 are believed to be the prototypes of Mott insulators. In real experiments

transition occurs by varying physical pressure or by chemical pressure, i.e.

doping with other atoms of different radii but the same valency (e.g. Cr

in V2O3). These systems also show a temperature driven metal-insulator
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transition (MIT), which is discontinuous below a critical temperature and

continuous above that. The transition is inferred in practice by looking

at the change of resistivity or the slope in resistivity (positive for metals,

negative for insulators) with respect to temperature. However, the metals

are often bad metals since they possess very high residual resistivity and T 2

coefficient. Also the specific heat coefficient γ can range from 10 to 500 times

the values in conventional alkali metals in the Cr-doped V2O3 samples for

different doping concentrations.

Fig. 5: The phase diagram on pressure-temperature plane in Cr/Ti-doped V2O3

showing three distinguishable phases: antiferromagnetic insulator, insulator (para-
magnetic) and metal, separated by first order phase boundary lines. Closed and
open symbols represent increasing and decreasing pressure or temperature respec-
tively. Reproduced from the work by McWhan et al [14, 27].

The simplest model that can capture the underlying physics of Mott tran-

sition is the Hubbard model (HM) [28–31]. The single-band HM in standard
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notation is given by

Ĥ = −
∑

<ij>,σ

tij(c
†
iσcjσ + h.c.) + ǫd

∑

iσ

c†iσciσ + U
∑

i

ni↑ni↓ (12)

where tij is the amplitude of hopping of electrons from site-i to site-j , ǫd is

the electron’s orbital energy and U is the on-site Coulomb repulsion. The

operator ciσ (c†iσ) annihilates (creates) an electron of spin σ at site i.

Though the finite temperature insulator is found to be paramagnetic, the

low temperature insulating phase is often found to be an anti-ferromagnet

in many materials that exhibit the Mott transition. It has been argued by

Slater [32] that long-range anti-ferromagnetic order can happen for bipartite

lattices that show the perfect nesting property within the Hartree-Fock ap-

proximation and by Anderson [33] as a consequence of superexchange mech-

anism due to strong correlation.

0.6 Methods to solve single-band HM

The theoretical techniques that have been employed in an attempt to solve

the HM are diverse, e.g. Hartree-Fock approximation [34–36], Hubbard’s

Green’s function approximations [37,38], variational wave function method [31,

39], slave Boson approach [40], etc. However, to date the general HM remains

unsolved except for the one-dimensional case [41]. A lot of progress has been

made in recent years in this direction through the dynamical mean field the-

ory (DMFT) [42, 43], where the lattice model is mapped onto an effective

single impurity model with a self-consistently determined hybridization (will
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be discussed in detail in forthcoming sections). Within the DMFT context,

special interests are being devoted towards the infinite dimensional HM since

the mapping becomes exact in the limit and simplifies many major issues of

many-body approaches.

0.7 Kondo model or the Anderson model

Kondo used the s-d model [15] to solve the dilute magnetic impurity in a

metal problem. Three years before Kondo came up with his model, Ander-

son proposed a more general model [44], where a single correlated impurity

electron is coupled through a hybridization function Vi to a sea or bath of

conduction electrons. This model is popularly known as the single impurity

Anderson model (SIAM), and the Hamiltonian is written as

ĤSIAM = −
∑

<ij>, σ

(tij c
†
iσcjσ + h. c.) +

∑

iσ

ǫd c
†
iσciσ +

∑

σ

ǫf a
†
σaσ + Un0↑n0↓

+
∑

iσ

(Vic
†
iσaσ + h. c.)

(13)

where c†iσ/ciσ is creation/annihilation operator for a conduction electron

(with orbital energy ǫf ) at sitei and a†σ/aσ is creation/annihilation opera-

tor for an electron (with orbital energy ǫf ) at single impurity site 0. U is

the impurity site Coulomb repulsion and V is the hybridization function that

allows impurity electrons to move to the conduction band.
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In momentum (k) space we can write the same as

ĤSIAM =
∑

kσ

(ǫk c
†
kσckσ + h. c.) +

∑

kσ

ǫd c
†
kσckσ +

∑

σ

ǫf a
†
σaσ + Un0↓n0↑

+
∑

kσ

(Vkσc
†
kσaσ + h. c.)

(14)

The non-interacting (without Hubbard interaction U) Green’s function can

be written as

GSIAM(ω) =

[
ω+ − ǫf −

1

π

∫ ∞

−∞

dω′ ∆(ω′)

ω − ω′

]−1

(15)

where

∆(ω) = π
∑

k

|Vk|2δ(ω − ǫk) (16)

In fact, a canonical transformation proposed by Schrieffer and Wolff [45]

shows that the two models are equivalent and that the SIAM can be mapped

onto an effective s-d Hamiltonian.

0.8 Dynamical mean field theory (DMFT)

In 1989, Metzner and Vollhardt [42] showed the importance of infinite dimen-

sionality in the HM as it simplifies the lattice problem with proper scaling.

In the same year Müller-Hartmann [46] extended the same idea in a more

generic sense. The motivation of such an idea arises from the classical spin-

systems for which the spatial fluctuations are suppressed in the limit of large

dimensions. The most prominent advantage of infinite dimensionality is that
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the self-energy becomes momentum independent, i.e. purely local. This great

benefit leads the lattice model to be mapped on to a single impurity problem

since the self-energy is essentially local as the only local interaction (Coulomb

repulsion) appears at single impurity site. The mean-field differs radically

in spirit from the classical spin mean field since it still contains the dynamic

quantum fluctuations. In the infinite-dimensional limit, a quantum lattice is

mapped onto an effective self-consistent single-site that hybridizes with an

external bath that includes the dynamics of the degrees of freedom of the

other sites. For example, the effective action for a lattice model like the

HM( Eq. (12)) can be written as

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†0σ(τ)G−1
0 (τ − τ ′)c0σ(τ

′) + U

∫ β

0

dτ n0↑(τ)n0↓(τ)

(17)

where τ, τ ′ are imaginary time and G0 is the effective single-site propagator

(often called as the Weiss Green’s function) at site 0. In contrast to the

classical effective field, which is a number, this Weiss mean-field Green’s

function is imaginary time-dependent and hence capable of capturing the

dynamic (temporal) local quantum fluctuations which are crucial to study

correlated physics. The local, retarded Green’s function in the paramagnetic

case is given by

G(ω) =
∑

k

1

ω+ − ǫk − ǫd − Σ(ω)
(18)

where ω+ = ω + iη, η → 0+ and Σ(ω) is the real-frequency self-energy. The

k sum may be transformed to a density of states integral and thus may be
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written as

G(ω) = H[γ(ω)] (19)

whereH[z] ≡
∫
dǫD0(ǫ)/(z−ǫ) is the Hilbert transform of the non-interacting

lattice density of states (DoS) D0(ǫ) over z and γ(ω) = ω+ − ǫd −Σ(ω). We

specifically choose two kinds of lattice DoS for our calculations, namely the

hypercubic lattice (HCL) with

D0(ǫ) =
1√
πt∗

e−(ǫ/t∗)2 (20)

and the Bethe lattice with

D0(ǫ) =
2

πt∗

√
1− (ǫ/t∗)2 (21)

Since a lattice model can be mapped onto an impurity model within

DMFT with the self-consistency condition that the impurity self-energy is

the same as the lattice self-energy, one can find the host or medium Green’s

function G(ω) for the impurity through the Dyson equation

G−1(ω) = G−1(ω) + Σ(ω) (22)

Solution of the impurity model in terms of G(ω) would then yield a new Σ(ω)

which when put back in equation Eq. (19) gives G(ω). Thus, given an impu-

rity solver technique, one can self-consistently solve for the Green’s functions,

and hence the self-energy. This self-consistency loop is shown schematically

in Fig. 6. Exact diagonalization (ED) [47], numerical renormalization group
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Fig. 6: Schematic representation of DMFT self-consistency loop (see text for dis-
cussion).

(NRG) [48], quantum Monte Carlo (QMC) [49, 50], Iterated perturbation

theory (IPT) [51, 52] and local moment approach (LMA) [53, 54] have been

widely used as such impurity solvers. We use the IPT and LMA and discuss

their implementations and outcomes in the forthcoming chapters of the thesis

(An overview has been given in Sec. 0.11).

0.9 Non-equilibrium properties across the Mott

transition

The resistivity or the conductivity experiments in many Mott transition

materials are quite fascinating since the experiments give rise to pressure

and temperature-driven hysteresis. Such hystereses certainly indicate non-

equilibrium physics to play role and any sort of mean-field may not suffice to

capture it. V2O3 has remained a long-standing candidate which shows such

a hysteresis in resistivity. Fig. 7 shows a conductivity experiment on single
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crystal V2O3 , by M. Föex in 1946, that reveals transition with temperature-

driven (thermal) hysteresis. However, during early ’70s, McWhan group, who

extensively studied the same system [14,27,56–58], reported finding of small

hysteresis (2-3 Kbar in the pressure direction) [27], as the closed and open

symbols (representing increase and decrease in pressure/temperature) do not

match all the way in the phase diagram (Fig. 5) [14,27]. Later Kuwamoto et

al [13] showed strong evidence of thermal hysteresis and recently Limelette

et al [59] very carefully studied the pressure-driven hysteresis in Cr-doped

V2O3. If we notice carefully, the hystereses are often associated with jumps

or step like features along the resistivity or conductivity (see Fig. 8). This

phenomenon is known as avalanches and it bears close resemblance with the

Barkhausen noise associated with magnetic hysteresis (see Fig. 9). Hys-

teretic behavior in resistivity has been found in other prototypes, e.g. VO2

. Very recently Sharoni et al studied the statistical distribution of the

Fig. 7: Conductivity experiment on a single crystal V2O3 by M. Föex in 1946.
Reproduced from the book Metal Insulator Transitions by N. F. Mott. [55]
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(a) (b)

(c)

Fig. 8: Hysteresis and avalanches in resistance/conductivity. (a) Temperature
driven hysteresis in Cr-doped V2O3 (reproduced from Ref. 13). (b) Pressure driven
hysteresis on the same material (reproduced from Ref. 59). (c) Temperature
driven hysteresis on VO2 thin films (reproduced from Ref. 60).
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Fig. 9: Barkhausen noise observed in a ferromagnet as a part of the magnetic
hysteresis curve is blown up in the inset. From the book Hysteresis in Magnetism

by Bertotti [61].

Fig. 10: Scanning near-field infrared microscopy on VO2 film. Evidence of perco-
lation progress of metallic domains (light colors) to completely insulating domains
(dark blue) by increase in temperature. From Ref. [62].
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avalanches found in the thermal hysteresis in VO2 thin film [60]. They found

a power law behavior in the avalanche size distribution signifying a possibility

of percolation of metal-insulator islands as driven by temperature. Such an

inhomogeneous distribution of metallic-insulating domains have been found

earlier through scanning-tunneling microscope (STM) experiments. In 2007,

Qazilbash et al [62] found similar evidence in VO2 thin film by the scanning

near-field infrared microscopy (see Fig. 10). Thus the hysteresis mechanism

may lead to a different realm of physics and question about universality in

the context of non-equilibrium phase transition and statistical mechanics.

0.10 Formalism for transport and thermody-

namics.

We calculate the optical conductivity (σ(ω)) via the Kubo-Greenwood [63–65]

formula and get the following expression.

σ(ω) =
σ0t

2
∗

2π2
Re

∫
dω′nF (ω

′)− nF (ω + ω′)

ω

[
G∗(ω′)−G(ω + ω′)

γ(ω + ω′)− γ∗(ω′)

− G(ω′)−G(ω + ω′)

γ(ω + ω′)− γ(ω′)

]
(23)

where

σ0 = 4e2a2n/~ (24)
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e, a, n, and ~ are electronic charge, lattice constant, electron density, and

the reduced Planck’s constant respectively, and

γ(ω) = ω+ − ǫd − Σ(ω) .

Now ω → 0 limit gives the DC conductivity, whose inverse is the resistivity.

We employ the equation of motion method (see Appendix A) and obtain

the following expression for the internal energy (see Appendix B for the

derivation).

E =

∫
dω nF (ω)

[
2ωD(ω) +

1

π
Im (Σ(ω)G(ω))

]
(25)

where D(ω) = − 1
π
ImG(ω) and nF (ω) = 1/(eβω + 1) is the Fermi-Dirac

function.

By taking the temperature derivative of the above expression, we calculate

the specific heat, i.e.

CV =

(
∂E

∂T

)

V

. (26)

0.11 An overview of the thesis chapters

In this thesis, our main objective is to develop and apply diagrammatic

perturbation theory based quantum many body approaches to investigate

the effects of strong correlation and its specific manifestation in the Mott

transition physics in the Hubbard model framework. A brief description of

each chapter and the main results are given below.
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In Chapter 1, we develop a new implementation of the iterated perturba-

tion theory (IPT), which has been developed earlier by Kotliar and Georges

and their co-workers [43]. IPT is based on a second order perturbation the-

ory ansatz about the Hartree limit. We show that our method has multiple

advantages over previous implementations. For example, we obtain real fre-

quency spectral functions and self-energies directly without recourse to the

ill-defined problem of analytic continuation. This makes the algorithm more

efficient and lets us handle the zero temperature features correctly. We find

excellent (sometimes resolution-wise better) agreement with earlier results

like the zero temperature scaling collapse of the spectral functions and the

Mott transition. We find both interaction-driven hysteresis and temperature-

driven (thermal) hysteresis in the system. The thermal hysteresis can be

explained from the phase diagram on the temperature-interaction plane. We

see universal crossing points in the specific heat and the optical conductiv-

ity. Such crossing points have been observed in many optical conductivity

measurements and are known as the isosbestic points. We discuss a severe

problem in the specific heat calculation which has been overlooked in ear-

lier calculations, and argue that the non-conserving nature of IPT might be

responsible for such unphysical results. Finally, we point out that our imple-

mentation is very robust and will be very useful for calculations employing

IPT in multi-orbital Hubbard models for first principles approaches to SCES.

Most of the results on transport and spectral properties have been presented

in our recent published work [66].

In Chapter 2, we develop another formalism, known as the local moment
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approach (LMA), based on the perturbation about the unrestricted Hartree-

Fock (UHF) limit for the Hubbard model. This is far more sophisticated than

IPT approach since it incorporates spin-flip processes to all orders and builds

in local-moments (the primary effect of strong interactions) from the outset.

The LMA has been developed originally for the single-impurity Anderson

model [53, 54] and has been subsequently applied to study heavy fermion

systems through the periodic Anderson model (PAM) within DMFT [67–69].

In this chapter, we describe the mean-field results in detail and show that

a metal-insulator transition exists even at the mean field level, but with

the metal violating Fermi-liquid behavior. The diagrammatics of LMA is

elaborated and the emergence of a low energy scale through the inclusion of

spin-flip processes is demonstrated in the Fermi liquid regime. The whole for-

malism has been discussed in this chapter. The application of this formalism

to the various regimes of the Hubbard model (zero and finite temperature,

particle-hole symmetric and asymmetric cases) is carried out in the next

four chapters. The need to structure this work into four different chapters

is based on two criteria - (a) the different regimes pointed above demand

distinct aspects of LMA to be implemented. (b) The physics issues in each

parameter regime are quite unique to that regime, albeit interrelated. While

the discussion of the aspects that are unique to each regime is the focus of

each chapter, we do take particular care to collate the results of each chapter

with the previous chapters and with other theoretical work.

In Chapter 3, we study universality and scaling in the ground state of

the particle-hole symmetric Hubbard model. The Mott transition and its
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manifestation as a discontinuous first order phenomenon in spectra and op-

tics forms our focus in this chapter. The disappearance of the low energy

scale with increasing interactions and the approaching of Mott insulator is

demonstrated. The destruction of the Mott insulator on the other hand, by

closing of the gap and the concomitant appearance of a finite spectral density

at the Fermi level with decreasing interaction strength is investigated. We

find a single low-energy scale in the problem, given by ωL = Zt∗, where Z is

the quasi-particle weight and t∗ is the effective hopping integral. The strong

coupling metallic regime in this problem is shown to occur in the proximity

of the Mott transition on the Fermi liquid side. The spectral functions in

the neighborhood of the Fermi level are shown to have a universal scaling

form as functions of ω/ωL. This scaling regime extends decades of above ωL

and in strong-coupling (close to the Mott transition), it appears to extend

all the way up to the Hubbard band edges. The optical conductivity is also

found to have a universal absorption peak position for different interaction

strengths after scaling the frequency axis by ωL.

In Chapter 4, we study the interplay between particle-hole (p-h) asym-

metry and strong correlation effects using an implementation of the LMA for

the p-h asymmetric case. The Luttinger’s theorem is used as a constraint

to ensure Fermi liquid behavior. Though we do study the scaling proper-

ties of the single and two particle quantities, our main focus is the role of

asymmetry when combined with strong correlations. Any finite asymmetry

is found to induce metallic behavior in the system, and an interaction-driven

Mott transition does not occur. Increasing asymmetry is found to decrease

the effect of strong correlations and the changes in the spectra and optical
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conductivity are elucidated.

Chapters 3 and 4 deal with the zero temperature properties of the sym-

metric and asymmetric Hubbard model. We now move on finite temperature

transport and thermodynamics properties and the LMA formalism is devel-

oped further.

In Chapter 5, the finite temperature LMA is developed and applied to

study the particle-hole symmetric Hubbard model, and thus represents an

extension of chapter 3. The focus is on transport and thermodynamic prop-

erties across the Mott transition. The resistivity in the metallic regime shows

high T 2 coefficient. Like the zero temperature result, the scaling behavior

of the absorption peak with universal position optical conductivity is also

observed at low finite temperature. In contrast to the results from IPT

(Chapter 1), we find an excellent finite temperature scaling collapse in the

spectral density. We do not find any anomalous or unphysical behavior in the

specific heat. The Mott transition is shown to become continuous at finite

temperatures.

In Chapter 6, we investigate the particle-hole asymmetric Hubbard model

at finite temperature, and focus on the finite temperature properties of doped

Mott insulators. We show that the proximity of the Mott insulator in the

asymmetric case leads to a clear pseudogap in the vicinity of the Fermi level.

An anomalous behavior in the resistivity due to the presence of this pseu-

dogap is seen. For example, the resistivity shows a wide region of linear or

‘quasi’-linear region that resembles the non-Fermi liquid behavior discussed

in Sec. 0.3. We discuss microscopic origin of such ‘Marginal Fermi liquid’ be-

havior (proposed phenomenologically by C. M. Varma and co-workers [70])
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and point out the relevance of our results to the high temperature cuprate

superconductors. We report that a linear resistivity behavior in combination

with a Fermi liquid ground state (ρ(T ) ∼ AT 2) has been obtained within our

approach.

Chapter 7 represents a deviation from the diagrammatic perturbation

theory approach since here we are interested in the non-equilibrium prop-

erties across the Mott transition. We propose a novel reasoning for why

thermal hysteresis is not commonly observed in most ferromagnets. The

‘phase diagram’ from IPT gives an insight on how to describe the thermal

hysteresis that has been found in materials like V2O3 [13] and VO2 [60].

However, IPT solutions mathematically mimic two metastable states (metal

and insulator) and give rise to metal-insulator coexistence regime. For a

real system, such a coexistence regime may manifest itself in a spatial inho-

mogeneous network of metallic and insulating islands (as observed in recent

experiments on VO2 thin films [62]). Quantum many body calculations for

such inhomogeneous systems are extremely expensive and even if carried out

might not be able to provide insight into the physics of the disorder-driven

dynamical Mott transition. For this reason, we adopt a phenomenological

approach. Following the success of random-field Ising model (RFIM) [71,72]

in describing avalanche statistics for magnetic systems, we employ a scheme

where the RFIM model is mapped onto a resistor-network that represents

the real inhomogeneous metal-insulator systems. The metal-insulator island

network is mapped through the final spin configuration of the RFIM, which

we obtain through a zero temperature Monte-Carlo simulation. The resistor

network is solved by standard sparse-matrix based linear algebra techniques
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to determine the effective resistance. As expected, we find hysteresis with

avalanches which exhibit the finite size effects very similar to the experimen-

tal finding by Sharoni et al [60] on VO2 thin films. We also find a comparable

agreement in the power law exponent of the avalanche size distribution with

that found by the same experimental group.

Finally I must say that the work presented in this thesis is a small attempt

to probe the tip of the giant iceberg of electronic correlation problem in the

ocean of condensed matter physics. Many interesting issues remain unex-

plored due to limitations of a Ph. D. duration. Nevertheless, I hope that my

work has covered many significant aspects and methods within many-body

perturbation theory and also a few issues of the non-equilibrium phenomena

across the Mott transition.



Chapter 1

Iterated Perturbation Theory

for half-filled Hubbard model

(p-h symmetric HM)

1.1 Introduction

In ’70s Yosida and Yamada [73] used diagrammatic perturbation theory on

half-filled single-impurity Anderson model (SIAM) and showed that only the

second-order diagrams contribute significantly. Their approach was later car-

ried forward with implementation on the HM primarily by Georges, Kotliar,

Krauth and Rozenberg [43,51,52] within the DMFT framework and later by

many other people. This approach in the context of DMFT is known as the

iterated perturbation theory (IPT). Here we present an improved numerical

implementation of this theory, that we employ to the half-filled single band

Hubbard model. We demonstrate higher resolution of spectral and transport

29
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features and a reduced computational expense. Using this implementation,

we study the issues of scaling and universality in spectral and transport

properties of the particle-hole symmetric Hubbard model within DMFT. We

compare some of our results with experiments, e.g. resistivity with pressure

dependence in Selenium doped NiS2 and with thermal hysteresis on V2O3.

A systematic study of spectral weight transfer in optical conductivity is also

carried out.

1.2 Formalism and implementation

We first rewrite the single band Hubbard model (HM) once again, that has

been already discussed in the previous chapter in order to keep connections

to the parameters that are often discussed in this chapter.

Ĥ = −
∑

<ij>σ

tij(c
†
iσcjσ + h.c.) + ǫd

∑

iσ

c†iσciσ + U
∑

i

n̂i↑n̂i↓ (12)

The ansatz for the dynamical part of the self-energy (apart from the static

Hartree term) within IPT is just the second order term of the perturbative

expansion in U about the Hartree limit, i.e.

ΣIPT(ω) =
U

2
〈n̂〉+ Σ2(ω) (1.1)

where

Σ2(ω) = lim
iω→ω+

U2

β2

∑

m,p

G(iω + iνm)G(iωp + iνm)G(iωp) (1.2)
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Fig. 1.1: Feynman diagram of the second order perturbation term: Σ2(ω), in IPT
approximation

and iω and iν denote odd and even Matsubara frequencies respectively (see

Fig. 1.1). In the half-filling case, 〈n̂〉 = 1 and this assigns a particle-hole (p-

h) symmetry in the lattice (one electron or hole per lattice site). One major

advantage of this symmetry is that the orbital energy ǫd is always known

for a given interaction strength U . By doing particle-hole transformation on

the HM and then by imposing the particle-hole symmetry condition, one can

find (see Appendix C for the derivation)

ǫd = −U/2 . (1.3)

Using the spectral representation G(iωn) =

∫ ∞

−∞

dω′ DG(ω
′)

iωn − ω′
, (where

DG(ω) = −ImG(ω)/π) and carrying out the Matsubara sums along with

the trivial analytic continuation iωn → ω+, we get the following expressions

for the imaginary part of the self-energy on the real frequency axis (Eq. (E.15)
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in Appendix E) :

DΣ(ω) = − 1

π
ImΣ(ω)

= U2

∫ ∞

−∞

dω′DG(−ω′)

[
nF (ω

′)χ(ω + ω′) + nF (−ω′)χ(−ω − ω′)

]

(1.4)

where

χ(ω) =

∫ ∞

−∞

dω′DG(ω + ω′)DG(ω
′)nF (−ω − ω′)nF (ω

′) (1.5)

with

n̂F (ω) =
1

eβω + 1
(1.6)

as the Fermi-Dirac distribution function. We get the real part by using

Kramers-Kronig transformation:

ReΣ(ω) =
1

π
P
∫ ∞

−∞

dω′ ImΣ(ω′)

ω′ − ω
. (1.7)

Eq. (18), (19), and (22) along with Eq. (1.4)- (1.7) constitute the necessary

ingredients for the solution of the half-filled Hubbard model within DMFT.

We remark here that the integrals above are all one-dimensional and hence

do not present any excessive computational expense.

Numerical implementation of the above equations is straightforward in

almost the whole metallic regime. However, the metallic regime in proximity

to the Mott transition and the Mott insulating regime is trickier. We will

illustrate this point and its resolution in detail here. The retarded host
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Green’s function may be separated into a singular and a regular part (Greg):

G(ω) =
∑

i

αi

ω − ωi + iη
+ Greg(ω), η → 0+, α > 0. (1.8)

The sum in the above equation is over the poles ωi or the singularities of the

G(ω) and αi’s are the corresponding weights or residues.

It is easily seen that if G(ω) has to satisfy the self-consistent equations

of DMFT [ (18)- (22), (1.4)- (1.7)], the residue αi of the singularities must

satisfy self-consistent equations. For example, in the Mott insulator case

where there is just one pole with residue α at the Fermi level (this follows

from the singular behavior of the self-energy and host Green’s function in

the atomic limit (t∗ = 0) [28, 43, 74]), we get a cubic equation (at T = 0),

given by (Eq. (F.22) in Appendix F)

α−1 = 1 +
4M2

U2α3
(1.9)

where M2 is the second moment of D0(ω) [M2 =
∫∞

−∞
dω ω2D0(ω)], D0(ω) is

the non-interacting lattice density of states (DoS). Solutions of this equation

by Cardano’s method [75] shows that out of three roots, the physically rea-

sonable root (such that α → 1 as U → ∞) exists only for U > Uc1 ≃ 3.67t∗

for the HCL (see Fig. 1.2).For the Bethe lattice (BL), Uc1 ≃ 2.6t∗. For

a general U , we solve the above cubic equation numerically to get α. In

the strongly correlated metallic regime, poles can arise in the host Green’s

function G(ω) even though the spectral density of the interacting Green’s

function shows a FL behavior within a width of low energy scale (described
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Fig. 1.2: Solving cubic equation (Eq. (1.9) ) by Cardano’s method. The physical
root is the root 3 in the figures (pink lines, solid for the real part, dashed for the
imaginary part). It is purely real after U = Uc1 (Left panel: Uc1 = 3.67t∗ for the
HCL, right panel: Uc1 = 2.6t∗ for the BL) and approaches the strong-coupling
(U → ∞) limit (α → 1).

as ωL later). Two poles occur symmetrically about the Fermi level at ±ω0

proportional to the square-root quasiparticle weight Z (see Eq. (G.7) in Ap-

pendix G). The Mott transition from the metallic regime to the insulating

regime occurs through the collapse of these two poles at the Fermi level into

one single pole characteristic of the insulating regime (as described above).

The poles of the G(ω) lead to divergences at ±3ω0 in the Σ(ω) (through

Eq. (1.4), see Fig. 1.3). Using such a pole structure of the Green’s functions

and the self-energy, the critical U at which the metal transforms into the

insulator, i.e Uc2 may be estimated as 4.77t∗ (see Appendix G) for the HCL.

We also find the same for the Bethe lattice (Uc2 = 3.28t∗) which agrees with

the numerical estimation in Ref. [52].

At finite temperatures, the singularity at the Fermi level must have a finite

width. However, this width could be exponentially small in practice, and it is
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Fig. 1.3: The sharp resonance-like features that appear in the spectra of G and
Σ near the Mott transition (U = 4.3t∗). These resonances can be approximated
as Dirac-delta functions at the close vicinity of the transition. Singularities of
DG(ω) = −ImG(ω)/π at ω = ±ω0 give rise to singularities of DΣ(ω) = −ImΣ(ω)/π
at ω = ω′

0 = ±3ω0.

next to impossible to capture such sharp resonance numerically. So we utilize

the spectral weight sum rule to compute the weight of the singularity, i.e.

α. The presence of this singularity is numerically detected by a significant

deviation (in practice 2%) of the integrated spectral weight of DG from unity.

The sharp resonance at the Fermi level in DG is then numerically cut off to

get Dreg
G and the weight α is obtained by α = 1 −

∫∞

−∞
dωDreg

G . With the

above separation of DG into regular and singular parts, for the insulating

phase, the self-energy expression reduces to

Σ(ω) = Σreg(ω) +
U2α3

4ω+
(1.10)

where Σreg is obtained through the Kramers-Kronig transform of Dreg
Σ which
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is given by

Dreg
Σ (ω) = U2

[ ∫ ∞

−∞

dω′Dreg
G (−ω′)nF (ω

′)χreg(ω + ω′)

+
α2

4
nF (−ω)Dreg

G (ω) +
α

2
χreg(ω)

+

∫ ∞

−∞

dω′Dreg
G (−ω′)nF (−ω′)χreg(−ω − ω′)

+
α2

4
nF (ω)D

reg
G (ω) +

α

2
χreg(−ω)

]
(1.11)

and

χreg(ω) =

∫ ∞

−∞

dω′Dreg
G (ω′)Dreg

G (ω+ω′)nF (ω
′)nF (−ω−ω′)+αDreg

G (ω)nF (−ω).

(1.12)

A brief remark about the computational expense in implementing the

above approach would be appropriate here. (1.9)- (1.12) are the rate limiting

steps in the algorithm, since they scale as O(N2) for a frequency grid with

N points. We must mention that the use of Fast Fourier transforms would

reduce this expense to O(N lnN); however, the frequency grid would need

to be very wide and homogeneous with a high density, thus leading to a high

memory requirement and increased computational expense. In contrast, our

approach requires a relatively sparse frequency grid, since we separate the

sharp features analytically. Thus, without sacrificing resolution, we are able

to achieve reasonable computational expense. Now we proceed to discuss our

results.
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1.3 Spectral properties

Since our implementation is new, we would like to benchmark it by comparing

our results with other implementations. We begin with the local density of

states (DoS) as given by D(ω) = −ImG(ω)/π. In Fig. 1.4 we show the

D(ω) computed at temperature T = 0 for various U ’s in the metallic regime.

The left panel shows the spectral function on ‘non-universal’ scales, i.e. vs.

ω/t∗, where the Hubbard bands are seen to form with increasing U , while

the Abrikosov-Suhl resonance at the Fermi level gets narrower. The zero
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Fig. 1.4: Spectral functions for various U ’s showing quasiparticle resonances at
Fermi level (left). A simple x-axis re-scaling by ωL = Zt∗ leads to a collapse of all
of these onto the non-interacting (U = 0) spectral function in the neighborhood of
the Fermi level thus signifying adiabatic continuity and FL behavior (right: follows
same legends).

frequency value of the spectral function is also seen to be pinned at the non-

interacting (U = 0) value. Such behavior finds a natural explanation in Fermi

liquid (FL) behavior. A simple linear expansion of the self-energy as Σ(ω) =

Σ(0) +
(
1− 1

Z

)
ω+O(ω2) when used in Eq. (19) gives G(ω) = GU=0(ω/ωL)

where ωL = Zt∗ is the low energy Fermi liquid scale. Since the quasiparticle
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weight Z decreases with increasing U , thus signifying an increase in effective

mass (m∗ = m/Z), the full width at half-maximum (FWHM) for a hypercubic

lattice that is given by ∆ = 2ωL

√
ln(2) would decrease with increasing U .

Another inference from such low frequency scaling behavior is the universality

of the low frequency part of the spectral function. On the right panel of

Fig. 1.4, the same spectra as the left panel are plotted as a function of ω/ωL,

and they are all seen to collapse onto the non-interacting limit spectra in

the neighborhood of the Fermi level. All of the above behavior is of course

well known and well understood [52]. We nevertheless emphasize that the

extent of the FL regime is very small in strong coupling, because as the right

panel shows, the scaling collapse is valid for ω . ωL, where ωL is expected to

decrease exponentially with increasing U . The approximation of IPT does

not capture such exponential decrease of ωL, instead predicting an algebraic

decrease.

The left panel in Fig. 1.5 shows that the spectral function of the metallic

phase shrinks down as U/t∗ is increased and finally disappears at U = Uc2 ≃

4.4t∗ (for the HCL) by forming a gap at the Fermi level. This indicates a

Mott transition to an insulator due to increase in interaction starting from

a metallic (gapless) phase. The gap increases further as U/t∗ is increased

more. The right panel in Fig. 1.5 shows the change in spectral functions in

the opposite situation, where we start from an insulating phase an gradually

decrease interaction. As anticipated in our discussion in Sec. 1.2, we find a

different transition point: Uc1 (Uc1 ≃ 3.7t∗ for the HCL), where the spectral

gap closes and a metallic spectral density appears. Thus the presence of two

different transition points Uc1 and Uc2, that depends on the history of the
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driving interaction, signifies a presence of hysteresis in the system. The values

of Uc1 and Uc2 remarkably agree with our analytical predictions discussed in

Sec. 1.2. Due to presence of hysteresis, and even as that has been found in
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Fig. 1.5: Spectral function evolution as a function of U/t∗ for the hypercubic
lattice (HCL). Left panel shows that the quasiparticle resonance of the metallic
phase decreases due to increase in U/t∗ and finally vanishes by forming a gap at
the Fermi level. Thus it signifies a metal-to-insulator transition and the transition
point is named as Uc2 (Uc2 ≃ 4.4t∗ for the HCL). However, we get a different
transition point when we decrease U/t∗ starting from an gapped spectral density
(insulating phase) and we call it Uc1. Presence of two different metal-insulator
transition points shows a presence of hysteresis at zero temperature.

experiments as well (see discussions in Chapter 0), many authors believe that

the transition is of first order. We have done finite temperature calculations

as well, which shows that the difference between Uc1 and Uc2 decreases as

one increases temperature and it vanishes at a critical temperature T = Tc.

We describe this now in term of the phase diagram on the U -T plane.

In the U -T plane, the metallic and insulating solutions are known to

coexist in a certain region bounded by spinodal lines. The T = 0 bounds are

denoted by Uc1 and Uc2. This first order coexistence region may be simply

found by computing the temperature or U dependence of the Fermi level
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density of states (D(0) = −ImG(0)/π) for various values of U/t∗ or T/t∗.

The resulting phase diagram is shown below in Fig. 1.6. It agrees well with

those reported previously [43, 52]. In addition, the resolution of the spectra

here is seen to be far better than those obtained previously [43,52,76] through

the analytic continuation of Matsubara frequency quantities.
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Fig. 1.6: Phase diagram on the U -T plane as calculated within IPT for the hy-
percubic lattice (HCL). The solid lines with zero temperature end points at Uc1

and Uc2 mark the spinodals of the coexistence region where the metallic and the
insulating solutions coexist. (Uc/t∗, Tc/t∗) denote the critical point above which a
second order metal-insulator crossover is observed.

The metallic region is a strongly renormalized FL, and thus the properties

close to the Fermi level must be governed by a single low energy scale ωL.

For universality to hold in the strong coupling region, the spectral function

must have the following form:

D(ω;T ) = f

(
T

ωL

;
ω

ωL

)
, (1.13)

i.e. it must be a function purely of T̃ = T/ωL and ω̃ = ω/ωL [19]. In Fig. 1.7,
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Fig. 1.7: Finite temperature scaling violated. Spectral functions plotted for various
U ’s, keeping T̃ = T/ωL = 0.2 fixed, do not collapse .

we show the spectra in strong coupling for fixed T̃ = 0.2 and increasing

U/t∗. We see that a scaling collapse does not occur implying that the above

universal form does not describe the finite temperature IPT results. This

non-universal behavior is an artefact of the specific iterated perturbation

theory ansatz for the self-energy which is known to yield a non-universal

form for its imaginary part [76], namely ImΣIPT(ω = 0) ∝ U2T 2/t3∗.

1.4 Transport properties

1.4.1 Resistivity

The dc resistivity is computed by taking ω → 0 limit on Eq. (23) and taking

inverse of it. Again, the pathologies in the imaginary part of the self-energy

are reflected in the low temperature FL region in the following way. Although

the resistivity does have a T 2 form, the expected universal scaling form of

(T/ωL)
2 is not obtained [76]. However, surprisingly, the ‘coherence peak’
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position, which represents a crossover between low temperature coherent be-

havior to high temperature incoherent behavior does seem to be a universal

feature in strong coupling as seen in Fig. 1.8 occurring at T̃ = 0.6. The

crosses represent the peak position, and as is seen in the right panel, these

crosses line up at a single T̃ . Thus the position of the coherence peak may be

used to infer the low energy scale in a real material. In the inset of the left
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Fig. 1.8: Left panel: Theoretically computed resistivity as a function of temper-
ature for various U/t∗ values (indicated as numbers). The crosses indicate the
position of the coherence peak. Left panel inset: Experimentally measured [77,78]
resistivity for NiS2−xSex as a function of pressure (indicated as numbers). Right
panel: The same resistivity as in the left panel with the temperature rescaled by
the low energy coherence scale ωL = Zt∗ showing that the coherence peak is indeed
a universal feature of the strongly correlated metallic regime.

panel, we show the experimentally measured [77,78] resistivity of NiS2−xSex

as a function of pressure in Kbar (indicated as numbers). The resistivity

for the lowest pressure rises dramatically with increasing T , before reaching

a coherence maximum, and then decreasing slowly for higher temperatures.

With increasing pressures, the initial rise becomes more gradual, and the

coherence peak shifts to higher temperatures. An increase in pressure leads
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to a decrease in lattice spacing, thus increasing t∗, the hopping parameter,

while the local Coulomb repulsion U remains unaffected. Thus increasing

pressure can be interpreted as a decrease in the U/t∗ ratio. A comparison of

the inset with the main figure of the left panel clearly indicates qualitative

agreement. The initial rise of ρ(T ) with T is much sharper in experiment

than in theory, but the rest of the features, including a shift of the coherence

peak to higher temperatures with increasing pressure, are indeed observed.

We emphasize here that the agreement is only qualitative and as such, no

attempt is made to obtain quantitative agreement.

We now study the resistivity hysteresis as obtained within IPT approxi-

mation.

1.4.2 Thermal hysteresis

Fig. 1.9 shows the thermal hysteresis in resistivity obtained through heating

and cooling cycles for fixed U ’s (t∗ = 1) in the coexistence region. The area

enclosed by the hysteresis loop decreases as U → Uc. A full cycle hystere-

sis is observed only in the region Uc (∼ 3.5t∗) < U < Uc1 (∼ 3.7t∗). For

U < Uc, the metal-insulator transition is continuous and hence of second

order while for U > Uc1 the transition is discontinuous but hysteresis is not

obtained. The hysteresis can be qualitatively explained through the coex-

istence region in Fig. 1.6. For Uc < U < Uc1 the T = 0 ground state is a

FL. As one increases T for a fixed U , and crosses the spinodal on the right

(transition line 2), a first order transition to a paramagnetic insulating state

occurs, which upon cooling does not transit to the paramagnetic insulating
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Fig. 1.9: Left panel: The resistivity on a log-scale exhibits thermal hysteresis as
a function of temperature when Uc < U < Uc1 (see text for discussion). For
U = 3.4t∗ second order transition is observed without hysteresis. For U = 4.0t∗
hysteresis is not observed though the metal-insulator transition is of first order.
Right panel: Comparison of theoretically obtained thermal hysteresis (U = 3.6t∗)
with experimental observations in V2O3 [13].

state until the left spinodal is crossed (transition line 1). Thus as one crosses

the coexistence region and reenters via heating/cooling, thermal hysteresis

would be obtained. The hysteretic behavior seen in the present theory is

naturally very far removed from the rich experimentally observed hystere-

sis seen e.g. in V2O3. The coexistence of metallic and insulating islands

has been experimentally observed in thin films [79], as well as in mangan-

ites [80], while within DMFT, where spatial inhomogeneities are completely

ignored, the coexistence is just that of the metallic and insulating solutions.

Experimentally, the resistivity does not increase monotonically with heating

or cooling. Instead, multiple steps or avalanches are observed to accompany

the hysteretic behavior. While such details are absent in the present theory,

nevertheless, we carry out a direct comparison of our hysteresis result with

the one found experimentally in doped V2O3 [13] (right panel of Fig. 1.9).

The purpose of such a comparison being to assess if the half-filled Hubbard
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model can capture at least the qualitative aspects of real materials. If it does,

then the hope would be that a realistic theory based on finite dimensions in-

cluding spatial inhomogeneities would be able to capture the experimentally

observed behavior quantitatively. The best fit of the hysteresis result for a

specific interaction (U = 3.6t∗), yields t∗ ∼ 7305K (0.63eV). This agrees well

with the independent band structure calculations for V2O3 [81] and is of the

right magnitude.

We now focus on optical transport in the next subsection.

1.4.3 Optical conductivity:

As can be naturally expected, changes in interaction strength U/t∗ and espe-

cially the Mott MIT affect dynamical or optical transport properties strongly.

Fig. 1.10 shows the computed T = 0 optical conductivity σ(ω) as U/t∗ in-

creases from a low value of 1.0 to a moderately strong value of 3.0. The inset

shows the corresponding spectral functions. Several very interesting features

can be seen. As U increases, a strong absorption feature emerges at ∼ U/2

for U & 2t∗, while a second peak at ∼ U emerges beyond 3t∗. For low values,

none of these features may be distinguished. The first peak arises because of

excitations between either of the Hubbard bands and the Fermi level, while

the second peak represents excitations between the lower and upper Hub-

bard band. The zero frequency Drudé peak is also present, but is not visible,

since it has a Dirac-delta function form. The changes in optical conductivity

are naturally understood through the inset of Fig. 1.10. For low values of

U/t∗, a single featureless spectral function is obtained, while the emergence
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Fig. 1.10: The main panel shows the zero temperature optical conductivity for
U/t∗ values ranging from 1.0 to 3.0 (indicated by numbers). The inset shows the
corresponding spectral functions.

of distinct Hubbard bands in the spectra mark the emergence of the first

and second absorption peaks in the optical conductivity. At around the half

bandwidth (ω ≃ 1.15t∗) a universal crossing point is seen in the spectra.

The effect of Mott transition on the optical absorption is illustrated clearly

in Fig. 1.11, which is similar to the previous figure, except that the values

of U/t∗ considered here increase from 3.0 to 5.0. The transition from the

correlated metallic phase to the Mott insulator phase occurs at U/t∗ ≃ 4.5,

where, within IPT, a large gap ∼ U−2t∗ is known to form [43,52]. The main

panel shows optical conductivity as a function of ω/t∗. In the metallic phase

(U < Uc2), the first absorption peak is seen to get narrower and surprisingly

gets red-shifted as the Mott transition is approached. The second absorption

peak begins to dominate as U → Uc2 and becomes the sole feature in the

Mott insulating phase. The U > Uc2 optical conductivity is seen to possess a

clear optical gap, which increases with increasing U and reflects the presence

of the gap in the density of states (see inset).
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Fig. 1.11: The main panel shows the zero temperature optical conductivity for
U/t∗ values ranging from 3.0 to 5.0 (indicated by numbers). The inset shows the
corresponding spectral functions.

The temperature evolution of the optical conductivities is equally inter-

esting. In Fig. 1.12 we show the σ(ω;T ) behavior for various T ’s for a mod-

erately strong interaction strength of U = 3.0t∗. The inset again shows the

corresponding spectral functions. The first absorption peak at lower temper-

atures loses spectral weight as temperature increases, which is gained by the

second peak, and again an almost universal crossing point is seen, marking

the frequency across which the transfer of spectral weight occurs. The Drudé

peak at ω = 0 diminishes in height, consistent with the dc conductivity val-

ues, and disappears completely at T = 0.2 by forming a shoulder-like feature

at higher frequency ω ∼ 2.5t∗. An earlier investigation [82] (though it was

not exactly calculated for the half-filled HM) claimed that the shoulder for-

mation is actually shifting of Drudé peak (pseudo-Drudé peak) and the phase

is metallic. However, here we argue that this arises due to the pseudogap

formation in the DoS (see the left inset) and it is actually an insulating state

since dρ(T )/dT < 0 (see the right inset) and the phase lies in the crossover
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regime.

The universal crossing point, known as the isosbestic point in the metallic

phase has been observed in several materials, e.g. V2O3 [83], NiS2−xSex [84],

La2−xSrxCuO4 [85], La1−xCaxTiO3 [86]. Occurrence of isosbestic points is

not well-explained. Nevertheless such a point is believed to have a close

connection with f -sum rules and its location is associated to microscopic

energy scales in correlated systems [87, 88]. Here, we see that the dynamics

also exhibit a similar feature indicating an even more general basis for its

existence. If we use our earlier estimation of t∗ (0.6 eV) for V2O3 or the

LDA-calculated value, we find that the isosbestic point arises at ∼ 0.9-1.0

eV which lies in the mid-infrared range, and which is close to that seen in a

recent infra-red spectroscopy measurement [83] i.e. at 6000 cm−1 (∼ 0.7 eV).
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Finally we show the optical conductivity for the Mott insulating regime

(U/t∗ = 4.7) evolving with temperature in Fig. 1.13. A single absorption

peak is seen at low temperatures, and as T increases, spectral weight is

transferred from this peak to lower frequencies, and the absorption peak

diminishes, and experiences a slight blue shift. The spectral function exhibits

negligible change as a function of temperature and although, there is indeed,

an exponentially small rise in the density of states in the neighborhood of

the Fermi level, it visually appears to coincide with the T = 0 DoS.
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Fig. 1.13: The main panel shows optical conductivity for temperatures T/t∗ =
0.02, 0.5, 0.9 and 1.5. The inset shows the corresponding spectral function which
exhibits negligible changes as temperature is increased.

In the next section, we discuss the thermodynamic properties of both

metallic and insulating phases.
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1.5 Thermodynamic properties: internal en-

ergy and specific heat

We rewrite Eq. (25) from Chapter 0, that we use to calculate the internal

energy:

E = 〈ĤHM〉 =
∫
dωnF (ω)

[
2ωD(ω) +

1

π
Im (Σ(ω)G(ω))

]
(25)

This expression is quite remarkable in a sense that the internal energy has

been written as a function of real frequency ω, and this is numerically more

convenient to use compared to the expression obtained in terms of Matsubara

frequencies [43,65,89] in earlier implementations. Fig. 1.14 shows the internal

energies for the metallic (U = 2.8t∗) and insulating phase (U = 4.7t∗)

By numerically taking derivative w.r.t. temperature we find the specific heat
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Fig. 1.14: Internal energy for U = 2.8t∗ (left panel) and U = 4.7t∗ (right panel)

also. Fig. 1.15 shows the linear temperature dependence of specific heat at

low T for U/t∗ ranging from 2.2 to 2.8. When we scale temperature by low-

energy scale ∆, all low-temperature curves merge together. This universal

behavior signifies the Fermi-liquid properties at low temperature (Fig. 1.15).
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2.8. Right panel: The same after scaling the temperature axis by the FWHM of
corresponding spectarl densities.

In insulating regime, as shown in Fig. 1.16, at temperature quite smaller

than the spectral gap, we find the activation behavior: Cv(T ) ∝ T exp(−∆g/T )

(see Appendix H for a heuristic derivation). Though internal energy and
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Fig. 1.16: Specific heat in insulating regime (U/t∗=4.7) Cv(T ) ∝ T exp(−∆g

T )
where ∆g is half of the spectral gap. The slope of the linear regime (highlighted)
is ∼ 0.42t∗ (right panel) which is slightly less than the gap of zero-temperature
spectral function (∆g ∼ 0.7t∗).

specific heat behaves physically with consistence at low and high U regions,

there is a serious drawback in the intermediates region. The internal energy
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shows a dip as we gradually increase T for U > 2.8t∗ in HCL. Since IPT, as
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Fig. 1.17: Internal energy (left panel) and specific heat (right panel) for U = 3.2t∗.
The dip in the internal energy produces negative value of specific heat.

a perturbation does not assure any conservation of physical properties (e.g.

here energy), this may result in unphysical values in the internal energy and

hence in the specific heat (see Fig. 1.17).

1.6 Summary

A systematic study of the half-filled Hubbard model within dynamical mean

field theory is carried out, with the focus being on universality, scaling and

qualitative comparison to experiments. We reformulate a well-known and ex-

tensively employed impurity solver for the effective impurity problem that the

lattice problem gets mapped onto within DMFT, namely the IPT, such that

some of the problems with previous implementations have been overcome.

We find that the coherence peak in the resistivity is a universal feature. A

comparison with experimental measurements of resistivity in Se doped NiS2
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with varying pressure yields qualitatively excellent agreement. Thermal and

pressure driven hysteresis is shown to be qualitatively explicable within this

scenario, and again, a comparison of thermal hysteresis with experiments in

V2O3 are seen to yield a reasonable number for the hopping integral. The

transfer of spectral weight across the Mott transition and the isosbestic points

have been highlighted in the study of optical conductivity. We conclude that

the Hubbard model does indeed represent an appropriate phenomenological

model that can qualitatively explain a large range of phenomena observed in

transition metal oxides. This offers hope for more detailed material specific

studies such as those employing LDA+DMFT [90–92] approaches to obtain

quantitative agreement with experiments.



Chapter 2

Zero temperature local moment

approach (LMA): Theory and

formalism

2.1 Introduction

The requirement of a non-perturbative theory, specifically in the context

of the single-impurity Anderson model (SIAM) sitting at the heart of any

DMFT based calculation, that can capture single-particle dynamics at all

energy scales has been a constant need for resolving the issues in correlated

systems. IPT certainly fails to capture the strong-coupling limit due to its

perturbative nature (second order in interaction strength U). Exact meth-

ods like quantum Monte Carlo (QMC) [49,50] cannot be employed directly at

zero temperature and additionally are computationally very expensive. Other

methods, such as exact diagonalization (ED) [43, 47] and NRG [93] produce

54
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discrete features that need broadening, the procedure for which remains ad

hoc. ED is inefficient to capture the low-energy feature and NRG also suffers

from inability to get correct high energy features, specifically the band edges

of Hubbard bands [19,48], and continuous variation of finite temperature [93].

On the other hand, the local moment approach (LMA), developed by David

Logan and his co-workers [53,54] during the late nineties, showed a remark-

able success in capturing both weak and strong coupling limits correctly in

the SIAM. Later many works have been carried out successfully using LMA

in the context of the periodic Anderson model (PAM) [67, 94] and the Hub-

bard model (HM) [95,96]. In this sense, the LMA can be a useful method in

the context of Mott transition. In our present work, many approaches have

been followed from Ref. 96 and M. P. Eastwood’s PhD thesis [97]. How-

ever, many issues in the HM context have remained unresolved, specifically

regarding the Fermi liquid metal and its universal scaling behavior close to

the Mott transition and and properties of the doped Mott insulator. For this

reason, before we arrive the issues within particular contexts, we need to set

up the basic formalism of LMA.

In this chapter, we discuss the zero temperature formalism of LMA,

starting from a simple mean-field approximation, which is the unrestricted

Hartree-Fock (UHF) approximation. We show that this approximation fails

to give the correct physics since in certain cases, it does not preserve the

Fermi liquid property even though it yields a metallic phase. We realize

that the static nature of the mean-field approximation is responsible for such

discrepancy and we develop a scheme as a remedy by introducing the spin-

flip dynamics (through transverse spin-polarization propagators of infinite
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orders) in the self-energy approximation. We also find that by restoring the

broken spin-symmetry in the UHF approximation, we get back a consistent

Fermi liquid behavior below the Mott transition point. We discuss the spe-

cial condition that occurs in the insulating case and the special care needed

as a singularity arises in the spin-polarization propagator. Finally we discuss

the numerical implementation with a flow diagram.

2.2 Starting point: unrestricted Hartree-Fock

(UHF)

The simplest mean-field approximation one can formulate as a starting point

is the unrestricted Hartree-Fock (UHF) approximation. In this approxima-

tion, each electron moves in a time-independent mean-field background of

other electrons. UHF is a site and spin dependent approximation. Thus it

allows for a possibility of breaking spin-symmetry and hence the formation of

local moments in contrast to the conventional restricted Hartree Fock (RHF)

approximation which does not have any spin-dependence. The value of the

local moment is measured as |µ| = |〈n̂↑− n̂↓〉|, we label A and B for solutions

µ = ±|µ| respectively. The mean-field or the UHF Hubbard model can be

written as

ĤMF = −
∑

<ij>σ

tij (c
†
iσcjσ + h.c.) + ǫd

∑

iσ

c†iσciσ

+U
∑

iσ

〈n̂iσ〉n̂iσ − U
∑

i

〈n̂↑〉〈n̂↓〉 (2.1)
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In term of momentum (k) space

ĤMF =
∑

kσ

ǫk c
†
kσckσ + ǫd

∑

kσ

c†kσckσ + U〈n̂σ〉
∑

kσ

c†kσckσ + constant

=
∑

kσ

ǫk n̂kσ + Σ0
σn̂kσ + constant (2.2)

where

Σ0
σ = ǫd + U〈n̂σ〉 . (2.3)

This is a diagonalizable form and in fact the Green’s function is similar in

form to a non-interacting propagator in a lattice with energy shifted by Σ0
σ.

We can write the total electronic density or filling 〈n̂〉 and the average local

moment µ (for A-type solution) as

〈n̂〉 = 〈n̂↑〉+ 〈n̂↓〉 (2.4)

and

µ = 〈n̂↑〉 − 〈n̂↓〉 . (2.5)

Now depending on the choice of solution A or B, we can write the general

spin-dependent UHF self-energy as

Σ0
ασ = ǫd + U〈n̂ασ〉 = ǫd +

U

2
( 〈n̂〉 − ασµ ) (2.6)

where α = ±1 for A and B-solutions respectively.
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Hence the single-particle UHF Green’s functions can be written as

GAσ(ω) =
1

ω+ − Σ0
Aσ − Sσ(ω)

=
1

ω+ − ǫd − U
2
( 〈n̂〉 − σµ )− Sσ(ω)

(2.7a)

GBσ(ω) =
1

ω+ − Σ0
Bσ − S(ω)

=
1

ω+ − ǫd − U
2
( 〈n̂〉+ σµ )− Sσ(ω)

(2.7b)

where Sσ(ω) is the medium self-energy or the Feenberg self-energy [97–

99], which arises due to presence of nearest neighbor hopping in a lattice.

Sσ(ω) = Sσ[GA↑(ω),GB↓(ω)] for the A-type solutions, i.e. a functional of the

interacting Green’s functions. For the paramagnetic case, it depends only on

the spin-independent average Green’s function, which is 1
2
(GAσ(ω)+GAσ(ω))

in the UHF theory. Therefore for the paramagnetic case we can write

Sσ(ω) = S(ω) (2.8)

Then from Eq. (2.7) we can see that

GAσ(ω) = GBσ(ω) (2.9)

and from Eq. (2.6)

Σ0
aσ(ω) = Σ0

Bσ(ω) (2.10)

Therefore if we just work with one type solution (say, A-type) of Green’s

functions or self-energies, we can find the same for the other type using the

above symmetries. Hence onward we shall drop the solution label index

(in accord to our choice biased to A-type solutions) and we shall mention

explicitly when needed. So let us rewrite the UHF self-energy and the UHF
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Green’s function:

Σ0
σ = ǫd +

U

2
( 〈n̂〉 − σ µ) (2.11)

Gσ(ω) =
1

ω+ − ǫ+ σx− S(ω)
(2.12)

where we define

x ≡ 1

2
|µ|U (2.13)

and

ǫ = ǫd +
U

2
〈n̂〉 (2.14)

We shall see later that instead of U and |µ| independently, their product or

x plays a crucial role in the implementation of the local moment approach

(LMA).

Now if we want to calculate the total effective UHF Green’s function for

the paramagnetic case, we need to take average of spin-dependent Green’s

functions in Eq. (2.12), i.e.

G0(ω) =
1

2
[G↑(ω) + G↓(ω)] (2.15)

Once we calculate Gσ(ω), following Eq. (2.4) and Eq. (2.5) we can determine

the density and the local moment from their imaginary parts, i.e.

〈n̂〉 =
∫ ∞

−∞

dω [D↑(ω) +D↓(ω)] (2.16)
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µ =

∫ ∞

−∞

dω [D↑(ω)−D↓(ω)] (2.17)

where

Dσ(ω) = − 1

π
ImGσ(ω) (2.18)

Hence we plug the magnitude of the local moment in Eq. (2.12) and find the

UHF Green’s functions again. If we repeat these two steps until we arrive

self-consistency, we get the UHF Green’s functions for a given U . However,

in practice, instead of doing this iterative process, we select x and determine

U from Eq. (2.13) after calculating µ by using Eq. (2.17). One important

thing to remember is that S(ω) is also unknown from the beginning. We

re-calculate it since G0(ω) can be also written as

G0(ω) =
1

γ(ω)− S(ω)
. (2.19)

Thus

S(ω) = γ(ω)− 1/G0(ω) = ω − 1/H[γ(ω)] (2.20)

where we have use the fact that G0(ω) is the Hilbert transform of the lattice

DoS D0(ω) over γ(ω) (Cf. Eq. (19)):

H[γ(ω)] =

∫ ∞

−∞

dω′ D0(ω
′)

γ(ω)− ω′
(2.21)

Now γ(ω) can be calculated by equating Eq. (2.15) and Eq. (2.19), which

leads to

γ(ω) =
2γ↑(ω)γ↓(ω)− [γ↑(ω) + γ↓(ω)]S(ω)

γ↑(ω) + γ↓(ω)− 2S(ω)
(2.22)
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where

γσ(ω) = ω+ − ǫ+ σx . (2.23)

2.2.1 p-h symmetric case

So far we have discussed formulation for a general filling or average electron

occupation number 〈n̂〉. Now we will focus on a special case: 〈n̂〉 = 1,

which is the half-filling or the particle-hole symmetric case. p-h symmetric

HM is interesting since only for this particular filling, we expect a Mott

insulator. For any other filling, there will be always empty sites available

for electrons to hop and hence they should always construct a metal. As

we have mentioned in Chapter 1, the half-filled case yields a simple relation

between the orbital energy and the interaction strength, viz. ǫd = −U/2

(see Appendix C for a derivation). This makes ǫ = 0 in Eq. (2.14), which

implies that the spin-dependent UHF Self-energies and Green’s functions in

Eq. (2.11) and Eq. (2.12) reduce as

Σ0
σ =

−σ
2
U |µ| = −σx (2.24)

Gσ(ω) =
1

ω+ + σx− S(ω)
. (2.25)

Below we summarize the steps required for practical calculations within

the UHF approximation (for simplicity we consider symmetric case here, i.e.

ǫ = 0). As a common practice, t∗ is chosen to be 1.
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Steps to determine UHF Green’s functions and

the corresponding U

(i) Choose an x and a guess function for S(ω).

(ii) Calculate Gσ from Eq. (2.12).

(iii) Calculate µ from Eq. (2.17).

(iv) Find total Green’s function from Eq. (2.15).

(v) Calculate S(ω) from Eq. (2.20).

(vi) Go back to step (ii) and repeat next steps.

(vii) Stop after self-consistency is achieved in S(ω). Find related U

from Eq. (2.13).

The UHF spectral densities for different U/t∗ have been shown in Fig. 2.1.

As one changes U , one finds three distinct regimes by looking at the spectral

function and the local moment µ:

(I) 0 ≤ U ≤ U0
m -metallic, |µ| << 1;

(II) U0
m ≤ U ≤ U0

c -metallic, |µ| < 1;

(III) U > U0
c -insulating, |µ| ∼ 1.
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Fig. 2.1: Spectral functions for the hypercubic lattice for interaction strengths
U/t∗ = 1.42 , 1.61 , 4.13t∗, that belong to different regimes. (a), (b), and (c) rep-
resent the regimes (I), (II), and (III) as described in the text. Red dotted line in
(a) represents the non-interacting value which sits on top of the interacting curve.
Local moments in (I) is insignificant (µ = 0.007), in (II) is significant enough to
show non-Fermi liquid behavior (µ = 0.62), and in (II) reaches close to the value
(µ = 0.97 ∼ 1) at strong-coupling limit (U → ∞).
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In the regime-I UHF practically becomes RHF (since no significant local

moment forms) and the spectral density coincides with the non-interacting

(red dotted curve in Fig. 2.1(a)) non-interacting DoS. In that sense, it is like

a Fermi-liquid though it does not have any resonance feature, as we have

already seen in the IPT metallic state, at ω = 0. Here G↑(ω) and G↓(ω) are

effectively equal and hence G0(ω) too. Therefore no significant local moment

does arise.

After a critical value U0
m (U0

m ≃ 1.425t∗ for the HCL and U0
m ≃ 1.17t∗

for the BL), the spectral densities deviate from the non-interacting value.

Moreover, local moments with significant values start forming as we increase

U/t∗ further. This happens due to significant difference between two spin-

dependent Green’s functions, that reflect in the two peaks that appear at

opposite sides of the Fermi level. However, the spectral density still remains

finite at the Fermi level and hence the electronic property in this regime is

expected to be metallic. The spectral density at the Fermi level appear as

a valley between the two peaks, and decreases as interaction is increased

further, finally it becomes zero at a critical value U0
c (U0

c ≃ 1.82t∗ for the

HCL and U0
c ≃ 1.33t∗ for the BL).

For U > U0
c , the system enters into the regime-III, where a clean gap

is observed around the Fermi level. Thus the regime signifies insulating

behavior. At large U/t∗, clear Hubbard bands are observed and they appear

at ω = ±U/2, which is expected for the strong-coupling limit.

Now it is clear that the UHF results bear severe drawbacks, namely

(i) Before the system goes to a Mott transition, it passes through a non-

Fermi liquid regime (regime-II), which is not physically acceptable.
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(ii) The Fermi liquid regime (regime-I) does not have any Hubbard band

feature(Cf. IPT results in Chapter 1).

(iii) The Hubbard bandwidth at the strong-coupling does not match with

that found from the exact calculation [96].

Naturally in the UHF approximation the self-energies are static (fre-

quency independent), which sounds very crude as an approximation. There-

fore it is fair to ask: Is it possible to develop a many-body theory beyond the

mean-field approximation or can the consideration of higher order diagrams

in the perturbation theory give more sensible results, e.g. a Fermi liquid

metal to a Mott insulator transition?

2.3 Inclusion of spin-flip scattering dynamics

The UHF approximation fails to capture the Fermi liquid (low energy scal-

ing behavior) and we blame it on the static nature of the approximation.

Therefore as a first possible improvement, we wish to see if we can find a

remedy of the problems, that arise due to static nature of the self-energy

approximation, by including the spin-flip dynamics along with it.

The transverse spin-polarization propagator or the polarization bubble is

defined as 1

Πσσ
ii (t) ≡ i〈 T̂ Ŝσ

i (t)Ŝ
σ
i (0) 〉 (2.26)

1Note that σ or σ = −σ in the superscript of Πσσ
ii does not imply spin orientation

(up or down). σ = +/− stands for raising/lowering operator as defined in Eq. (2.26).
However, these notations will be useful to write in a general form making connection to
the spin index of spin-dependent self-energy and Green’s function.
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where S+
i = c†i↑ci↓ (raising operator); S−

i = c†i↓ci↑ (lowering operator) We call

it ‘bare’ polarization when there is no interaction line. We can construct

higher order diagrams by putting more interaction lines in the ‘bare’ polar-

ization bubble . If we consider all such diagrams, we find that they appear

in a geometric progression (i.e in powers of 0Π
σσ
ii (ω)), which can be summed

as follows (see Fig. 2.2).

Πσσ
ii (ω) =

0Π
σσ
ii (ω)

1− U0Πσσ
ii (ω)

(2.27)

This summation is known as the random-phase approximation (RPA).

The ‘bare’ polarization is the convolution of ‘bare’ propagators (here in

our context, the UHF Green’s functions).

0Π
σσ
ii (ω) =

i

2π

∫ ∞

−∞

dω′ Giσ(ω
′)Giσ(ω

′ − ω) (2.28)

From Eq. (2.28), the imaginary part of the bare polarization is written as

1

π
Im0Π

σσ
ii (ω) = θ(ω)

∫ |ω|

0

dω′ D↓(ω
′)D↑(ω

′−ω)+θ(−ω)
∫ 0

|−ω|

dω′D↓(ω
′)D↑(ω

′−ω)

(2.29)

In practice Im0Π
σσ
ii (ω) is calculated from Eq. (2.29) and its real part is cal-

culated through Kramers-Kronig transformation, i.e.

Re0Π
σσ
ii (ω) =

∫ ∞

−∞

dω′

π

Im0Π
σσ
ii (ω

′)

ω′ − ω
. (2.30)
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Fig. 2.2: Diagrammatic expansion of the full polarization bubble Π+−
ii

2.3.1 Stability criterion

Using the Lehmann representation [89] the imaginary part of Πσσ
ii (ω) can be

written as

1

π
ImΠσσ

ii (ω) =
∑

n

|〈ψN
n |Ŝσ

i |ψN
0 〉|2δ(ω + [EN

n − EN
0 ])

+
∑

n

|〈ψN
n |Ŝ−σ

i |ψN
0 〉|2δ(ω − [EN

n − EN
0 ]) ≥ 0 (2.31)

Also from Eq. (2.27), in terms of 0Π
σσ
ii (ω), ImΠσσ

ii (ω) can be expressed as

ImΠσσ
ii (ω) =

Im0Π
σσ
ii (ω)

[1− URe0Πσσ
ii (ω)]

2 + [UIm0Πσσ
ii (ω)]

2
. (2.32)
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Since ImΠσσ
ii (ω) ≥ 0,

ReΠσσ
ii (ω = 0) =

∫ ∞

−∞

dω

π

ImΠσσ
ii (ω

′)

|ω′| ≥ 0 (2.33)

Now using Eq. (2.27),

ReΠσσ
ii (0) =

Re0Π
σσ
ii (0)

1− URe0Πσσ
ii (0)

(2.34)

Therefore to retain the positive-semidefinite property of ReΠσσ
ii (0) (from

Eq. (2.33)) we need the following condition to be satisfied

1− URe0Π
σσ
ii (0) ≥ 0

i.e.,

URe0Π
σσ
ii (0) ≤ 1 (2.35)

When the equality holds, we find a pole in Πσσ
ii at ω = 0

Now directly from Eq. (2.12)

G↑(ω)− G↓(ω) = −U |µ|G↑(ω)G↓(ω) (2.36)

and from Eq. (2.28) we find

URe0Π
+−

(0) =
1

|µ|

∫ 0

−∞

dω [D↑(ω)−D↓(ω)] ≡
|µ0|
|µ| (2.37)

where |µ0| is pure static MF (UHF) local moment (i.e. self-consistent solution
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of Eq. (2.12) and Eq. (2.17)). Thus when the equality holds for stability

criterion (Eq. (2.35)) |µ| takes its UHF-value (supposed to be solved self-

consistently) from the gap equation. Away from UHF, within stable regime,

|µ| > |µ0|.

2.3.2 Self-energy

Incorporation of transverse spin-flip polarization with RPA sum, as shown

in Fig. 2.2, gives rise to the following diagram for the dynamic self-energy.

which readily translates into a convolution integral:

Fig. 2.3: Diagrammatic representation of the dynamic self-energy Σ(ω) in term of
polarization bubbles and host Green’s function

Σσ(ω) = U2

∫ ∞

−∞

dω′

2πi
Gσ(ω − ω′)Πσσ(ω′) (2.38)

where G(ω) is now a self-consistent host Green’s function.



2.3 Inclusion of spin-flip scattering dynamics 70

Thus the total self-energy become

Σtot
σ (ω) = Σ0

σ + Σσ(ω)

= ǫd +
U

2
( 〈n̂〉 − σ µ) + Σσ(ω) (2.39)

Since the self-energy expression is spin-dependent, we always find two self-

energies for the same site. At T = 0, from Eq. (2.38) the self-energy can be

written as

Σσ(ω) = U2

∫ ∞

−∞

dω′ 1

π
Im0Π

σσ
ii (ω)[θ(ω

′)G−
σ (ω

′ + ω) + θ(−ω′)G+
σ (ω

′ + ω)]

(2.40)

where

G±
σ (ω) =

Dσ(ω
′)θ(±ω′)

ω − ω′ ± i0+
(2.41)

such that Gσ(ω) = G+
σ (ω) + G−

σ (ω).

2.3.3 Symmetry restoration

Though the UHF solutions are broken spin-symmetry solutions, as the orig-

inal Hamiltonian is rotational (spin) invariant, the propagators should also

be spin independent. This can be achieved by taking average of two spin-

dependent Green’s functions. Thus the Green’s function for a paramagnetic

system (spins unpolarized on average) is

G(ω) =
1

2
[G↑(ω) +G↓(ω)]

=
1

2

[
1

G−1
↑ (ω)− Σtot

↑ (ω)
+

1

G−1
↓ (ω)− Σtot

↓ (ω)

]
(2.42)
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Also we can define a single spin-independent self-energy, Σ(ω) from the

Dyson’s Eq. :

G(ω) =
1

G−1(ω)− Σ(ω)
(22)

From Eq. (2.42) and Eq. (22) we get

Σ(ω) =
1

2
(Σtot

↑ (ω) + Σtot
↓ (ω)) +

[1
2
(Σtot

↑ (ω)− Σtot
↓ (ω))]2

G−1(ω)− 1
2
(Σtot

↑ (ω) + Σtot
↓ (ω))

(2.43)

Now if we want to ensure the Fermi liquid behavior, we need to have ImΣ = 0

at ω = 0. If we consider only the static part in Σtot
σ (ω), i.e. the MF self-

energy Σ0
σ, then from Eq. (2.43) the single self-energy becomes

ΣMF(ω) =
U〈n〉
2

+
(1
2
U |µ|)2

ω+ − ǫ− U〈n〉
2

− S(ω)
(2.44)

From Eq. (2.44), it is straightforward to see that ImΣ(0) = 0 is ensured only

when µ = 0, which will lead to RHF result, i.e. to the non-interacting limit

shifted by a constant term. Also for µ = 0, both of the two self-energies

coincide with the single self-energy and we are left with no dynamics at all.

This also motivates us to look beyond the MF.

Now we shall seek if there is any hope to recover an FL behavior when

we consider the RPA approximation in the dynamic part of two self-energies.

Not only the imaginary part of the self-energy becomes zero, but also in case

of an FL, it must have the following at low frequency.

ImΣtot
σ (ω)

ω→0∼ ω2 (2.45)
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This situation indeed arises from the fact that (from Eq. (2.29))

1

π
Im0Π

+−
(ω)

ω→0∼ |ω|D↑(0)D↓(0) (2.46)

Thus once the imaginary part of the self-energy is guaranteed, the only

task that remains is to ensure the linear ω-dependence in the real part.

We can also express the real part of the self-energy as a low-ω expansion:

ReΣtot
σ (ω) ∼ ReΣtot

σ (0)−
[
1

Zσ

− 1

]
ω (2.47)

such that

Zσ =

[
1− ∂(ReΣtot

σ )

∂ω

∣∣∣∣
ω=0

]−1

(2.48)

Now it can be shown that (see Appendix I) the necessary condition for

ImΣtot(ω)
ω→0∼ ω2 (2.49)

is

ReΣtot
↑ (ω = 0) = ReΣtot

↓ (ω = 0) (2.50)

In the same way the Kramer-Kronig transform on the imaginary part of the

single self-energy will give rise to low-ω behavior in its real part:

ReΣ(ω)
ω→0∼

(
1

Z
− 1

)
ω (2.51)



2.4 Low energy scale 73

This has the same quasiparticle residue definition like Σtot
σ ’s

Z =

[
1− ∂(ReΣ(ω))

∂ω

∣∣∣∣
ω=0

]−1

(2.52)

And it can be easily shown that

1/Z =
1

2
(1/Z↑ + 1/Z↓) (2.53)

Now using Eq. (2.39) we can write the SR condition explicitly in term of the

dynamic part (i.e. the RPA) of the self-energy as

∑

σ

σΣσ(ω) = |µ|U (2.54)

2.4 Low energy scale

In the FL behavior, we expect a low-energy FL scale to emerge, which turns

out to be proportional to the quasiparticle weight Z. This scale decreases

as interaction strength is increased and its disappearance at Uc2 signifies the

metal-to-insulator transition. As Z decreases, the width of the quasiparticle

resonance decreases as well (Cf. IPT results in Chapter 1) and also ωm, the

position of the resonance in ImΠ+−(ω) decreases accordingly. We shall see

in the next chapter that Z is proportional to ωm. Here we shall present a

strong-coupling analytical argument of this for half-filled case.



2.4 Low energy scale 74

ReΣ↑(ω) = U2

∫ ∞

−∞

dω′

π
ImΠ+−(ω′)[θ(ω′)ReG−

↓ (ω
′+ω)+θ(−ω′)ReG+

↓ (ω
′+ω)]

(2.55)

At strong coupling (U → ∞), we get contribution almost entirely from the

positive frequency part of ImΠ+−(ω) [53], i.e.

∫ ∞

0

dω
1

π
ImΠ+−(ω)

U→∞
= 1 . (2.56)

Therefore we can write

ReΣ↑(ω → 0) = U2

∫ ∞

0

dω′ δ(ω′ − ωm) ReG−
↓ (ω

′)

= U2ReG−
↓ (ωm) (2.57)

Now

ReG−
↓ (ω) =

∫ 0

−∞

dω′ D↓(ω
′)

ω − ω′
. (2.58)

Therefore

ReG−
↓ (ωm) = −D↓(ω

′) ln |ωm−ω′|
∣∣0
−∞

+

∫ ∞

0

dω′ dD↓(ω
′)

dω′
ln |ωm−ω′| . (2.59)

Note that the second term on the RHS has the form
∫
dω f(ω) lnω ( f(ω) ≡
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dD↓(ω
′)/dω′ ) which can be expanded as

∫
dω f(ω) lnω = f(ω)ω(lnω − 1)−

∫
dω′ f ′(ω)ω(lnω − 1)

= f(ω)ω(lnω − 1)−
∫
dω′ f ′(ω)ω[ω(lnω − 1)− ω] + . . .

(2.60)

Now all the term of the above expansion vanishes at the integration limit

(ω = 0 as it is always a multiplication factor and ω = ∞ where f(ω) and all

its derivatives vanish).

Thus the second term in Eq. (2.59) does not contribute at all and hence

ReG−
↓ (ωm) = −D↓(ω

′) ln |ωm − ω′|
∣∣0
−∞

= −D↓(0) ln |ωm| . (2.61)

Again following the same previous argument D↓(ω
′) vanishes at ω′ → ∞. So

finally

ReΣ↑(ω → 0) = −U2D↓(0) ln |ωm + ω| (2.62)

Now

D↓(0) = − 1

π

ImS(0)

x2 + (ImS(0))2

=
1

π

πD(0)

π2(Uµ)2D2(0)/4 + 1

≃ 4

π2U2µ2D2(0)
(2.63)

where we use ImS(0) = −1/(πD(0)) (Eq. (J.10) in Appendix J).
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Taking derivative w.r.t ω of the LHS of Eq. (2.62) we find

1− 1

Z
=
∂ReΣ(ω)

∂ω

∣∣∣
ω=0

= −U2D↓(0)
1

ωm

(2.64)

Since Z ≪ 1 we can rewrite the above Eq. and find from Eq. (2.63)

Z↑ = − ωm

U2D↑(0))
= ωm

π2µ2D(0)

4
(2.65)

For the hypercubic lattice (HCL), non-interacting DoS

D0(ω) =
1√
πt∗

e−ω2/t2
∗

Using above and the condition for pinning at the non-interacting limit at the

Fermi level: D(0) = D0(0), we get

D(0) =
1√
πt∗

(2.66)

For the symmetric case: Z↑ = Z↓ and strong coupling limit (U → ∞) for

µ, i.e. |µ| → 1.

Then from Eq. (2.65) and Eq. (2.66), we have

Z =
2Z↑Z↓

Z↑ + Z↓

= Z↑ = ωm
π
√
πµ2

4t∗
≃ 1.39ωm/t∗ . (2.67)

Thus, generalizing the strong-coupling limit, we may expect that the quaipar-

ticle weight Z is indeed proportional to the spin-flip cost ωm (see the next

Chapter for the numerical verification).
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2.5 Insulating phase: singularity in the Π(ω)

We can anticipate that the metallic phase that the quasiparticle weight Z

should vanish at a critical value U = Uc2 (Cf. IPT results in Chapter 1)

leading to a Mott transition. Beyond this point symmetry restoration is not

possible and we reach the upper boundary of the stability criterion Eq. (2.35),

i.e.

UReΠ+−(0) = 1 . (2.68)

In this situation, |µ0| becomes equal to |µ| though the host Green’s function

is not the UHF Green’s function since the Feenberg self-energy gets modified

through DMFT iterations.

Eq. (2.68) eventually turns the ImΠ+−(ω) into a Dirac-delta function

from its resonance-like form in the metallic phase. As shown in Appendix K,

we can write

ImΠ(ω) = πQ δ(ω) (2.69)

with

Q =

[
U2

∣∣∣
dRe0Π(ω)

dω

∣∣∣
0

]−1

(2.70)

It has been argued by Eastwood [97] that

Q = |µ|2 (2.71)

and indeed we see that in our numerical result (though a rigorous analytical

proof is not yet at hand).

This singularity at ω = 0 is consistent with the fact that arbitrary large
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numbers of spin-flip is possible without any cost of energy, i.e. ω = 0 for a

paramagnetic insulator since there is no spatial fluctuation at d → ∞ limit

and each site has a Ising-like spin equally surrounded by similar ↑ and ↓ spins

without causing any difference in energy by fluctuations [97]. This results

in a pole in Σ(ω) at ω = 0 which signifies the presence of atomic limit like

feature in our theory.

2.6 Numerical implementation

Now we briefly state the necessary steps for implementing our formalism in

numerical computation. Again here for the sake of simplicity, we shall con-

sider the p-h symmetric case. Extra care that is required for the asymmetric

case (specifically satisfying the Luttinger theorem) will be mentioned in the

relevant context. Below we chart the steps require to get Fermi liquid metal-

lic phase with the help of symmetry restoration condition. As mentioned

in the earlier section, symmetry restoration is not possible for the insulat-

ing case. Hence we drop the step (viii) and we determine U only from the

UHF approximation. Apart from this, rest of the steps are the same as for

the metallic case. However, since a pole arises in Π+−(ω), which cannot be

handled numerically, we cut the pole in our numerical calculation and add it

separately via the following analytical expression after evaluating Q.

Σσ(ω) = QU2ReGσ(ω) (2.72)

where we use Eq. (2.40). Now we describe the same as above by a simple
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Steps for LMA implementation for the p-h
symmetric case

(i) Choose an x, a guess U , ǫd = −U/2, and a guess S(ω). t∗ = 1 is
chosen as a common practice.

(ii) Calculate host Green’s functions Gσ(ω) from Eq. (2.12). At the
first step, Gσ(ω) will be just the UHF Green’s functions .

(iii) Find µ from Eq. (2.17). Then from the definition of x, i.e.
Eq. (2.13), calculate U .

(iv) Now the guess U should be less than the UHF U (= 1/Re0Π
+−

(0))
to obey the stability condition: Eq. (2.35). If U ≥ 1/Re0Π

+−
(0)

decrease it to a value that satisfies Eq. (2.35).

(v) Find 0Π
+−

(ω) from the convolution Eq. (2.28) using the already
calculated Gσ(ω) in (ii). In practice, use Eq. (2.29) to calcu-
late Im0Π

+−
(ω) and then do Kramers-Kronig transform to find

Re0Π
+−

(ω).

(vi) Find Π+−(ω) from the RPA sum: Eq. (2.27). In practice, use
Eq. (2.32) to calculate ImΠ+−(ω) and then Eq. (??) to find
ReΠ+−(ω).

(vii) Calculate Σ(ω) from Eq. (2.39) and the convolution: Eq. (2.40).
Again take the imaginary part of Eq. (2.40) and use Kramers-
Kronig transform to determine the real part separately.

(viii) Check the symmetry restoration condition: Eq. (2.54). If it is not
satisfied, change U and repeat steps (vi) to (viii) till it is satisfied.
Note that in practice, we choose µ = µ0 in Eq. (2.54).

(ix) Evaluate γσ(ω) from Eq. (2.23). (a) Determine γ(ω) in term of
the guessed S(ω) using Eq. (2.22) and (b) hence update S(ω) by
Hilbert transform over γ(ω): Eq. (2.20). Repeat (a) and (b) till
consistency is achieved.

(x) Put the new S(ω) back to step (ii) and update Gσ(ω). Now nat-
urally this Gσ(ω) will not be the UHF Green’s functions that we
have started with. Follow all the steps from (ii) to (x) until con-
sistency arrives.

(xi) Calculate G(ω) from Dyson’s Eq.: Eq. (22) and other physical
properties in terms of G(ω) and Σ(ω).
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flowchart below (Fig. 2.4). The iterative loop to reach self-consistent S(ω)

in step (ix) is not shown intentionally to keep the structure look simple.

Fig. 2.4: Flowchart of basic LMA implementation

2.7 Summary

We describe and formulate a non-perturbative quantum many-body approach

which may offer an alternative route to capture the Mott transition physics

in the context of the Hubbard model. We started with a spin-symmetry

broken mean-field solution, which is commonly known as the unrestricted

Hartree-Fock (UHF) solution. Though UHF itself shows a metal-to-insulator

transition depending on the interaction strength, it fails to assure a Fermi

liquid state all the way in the metallic regime. The broken symmetry could
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be blamed for this failure and no way exists to restore the symmetry since

the UHF approximation is a static approximation. Therefore we build spin-

dependent dynamical self-energies, by considering higher order spin-flip dia-

grams (polarization bubbles with RPA sum) in our approximation and im-

pose a symmetry restoration (SR) condition on them so that the final effective

single self-energy shows Fermi liquid behavior. The SR condition also helps

us to determine the correct value of interaction strength U since we always

calculate the host Green’s functions in term of a combination of U and local

moment µ. We also notice that a stability criterion ( Eq. (2.35)) is neces-

sary to be while we restore symmetry by changing U . In addition to this,

we find a linear relation between the Fermi liquid scale Z and the resonant

frequency ωm from the strong-coupling analysis, reflecting the fact that it is

the spin-flip dynamics which gives rise to the low-energy scaling behavior.

In the insulating case, we do not require to restore the symmetry and we

work with the U that we evaluate after calculating µ (U = 2x/µ) from the

host Green’s functions. As a natural consequence a singularity arises in the

RPA summed polarization bubble, Π+−(ω). This reflects the physical fact

that there is no spin-flip cost ω = 0 for a paramagnetic insulator. We cut

this pole in our numerical implementation and we add the analytical result

separately in the convolution integration for the self-energy.

In the upcoming chapters, we discuss the results based on our formalism

and as a first test, we look whether can obtain a Mott insulator by increasing

interaction starting from a Fermi liquid (our symmetry restoration condition

should ensure a Fermi liquid at low interaction strength). We also verify our

analytical prediction such as the linear relation between ωm and Z. We first
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implement for the zero temperature p-h symmetric case. Later we extend

it to the asymmetric case and also to finite temperature. We compare our

results with experiments wherever possible.



Chapter 3

LMA: Universality and scaling

in the zero temperature

dynamics of the p-h symmetric

HM

3.1 Introduction

In chapter1, we have investigated the spectral and transport properties of

the particle-hole symmetric Hubbard model using the iterated perturbation

theory (IPT) as the impurity solver within DMFT. In this and the next three

chapters, we treat the same model (without restriction to the particle-hole

symmetric case), using the local moment approach (LMA) as the impurity

solver. The formalism of the LMA has been outlined in the previous chap-

ter. This chapter will utilize that formalism and deal with roughly the same
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issues as in the Chapter 1, which were the study of spectral dynamics, uni-

versality and scaling (especially in the proximity of the Mott transition), the

T = 0 phase diagram, and the T = 0 optical conductivity. Since the LMA

captures the strong coupling asymptotics of the single impurity Anderson

model exactly, the use of LMA within DMFT for the Hubbard model can be

expected to yield very good results, with the added advantage of obtaining

real frequency quantities, at all temperatures and interaction strengths with

very little computational expense (as compared to solvers such as quantum

Monte Carlo (QMC) [49,50]).

The chapter is structured as follows. In this chapter we mainly discuss our

theoretical results on spectral and transport quantities for the zero temper-

ature p-h symmetric Hubbard model. We first show Fermi liquid behavior

in the metallic spectral densities along with universal scaling behavior in

strong coupling (close to the Mott transition, U → Uc2). Adiabatic con-

tinuity to the non-interacting limit is indeed found, but in contrast to the

case of IPT (Chapter 1), the frequency interval over which the renormalized

non-interacting limit (RNIL) overlaps the interacting spectra is extremely

small. The strong frequency dependence of the imaginary part of the self

energy close to the Fermi level readily explains this. We see that, apart from

the quasiparticle residue, which is the low-energy scale for a Fermi liquid,

the resonant frequency (spin-flip energy cost) for the ImΠ+−(ω) discussed in

the previous chapter, emerges as an alternative energy scale. As expected,

we find an insulating phase at higher interaction strength Uc2 reflecting a

Mott transition. The value of the Uc2 is extracted through an extrapolation
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of the low energy scale since very close to the transition, numerical difficul-

ties prohibit us from achieving self-consistency. Similarly, while decreasing

U from the Mott insulating side, we find that the metallic phase emerges at

an interaction strength Uc1 < Uc2. Thus there does exist a coexistence region

within the LMA results, however, as compared to the IPT result, this region

is much smaller. We discuss optical conductivity results for both metallic and

insulating phases and show in the former, a universality in the absorption

peak position after a scaling in the frequency axis.

3.2 Spectral density

3.2.1 Fermi liquid scaling

We first look at the low-energy behavior of the the spectral density D(ω) =

− 1
π
ImG(ω) for small interaction U and hence for small x . The left panel

of Fig. 3.1 shows the presence of finite DoS at the Fermi level and hence

the phase is metallic. The finite DoS appears via the quasiparticle or the

Abrikosov-Suhl resonance which is similar to what we have already observed

for the IPT approximation discussed in Chapter 1. As expected, all the res-

onance peaks are pinned at the same value at the Fermi level ω = 0. The

resonance shrinks gradually as we increase x or U . Thus as we have done

in case of IPT in Chapter 1, we can associate a low-energy scale, ωL = Zt∗,

determined by the quasiparticle residue Z, proportional to the width of the

resonance. From the right panel of Fig. 3.1 we can see that all spectral den-

sities become pinned at the Fermi level (ω = 0). The spectra seem to deviate
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Fig. 3.1: Spectral densities and scaling collapse. Left panel shows the Abrikosov-
Suhl resonance that appears at the Fermi level (ω = 0). Inset shows the full
spectra for the same. Right panel is the scaling collapse of spectral densities when
the frequency axis is scaled by the low-energy scale ωm. Inset is the same when
scaled by quasiparticle weight Z. Note that, in both scaling, the collapse deviates
from the non-interacting curve (U = 0) almost immediately away from the Fermi
level.

from the non-interacting limit almost immediately away from the Fermi level.

Thus, even though adiabatic continuity at the Fermi level is maintained, the

renormalized non-interacting limit (RNIL) description is seen to be invalid.

This can be explained if we look at the self-energy behavior at low-frequency.

The RNIL assumes that contribution from ImΣ(ω) is negligible compared to

the contribution from ReΣ(ω) at low ω since the former vanishes as ω → 0

with one power of ω (∝ ω2) higher than the latter (∝ ω). This approximation

does hold in our previous results within IPT over a large interval around the

Fermi level. However, the contributions from both real and imaginary part

of Σ(ω) become comparable when the coefficient of imaginary part becomes

large enough. Fig. 3.2 shows that the slope change in ImΣ(ω) away from

ω = 0 is faster in LMA (shown in the left panel) compared to that in IPT
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Fig. 3.2: Reason for non-collapse with the non-interacting DoS. Dashed lines (blue
in color) and full lines (red in color) are the imaginary and real part of the self-
energy respectively. The static part Σ(0) = U/2 has been subtracted from the real
part. ImΣ(ω) grows far more rapidly from ω = 0 in LMA (left panel) than that
in IPT (right panel) suggesting that not only in the strong coupling regime, but
also in the intermediate correlation regime, incoherent scattering effects become
important at energies even slightly away from the Fermi level . The interaction
strength for the LMA: U = 1.12t∗ (x = 0.2t∗) and for the IPT: U = 3.0t∗.

(shown in the right panel). Apart from the non-realizability of the renor-

malized non-interacting limit (RNIL), the scaling collapse is seen to be quite

good implying that the imaginary and real parts of the self energy assume

universal forms for strong coupling (see Fig. 3.3). We see the same scaling if

we either scale by Z (found by differentiating the real part of the self-energy)

or ωm/t∗. The inset in Fig. 3.3 clearly shows the linearly proportional relation

between the two scales. However, the slope (=1.6) varies ∼ 15% above our

estimation (=1.39) (see Eq. (2.67)), which, we believe, is an underestimation

due to the strong coupling U → ∞ assumption.
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3.2.2 Strong correlation universality

As can be anticipated from Fig. 3.1, the spectra seem to assume a universal

form D(ω) = D(ω/ωL) in strong coupling regime. And indeed close to the

Mott transition, we find scaling collapse in the spectral densities for decades

of ωL (see Fig. 3.4: U ranging from 2.07t∗ to 2.60t∗), when the frequency

axis is scaled by the same scale, i.e. ωL . Moreover, this universal region

extends to higher and higher frequencies as we increase U/t∗ suggesting that

in the limit U → U−
c2, the universal scaling region extends to |ω| → ∞. The

universal scaling form is seen to be very different from the renormalized non-

interacting limit suggesting very non-trivial tails of the spectral function for

large ω/ωL. These tails should manifest themselves in transport and other

finite temperature/frequency properties that would be an interesting feature

to look for in experiments.
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Fig. 3.3: Good scaling collapse in the imaginary part of Σ(ω). (a) Before scaling.
(b) After scaling ω/t∗-axis by ωm/t∗. Inset shows a linear relation between Z and
ωm/t∗, as predicted in Eq. (2.67) in Chapter 2.
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Fig. 3.4: Scaling collapse at strong-coupling. (a) Before scaling. (b) After scaling
ω/t∗-axis by ωm/t∗. The universal scaling form is seen to be very different from the
renormalized non-interacting limit suggesting very non-trivial tails of the spectral
function. The scaling collapse is seen to be very good even upto ω & 50ωL and
does seem to extend to |ω| → ∞ in the limit U → Uc2.

3.2.3 Mott transition

It is evident from Fig. 3.5 that the width of the resonance shrinks gradually as
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Fig. 3.5: Metal-to-insulator transition (MIT). Quasiparticle resonance narrows
down with increasing U/t∗. It finally disappears and a clean gap forms at the
Fermi level. Gap increases as U/t∗ is increased further.
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U/t∗ is increased and similar to the IPT result, metal-to-insulator transition

(MIT) occurs when U ≥ Uc2. For the hypercubic lattice (HCL), we find

approximately xc2 = 1.3t∗ and therefore Uc2 ≃ 2.8t∗ (see Fig. 3.5). The

estimation of Uc2 is carried out through an extrapolation of the zero crossing

of the low energy scale with increasing U , and hence as such may be a little

vague. At x = 1.3t∗ (U ∼ 2.8t∗), the ωL scale does seem to vanish (see

Fig. 3.7).

3.2.4 Destruction of Mott insulator and presence of

hysteresis

In IPT, we have seen, in the zero temperature evolution of spectral densities

with interaction strength, that there exist two transition points Uc1 and Uc2
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Fig. 3.6: (a) Gap in the spectral density decreases as U/t∗ is decreased from the
insulating regime. The gap apparently closes at U = 3.38t∗ (x = 1.6t∗). (b) At
U = 3.38t∗ the gap is still about to close, which means that the transition point
Uc1 is a little below U = 3.38t∗.

.
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depending on whether we are changing U from the metallic or insulating side.

Therefore it is natural to ask that if we start from an insulating regime and

keep on decreasing x (hence U), do we get a insulator to metal transition at

the same point that we have mentioned above? Fig. 3.6(a) shows that we

find that the gap decreases as we decrease x from 2.0t∗ (U = 4.13t∗) and it

appears that the gap closes at x = 1.06t∗ (U = 2.38t∗). However, the gap
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Fig. 3.7: Decay of the low-energy scale ωL = Zt∗ with increasing U/t∗ (solid line).
Inset shows the same in log-scale. ωL seems to vanish at Uc2 = 2.64t∗. Note
that we have been able to reach a value of the low energy scale ∼ 10−4t∗, which
requires very high precision calculations. The dashed line shows that the spectral
gap ∆ of the Mott insulator decreases linearly with decreasing U/t∗ and closes at
Uc1 = 2.36t∗. The coexistence region is quite small compared to that in IPT. .

is truly not zero at x = 1.06t∗ as Fig. 3.6 shows in a zoomed view. For this

reason we plot the gap (∆) as a function of U/t∗ in Fig. 3.7 (dashed line).

We find that ∆ linearly decreases with U/t∗ and it appears that Uc1 ≃ 2.36t∗.

Thus similar to the IPT result, LMA also shows presence of a coexistence

region (possibility of having both metallic and insulating solutions) and hence

hysteresis driven by interaction. The Uc1 and Uc2 for the Bethe lattice, as
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reported by Eastwood [97] in his thesis, are 3.41t∗ and 3.46t∗ respectively

(though his implementation of LMA seems to be different from ours). Thus

both his and our finding of coexistence region, as estimated by Uc2 − Uc1

(0.28t∗ for the HCL) is very less compared to that in IPT (∼ 1.0t∗).

3.3 Optical conductivity

3.3.1 Metallic regime

Fig. 3.8 shows the optical conductivity results at zero temperature. In general

the optical conductivity seems to have two peaks. The lower peak is centred

around the low energy scale ωL, while the upper peak seems to be due to

excitations from the lower to the upper Hubbard band, and hence should

be non-universal. The left panel shows that apart from the Drude peak at
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Fig. 3.8: Optical conductivity in the metallic regime for different U/t∗. (a) Ab-
sorption peak starts forming as U/t∗ is increased. (b) Peaks arise almost at the
same position after scaling the frequency axis by Zt∗.
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ω = 0 an absorption peak, appears roughly at ω ∼ Zt∗ and becomes more

prominent as we increase U/t∗. We can clearly see that the peak position,

in unit of t∗ gets a red-shift with increasing U/t∗. However, if we scale

the frequency by Zt∗ or ωm, the peak position collapses to ω ∼ ωL. This

signifies the presence of a universal low-energy scale ωL = Zt∗ in the optical

conductivity. And as the right panel shows, the high frequency peak shifts to

higher frequencies progressively with increasing U if seen as a function of the

scaled frequency ω/ωL. This implies that the second peak is non-universal

and indeed from the left panel, it is easy to see that the peak position is

roughly the U/t∗ value itself signifying that this absorption peak is due to

excitations between the LHB and the UHB.

3.3.2 MIT and Insulating regime

In the Mott insulator regime U > Uc2, the spectral density has a gap at the

Fermi level, which manifests in an optical gap in the optical conductivity.

The height of low frequency absorption peak, just mentioned above, does

not change significantly (though small decrease noticeable) with increasing

U/t∗, but a dip next to it increases gradually. The Drudé peak and the low

frequency absorption peak finally vanishes with commencement of an optical

gap (see Fig. 3.9 (a) ) . As expected, the gap increases with further increase

in U/t∗ leading to a blue-shift of the higher frequency optical absorption peak.

During this blue-shift, the peak height diminishes as well (see Fig. 3.9).
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Fig. 3.9: (a) Optical conductivity for various U/t∗ is shown. As U/t∗ = is increased,
the low frequency absorption peak diminishes and close to the metal-insulator
transition point (U =) an optical gap is about to form. A clean optical gap is
observed for U & Uc2). Inset shows the same in logarithmic scale. (b) Blue-shift
of peak position and decrease of peak height as U/t∗ is increased. Increase of the
optical gap ∆g with U/t∗ is apparent (values mentioned inside the legend box).

3.4 Summary

Here we see that LMA does capture the Fermi liquid metal to Mott insulator

transition. The adiabatic continuity to the non-interacting limit holds only

very close to the Fermi level since the imaginary part of the self-energy sig-

nificantly competes with its real part at very low frequency. As we expected,

the position of the ImΠ+−(ω) resonance, ωm becomes proportional to the

quasiparticle weight Z and hence either of these may be used to demonstrate

scaling. However, the proportionality constant 15% more than our prediction

( Eq. (2.67) ) since we assume the strong coupling limit (U → ∞) in our
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derivation. The strong coupling metallic spectra assume a universal scaling

form as U → U−
c2 with the scaling region extending to ω → ∞.The optical

conductivity results show that absorption peaks become more significant as

we increase U/t∗ and their positions collapse to a universal number ω ∼ ωL

close to the Mott transition. The signature of MIT is also found in the opti-

cal conductivity as U/t∗ is increased beyond Uc2 forming a clean optical gap.

The gap increases as U/t∗ is increased further and the absorption peak shifts

towards the lower wavelength.



Chapter 4

LMA: Interplay between

asymmetry and correlation in

the dynamics of the p-h

asymmetric HM

4.1 Introduction

The metal-to-insulator transition (MIT), as described in the previous chap-

ter, happens due to the dominance of strong electronic interaction over the

electron’s hopping strength, i.e. U/t∗ & 1 according to our formalism. The

hopping strength t∗ is the matrix element of the one-electron operators,

namely the kinetic energy and the periodic potential in the localized Wan-

nier orbital basis. It is a measure of the bandwidth in the energy dispersion

96
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picture. Since the presence of Coulomb repulsion effectively tunes the band-

width to Zt∗, such an MIT is referred to as the bandwidth controlled MIT

(BC-MIT). BC-MIT occurs only at half-filling which is the p-h symmetric

limit of the one-band Hubbard model.

The other way to achieve an MIT is by changing the filling. Since away

from half-filling, the system is generally metallic, an MIT must occur as the

filling is tuned to n = 1 (p-h symmetric) from n 6= 1. This transition is called

filling-controlled MIT (FC-MIT). FC-MITs bear a special interest, specially

in the context of high-Tc superconductors [20, 100] as these are obtained by

doping a Mott insulator. In this chapter, we discuss the zero temperature

physics associated with an FC-MIT. We make comparisons with IPT results

at appropriate places.

4.2 Formalism

The formalism we use to describe the FC-MIT is a modification of the

LMA+DMFT employed to understand BC-MIT in Chapter 3. The main

modifications have been partly introduced in Ref. 67. Since the symmetry

restoration condition (Eq. (2.54)) is generic, we use it in the p-h asymmetric

case as well. In contrast to the symmetric case, we do not get a simple re-

lation between the chemical potential and the interaction strength, namely

ǫd 6= −U/2 anymore. Also there is a shift δµ from the chemical potential

µ, that we usually keep zero in the symmetric case. Therefore Eq. (2.12) is

modified as

Gσ(ω) =
1

ω+ − ǫ̃+ σx− S(ω)
(4.1)
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where

ǫ̃ ≡ ǫ− δµ = ǫd + Un/2− δµ (4.2)

which is zero only in the half-filled case (ǫ = 0, δµ = 0).

Now there are two important algorithmic remarks that we make here:

(i) We keep x fixed and by SR condition (Eq. (2.54)) we determine the U .

This step is common to both the half-filled and the away from half-filled

case.

(ii) Once we find U , we calculate the Σ(ω) and G(ω) for a fixed ǫ̃ = ǫd +

Un/2−δµ, then we find the ǫd by self-consistently satisfying Luttinger’s

sum-rule discussed in Chapter 0 ( Eq. (11) ). For a comparison, we show

IPT results in necessary places. For the IPT in p-h asymmetric case,

we use the ansatz proposed by Kajueter and Kotliar [101,102].

A parameter η = 1+2ǫd/U is defined as a measurement of p-h asymme-

try that we often use in our calculations. Note that for the symmetric

case, ǫd = −U/2 and hence η = 0.

4.3 Spectral density

4.3.1 Empty orbital, mixed valence, and doubly occu-

pied orbital states

Before we embark on the results, we first make a few qualitative remarks.

When the electron density is not equal to one per site, i.e. away from the

half-filling, there are always empty sites available for electrons to hop without
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encountering the Coulomb repulsion U . Therefore we can get Mott insulators

only when the filling reaches the half-filled (n = 1) value. However, there

can be special situations, namely n = 2 where electron’s hopping is forbid-

den since orbitals at all sites are fully (doubly) occupied. This leads to an

insulator, which is in fact a band insulator. Similarly for n → 0 case, there

will be only a few electrons will be left for conduction, or from the hole point

of view, the sites will be fully occupied again and again a band insulator.

Thus at zero temperature we can divide into five distinct regimes, viz. (i)

empty orbital (n → 0), (ii) mixed valence-I (0 < n < 1), (iii) symmetric

metal or Mott insulator (n = 1), (iv) mixed valence-II (1 < n < 2), and (v)

doubly occupied orbital (n→ 2). The regimes (iv) and (v) are p-h symmetric

counterparts of (ii) and (i) respectively.

Fig. 4.1 and Fig. 4.2 show the evolution of spectral density towards the two

extremes ( regime (i) and regime (v) ) for the hypercubic lattice, starting from

a half-filled Fermi liquid metal (n = 1). In the first case, the lower Hubbard

band starts moving towards the Fermi level (n = 0.75) with decreasing its

height compared to the upper Hubbard band, then it coalesces with the

quasiparticle resonance (n = 0.42) where resonance itself shifts away from

the Fermi level. Gradually the lower Hubbard band and the qausiparticle

features do not remain significant any more (n = 0.14) and the density just

becomes a non-interacting one, situated above the Fermi level, thus being

a band insulator with the band edge at the Fermi level. Similarly in the

second case, the upper Hubbard band moves towards the Fermi level and

finally the lower Hubbard band occupies the whole spectral region and the

system becomes a empty orbital band insulator (regime (i)). Thus Fig. 4.1
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Fig. 4.1: Spectral densities for x = 0.5t∗ (U ≃ 1.5t∗) from n < 1 to n ≃ 0, for the
hypercubic lattice (HCL). Parent (half-filled, i.e n = 1) phase is metallic. (a) At
n = 0.75, the lower Hubbard band moves closer to the Fermi level with decreasing
height compared to the upper one. (b) At n = 0.42, the lower Hubbard band and
the resonance coalesce. (c) At n = 0.14, there are no distinct signatures of lower
Hubbard band and the resonance. (d) At n = 0.006, almost the empty orbital
regime is reached signifying a band insulator n → 0.
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Fig. 4.2: Spectral densities for x = 0.5t∗ (U ≃ 1.5t∗) from n > 1 to n ≃ 2,
for the hypercubic lattice (HCL). Parent (half-filled, i.e n = 1) phase is metallic.
(a) As expected, at n = 1.25 the upper Hubbard band loses height and arrives
closer to the Fermi level (Cf. Fig. 4.1 (a) ). (b) At n = 1.59, the upper Hubbard
band coalesce with the quasiparticle resonance(Cf. Fig. 4.1(b) ). (c) No more
Upper Hubbard band at n = 1.86 (Cf. Fig. 4.1 (c) ). (d) At n = 1.95, the doubly
occupied band-insulator approached (Cf. Fig. 4.1 (d) ). Thus the spectral densities
for 1 ≤ n ≤ 2 show a hole counterpart of that for 0 ≤ n ≤ 1.
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and Fig. 4.2 reflect the the fact that for a particle with 1 ≤ n ≤ 2 has its

hole counter-part in 0 ≤ n ≤ 1. For a parallel comparison, in Fig. 4.3, we
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Fig. 4.3: Spectral densities in the asymmetric IPT. (a) n = 0.009: empty orbital
band insulator. (b) n = 0.30: mixed valence-I. (c) n = 1 Mott insulator. (d)
n = 1.36: mixed valence-II. (d) n = 1.7: close to doubly occupied band insulator
(small finite density at the Fermi level and the presence of lower Hubbard band
since n = 2.0 is not reached due to lack of numerical convergence.)

show that similar evolution of the spectral density with doping is observed
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in IPT. The half-filling c spectral density is an insulator since the interaction

is high (U = 5t∗).

A schematic phase diagram on the filling-interaction plane at zero tem-

perature should be as shown in Fig. 4.4.
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Band Insulator (empty orbital)

Mott Insulator

Metal Metal
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Fig. 4.4: Phase diagram on the filling-interaction (n-U) plane from the analogous
result found in IPT. The region is bounded along the filling axis by empty orbital
and doubly occupied band insulator lines. The metal emerging by doping a Mott
insulator side is known as the filling controlled (FC) metal (U > Uc2) and remaining
region is the band-width controlled (BC) metal since interaction is low. In case of
LMA, Uc2 = Uc, as discussed in Chapter 3.

4.3.2 Charge susceptibility

Another way to infer a Mott transition is to look at the charge compressibility

or the charge susceptibility: κ = −∂n/∂ǫd. Mott insulator has zero compress-

ibility (κ = 0), which is a unique property that distinguishes a Mott insula-

tor from an Anderson insulator [103]. Based on this distinguishing property,
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some authors often draws the liquid-gas analogy where the Mott insulator is

termed as an incompressible Mott liquid and the associated metallic phase

is called as a compressible Mott gas [104]. We first examine the IPT results

for charge compressibility. Fig. 4.5 (c) and (d) show the charge susceptibility

for the metallic (U = 3.0t∗) and insulating (U = 5.0t∗) phases respectively

as calculated through IPT. Evidently κ = 0 in the latter case. Now we
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Fig. 4.5: (a) and (b) The orbital energy, ǫd as functions of filling n for U =
3.0t∗ (metal) and U = 5.0t∗ (insulator) respectively in IPT. (c) and (d) Charge
susceptibility (κ = −∂n/∂ǫd) calculated from numerical differentiation after using
cubic spine interpolation. The vertical lines are guides to mark the value at half-
filling.

compare our LMA results for interaction strengths smaller (U ∼ 1.45t∗) and
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close to the Mott transition (U ∼ 2.9t∗)
1. Fig. 4.6 (d) shows κ becomes

minimum at the half-filled value (n = 1) but does not vanish like the case in

IPT (see Fig. 4.5 (d) ). The vanishing of charge susceptibility clearly indi-
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Fig. 4.6: (a) and (b) The orbital energy, ǫd as functions of filling n for U ∼ 1.45t∗
(metal) and U = 2.9t∗ (Mott insulator close to the MIT at n = 1) respectively in
IPT. (c) and (d) Charge susceptibility (κ = −∂n/∂ǫd) calculated from numerical
differentiation after using cubic spine interpolation. κ does not vanish at n = 1
for U = 2.9t∗ in contrast to the IPT result. The vertical lines are guides to mark
the value at half-filling.

cates that zero temperature metal-to-insulator transition may not be second

order in nature and the insulators and metals will be separated by phase

1The approximation sign is kept since U changes a little as we always find it through
symmetry restoration in LMA
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boundaries [105, 106]. Nevertheless, Furukawa and Imada find a diverging

susceptibility just away from the Mott transition point in two dimensional

Hubbard model [107, 108] and it is believed by many authors [103, 109] that

zero temperature filling-controlled transition belongs to the second or contin-

uous phase transition category. The zero charge susceptibility result agrees

with the findings from many other methods, e.g. exact diagonalization (ED)

and quantum Monte Carlo (QMC) in the context of DMFT [43]. Remark-

ably similar agreement has been found in recent compressibility experiments

in interacting Fermionic optical lattice [110]. Though charge susceptibility

does not vanish at the half-filling in case of LMA, the quasiparticle residue

Z continuously vanishes for both IPT and LMA.
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Fig. 4.7: Disappearance of quasiparticle residue Z at half-filling (n = 1) in (a)
IPT (U = 5.0t∗) and (b) LMA (U = 2.9t∗). Note the very different scales as found
within IPT and LMA. The latter has been found in other contexts to produce the
correct non-perturbative and even exponentially small scales.
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4.3.3 Fermi liquid scaling

Similar to the symmetric case, we look for the Fermi liquid pinning since

we expect the same as we have put the symmetry restoration condition for

general filling at zero temperature. In Fig. 4.8, we can see that all the spectral

function collapse well up to ±ω ∼ 0.5t∗ after being scaled by the low-energy

scale ωL = Zt∗. The collapse exists longer in the negative frequency side,

which is due to the asymmetry in the p-h number.
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Fig. 4.8: Scaling collapse of the asymmetric (asymmetry parameter: η = 0.3,
δ = 1 − n = 0.1) spectral densities for different interaction strengths. (a) Before
scaling. (b) After scaling by ωL = Zt∗.

4.3.4 Pseudogap formation

Fig. 4.8 also shows that after certain U/t∗ (∼ 2.7t∗) a pseudogap starts to

form near the Fermi level. The gap increases as we increase U/t∗ further.

We have noticed that pseudogap has the same width as the gap in the Mott

insulator has in half-filling. It seems that the quasiparticle weight never
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Fig. 4.9: (a) Pseudogap formation near the Fermi level at large interaction
strength, e.g. U/t∗ = 2.71 and U/t∗ = 2.90. (b) Quasiparticle residue Z as a
function of U/t∗.

vanishes at any large finite U/t∗ above Uc2/t∗ and hence the pseudogap never

touches (however close it may be) the Fermi level (see Fig. 4.9 (a)). This

is expected because once we go away from half-filling, even by infinitesimal

doping, we never expect a Mott transition. Though quasiparticle residue

Z decreases with increasing U/t∗, tracing its behavior up to large U/t∗ is

numerically difficult in our present approach due to its limitation in self-

consistent determination of the asymmetry parameter η and reaching a good

convergence (see Fig. 4.9 (b) ).

4.4 Strong coupling universality

Similar to the half-filled case, the scaling universality for strong interaction

strength extends to very large frequencies beyond the low-energy Fermi liquid

scale ωL = Zt∗ (see Fig. 4.10) and it appears that as we increase U/t∗ further,
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Fig. 4.10: Scaling universality at strong interaction values: U/t∗ = 2.89, 2.92,
2.96, and 3.00. The universal region extends to very large values of ω/ωL and
the universal scaling form is seen to be very different from the renormalized non-
interacting Gaussian form.

the scaling agreement extends further and at strong-coupling limit, we expect

the scaling universality will extend all the way till the frequency reaches one

of the Hubbard bands.

4.5 Optical conductivity

Following the same spirit of the symmetric case, we look for the universal

scaling feature in the optical conductivity. As expected from the scaling in

the spectral densities, we see that the absorption peak positions of the optical

conductivity for different interaction and fixed doping, arise almost at the

same reduced frequency ω/(Zt∗) (see Fig. 4.11). This universal feature of

the absorption peaks implies that the universality is merely a a Fermi liquid,

hence does not depend on doping as long as the phase remains a Fermi

liquid. Another interesting feature is found when we look at the optical
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Fig. 4.11: Scaling behavior in the optical conductivity for the asymmetry param-
eter η = 0.3 and different interaction strengths. (a) Before scaling the absorption
peaks arise in different positions. (b) After scaling the frequency axis by ωL = Zt∗
the peaks almost appear at the same position.
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Fig. 4.12: (a) LMA results for optical conductivity with various hole concentra-
tions: δ = 1 − n. (b) Optical conductivity for Sm1−xCaxTiO3 where W̃ is the
bandwidth done by a tight-binding calculation, mentioned in Ref. 86, normalized
to that of LaTiO3.
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conductivity as change the doping keeping the interaction fixed. As we see

in Fig. 4.12, we find a universal crossing point, namely the isosbestic point, for

different dopings δ = 1−n ranging from 0 to 0.25. This behavior does indeed

describe the experiments on compounds of the formulae R1−xCaxTiO3+y, R

representing rare-earth metals, done by Katsufuji et al [86] (see Fig. 4.12(b)).

Similar spectral weight transfer through an isosbestic point or a point-like

region in the cuprates (e.g. La2−xSrxCuOx [85] and Pr2−xCexCuO4 [111]), Sr

doped LaCoO3 [112], and very recently in NiS2−xSex [84].

4.6 Summary

The role of p-h asymmetry in the Hubbard model has been a subject of inter-

est since the discovery of high-Tc superconductors as these are doped Mott

insulators. As the symmetry restoration condition of LMA is generic for

arbitrary fillings, we apply it for the case away from half-filling as well. How-

ever, since we cannot get any direct relation between the orbital energy (or

the chemical potential) and the interaction strength, we find it by changing

the orbital energy and satisfying the Luttinger theorem (Eq. (11)) until we

reach self-consistency. The schematic phase diagram on the filling-interaction

plane is shown in Fig. 4.4, which shows that metallic regions are bounded by

two band insulators: empty orbital (n → 0) and doubly occupied (n → 2)

sites. The spectral densities show that there is a mirror symmetry between

the region 0 ≤ n ≤ 1 and 1 ≤ n ≤ 2. We show this is true for both LMA

and IPT spectral densities. The doped Mott insulator region is very hard to

investigate since the scale becomes extremely small in the proximity of the
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Mott insulator or in strong coupling at fixed asymmetry. Nevertheless, we

have calculated spectral properties very close to the MIT in LMA and find

that the charge susceptibility approaches zero at half-filling, which was also

confirmed using IPT. We find that the Fermi liquid scaling collapse holds

for the asymmetric case as well and a large universal region exists in strong

coupling. We observe a pseudogap to arise in the vicinity of the Fermi level

at higher interaction strength. Similar to symmetric case, we find an almost

universal peak position in the optical absorption when we scale the frequency

axis by the Fermi liquid low energy scale ωL = Zt∗. Remarkably we find a

presence of universal crossing point, known as the isosbestic point, for dif-

ferent fillings and we find excellent qualitative agreement (though our case

is zero temperature) with optical measurements in many real materials.



Chapter 5

LMA: Finite temperature

transport and thermodynamics

across the Mott transition

5.1 Introduction

In this chapter, the finite temperature LMA is developed and applied to the

particle-hole symmetric Hubbard model and hence represents an extension of

chapter 3. The focus is on transport and thermodynamic properties across

the Mott transition. The resistivity in the metallic regime shows high T 2

coefficient. Like the zero temperature result, the scaling behavior of the

absorption peak with universal position optical conductivity is also observed

at low finite temperature. In contrast to the results from the IPT (Chapter

1), we find an excellent finite temperature scaling collapse in the spectral

density. We do not find any anomalous or unphysical behavior in the specific

113
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heat.

5.2 Formalism

The T = 0 formalism may be extended to finite temperature through two

major steps, namely

(i) The diagrams for the Green’s functions and self-energies are the same

as at T = 0, but now are formulated in terms of Matsubara frequencies

iωn [65, 89] and then analytically continued (iωn → ω + iη) as done in the

case of finite T IPT calculations (see Chapter 1). However, the analytic

continuation in the case of LMA however must be supplemented with a hard-

core boson constraint which has been described in detail in Ref. 113. (ii) The

integration sum
∫∞

−∞
dω/2π is replaced by the Matsubara sum 1/β

∑

n

where

β = 1/(kBT ) and the Fermi-Dirac distribution nF (ω) that enters through

the following identity wherever applicable.

1

β
lim
η→0+

∑

n

eiωnη
1

iωn − ω
= nF (ω) (5.1)

(iii) We do not employ symmetry restoration condition any more since that

was solely meant for the ground state. Instead the interaction U found at

T = 0 is fixed for all finite temperatures.

Below we shall write a few modified equations that we use in the finite

temperature implementation. We skip the detailed derivations here. The cal-

culations are straight-forward and can be found in Ref.113. We shall mention

T dependence of the modified equations explicitly on the LHS, whereas it
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will remain implicit for the convenience of observation.

Eq. (2.16) and Eq. (2.17) are modified as

n(T ) =

∫ ∞

−∞

dω nF (ω)[D↑(ω) +D↓(ω)] (5.2)

and

µ(T ) =

∫ ∞

−∞

dω nF (ω)[D↑(ω)−D↓(ω)] . (5.3)

Eq. (2.29) is modified as

1

π
Im0Π

+−
(ω, T ) =

∫ ∞

−∞

dω′D↓(ω
′)D↑(ω

′ − ω)[nF (ω
′ − ω)− nF (ω

′)] (5.4)

Imaginary part of Eq. (2.40) is modified as

ImΣσ(ω, T ) = U2

∫ ∞

−∞

dω′

2π
Dσ(ω + ω′)ImΠσσ(ω′)nF (sgn(ω + ω′)) (5.5)

5.3 Numerical implementation

Every finite temperature calculation requires a zero temperature converged

solution as a starting point. The T = 0 calculation entails the symmetry

restoration condition (Eq. (2.54)) for the metallic phase which fixes the value

of U/t∗ and leads to a Fermi liquid ground state. For the insulating phase,

the U value is found through U = 1/(Re0Π
+−

(0)) as done for the T = 0

insulating phase (see Eq. (2.68) ). The zero temperature solution is used

as input for finite temperature calculation at the lowest temperature. The

temperature is increased in steps that are fractions of the relevant energy
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scale, such as the low energy scale Zt∗ in the metallic phase or the spectral

gap ∆g, in the Mott insulating phase. The input for the (n + 1)th step is

taken as the converged solution of the nth step.

At a given temperature, the DMFT self-consistency requires the calcu-

lation of 0Π
+−

(ω), Π+−(ω), and then Σσ(ω). We find that a stable al-

gorithm which yields physically meaningful results requires us to use the

Im0Π
σσ
ii (ω, T = 0). In the finite T calculation, we start with the symmetry

restored U/t∗ and then look for the evolution as the temperature is turned

on. However, there is a numerical instability as soon as we turn on the tem-

perature (even a very little). The metal instantly turns into an insulator.

Although this might indeed be an actual prediction of the LMA, we believe

it to be a numerical artefact. To get rid of this problem, which we believe

to arise because of suddenly turning off the symmetry restoration condition

check, we forcefully keep the 0Π
+−

(ω) to be identical to its T = 0 value.

Such an ad hoc constraint is justified since we expect that it does not get

modulated drastically at low temperature. However, more robust finite tem-

perature algorithm is still an open challenge and it can be future extension

of the work presented in the thesis.

5.4 Spectral density

5.4.1 Fermi liquid metal and universality at strong cou-

pling

We anticipate that the spectral density D(ω) = − 1
π
ImG(ω) has a universal
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scaling for D(ω/ωL, T/ωL) for (ω/ωL, T/ωL) ∼ O(1). Indeed we find good

scaling collapse for a wide range of frequencies (see Fig. 5.1). This is in
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Fig. 5.1: Spectral densities at temperature T = 0.1ωL in the metallic phase where
ωL = Zt∗ ∝ ωm. (a) Spectral densities for different U/t∗ (t∗ = 1). (b) The same
spectra when ω is scaled by the corresponding ωL’s. All spectra collapse up to
ω ∼ 2ωL for the U values shown. The collapse extends to a few

contrast to the violation of scaling behavior at finite temperature in the case

of IPT (Chapter 1). This implies that LMA is not only capable of capturing

the low temperature Fermi liquid behavior, but also a wide universal scaling

behavior. Moreover, the universality regime extends to several decades above

the low energy scale (ω ≫ ωL) for interaction strength close to the Mott

insulator (here in Fig. 5.1 U/t∗ = 2.24, 2.42, and 2.51). Thus it seems that

the regime of scaling collapse extends more and more as one approaches

higher U/t∗ values (e.g. U = 2.42t∗ and U = 2.51t∗ share more universal

regime compared U < 2.42t∗). If we generalize this, we can infer that in the

strong-coupling limit (in our case, U → Uc2), the scaling universality will

exist all the way up to the Hubbard band edge.
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5.4.2 Temperature evolution of spectra

Metallic regime

Next we investigate the temperature evolution of the spectra starting from

a U -value that is well within the metallic regime at T = 0. As we see

from Fig. 5.2 that, similar to the IPT result (Chapter 1), the quasiparticle

resonance disappears forming a dip at the Fermi level (ω = 0) for T &

2.50Zt∗ (see Fig. 5.2). As the temperature is increased further, spectral
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Fig. 5.2: Finite temperature evolution of the spectral density that has metallic
phase (U = 1.12t∗) at T = 0. Quasiparticle resonance disappears at T = 2.5ωL

(ωL = Zt∗) by forming a dip at the Fermi level. The dip increases with tempera-
ture.

weight transfer from the Fermi level to the Hubbard bands continues, which

deepens the dip with rising T .

Mott insulator regime

Similarly if we start from an insulating phase, the spectral gap starts being

filled up. This filling-up occurs continuously and it is hard to infer metallic or
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insulating unless we look at the change of resistivity slope with temperature.

The continuous temperature evolution of both metallic and insulating phase

is similar in nature for T > Tc in case of IPT. As our calculations show,
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Fig. 5.3: Temperature (in unit of spectral gap ∆) evolution of an insulating phase
(U/t∗ = 4.13). The spectral gap (∆ = 1.46t∗ at T = 0) is filled up continuously
as temperature is raised. At high temperature (say, T = 5t∗), the Hubbard band
feature completely disappears .

at extremely high temperature, all the Hubbard band features melt down

to a single featureless density at the Fermi level and we should get a high-

temperature metallic state. However, such a state is not feasible in reality

since at such a high temperature (considering t∗ to be of the order of an eV)

most of the materials melt down.
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5.5 Transport and optical properties

5.5.1 Resistivity

Fig. 5.4 shows the behavior of resistivity as a function of temperature. The

resistivity behavior at low temperature show T 2 behavior. The T 2 regime is

very small and it decreases further as we increase the interaction strength

U/t∗. On the other hand, the T 2-coefficients A appear to be very high (∼ 105)

compared to that obtain in the IPT results (103). Since the regime of T 2
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Fig. 5.4: Fermi liquid signature in the resistivity in the metallic phase. (a) T 2-
dependence of resistivity with high-value of coefficients A. (b) Same plotted with
T 2 showing that linear (Fermi liquid) regime decreases with increase in interaction
strength U/t∗ (t∗ = 1). Cross marks are guides to show the range of the T 2-regime.

dependence decreases as U/t∗ is increased, it is tempting to expect the peak

position in the resistivity to become universal after scaling the temperature

by corresponding low-energy scale ωL = Zt∗. However, in contrast to the

IPT result, such a universality is absent (see Fig. 5.5). The resistivity for the

insulating case shows activation behavior (first three curves from the top in
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Fig. 5.5 (a) ), exponentially decreases with increase in temperature. It starts

increasing again, i.e. becomes metallic at high temperature (not shown),

since the gap in the spectral density is filled up sufficiently (see Fig. 5.3).
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Fig. 5.5: Absence of universal peak position in resistivity curves after scaling the
the temperature axis by Zt∗. (a) Resistivity as a function of T/t∗ for various
U/t∗’s (U/t∗= 1.12, 1.45, 1.90, 2.24, and 2.51 are for metallic phase and U/t∗=
2.99, 3.17, and 3.74 for insulating phase). (b) Resistivity values for the metallic
case are plotted against T/(Zt∗).

5.5.2 Optical conductivity

Metallic phase

The low frequency absorption peaks that we have observed in Fig. 3.8 in

Chapter 3 disappear above T ≃ 0.05Zt∗ and therefore it does not seem

relevant to look for scaling behavior at very low temperature. Towards

ultra-violet regime, a semi isosbestic point or crossing point is observed (see

Fig. 5.6(a)). This signifies a universal feature of strong electronic correla-

tion [87]. Keeping the interaction fixed, if we look at the temperature effect,
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we find a long tail unaffected by temperature and running all the region

starting from ω/t∗ ∼ 0.05.
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Fig. 5.6: (a) Isosbestic point found in optical conductivity at T/(Zt∗) = 0.5.
(b) Temperature independent long tail observed for U/t∗ = 1.45 (x = 0.5t∗) at
different temperatures.

Insulating phase

The transition from insulator to metal like behavior is also seen from the

optical conductivity results. Fig. 5.7 shows that at very low temperature

(T = 0.1∆, ∆ = 1.46t∗), an optical gap remains present. As the temperature

is raised, the optical gap starts getting filled up by transfer of spectral weight

from the absorption peak that arises around 4t∗. During this transfer the

absorption peaks experience a red-shift (i.e. move towards lower frequency)

in contrast to the optical conductivity results in IPT (in IPT, the absorption

peaks for the Mott insulator experience a blue-shift, see Fig. 1.13 in Chapter
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Fig. 5.7: Temperature evolution of optical conductivity in the insulating phase.
Transfer of spectral weight occurs as temperature in the unit of spectral gap ∆ =
1.46t∗. Also a red-shift in the absorption peak is noticed during the spectral weight
transfer.

5.6 Thermodynamic properties

We use the same expression for the expectation value of the Hamiltonian Eq. (25)

in Chapter 0 in order to calculate the internal energy. From Fig. 5.8 we can

notice that the internal energy monotonically increases with temperature and

in this case at no condition any dip (i.e. negative slope) arises. Therefore

we do not find any anomaly, in contrast to some cases in the IPT results.

The specific heat shows linear behavior with T (see Fig. 5.9(a)) and hence

signifies a Fermi liquid. Now if we scale the temperature axis by ωL = Zt∗,

we find scaling collapse in the linear regime, which again affirms that ωL is

the associated low-energy Fermi liquid scale.
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Moreover, though not accurately a point, a universal crossing region is

observed around T = 0.01t∗. Unlike the IPT result, no second universal

crossing point is found. However, the crossing region is shifted and becomes

more point-like as we scale the temperature axis by ωL. Not obtaining a sharp

crossing point like the earlier finding in IPT, may be a numerical artefact.

5.7 Summary

In the finite temperature LMA, we apply the Matsubara formalism [65, 89]

to compute the diagrams and using the spectral representation for the an-

alytic continuation, we express the final results in terms of real frequencies.

The symmetry restoration condition is not imposed in contrast to the zero

temperature case. A numerical instability occurs in the Im0Π
+−

(ω) that we

calculate during the DMFT iterations. To avoid such an instability, the T -

dependence in Im0Π
+−

(ω) is ignored after computing it in the first iteration
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Fig. 5.8: Internal energy as a function of temperature for U/t∗ ranging from.
Unlike the IPT results no dip is observed in any case.
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from G(ω) (assuming a minor change to happen at finite temperature) and

keeping it fixed through out rest of the iterations. This approximation leads

to stable solutions and as a first check, it affirms the Fermi liquid nature,

e.g. quasiparticle resonance and the scaling collapse, in the finite tempera-

ture spectral densities. This is a remarkable achievement since the finite T

scaling is not captured in the IPT scenario.

We find continuous metal-to-insulator transition by observing a semigap

to open at finite temperature. However, true demarcation between metal

and insulator is inferred after looking at sign of the resistivity slope at that

temperature. Similarly we observe insulator-to-metal transition at very high,

physically unattainable temperature.

As expected, the resistivity in the metallic regime shows T 2 dependence
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Fig. 5.9: Specific heat as a function of temperature for different U/t∗. (a) Steep
linear regimes signifying Fermi liquid behavior. A crossing region occurs around
T = 0.01t∗. (b) Linear regimes collapse due to T/ωL scaling of the x-axis. Also
the crossing regimes shift near T = 1.5ωL.
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with a very high value (as compared to IPT) of its coefficient. The resis-

tivity peak scaling, as we addressed in the resistivity results from IPT, is

not observed, indicating that this peak could be non-universal. As in the

case of zero temperature, the optical conductivity shows universality in the

absorption peak position once the frequency is scaled down by the associated

low-energy scale ωL. Universal crossing point, often termed as the isosbestic

point has been found in the ultra-violet side of the optical conductivity of

metals for different temperatures.

We find no dip in the internal energy as a function of temperature and

hence no negative specific heat or other physical anomalies has been found

in the specific heat. In that sense, LMA may offer more realistic calculations

compared to IPT. The specific heat scaling has been observed similar to that

we find in IPT. However, instead of two universal crossing points found in

the IPT result, we find one low-temperature universal crossing zone which

shifts after temperature being scaled down by ωL.



Chapter 6

LMA: Anomalous transport in

doped Mott insulator and the

effects of transverse spin

fluctuations

6.1 Introduction

As has been mentioned hitherto in this thesis, the high temperature super-

conducting cuprates are basically doped Mott insulators (Fig. 6.1 shows a

schematic phase diagram showing that different phases emerge from doping

(electron or hole) a Mott insulator, which has an antiferromagnetic (AF)

ground state.) Since the problem of high temperature superconductivity

has remained unsolved [20], the transport and thermodynamic properties of

doped Mott insulators have generated a sustained interest over the past two

127
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Fig. 6.1: Schematic phase diagram of high Tc superconductors showing emergence
of different phases by doping holes (right side) or electrons (left side) an antifer-
romagnetic (AF) Mott insulator. Fig. reproduced from Ref. 114.

decades. Within the framework of this thesis, doped Mott insulators are

described through the particle-hole asymmetric Hubbard model. In Chapter

4, we have examined the spectral functions, self-energies and optical conduc-

tivities as functions of interaction strength and doping at zero temperature.

We have seen that the spectral functions develop a narrow resonance at

the Fermi level, whose width is proportional to the quasiparticle weight and

whose functional form is described by the renormalized non-interacting limit

at the lowest frequencies (ω ≪ ωL). The single-particle dynamics has been

found to be universal in strong coupling, namely the spectral functions and

self-energies were functions purely of ω/ωL in the strong coupling scaling

regime. The clean gap for Mott insulators centred at the Fermi level shifts

to above the Fermi level for any finite doping. In the imaginary part of the

self-energy, a remarkable crossover from Fermi liquid ω2 behavior to a linear
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∼ ω, often described as marginal Fermi liquid (MFL) behavior [70] , has been

seen around ω ∼ Zt∗ in certain parameter regimes. Such a zero temperature

behavior is naturally expected to lead to a crossover in resistivity from a low

temperature T 2 form to a high temperature linear form. A finding like this

would be exciting since that could provide clues to understanding the normal

phase of high Tc cuprates where such linear resistivities have been seen ex-

tending over a decade of temperatures and a sizable range of dopings [115].

Phenomenological explanations such as the marginal Fermi liquid behavior

have been proposed which do rationalize the linear scattering rates, but do

not have a microscopic justification. The van-Hove singularity (vHs) has

also been cited as a possible reason [116]. However, a compilation of exper-

imental data shows that the vHs arises only for certain materials at certain

dopings, while the linear resistivity is a very generic phenomenon. Recent

theoretical results on the two-dimensional Hubbard model using functional

renormalization group (FRG) calculations which include the spin-fluctuation

vertex corrections find a strongly angle-dependent T-linear term in the resis-

tivity [117].

This chapter is a finite temperature extension of the T=0 study of the

asymmetric Hubbard model using LMA. Since LMA includes spin-flip pro-

cesses to all orders through RPA, we expect that the results we get should be

similar to the FRG calculations mentioned above. Of course the anisotropy

cannot be captured, since we employ the DMFT framework, but it will be

interesting to see if dimensionality has an effect at all on the linearity of the

scattering rates or is the correct inclusion of spin fluctuation physics suffi-

cient to get a T-linear resistivity. Within our DMFT+LMA framework, we do
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find a wide linear resistivity regime, hence we conclude that spin-fluctuation

physics is the sole cause of marginal Fermi liquid like behavior. Additionally,

we also expect (and indeed do find) a universality in the response functions

such as the dc conductivity and the optical conductivity arising due to the

universality in the single-particle dynamics in the strong correlation scaling

regime of the doped Mott insulator.

The structure of the chapter is as follows. We first describe the prop-

erties of the spectral densities and the universal scaling regime associated

with them. Then we look at the transport properties, where we find a wide

region of T -linear and a very small region of T 2 dependence in the resistiv-

ity. We explain these feature in term of the marginal Fermi liquid (MFL),

which is indeed observed in the imaginary part of the LMA self-energy. We

compare our LMA results to the IPT results showing that the latter does

not capture the T -linear dependence in the resistivity. Finally we discuss the

universality issues in the optical conductivity and specific heat results as a

thermodynamic quantity.

6.2 Spectral density

6.2.1 Quasiparticle resonance and pseudogap

From Fig. 6.2(a) we see that at low temperature (e.g. T = 0.1ωL) a quasipar-

ticle resonance appears at the Fermi level and a pseudogap forms at higher

U/t∗. At high temperature (e.g. T = 5ωL), the quasiparticle resonance dis-

appears whereas the pseudogap remains almost unaffected (see Fig. 6.2(b)).
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Fig. 6.2: Finite temperature spectral densities for the asymmetric case (η = 0.3)
for U = 1.14, 1.60, 1.83, 2.00, 2.25, 2.71, and 2.90 in the unit of t∗. (a) T = 0.1ωL

shows sharp resonance and pseudogap of ∼ 0.7t∗ at U = 2.90 similar to the
T = 0 results. (b) At sufficiently higher temperature, T = 5.0ωL, the resonance
completely disappears, whereas the pseudogap does not alter noticeably.

Since the pseudogap does not form for all interaction strengths, we see

different behaviors in temperature evolution in weakly correlated (small U/t∗)

and strongly correlated (large U/t∗, close to the Mott insulator at half-filling)

regime. For example, Fig. 6.3 (a) shows no pseudogap in the spectral densities

for U = 1.14t∗, but the quasiparticle resonance gradually diminishes and

finally form a dip or semigap at high temperature (T ∼ 5Zt∗). On the

other hand, at higher interaction strength, such as U = 2.9t∗, a pseudogap

already has been formed at zero temperature and the gap size does not change

significantly until we reach a temperature as high as T = 100Zt∗ (see Fig. 6.3

(b)).
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Fig. 6.3: Temperature evolution of spectral densities for the asymmetric case (η =
0.3) for different temperature in the unit of low-energy scale ωL = Zt∗. (a) At
low interaction strength (U ∼ 1.14t∗), pseudogaps do not appear. However, the
quasiparticle resonance disappears at higher temperature (T ∼ 5Zt∗) forming dips
near the Fermi level. (b) At interaction strength close to the transition (U ∼
2.90t∗), a pseudogap is prominent and it size remains unaffected for a large range
range of temperature (For U ∼ 2.90t∗, the gap starts being filled up at T ∼ 100Zt∗,
which is physically unattainable in common experiments). Main shows the region
close to the Fermi level. Inset shows the spectral functions containing the Hubbard
bands.

6.2.2 Finite T scaling

Similar to zero temperature we verify if finite temperature scaling behavior

for low temperature holds or not. We see that spectral densities for different

interaction strengths and for a fixed asymmetry parameter η (η = 0.3) in

Fig. 6.4), collapse to a universal curve. It is seen from the figure that the

scaling collapse holds at least until ω ∼ 10ωL (for U & 2.71t∗), and the

collapse improves as one progresses towards higher U/t∗ suggesting that in



6.3 Transport and optical properties 133

the strong coupling regime, we should find a universal spectral function of

the form D(ω/ωL;T/TL).
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Fig. 6.4: Scaling collapse of spectral densities at finite temperature for η = 0.3 and
different U ’s in the unit of t∗. (a) Frequency axis unscaled. (b) Frequency axis
scaled by the corresponding low energy scale ωL = Zt∗.

6.3 Transport and optical properties

6.3.1 Resistivity

The most surprising result that we obtain in this chapter is in the low-

temperature behavior in the resistivity. The resistivity ρ(T ) for a fixed asym-

metry parameter η = 1 + 2ǫd/U = 0.3 and different interaction strengths,

as shown in Fig. 6.5(a). The T 2 dependence is almost invisible whereas a

linear-T behavior is found to exist up to T ∼ 0.12t∗. On the other hand, it

follows a linear behavior for a wide range of temperature. In Fig. 6.5(b) it

seems that T 2 regime extends for higher U/t∗ (see the position of the cross
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Fig. 6.5: Resistivity ρ(T ) as a function of temperature for different U/t∗ (t∗ = 1)
with asymmetry parameter η = 0.3 (δ = 1− n ≃ 0.1). (a) Linear increase of ρ(T )
up to T ≃ 0.12. After that ρ(T ) falls off with T . (b) ρ(T ) at very low temperature
showing T 2 behavior. Cross marks are guides to see the range of T 2-behavior.

marks in the figure) whereas linear T -dependence behavior extends more for

lower U/t∗ (see Fig. 6.6 ). For fun, we just choose a t∗ ∼ 0.6eV and scale

the x-axis of Fig. 6.5(a). We find that some of the curves appear to have a

linear regime extending all the way down to 50 − 100K from T ∼ 1000K.

Thus our approach can produce physically realistic values of the linear re-

sistivity regime, which has been observed in many cuprate superconductors

(see Fig. 3(b) in Chapter 0).

Next we look for the doping dependence of the resistivity profile as it

is very much relevant to the cuprate experiments. Fig. 6.7 (a) shows that

for small interaction strength (U ≃ 1.5t∗), linear regime in the resistivity

is smaller and it extends further as doping is increased. This is expected

since here we are decreasing doping starting from a metal, which is similar
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Fig. 6.6: Resistivity as a function of temperature for different interaction strengths
U/t∗ at fixed asymmetry parameter η = 0.3, showing a wide range of linear regime
(up to order of 1000 K) for small and intermediate interaction strengths. The
dashed lines are guides to see the range of linear regime.

to moving towards the superconducting dome from the right-side of the su-

perconductivity phase diagram. There is a universality in the linear regime

(where all curves collapse) at low temperature. We do similar resistivity cal-

culation using IPT for the asymmetric Hubbard model. It turns out that it

captures only the Fermi liquid (quadratic in T ) part in the resistivity without

a situation where a significantly wide linear temperature dependence can be

observed (see Fig. 6.8) .

Such emergence of linear behavior in the resistivity signifies a possible

existence of marginal Fermi liquid state, or more generally even though the

ground state is a Fermi liquid, there is a smooth crossover from a true Fermi

liquid to a marginal one. In the crossover regime, T dependence of ρ(T )

takes place with power varying from 2 to 1. According to Varma et al’s

phenomenological hypothesis for a marginal Fermi liquid, in order to describe
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Fig. 6.7: Resistivity ρ(T ) as a function of temperature for different hole doping
concentrations. (a) Low interaction strength (b) Interaction strength close to the
Mott transition at half-filling.
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Fig. 6.8: Resistivity ρ(T ) as a function of temperature for for different hole doping
concentrations calculated from IPT. (a) Low interaction strength (U = 3.0t∗). (b)
Interaction strength which has Mott insulating state at half-filling (U = 5.0t∗).
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the “normal” state in cuprates, the self-energy takes the following form [70].

Σ(k, ω) ∼ g2N2(0)

[
ω ln

x

ωc

− i
π

2
x

]
(6.1)

where N(0) is the single-particle density of states, g is a coupling
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Fig. 6.9: (a) Behavior of the imaginary part of the self-energy as a function of
frequency at finite temperature T = 0.1Zt∗ and asymmetry η = 0.3 for various in-
teraction strengths (see legends). There are small quadratic (Fermi liquid) regimes
and wide linear regimes (marginal Fermi liquid) (b) The same in logarithmic scale.
The slope is 1 in (i.e. linear) the encircled region signifying marginal Fermi liquid
behavior. The linear regimes are universal as frequency axis is scaled by Zt∗ and
they emerge through a crossover from Fermi liquid or non-linear regimes. The
slopeless regimes at very low frequency arise due to presence of finite imaginary
part of the self-energy at finite temperature.

constant, and x = max(|ω|,T). We must note that the momentum (k) depen-

dence has been ignored in this hypothesis. Therefore our DMFT approach

could be relevant, as it has k-independent self-energy too, to test whether
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the linear or quasi-linear behavior in the temperature dependence of resis-

tivity near a doped Mott insulator arises due to linear behavior of ImΣ(ω)

as prescribed in Eq. (6.1). From Fig. 6.9 (a) we see that indeed ImΣ(ω)

has a linear regime just after a small quadratic regime that is expected from

a Fermi liquid. The linear regime is more pronounced in one side of the

Fermi liquid due to presence of asymmetry. Fig. 6.9 (b) depicts the same

in logarithmic scale. The slope is unity at the linear regime (encircled in

the figure) which appears after a crossover from a Fermi liquid regime (slope

∼ 2). Moreover, as a surprise, the linear regime is universal as the frequency

is scaled by ωL = Zt∗. Similarly when the frequency is small compared to

temperature ω < T , according to Eq. (6.1), ImΣ(ω) should be linear in T .

We verify this in Fig. 6.10, where we kept ω = 0 so that it is always less

than T , Fig. 6.10 (a) shows a linear-T behavior that extends up to T ∼ Zt∗

(though there exists a very small T 2 regime that is not prominent in the fig-

ure). Fig. 6.10 (b) shows a log-scale analysis, when fitted with a power law,

shows a crossover from T 2-regime (slope close to 2) a T -linear regime (slope

close to 1). Similar crossover analysis of the resistivity on the log-scale is

shown in Fig. 6.11. Thus our results establish a possible scenario where the

spin-fluctuation dynamics can give rise to a marginal Fermi liquid which may

be responsible for the linear temperature dependence in resistivity observed

in the “normal” state of cuprate superconductors. One more interesting thing

we observe is that when we scale ρ(T ) by the low energy scale ωL = Zt∗,

all low-T curves collapse to a single curve. This certainly indicates a univer-

sal feature at low-T which does not depend on the interaction strength (see

Fig. 6.11) and we believe that it arises due to the universality of the linear
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Fig. 6.10: (a) Behavior of the imaginary part of self-energy Σ(ω) at the Fermi
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Fig. 6.11: (a) Crossover from T 2 regime to a T -linear regime in the resistivity plot-
ted as a function of temperature (in units of t∗ for different interaction strengths
and a fixed asymmetry η = 0.30. Legends are the same as shown in (b). (b) Low
temperature scaling collapse of resistivity for η = 0.3 for various U/t∗ (t∗ = 1).
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regime in ImΣ(ω) as shown in Fig. 6.9 (b). It is also seen that the resistivity

peak shifts to higher multiples of ωL with increasing U (see Fig. 6.11 (b)).

This result is in stark contrast to that found in IPT, where the resistivity

peak became universal when plotted as a function of T/ωL. As we had seen

in chapter 4, the strong coupling scaling regime in the spectra extended a

long way almost until the pseudogap adjacent to the Fermi level resonance.

With increasing U, the lower and the upper gap edges get pushed out when

the spectra are plotted as a function of ω/ωL. So the pseudogap, which is a

precursor of the Mott insulating gap in the symmetric case, is a non-universal

feature as expected and is centred around ∼ 0.3− 4t∗. The resistivity peak,

or the conductivity minimum can thus be understood as a lack of available

states until the temperature becomes comparable to the upper gap edge.

Thus the resistivity peak is related to the pseudogap scale and is hence non-

universal as found.

6.3.2 Optical conductivity

We observe the long tail nature in the optical conductivity, like the symmetric

case, in the optical conductivity for a fixed U/t∗ (U/t∗ = 1.60 in Fig. 6.12) and

different temperatures. In several optical experiments in cuprates, such long

tails have been found with σ(ω) ∼ 1/ωp at large frequencies [118–120] with

p varying from 0.3 to 1. Varma et al [70] also showed that a marginal Fermi

liquid self-energy can give rise to a long tail with ω−p behavior. Fig. 6.12 (a)

shows that indeed such a long tail behavior is observed till very high frequency

and the tails are universal similar to that we obtain for the symmetric case
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(Cf. Fig. 5.6(b) ). By plotting in the logarithmic scale, we find the exponent

to be p ≃ 0.55 (see Fig. 6.12 (b) ). Thus though the long tail feature follows a

power law behavior, it is not clear whether this arises due to spin-fluctuations

that has been incorporated in the LMA or the marginal nature of the self-

energy.
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Fig. 6.12: (a) Optical conductivity with frequency. Long universal tail is observed
at high frequency. (b) Optical conductivity with inverse frequency in the logarith-
mic scale. The power law fit gives p ≃ 0.55 (see text).

6.4 Internal energy and specific heat

Again similar to the symmetric case, the internal energy shows monoton-

ically increasing behavior as temperature is increased (see Fig. 6.13(a)).

The specific heat shows linear behavior with temperature at low value (see

Fig. 6.13(b) ). However, the scaling collapse, when the specific heat is scaled

by Zt∗, happens for a small region (up to T ∼ 0.1Zt∗) compared to the

symmetric case (see Fig. 6.13(c)). This is expected since the Fermi liquid
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regime is quite small in this case.
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Fig. 6.13: (a) Internal energy, (b) specific heat, and (c) scaled specific heat as
functions of temperature for a fixed η = 0.3 and different U/t∗ (=1.14, 1.60, 1.83,
2.00, 2.25, and 2.71). The scaling collapse exists up to T ≃ 0.1Zt∗.

6.5 Summary

In this chapter, we study the most celebrated regime of the infinite dimen-

sional Hubbard model, where particle-hole symmetry has been broken and
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system is driven by temperature, interaction and asymmetry. We show that

at interaction strength close to a Mott insulator at half-filling, a pseudogap

is formed in the spectral density in the close vicinity of the Fermi level. The

pseudogap sustains even at very high temperature, whereas the resonance

at the Fermi level starts decreasing in height with temperature and finally

disappears.

In the transport calculation, the resistivity shows a wide range of linear

dependence on temperature for various interaction. The Fermi liquid T 2

behavior is also present, but that exists at extremely low temperature. We

explain this behavior through a crossover from a small Fermi liquid regime

to a marginal Fermi liquid (MFL) (as proposed by Varma et al [70] for the

normal state of the high-Tc superconductors). This MFL behavior arises due

to special functional dependence of the imaginary part of the self-energy on

both frequency and temperature (Eq. (6.1)). Our DMFT calculation is quite

relevant since Eq. (6.1) does not possess any momentum dependence like the

case we have for infinite dimensions. We also see that, coming from a metallic

side decreasing doping enhances the MFL regime, i.e. resistivity has larger

linear regime at smaller doping. This is similar to the case of approaching

from the overdoped Fermi liquid side to the optimal doped marginal Fermi

liquid side in cuprates. In the optical conductivity, we observe a long tail

showing 1/ωp power law decay, which can also arise due to the marginal

nature of self-energy. We conclude by saying that the spin-flip scattering

that is inherent in the LMA implementation could be responsible for the

emerging MFL behavior.
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Finally we show that internal energy has a monotonically increasing be-

havior similar to the symmetric result. However, we lack a good scaling

collapse and universal crossing point due to presence of a very small Fermi

liquid regime.



Chapter 7

Hysteresis and avalanches:

inhomogeneous non-equilibrium

Mott transition

7.1 Introduction

As mentioned in Chapter 0, the hysteresis found in the resistivity/conductance

measurements in the metal-to-insulator transition (MIT) systems suggests a

scenario of non-equilibrium phase transition1. Such a non-equilibrium phe-

nomenon cannot be captured through the methods such as DMFT, employed

in previous chapters, since it is basically an equilibrium approach. Moreover,

IPT or LMA, in its present form, cannot capture the phase separated metal-

lic and insulating domains, as shown in Fig. 10 in Chapter 0. However, in

1Note that phase transitions commonly refer to changes of phases within thermody-
namic equilibrium.

145
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this chapter, we propose a theoretical model, which macroscopically takes a

non-quantum point of view in purpose to describe the non-equilibrium na-

ture of the MIT. This is in the same spirit like the Ising model can be a

suitable model to study the ferromagnetic to paramagnetic phase transition

even though magnetism is quantum by its origin.

7.2 General theory of hysteresis

Hysteresis can occur during a phase transition when the free energy of the as-

sociated system develops many multiple valleys or local minima (see Fig. 7.1).

The system may get stuck in one of these local minima and hence it reaches

a stable state for a time span smaller compared to the time required to reach

the actual equilibrium, which is the true global minimum. Such a short-time,

compared to true equilibration time, could be long enough as an experimen-

tal measurement depending on the time scale of the dynamics of the system.

Such a quasi-equilibrium state is known as a metastable state. In that sense,

hysteresis can occur only in the case of discontinuous or first-order transition

since a continuous phase transition never allows multiple solutions for the

minimization. It is worth mentioning that hysteresis can arise even with-

out system encountering metastable states, e.g. in case where the system is

driven through an irreversible process due to dissipation or an extra phase is

generated after a complete cycle or in case where the system has a unidirec-

tional property (e.g. diodes or other rectifiers, Schmitt triggers).
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Fig. 7.1: Free energy with multiple local minima parametrized by X. Courtesy:
Hysteresis in Magnetism by Bertotti [61].

7.3 Role of inhomogeneity

Inhomogeneity can arise in a sample in two ways. First, a sample can have

several phase separated regions or domains. This may happen when some

of the domains stick to their metastable states and hence cannot undergo a

phase transition. The second kind of inhomogeneity is caused due to impu-

rities or disorder, which are omnipresent in any real material. Such disorder

in general is random and quenched, i.e. the distribution is temperature inde-

pendent. In the other case, i.e. for annealed disorder, the systems get enough

time to equilibrate and follow a grand-canonical distribution, which is tem-

perature dependent (for detailed discussion see Ref. 121). The presence of

quenched disorder can be a possible reason for observing athermal transition

(thermal fluctuations do not affect significantly) in many non-equilibrium ex-

periments, typically in acoustic emission in martensite transitions [122, 123]
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and in magnetic hysteresis experiments [122,124].

7.4 Theoretical model for magnetic hystere-

sis and avalanches

Not only the hysteresis itself, the avalanches or the Barkhausen noise in fer-

romagnets signify non-equilibrium dynamics of domain flipping (see Fig. 9)

in the course of driving an external magnetic field. In previous approaches,

the Preisach model and Stoner-Wohlfarth [125] model served as mathemati-

cal models and have successfully been applied to hysteresis in real materials.

Moreover, the Preisach model can also produce avalanches. However, these

models fail to capture the rate dependent and non-equilibrium stochastic

features in the hysteresis phenomena. Micromagnetic models based on ener-

getics of magnetic materials [61, 126] is also one of them. In 1990, Alessan-

dro, Beatrice, Bertotti, and Montorsi proposed a random energy model with

a pinning field, widely known as the ABBM model [127, 128] in the frame-

work of Langevin theory that involves domain wall dynamics. The ABBM

model quite successfully describes the Barkhausen noise and shows power

law behavior in the noise spectrum.

Despite these stochastic dynamic models, a microscopic spin model has

been needed since spins are the microscopic entities that lead to magnetism

and magnetic domains. The random-field Ising model (RFIM) is such a

model that has been widely studied in the context of spin glass system [129].

Sethna and his co-workers [71,72,130] have successfully and extensively used
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this model to investigate the noise/avalanche study in ferromagnets and in

many other systems. The RFIM Hamiltonian is written as

H = −
∑

<ij>

Jij SiSj −
∑

i

(H + hi)Si (7.1)

where Jij is the exchange interaction between spins at site i and j. H is

a homogeneous external magnetic field and hi is the random disorder at

site i. The disorder distribution is usually chosen to be normal, i.e. one

with a Gaussian probability: P (h) = exp(−h2/2∆2)/(
√
2π∆). The standard

deviation, ∆ serves as a strength or measurement of the disorder. The critical

behavior of the RFIM has been investigated from two directions: (i) The

renormalization group (RG) approach [131, 132] and (ii) numerical methods

using Monte Carlo algorithm [71,133]. In both methods a power law behavior

has been found in the avalanche distribution and the associated exponents

have been studied in different dimensions (mostly 3d). The effect of random

field can be understood qualitatively from a mean-field picture though the

RG study predicts d = 6 to be the upper critical dimension. In the mean-field

picture, each spin Si feels an effective or local field Heff = −(J
∑

<ij> Sj +

H + hi). The external field is ramped from large negative value to a large

positive value. The spin initially takes the sign of the local field and as the

external field is ramped further it causes the spin to flip when Heff changes

sign. Now due to the presence of nearest neighbor interactions among the

spins, a flipping spin can cause one or more neighbor spins to flip as well and

hence it leads to an avalanche of spin flips.
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For small values of disorder ∆, the first few spin flips are prone to cause

a large avalanche whose size is comparable to system size. On the other

hand, large ∆ may let some of the spins “pinned” to their site unless the

external field crosses a critical value. Thus in the first case, we see one single

large avalanche to cause magnetization reversal whereas in the second case,

the magnetization will change smoothly with small avalanches. These two

regimes are separated by a critical disorder ∆c and at this value, we expect

a true power law divergence in the avalanche size distribution (see Fig. 7.2).

Fig. 7.2: Avalanche size distribution curves of the RFIM in 3d (from Ref.71). For
disorder R < 2.25 (J = 1), we see a true power law behavior (linear on log-log
plot) for all sizes. Critical disorder for 3d has been estimated (extrapolated dashed
line) to be Rc = 2.16. The inset shows the scaling collapse by choosing proper
scaling variables (not discussed in the text). Note that we use ∆ to denote disorder
instead of R for a specific reason.

7.5 Geometry of metastable ‘phase diagram’

and thermal hysteresis

We notice that the hysteresis that we often encounter happens due to change
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in the external magnetic field. Thermal hysteresis in ferromagnets may be a

rare phenomenon in ferromagnets, whereas in contrast, we find both thermal

and field hysteresis in MIT systems with IPT and also in experiments on

V2O3 , VO2 , and several manganites [134]. Here we propose that such a

contrast can be explained by simply looking at the shape of the metastable

‘phase diagrams’. We should be careful that they are not phase diagrams

in true sense (hence we are keeping the phrase within a quotation mark) as

phase diagrams are normally constructed for the equilibrium states.

We look at the temperature-field ‘phase diagram’ that contains two spin-

odal lines (transition line 1 and 2) around the metal-insulator coexistence

regime (see Fig. 7.3, left panel). We can easily understand the reason of

(a) (b)

Fig. 7.3: The phase diagram of (a) the Hubbard model (HM) from DMFT calcu-
lation using IPT as an impurity solve and (b) the Ising model from Monte Carlo
calculation. The shape of the phase diagram explains why thermal hysteresis is
generally not observed in ferromagnets (see text for details).

occurrence of thermal hysteresis in the MIT system, generally not found in
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ferromagnets, if we carefully examine the shape or geometry of the spinodal

lines. Hysteresis happens when the system is driven by a field or temper-

ature and it crosses two spinodal lines or phase transition lines. When the

driving force is increased the system enters into the coexistence regime after

crossing the transition line 1. The coexistence regime is defined as the region

where system can have two metastable solutions (metallic/insulating for the

MIT systems, positive/negative magnetization for the Ising ferromagnets) of

the free energy. Therefore the system remains in the metastable metallic or

negative magnetization state (local minimum of the free energy) even there

exists a stable insulating/positive magnetization in the coexistence regime

unless the thermal fluctuation helps the system to cross the barrier and to

reach the actual equilibrium solution (global minimum) of the free energy.

In the same way, when the system is driven by decreasing the field from the

higher end (insulating/positive magnetization) it enters into the coexistence

regime by crossing the transition line 2 and it denies the transition (which

would happen when the system acquires the global minimum) and decides to

get stuck into the insulating/positive magnetization metastable state. Thus

the coexistence regime plays a crucial role to the system to choose different

metastable states while the driving ‘force’ is applied in different directions

and hence hysteresis arises.

Now we generalize this fact by saying that hysteresis occurs only when

the system finds two different entries to the coexistence regime in the course

of being driven by increasing and decreasing the field. In other word, cross-

ing of two transition lines or spinodal lines, which make the boundary of the

coexistence regime, is essential for occurrence of hysteresis. We can see from
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Fig. 7.3 that crossing two spinodal lines can happen for both MIT and ferro-

magnets when the system is driven by an external field (pressure/interaction

and magnetic field respectively). However, while changing the temperature

may cause hysteresis in the former only since the system crosses only one and

same spinodal lines in the latter when temperature is increased or decreased.

Thus we can see that shape of the coexistence regime is responsible for the

absence of thermal hysteresis in ferromagnets and the presence of the same

in MIT systems, e.g. V2O3 and VO2 .

Though temperature and external field are different variables of any ther-

modynamic system, in non-equilibrium and for an athermal transition, both

can be treated with equal footing. In other words, we will argue that tem-

perature takes on the role of a field and the thermal fluctuations expected

due to finite temperature are negligible. This concept is essential to build up

our theoretical formulation in the forthcoming section.

7.6 Can we address critical phenomena and

hysteresis together?

Hysteresis is generally associated with first order or abrupt phase transition.

However, disorder can introduce a critical fluctuation near a critical disorder

strength [72]. This large fluctuation results in divergence in the correlation

length which can set in a power law behavior in the distribution of avalanche

size. So even though the hysteresis deals with the first order phase transition,

presence of disorder can lead the system to another regime of criticality and
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Fig. 7.4: Renormalization group (RG) flow diagram for the RFIM. The fixed point
S∗ separates the phases with infinite avalanches and small step-like avalanches
and hence it is sitting at the critical disorder value Rc. Image is reproduced from
Ref. 72.

we can expect usual scaling and power law and finally look for the universality

class the system may belong to.

Perković, Dahmen and Sethna [71] simulated the RFIM by using Monte

Carlo (MC) method with a Gaussian distribution for the disorder of width

R. They found the critical disorder value Rc = 2.16 for 3D (in the unit of

J , i.e. J = 1). Above Rc, the power law is obeyed 50 % above Rc. Sethna

group [72] argued for the phase transition (though may not be envisaged as

a change in order parameter) in term of renormalization group (RG) flow

diagram (see Fig. 7.4). There is a critical manifold which flows toward the

fixed point and separate the phases having infinite, system-spanning and

small finite avalanches.
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7.7 Percolation picture: resistor network model

The metal to insulator transition, as a function of field or temperature, can be

viewed as a percolation of physical domains of one over the other. Evidence

of such physical domains had been found earlier in manganites [80,134] and

recently on VO2 thin film.

Now the percolation theory has been well studied in last few decades

which can be physically imagined as punching holes in a conducting sheet

and the holes grow up or percolate with time. This percolation dynamics

is useful in proposing the phenomenon in our context since it also produces

power law behavior as it has been studied through a random resistor network

model (RRN) [135, 136]. However, a simple percolation theory may not be

successful, as it is based on probability of conduction paths, to describe

domain flipping and pinning depending on the associated free energy barrier.

Nevertheless, we wish to built a similar resistor network model which denies

any explicit randomness in the resistances in the network. The randomness

enters through the random field hi of the RFIM once we map the up/down

spins to high/low resistances. We put a contrast ratio C in order to define

the high (insulating) Rins and low (metallic) resistances Rmet, i.e.

C = Rins/Rmet (7.2)

Thus it seems legitimate to expect a power law in the MIT system, as

experimentally found in VO2 thin film by the Sharoni group [60].

Moreover, we may expect two different kind of transitions when the con-

trast ratio is very high (C ≫ 1) and very low (C ≪ 1). When C ≫ 1,
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we can expect insulating domains to grow up over the metallic regime and

we should expect several small jumps or avalanches to happen in the resis-

tivity or conductivity measurement. On the contrary, at low contrast ratio

(C ≪ 1) which occurs near the critical point, the percolation picture holds

no longer and one small avalanche may be expected (since the hysteresis loop

becomes narrower). However, it is not clear that resistivity will increase in

the same way as magnetization does in ferromagnets since the resistances are

intensive or non-additive quantity in contrast to magnetization. Therefore,

it may differ in the exponent in the power law (if observed) from the same in

ferromagnets. This is the sole purpose of doing this model separately from

the studied RFIM and RRN since the exponents do no match close to the

mentioned experiment. Also we believe, the exponent may vary as we change

the contrast ratio or disorder strength and thus our approach should propose

different exponents which may vary with different samples.

7.8 Theoretical model for metal-insulator sys-

tems: RFIM mapped to a resistor net-

work

Here use propose a mapping, as earlier used by Erica et al [137], where a

RFIM is mapped to a resistor-network with resistance anisotropy that arises

due to different orientations of nematic ordering of electrons observed in high-

Tc cuprates. Such a mapping can be generalized to any material having two

distinct phases and having quenched disorders, e.g. metal-insulator systems,
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martensitic transition systems etc.

Since a direct mapping of a lattice-gas [138] model to an Ising Hamil-

tonian exists, it could be possible to think of a lattice-gas model for the

metal-insulator system2 (discussed in the next section). Similarly using RG

scaling arguments, Kirkpatrick and Belitz have shown that Anderson-Mott

MIT [139] can be mapped to RFIM problem. Recently Papanikolau et al [140]

have used a method where they mapped the metal-insulator conductivities

in terms of Ising spin variables and then solving the conductivity by applying

Kirchhoff’s law or by Franck-Lobb algorithm.

7.9 Lattice-gas model

To look for a connection between the metal-insulator, we propose a lattice-

gas model [138, 141]. Let us imagine a specific sample undergoing a Mott

transition as a function of temperature. The bulk of the sample would in

general have a network of coexisting metallic and insulating islands. We

discretize this sample into a lattice of cells, and define a variable ni for

any cell i, which takes the values 1 and 0 depending upon whether the cell

comprises a metallic or an insulating phase respectively. In such a coarse-

grained description, there are four possible configurations for the ni variables

of any two nearest neighbor cells. They are (ni, nj) = (1, 1), (1, 0), (0, 1)

and (0, 0). Among these, we argue that only the (1, 1) combination leads

to a lowering of the energy, while the other three neither raise nor lower

the total energy of the system. The proximity of two metallic cells ( (1, 1)

2Suggested by D. E. Logan (Oxford).
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combination) leads to a tunnelling of electrons from one cell to the other thus

leading to a kinetic energy or a delocalization energy gain. It is easy to see

that such a gain does not occur for any other combination. Thus we may

write the lattice-gas Hamiltonian for this discretized system in the grand

canonical ensemble as

H = −K
∑

<ij>

ninj − µ
∑

i

ni (7.3)

Here K and µ represent the K.E. gain and chemical potential respectively.

The latter is, in general, pressure/temperature dependent and should be

interpreted as the gain in total energy upon flipping an insulating cell to a

metallic cell. Now, a simple bilinear transformation such as Si = 2(ni − 1/2)

leads to a change of variables and yields an Ising model in a magnetic field:

H = −J
∑

<ij>

SiSj −H
∑

i

Si + h0 (7.4)

where the exchange coupling J = K/4, the field H = (zK + µ)/2 and the

constant h0 = −Kz/4 − µN/2. The numbers z and N are the coordination

number and total number of cells respectively. In real materials, disorder

exists in various forms such as substitutional defects or vacancies, impuri-

ties, grain boundaries, etc. Such disorder is usually quenched and acts as

nucleation centers for the metastable phases giving rise to coexistence of the

stable and the metastable phases across the first order transition. In the

lattice gas description, disorder would play a role in randomizing the delo-

calization energy gain as well as the chemical potential. Thus, in general, K



7.9 Lattice-gas model 159

must be Kij and µ must be µi reflecting the dependence on the inhomoge-

neous quenched disorder. This would manifest in the Ising model as random

exchange and random field. If we ignore the randomness in the exchange

term, we get the well-known RFIM as a phenomenological model of a first

order metal-insulator transition in the presence of quenched disorder

H = −J
∑

<ij>

SiSj −
∑

i

(H + hi)Si (7.1)

In the above, hi is a small random field that is, in practice, picked from

a Gaussian distribution centered at zero and having a width that represents

the disorder strength in the material. Given a specific K and µ, we should

be able to, through a simple Monte-Carlo simulation of the RFIM for exam-

ple, describe the positions of the metallic and insulating phases for a given

disorder configuration. With the metal-insulator network thus determined,

a mapping to a bimodal resistor network and its solution through Kirchhoffs

equations would yield the macroscopic transport properties of this inhomo-

geneous system. In order to understand the parameters of the RFIM, we

need to make connection to a microscopic model.

Sharoni et al found a power law distribution , p(A) ∝ A−α for avalanche

size A averaged over several hysteresis loops (see Fig. 7.5, linear in logarith-

mic scale). By using the maximum likelihood method [142, 143] they found

α = 2.48 ± 0.05. This power law behavior certainly provokes us to think of

a percolation process of one domain over the other. Evidence of such a per-

colation has been observed in early VO2 thin-film experiments [62]. Sharoni

group also found a linear relation when they plotted the largest avalanche
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(jump) against the inverse of device length (see Fig. 7.9(b) ) . This may

imply that observable avalanches in hysteresis may occur due to a finite size

effect (in the thermodynamic limit we should expect smooth curves). They

did numerical simulation for their experimental finding by using an effective

medium approximation. However, neither they found an agreeable inverse

device length scaling nor a good power law fit for the jump distribution.

Therefore we may need to look for a different numerical scheme which we

have proposed earlier.

7.10 The resistor network

Now we describe the way we construct the resistor network and implement

to the numerical computation. Let us consider that the lattice size is Lx ×

Ly with four resistors at each lattice point. Here for our convenience, we

Fig. 7.5: Power law behavior in the resistance jump observed in VO2 thin films as
mentioned in Ref. 60. Inset shows the power law exponent α dependence on the
device length size.
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distinguish two kinds of resistor, horizontal (RH) and vertical (RV ). Thus

a (i, j) site is connected to 2 RH ’s and 2 RV ’s. Similarly the sites in the

neighborhood ( (i−1, j) , (i+1, j) , (i, j−1) , and (i, j+1) sites) consists of

2 horizontal and 2 vertical resistors. Thus eventually between any two lattice

points two resistors sit together in a series connection, i.e.

(i) RH i±1,j and RH i,j sit between sites (i±1, j) and (i, j) where i ∈ [1, Lx−

1] and j ∈ [1, Ly].

(ii) RV i,j±1 and RV i,j sit between sites (i, j±1) and (i, j) where i ∈ [2, Ly−

1] and j ∈ [1, Lx − 1].

i = 1 and i = Lx have connections to leads and for convenience, we consider

that the left lead has a bias V while the right lead is grounded. So i = 0

points are not parts of the lattice, but merely connections to the bias. Now

Fig. 7.6: Schematic diagram of a junction with z = 4.

according to Kirchhoff’s current law, the total current in a junction should

be zero. For example, current at site (i, j), with coordination number, z = 4
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Fig. 7.7: Schematic diagram of a resistor network. Note that, though the resistors
are labelled by the same name (RH for horizontal, RV for vertical) their value
varies from site to site in the 2-dimensional network.

(number of resistors connected to the site, see Fig. 7.6):

Iij =
Vi−1,j − Vi,j

RH i,j +RH i−1,j

+
Vi+1,j − Vi,j

RH i,j +RH i+1,j

+
Vi,j−1 − Vi,j

RV i,j +RV i,j−1

+
Vi,j+1 − Vi,j

RV i,j +RV i,j+1

= 0 .

(7.5)

Similarly Kirchhoff’s equations for other coordination numbers (z = 2 at

corners, z = 3 at non-corner edges). We shall write all such equations now.

i. Left bottom corner point (i = 1, j = 1)

V − V1,1
RH 1,1

+
V2,1 − V1,1

RH 1,1 +RH 2,1

+
V1,2 − V1,1

RV 1,1 +RV 1,2

= 0 (7.6)
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ii. Left non-corner edge point (i = 1, j = 2 to Ly − 1)

V − V1,j
RH 1,j

+
V2,j − V1,j

RH 1,j +RH 2,j

+
V1,j−1 − V1,j

RV 1,j +RV 1,j−1

+
V1,j+1 − V1,j

RV 1,j +RV 1,j+1

= 0

(7.7)

iii. Left top corner point (i = 1, j = Ly)

V − V1,Ly

RH 1,Ly

+
V2,Ly

− V1,Ly

RH 1,Ly
+RH 2,Ly

+
V1,Ly−1 − V1,Ly

RV 1,Ly
+RV 1,Ly−1

= 0 (7.8)

iv. Bottom non-corner edge point (i = 2 to Lx, j = 1)

Vi−1,1 − Vi,1
RH i,1 +RH i−1,1

+
Vi+1,1 − Vi,1

RH i,1 +RH i+1,1

+
Vi,2 − Vi,1

RV i,1 +RV i,2

= 0 (7.9)

v. Top non-corner edge point (i = 2 to Lx, j = Ly)

Vi−1,Ly
− Vi,Ly

RH i,Ly
+RH i−1,Ly

+
Vi+1,1 − Vi,Ly

RH i,Ly
+RH i+1,Ly

+
Vi,Ly−1 − Vi,Ly

RV i,Ly
+RV i,Ly−1

= 0 (7.10)

vi. Right top corner point (i = Lx, j = Ly)

VLx−1,Ly
− VLx,Ly

RH Lx,Ly
+RH Lx−1,Ly

+
−VLx,Ly

RH Lx,Ly

+
VLx,Ly−1 − VLx,Ly

RV Lx,Ly
+RV Lx,Ly−1

= 0 (7.11)

vii. Right non-corner edge point (i = Lx, j = 2 to Ly − 1)

VLx−1,j − VLx,j

RH Lx,j +RH Lx−1,j

+
−VLx,j

RH Lx,j

+
VLx,j−1 − VLx,j

RV Lx,j +RV Lx,j−1

+
VLx,j+1 − VLx,j

RV Lx,j +RV Lx,j+1

= 0

(7.12)
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viii. Right bottom corner point (i = Lx, j = 1)

VLx−1,1 − VLx,1

RH Lx,1 +RH Lx−1,1

+
−VLx,1

RH Lx,1

+
VLx,2 − VLx,1

RV Lx,1 +RV Lx,2

= 0 (7.13)

ix. Non-border inner point (i = 2 to Lx − 1, j = 2 to Ly − 1)

Vi−1,j − Vi,j
RH i,j +RH i−1,j

+
Vi+1,j − Vi,j

RH i,j +RH i+1,j

+
Vi,j−1 − Vi,j

RV i,j +RV i,j−1

+
Vi,j+1 − Vi,j

RV i,j +RV i,j+1

= 0

(7.14)

We can rearrange the above equations by collecting the coefficients of Vij

with new notations: R̃H/V (i± 1, j ± 1) = RH/V (i, j) +RH/V (i± 1, j ± 1)

i. Left bottom corner point (i = 1, j = 1)

[
1

RH 1,1

+
1

R̃H 2,1

+
1

R̃V 1,2

]
V1,1 −

1

R̃H 2,1

V2,1 −
1

R̃V 1,2

V1,2 =
V

RH 1,1

(7.15)

ii. Left non-corner edge point (i = 1, j = 2 to Ly − 1)

[
1

RH 1,j

+
1

R̃H 2,j

+
1

R̃V 1,j−1

+
1

R̃V 1,j+1

]
V1,j

− 1

R̃H 2,j

V2,j −
1

R̃V 1,j−1

V1,j−1 −
1

R̃V 1,j+1

V1,j+1 =
V

RH 1,j

(7.16)

iii. Left top corner point (i = 1, j = Ly)

[
1

RH 1,Ly

+
1

R̃H 2,Ly

+
1

R̃V 1,Ly−1

]
V1,Ly

− 1

R̃H 2,Ly

V2,Ly
− 1

R̃V 1,Ly−1

V1,Ly−1 =
V

RH 1,Ly

(7.17)
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iv. Bottom non-corner edge point (i = 2 to Lx, j = 1)

[
1

R̃H i−1,1

+
1

R̃H i+1,1

+
1

R̃V i,2

]
Vi,1

− 1

R̃H i−1,1

Vi−1,1 −
1

R̃H i+1,1

Vi+1,1 −
1

R̃V i,2

Vi,2 = 0 (7.18)

v. Top non-corner edge point (i = 2 to Lx, j = Ly)

[
1

R̃H i−1,Ly

+
1

R̃H i+1,Ly

+
1

R̃V i,Ly−1

]
Vi,Ly

− 1

R̃H i−1,Ly

Vi−1,Ly
− 1

R̃H i+1,Ly

Vi+1,1 −
1

R̃V i,Ly−1

Vi,Ly−1 = 0 (7.19)

vi. Right top corner point (i = Lx, j = Ly)

[
1

R̃H Lx−1,Ly

+
1

RH Lx,Ly

+
1

R̃V Lx,Ly−1

]
VLx,Ly

− 1

R̃H Lx−1,Ly

VLx−1,Ly
− 1

R̃V Lx,Ly−1

VLx,Ly−1 = 0 (7.20)

vii. Right non-corner edge point (i = Lx, j = 2 to Ly − 1)

[
1

R̃H Lx−1,j

+
1

RH Lx,j

+
1

R̃V Lx,j−1

+
1

R̃V Lx,j+1

]
VLx,j

− 1

R̃H Lx−1,j

VLx−1,j −
1

R̃V Lx,j−1

VLx,j−1 −
1

R̃V Lx,j+1

VLx,j+1 = 0 (7.21)
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viii. Right bottom corner point (i = Lx, j = 1)

[
1

R̃H Lx−1,1

+
1

RH Lx,1

+
1

R̃V Lx,2

]
VLx,1

− 1

R̃H Lx−1,1

VLx−1,1 −
1

R̃V Lx,2

VLx,2 = 0 (7.22)

ix. Non-border inner point (i = 2 to Lx − 1, j = 2 to Ly − 1)

[
1

R̃H i−1,j

+
1

R̃H i+1,j

+
1

R̃V i,j−1

+
1

R̃V i,j+1

]
Vi,j

− 1

R̃H i−1,j

Vi−1,j −
1

R̃H i+1,j

Vi+1,j −
1

R̃V i,j−1

Vi,j−1 −
1

R̃V i,j+1

Vi,j+1 = 0

(7.23)

Thus we see can set up a vector V(i , i = 1 to LxLy) and find the com-

ponents by solving the following matrix eq.

GV = I (7.24)

Where G matrix contains the coefficient which has the dimension of 1/resis-

tance and hence can be called as the conductance matrix.

Here j’s are rows and i’s are columns if we write in a matrix form.

Now we notice that only a few components (maximum 5) contribute to

the Eq.s (7.15)-(7.23). Therefore the G matrix contains a very few non-zero

elements compared to its full dimension (LxLy)
2, i.e. the matrix is sparse.

Hence instead of required∼ 5 (LxLy)
2 number of processes for the full matrix,

we store only the nonzero elements in a compact row storage format and use
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the Intel Math Kernel Library direct sparse solver routine to find the elements

of V.

The mapping to the linear array can be done with a new index p such

that p = i+(j− 1)Lx, i ∈ [1, Lx], j ∈ [1, Ly]
3. Thus we can fill up the lattice

by running p from 1 to N = LxLy and we fill up first visiting all the columns

for the same row, i.e. first run i from 1 to Lx and then update each row by

adding 1 to the previous row (we can do the other way as well). If filling is

done in this way, then for a given p and j,

i = p− (j − 1)Lx (7.25)

.

We can keep the row (j) fixed while running i by defining

j = ⌊(p− 1)/Lx⌋+ 1 . (7.26)

where ⌊x⌋ denotes the floor function of x.

Now we should note that G is a N ×N square matrix and V is a 1×N

column matrix (N = LxLy) with no zero elements in general. Therefore the

row of V will have a nonzero coefficient in the diagonal part of G with the

same row. Thus we, in practice, visit all the lattice sites since all of them will

have nonzero diagonal coefficient of potential in matrix G. In the course of

3Note that in the lattice geometry, i and j indices represent (x, y) coordinates respec-
tively. Therefore in the lattice space, Ri,j represents resistances related to the column
number i and row number j. However, in a typical Fortran program, i and j in a matrix
array R(i, j) represent row and column ranks respectively, which have an opposite sense
to the lattice representation described here.
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this visit, we look for the nearest neighbor sites which will appear as nonzero

off-diagonal element in the same row (the row of the central lattice point).

The row of the neighborhood point potential (i.e. the rank in the linear array

of V) will be the column of nonzero off-diagonal elements. This is due to the

fact that in the multiplication of matrices A and B, the column index of A

must match with the row index of B. Thus if B is a single column matrix,

its row position is enough to determine the multiplying coefficient associated

with it.

7.11 Results

We shall try to address three important findings that have been observed in

the experiment on VO2 thin film, viz.

(i) Sample size dependence of the avalanche size.

(ii) Power law behavior of the avalanche size distribution.

(iii) Size dependence of the power law exponent.

In addition to this, we report two other interesting theoretical predictions

that need experimental verifications:

(v) Effect of the disorder strength on the avalanche size.

(vi) Effect of the disorder strength on the power law exponent.
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7.11.1 Finite size effect

We examine for the system size dependence effect on the avalanche sizes.

We can see from Fig. 7.8, as we increase the lattice size from 100 × 100

to 1000 × 100, the avalanche sizes decrease on average and it seems that,

at thermodynamic limit, the hysteresis curve becomes completely smooth.

Each calculation has been done for a random Gaussian disorder of width
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Fig. 7.8: Lattice size dependence of the avalanches. (a) Hysteresis height changes
with changes in the lattice length Lx (Ly = 100 is fixed). (b) Close-up view to see
that average avalanche size decreases as the system size becomes bigger.

∆ = 1.0J and the contrast ratio, C = Rins/Rmet = 1000. We also notice that

the hysteresis height decreases with increase in Lx (Fig. 7.8(a)). Exactly

the opposite situation happens when Ly is increased and hysteresis height

does not change at all for any square lattice, i.e. Lx = Ly (results not shown

here) since the effective resistance of the completely insulating phase (highest

resistance in the hysteresis plot) roughly follows the formula

Reff = 2C RmetLx/Ly (7.27)
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where C is the contrast ratio as mentioned before. We plot the largest

avalanche size against Lx (see Fig. 7.9(a)). The inset shows almost a lin-

ear dependence when it is plotted against inverse. Such a linear behavior

remarkably agrees with the result found by Sharoni et al on VO2 thin films

(Fig. 7.9(b)). With a similar quest, we also look at the maximum avalanche
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Fig. 7.9: Maximum avalanche size dependence on the system length. Insets show
a linear dependence when plotted against the inverse length plot. (a) Theoretical
plot for contrast ratio, C = 1000 and disorder strength ∆ = 1.0J (J = 1, Ly = 100
). (b) Similar plot for the VO2 thin film experiment by Sharoni et al [60].

size dependence on the device width. It appears that the maximum avalanche

size on average does not change significantly (except the size at Ly = 600,

which we consider to be a point with statistically large deviation). Thus

changing width may have a very less influence on the disorder effect (see

Fig. 7.10). The influence of changing width on the power law will be dis-

cussed in a forthcoming section.
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Fig. 7.10: Maximum avalanche size as a function of system width Ly. The size does
not get affected significantly by change in the width (though shows an increasing
nature) except Ly = 600 having a large deviation.

7.11.2 Avalanche size distribution

To investigate whether the avalanche size follows a power law we plot the
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Fig. 7.11: (a) Double-log distribution plots of avalanches for different lengths, Lx

ranging from 100 to 1000 keeping Ly = 100, ∆ = 1.0, and C = 1000 fixed. (b)
Linear regression line for Lx = 600. The slope yields α = 1.68 whereas maximum
likelihood estimation (MLE) is a little higher (α = 1.97).
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logarithmically binned data (for the method see Appendix L) for the resis-

tance hysteresis for different sizes. Fig. 7.11 (a) shows the avalanche size

distribution on double-log scale for different length Lx and for fixed width

Ly = 100, disorder strength ∆ = 1.0 and C = 1000. We find a good linear

regression plot showing a power law behavior and the power law exponent

α is obtain from the slope of the regression line. For example, for system

size with Lx = 600 and Ly = 100 (see Fig. 7.11 (b) ) gives α = 1.68, which

is less than that obtained in the VO2 experimental data. We also estimate

α using the maximum likelihood estimation (MLE) and we find it to have a

little higher value (α = 1.97).

7.11.3 Size dependence of power law exponent

Since we vary the system length Lx, we desire to see the third point that

has been mentioned in the beginning of this section. Fig. 7.12(a) shows

that the power law exponent on average increases with the length Lx. This

also bears a striking resemblance with the behavior found in the experiment

(Fig. 7.12(b)). The power law exponent variation shows a feeble dependence

on system width Ly. Fig. 7.13 shows the exponent α varies a little around a

mean value αmean = 1.36.

7.11.4 Effect of disorder

The effect of disorder is important since the strength of the disorder decides

the pinning of domains and hence size of the avalanches. First of all, as we

expect for the RFIM, the average avalanche size decreases with increasing
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Fig. 7.12: (a) Dependence of the power law exponent α with the system length.
(b) Similar behavior observed in the experiment on VO2 thin films mentioned in
Ref. 60.
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Fig. 7.13: Power law exponent α as a function of system width Ly. α changes very
little (around an average value 1.36) with Ly.
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disorder ∆. (see Fig. 7.14) . We observe power law with cut-offs that range
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Fig. 7.14: (a) Resistance hysteresis at different disorders ∆ for a system size 200.
(b) Zoomed in view of the same clearly shows that avalanche size becomes smaller
as disorder is increased and the step like curve finally turn into a smooth one.

over one or two decades (see Fig. 7.15(a) ). The cutoff apparently diverges

around ∆ = 0.8, which seems to be the critical disorder ∆c. This behavior

is exactly similar to that in the pure RFIM in 3d (Fig. 7.2). Thus following

the arguments by Perković et al, we see a wide critical region instead of a

single critical point at ∆c. Nevertheless, the power law exponent increases

as disorder is increased (see Fig. 7.15(b) ).

However, we should remember one important fact that magnetization is

an extensive quantity whereas resistances in a network are not. Furthermore,

though debatable, it is believed that, in the 2d RFIM, the critical disorder

strength is ∆c = 0, i.e. only a clean sample should show true power law

behavior [121,144].



7.11 Results 175

0.5 1 1.5 2
log

10
 (Avalanche size)

-1

0

1

2

3

lo
g 10

(S
iz

e 
oc

cu
rr

en
ce

) ∆=0.8
∆=0.9
∆=1.0
∆=1.2
∆=1.5

α=1.67

α=1.58

α=1.50

α=1.37

α=1.29

L
x
=200, L

y
=200, C=1000

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
∆

1

1.2

1.4

1.6

1.8

2

2.2

α

L
x
=200, L

y
=200, C=1000

(b)

Fig. 7.15: (a) The power law behavior with cutoffs at different disorders. The
power law regime (linear in the log-scale) sustains up to one or two decades signi-
fying a wide region of criticality (Cf. Fig. 7.2). (b) Change of critical exponent α
with disorder ∆.

7.11.5 Effect of contrast ratio

The final issue that we want to examine is the effect of the contrast ratio,

C on the statistics of resistance avalanches. In a typical temperature driven

Mott transition C changes as a function of temperature. Specifically, close

to the second order critical point Tc, it is almost impossible to distinguish a

metallic and an insulating phase by looking at their resistivity or conductivity

values. The hysteresis loop almost shrinks to zero as T approaches Tc. In

that sense, a pure percolation picture is not applicable at T . Tc and also

the avalanche statistics may not make sense since the first-order transition

no longer persists. In addition to this, critical fluctuations near Tc may

overwhelm the the critical behavior due to disorder. However, from the

energetics point of view, we can always get two metastable states once we

get a finite contrast ratio, however small the contrast ratio is. In fact, we
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Fig. 7.16: Dependence of the power law exponent α on the contrast ratio C for
the lattice size 200× 200 and disorder ∆ = 1.0. (a) The hysteresis plot shows no
significant change in the nature of avalanche sizes. For comparison with effective
resistance with C = 10000, effective resistances with C = 10, 100, and 1000 are
multiplied by factors 1000, 100, 10 respectively (following the formula Eq. (7.27)
). (b) α increases as C is decreased.

find no significant change in the avalanche size once we scale up the effective

resistances to fit with the value of that for C = 10000 (see Fig. 7.16 (a) ) .

Also it turns out that we get higher critical exponents as we go for smaller

contrasts ratio (see Fig. 7.16 (b) ).

7.12 Estimation of power law exponents

If a distribution shows a power law behavior: P (x) ∼ xα for sample point

variable x, then by taking logarithm on both sides, we can determine the

exponent α. However, a direct linear binning in order to get the distribution

leads to incorrect results since the sample point fluctuations can be enormous

at the large value regime. Therefore we first obtain the size distribution by
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using a logarithmic binning and then we do the double-log plotting. The

methodical detail has been discussed in Appendix L. However, in some cases,

for better estimation of the power law exponent we use maximum likelihood

estimation (MLE) in some cases [142, 143, 145, 146]. In most cases of our

results, α from the MLE is little higher than than obtained from logarithmic

binning but does not significantly alter the stochastic behavior. We use the

C++ codes developed by Wim Otte and Matlab codes developed by Aaron

Clauset, Cosma R. Shalizi, and M. E. J. Newman, which are freely available

online (http://tuvalu.santafe.edu/~aaronc/powerlaws/).

7.13 Summary

In this chapter, we develop a classical theory which attempts to capture

certain aspects of the inhomogeneous Mott transition that lie beyond the

mean-field nature of DMFT discussed in all previous chapters. In this the-

ory, a disordered magnetic Hamiltonian, namely the random field Ising model

(RFIM) is mapped on to resistor network which corresponds to an inhomoge-

neous metal-insulator system of our interest. Being motivated by the experi-

mental work done by Sharoni and co-workers on VO2 thin films [60], we first

compare our results with their experimental findings and we find excellent

agreement with most of their results. However, we find that the measured

power law exponent is higher than that obtained from our calculations within

so far varied parameter regime. Nevertheless, we have shown in this chap-

ter that the exponent is dependent strongly on several parameters, such as

the sample geometry, disorder strength, contrast ratio and it is possible that

http://tuvalu.santafe.edu/~aaronc/powerlaws/
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the experimental system may correspond to very high disorder of our the-

ory, which is intuitive from Fig. 7.15. Thus we find a suitable scenario from

our theory, based on zero temperature RFIM, which can explain the sta-

tistical behavior of the resistance hysteresis found of the 2d inhomogeneous

metal-insulator systems (as our present model is 2-dimensional too) driven

by temperature keeping the athermal condition. Our other findings require

further verification through experiments on the same or similar materials.



Thesis summary

The dynamical mean field theory (DMFT) is a very useful framework to

study the electronic correlation physics in a lattice system. Within the

DMFT framework, many techniques, e.g. exact diagonalization (ED), numer-

ical renormalization group (NRG), quantum Monte Carlo (QMC) etc. have

been applied in order to solve the mapped single impurity model (SIAM)

problem in DMFT. All of these methods have theoretical advantages and

disadvantages. Methods such as QMC are believed to be exact, but are

highly expensive in terms of computational time and many of them are not

capable of producing conclusive results at all energy scales. Furthermore, a

supposedly exact method like QMC suffers from a ‘sign’ problem and also

cannot produce zero temperature result. This is where diagrammatic per-

turbation theory based approaches help. With appropriate benchmarking

these approaches can be put to very good use. The iterated perturbation

theory (IPT) is one such method, that is less expensive but because of being

a second order perturbation approximation, fails to capture the exponentially

small scale of the SIAM. However, we develop a numerical implementation

of the IPT method, which is a direct real-frequency formalism (hence free of

the analytic continuation problems) and a method to capture the sharp poles
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that arises in the spectra close to the Mott transition. We have also used IPT

results (by our new scheme) as a comparative and benchmarking reference for

the more sophisticated approach developed and applied in this thesis, namely

the local moment approach (LMA). The LMA for the single band Hubbard

model (both for half-filling and away from half-filling) has been investigated

as a serious alternative to IPT considering its earlier successes in the SIAM

and periodic Anderson model (PAM).

As a first benchmark, we have found the Mott transition by using LMA.

We have also observed two transition points, namely Uc2 and Uc1, similar to

that obtained from IPT and many other methods, while increasing and de-

creasing interaction from the metallic and insulating phases respectively. The

value of Uc2 and Uc1 have been inferred from the vanishing of quasiparticle

weight and the closing of insulating gap in the spectral function respectively.

We have reported some new universal behavior obtained from LMA calcula-

tions. For example, a universal peak position in the optical conductivity and

a strong coupling scaling regime which goes far beyond the low-energy Fermi

liquid scale and enhances more for the interaction strength close to the Mott

transition point. We have studied the doped metal and Mott insulator case

and compared spectral results to that in IPT.

The most striking results from our LMA calculation is the wide range of

linear temperature dependence of the resistivity in the particle-hole asym-

metric case. To explain our results, we have investigated the behavior of the

self-energy and have found that it shows the marginal Fermi liquid behavior,

as proposed by Varma et al in 1989 in order to explain the “normal” state

of the high temperature superconductors.
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Last but not the least, in our final research work, we have taken a diver-

sion from the diagrammatic many-body theory in order to study the statis-

tical behavior of the inhomogeneous Mott transition, after being motivated

by the the recent resistance hysteresis and avalanches (step-like jumps along

the hysteresis curve) experiments done by Sharoni et al(2008) on VO2 thin

films. To describe the statistical results of their experiment, namely a power

law behavior in the avalanche size distribution, we have proposed a ran-

dom field Ising model (RFIM) mapped to a resistor network. We have used

Monte Carlo simulation for the RFIM and solved the resistor network through

Kirchhoff’s current equations. We have found remarkable agreement with the

experimental results, such as the dependence of the maximum avalanche size

and the power law exponent on the system size. However, we have found

a smaller exponent compared to that has been reported in the experiment.

We have speculated on the sources and parameters that may give rise to a

higher value of the exponent.

Finally looking at my future research, I must mention that all that I have

done in my thesis is just a beginning. We need to do benchmarking with re-

sults with other similar methods. We should develop more analytic handling

of our theory. Our approach can be applied to negative-U Hubbard model

or other extended Hubbard models. Our methods can be combined to real-

istic local density approximation (LDA) based band structure calculations.

We may need to find a stronger connection of the local spin-flip scattering

physics to the experiments on cuprates. For the last part of work, we must

confess that a microscopic non-equilibrium quantum theory may be looked
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for the physical prediction of the non-equilibrium phenomena of Mott tran-

sition systems. A renormalization group study of the disorder effect (similar

to the work has been done for the 2d non-interacting electron systems in the

context of quantum Hall effect) can be useful in support of our theoretical

result.



Appendix A

Equation of motion method

A.1 Equation of motion for fermions at T = 0

(real time)

We define

〈〈Â(τ); B̂(τ ′)〉〉 ≡ −iθ(τ − τ ′)〈[Â(τ), B̂(τ ′)]+〉
= GAB(τ − τ ′) [retarded Green’s function]

(A.1)

Let τ ′ = 0, τ = t. Then we can rewrite

〈〈Â(t); B̂〉〉 ≡ −iθ(t)〈[Â(t), B̂]+〉
= GAB(t) (A.2)

⇒ d

dt
〈〈Â(t); B̂〉〉 = −idθ(t)

dt
〈[Â(t), B̂]+〉 − iθ(t)

d

dt
〈[Â(t), B̂]+〉

= −iδ(t)〈[Â(t), B̂]+〉 − iθ(t)〈dÂ(t)
dt

B̂ + B̂
dÂ(t)

dt
〉

− iδ(t)〈[Â(t), B̂]+〉+ θ(t)〈[Ĥ, Â(t)]B̂ + B̂[Ĥ, Â(t)]〉
[
Using

dX̂

dt
=
i

~
[Ĥ, X̂(t)] with ~ = 1

]

= −iδ(t)〈[Â(t), B̂]+〉+ θ(t)〈[ [Ĥ, Â(t)], B̂]+ ]〉
= −iδ(t)〈[Â(t), B̂]+〉 − i(−iθ(t)〈[ [Â(t), Ĥ], B̂]+ ]〉)
= −iδ(t)〈[Â(t), B̂]+〉 − i〈〈[ [Â(t), Ĥ]; B̂]〉〉 (A.3)
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Now by Fourier’s transform of Eq. (A.3) into ω+ ≡ ω + iη; η → 0-space, we
get

−iω
∫
dt ei(ω+iη)t d

dt
〈〈Â(t); B̂〉〉 = −i

∫
dt eiω

+tδ(t)〈[Â(t), B̂]+〉

− i

∫
dt eiω

+t〈〈[ [Â(t), Ĥ]; B̂]〉〉

⇒ −iω
∫
dt 〈〈Â; B̂〉〉ω+ = −i〈[Â, B̂]+〉 − i〈〈[Â, Ĥ] ; B̂]〉〉ω+

Here we have used
∫
dt ei(ω+iη)t〈〈Â(t); B̂〉〉 = eiωt−ηt

iω
〈〈Â(t); B̂〉〉

∣∣t=∞

t=−∞
−
∫
dt
eiωt

iω

d

dt
〈〈Â(t); B̂〉〉

= −
∫
dt
eiωt

iω

d

dt
〈〈Â(t); B̂〉〉

[1st term vanishes at t = ∞ due to the factor ηt in the exponential.

The lower limit (−∞) does not contribute since there is a θ(t).]
(A.4)

N. B. Here any operator X̂ is a short-cut of X̂(0) and remember that we
have chosen τ = 0 for our convenience. Therefore [Â, B̂] will imply any
equal-time commutation of Â and B̂.
Thus suppressing the η-part from ω+ can write

ω〈〈Â; B̂〉〉ω = 〈[Â, B̂]+〉+ 〈〈[Â, Ĥ] ; B̂]〉〉ω (A.5)

and similarly from 〈〈Â; B̂(t)〉〉

ω〈〈Â; B̂〉〉ω = 〈[Â, B̂]+〉+ 〈〈Â; [Ĥ, B̂]〉〉ω . (A.6)

Eq. (A.5) and Eq. (A.6) are known as the equations for fermions at zero
temperature.
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A.2 Equation of motion for boson and fermions

at T > 0 (imaginary time)

We now formulate a generic equation of motion at finite temperature for both
bosons and fermions. In the compact notation form, which often consists of
± or ∓ signs, where the upper sign will denote for bosons and the lower sign
will hold for fermions.

〈〈Â(τ); B̂(τ ′)〉〉 ≡ −〈[T̂ Â(τ) B̂(τ ′)]∓〉
= GAB(τ − τ ′) [full imaginary time G.F.] (A.7)

Here T̂ is the time-order operator which behaves as follows.

T̂ Â(τ)B̂(τ ′) =

{
Â(τ)B̂(τ ′) if τ > τ ′

±B̂(τ ′)Â(τ) if τ < τ ′
(A.8)

Let τ ′ = 0, τ = τ . Then we can re-write

〈〈Â(τ); B̂〉〉 = −〈T̂ Â(τ)B̂〉
= −[θ(τ)〈Â(τ)B̂〉 ± θ(−τ)〈B̂Â(τ)〉] (A.9)

Now the imaginary time evolution for the Heisenberg operator can be written
as

Ô(τ) = eK̂τ/~Ô(0)e−K̂τ/~ (A.10)

where
K̂ = Ĥ − µN (A.11)

This leads to the following Eq. of motion

dÔ(τ)

dτ
=

1

~
[K̂, Ô(τ)] (A.12)

Again as before we are going to take ~ = 1 to keep the notations look simpler.
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We get

d

dτ
〈〈Â(τ); B̂〉〉 =−

[
dθ(τ)

dτ
〈Â(τ)B̂〉 ± dθ(−τ)

dτ
〈B̂Â(τ)〉

+ θ(τ)
d

dτ
〈Â(τ) B̂〉 ± θ(−τ) d

dτ
〈B̂ Â(τ)〉

]

=−
[
δ(τ)〈Â(τ)B̂〉 ∓ δ(−τ)〈B̂Â(τ)〉

+ θ(τ)〈 [K̂, Â(τ)]B̂ 〉 ± θ(−τ)〈 B̂[K̂, Â(τ)] 〉
]

=− δ(τ)〈[Â(τ), B̂]∓〉 − 〈 T̂ [K̂, Â(τ)]B̂ 〉
=− δ(τ)〈[Â(τ), B̂]∓〉 − 〈〈 [Â(τ), K̂]; B̂ 〉〉

(A.13)

Now in term of Matsubara frequency, ωn = 2nπ/β for bosons and ωn =
(2n+ 1)π/β for fermions, we get using above

∫ β

0

dτ eiωnτ
d

dτ
〈〈Â(τ); B̂〉〉 =

∫ β

0

dτ eiωnτδ(τ)〈[Â(τ), B̂]∓〉

−
∫ β

0

dτ eiωnτ 〈〈 [Â(τ), K̂]; B̂ 〉〉

⇒ −iωn〈〈Â; B̂〉〉ωn
=〈[Â, B̂]∓〉 − 〈〈 [Â(τ), K̂]; B̂ 〉〉ωn

(A.14)

Here we have used the following

∫ β

0

dτ eiωnτ 〈〈Â(τ); B̂〉〉 = eiωnτ

iωn

〈〈Â(τ); B̂〉〉
∣∣τ=β

τ=0
−

∫
dτ

eiωnτ

iωn

d

dτ
〈〈Â(τ); B̂〉〉

(A.15)

For bosons

eiωnτ 〈〈Â(τ); B̂〉〉
∣∣τ=β

τ=0
= eiωnβ〈〈Â(β); B̂〉〉 − 〈〈Â; B̂〉〉
= 0

[∵ eiωnβ = ei2nπ = 1 and 〈〈Â(β); B̂(0)〉〉 = 〈〈Â(0); B̂(0)〉〉] (A.16)

186



For fermions

eiωnτ 〈〈Â(τ); B̂〉〉
∣∣τ=β

τ=0
= eiωnβ〈〈Â(β); B̂〉〉 − 〈〈Â; B̂〉〉
= 0

[∵ eiωnβ = ei(2n+1)π = −1 and 〈〈Â(β); B̂(0)〉〉 = −〈〈Â(0); B̂(0)〉〉]
(A.17)

Thus

∫ β

0

dτ eiωnτ 〈〈Â(τ); B̂〉〉 = −
∫
dτ

eiωnτ

iωn

d

dτ
〈〈Â(τ); B̂〉〉 (A.18)

and finally

iωn〈〈Â; B̂〉〉iωn
= 〈[Â, B̂]∓〉+ 〈〈[Â, K̂] ; B̂]〉〉iωn

(A.19)

In a similar way from 〈〈Â; B̂(τ)〉〉

iωn〈〈Â; B̂〉〉iωn
= 〈[Â, B̂]∓〉+ 〈〈Â; [K̂, B̂]〉〉iωn

(A.20)

Eq. (A.19) and Eq. (A.20) are known as the equation of motions in Matsubara
(finite temperature) formalism.
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Appendix B

Calculation of internal energy
for the Hubbard model

Ĥ = −
∑

〈ij〉,σ

tij(c
†
iσcjσ + h.c.) + ǫd

∑

iσ

c†iσciσ + U
∑

i

ni↑ni↓ (B.1)

In momentum space,

Ĥ =
∑

kσ

ǫkc
†
kσckσ + U

∑

kpq

c†k↑ck−q↑c
†
p↓cp+q↓

=
∑

kσ

ǫkc
†
kσckσ +

U

2

∑

kpqσ

c†kσck−qσc
†
pσcp+qσ (B.2)

where we have absorbed ǫd within ǫk

To find the expectation value of Ĉ = ÂB̂, we use

〈Ĉ〉 = 〈ÂB̂〉 = lim
τ→τ ′+

〈Â(τ)B̂(τ ′)〉 = − lim
τ→τ ′+

〈T̂ B̂(τ ′)Â(τ)〉

= lim
τ→τ ′+

〈〈B̂(τ ′); Â(τ)〉〉 = GBA(τ ′, τ ′+) (B.3)

Therefore

〈Ĥ〉 = 1

β
lim
η→0+

∑

n

eiωnη

[∑

kσ

ǫk〈〈ckσ; c
†
kσ〉〉+

U

2

∑

kpqσ

〈〈ck−qσc
†
pσcp+qσ; c

†
kσ〉〉

]

Here we have absorbed ǫd within ǫk
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So from the first equation of motion in terms of Matsubara frequencies
(Eq. (A.19) ) we get

iωn〈〈ckσ; c
†
kσ〉〉 = 〈[ckσ, c

†
kσ]+〉+ 〈〈[ckσ, H]; c†kσ〉〉

⇒ iωnGkσ(iωn) = 1 + 〈〈[ckσ, H]; c†kσ〉〉

Now

[ckσ, H] = ǫkckσ +
U

2

∑

k′pqσ′

[ckσ, c
†
k′σ′ck−qσ′c

†
pσ′cp+qσ′ ]

= ǫkckσ + U
∑

pqσ

ck−qσc
†
pσcp+qσ (B.4)

⇒ iωnGkσ = 1 + ǫkGkσ + U
∑

pqσ

〈〈ck−qσc
†
pσcp+qσ; c

†
kσ〉〉 (B.5)

since

U

2

∑

k′pqσ′

[ckσ, c
†
k′σ′ck′−qσ′c

†
pσ′cp+qσ′ ]

=
U

2

∑

k′pqσ′

{ckσ, c
†
k′σ′}ck′−qσ′c

†
pσ′cp+qσ′ −

U

2

∑

k′pqσ′

c†k′σ′{ckσ, ck′−qσ′c
†
pσ′cp+qσ′}

=
U

2

∑

k′pqσ′

{ckσ, c
†
k′σ′}ck′−qσ′c

†
pσ′cp+qσ′ +

U

2

∑

k′pqσ′

c†k′σ′{ckσ, c
†
pσ′}ck′−qσ′cp+qσ′

=
U

2

∑

pqσ

ck−qσc
†
pσcp+qσ +

U

2

∑

k′qσ

c†k′σck−qσck+qσ

=
U

2

∑

pqσ

ck−qσc
†
pσcp+qσ +

U

2

∑

pqσ

c†pσcp+qσck−qσ

[Transform in 2nd term: k′ → p, q → −q ]

= U
∑

pqσ

ck−qσc
†
pσcp+qσ

[Sign change occurs twice in rearranging 2nd term]
(B.6)
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Thus

U
∑

kpq

〈〈ck−qσc
†
pσcp+qσ; c

†
kσ〉〉 =

∑

k

(iωn − ǫk)Gkσ(iωn)−
∑

k

1 (B.7)

Therefore

1

β
lim
η→0+

∑

n

eiωnη
U

2

∑

pq

〈〈ck−qσc
†
pσcp+qσ; c

†
kσ〉〉

=
1

β
lim
η→0+

∑

n

eiωnη
∑

k

1

2
(iωn − ǫk)Gkσ(iωn) (B.8)

since
lim
η→0+

∑

n

eiωnη = 0 (B.9)

[See Ref. 89 or Ref. 65 to verify this identity.]
Thus

〈Ĥ〉 = 1

β
lim
η→0+

∑

n

eiωnη
∑

kσ

[
ǫk +

1

2
(iωn − ǫk)

]
Gkσ(iωn)

=
1

2

1

β
lim
η→0+

∑

n

eiωnη
∑

kσ

iωn + ǫk
iωn − ǫk − Σkσ(iωn)

(B.10)

since

Gkσ(iωn) =
1

iωn − ǫk − Σkσ(iωn)
(B.11)

Thus

〈Ĥ〉 = 1

2

1

β
lim
η→0+

∑

n

eiωnη
∑

kσ

iωn − ǫk − Σkσ(iωn) + (2ǫk + Σkσ(iωn))

iωn − ǫk − Σkσ(iωn)

=
1

2

1

β
lim
η→0+

∑

n

eiωnη
∑

kσ

[
1 +

2ǫk + Σkσ(iωn)

iωn − ǫk − Σkσ(iωn)

]

=
1

2

1

β
lim
η→0+

∑

n

eiωnη
∑

kσ

2ǫk + Σkσ(iωn)

iωn − ǫk − Σkσ(iωn)
[used Eq. (B.9)]

=
1

β
lim
η→0+

∑

n

eiωnη
∑

kσ

[
ǫkGkσ(iωn) +

1

2
Σkσ(iωn)Gkσ(iωn)

]
(B.12)

We shall work for the paramagnetic case, i.e. Gkσ = Gkσ = Gk.
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Therefore

1st term =
1

β
lim
η→0+

∑

n

eiωnη
∑

kσ

ǫkGkσ(iωn)

= 2
1

β
lim
η→0+

∑

nσ

eiωnη

∫
dǫ ǫD0(ǫ)G(iωn, ǫ) [D0 is non-interacting DoS]

[
∵
∑

k

f(k) =
∑

k

∫
dǫ δ(ǫ− ǫk)f(ǫ) =

∫
dǫD0(ǫ)f(ǫ)

]

= 2
1

β
lim
η→0+

∑

nσ

eiωnη

∫
dǫ ǫD0(ǫ)

∫
dω

D(ω, ǫ)

iωn − ω

= 2

∫
dǫ ǫ

∫
dω nF (ω)D0(ǫ)D(ω, ǫ)

[
∵

1

β
lim
η→0+

∑

n

eiωnη
1

iωn − ω
= nF (ω)

]

= 2

∫
dω nF (ω)

∫
dǫ ǫD0(ǫ)[−

1

π
ImG(ω, ǫ)]

= 2

∫
dω nF (ω)

[
− 1

π
Im

∫
dǫ ǫD0(ǫ)

γ(ω)− ǫ

]

[where γ = ω+ − ǫd − Σ(ω)]

= 2

∫
dω nF (ω)

[
− 1

π
Im

∫
dǫ
γ(ω)− [γ(ω)− ǫ]

γ(ω)− ǫ
D0(ǫ)γ(ω)

]

= 2

∫
dωnF (ω)

[
− 1

π
Im

{
−
∫
dǫD0(ǫ) + γ(ω)

∫
dǫD0(ǫ)

γ(ω)− ǫ

}]

= 2

∫
dω nF (ω)

[
− 1

π
Im{γ(ω)G(ω)}

]
(B.13)
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2nd term =
1

β
lim
η→0+

∑

n

eiωnη
∑

kσ

1

2
Σk,σ(iωn)Gkσ(iωn)

=
1

β
lim
η→0+

∑

n

eiωnη

∫
dǫ dω1 dω2D0(ǫ)

DΣ(ω1)

iωn − ω1

D(ω2, ǫ)

iωn − ω2

(using paramagnetic assumption )

=
1

β
lim
η→0+

∫ ∑

n

dǫ dω1 dω2
1

ω1 − ω2

(
eiωnη

iωn − ω1

− eiωnη

iωn − ω2

)

× (D0(ǫ)DΣ(ω1)D(ω2, ǫ))

=

∫
dǫ dω1 dω2D0(ǫ)DΣ(ω1)D(ω2, ǫ)

nF (ω1)− nF (ω2)

ω1 − ω2[
∵

1

β
lim
η→0+

∑

n

eiωnη
1

iωn − ω
= nF (ω)

]

=

∫
dω1 dω2DΣ(ω1)D(ω2)

nF (ω1)− nF (ω2)

ω1 − ω2

(B.14)

Thus

〈Ĥ〉 = 2

∫
dω nF (ω)

[
− 1

π
Im(γ(ω)G(ω))

]
+

∫
dω1 dω2DΣ(ω1)D(ω2)

nF (ω1)− nF (ω2)

ω1 − ω2

(B.15)
Now

∫
dω1 dω2DΣ(ω1)D(ω2)

nF (ω1)− nF (ω2)

ω1 − ω2

=

∫
dω1 dω2 (−

1

π
ImΣ(ω1))(−

1

π
ImG(ω2))×

nF (ω1)− nF (ω2)

ω1 − ω2

= −
∫
dω1

1

π
(ImΣ(ω1))nF (ω1)

1

π

∫
dω2

ImG(ω2)

ω2 − ω1

−
∫
dω2

1

π

∫
dω1

ImΣ(ω1)

ω1 − ω2

(
1

π
ImG(ω2)nF (ω2))

= − 1

π

∫
dωnF (ω)

[
ImΣ(ω)ReG(ω) + ReΣ(ω)ImG(ω)

]

[by Kramers-Kronig relation Ref(z′) = 1
πP

∫
dz

Imf(z)
z − z′

]

= − 1

π

∫
dωnF (ω)Im (Σ(ω)G(ω)) (B.16)
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〈Ĥ〉 =
∫
dωnF (ω)(−

1

π
Im)

[
2γ(ω)G(ω) + Σ(ω)G(ω)

]

=

∫
dωnF (ω)(−

1

π
Im)

[
2γ(ω) + Σ(ω)

]
G(ω)

=

∫
dωnF (ω)(−

1

π
Im)

[
2ω+ − 2ǫd − 2Σ(ω) + Σ(ω)

]
G(ω)

=

∫
dωnF (ω)(−

1

π
Im)

[
2ω+ − 2ǫd − Σ(ω)

]
G(ω) (B.17)

Thus

〈Ĥ〉 =
∫
dω nF (ω)

[
2ωD(ω) +

1

π
Im (Σ(ω)G(ω))

]
. (B.18)

In case of singularity in self-energy (IPT):

When singularity arises in the self-energy, e.g. in the insulating state in IPT,
we can write the self-energy by splitting them into its regular (denoted by
superscript R) and singular part (denoted by superscript S), i.e.

Σ(ω) = ΣR(ω) + ΣS(ω) (B.19)

In IPT

ΣS(ω) =
U2α3

4ω+
(B.20)

Thus
∫
dωnF (ω)

1

π
Im (Σ(ω)G(ω)) =

∫
dωnF (ω)

1

π
Im

(
ΣR(ω)G(ω) + ΣS(ω)G(ω)

)
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Now

1

π
Im

∫
dω nF (ω)Σ

S(ω)G(ω)nF (ω)

=
U2α3

4π
Im

∫
dωnF (ω)

G(ω)

ω+

=
U2α3

4π

∫
dωnF (ω)

[
ImG(ω)Re(

1

ω+
) + ReG(ω)Im(

1

ω+
)

]

=
U2α3

4π

∫
dωnF (ω)

[
ImG(ω)P(

1

ω
)− ReGπδ(ω)

]

[using
1

ω+
= P(

1

ω
)− iπδ(ω)]

=
U2α3

4π

[ ∫
dωnF (ω)

ImG(ω)

ω
− πnF (0)ReG(0)

]

=
U2α3

4

[
−
∫
dωnF (ω)

DG(ω)

ω
− nF (0)ReG(0)

]

= −U
2α3

4

[
KKnFG(0) +

1

2
ReG(0)

]
(B.21)

where KKnFG(ω) implies the Kramers-Kronig transform of nF (ω
′)G(ω′) at

frequency ω, i.e.

KKnFG(ω) ≡ P
∫
dω′nF (ω

′)G(ω′)

ω − ω′
. (B.22)
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Appendix C

p-h transformation on Hubbard
model

Hubbard model (HM) Hamiltonian in terms of particle operators

Ĥ = −
∑

<ij>, σ

tij(ĉ
†
iσ ĉjσ + ĉ†jσ ĉiσ) +

U

2

∑

iσ

n̂iσn̂iσ + ǫd
∑

iσ

n̂iσ (C.1)

Now particle-hole (p-h) transformation implies

ĉiσ → d̂†iσ; ĉ
†
iσ → d̂iσ; tij → −tij (C.2)

Thus the HM in hole picture becomes

Ĥh = +
∑

<ij>, σ

tij(d̂iσd̂
†
jσ + d̂jσd̂

†
iσ) +

U

2

∑

iσ

d̂iσd̂
†
iσdiσd̂

†
iσ + ǫd

∑

iσ

d̂iσd̂
†
iσ (C.3)

Now the hole operators follow the same anti-commutation like the particles,
i.e.

[diσ, d
†
jσ]+ = δij (C.4)

⇒ diσd
†
jσ = −d†jσdiσ for i 6= j (C.5)

diσd
†
iσ = 1− d†iσdiσ when i = j (C.6)
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Using above we get

Ĥh = −
∑

<ij>, σ

tij(d̂
†
iσd̂jσ + d̂†jσd̂iσ) +

U

2

∑

iσ

[1− d̂†iσd̂iσ][1− d̂†iσd̂iσ]

+ǫd[1− d̂†iσd̂iσ]

= −
∑

<ij>, σ

tij(d̂
†
iσd̂jσ + d̂†jσd̂iσ) +

U

2

∑

iσ

d̂†iσd̂iσd̂
†
iσd̂iσ + ǫdd̂

†
iσd̂iσ

︸ ︷︷ ︸
original form

+
U

2

∑

iσ

1− U

2

∑

iσ

[d̂†iσd̂iσ + d̂†iσd̂iσ] + ǫd
∑

iσ

1− 2ǫd
∑

iσ

d̂†iσd̂iσ

= (original form) +
U

2
.2L− U

∑

iσ

d̂†iσd̂iσ + ǫd.2L− 2ǫd
∑

iσ

d̂†iσd̂iσ (C.7)

Since the Hamiltonian is invariant under p-h exchange in the half-filled (equal
number of p and h) case,

〈Ĥ〉 = 〈Ĥh〉 (C.8)

This leads to

ǫd = −U
2

(C.9)

where we have equated coefficients of 1 and 〈n̂iσ〉 = 〈n̂h
iσ〉 (independently) in

Eq. (C.1) with that in Eq. (C.7). (In both cases, we get the same result.)
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Appendix D

Atomic limit of the Hubbard
model

The Hubbard Hamiltonian is

Ĥ = −
∑

<ij>σ

tij(c
†
iσcjσ + h.c.) + ǫd

∑

iσ

c†iσciσ + U
∑

i

n̂i↑n̂i↓

We know,
[ciσ, c

†
jσ]+ = δij (D.1)

and

[ciσ, Ĥ] = −
∑

<kl>σ′

tkl

[
[ciσ, c

†
kσ′clσ′ ] + [ciσ, c

†
lσ′ckσ′ ]

]
+
∑

kσ′

[ciσ, c
†
kσ′ckσ′ ]

+
U

2

∑

k

[ciσ, n̂kσ′n̂kσ′ ] . (D.2)

[ciσ, c
†
kσ′clσ′ ] = [ciσ, c

†
kσ′ ]+ clσ′ − c†kσ′ [ciσ, clσ′ ]+

= δikδσσ′clσ′ . (D.3)

Similarly,

[ciσ, c
†
kσ′ckσ′ ] = δikδσσ′ckσ′ (D.4)
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[ciσ, n̂kσ′n̂kσ′ ] = [ciσ, n̂kσ′ ]nkσ′ + n̂kσ′ [ciσ, n̂kσ′ ]

= [ciσ, c
†
kσ′ckσ′ ]n̂kσ′ + n̂kσ′ [ciσ, c

†
kσ′ckσ′ ]

=

[
[ciσ, c

†
kσ′ ]+ ckσ′ − c†kσ′ [ciσ, ckσ′ ]+

]
n̂kσ′

+ nkσ

[
[ciσ, c

†
kσ′ ]+ ckσ′ − c†kσ′ [ciσ, ckσ′ ]+

]

= n̂kσ′δikδσσ′ ckσ′ + n̂kσ′δikδσσ′ ckσ′ (D.5)

Thus
[ciσ, Ĥ] = −2

∑

l

tilclσ + ǫdciσ + Un̂iσciσ (D.6)

N. B. All the commutations/anti-commutations so far are for equal time
operators.

〈〈[ciσ, Ĥ]; c†jσ〉〉 = −2
∑

l

til〈〈clσ; c
†
jσ〉〉+ǫd〈〈ciσ; c†jσ〉〉+U〈〈n̂iσciσ; c

†
jσ〉〉 (D.7)

So considering Â ≡ ciσ and B̂ ≡ c†jσ for the first equation of motion (EoM)
in Eq. (A.5), we get

ωGij σ ≡ ω〈〈ciσ; c†jσ〉〉 = 〈[ciσ, c†jσ]+〉+ 〈〈[ciσ, Ĥ]; c†jσ〉〉
= δij − 2

∑

l

tilGlj σ + ǫdGij σ + U〈〈n̂iσciσ; c
†
jσ〉〉 (D.8)

At the atomic limit, tij = 0

ωGij σ(ω) = δij + ǫdGij σ + U〈〈n̂iσciσ; c
†
jσ〉〉 (D.9)

Therefore
(ω − ǫd)Gii σ(ω) = 1 + U〈〈n̂iσciσ; c

†
iσ〉〉 (D.10)

Gi iσ(ω) =
1 + U〈〈n̂iσciσ; c

†
iσ〉〉

ω+ − ǫd
(D.11)

Now the 2nd term in numerator of the RHS can be evaluated again by EoM.
This time Â ≡ n̂iσciσ and B̂ ≡ c†iσ.
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So

ω+〈〈n̂iσciσ; c
†
iσ〉〉 = 〈n̂iσ〉〈[ciσ, c†iσ]+〉+ 〈〈n̂iσ[ciσ, Ĥ]; c†iσ〉〉

= 〈n̂iσ〉+ [(−2
∑

l

til + ǫd + U)〈〈n̂iσciσ; c
†
iσ〉〉] . (D.12)

To expand the commutation above, we have used Eq. (D.6).

Now again by taking the atomic limit tij = 0 in the Eq. above, we find

〈〈n̂iσciσ; c
†
iσ〉〉 =

〈n̂iσ〉
ω+ − ǫd − U

. (D.13)

So from Eq. (D.11) the site-diagonal Green’s function can be written for the
atomic limit (suppressing the ii subscript)

Gσ(ω) =
1

ω+ − ǫd
[1 + U

〈n̂iσ〉
ω+ − ǫd − U

]

=
ω+ − ǫd − U + U〈n̂iσ〉
(ω − ǫd)(ω+ − ǫd − U)

=
(ω − ǫd)〈n̂iσ〉+ (ω − ǫd − U)(1− 〈n̂iσ〉)

(ω − ǫd)(ω+ − ǫd − U)
. (D.14)

Thus

Gσ(ω) =
〈n̂iσ〉

ω+ − ǫd − U
+

1− 〈n̂iσ〉
ω+ − ǫd

. (D.15)

Now for the half-filled case 〈n̂iσ〉 = 1/2 and ǫd = −U/2.

Therefore at half-filling

Gσ(ω) =
1

2

[
1

ǫd − U/2
+

1

ǫd + U/2

]
=

1

ω+ − U2

4ω+

. (D.16)

Thus

Σ(ω) =
U2

4ω+
. (D.17)

which has a pole at ω = 0.
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Appendix E

IPT self-energy calculation

The IPT self-energy is

Σ2(ω) = lim
iω→ω+

U2

β2

∑

m,p

G(iω + iνm)G(iωp + iνm)G(iωp) (E.1)

Plugging the spectral representation form G(iωn) =

∫ ∞

−∞

dω′ DG(ω
′)

iωn − ω′
in

above, we get

Σ2(iωn) = U2

∫ 3∏

i=1

dǫiDG(ǫi)
1

β2

∑

m,p

1

iωn + iνm − ǫ1

1

iωp + iνm − ǫ2

1

iωp − ǫ3

= U2

∫ 3∏

i=1

dǫiDG(ǫi)
1

β2

∑

m,p

1

iωn + iνm − ǫ1

[
1

iωp − ǫ3
− 1

iωp + iνm − ǫ2

]

× 1

iνm − ǫ2 + ǫ3

= U2

∫ 3∏

i=1

dǫiDG(ǫi)
1

β

∑

m

1

iωn + iνm − ǫ1

[
nF (ǫ3)− nF (ǫ2)

]
1

iνm − ǫ2 + ǫ3

= U2

∫ 3∏

i=1

dǫiDG(ǫi)

[
nF (ǫ3)− nF (ǫ2)

]

× 1

β

∑

m

[
1

iνm − ǫ2 + ǫ3
− 1

iωn + iνm − ǫ1

]
1

iωn − ǫ1 + ǫ2 − ǫ3
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= U2

∫ 3∏

i=1

dǫiDG(ǫi)
[nF (ǫ3)− nF (ǫ2)][nB(ǫ2 − ǫ3) + nF (ǫ1)]

iωn − ǫ1 + ǫ2 − ǫ3

(E.2)

Here we have done the 2nd sum in the following way.

1

β

∑

m

1

iωn − iνm − ǫ1
= nB(ǫ1 − iωn)

=
1

eβǫ1e−iωn − 1

=
1

eβǫ1e−i(2n+1)π − 1

=
1

−eβǫ1 − 1

= −nF (ǫ1) (E.3)

Now

[nF (ǫ3)− nF (ǫ2)][nB(ǫ2 − ǫ3)] = [
1

eβǫ3 + 1
− 1

eβǫ2 + 1
]

1

eβ(ǫ2−ǫ3) − 1

= nF (ǫ3)nF (ǫ2)
eβǫ2 − eβǫ3

eβ(ǫ2−ǫ3) − 1

= nF (ǫ3)nF (ǫ2)
eβ(ǫ2−ǫ3) − 1

eβ(ǫ2−ǫ3) − 1
eβǫ3

= nF (−ǫ3)nF (ǫ2) (E.4)

∵ nF (−x) =
1

e−βx + 1
=

eβx

eβx + 1
= eβxnF (x) (E.5)

∴ [nF (ǫ3)− nF (ǫ2)][nB(ǫ2 − ǫ3) + nF (ǫ1)]

= nF (−ǫ3)nF (ǫ2) + [nF (ǫ3)− nF (ǫ2)]nF (ǫ1)

= nF (−ǫ3)nF (ǫ2) + [eβǫ2 − eβǫ3 ]nF (ǫ3)nF (ǫ2)nF (ǫ1)

= nF (−ǫ3)nF (ǫ2) + nF (ǫ3)nF (−ǫ2)nF (ǫ1)

− nF (−ǫ3)nF (ǫ2)nF (ǫ1)

(E.6)
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= nF (−ǫ3)nF (ǫ2)[1− nF (ǫ1)] + nF (ǫ3)nF (−ǫ2)nF (ǫ1)

= nF (−ǫ1)nF (ǫ2)nF (−ǫ3) + nF (ǫ1)nF (−ǫ2)nF (ǫ3) (E.7)

where we use

1− nF (x) = 1− 1

eβx + 1
= eβxnF (x) = nF (−x) (E.8)

to get the last line.

Thus finally

Σ2(iωn) = U2

∫ 3∏

i=1

dǫiDG(ǫi)
nF (−ǫ1)nF (ǫ2)nF (−ǫ3) + nF (ǫ1)nF (−ǫ2)nF (ǫ3)

iωn − ǫ1 + ǫ2 − ǫ3

(E.9)
By analytic continuation: iωn → ω+ we have

Σ2(ω) = U2

∫ 3∏

i=1

dǫiDG(ǫi)
nF (−ǫ1)nF (ǫ2)nF (−ǫ3) + nF (ǫ1)nF (−ǫ2)nF (ǫ3)

ω+ − ǫ1 + ǫ2 − ǫ3

(E.10)
Therefore

DΣ(ω) = − 1

π
ImΣ2(ω)

= U2

∫ 3∏

i=1

dǫiDG(ǫi)[nF (−ǫ1)nF (ǫ2)nF (−ǫ3) + nF (ǫ1)nF (−ǫ2)nF (ǫ3)]

× δ(ω − ǫ1 + ǫ2 − ǫ3)

= U2

∫ 2∏

i=1

dǫiDG(ǫi)DG(ω − ǫ1 + ǫ2)

[
nF (−ǫ1)nF (ǫ2)nF (−ω + ǫ1 − ǫ2)

+ nF (ǫ1)nF (−ǫ2)nF (ω − ǫ1 + ǫ2)

]

= U2

∫
dǫ1DG(−ǫ1)

×
[
nF (ǫ1)

∫
dǫ2DG(ω + ǫ1 + ǫ2)DG(ǫ2)nF (ǫ2)nF (−ω − ǫ1 − ǫ2)

+ nF (−ǫ1)
∫
dǫ2DG(ω + ǫ1 + ǫ2)DG(ǫ2)nF (−ǫ2)nF (ω + ǫ1 + ǫ2)

]

[by replacing: ǫ1 → −ǫ1] (E.11)
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In a simpler form (suppressing G in subscript of DG),

DΣ(ω) = U2

∫
dω′D(−ǫ)

[
nF (ω

′)χ1(ω + ω′) + nF (−ω′)χ2(ω + ω′)

]

where

χ1(ǫ) =

∫
dǫ′D(ǫ′)nF (ǫ

′)D(ǫ+ ǫ′)nF (−ǫ− ǫ′) (E.12)

χ2(ǫ) =

∫
dǫ′D(ǫ′)nF (−ǫ′)D(ǫ+ ǫ′)nF (ǫ+ ǫ′) (E.13)

Now

χ1(−ǫ) =
∫
dǫ′D(ǫ′)nF (ǫ

′)D(−ǫ+ ǫ′)nF (ǫ− ǫ′)

=

∫
d(ǫ+ ǫ′)D(ǫ+ ǫ′)nF (ǫ+ ǫ′)D(−ǫ+ ǫ+ ǫ′)nF (ǫ− ǫ− ǫ′)

[by ǫ′ → ǫ+ ǫ′ replacement]

=

∫
dǫ′D(ǫ+ ǫ′)nF (ǫ+ ǫ′)D(ǫ′)nF (−ǫ′)

= χ2(ǫ) (E.14)

Thus

DΣ(ω) = U2

∫
dω′DG(−ω′)

[
nF (ω

′)χ1(ω + ω′) + nF (−ω′)χ2(ω + ω′)

]

= U2

∫
dω′DG(−ω′)

[
nF (ω

′)χ1(ω + ω′) + nF (−ω′)χ1(−ω − ω′)

]

(E.15)

= U2

∫
dω′DG(−ω′)

[
nχ(ω, ω

′) + nχ(−ω,−ω′)

]
(E.16)

Now χ1 can be written as convolution integration:

χ1 = conv(DnF , Dn̄F )

where

conv(A,B) =

∫
dǫ′A(ǫ′)B(ǫ+ ǫ′)
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and

Ā⇒ A(−ǫ)

in the convolution. Thus after performing the convolution integration we can
easily get the self energy as below:

Σ2(ω) = ReΣ2(ω)− iπDΣ(ω) (E.17)

where the real part of the self energy is obtained by Kramers-Kronig trans-
formation of DΣ, i.e.

ReΣ2(ω) = −P
∫ ∞

−∞

dω′DΣ(ω
′)

ω′ − ω
. (E.18)
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Appendix F

Expression for regular and
singular part in self-energy in
IPT

[ This is a continuation of the previous appendix (Appendix E). Some of the
terms used here have been defined there. ]

We write the spectral density D(ǫ) = − 1
π
ImG(ǫ) in terms of the regular part

DR(ǫ) and the singular part DS(ǫ) = α δ(ǫ) (α is the residue or the weight
factor of the δ-function), i.e.

D(ǫ) = DR(ǫ) + αδ(ǫ) (F.1)

χ1(ǫ) =

∫
dǫ′D(ǫ′)D(ǫ+ ǫ′)nF (ǫ

′)nF (−ǫ− ǫ′) (F.2)

χ2(ǫ) =

∫
dǫ′D(ǫ′)D(ǫ+ ǫ′)nF (−ǫ′)nF (ǫ+ ǫ′) (F.3)

Now
χ1(ǫ) = χR

1 (ǫ) + χS
1 (ǫ) (F.4)
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χR
1 (ǫ) =

∫
dǫ′DR(ǫ′)DR(ǫ+ ǫ′)nF (ǫ

′)nF (−ǫ− ǫ′)

+ α

∫
dǫ′DR(ǫ′)nF (ǫ

′)δ(ǫ+ ǫ′)nF (−ǫ− ǫ′)

+ α

∫
dǫ′ δ(ǫ′)nF (ǫ

′)DR(ǫ+ ǫ′)nF (−ǫ− ǫ′)

= conv(DRnF , D
Rn̄F ) + αDR(−ǫ)nF (−ǫ)nF (0)

+ αnF (0)D
R(ǫ)nF (−ǫ)

∵ nF (0) =
1
2

∴ χR(ǫ) = conv(DRnF , D
Rn̄F ) +

α

2
[DR(−ǫ) +DR(ǫ)]nF (−ǫ) (F.5)

For p-h symmetric case (i.e., D(−ω) = D(ω))

χR(ǫ) = conv(DRnF , D
Rn̄F ) + αDR(ǫ)nF (−ǫ) (F.6)

χS
1 = α2

∫
dǫ′ δ(ǫ′)nF (ǫ

′)δ(ǫ+ ǫ′)nF (−ǫ− ǫ′)

= α2nF (0)nF (−ǫ)δ(ǫ) (F.7)

i.e.,

χS
1 (ǫ) =

α2

2
nF (−ǫ)δ(ǫ) (F.8)

Now

DΣ(ω) = U2

∫
dω′D(−ω′)[nF (ω

′)χ1(ω + ω′) + nF (−ω′)χ1(−ω − ω′)] (F.9)

Regular part of

D1
Σ(ω) ≡ U2

∫
dω′D(−ω′)nF (ω

′)χ1(ω + ω′) (F.10)
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is

D1R
Σ (ω) = U2

∫
dω′DR(−ω′)nF (ω

′)χR
1 (ω + ω′)

+
U2α2

2

∫
dω′DR(−ω′)nF (ω

′)nF (−ω − ω′)δ(ω + ω′)

+ U2α

∫
dω′ δ(−ω′)nF (ω

′)χR
1 (ω + ω′)

= U2conv(D̄RnF , χ
R
1 ) +

U2α2

2
nF (0)nF (−ω)DR(ω) + U2αnF (0)χ

R
1 (ω)

= U2

[
conv(D̄RnF , χ

R
1 ) +

α2

4
nF (−ω)DR(ω) +

α

2
χR
1 (ω)

]
(F.11)

And regular part of

D2
Σ(ω) ≡ U2

∫
dω′D(−ω′)nF (−ω′)χ1(−ω − ω′) (F.12)

is

D2R
Σ (ω) = U2

∫
dω′DR(−ω′)nF (−ω′)χR

1 (−ω − ω′)

+
U2α2

2

∫
dω′DR(−ω′)nF (−ω′)nF (ω + ω′)δ(−ω − ω′)

+ U2α

∫
dω′ δ(−ω′)nF (−ω′)χR

1 (−ω − ω′)

= U2conv(D̄Rn̄F , χ̄
R
1 ) +

U2α2

2
nF (0)nF (ω)D

R(ω) + U2αnF (0)χ
R
1 (−ω)

= U2

[
conv(D̄Rn̄F , χ̄

R
1 ) +

α2

4
nF (ω)D

R(ω) +
α

2
χR
1 (−ω)

]
(F.13)
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Now

DS
Σ(ω) = U2

∫
dω′DS(−ω′)

[
nF (ω

′)χS
1 (ω + ω′) + nF (−ω′)χS

1 (−ω − ω′)

]

= U2

∫
dω′ α δ(−ω′)

×
[
nF (ω

′)
α2

2
nF (−ω − ω′)δ(ω + ω′) + nF (−ω′)

α2

2
nF (ω + ω′)δ(−ω − ω′)

]

=
U2α2

2
δ(−ω)

[
nF (−ω)nF (0) + nF (ω)nF (0)

]

=
U2α3

4
[nF (−ω) + nF (ω)]δ(ω) (F.14)

∵ nF (−ω) + nF (ω) = 1 , (F.15)

DS
Σ(ω) =

U2α3

4
δ(ω) . (F.16)

Therefore

Σ(ω) =

∫
dω′ DΣ

ω − ω′

=
U2α3

4

∫
dω′ δ(ω

′)

ω − ω′

=
U2α3

4ω+
. (F.17)

Here we have considered the major contribution coming from the singular
part of the self-energy spectral density DΣ.
Now

G(ω) =

∫
dǫ

D0(ǫ)

γ(ω)− ǫ

=
1

γ(ω)

∫
dǫD0(ǫ)(1− ǫ/γ(ω))−1

=
1

γ(ω)

∫
dǫD0(ǫ)[1 +

ǫ

γ(ω)
+

ǫ2

γ2(ω)
+ · · · ]

=
1

γ(ω)

[
1 +

M2

γ2(ω)

]
. (F.18)

where M2 =
∫
dǫ ǫ2D0(ǫ).
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The Dyson’s equation:

G−1(ω) = G−1(ω) + Σ(ω)

= γ(ω)

[
1 +

M2

γ(ω)2

]−1

+ Σ(ω)

≃ γ(ω)

[
1− M2

γ(ω)2

]
+ Σ(ω)

= γ(ω)− M2

γ(ω)
+ Σ(ω)

= ω+ − M2

ω − Σ(ω)
. (F.19)

As ω → 0,

G−1 = ω+ +
M2

Σ(ω)

= ω+ +
M24ω

+

U2α3
(F.20)

Now

G(ω) = α

∫
dǫ

δ(ǫ)

ω − ǫ
=

α

ω+
. (F.21)

∴
1

α
= 1 +

4M2

U2α3
. (F.22)
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Appendix G

Analytical calculation of Uc1
and Uc2 at T = 0 in IPT

In this chapter, we demonstrate that a pole structure ansatz for the Green’s
functions and self energy combined with the IPT equations yields Uc1 and
Uc2, the bounds of the U interval where the metallic and insulating solutions
coexist at zero temperature.
If G has simple poles at ±ω0 with equal residue α/2 (due to symmetry), then
the singular part of G may be expressed as

G(ω) = α

2

[
1

ω − ω0

+
1

ω + ω0

]
= α

ω

ω2 − ω2
0

. (G.1)

Now using the Dyson’s equation (G−1 = G−1+Σ) and the moment expansion
of the Hilbert transform, we get

Σ(ω) =
1

α

ω2 − ω2
0

ω
− ω + Σ(ω)− M2

ω − Σ(ω)
.

where M2 is the second moment of the non-interacting density of states
D0(ω). Thus

Σ(ω) = ω − M2

1
α

ω2−ω2
0

ω
− ω

. (G.2)

Therefore poles occur at

ω′
0 = ± ω0√

1− α
. (G.3)

Using the structure of G in the IPT equations, it is easy to see that poles at
±ω0 in G will give rise to poles in the self energy at ±ω0 and ±3ω0. Only the
latter are physically acceptable, since the former leads to a self-consistent
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value of the residue α equal to 0. So when ω′
0 = ±3ω0, α turns out to be 8/9.

The singular part (by using the same formalism to get Eq. (F.18), but for
two poles at 3ω0 now) and the FL part of the self energy may be expressed
in a combined way as

Σ(ω) =
U2α3

8

[
1

ω − 3ω0

+
1

ω + 3ω0

]
−

(
1− 1

Z

)
ω . (G.4)

This gives

Σ(ω0) = −U
2α3

32ω0

−
(
1− 1

Z

)
ω0 . (G.5)

Now G−1(ω0) = 0. So the Dyson equation ( Eq. (22)) gives

Σ(ω0) = −G−1(ω0) = −γ(ω0)−
M2

γ(ω0)
= −ω0 + Σ(ω0)−

M2

ω0 − Σ(ω0)
(G.6)

and hence, after rearranging we get

ω2
0 = Z

(
M2 −

U2α3

32

)
. (G.7)

The above result shows that the pole position is proportional to the square
root of the quasiparticle weight. The transition from the metallic to the
insulating regime occurs when ω0 = 0. This occurs when M2 =

U2α3

32
, i.e. for

HCL, with α = 8/9,
Uc2

t∗
=

4

α3/2
=

27

4
√
2
. (G.8)

To get Uc1, we refer back to Eq. (1.9) which holds in the insulating phase.
This self consistent equation for the pole residue in the insulating phase α
has real roots only when U2 ≥ 27M2, i.e. for HCL

Uc1 =
3
√
3√
2
t∗ . (G.9)

The above analysis shows that we can analytically estimate Uc1 and Uc2

within the same framework.
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Appendix H

DC conductivity and specific
heat for the insulating case
(IPT)

The DC conductivity can be written in the following form

σDC = σ0

∫ ∞

∆g

dω(−dnF

dω
)f(ω) (H.1)

where f(ω) contains real or imaginary part of Green’s functions and/or self-
energies (e.g. for Bethe lattice, f(ω) = D2(ω)).

Here we look at the region where ∆g << T (kB = 1). So it is legitimate to
take the limit T → 0.
Now

nF (ω) =
1

eβω + 1
(H.2)

So
dnF

dω
= − 1

(eβω + 1)2
βeβω

As β → 0 (i.e. T → 0),
dnF

dω
= −βe−βω (H.3)

Now for a quantity

Q =

∫
dωe−βωf(ω) (H.4)
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Using by parts we can re-write

Q = − 1

β
e−βωf(ω)−

∫
dω(− 1

β
e−βω)f ′(ω)

= − 1

β
e−βωf(ω) + (+

1

β
)(− 1

β
e−βω)f ′(ω)− 1

β

∫
dω(− 1

β
e−βω)f ′′(ω)

= − 1

β
e−βω

[
f(ω) +

1

β2
f ′′(ω) + · · ·

]∞

∆g

(H.5)

[only even ordered derivative contributes for a symmetric DoS]

Now the most significant contribution comes from the 3rd term in the bracket
at very low T .

Therefore as β → ∞
Q ≃ − 1

β3
f ′′(ω) (H.6)

Thus

σ = σ0(+β)(−
1

β
)
1

β2
e−βω)f(ω)|∞∆g

= σ0
1

β2
e−β∆gf(∆g) (H.7)

So
σ = σ0T

2e−∆g/(kBT )f(∆g) (H.8)

[ Here we assumed that f(ω) changes negligibly at T → 0 ]

Similarly the internal energy can be written in the same form

E =

∫
dω nF (ω)g(ω) (H.9)

As β → ∞,

dnF

dT
= − 1

(eβω + 1)2
ωeβω = −ωe−βω (H.10)

Cv(T ) =
dE

dT
= −

∫
dω e−βωf(ω) (H.11)

where f(ω) = ωg(ω).
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Again following the same procedure we get

Cv(T ) =
1

β
e−βω

[
f(ω) +

1

β
f ′(ω) +

1

β2
f ′′(ω) + · · ·

]∞

∆g

(H.12)

Here significant contribution comes from the 2nd term.

Thus as T → 0,
Cv(T ) = T 2e−∆g/(kBT )f ′(∆g) . (H.13)
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Appendix I

Derivation of symmetry
restoration condition in LMA

We rewrite Eq. (2.42):

G(ω) =
1

2

[
1

G−1(ω)− Σtot
↑ (ω)

+
1

G−1(ω)− Σtot
↓ (ω)

]

=
G−1 − 1

2
(Σtot

↑ + Σtot
↓ )

(G−1)2 + Σtot
↑ Σtot

↓ − G−1(Σtot
↑ + Σtot

↓ )

[hence onward we drop (ω) for better visibility]

=
G−1 − 1

2
(Σtot

↑ + Σtot
↓ )

[G−1 − 1
2
(Σtot

↑ + Σtot
↓ )]2 − (Σtot

↑ − Σtot
↓ )2/4

=
1

G−1 − 1
2
(Σtot

↑ + Σtot
↓ )− (Σtot

↑ − Σtot
↓ )2/4

G−1 − 1

2
(Σtot

↑ + Σtot
↓ )

(I.1)

Therefore from Dyson’s Eq. (G−1 = G−1 − Σ),

Σ(ω) =
1

2
[Σtot

↑ (ω) + Σtot
↓ (ω)] +

[Σtot
↑ (ω)− Σtot

↓ (ω)]2/4

G−1(ω)− 1
2
[Σtot

↑ (ω) + Σtot
↓ (ω)]

(I.2)

Now once we ensure the imaginary part of Σ(ω) ∼ ω2, we are done.

ImΣ(ω) =
1

2
[Im(Σtot

↑ (ω) + Σtot
↓ (ω))] + Im

A2

B

=
1

2
[Im(Σtot

↑ (ω) + Σtot
↓ (ω) )]− ReA2 ImB

|B|2 +
ImA2 ReB

|B|2 (I.3)
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where
A ≡ [Σtot

↑ (ω)− Σtot
↓ (ω)]/2 (I.4)

and

B ≡ G−1(ω)− 1

2
[Σtot

↑ (ω) + Σtot
↓ (ω)] (I.5)

Now we wish to make a few more definitions at ω → 0 limit:

ImΣtot
σ ∼ ω2 ≡ Pσω

2 (I.6)

ReΣtot
σ ∼ ReΣtot

σ (0) + (1− 1/Zσ)ω ≡Mσ +Nσω (I.7)

M ≡ (M↑ +M↓)/2 (I.8)

N ≡ (N↑ +N↓)/2 (I.9)

P ≡ (P↑ + P↓)/2 (I.10)

∆M ≡ (M↑ −M↓)/2 (I.11)

∆P ≡ (P↑ − P↓)/2 (I.12)

∆N ≡ (N↑ −N↓)/2 (I.13)

SR ≡ ReS(ω) (I.14)

SI ≡ ImS(ω) (I.15)

Now

A2 = (∆M +∆Nω − i∆Pω2)2

= (∆M +∆Nω)2 − (∆P )2ω4 + 2i (∆M +∆Nω)∆Pω2

= (∆M)2 + 2∆M∆Nω + (∆N)2ω2 + 2i∆M∆Pω2 (I.16)

and

B = ω − SR − (M +Nω)− i (SI + Pω2) [∵ G−1(ω) = ω − S(ω)] (I.17)

Now we want to care two things:

1. Keep the lowest power of ω in the denominator, so that we get the
most significant contribution overall.

2. Make sure that denominator is finite so that divergent terms do not
arise.
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Lowest power term in denominator, i.e. |B|2 is constant (O(1)). This con-
firms the condition 2 as well. If we keep the term up to O(ω2) in the numer-
ator, we find using Eq.s (I.3), (I.16), and (I.17),

ImΣ(ω) = Pω2 + [ (∆M)2 + 2∆M∆Nω + (∆N)2ω2 ]SIO(1) + (∆M)2Pω2

− 2∆M∆P [SR +M ]ω2O(1)

(I.18)

Note here in SR/I we have considered Taylor series expansion up to O(ω2)
considering multiplication with other terms.

Thus from Eq. (I.18), to get purely ImΣ(ω) ∼ ω2, we may need

∆M = 0 (I.19)

i.e.
M↑ =M↓ (I.20)

which means
ReΣtot

↑ (0) = ReΣtot
↓ (0) (I.21)
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Appendix J

Behavior of S(ω) at ω = 0 in
LMA

From Dyson’s equation,

G−1(ω) = G−1(ω) + Σ(ω) (J.1)

i.e.
ω+ − S(ω) = G−1(ω) + Σ(ω) . (J.2)

Therefore
S(ω) = ω+ −G−1(ω)− Σ(ω) . (J.3)

Now once we restore symmetry, we have

Σ(0) =
1

2
[Σtot

↑ (0) + Σtot
↓ (0)]

=
1

2
[−x+ Σ↑(0) + x+ Σ↓(0)]

=
1

2
[Σ↑(0) + Σ↓(0)] . (J.4)

Thus

ReΣ(0) =
1

2
[ReΣ↑(0) + ReΣ↓(0)]

= 2[x+ ReΣ↑(0)] (J.5)

[used symmetry restoration condition above: ReΣ↑(0)− ReΣ↓(0) = 2x]

and
ImΣ(0) = 0 [ ∵ ImΣ(ω) ∼ ω2 at ω → 0 ] (J.6)
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Now
ReS(0) = −ReG−1(0) + 2[x+ ReΣ↑(0)] (J.7)

and

ImS(0) = −ImG−1(0)

=
1

|G(0)|2 ImG(0)

= − 1

π

π2

[ReG(0)]2 + [ImG(0)]2
[− 1

π
ImG(0)]

= − 1

π

D(0)

[ReG(0)]2/π2 +D2(0)
(J.8)

Now in the p-h symmetric case,

ReG(ω) = −ReG(−ω) (J.9)

Therefore ReG(0) = 0 and hence from Eq. (J.8)

ImS(0) = − 1

πD(0)
(J.10)
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Appendix K

Estimating the pole in Π+−(ω)
in LMA

The full transverse polarization Π+−(ω) is calculated from the RPA sum of
bare polarization 0Π

+−
(ω):

Π =
0Π

1− U0Π

=
(Re0Π+ i Im0Π)[(1− URe0Π) + i UIm0Π]

(1− URe0Π)2 + (UIm0Π)2
(K.1)

[ω dependence and +− superscript in above equation have been suppressed
for clarity.]
So

ImΠ =
Im0Π Re(1− U0Π) + Re0Π UIm0Π

(1− URe0Π)2 + (UIm0Π)2
(K.2)

Thus writing explicitly as a function of ω, we get

ImΠ(ω) =
Im0Π(ω)

(1− URe0Π(ω))2 + (UIm0Π(ω))2
(K.3)

We seek whether a pole can arise in Π(ω), we can express above Eq. further
as

ImΠ(ω) =
1

U

UIm0Π(ω)

(1− URe0Π(ω))2 + (UIm0Π(ω))2

(K.4)
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Now Im0Π(ω) ≃ π|ω|D↑(0)D↓(0) → 0 as ω → 0. Considering UIm0Π(ω) as ǫ
we have

1

π
lim
ω→0

ImΠ(ω) =
1

π
lim
ǫ→0

1

U

ǫ

(1− URe0Π(ω))2 + ǫ2

=
1

U
δ(1− URe0Π(ω))

=
δ(ω − ω0)

U2
∣∣dRe0Π(ω)

dω

∣∣
ω0

(K.5)

If ω0 = 0, then
1

π
ImΠ(ω) = Qδ(ω) , (K.6)

where

Q =

[
U2

∣∣∣
dRe0Π(ω)

dω

∣∣∣
0

]−1

. (K.7)
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Appendix L

Plotting distribution of sample
points using logarithmic
binning

Introduction

Logarithmic binning is one of the methods to examine power law behavior in
statistical data. Suppose we expect a power law distribution for data variable
x as

P (x) ∼ x−α . (L.1)

Then if we plot logP (x) vs. log x, the slope should give the value of the
power law exponent, i.e. α.

Basic feature

Let us assume that we have a set of data points {x}, which we want to
bin logarithmically and therefore we wish to set up a grid on x-axis with n
number of bins and bin-width b.
Thus

log xi+1 = log xi + b i goes 1 to n (L.2)

Therefore

b = log
xi+1

xi
(L.3)

⇒ xi+1 = ebxi ≡ ∆xi (L.4)

(N. B.: For the sake of convenience, we have used the natural base e above.
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However, one can replace e by other bases like 10, 2, etc. whenever it is
required.)
Thus on x-grid, width wi changes with index i

wi = xi+1 − xi = (∆− 1)xi (L.5)

This is the remarkable difference from the conventional linear binning. In
log-binning the width is dynamic (i-dependent) whereas in linear binning it
is always constant.

Binning procedure

Goal

So we need to plot n histograms hi (i ∈ [1, n]). hi should represent data
points that fall between xi and xi+1. So our job will be only to count how
many data points from the set {x} fall in the interval [log xi, log xi+1) (we
call it floor) or (log xi, log xi+1] (we call it ceiling) and then we denote it by
hi.

Inputs

We shall take the following as inputs:

(i) Number of bins: n

(ii) xmin: generally 1 or the minimum from the data

(iii) xmax: some maximum range or the maximum of the data

Counting

Set x1 = xmin and xn+1 = xmax

Method 1: Now the bin size in the log-scale can be found from Eq. (L.3)

b =
1

n
log

xn+1

x1
(L.6)
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Now if our data value is X, we can find its bin index by finding the following
floor or ceiling value.

i = ⌊1
b
log

xn+1

X
⌋ (or = ⌈1

b
log

xn+1

X
⌉) (L.7)

We count how many data points belong to the same i (using count=count+1

algorithm) and determine the corresponding hi.

Method 2: We can also do the similar counting by directly checking how
many data points fall between the interval, i.e. whether log xi ≤ logX <
log xi+1 ( or log xi < logX ≤ log xi+1 ).

Plotting

In the histogram plot we wish to plot hi Vs x̄i where x̄i is the mean-value of
xi and xi+1, i.e.

x̄i =
1

2
(xi + xi+1) (L.8)

Once we set up x1, we can iteratively produce x2, x3, . . . , xn iteratively from
Eq. (L.4).

One more extra care: We can notice that the width w ∝ x and we expect
P (x) ∝ xα. Since the histogram depends both on the width and also the
distribution,

h(x) ∝ x.xα ∝ xα+1 (L.9)

So we need to scale down h(x) by its width w(x), i.e. we need to plot hi/wi

vs. x̄i in our numerical computation.
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Addendum

IPT and LMA: a comparison of results

Features IPT LMA

Metal-insulator transition observed observed

Metal-insulator coexistence regime larger much smaller

Fermi liquid scaling to non-interacting limit all the way till ω . ωL only for ω << ωL

Strong correlation universality in spectra not observed observed

Finite temperature scaling poor good

Universality in the resistivity peak position observed not observed

Specific heat unphysical anomaly observed physically consistent

Linear resistivity in p-h asymmetric case not observed observed
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