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Synopsis 

This is a synopsis of the thesis entitled "Topics in Dynamics, Thermo­

dynamics and Electronic Structure of Supercooled Liquids.", deliv­

ered by Ashwin S. Sampangiraj of the Theoretical Sciences Unit, Jawaharlal 

Nehru Centre for Advanced Scientific Research, Bangalore, India. The thesis 

is divided into the following five parts. 

• The dynamical behaviour of glass-forming liquids have been analyzed 

extensively via computer simulations of model liquids, among which 

the Kob-Andersen binary Lennard-Jones mixture has been a widely 

studied system. Typically, studies of this model have been restricted 

to temperatures above the mode coupling temperature. Preliminary 

results concerning the dynamics of the Kob-Andersen binary mixture 

are presented at temperatures that extend below the mode coupling 

temperature, along with properties of the local energy minima sampled. 

We show that a crossover in the dynamics occurs, alongside changes in 

the properties of the local energy minima sampled, from non-Arrhenius 

behaviour of the diffusivity above the mode coupling temperature, to 

Arrhenius behaviour at lower temperatures. 

IV 



• Computer simulations, using the Stillinger-Weber potential, have pre­

viously been employed to demonstrate a liquid-liquid transition in su­

percooled silicon near 1060 K. Prom calculations of electronic structure 

using an empirical psuedopotential, we show that silicon undergoes an 

associated metal to semi-metal transition with a resistivity jump of 

roughly one order of magnitude. We show that the electronic states 

near the Fermi energy become localized in the low temperature phase, 

and that changes in electronic structure between the two phases arise 

from a change in atomic structure, and not from a change in density. 

We also investigate the electronic structure of the quenched structures 

in these two phases. 

• We investigate the mechanical properties of several model liquids and 

corresponding local energy minima (inherent structures) in an attempt 

to explore their connection to slow dynamics and vitrification. In par­

ticular, we study the correlation between the distribution of forces be­

tween particles and the approach to the glass transition in a variety 

of liquids (with both attractive and repulsive interactions), including 

network forming liquid silicon, and silica. Such a correlation has been 

proposed, in analogy with granular materials, within the framework of a 

unified "jamming phase diagram" and has been studied for some model 

liquids through simulations recently. We postulate that the plateau be­

haviour at low forces is related to the fragility of the glass former, and 

provide preliminary supporting evidence. We also consider the crit­

ical strain amplitude needed to cause inherent structure transitions. 



and show that the critical strain correlates with the depth of the local 

energy minima and the onset of slow dynamics. 

• The stability of a liquid is bounded by the liquid-gas spinodal and the 

ideal glass transition. We calculate these stability boundaries using the 

Mezard-Parisi method for evaluating the thermodynamic glass transi­

tion and the Zerah-Hansen scheme for the equation of state of a model 

liquid. These two limiting boundaries intersect at a finite temperature. 

Our calculations are consistent with results from a previous work based 

on computer simulations. 

• Using Miiller-Plathe's method for calculating viscosity in computer sim­

ulations, we demonstrate the break down of the Stokes-Einstein relation 

between a liquid's viscosity and diffusivity. We calculate the viscosity 

and the diffusivity at various temperatures across the onset tempera­

ture of slow dynamics. We verify that the hydrodynamic radius does 

not remain a constant below the onset temperature. This is a signature 

of the break down of the Stokes-Einstein relation. 



Nomenclature 

Qp. Thermal expansion coefficient 

p: Density 

u) : Frequency 

r: Relaxation time 

Tj: Viscosity 

e~ : Electron 

Cp-. Specific heat constant pressure 

Cv' Specific heat constant volume 

DFT: Density Functional theory 

EOS: Equation of state 

ES : Electronic Structure 

Ef-. Fermi energy 

D: Diff"usivity 



DOS: Density of states 

g{r): Radial distribution function 

HNC: Hypernetted Chain 

I PR: Inverse participation ratio 

IS: Inherent structure 

A;B: Boltzmann constant 

KABMLJ : Kob-Andersen binary Lennard Jones 

LL: Liquid to liquid transition 

MC: Monte Carlo 

MCT: Mode coupling theory 

MD: Molecular dynamics 

MP: Monkhorst-Pack 

MSD: Mean square displacement 

A :̂ Number of atoms 

P: Pressure 

P[f): Force distribution 

PY: Percus-Yevick 

REMC: Restricted ensemble Monte Carlo 



T: Temperature 

TC,TMCT' Mode coupling temperature 

Tg-. Glass transition temperature 

TIC: Kauzmann temperature 

TM'- Melting temperature 

Tg-. Onset of slow dynamics temperature 

RY: Roger-Young 

S: Entropy 

Sc'- Configurational Entropy 

Svib'- Vibrational Entropy 

V: Volume 

VFT: Vogel-Fulcher-Tamman 

ZH: Zerah-Hansen 
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Chapter 1 

Introduction 

Supercooled liquids exhibit very rich physics and many observed phenomena 

have remained as long standing puzzles in statistical physics. In particu­

lar the problem of the glass transition has attracted a lot of attention. This 

thesis is devoted to understanding the properties of supercooled liquids, espe­

cially the dynamics, thermodynamics and electronic structure. I will use this 

chapter to briefly introduce certain important concepts and key phenomena 

involved in the understanding of supercooled liquids. I will introduce the phe­

nomenology of glass formation, the relaxation and dynamics in glass forming 

systems, the various approaches to understanding these systems namely the 

energy landscape formalism and computational methods. I also briefly intro­

duce a thermodynamic theory for the glass transition based on the replica 

approach. 



1.1 Introduction to Supercooled Liquids 

1.1 Introduction to Supercooled Liquids 

At high temperatures {e.g., well above the melting temperature) the struc­

tural relaxation time, r , of a liquid is typically of the order of a picosecond. 

In equilibrium, the liquid freezes to the crystalline state at the freezing tem­

perature Tm- The structure in the crystalline phase of the system is generally 

the lowest energy structure the system can have. As one cools the liquid be­

low the freezing temperature, crystal nucleation sites start to appear. These 

sites are energetically stable and tend to grow. The growth of these nucle­

ation sites is dictated by the competition between the bulk and surface free 

energies of the crystal nucleus. If N were to be the number of atoms in a 

crystal nucleus, the free energy of the volume would go as ^ N and free 

energy of the surface would go as ~ N"^^^. Therefore competition between 

the free energies exists only when the nuclei are small. The nucleus has a 

critical size beyond which it could grow irreversibly to make the entire sys­

tem crystalline. If one were to cool the liquid fast enough so that critical 

nuclei do not form, one would be able to avoid crystallization and the liquid 

would exist in the supercooled state. Below the freezing temperature the 

relaxation time of the liquid increases dramatically. On cooling there comes 

a point when the relaxation time is r « 100s. At this point the liquid fails 

to relax structurally on experimental time scales and is said to have become 

a glass. The temperature at which this time scale is approached is known as 

the glass transition temperature {Tg). Once the system becomes a glass the 

system is not ergodic anymore. 
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a , 

GLASS 

LIQUID 

CRYSTAL 

Figure 1.1: The upper panel shows the isobaric relationship between the 
volume and temperature in the liquid, glassy and crystalline states. The 
lower panel shows the coefficient of thermal expansion dp in the liquid and 
glassy phase. This figure has been adapted from [34]. 

1.1.1 Phenomenology of Glass Formation 

Consider an experiment when a liquid is cooled below its freezing tempera­

ture at constant pressure (See Fig 1.1). Above the melting temperature the 

expansion coefficient of the liquid (ap) is nearly constant. As one cools the 

liquid further (in the supercooled phase), ap changes rapidly. Eventually at 

the glass transition ap is approximately the same as that of a crystal, ap 

in the glass is lesser than that of the liquid branch. If one were to look 

at the volume-temperature plot one would notice a distinct change of slope 
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below and above the glass transition. Illustrated in Fig 1.1 is the volume-

temperature plot showing two branches labeled a and b. These correspond to 

two different cooling rates, the cooling rate of b being higher than a. Slower 

the cooling rate of the supercooled liquid the longer the time it has, to equi­

librate. If the cooling rate of the liquid is fast, the liquid does not have 

time to equilibrate on experimental time scales and would get into the glassy 

phase at a higher temperature than for slower cooling rates. Hence slower 

the cooling rate lower the glass transition temperature. In Fig 1.1 one would 

notice that Tga < Tgi,. If one were to look at the enthalpy changes across 

the glass transition (See Fig 1.2), the behaviour is similar to volume. The 

isobaric derivative of the enthalpy, the specific heat Cp, changes very steeply 

around Tg. The fact that the enthalpy changes continuously would mean 

that no latent heat effects are involved during this transition. 

1.1.2 Temperature Dependence of Viscosity 

Structural parameters such as the structure factor or the pair correlation 

function of the supercooled show moderate dependence on temperature be­

low the freezing temperature [66]. Unlike structural parameters, dynamical 

parameters are very sensitive to temperature. Consider the case of a dynam­

ical quantity like the viscosity (77). Relatively small change in temperature 

by a factor of 3 brings about 12-14 decades of change in rj. Therefore it 

is convenient sometimes to use an alternate definition of the glass transi­

tion temperature, Tg as the temperature at which T]{T) = lO'̂ ^ Pas or 10̂ ^ 

Poise (1 Poise = 0.1 Pas). Angell [3] has used the temperature dependence 
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CRYSTAL 

LIQUID 

CRYSTAL 

Figure 1.2: The upper panel shows the behaviour of specific heat in the 
glassy and liquid phase. Lower panel shows isobaric relationship between 
the enthalpy and temperature in the liquid, glassy and crystalline states. 
This fig has been adapted from [34]. 

of r]{T) to classify supercooled liquids. A liquid is called strong if the tem­

perature dependence of T]{T) for the liquid approximates the Arrhenius law 

r){T) = rjoexp{j^) well, where E is the activation energy. Examples of such 

liquids are networked oxides such as Si02, Ge02 etc. The plot of log(r/) vs 

T would be a straight line as illustrated in Fig. 1.3 in the case of strong liq­

uids. In contrast to this we have systems such as o-terphenyl, toluene and 

chlorobenzene where log(7?) vs T show pronounced curvature around Tg/T 

w 0.7 are classified as fragile. Strong liquids are in general characterized by 

open networks (Si02) whereas fragile liquids constitute more compact local 
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arrangement of particles. 

We can get a good representation of liquids with varying degrees of 

fragility by plotting T^/T vs log(r/) known as the Angell plot (See Fig 1.3). 

0.2 0.4 0.6 
TgTT 

Figure 1.3: Angell Plot characterizes a liquid based on how much its viscosity 
deviates from the Arrhenius behaviour. Log{rj) vs -^ is plotted for various 
liquids. Liquids which exhibit Arrhenius behaviour are known as strong 
liquids and those that show deviation are known as fragile. This figure is 
from [3]. 

Illustrated in Fig 1.4 are the various regimes of viscosity important for 

glass makers. An 77 of 10"^ Pas is the typical viscosity of a liquid like water at 

room temperature. Generally the pouring interval is between 10^ — 10^ Pas. 

The onset of glass forming or working interval is 10^ — 10* Pas. Vitrification 

or glass formation is characterized by the point when r] is 10^^ Pas. 

An ansatz which fits 'q{T) well at low and intermediate temperatures is 
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Figure 1.4: A schematic picture of the viscosity variation over a range of 
temperatures up to the the glass transition temperature. This figure is from 
[39]. 

the Vogel-Fulcher-Tammann (VFT) [44,120,130] equation. 

r]{T) = r]oexp 
T-To 

(1.1) 

To is called as the "Vogel temperature", the Arrhenius law is a special case of 

the VFT equation with TQ = 0. This is a very useful parameterization, but 

it is known not to hold exactly in experiments [34]. rj in the range 0.1 Poise 

to 100 Poise can be fit well with the power law behaviour. 

rj{T)=r,o{T-T,) - 7 (1.2) 

This law is predicted by a dynamic theory known as the "Mode coupling 

theory" (MCT). Tc here is called the critical temperature, also known as 

the mode coupling temperature, where dynamical arrest takes place in this 

theory. The mode coupling temperature predicted is 20-30% higher than the 

laboratory glass transition temperature Tg [66]. 
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1.1.3 Relaxation in the Supercooled Regime 

Correlation functions are very useful tools to probe dynamics of supercooled 

liquids. Transport quantities such as viscosity and diffusion can be written as 

integrals over microscopic correlators [19]. In experiments such as dynamic 

light scattering one has direct access to such correlation functions. Typical 

correlation functions are the coherent intermediate scattering F(q,t) and the 

incoherent intermediate scattering function Fs(q,t). The magnitude of the 

wave vector q are inversely related to the length scale of the dynamics. These 

correlation function are functions of the wave vector q and time t. If one 

chooses to study dynamics at short length scales one calculates the correlation 

at large momenta and vice versa. These correlation functions are defined as 

follows 

N N 

fc=l 3=1 

1 ^ 
F,{q,t) = ^ E (e:rp[iq.(rj(t) - rj(0)]) (1.4) 

j=i 

Illustrated in Fig 1.5 is the behaviour of a typical density-density correla­

tion function F(q, t) for a Hquid at high temperature and in the supercooled 

regime. At very short times the motion of particles is ballistic for both high 

and low temperatures and the correlation function depends on t as t^. This 

regime is known as the ballistic regime. Beyond this regime the high tem­

perature liquid shows a Debye relaxation (exponential relaxation) but the 

situation with the low T liquid is much more complex. Beyond the ballistic 

regime the particles of the low T liquid experience the presence of neigh­

boring atoms and the correlation function enters a plateau known as the P 
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relaxation regime (in the MCT terminology). It is only much later in time 

that the correlation function decays further, and this is known as the a-

relaxation regime. The presence of the plateau is often explained by the so 

called caging effect. A temporary cage is formed by particles surrounding the 

moving particle and it is unable to diffuse out for some time. 

ballistic regime 

F(q,t) 

Log(t) 

Figure 1.5: Illustrated in the figure are the various relaxation regimes for 
a typical correlation function like the self scattering function. The high 
temperature liquid exhibits Debye relaxation. The low temperature exhibits 
a two step relaxation process, namely the a and P relaxation shown. This 
figure has been adapted from [66]. 

Fig 1.6 illustrates the ^ relaxation regime when the system is stuck inside 

a temporary cage and Fig 1.7 illustrates particle escaping from the temporary 

cage and entering the a relaxation regime. 

The decay in the case of slowly relaxing liquid follows the so called 

Kohlraush-Williams-Watts (KWW) function, also known as the stretched 

exponential function, 

^t) = Aexp[-{t/T)^] (1.5) 
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where A is the amplitude, r is the relaxation time and P is the KWW ex­

ponent, /? < 1. Two scenarios have been proposed to understand non-Debye 

relaxation in the supercooled regime: (i) it is the cumulative effect of sev­

eral Debye relaxation centers having different relaxation times, (ii) individual 

centers of relaxation have non Debye relaxation, but have the same relax­

ation time. Which of these scenarios holds is a subject of ongoing research. 

•OQ 
QpYP 

Figure 1.6: Particle motion confined to temporary cage, central particle is 
yet to escape. 

Figure 1.7: Particle escaping out of the temporary cage to go into diffusive 
motion. 
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1.2 Energy Landscape in Supercooled Liquids 

The Energy landscape approach has been a very important method in the 

study of liquids and approach to glass formation. The energy landscape of 

a system is described by the potential energy $ ( r i , r2, ...rN) which depends 

on 3N coordinates of particles having positions ri...rN. The energy surface 

described is in a 3N+1 dimensional space defined by 3N particle coordinates 

and one energy coordinate. The local minima on this surface are the mechan­

ically stable structures of the system (since the net force on each particle is 

zero). These minima are known as inherent structures. The global minimum 

is possibly the crystalline phase. Stillinger and Weber in their seminal pa­

pers [115,117,118] discuss how the dynamics of a liquid at a temperature 

could be mapped to the dynamics of how the system explore the inherent 

structures in the landscape. The idea is that, the liquid configurations are 

uniquely mapped to the closest local minimum to the configuration on the 

energy hyper-surface. This kind of configurational mapping separates the 

mechanically stable and the vibrational part of the configuration. The local 

minimum to which an instantaneous configuration is mapped can be reached 

in principle via the steepest descent route (to be discussed in section 1.44). 

The points on the boundaries which separate distinct quenched regions can­

not be mapped uniquely to a local minimum. Nevertheless, the dimension 

of the such boundary regions is a dimension lower than the hyper-surface 

dimension. Hence in the limit of large dimensionality of the hyper-surface, 

such points become relatively negligible and the mapping is justified. Such 

a map is very advantageous as we will later see. 
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TRANSITrON STATES 

COORDINATES 

Figure 1.8: A qualitative sketch of the energy landscape shown for simplicity 
in one dimension. Adapted from [34]. 

Figure 1.8 is a qualitative sketch of the complex 3N dimensional sur­

face, showing potential energy as a function of coordinates, which shows the 

crystalline phase and the ideal glass phase as deep energy minima. Also illus­

trated are basins of attraction to inherent structures and transition points on 

the surface. The system explores different parts of the landscape at different 

temperatures. At high temperatures the system dynamics is quite indepen­

dent of the topography of the landscape and corresponds to free diffusion of 

the liquid. Fig 1.9 illustrates the inherent structure energy per particle for 

the case of a model glass former known as the Kob-Andersen binary Lennard 

Jones mixture (KABMLJ) [67] studied extensively in computer simulations. 

For this system with density p = 1.2, at reduced temperatures higher that 

T = l , there is free diffusion. The relaxation above this temperature is expo­

nential. Deep minima are rare in this regime. 

Below T = l , slow dynamics sets in [104]; this temperature is known as 
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- 6 M 

POTENTIAL 

ENERGY 

f.')^ 

(J^NDSCAPfi LANDSCAPH 
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FAST COOUNJi,,^-'' ' ' ' ' '^ / 

SLOW COOLING ^ \ 

t 

ntEE DIFFUSION 

TEMPERATURE 

Figure 1.9: A schematic of the inherent structure potential energy per particle 
as a function of the temperature. Behavior of the inherent structure energy 
in various regimes are indicated. This has been calculated for the KABMLJ 
liquid at for density 1.2. The figure has been adapted from [104]. 

the onset of slow dynamics temperature (Ts). Below the onset temperature 

the system shows stretched exponential relaxation behaviour. From here on 

the system dynamics is landscape influenced. As illustrated in Fig 1.9 one 

would notice that below this temperature the system explores deeper parts 

of the energy landscape. 

As we lower the temperature of the KABMLJ liquid to around TwO.45, 

the liquid starts to explore deeper regions in the landscape and samples only 

distinct potential energy minima and vibrations within the minima. This 

temperature corresponds closely to the temperature at which the mode cou­

pling theory predicts the glass transition. This temperature is known as 

the mode coupling temperature ( T ^ C T ) - Mode coupling theory is a dynami­

cal theory, it fails to describe thermal hopping between inherent structures. 

In order to investigate the energy landscape explored by the system below 



1.2 Energy Landscape in Supercooled Liquids 14 

TMCT, Angelani et ai, [2] and Broderix et al., [24] mapped the instantaneous 

configurations of the liquid to its closest saddle points on the energy land­

scape. They found that the number of unstable modes of the saddle point 

become zero as we approach the TMCT from above. They thus show that 

the landscape sampled above the TMCT is saddle point dominated and below 

as minima dominated. It was shown earlier by Schroeder et al. [108] that 

below TMCT one can almost separate the dynamics into vibration within the 

inherent structures and hopping between the inherent structures. In order 

to show this, the intermediate self scattering function for the actual dynam­

ics (Fs(q, t)) and the inherent structure dynamics (F/(q, t)) was calculated. 

The use of the superscript "I" is to denote inherent structure from now on. 

F,(q,t) = < co5(q- (rj(t) - rj(0)) > (1.6) 

F/(q, t) =< cos{q • (r](t) - rj(0)) > (1.7) 

The inherent structure dynamics is created by quenching the instanta­

neous configurations. From the Fig. 1.10 one can see that the plateau disap­

pears in the case of F/(q, t). Both the Fs(q, t) and F/(q, t) are well described 

by the stretched exponential f{t) = fcexp[—{^)]^ in the long time regime. 

This provides us a way to quantitatively compare the long time behaviour 

of ^^(q, t) and F/(q, t) by comparing the fitting parameters r, /3, fc. If one 

can indeed separate the dynamics into vibrations within the inherent struc­

tures and hopping between the inherent structures one should expect this 

to be reflected in the relation between r^, 0', / / and r, /?, fc- If one assumes 
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10 10 10 ^ff ^<r io i r 

Figure 1.10: Illustrated here is the (a) F,(q = 7.5, t) and (b) F / (q = 7.5, t). 
Dashed lines are fit to the stretched exponential f{t) = fcexp[—{^)]^. Taken 
from [108]. 

such separation of dynamics, then the quenching should remove the initial 

vibrational relaxation, i.e., F/ (q , t ) can be thought of as Fs(q, t) with the 

initial relaxation removed. Instead of using the cosine formula if we use the 

exponential in Eq. 1.6-1.7 and write the displacement as Sx = 5xvib + ^Xinh-

If 5xyH) and 5xinh are statistically independent, the self scattering function 

becomes a product of terms involving transition between inherent states and 

vibrations with the inherent state (which vanishes in the long time limit). At 

long times the vibrational part becomes time independent and converges to 

the nonergodicity parameter (/c). This implies that F/(q, t) is the same as 

Fs{c^^t) for long times but rescaled to start at unity, {T^,P',f^) = (r,/3,1). 

Illustrated in Fig 1.11 are the fitting parameters to the stretched exponen­

tial discussed for both the inherent and the real dynamics. Notice that the 

relaxation times and the stretching parameters at low temperatures for the 
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inherent structures and the real dynamics are the same. This confirms that 

at low temperatures inherent structure dynamics is a coarse grained version 

of the real dynamics. The interesting thing to note is the nonergodicity pa­

rameters, at the lowest T, / / goes to unity, whereas /c is roughly independent 

ofT. 

{,. 

I ' I ' I I I ' I ' 

1 

(c) 

oj u ar at M 14 i.t u 
T 

Figure 1.11: Fitting parameters describing fit of F/(q = 7.5, t) and Fs(q = 
7.5, t) to the stretched exponential, (a) Relaxation times r^ and r vs T. The 
solid line shows a power law fit. (b) The stretching parameters /3^ and P vs 
T. (c) The Nonergodicity parameters fc and / / vs T. Taken from [108]. 

The dynamics in this temperature (T ~ 0.45) regime is dominated by the 

topography of the landscape and not simply influenced. On cooling further 

the system gets stuck in a single minimum. The depth of the minima is 

deeper if the cooling is slower. 
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Figure 1.12: The original plot of Kauzmann is presented here. The y-axis 
is the ratio of the entropy diiference between the liquid and the crystal at a 
certain temperature with respect to the same quantity at the melting tem­
perature. The X-axis is the ratio of the temperature and the melting tem­
perature. The behaviour for various liquids are shown. We would notice 
that there are certain liquids which lose entropy quickly and exhibit features 
predicting a finite temperature ideal glass transition. Prom [63]. 

1.3 The Kauzmann Paradox 

We generally expect the supercooled liquid to be more disordered than the 

corresponding crystal. Thus the liquid entropy 5;^, is larger than the crystal 

entropy Scryt- Kauzmann noted that the difference AS = Sug — Sa-yt is an in­

creasing function of temperature. We call AS the excess entropy. Kauzmann 

originally considered six liquids below their melting temperatures (See Fig 

1.12). These liquids have different fragility. Fig 1.12 illustrates the behaviour 

of -^- vs ^ , here ASm is the excess entropy at the melting temperature 

(Tm). We would notice that if we extrapolate the behaviour of B2O3 we 
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would find that its AS vanishes somewhere close to 0 K. The interesting 

feature for lactic acid is that if we were to extrapolate its AS, it vanishes at 

around 2/3 T,„. In experiment one is not able to go so low in temperature 

since the glass transition intervenes. In computer simulations again one is 

not able to equilibrate the liquid, because of the large relaxation times one 

encounters at these temperatures, hence the exact nature of what happens 

is yet unresolved. If we were to continue cooling the liquid very slowly, there 

arises a possibility that the entropy of the liquid becomes lower than the en­

tropy of the corresponding solid. Though this feature would seem unphysical, 

it does not violate any law of thermodynamics. If one were to continue the 

cooling towards zero Kelvin, one encounters a situation where, liquid entropy 

becomes negative, which is inconsistent with thermodynamics. This scenario 

is known as the Kauzmann paradox. If a glass transition were to intervene at 

the temperature when AS = 0, the glass obtained is known as an ideal glass. 

The temperature at which AS = 0, is known as the Kauzmann temperature 

(TK). 

1.4 Thermodynamic Approach to Glass Tran­

sition 

The transition from the liquid to the glassy phase can be understood in the 

framework of the Gibbs-Dimarzio scenario [45]. Briefly one could think of 

it in the following manner. At low temperatures the system is trapped for 

long times in one of the exponentially large number of local energy minima 
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in the energy landscape. The dynamics in this region is very slow as it 

involves hopping between these local energy minima. The entropy of such 

a system has two contributions (i) logarithm of the number of accessible 

local energy minima, known as the configurational entropy Sc (ii) vibrational 

entropy within the local energy minima. As one lowers the temperature; 

the configurational entropy Sc{T) —^ 0 i.e., the number of relevant minima 

at a temperature T becomes lesser than an exponential in Â ; leading to a 

thermodynamic transition. This understanding of glass transition is captured 

based on coupled replicated glassy system [42,76,80], leading to a formulation 

of a first principles computational scheme which provides a description of 

equilibrium thermodynamics of glasses. We will briefiy summarize here the 

basic idea of the scheme. The energy landscape of a supercooled liquid can 

be decomposed into regions which are mapped to the closest local energy 

minima (inherent structures). The dynamics of the supercooled liquid, itself 

can be mapped to the dynamics of the inherent structure exploration of 

the system i.e., the trajectories of the supercooled liquid can be mapped 

to a trajectory exploring just the inherent structure visited in the region. 

The partition function can thus be represented as a sum over the inherent 

structure states in the following manner 

Z = J2exp{^) (1.8) 
t 

here /j represent the free energies per particle of inherent structures in the 

configurational space. The density of states of the inherent structure energy 

is given by Q{fi, T) and is proportional to exp[NSc{fi,T)\, Sc is known as the 
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configurational entropy density or complexity. Let us assume the following 

form for the complexity (See Fig 1.13). The range of / where this model for 

the configurational entropy is valid is temperature dependent. 

Scif) = 0, / < fmin 

Scif) = concave function , f > f„ 

(1.9) 

U(T) 

Figure 1.13: A schematic of the configurational entropy vs the free energy 
across the ideal glciss transition temperature. 

We can thus write the approximate partition function in the following 

manner. 

Z « /" dfexp[-NP(f-TSc)] (1.10) 

In the thermodynamic limit one gets the free energy for temperatures 
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greater than T^ to be 

F ( r ) = r ( T ) - T 5 e ( r ( T ) , r ) (1.11) 

where 1/Tc is the maximal slope of the function Sdf)- f*{T) is defined 

through the relation {^)f = l / T < 1/Tc. Below Tc the free energy would 

be stuck to fmin- Mezard and Parisi's method involves capturing the above 

phenomenology using replicas of a system of liquids having the same temper­

ature and particle numbers . Assume we have m replicas coupled together 

with an attractive potential which makes the particles positions remains cor­

related among the different replicas. The attractive term is then switched to 

zero. The partition function of the m replica system is given by 

Zm^ f dfexp[-Nm{f-{T/m)S{f,T))/T] (1.12) 
• ' / > / m m 

The important point to note here is that the phase space volume Q{f) remains 

the same as the non replicated liquid since the atoms in different replicas are 

assumed to remain in the same basin hence no m in front of TS{f,T). The 

free energy with an effective temperature T/m in the thermodynamic limit 

is given by 

F{m,T) = r{m,T)--S{f,T),T>mTc (1.13) 
m 

F{m,T) = f ^ i „ , T<mTc 
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here f*{m,T) is defined via the equation 

Let us define mt{T) = T/Tc. For any temperature T < Tc, there exists a 

value m» < 1 such that m < m,. At Tc we would have m,(rc) = 1. Once the 

free energy is defined as a function of m and T, one analytically continues m 

to non integer values, especially to values smaller than 1. When m approaches 

m* from below and if m, is less than 1, the system is stuck with a free energy 

fmin- The system is defined to be in the glassy phase. If m, > 1 then the 

system is in the liquid phase. This allows us to determine the Kauzmann 

temperature to be the temperature through the relation mt{T) = 1. In 

principle one could calculate the derivatives of the free energy F{m,T) with 

respect to m at m = m,{T) and it is identical to zero, and the second 

derivative of the free energy with respect to m is negative (due to the choice 

of the specific shape of the 5 ( / , T)). We thus conclude that F(m, T) exhibits 

a maxima at m« (See Fig 1.14). The free energy as a function of temperature 

is illustrated in Fig 1.15. 

In short the following is the procedure one uses to calculate the Kauzmann 

temperature. 

1. Calculate the free energy for the replicated system, number of replicas 

being m. 

2. Analytically continue the function to non integer values of m. 

3. Maximize the free energy F(m, T) in the interval [0,1]. 
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Figure 1.14: Behaviour of the free energy vs m, above and below the the 
transition. 

4. if m, < 1, then T <Tc and we are in the glass phase. 

5. if m, > 1, then T > Tc, and we are in the liquid phase. 

6. The relation 'm^{T) = 1 determines the transition temperature. 

Figure 1.15: Free energy vs temperature. 

We will discuss further in chapter 5 how one calculates the partition 

function of the liquid close to the ideal glass transition temperature. We 

calculate in that chapter, the ideal glass transition temperature for the Kob-

Andersen model [67] using certain closure approximations from liquid state 

theory. 
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1.5 Computer Simulations in Glass Forming 

Liquids 

Computer simulation is one of the most important tools in the investigation 

of glass forming liquids. It gives one access to many aspects of a glass forming 

liquid which are out of the reach of experiments or theoretical calculations. In 

this section we discuss some aspects of computer simulation namely molecular 

dynamics (based on [43,129]), Monte Carlo and energy minimization. 

1.5.1 Molecular Dynamics 

Molecular dynamics (MD) is a computer simulation technique where the 

time evolution of a set of interacting atoms is followed by integrating their 

equations of motion. We discuss here only classical molecular dynamics, 

wherein the forces are calculated via Newton's laws (Eq 1.15) in contrast 

quantum methods, which use the Feynman-Hellmann theorem [75]. 

Fi = mjOj (1-15) 

Fi is the force acting on particle i with mass m^ due to all the other 

interacting atoms and acceleration â  = ^ . MD is a deterministic method 

unlike the Monte Carlo method. If one knows the initial conditions, the 

system (in principle) evolves according to the set of deterministic equations. 

Though at the level of atoms the origin of the forces are quantum, we still 

use classical forces. The validity of classical approximation can be assessed 

in terms of the de Broglie wavelength (A). Here M is the mass and T is the 
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temperature. 

The classical approximation is justified when A •C /, where / is the mean 

nearest neighbor distance. A liquid near its triple point has X/l w 0.1. 

The classical approximation would be bad for systems with low mass such 

as H2, He etc. At low temperatures quantum effects become important. 

Molecular dynamics should be treated with caution in these regions. The 

most important aspect is to model the system which amounts to choosing 

a potential V{ri,r2..rN), where ri, ....TM are the position coordinates of the 

nuclei. The forces can then be calculated as the derivative with respect to the 

atomic coordinates. A simple choice of F is a sum of pairwise interactions 

of the atoms. There are more involved forms of the potentials that are in 

common use which involve the three body term. One such potential will be 

discussed for the case of silicon later in the thesis. Development of potentials 

is an important aspect of the molecular dynamics. 

In the study of glass forming liquids, one tends to face the problem of 

crystallization while performing molecular dynamics below the melting tem­

perature of many model liquids with potentials such as the Lennard-Jones 

which is a good potential for liquid Argon. With such systems it becomes 

very difficult to take the system to the supercooled state below the melt­

ing temperature due to crystallization. Such problems are circumvented by 

choosing potentials which do not easily allow formation of the crystalline 

state. One such potential is given by Kob and Andersen [67]. This system 

is popularly known as the Kob-Andersen binary mixture. This is a mixture 
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of two kinds of atoms A and B in the ratio 80:20 which interact via the 

Lennard-Jones potential 

V°^{r) = 4e, a/3 ifT-m' 
a,Pe{A,B} (1.17) 

The parameters aAs/cTAA = 0.8, aBs/f^AA = 0.88 , eAs/^AA = 1-5, 

^BBI^AA = 0.5, the masses of both particles are the same. 

In order to evolve the system in time, one needs to integrate the equa­

tions of motion. One well-known algorithm to do this is the velocity Verlet 

algorithm [43]. 

ri{t + h) = ri(t) + /ivi(t) + ^'^'^*^ 

Vi(i + /l) = Vi(i) + - Fi(i) + 

2 TJli 

Fi{t + h) 

rui 
(1.18) 

Ti, Vj and Fj are the position, velocity and the force on the r " particle, and 

h is the time step for typical liquids which is of the order of a few femto 

seconds. This kind of integration conserves energy and is also known as 

constant energy molecular dynamics. We could also do molecular dynamics 

simulation for constant temperature and constant pressure. We first deal with 

constant temperature MD. To do constant temperature molecular dynamics 

one couples the system with a thermal bath. Particles randomly collide 

with imaginary heat bath particles. The particles instantaneously change 

momentum. The particle velocities are reset to new values taken from a 
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Maxwell distribution. This way the average kinetic energy and hence the 

temperature is kept a constant. Early algorithms for constant temperature 

MD used to scale velocities after every few hundred MD steps such that 

the kinetic energy is kept a constant. This sort of method is crude and 

cannot be shown to correspond to a canonical ensemble. A method which 

does rescaling but reproduces to a canonical ensemble is the Nose-Hoover 

thermostat [43,129]. The idea is to introduce an additional degree of freedom 

T] describing an external bath and the corresponding temperature x = dr]/dt. 

the potential energy is then Qx^/2 and the kinetic energy r/^.^^ ^p?/2m — 

3/2KBTO. We then obtain the equation of motion as 

— = EL 
dt TUi 

(1.19) 

dx _ / /iv-^'' it T\ 
-dt ' Q\JL.2^-''^^<') 

f here is the total number of degrees of freedom. We can show by direct 

substitution that the canonical distribution is obtained. 

exp 
\i=l,N J 

(1.20) 

Where QI-.-QN are the position coordinates of the system. 

The constant pressure scenario is realized by having an imaginary piston 

of mass M which under constant force reproduces a constant pressure Pg. 
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An additional kinetic energy {^)MV and potential energy PoV are added to 

the Hamiltonian for the constant pressure and constant enthalpy ensemble 

(NPH), V is the volume in this case which is allowed to fluctuate. We then 

define rescaled variables 

Ti = V'l^Si (1.21) 

We thus obtain through the Hamiltonian equation of motion that 

V = ( ^ (1.22) 

(1.23) 

We could couple the method with Nose-Hoover thermostat discussed ear­

lier by introducing the variable rj and x — drj/dt. This would give us a con­

stant pressure and constant temperature ensemble (NPT). The NPT molec­

ular dynamics equations are thus: 
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Si = 

Pi = 

X = 

u = 

(j = 

Fi - (x + w)Pi 

V 
{P-Po)V 

T^ksT 

ksTo 

(1.24) 

Additionally one requires the volume to be a variable in NPT simulation. The 

parameter w is introduced to allow for volume fluctuation in the system, in 

order to maintain constant pressure. Parameter r describes the characteristic 

time for volume relaxation. 

Glass forming liquids when cooled the relaxation time increases by 12-15 

decades in time. If one is to investigate the mechanism in these systems using 

molecular dynamics one needs to propagate the system for the same interval 

of time. As mentioned the time steps in molecular dynamics of liquids is of the 

order of a few femto seconds, the time involved to propagate a system to one 

second would be 10̂ ^ time steps. This is an impossibility with the computers 

we have today. With the present computational facilities one could relax a 

system to at most a few microseconds. This becomes the biggest problem 

of using molecular dynamics for studying systems having slow dynamics. 

However, with MD one is able to directly calculate the dynamics of such 

systems. This is the main reason, despite the drawback discussed, that MD 

Pt>JL 
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is used extensively in the study of glass forming liquids. 

1.5.2 Monte Carlo 

A stochastic method in contrast to a deterministic method like the MD to 

study time evolution of a system is the Monte Carlo simulation. In the 

heart of this kind of simulation is the law of detailed balance. The transition 

probability from a state s to a state s' given by w{s —^ s') fulfill the relation 

w{s -> s')/w{s' -> s) = exp[-P{H{s) - H{s% where /3 = l/keT and H{s) 

is the value of the Hamiltonian when the state of the system is s. Even 

this sort of a scheme does not allow for equilibration at low temperatures 

for realistic models. There have been recent Monte Carlo algorithms for 

hard sphere systems (which are athermal) which claim to take the system 

successfully above the glass transition density [99]. Analogous algorithms 

have been developed for short range potentials [71] but they are yet to be 

tested for temperatures close to the glass transition temperature. 

1.5.3 Ewald Sum 

For systems having long range interactions one cannot truncate the potential 

in a molecular dynamics simulation. If our system size is N; computing all 

pair interactions is ~ N{N — 1) operation. Computational effort for large 

system sizes would scale as ~ A'̂ . The BKS model [128] of siUca that we use 

(later in the thesis) has a Coulomb term, which is a long ranged potential. In 

this section we discuss a procedure; the Ewald Sum, which improves the effi­

ciency and scales computation to a ~ N^^'^ operation. Other methods exist, 
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depending on the system size in order to make the computation efficient. For 

very large system sizes (Â  w 10^) methods such as PPPM (Eastwood and 

Hockney [40] ) scales as ~ 0{NlogN), Fast multipole method of Greenhard-

Rockhlin [50] scales as 0{N). Intermediate sizes {N w 10^), which we use; 

the Ewald Sum is preferred. In order to describe the procedure of the Ewald 

sum, we study Coulomb potential as model long range potential. We briefly 

summarize the method in this section. 

The main idea is to represent the point coulomb charges as; point charges 

+ smeared gaussian charge distribution of the opposite charge + compensat­

ing gaussian charge distribution of the same sign as the point charges (Fig 

1.16). We calculate the total interaction energy as follows: (i) Calculate the 

potential at the location of a point charge due to the compensating charge 

distribution. This is done in Fourier space. From this the interaction energy 

is calculated straightforwardly, (ii) The simplest way to do (i) is to treat all 

the compensating charge distributions, including the one corresponding to 

the point charge for which we calculate the potential. This leads to an ex­

tra self energy term that must be subtracted, (iii) Calculate the interaction 

energy for units made up of point charge + smeared charge distribution of op­

posite sign. These interactions will be short ranged. The calculation is done 

in real space. The sum of these three terms gives us the total energy. By ap­

propriate choice of the width of the Gaussian distributions, both the Fourier 

and real space parts can be handled by sums over a finite (small) number of 

Fourier components, and a reasonable real space cutoff, respectively. 

Using the basic idea described, we proceed in the following manner. Cen­

tral problem is to compute the energy due to charge distribution p{r). In 
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+ 

Figure 1.16: Schematic of the Ewald method, Showing point charge distribu­
tion and the equivalent smeared gaussian charge and compensating gaussian 
charge with the point charges. This figure has been adapted from [43]. 

order to do so one has to solve the Poisson equation Eq. 1.25. 

-V^(?!)(r) = 47rp{r) (1.25) 

Doing a Fourier transform we have 

k'^(f){r) = 'inp{k) (1.26) 
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Unscreened Potential 

V(r) 
Screened Potential 

Figure 1.17: Screened and unscreened potential V(r) as a function of the 
distance. The long range behaviour is depleted due to the screening. This 
figure has been adapted from [43]. 

where p{k) is defined as 

p{k) = / dTz6{r)exp[—ik:. 
Jv 

(1.27) 

We then have 

<l>{k) = inz 
(1.28) 

If we define g{k) as the solution per unit charge ( | |) we have 

.̂ (A;) = 9ik)ppik) (1.29) 
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pp{k) is the the distribution of point charges in the smeared case we 

would have the distribution of the form 

p(A:) = | d r ' 7 ( r ' ) p p ( r - r ' ) (1.30) 

Using the convolution theorem we have, 

cf>{k) = 9{kh{k)p{k) (1.31) 

We now go further to calculate the Fourier part of the Ewald Sum. The 

potential at the point FJ due to a periodic distribution of gaussians having a 

charge distribution pi(r) given by 

Pdr)= E E 9 i ( ^ ) ' / ' e ^ P [ - « | r - ( r j + °L) n (1.32) 
j=l,N n 

Here n runs over all the periodic cells. The Fourier transform of the charge 

density pi is 

Pi(k) = 77 / drexpl-ik.T] J^ Qj{-f^^exp [ - a i r - TJ p] 
' Jallspace j=l,N ^ 

= y ^ exp{-ik.Ti)expl-—\ (1.33) 

We thus obtain (pi{k) as 
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Mk) = -^y J 3 9jea;p (-ik.Fj) ea;p f - ^ j (1-34) 

The real space the potential (j)i (r) is then the Fourier transform 

Mr) = J2H ^ ^ ^ P [ ^ k . ( r i - r j ) ] e x p ( - £ ) (1.35) 

The energy Ui due to all charges is then given by 

f̂ i = ^E^-^iC^') (1-36) 

kjto 

Here p{k) is defined as 

P(I') = T^ E 9iexp[ik.rj] (1.37) 
j=l,N 

The previous calculation yields an extra term due to the Gaussian distri­

bution and the point charge at the center of the Gaussian. The self interaction 

term needs correction. The charge distribution that is over counted is 

pGau,,{r) = qi{a/pifl^exp [-ar^j (1.38) 
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The Poisson equation is given by 

1 d^(t>Gau3s{r) 
= 47rpGa«5.(r) (1.39) 

Substituting for poauss and integrating twice we have 

<f>Gauss{r) = qierf{y/ar) (1.40) 

Here erf{x) is the error function. The spurious contribution is at r = 0. 

Thus the total self energy is 

Uaelf = 2 X ] 9i</'sei/(^i) 
i=i.,N 

(1.41) 

Energy of point charges and Oppositely charged Gaussian is easy to cal­

culate. If the charge is Qi with the oppositely charged screening gaussian 

would yield a net potential of (Fig 1.17) 

<t>shart-Tange{'r) = — - —erf[\/ar) 

r r 
= %rfc{y/^) (1.42) 

r 

The net potential due to this term is thus 

1 x̂  «J 
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Finally collecting Eq 1.36, 1.41 and Eq. 1.43 one gets the total Ewald 

sum energy, which is given by 

Vc^- = IE| | ' 'WI ' '= '^! ' ( -^) (1.44) 

+ -j^mierfc{s/^)lrij 
' / j 

(1.45) 

Utilizing this procedure helps in improving the efficiency of the MD sim­

ulations for long ranged interactions. 

1.5.4 Energy Minimization 

We have discussed earlier that a powerful way to understand the energy 

landscape of a supercooled liquid is to divide the landscape into basins. The 

basin minima are identified by hyper-quenching instantaneous liquid config­

urations to their closest local minima (inherent structures). We discuss here 

the numerical procedure which has been used in the calculations of inherent 

structures. The method is known as the conjugate gradient minimization. 

Before introducing the method we will discuss a simpler variant known as 

the steepest descent method. Consider a system of Â  particles interacting 

via potential V{ri r^) having coordinates ri r^. The idea here is to 

calculate the gradient of the potential W{ri r̂ v) for an instantaneous set 
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of coordinates r^ r^ obtained from molecular dynamics. Once the gradient 

direction is specified one moves along the negative gradient {i.e., the force). 

We move only as long as the energy decreases along the force direction (line). 

Tin+i = ri„ - XVV{n:....rM) (1.46) 

Tin+i is the new position vector and ri„ is the old position vector. The 

parameter A determines the distance to move until the energy is a minimum 

along the negative gradient direction. This procedure is also known as the 

line minimization procedure. A root finding procedure such as the bisection 

method is typically used for the line minimization procedure. Once one has 

line minimized we again find the gradient and this procedure is continued 

until the gradient is less than a certain tolerance value. This assures us that 

we are at the closest minimum to the instantaneous position we started from. 

The conjugate minimization procedure is an efficient variant of the steepest 

descent which optimizes the direction of the move. The conjugate gradient 

direction is given by, 

hi+i - gi+i + 7ihi (1.47) 

where gi+i is the gradient at the i +1*'' step and hi is the conjugate direction 

at the ith step, the scalar quantity 7i is given by the relation 

^. ^ g'+i • g'+i (1.48) 
g i - g i 

The details of calculation of the conjugate gradient is given in [124]. The 

important thing to notice here is that optimization memory is always present 



1.6 Outline of the Thesis 39 

in the conjugate direction chosen. 

1.6 Outline of the Thesis 

With this introduction to supercooled liquids, I am in a position to explain 

the rest of my thesis. This thesis consists of six chapters. Chapter 2 deals 

with the behaviour of a well known glass former KABMLJ at low temper­

atures above the glass transition. Chapter 3 deals with electronic structure 

of supercooled silicon which is known to exhibit a structural phase transi­

tion in the temperature range studied. We study how this phase transition 

triggers an electronic phase transition. Chapter 4 deals with the mechanical 

and dynamical properties of glass forming liquids especially in the context of 

a newly proposed phase diagram unifying jamming phenomenon in various 

systems such as gels, colloids, granular materials and glass forming liquids. 

Chapter 5 deals with the boundciries of existence of a liquid namely the spin-

odal and the glass transition line. We apply here semi analytic and numerical 

procedures to confirm computer simulation which predict a finite tempera­

ture intersection of the ideal glass and the spinodal line. Chapter 6 deals 

with the onset of break down of the Stokes-Einstein relation in supercooled 

liquids. 





Chapter 2 

Low-Temperature Behaviour of 

the Kob-Andersen binary 

mixture 

2.1 Introduction 

As described in the introductory chapter, when a liquid is cooled fast enough 

below its melting temperature, crystallization can be averted. The liquid 

then is called supercooled. On cooling much further the liquid gets into a 

glassy phase. In the range of temperatures between the melting and the 

glass transition temperature the liquid shows very rich dynamic and thermo­

dynamic behaviour. The emergence of slow dynamics as a liquid is cooled, as 

a precursor to glass formation at low enough temperatures in the absence of 

crystallization, has been studied extensively. In particular, computer simula­

tions have played an important role in elucidating many details not accessible 

40 
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to experiments, and not amenable to simple theoretical modeling and cal­

culation. Such simulation studies have been performed either for simplified 

model potentials [67,108,113], or empirical potentials for specific substances 

such as water, silica, and orthoterphenyl (OTP) [56,82,87,97,106,114,131]. A 

widely studied [104,105,109] model system in the former category is the Kob-

Andersen binary Lennard-Jones mixture (KABMLJ) [67], Until recently, 

molecular dynamics simulations of KABMLJ as well as other systems have 

largely been performed at temperatures above the mode coupling tempera­

ture [49]. A notable exception has been silica, where it has been observed 

that a crossover takes place in the temperature dependence of the diffu-

sivities, from super-Arrhenius dependence at intermediate temperatures, to 

Arrhenius temperature dependence at low temperatures [56]. 

Among the approaches that have been extensively employed in analysing 

aspects of slow dynamics and the glass transition is the inherent structure 

approach [115,117,118], wherein the configuration space explored by the liq­

uid at a given state point is characterized via the statistics and properties 

of local potential energy minima (inherent structures) sampled. Computer 

simulations have played a significant role in pursuing this approach, as they 

permit a detailed analysis of the dynamics of the system, as well as the gen­

eration and analysis of local energy minima. In addition to energy minima, 

attention has also been paid recently to the analysis of saddle points [2,24], 

their connection to the study of instantaneous normal modes [64], as well as 

more global aspects of connectivity in the energy landscape, which may be 

employed in developing dynamical models to describe relaxation in liquids 

at low temperature [35,36,78]. 
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Some of the studies mentioned above have been directed at understand­

ing the nature of the dynamical crossover that is associated with the criti­

cal temperature of mode coupling theory. In [104], evidence was presented 

for a change in the local topography of the energy minima sampled above 

and below this crossover temperature, as well as for a change in the heights 

of barriers separating energy minima. A detailed analysis of the dynamics 

of transitions between energy minima [108] provided evidence that below a 

crossover temperature, one begins to observe a clear separation between vi­

brations within basins of individual energy minima and transitions between 

them, as discussed long ago by Goldstein [48]. The analysis of the order 

of saddle points sampled by the liquid as a function of temperature [2,24] 

shows that the saddle order extrapolates to zero at the estimated mode cou­

pling temperature; thus, the nearest extremum point on the potential energy 

surface below the mode coupling temperature is a minimum. A similar anal­

ysis, in terms of negative eigen value instantaneous normal modes [110], lead 

to the same conclusion. However, the studies mentioned above were based 

on simulations which were performed above the crossover temperature in 

question. It is of interest to revisit some of these analysis with simulations 

performed both above and below the crossover temperature. We present pre­

liminary results here from a set of simulations of the Kob-Andersen BMLJ 

liquid, which extend to temperatures below the mode coupling temperature. 
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2.2 Computational details 

Results presented here are from molecular dynamics simulations of the Kob-

Andersen BMLJ, with 204 type A and 52 type B particles. The particles 

interact via the Lennard-Jones (LJ) potential, with parameters eAs/f^AA = 

1.5, eBs/^AA - 0.5, OABJOAA = 0.8, and OBBJOAA = 0.88, and mB/mA = 1. 

The LJ potential is modified with a quadratic cutoff and shifting at r"^ = 

2.b(Ja^ [104]. All quantities are reported in reduced units, length in units of 

GAAI volume V in units of cr^^ (density p = N/V, where N is the number of 

particles, in units of a^\ = po)) temperature in units of eAA/ke^ energy in 

units of €AA and time in units of r^ = {a'AA'>TT'/^AAy^^, where m = TUA = TUB 

is the mass of the particles. A time step of O.OOSTTO is used in most of the runs, 

but a bigger time step of O-Olr^ is used for the lowest temperature studied. 

All the simulations are performed at the reduced density of 1.2. Molecular 

dynamics simulations are performed at constant energy [(N,V,E)], over a wide 

range of temperatures, using the velocity Verlet integration. The temperature 

for the runs are calculated, as usual, from the average kinetic energy of 

the particles. Run lengths range from 4.5 million time steps (29.1ns, using 

Argon units for the A particles, i. e. (.AA = 119.BK" x fee, OAA = 0.3405 nm, 

niA = 6.6337 x 10~^^ kg) at the highest temperature to 510 million time steps 

(ll//s) at the lowest temperature. Local energy minimizations are performed 

for a few thousand configurations for each temperature, to obtain a sample 

of typical local energy minima or 'inherent structures' [115,117,118]. The 

Hessian (matrix of second derivatives of the potential energy) evaluated at 

the minima are diagonalized to obtain the vibrational frequencies. 
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kj/e. 

Figure 2.1: Diffusivity of A particles, raised to 1/2, plotted against tempera­
ture. The data points are linear in the intermediate temperature range. Also 
shown are the straight line fit (black, solid, line; corresponding to power-law 
behaviour), and the VFT fit to the data (dashed line). 

2.3 Results 

The mean squared displacement of A and B particles are calculated from 

the MD trajectories as a function of time. The slopes of the mean squared 

displacements vs. time, reported as the diffusivities D, are shown in Fig. 

2.1 for the A particles. In [67], the mode coupling temperature TMCT was 

estimated to be 0.435, and the power-law exponent 7 was estimated to be 

2. A plot of the D^^"' vs. temperature should linearize the data in the range 

where the mode couphng behaviour holds. This is seen to be the case for the 

intermediate temperature range shown in Fig. 2.1. Also included in the plot 

are the power-law fit (straight, solid, line) and a VFT fit (dashed line) to the 
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— Power law: D = D„ (T - Tf 
— VFT:D = D„exp(Vj 
— Arrhenius 

O A particles 
B particles 

Figure 2.2: DifFusivity of A (circles) and B (triangles) particles, shown in 
an Arrhenius plot. Also shown are the straight line fit (black, solid, line; 
corresponding to power-law behaviour), the VFT fit to the data (dashed 
line), and the low temperature Arrhenius fit, for the A particles. 

data. It is clear that for temperatures below 0.469, the diffusivities deviate 

from the power-law behaviour. 

The difi'usivity data for both A and B particles is shown in Fig. 2.2, in 

an Arrhenius plot. It is seen that above T = 0.469, the diffusivities show 

non-Arrhenius behaviour, which has previously been reported [100]. Below 

T = 0.469, however, the temperature dependence is seen to be Arrhenius. 

Also shown in the figure are the power-law (solid line) and VFT (dashed line) 

fits for the A particles. In both cases, the fits are obtained for data above T = 

0.469. It is seen that neither fit describes well the data at lower temperatures. 

The diffusivities for the B particles show a similar trend. However, the ratio 
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of the A particle and B particle difFusivities is temperature dependent; at 

high temperatures (above T = 1.0), the ratio is roughly constant with a value 

of about 1.25, but increases progressively at lower temperatures, reaching a 

value of about 4.25 at the lowest temperature shown (data not shown). A 

crossover to Arrhenius temperature dependence has been observed in the case 

of silica, in which case the experimentally observed behaviour is Arrhenius. 

The observation of Arrhenius temperature dependence in the Kob-Andersen 

liquid, which is generally described in the literature as a typical 'fragile' liquid 

(as opposed to silica, the archetypal 'strong' liquid) is somewhat surprising 

and needs to be properly understood. 

Next we present results concerning the local energy minima sampled by 

the liquid as a function of temperature. The mean squared distance between 

typical liquid configurations and the local energy minima to which they map, 

was considered in [104]. It was observed that the temperature dependence of 

this quantity shows a change in slope around the mode coupling temperature 

previously estimated [67]. In addition, evidence was also found for a change 

in the energy barriers separating basins of minima. However, in [104], the 

simulations were performed at specified cooling rates, and the cooling rates 

used were not small enough to permit equilibration at temperatures below 

the mode coupling temperature. The mean squared distance (MSD) separat­

ing instantaneous configurations, and the corresponding local energy minima, 

averaged over the sampled configurations, is shown in Fig. 2.3 as a function 

of temperature. Consistently with the observation in [104], the MSD values 

show a change in slope across the temperature where the diffusivities show 

a deviation from power-law temperature dependence. For comparison, we 
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Figure 2.3: The mean squared distance between instantaneous configurations 
and the corresponding local energy minima (triangles), showing a crossover 
in slope around the mode coupling temperature. High and low temperature 
straight lines are drawn as a guide to the eye. The mean squared displace­
ments from MD trajectories are also shown (circles). 

calculate the plateau value of the mean squared displacement obtained from 

MD trajectories, calculated at t = 1.2. The time t = 1.2 corresponds to 

the beginning of the plateau in a log-log plot of the mean squared displace­

ment vs. time, for low temperatures where a clear plateau is discernible. 

These values track the inherent structure MSD values, as seen in Fig. 2.3, 

although the difficulty of determining the plateau value of the mean squared 

displacements at higher temperatures makes the comparison difficult. 

The vibrational frequencies for the sampled minima are calculated by di-

agonalizing the Hessian matrix (matrix of second derivatives of the potential 
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energy). In the harmonic approximation to the basins, the basin free energy 

is proportional to the average of the logarithm of the frequencies, which we 

refer to as fvn, (see, e.g., [109]). It has been observed that this part of the 

basin free energy depends linearly on the energy of the minima in the tem­

perature range previously studied [102]. This quantity is shown in Fig. 2.4 

as a function of the average inherent structure energy. It is observed that 

/„ij, while displaying the nearly linear dependence on the inherent struc­

ture energy for the higher temperatures, begins to deviate from such linear 

behaviour below T = 0.469 (corresponding to inherent structure energy per 

particle ~ —6.98). This must reflect a change in the topography of the basins 

sampled at lower temperatures, but further analysis is needed to characterize 

the nature of the change, and its significance. 

2.4 Summary 

Results concerning the dynamics and properties of the local energy minima 

have been presented [12] for the Kob-Andersen BMLJ liquid for a range 

of temperatures that extends below the mode coupling temperature pre­

viously estimated. The diffusivity displays a crossover at low tempera­

tures to Arrhenius temperature dependence. The mean squared distance 

between instantaneous configurations and the corresponding local energy 

minima, as well as the vibrational frequencies, display a crossover in be­

haviour across the mode coupling temperature. It is important to mention 

a recent work [74] which models diflFusion based on the density of diffusive 

directions and barrier hieghts of the potential energy landscape. This model 
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Figure 2.4: Average of the logarithm of vibrational frequencies, fvib, shown as 
a function of the average inherent structure energy per particle. The straight 
line fit to the higher energy points is shown as a guide to the eye. 
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predicts a fragile to strong crossover [27] at approximately the same tem­

perature as the TMCT- The model considers particles following Brownian 

motion in the three dimensions, the means square displacement is modelled 

as < r^(i) > = 6T[ i - (1 -e~*)], in order to exhibit ballistic behaviour at short 

times and diffusive behaviour at long times. The number of diffusive direc­

tions above TMCT is [2] is given by k{T) = A{T — TMCTV• Below the TMCT, 

the dynamics is dominated by barrier hopping, barrier hieght being A ^ . The 

diffusive directions below TMCT was modelled as k{T) = JQB^^^'^I'^MCT-IIT^^ 

The parametrs /o,A, 7 etc.,were fit to data from [2]. The difFusivity cal­

culated from the mean square displacement of this model shows fragile be­

haviour at high temperatures and becomes Arrhenius at a temperature close 

to TMCT- This model facilitates a qualitative understanding of the results of 

simulations presented. In the same breath we mention that, the behaviour of 

the configurational entropy in KABMLJ is analogous to silica [60], where one 

does find a fragile to strong cross over, but it is not sufficiently pronounced 

to be unambigous. 



Chapter 3 

Electronic Structure of 

Supercooled Liquid Silicon 

3.1 Introduction 

Silicon is an element of technological importance, and of interest at a fun­

damental level, particularly in the crystalline and amorphous forms. In ad­

dition to the liquid-to-crystal transition occurring around T^ = l68bK, an­

other first order liquid to amorphous transition ~ 250K below T^ (in the 

supercooled liquid) has been inferred from experimental data [7, 15, 112]. 

Subsequent experiments at ambient [38,125] and high pressures [33], as well 

as computer simulations [5,72,103] support the occurrence of such a tran­

sition. In particular, recent computer simulations [103] using the Stillinger-

Weber (SW) potential [119] demonstrate the transition to be a liquid-liquid 

transition, as indeed suggested by Aptekar [7]. The inference, thus, is that 

51 
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amorphous, solid, silicon is thermodynamically contiguous with the low tem­

perature liquid (below the liquid-liquid (LL) transition), while the liquid at 

the freezing transition is thermodynamically continuous with the supercooled 

liquid above the LL transition. There has been considerable interest in LL 

transitions in single component substances [23], proposed and studied ex­

tensively in recent years, e.g., for water [79,94], silica [98], carbon [47], and 

phosphorus [62]. Brazhkin et al [22] have interpreted large changes in elec­

tronic conductivity in iodine, selenium and sulphur at high pressures, to be 

due to LL phase transitions. Amorphous silicon (a-Si) is a semiconductor, 

while liquid silicon near T^ is a metal [46]. It is thus of interest to study 

changes in conductivity and electronic structure of silicon with tempera­

ture in the supercooled liquid, and in particular, those occurring at the LL 

transition [14]. We address these questions in this chapter, and investigate 

the nature of localization properties of the wave functions above and below 

this phase transition, how the atomic structure affects the localization, what 

the electronic and conductive properties are of inherent structures (local en­

ergy minima) obtained from high and the low temperature phases across the 

liquid-liquid phase transition [13]. 

3.2 Elements of Electronic Structure 

Before we attempt to introduce the electronic structure in disordered systems, 

we will very briefly introduce electronic structure of crystalline systems. At 

the heart of studying electronic properties of condensed matter systems lies 

the problem of solving the Schrodinger equation. The method of plane waves 
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provides a general methodology to handle several types of differential equa­

tions, especially the Schrodinger equation for periodic systems. In the case 

of periodic crystals, the plane wave methods simplify as well as bring a good 

deal of understanding of the electronic structure in these systems by exploit­

ing a fundamental theorem known as the Block theorem [9,18]. The electronic 

states in a crystal are described by the solutions to the Schrodinger equation. 

HMr) = [ - ^"^^ + t>(r)]Vi(r) = e,Vi(r) (3.1) 

The Hamiltonian H consists of the kinetic part — ̂ V ^ and the potential 

term V"(r), r is the position coordinate, ipiir) are the electronic states which 

are normalized and which also obey periodic boundary conditions. The eigen 

functions ^j(r) can be written as Fourier series. 

^i(r) = X ] ^•'i ^ -^exp{iq • r) (3.2) 

Where Q is the volume of the crystal and Cĵ q are the expansion coefficients. 

In the bra and ket notation we have 

iV'i >=X^Cj ,q |q> (3.3) 
1 

Substituting this relation in the Schrodinger equation and using the following 

facts : 

• |q > ' s are orthogonal. 

• Periodicity of the crystal potential allows one to expand the potential 



3.2 Elements of Electronic Structure 54 

in the form, 

V{T) = Y, ViG^)exp{iG^ • r) (3.4) 

where Gm is the reciprocal lattice vector [9]. 

• The matrix elements of the kinetic energy are 

< q ' | - | ^ V ^ | q > = | ^ l # < q ' i q > (3-5) 
2m 2m 

and the potential energy matrix elements is given by 

< q'|yIq >= Y^ y{G JVq-,G„ (3.6) 

Note potential energy matrix element is finite only when q, q' differ by 

a reciprocal lattice vector. 

If we define a k such that q = k + Gm and q' = k + G^' , substituting this 

into the Schrodinger equation one obtains the following matrix form: 

Y^ Hm,m' (k)ci,m/ (k) = ei(k)ci,„i(k) (3.7) 
m' 

where, 

Hm,m'ik) = - | - | k + Gj^5m,m' + V{G^ - G^,) (3.8) 

2m 
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Hence the wave function for any given k is given by, 

^i(k) = J]ci,™(k) X -ea;p[i(k + G„).r] (3.9) 
m 

= expiik.T)-==Ui,k{r) 

Where Q = Nceii^ceii-, and ^ce;; is the volume of a unit cell and N^gu number 

of such cells. Uj,fc(r) is defined by, 

Mi,*;(r) = T^ X ^ Ci^rneXp{iGm • T) (3.10) 

m 

7/ĵ A;(r) has the periodicity of the crystal. This is known as the Block theorem 

[9,18]. Each state is identified by k and in the limit of large volume Q, 

k become dense and Ci^s become a continuous band. The first Brillouin 

zone is the Wigner-Seitz cell [9] of the reciprocal lattice. Inside the Brillouin 

zone there is no boundary unlike other primitive cells where Bragg scattering 

can occur. All properties such as the total energy etc, can be obtained by 

integrating over k in the Brillouin zone (BZ). One could write the average of 

the function /^(k), i denotes the discrete band index as, 

</<>=^E/.('')-|f;i^*/*) P-") 

As we have just seen evaluation of bulk properties requires one to integrate 

over the Brillouin zone. In order to get accurate results one must have 

many points in the region of BZ, especially where the function varies rapidly. 
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Symmetry of the system can be exploited to reduce the number of points to 

integrate over. Such high symmetry points are known as special points. This 

is useful since all information can be found from states with k inside the 

irreducible Brillouin zone. A general method proposed by Monkhorst and 

Pack [81] is widely used. For the sake of simplicity we illustrate the method 

for one dimension [75]. Consider the integral 

Ii= sin{k)dk = 0 (3.12) 

The exact value of the integral is given by the value of the integrand (/i(fc) = 

sin{k)) at the midpoint ( fc = TT ) of the interval of integration, that is 

h = fi{T^)- If the integrand has two functions /2 = Aisin{k)+A2sin{2k) then 

the value of the integral is given by sum over two points f2{k = 7r/2) + /2(fc = 

37r/2), which are symmetric in the interval of integration. A general formula 

for a three dimensional crystal the k points are given by [81] 

Y^ 2nj — Ni — 1 
'^ni,n2,n3 = 2_^ ^ lu ^ ' (3.13) 

i=l,3 ' 

Where rii E I and nj € [1, Ni]. 

Solving the Schrodinger equation is a many body problem for the crys­

tal. However one can invoke various approximations to solve this problem, 

each has a different degree of success depending on the kind of material. 

The nearly free electron approximation, the tight binding approximation and 

various other methods are dealt with in standard text books [9]. We use a 

method known as the empirical pseudopotential method. I will describe the 



3.3 Electronic Structure in Non-Crystalline Materials 57 

pseudopotential we use in section 3.5.1. This method involves approximat­

ing the total potential as a sum of spherical potentials that can be written 

in an analytic form (the coefficients of the summands being undetermined) 

and also possess the property of transferability between different structures. 

One then uses the photoemission data for the crystal obtained from exper­

iments to fit the unknown coefficients of the analytic form, such that they 

yield the correct band structure. This method has been very useful since it 

allows bands of many important materials to be described by using only a 

few parameters. 

3.3 Electronic Structure in Non-Crystalline 

Materials 

In the limit of weak scattering the resistivity of liquid metals can be calcu­

lated by the formalism proposed by Ziman [41,135]. If the mean spacing 

between the atoms is a and the mean free path is / in the limit of / > > a 

the Ziman theory would hold. The scattering in this theory is considered as 

a perturbation and since the system is a liquid and hence there is no axis 

of symmetry. The Fermi surface is assumed to be spherical. The scattering 

potential can be replaced by an empirical pseudopotential [8]. The ampli­

tude of scattering by two atoms at a distance R from each other is given by 

[1 — exp{iq.'R)]f{9), where q = k - k', the change of wave vector due to the 

scattering and f{9) is the amplitude scattered by an atom through an angle 
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9. Neglecting multiple scattering the conductivity is then [83] 

a = e'^SFl/niT^h (3.14) 

where the Fermi surface Sp is assumed to be that of a sphere of radius kf 

and is given by 

Sp = 47r4 (3.15) 

The mean free path I is then, 

i = AT f S{q){l - cos{9))\f{9)\''2nsin{9)d9 (3.16) 

N here is the number of atoms per cm^ and S{q) is the modified structure 

factor given by 

S{q) = AT-i A l + exp{iq.R)]'^g{R)d^R (3.17) 

Using the first order perturbation theory the resistivity is [83], 

3n r 
-^i dQ (3-18) 

Here v{q) is the form factor got from the pseudopotential. The possibility 

of applying the perturbation theory depends on the assumption that the 

perturbation is small. This theory has been successful in the case liquid 

metals. In the case of liquid silicon this does not yield the right results. It 

predicts the resistivity of the high temperature phase to be around 400 iiVlcm 

compared to the known value of around 77 fiUcm. A good way to treat a 
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liquid like silicon is described in detail in this chapter. One has a large 

random system in a supercell, and further one calculates electronic structure 

by assuming the supercell is periodic. The treatment from here on is the 

same as that for a crystal. 

A powerful way of calculating conductivity in disordered systems was 

given by Kubo and Greenwood [126]. The Green-Kubo formalism goes be­

yond the approximations of the Ziman theory. This formalism involves cal­

culating the conductivity for finite frequency u and extrapolating it to zero 

frequency in order to get the DC conductivity. We give here a brief derivation 

of the formula. Assume that an electric field Fcos{ut) acts on a specimen of 

volume Q. Then the probability P that an electron makes a transition from 

a state of energy E to any of the degenerate states of energy E + hw can be 

calculated using perturbation theory and is given by, 

p 2 n-TT 

P = j F ' - \ <E + fuj\x\E > |LrapeJ^^(^ + ^ ) (3-19) 

The matrix elements are defined as 

< E'\X\E>= f ^p'^'^i^Ed^x (3.20) 

Using the Ehrenfest's relation [xi, H] = Pi/m, one writes the elements in the 

form 

<E'\x\E>=—DE+fu^,E (3.21) 
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where DE\E is defined as 

DE',E = jrE'^^Ed'x (3.22) 

This leads us to the result 

The mean rate of loss of energy |cr(a;)F^ can be related to the probability P. 

If N[E)f{E)dE is the number of occupied states, where f{E) is the Fermi 

distribution function. The probability that the state £• + ^ is unoccupied 

is given by 1 - f{E + tko). Huj is the energy absorbed in the quantum jump. 

One thus has 

' ^M= ^ ^ l[f{E){l-f{E + huj))-f{E + tuj){l-fiE))] 

X \D\lerageN{E)N{E + ni,)dE (3.24) 

This quantity simplifies to 

2 7 r e ^ f [fjE) - fjE + hw)\\Da,era,e\'N{E)N{E + ^ ) ] , ^ 

(3.25) 

In order to get the DC conductivity one calculates the conductivity close 

to the zero frequency and extrapolates the data to zero frequency. We have 

used this formalism to calculate the conductivity in the low and the high 

temperature phase of liquid silicon. 
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Figure 3.1: Pair correlation function change across the phcise transition. The 
phase transition occurs at around 1060 K. One notices a distinct change in 
the pair correlation function between T = 1055K and T = 1075ii'. The inset 
shows coordination number change across the transition. Prom Ref. [103] 

3.4 Liquid-Liquid Phase Transition in Si 

The freezing temperature at zero pressure for silicon has previously been es­

timated to be « 1685 K. It has been shown by Sastry and Angell [103] by 

computer simulation that supercooled silicon undergoes a first order liquid-

liquid phase transition at around 1060 K at zero pressure. Constant temper­

ature (NPT) and constant enthalpy (NPH) simulations were done for a 512 

particle system using the Stillinger Weber Potential [119]. The low temper­

ature phase is prone to crystallization on the scale of nanoseconds. A 63 ns 

long NPT simulation at T=1055 K (the low temperature phase) which does 

not display crystallization, was used to demonstrate that the low tempera­

ture phase was a liquid. Illustrated in Fig 3.1 is the pair correlation function 

at T = 1055,1075,1259 and ITUii'. One notices a distinct change around 
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10 
time (ns) 

Figure 3.2: The mean squared displacement for the low temperature phase 
T=1055 K. This is evidence that the system has finite difFusivity. Also shown 
in the inset is the diffusivity vs inverse temperature. The lower inset shows 
specific heat at constant pressure. From Ref. [103]. 

the first minimum of the pair correlation function of the low temperature 

phase T = lOSS/f and the high temperature phases. This gives rise to a 

coordination number jump of 4.2 to 4.61 across the transition. DifFusivity of 

the low temperature phase was seen to be three orders of magnitude lower 

than the high temperature phase (See Fig 3.2). It was confirmed that the 

low temperature phase has a finite difFusivity, a little more than glycerol at 

its melting point. This indicates that the low temperature phase is indeed a 

liquid. 

3.4.1 Simulation of Liquid Silicon 

The supercell method is the standard approach to study liquids using simula­

tion. The idea is to imitate a liquid in the thermodynamic limit by assuming 
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a large collection of atoms in a big cell with periodic boundary conditions. 

The coordinates of the supercell are obtained from well equilibrated NPT 

simulations using Stilling Weber Potential (SW) [119] for 512 particle sys­

tem. The Stillinger-Weber potential consists of two and a three body term. 

The two body term has the form: 

Mrij) = ^f2{rij/a) (3.26) 

Here / j is given by, 

/2 = A{Br-P - r-'')exp[{r - a)-% r <a (3.27) 

/2 = 0, r>a 

The parameters appearing in the potential are given in the Table 3.1. The 

constants e and a are energy and length units and r^ is the inter particle 

distance between the i*'' and the j * ' ' particles. The cutoff is at r = a, beyond 

which the potential is equal to zero. 

The three body term has the following form: 

v^iTi, Tj, Tk) = ehirja, Tj/a, Tk/a) (3.28) 

where /a is given by, 

/3(rj, Tj, Tk) = h{rij, Tik, Ojik) (3.29) 

+h{rji, rjk, dijk) +h{rki, rkj, 9ikj) 
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Parameter 
A 
B 

P 
q 
a 
A 

7 
a 
t 

values 
7.049556277 

0.6022245584 
4 
0 

L8 
21.0 
L20 

0.20951 nm 
50 kcal/mol 

Table 3.1: Parameter of the Stillinger-Weber potential [119]. 

T in Kelvin 
1055 
1082 
1258 
1510 
1711 

T in reduced Units 
0.0419 
0.0430 
0.0500 
0.0600 
0.0680 

Table 3.2: MD simulation is done for the temperatures indicated in the table. 

Here Oijk is the angle between ri - FJ and TJ - Fk subtended at the vertex j . 

The function h is given by 

h{rij,rik, Ojik) = Xexp[y{rij - a) ^ + 

link - a)~^]cos{9jik + If 

(3.30) 

These Simulations were done for the temperature given in Table 3.2. First 

two temperatures in Table 3.2 are the temperatures across which the first 

order LL transition occurs. 
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3.5 The Hamiltonian 

Heine and Aberenkov Pseudo potential 

The empirical potential we use is a modified form of the Heine-Aberenkov 

pseudopotential [54]. Heine and Aberenkov have proposed a model pseudopo-

tential which involves input from photoemission spectroscopic data for the 

core region rather than Hartree-Fock which is conventionally used. I briefly 

describe the method. Consider an energy eigen state with angular momen­

tum quantum numbers /, m and energy E for an electron in the presence of 

an ion of charge Z. We define a core radius r^. Outside the core, the poten­

tial is Couloumbic and inside it is a constant At. The wave function outside 

the core is fully defined by the energy E, the angular momentum quantum 

numbers I, m and the boundary condition '^y' at the core radius should be 

continuous. Similarly inside the core where the potential is a constant, the 

wave function is ji{Kr) (solution to the Schrodinger equation with constant 

potential) where K = y/2m{E + Ai)/h? and again at the boundaries the log­

arithm of the wave function should be continuous. We then have a model 

potential which imitates the real potential, i.e., it yields the same eigen value 

and eigen function outside the core. The model potential in general has the 

form 

VHAir) = 5 ] ^ ' ( ^ ) ^ ' ' ' < ^ -

VHA{r) ^ r>rm 
r 

(3.31) 
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Ao 
A, 
A2 

Tm 

z 

2.08 
2.39 
2.44 
2.00 
4.0 

Table 3.3: Parameter for the Heine-Abherenkov potential 

Pi is the projection operator which extracts from the wave function it operates 

the component of the total angular momentum /. One could use perturba­

tion calculation to show that the energy is /l^A;^/2m + Emim where E'rnin is 

the band energy minimum. One could obtain the band minimum from the 

cohesive energy. One further selects r^ to be more than the core radius. An 

electronic state with a quantum number /, m is chosen. One can then adjust 

the constant energy Ai such that the eigen states obtained match the term 

values. Heine and Aberenkov have computed the potential by taking Aj up 

to / = 2. The model now has the form 

VHA{r)= -A2 + (Ao - >l2)Po - (Ai - A2)Pi r < r . 

VHA{r) r r>rr. (3.32) 

Evaluation of this potential was done by Animalu and Hiene [53] wherein the 

exchange and screening were included. 

3.5.1 Modified Pseudopotential 

For the electronic structure (ES) calculation, we use a model pseudopotential 

[28] Vsi which approximates the total potential seen by valence electrons. 

We avoid the more elaborate density functional theory (DFT) calculations 
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in view of, (i) the high computational cost, and (ii) the underestimation of 

the band gap in DFT calculations. A comparison with DFT calculations is 

described later. The Hamiltonian we use is, 

H = T + E^Vsi{f-di), (3.33) 

where T is the kinetic energy and di is the position of the i*'' atom. Vsi 

is based on (a) the empirical potential fit by Cohen and Heine to optical 

data [28] (Vop) and (b) the Heine-Aberenkov pseudopotential [54] {VHA) for 

the long wave-length part, both of which were reported in q (momentum) 

space. Pseudopotentials similar to ours have been employed with success 

in electronic structure calculations of a variety of liquids [8, 55], notably 

liquid carbon [55]. VQP is available only for ^ > 0.5 {kp = 0.9590 Bohr~^ 

being the Fermi wave vector), which we smoothly interpolate using VHA for 

2^- < 0.5. Our choice thus combines the accurate band gap estimation 

of the Cohen-Heine pseudopotential with the analytical form of the Heine-

Aberenkov pseudopotential for long wavelengths. We truncate our potential 

for 9 > 9c ( ^ = 1.26), equivalent to a scattering length of roughly half the 

Si - Si bond-length. The resulting model pseudopotential is (See Fig. 3.3): 

Vsiiq) = VHAiq), q<kF 

Vsiiq) = Vopiq), kp <q<qc 

Vsi{q)= 0, q>q,. (3.34) 

This choice of potential allows the use of a plane-wave basis set with an 
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-• Heine-Abarenkov 
• Cohen Heine 

- Our Potential 

q/2k, 

Figure 3.3: Comparison of our modified Pseudopotential with the Heine-
Aberenkov Pseudopotential. Also shown are the Cohen-Heine [28] empirical 
fits to optical data. 

energy cutoff of 69 eV to represent electron wave-functions (roughly 14000 

plane waves per state of the 512 atom system). We obtain a band gap of 

0.92 eV for crystalline silicon in the diamond structure, which compares well 

with the experimental value of 1.1 eV. We use a pre-conditioned conjugate 

gradient method [92] to diagonalize the Hamiltonian. In order to calculate 

the conductivity, we obtain states with energies at least lOfcgT above the 

Fermi energy Ef. We use 8 Monkhorst-Pack [81] (MP) points in sampling 

the Brillouin zone (BZ) of the 512-atom supercell, which amounts to sampling 

the BZ for the diamond structure with a 12 x 12 x 12 MP mesh. 

3.6 Procedure for Solving the Hamiltonian 

We use a direct minimization procedure to diagonalize the Hamiltonian (H). 

As a first step one constructs a functional of the form {ip\H\tp) — Xiipltp), 
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minimizing this functional would amount to minimizing H keeping the con­

straint that the wave functions remain orthogonal, thus diagonalizing H. A, 

the Lagrange multiplier would correspond to the eigen energies obtained by 

diagonalizing H. The flow chart describing this procedure is given in Fig. 

3.4. In principle one can update all the wave functions (all bands) simul­

taneously for a conjugate gradient iteration. Our system being large, one 

faces the problem of memory requirement for storing the wave functions. So 

it is very efficient to do single band updating as it retains all advantages of 

conjugate gradient without increasing memory requirements. The steepest 

descent direction is given by 

g^ = -{H-e^)^^ (3.35) 

Here k denotes the band, whereas m denotes the iteration number, e^ is 

given by, 

e"^ =< d ^ l C > (3.36) 

The orthogonality constraint is maintained by ensuring that the steepest 

descent vector is orthogonal to all other bands. The steepest descent direction 

is calculated as 

9'r = 9T-T.<'^^\9T>^j (3.37) 

3.6.1 Conjugate Directions 

Preconditioning is a method to make the functional dependence upon the 

variables more uniform. This involves making the curvature of the function 
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to be minimized with respect to all variables be similar in magnitude. The 

steepest descent directions are preconditioned using a preconditioning matrix 

K. The schemes for constructing K depend on the problem involved; a 

description may be found in [92]. Let the preconditioned steepest descent 

direction be r;^, given by 

C = Kg',"" (3.38) 

The preconditioned steepest descent direction is not orthogonal to all the 

bands. One further orthogonalizes the preconditioned steepest descent di­

rection to all bands. 

v'r=c- < c i c > c - E < ^n^" > r̂ (3.39) 

Using Eq 1.47 and 1.48 described in chapter 1, we can construct the conjugate 

direction {4>^) from the preconditioned steepest descent direction 

4>T = vT + iT€~' (3-40) 

where 7]̂ * is given by, 

and 

7i = 0 (3.42) 

Since the conjugate direction is constructed from the preconditioned steepest 

descent direction it is orthogonal to all the bands except the present band. 
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One needs to further orthoganlize it to the present band as follows 

«̂ir = C-<dC>C (3-43) 

K = < <i>'rWir >"^ 

3.6.2 Search for the Minimum (Circle Minimization) 

An efficient minimization process is the so called circle minimization. The 

method is described here. The present wave function i/̂ ^ and the conjugate 

direction vector (j)j^ are both orthogonal to all the bands, a combination of 

these two vectors would also yield a vector which is orthogonal to all bands. 

We can exploit this fact and construct a vector of the form 

Tp]^cos{9) + 4>Tsin{e) (3.44) 

A "9" is chosen such that it that minimizes our functional. The search for 

the minimum is performed by evaluating the functional for various values of 

"9". This amounts to searching for a minimum on a circle rather than a line 

minimization which is conventionally done for classical systems. One repeats 

the entire process until •0* and Ck converge. 

3.7 Results 

In order to characterize the electronic structure the two phases of the liquid, 

we study the density of states (i) DOS(E), (ii) The density of states as a 

function of energy and a localization parameter, (iii) The resistivity using 
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the Kubo formula. Described below are results of our calculation. 

3.7.1 Density of States 

Density of states is an important parameter in the calculations of electronic 

structure, it is defined as 

D05(£;) = -^5];5(6,,-£;) (3.45) 
* i,k 

Where ei^k â re the eigen states of the system in band k. Shown in Fig 3.5 

is the density of states for the temperatures at which the analysis is done. 

The DOS remains essentially unchanged from T = UllK toT = 1258K. A 

small dip in the DOS at the Fermi energy Ef is apparent for T = 1082/^, 

just above the transition. For T = 1055ii', just below the transition, the dip 

in the DOS at the Fermi energy is dramatic. The DOS deviates significantly 

at other energies as well, compared to the DOS at higher temperatures. The 

DOS, however remains finite at the Ej, indicating a pseudo gap rather than 

a real gap which is observed in crystalline silicon. 

3.7.2 Density of States in Energy and Inverse Partici­

pation Ratio 

Conductivity depends not only on the DOS near Ef, but also on the degree 

to which the electronic states are localized. We therefore calculate the DOS 

as a function of both the energy and a measure of localization, the inverse 
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participation ratio {IPR), defined [37] as 

where i runs over the M real space mesh points, and ipk is the wave function 

with a band index k. IPR = M for fully localized states and IPR = 1 for 

a fully extended state. Figure 3.6-3.9 illustrate the density of states as a 

function of energy and IPR for all the studied temperatures. In Fig 3.10 is 

illustrated the contour plots of the DOS{E, IPR) across the phase transition. 

At r = 1082/i' (and at higher temperatures; contour plot data not shown) 

all states display roughly the same, low IPR, indicating that all states are 

extended. In contrast, at T = 1055K, states near the Fermi energy show 

markedly larger IPR, indicating a greater degree of localization. We may 

thus expect the conductivities for these two cases to be significantly different. 

3.7.3 Resistivity 

We calculate the frequency-dependent electrical conductivity a{uj), using the 

Kubo formula [126], as previously done for liquid [1] and amorphous [37] 

silicon: 

cr{u) = ^ ^ ^ 5 ] ( / , - h)\M,,,\'6iE, -Ei- hw) (3.47) 
i,k 

where e is the electron charge, V is the volume of the system, w is the fre­

quency, and fi is the Fermi-Dirac occupation probability at electron energy 
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Ei. Matrix elements Mi^k =< tpilPli'k > (where P is the momentum oper­

ator) are easily calculated in the plane wave basis. The DC conductivity is 

found by extrapolation to a; = 0. Resistivities p{uj), shown in Figure 3.11 for 

four temperatures, vary slowly with T between T — 1711/i' and T — 1082/(r, 

while for T = 1055K the resistivity is significantly larger. We find the DC 

resistivity at T = 1711iir to be in the range of 70 — SO/ifi cm which agrees 

very well with the experimental DC resistivity at 1740 K, in the range of 

77 — 83/if2 cm [46]. Our calculation yields better results than earlier meth­

ods for liquid Si [1] using the Slater-Koster (empirical LCAO) method. In 

the low temperature phase (T = 10b5K) the DC resistivity is in the range 

800 — 850/iQ cm, values typical of semi-metals {e.g., graphite has a DC re­

sistivity of 783/xfi cm). The resistivity at T = 1082i(' is 120/ifi cm which 

is comparable to that in metals, albeit on the higher end. The LL phase 

transition thus involves a roughly one order of magnitude jump in the resis­

tivity, which may be termed a metal to semi-metal transition. Extrapolation 

of experimental data for a-Si in the range of 400 to 600°C [70]^, yields resis­

tivities (0.66 — 3.3nc7Ti) which are higher by 3 orders of magnitude than the 

calculated values for the low T liquid. We believe the difference to arise from 

the coordination number of 4.2 found for the low T liquid, higher than the 

a-Si value of 4. Such a discrepancy may arise either because the low T liquid 

structure is not predicted satisfactorily by the SW potential, or because in 

reality, the liquid structure is distinct from a-Si. 

^We have used the author's parameters for the Arrhenius temperature dependence of 
conductivity (slope ~ O.ZeV, T^^ = 0 intercept ~ 100 — 500n~^cm~^) and used the 
experimental transition temperature of MOO/r. 
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Figure 3.4: Flow chart of the algorithm for diagonalizing the Hamiltoniaji. 



3.7 Results 76 

oT«1055K 
oT=1082K 

T=1258K 
T=1510K 
T=1711 K 
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Figure 3.5: The electronic density of states (DOS) is shown for various tem­
peratures analyzed. A pseudo-gap is seen for T = 1055A' (just below the 
LL transition). The DOS at higher temperatures approaches the free elec­
tron form, reflecting the observed metallic behavior. The Fermi energies are 
11.21 eV{l0b5K), 11.83 eV{1082K), 12.1 eV{U5SK), 12.05 6^(15101^:), 
11.99 eV (1711K). 

Figure 3.6: DOS(E,IPR) for T=1055 K the low temperature phase. The 
states near the Fermi energy are very localized. 
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, / T ^ ^ 

Figure 3.7: DOS(E,IPR) for T=1082 K the high temperature phase just 
above the transition. All states show low IPR values, importantly the ones 
close to the Fermi energy. 

Figure 3.8: DOS(E,IPR) for T=1510 K. This phase shows the IPR values 
slightly lower than the T=1082 K. The IPR values tend to remain low. 
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Figure 3.9: DOS(E,IPR) for T=1711 K. No significant change in the IPR 
values when compared to T=1510 K. The IPR values tend to remain low. 

Figure 3.10: Contour plot of the density of states (DOS) as a function of 
IPR{tpk) and energy for one configuration each at T = 1055K and T = 
1082ii'. The IPR for T = 1082iir remains essentially unchanged as a function 
energy, and is small, indicating that all states extended. For T = 1055K, 
states near the Fermi energy are seen to display a marked increase in IPR. 
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Figure 3.11: Plot of resistivity vs. frequency for T = 
1055/(', 1082/^, 1258/(', 1711ii', showing a significant change in resistiv­
ity between T = 1Q82K and T = 1055A". Thin lines (clearly visible only for 
T = 1055K) correspond to individual configurations and thick lines with 
symbols are averages for each temperature. 
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T 
(K) 

1055 
1082 
1258 
1711 

Resistivity 
(/iQcm) 

806 
196 
137 
72 

fraction 
(average over 
5 configurations) 
0.824707 
0.45182 
0.380859 
0.32031 

fraction 
(average over 
1000 configurations) 
0.787150 
0.500658 
0.349930 
0.319750 

Table 3.4: The table compares how the resistivity and the fraction of four 
coordinated atoms change as a function of temperature. The resistivities 
are calculated for a specific configuration whose fraction of four coordinated 
atoms are shown, also shown is average four coordination for the specified 
temperature. The average is taken over 1000 configurations. 

3.8 Pinpointing the Cause of Conductivity 

change 

There are several factors involved in the structural change across the LL 

phase transition. In this section we try to pinpoint the factor in the structural 

change which brings about the metal to semi-metal transition. 

Illustrated in Table 3.4 is the resistivity for samples taken at several tem­

peratures. As the temperature is increased the fourfold coordination in the 

liquid is lost. Shown in Table 3.4 is the fraction of fourfold coordinated 

atoms for specific samples whose resistivity is calculated, and the fraction of 

fourfold coordination averaged over 1000 configurations at the same temper­

ature. We notice that fraction of the fourfold coordination increase correlates 

with an increase in resistivity. It should be noted that in crystalline silicon 

the coordination is four and it is a semiconductor . Shown in Fig. 3.12 is 

the angle distribution of the fourfold coordinated atoms at T = 1055ii' and 

T = IQS2K. One sees that the four fold coordinated atoms have a much 
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Figure 3.12: NormaUzed angle distribution of four coordinated atoms for 
the low (T = 1055K) and the high temperature phase is illustrated T = 
1082/i'. The high temperature phase shows a broader distribution than the 
low temperature phase around the tetrahedral angle (109°) indicating that 
the low temperature phase liquid is more tetrahedral. 

more tetrahedral geometry in the low temperature phase (T=1055 K), the 

angle distribution shows a peak near the tetrahedral angle of 109°. In the 

high temperature phase (T = 1082 A") there is a decrease in height of the 

angle distribution maximum by about 17% indicating that the tetrahedral-

ity of the system has decreased. Also the fraction of fourfold coordination 

changes 0.78 to 0.50. This is one very significant change in the structure of 

the system. Illustrated in Fig.3.13 are the angle distribution of the fivefold 

atoms at T = 1055 K and T = 1082 K. One notices a peak close to the 

tetrahedral angle, but this is due to the fourfold atom contribution in the 

angle distribution. One notes that the distribution of the angle is much more 

spread out as compared to the fourfold case. 

We will now analyze the influence of coordination on the pair correlation 

function. We will abbreviate four folded atoms as / / and the non four folded 

as nff. We then calculate the pair correlation function between ( i )n / / and 
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Figure 3.13: Normalized angle distribution of five coordinated atoms for the 
low (T = 1055A') and the high temperature phase is illustrated T = 1082/i'. 
The distribution is almost same in the high and the low temperature phase. 

/ / (Fig. 3.14), (ii) / / and / / (Fig. 3.15), (iii) nff and nff across the 

transition ie., for T=1055 and 1082 K (Fig 3.16). In the case of nff and 

/ / , we find that across the transition, atoms from the second coordination 

shell peaks spreads such that nff and the / / atoms get closer. The / / - / / 

correlation function shows that again across the transition we have / / atoms 

from the second coordination shell get closer to the first. Unlike the case of 

nff - ff we find a small decrease in the atoms of the first coordination shell. 

If one were to look at the nff - nff correlation function one would find that 

there is decrease in both the second and the third coordination shell across 

the transition. It should be noted no nff atoms coming closer to each other 

across the transition. 

We now further investigate how this structural changes effect the elec­

tronic structure of the liquid. In order to find the contribution of the / / 

and the nff atoms to the electronic structure we use the following strategy. 

We obtain the charge distribution from the wave function by squaring the 
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Figure 3.14: The partial pair correlation g{r)„ff-ff between / / coordinated 
and the nff coordinated atoms, for temperatures T = 1055 K and T = 1082 
K across the phase transition. 

norm of the wave function. The box is divided into a 60 x 60 x 60 mesh. 

Each of the eigen wave function is represented on the mesh points as charge 

density. The distance of each mesh point to all the atoms in the simulation 

box is calculated. The simulation box is divided into regions such that mesh 

points closest to a particular atom is said to belong to the region of the atom. 

This way the entire simulation box is divided into 512 regions, each region 

belonging to a particular atom. A region is defined as all the mesh points 

closest to a particular atom. We then take the charge on a mesh point in 

that region and multiply it to the character of the atom. The character of 

an atom is defined to be zero if it is a / / atom, else it is assigned a unit 

value. The net charge due to the atoms with unit character per mesh point 

is defined as the projection ratio. The projection ratio in principle is the 

charge contribution from the nff atoms per mesh point. The projection 

ratio is calculated for two cases of interest (i) high IPR wave functions i.e., 
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T=1055 K 
- - - T=1082K 

Figure 3.15: The partial pair correlation g{r)ff-ff between / / coordinated 
and the / / coordinated atoms, for temperatures T = 1055 K and T = 1082 
K across the phase transition. 

the localized wave functions which lie close to the Fermi energy (Fig.3.17). 

(ii) low IPR wave functions which are extended in nature (Fig.3.17). This 

would pinpoint if the localized character of the wave functions are due to 

the / / atoms. All these calculations are done for the low temperature phase 

T = 1055i^. This temperature is chosen since the tetrahedral character of 

the liquid is maximum in this case. 

If it is true that the localization characteristic is due to the tetrahedral 

nature of the liquid structure, the projection ratio of the peak of the high IPR 

distribution should have been significantly lower than the projection ratio of 

the peak of the low IPR distribution. From Fig 3.17 it is clear that the peak 

of both the distributions occur at a projection ratio of 0.02052. But the 

high IPR distribution is shifted to low projection values which is consistent 

with localized states being preferentially localized near / / atoms. However 

the effect is not significant enough. This leaves us to investigate another 
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Figure 3.16: The partial pair correlation </(r)n//-n// between nff coor­
dinated and nff coordinated atoms, for temperatures T = 1055 K and 
T = 1082 K across the phase transition. 

important structural change, namely the coordination number change across 

the transition. 

The density of the liquid jumps from 0.0524 above, to 0.0494 atoms per 

A^ below, the LL transition.^The structure of the liquid also changes, as 

reflected, e.g. in the distribution of coordination number, whose average 

changes from 4.2 at T = 1055K to 4.61 at T = 1082ii', while the fraction 

of four-coordinated atoms changes from about 83% at T = 1055ii' to about 

43% at r = 1082A'. The percentage of atoms displaying 3, 4 and 5 coordi­

nation (where a distance cutoff of 0.293nm is used) are, respectively, 0.268, 

82.8, 16.1 for T = 1055/C, 0.74, 42.9, 46.7 for T = 1082/^ and 2.36, 28.9, 47 

for T = \1\\K (Fig 3.18). The concentration of dangling bonds (associated 

with 3 coordinated atoms), at low temperatures where they may be expected 

^The quoted densities are for 1055A' and 1082i<" respectively. The lowest temperature 
above the LL transition at which a liquid was equilibrated in the present study was lOeOAT, 
where the density is .05207 atoms per A^. 
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Figure 3.17: A normalized distribution of the projection ratio at T = 1055/^, 
for a set of high IPR and low IPR wave functions is shown. Both the high 
and the low IPR distribution have peak around a projection ratio of 0.02052. 

to play a significant role, is minimal, and would not have a substantial in­

fluence on the conductivity changes. To determine the relative importance 

of density and structural changes to electronic structure, we calculate the 

electronic structure for two additional atomic configurations obtained: (i) 

by rescaling atomic coordinates for a T = 1055K configuration, to produce 

a configuration whose density equals that of the liquid at T = 1082/^", (ii) 

by rescaling coordinates for a T = 1082/i' configuration to produce a con­

figuration whose density equals that of the liquid at T = 1055K. The DOS 

for these configurations, shown in Fig. 3.19 alongside the DOS for the orig­

inal configurations, show that a change in density itself, without structural 

change, has marginal effect on the electronic DOS. We conclude that the 

marked change in the electronic DOS at the LL transition arises primarily 

from a change in liquid structure, rather than the change in density. 
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Figure 3.18: Histogram of the coordination number of the atoms at T 
W55K, 1082A', 1258K, ITllK 

3.9 Comparison with First Principles Den­

sity Functional Theory 

Since the coordination number of the liquid in the studied T range changes 

from 4.2 to 5.12, the reliability of the pseudopotential we use, based on 

data for four-coordinated crystalline silicon, needs further validation. To 

this end, we calculate the DOS (Fig 3.20), and resistivities for liquid config­

urations of 64 atoms for T = 1082/C, 1258A', 1510K and UUK using our 

pseudopotential and ab initio DFT based on norm-conserving pseudopoten­

tial [52] (Fig 3.25). The DOS using the two methods agree reasonably, but 

the DFT band-widths are typically 8-10 % smaller, and, as remarked earlier, 

the pseudo-band gap is underestimated by DFT. We also include IPR com­

pared for all the cases obtained from DFT and pseudopotential calculations 

(Fig 3.21-3.23). 

Figure 3.24 shows the resistivities from the two methods for T = 1258K 
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Figure 3.19: Density of states for (a) a T = 1055/i' configuration, (b) the 
same T = 1055K configuration, but with coordinates scaled so that the 
density equals that at T = 1082/i', (c) a T = 1082/t' configuration, and (d) 
the same T = 1082^ configuration, but with coordinates scaled so that the 
density equals that at T = 1055ii'. 

and nilK, which are in moderate agreement for T = 1711A', and a much 

poorer agreement at T = l2b8K. Since the liquid shows greater tetrahe-

dral structure at T = 1258ii', we conclude that the disagreement between 

pseudopotential and DFT calculations are due to the underestimation of the 

band gap by DFT rather than due to non-four-coordinated geometry. This 

supports our expectation that electronic structure itself is not so sensitive 

to the potential and its structure dependence can be captured well with a 

structure factor along with a reasonable potential [HI]. 
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Figure 3.20: Density of states comparison for th DFT for temperatures T = 
1082A', 1258X, ISlO/r, nilK are shown. The match is very good between 
these two methods for the high temperatures. 
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Figure 3.21: IPR comparison for th DFT for temperature T = 1082K. The 
localization characteristics predicted by Pseudo potential method and DFT 
are almost exact in the case of T = 1082i('. This clearly justifies the use of 
the pseudopotential method for the study of localization properties in Si. 
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Figure 3.22: IPR comparison for th DFT for temperature T = 1510K . The 
localization characteristics predicted by Pseudo potential method and DFT 
are almost the same in the case of T = 1510K. This clearly justifies the use 
of the pseudopotential method for the study of localization properties in Si. 
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Figure 3.23: IPR comparison for th DFT for temperature T = 171 l/T. The 
localization characteristics predicted by Pseudo potential method and DFT 
are almost exact in the case of T=1711 K.This clearly justifies the use of the 
pseudopotential method for the study of localization properties in Si. 

3.10 Electronic Structure of Inherent Struc­

tures 

We further investigate the electronic behaviour of the inherent structures in 

the high (T = 1082/(') and the low temperature phase (T = 1055K) across 

the phase transition. We use the conjugate gradient minimization for the 
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Figure 3.24: Plot of resistivity vs. frequency for T = 1258K and T = llUK, 
calculated using the pseudopotential, and using DFT. The resistivities from 
the two methods show better agreement at T = 1711/ir - where the liq­
uid shows greater non-tetrahedrality - than at T = 1258ii' where the un­
derestimation of the pseudo-band gap by DFT leads to underestimation of 
resistivities. 

Stillinger-Weber potential to obtain the quenched states from the instanta­

neous states obtained from the earlier molecular dynamics simulation. Five 

inherent structure configurations are taken from the high and the low tem­

perature phase. The density of states is calculated (See Fig 3.26 ). The 

height of the pseudo gap in the T = W55K is lower than the correspond­

ing liquid. Localization properties from the contour plot show that the low 

T phase has about 15% larger I PR at the Fermi energy compared to the 

liquid, indicating that they are much more localized (Fig 3.27). Finally the 

resistivity shows about 56% increase for the inherent structure compared to 

the liquid for the low temperature phase (See Fig 3.28). The resistivity of 

the inherent structure quenched from T = 1055 K is about 1250 ^Qcm, the 
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Figure 3.25: Plot of resistivity vs. frequency for temperatures T = 
1082,1258,1510, UUK for both DFT and Pseudo potential methods. One 
would notice for the same temperature DFT resistivities are lower than the 
ones predicted by pseudopotential method. This difference seems to get lower 
for higher temperatures. 

liquid is about 800 fiQcm. In the high temperature phase the inherent struc­

ture resistivity quenched from T = 1082 K is about 160 nQcm, which makes 

it about 33% more than the corresponding liquid (with a resistivity of about 

120 nQcm). 

3.11 Summary 

In summary, we have demonstrated a metal to semi-metal transition in su­

percooled silicon [14], accompanying the LL transition previously found. The 

resistivity of the liquid changes by about one order of magnitude at the transi­

tion. Our analysis indicates the cause of the change in electronic properties to 

be the change in liquid structure rather than the density. We also have shown 
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Figure 3.26: Plot of DOS{E) for inherent structure from liquid at T = 1055/r 
and 1082/i' are shown. The pseudo gap in the low temperature phase is more 
pronounced than the liquid. 

that the pseudopotential method works very well in our case. We have per­

formed DFT calculations and shown that the pseudopotential method works 

better than DFT calculations for properties involving unoccupied states. We 

have also shown that our results compare well with experimental resistivities 

for the high temperature liquid. We have investigated the electronic prop­

erties of the inherent structure [13] of the high and low temperature phase 

across the transition. In the high temperature phase one finds an increased 

resitivity and localization of the wave functions in the inherent structures 

compared to the corresponding liquid configurations. In the low tempera­

ture phase the resistivity and the localization in the inherent structure phase 

is comparable to the liquid phase configurations. 
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Figure 3.27: Contour plot of DOS{E,IPR) for the inherent structure at 
T = l05bK and T = 1082/r is illustrated. The T = 1055K shows large 
localization more than the corresponding liquid. 
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Figure 3.28: Plot of resistivity vs. frequency for temperatures T = 1055K 
and T — 1082/^ for the inherent structures and the corresponding liquid are 
shown. The DC resistivity for the inherent structure for T = 1082A' is ~ 
160 iJ,Qcm and the liquid is about 120 fi^cm. The low temperature phase 
T = 1055ii', the DC resistivity for inherent structure is ~ 1250/if2cm and 
the liquid is ~800/xncm. The resistivity shows about 33% increase for the 
low temperature phase compared to the liquid and 56 % increase in the high 
temperature phase. 



Chapter 4 

The Relationship Between 

Mechanical and Dynamical 

Properties of Glass Forming 

Liquids 

4.1 Introduction 

Nagel, Liu and coworkers [86] have put forward a "jamming picture" which 

proposes a unified description of systems exhibiting structural arrest, includ­

ing glass forming liquids, granular materials, colloidal systems, foams, gels, 

etc. Temperature and the associated thermal motion of atoms and molecules 

plays a significant role in the behaviour of glass forming liquids, while temper­

ature plays no significant role in systems such as granular materials, which 

are therefore termed athermal. In athermal systems, the parameter that 

97 
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Unjammed 

Figure 4.1: Unifying phase diagram, having density (p), load (a) and tem­
perature (r)as control parameters for jamming and the glass transition. The 
point J marks the zero temperature jamming. 

determines the transition from jammed (or structurally arrested) states to 

fluid states is some form of external mechanical agitation, unlike glass form­

ing liquids where temperature and density play the controlling role. Given 

the broad similarity of behaviour, i. e. a transition from a structurally 

arrested state to a fluid state, there has been an attempt in recent times 

to formulate a common description of both thermal and athermal systems 

within a unified picture. In this spirit, Liu and Nagel proposed a "jamming 

phase diagram" [86] where one conceives of a single jammed domain in a 

phase diagram with temperature, density and mechanical load forming in­

dependent control variables [127], as illustrated in Fig 4.1. Indeed, within 

the context of glass forming liquids themselves, the influence on dynamics 

of applied shear stress, in addition to temperature and density changes, has 
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been appreciated and studied for some time [17,133]. The jamming picture 

has been very useful in demonstrating the equal stature of external driving, 

temperature and density in controlling flow both in and out of equilibrium 

in glassy systems [17,91]. 

A quantity that has been studied recently in this context is the distri­

bution of forces acting between particles in jammed vs. unjammed struc­

tures [61]. Initially studied for granular systems [26,32], experimental and 

theoretical studies of three dimensional stationary bead-packs revealed an 

exponential distribution at large forces, with the presence of a finite, small 

force peak or plateau. A simulation study of compressible granular systems 

showed that at low stress, the distribution of forces is exponential, while a 

change to a Gaussian distribution is seen at high stresses [73]. Force distribu­

tions have also been studied recently in model glass forming liquids studied 

by computer simulations [88-90]. 

In these studies, it was found that in equilibrated liquids, the force distri­

bution is a featureless exponential, and the exponential nature of the distri­

bution was rationalized in terms of the interaction potential, the behaviour 

of the tail of the distribution argued to be more nearly exponential for inverse 

power law potentials with larger powers [88]. When the liquid falls out of 

equilibrium, the force distribution develops a small force peak, which is seen 

to present a signature of the glass transition [88]. In [89] evidence was shown 

of a breakdown of self-averaging in the force distributions for jammed con­

figurations. Thus, the appearance of a plateau or peak at small forces, which 

marks the onset of jamming (the development of a yield stress) in a granular 

systems, may signal the onset of vitrification in a thermal system [88-90]. 
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Interestingly, this feature would then serve as a subtle structural signal of the 

glass transition. 

In this work [10], we investigate several aspects of the dynamics of su­

percooled liquids as they relate to jamming concepts. First, we investigate 

the correlation between force distribution P(f) and the onset of vitrification 

in a variety of systems, including simple and more complicated liquids (such 

as networked liquids) that involve both attractive and repulsive interactions. 

Since the analogy with granular systems may be less clear in complex cases, 

e.g. network forming systems, our study is aimed to probe the boundaries 

of this aspect of the jamming picture. While we find that amorphous solids 

(as defined by inherent structures) always show essentially a Gaussian P(f), 

in agreement with the jamming picture, the behaviour in the liquid state is 

perhaps more complex than that originally posited by O'Hern et al [88-90]. 

In particular, we do find examples where a plateau in P(f) may occur in the 

equilibrium liquid phase, and where no plateau may occur even under glassy 

conditions. We postulate that the prominence of the plateau behaviour may 

be related to the fragility of the glass-former. Motivated by other aspects 

of the jamming picture, we qualitatively investigate the behaviour of force 

networks in the supercooled state, and investigate how the application of a 

shear strain disrupts local glassy states. In particular, we demonstrate that 

the onset of a rapid change in the depth of inherent structures (as well as 

the onset of non-exponential relaxation) is accompanied by a marked onset 

in the yielding behaviour of the local packing structures [69]. 

The chapter is organized as follows: Section 4.2 provides computational 

details concerning the systems we study. In section 4.3 we investigate the 
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correlation of the features of P(f) for small forces / with the dynamical be­

haviour of the liquid. In section 4.4 we study the behaviour of the onset of 

inherent structure yielding with an applied shear deformation. In section 4.5, 

we qualitatively study various connections between the behaviour of inher­

ent structures (and the transitions between them) with force distributions 

and force networks. Section 4.6 contains a discussion of our results and a 

summary. 

4.2 Computational Details 

We have studied the force distributions and related quantities for a number 

of model liquids, as described in subsequent sections. Here, the relevant 

computational details for each of these model liquids is briefly described. 

Further details are available in previously published work that are cited. 

The models we study are: 

1. The Kob-Andersen binary Lennard-Jones liquid [67]. Systems consist­

ing of TV = 256 (204 type A and 52 type B) particles and N = 10000 

particles (8000 type A and 2000 type B) have been studied. The par­

ticles interact via the Lennard-Jones (LJ) potential, with parameters 

^ABI^AA = 1-5, (-BBI^AA = 0.5, OAB/C^AA = 0.8, and OBBIOAA = 0.88, 

and rriB/mA = 1. The LJ potential is modified with a quadratic cutoff 

and shifting at r"^ = 2.5aa0- The pair-wise potential used is: 

Vap{r) = ie^,0 - ^ ] - V^utir) (4.1) 
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Vcut{r) = [{Gaiiy^,) - {3a%/rl,)]{r/r,^,r (4.2) 

The reduced density is 1.2. For A'̂  = 256 the temperature range spans 

T = 0.39 to T = 0.57, at which T the liquid is equilibrated. Out-

of-equilibrium runs are also considered at T = 0.38 and T = 0.40. 

Further details are as in [101,104]. The N — 10000 system is studied 

between T = 0.377 and T — 0.7. The liquid is not in equilibrium below 

T = 0.552. 

2. The 50:50 binary Lennard-Jones liquid studied by Schroder et al [108]. 

The system contains 251 particles of type A and 249 particles of type 

B interacting via a LJ potential with parameters OBBI^^AA = 5/6, 

OAB = {(^AA + crBB)/2, and CAA = ^AB = ^BB- The masses are 

given by niB/mA = 1/2. The length of the sample is L = 7.2SaAA 

(reduced density = 1.296) and the potential was cut and shifted at 

fca0 = 2.5crQ .̂ The form of the potential is the same as above, but 
p.12 (,.6 

with Vcut = 4eQa[^^ — r ^ ] The temperatures range from T = 0.60 to 
^ca0 ''caff 

T = 0.69 and the system is equilibrated at all temperatures. Further 

details are as in [108]. 

3. A two dimensional soft sphere liquid with N = 10000 particles [133]. 

The particles interact via the potential K,^ = e(o'a^/r)^^, with pa­

rameters (TBB/(^AA = 1-4 (additive diameters) and mB/rriA — 2. The 

potential is cut and shifted at r/aAA = 4.5. The reduced density is 

0.8. The temperature range is T = 0.337 to T = 2.54 and the system 
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is equilibrated at all temperatures. Further details are as in [133]. 

4. A two dimensional polydisperse Lennard-Jones liquid [25,122]. The 

particle diameters are uniformly distributed between 0.8 to 1.2 of the 

average value. The number of particles is A'̂  = 990 and the tem­

peratures T = 0.4 to T = 2.0 and the system is equilibrated at all 

temperatures. 

5. The Stillinger-Weber model of silicon [103,119]. Simulated configu­

rations containing A'̂  = 512 particles are analyzed, at zero pressure, 

and T = 1055K, 1070/C and UIOK. The Stillinger-Weber potential 

consists of a two and a three body term. The two body term has the 

form: 

Mnj) = ef2{rij/a) (4.3) 

/a = A{Br-P - r-'')exp[{r - a)-% r<a (4.4) 

/2 = 0, r> a 

Where e and a are energy and length units and rij is the inter particle 

distance between the i"* and the f^ particles. The cutoff is at r = a 

beyond which the potential is equal to zero. 

The three body term has the following form: 

V3{ri, Tj, Tk) = efzivi/a, Vj/a, r^/a) (4.5) 
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/3(ri/a, Tj/a, Vk/a) = h{rij,rik, Ojik) 

+h{rji, rjk, Oijk) +h{rki, Vkj, Oikj) 

(4.6) 

Here Oijk is the angle between TJ and TJ subtended at the vertex i. We 

then have h given by 

h{rij, rik, Ojik) = \exj)['y{rij - a) ^ + 

l{rik - a) %cos{9jik + 3)] 1M2 

(4.7) 

The parameters defining the model are: 

Parameter 

A 

B 

P 

q 

a 

A 

7 

a 

e 

values 

7.049556277 

0.6022245584 

4 

0 

1.8 

21.0 

1.20 

0.20951 nm 

50 kcal/mol 

The supercooled liquid silicon has been shown [103] recently to exhibit a 

liquid-liquid phase transition, with the low temperature liquid display­

ing "strong" character in the fragile-strong classification of the dynam­

ical behaviour of glass forming liquids [4]; fragile liquids display non-

Arrhenius temperature dependence of viscosity and relaxation times, 
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while strong liquids show Arrhenius temperature dependence. Further, 

strong liquids have been observed to exhibit strong Boson peaks [6]; in 

simulation studies a manifestation of the Boson peak has been identi­

fied [58] as a dip in the intermediate scattering function between the 

short time ("microscopic") process and the caging plateau that precedes 

the alpha relaxation. The system is equilibrated at all temperatures. 

Further details are given in [103]. 

6. The BKS model of silica [107,128]. The interatomic potential for BKS 

Silica is given by 

Vij = QiQj/nj + Aijexpl-bijTij] - Cij/rfj (4.8) 

with parameters: 

i-j 

0 - 0 

Si-0 

Ay 

1388.7730 

18003.7572 

hj 

2.76000 

4.87318 

Cij 

175.0000 

133.5381 

atomic charges 

9o=-1.2 e 

qsi=2A e 

Simulations of a system containing A'̂  = 336 atoms (112 silicon and 

224 oxygen), in a cubic box of size 18.SA have been studied. Temper­

atures studied range from T = 2750/C to T = 6100^. The liquid is 

equilibrated at all studied temperatures. BKS silica has been shown to 

display a fragile to strong crossover around T = 3500/i'. [57]. Further 

details may be found in [107]. 

For each system we study, we calculate the set of forces between all pairs 

of particles present. This is straight-forward in all the cases except silicon. 
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since the interactions are pair-wise additive. What we mean by pair-wise 

forces in the case of silicon, where two-body and three-body interactions are 

present, is described below when we present results for silicon. 

4.3 Force Distributions 

Figure 4.2(a) shows the force distribution for the Kob-Andersen liquid for 

A'̂  = 10000 and a range of temperatures. The repulsive as well as attractive 

forces are shown, with the attractive forces on the negative axis. Focusing on 

the repulsive forces, it is seen that in all cases, the distribution is exponential. 

Figure 4.2(b) shows the force distributions for the Kob-Andersen liquid for 

A'̂  — 256 and a range of temperatures which includes temperatures below 

the mode coupling temperature Tc — 0.435 [67]. It has been shown recently 

that the diffusion constant shows a non-Arrhenius to Arrhenius crossover in 

this system across T = 0.435 [12]. In this case also, the repulsive part of 

the force distribution is seen to be close to exponential. Indeed, for similar 

temperatures the force distributions are A'̂  = 10000 and A'' = 256 are very 

similar, and the Â  = 256 cases have been considered simply to extend the 

range of temperatures studied. Figure 4.2(c) shows the force distribution 

for the 50:50 binary Lennard-Jones Uquid which also displays exponential 

repulsive force distribution. The same behaviour is seen in Fig. 4.2(d) for 

the two dimensional polydisperse LJ liquid. In all cases, the peak at zero 

force arises from pairs of particles at large separations, which experience weak 

attractive forces between them. 
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Figure 4.2: Force distribution for (a) A type particles for instantaneous con­
figuration of the Kob-Andersen liquid for N = 10000. The liquid is not 
equilibrated below T = 0.552, (b) A type particles for instantaneous config­
uration of the Kob-Andersen liquid for A'' = 256. (c) A type particles for 
instantaneous configurations of the 50:50 binary LJ liquid for N = 500. (d) 
Instantaneous configurations of the two dimensional polydisperse LJ liquid. 
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Figure 4.3: A schematic of the force distribution for a granular system at 
low (lOOKPa) and high pressures (2.3MPa). The low pressure in unjammed 
and high pressure is jammed. Note the exponential and gaussian nature of 
the force distribution in the low and the high pressures respectively. 

Next, we consider the force distributions for local energy minimum con­

figurations or inherent structures, obtained by subjecting a sample of liquid 

configurations to local energy minimization. Energy minimizations are per­

formed using steepest descent or the conjugate gradient method, and the 

number of configurations analyzed varies from a few tens to a few thousand 

configurations in the different cases analysed. The stopping criterion for min­

imization is that the energy change per iteration decreases to less than one 

part in 10^ .̂ Figure 4.4(a) shows the force distribution for the inherent struc­

tures of the Kob-Andersen liquid with N = 10000. It is seen that the force 

distribution has a Gaussian form, similar to observations by Makse et al [73] 

for P{f) above a critical value of the stress (Fig 4.3). Since local energy 

minima are by definition mechanically stable or jammed configurations, the 

observation of a Gaussian distribution is consistent with expectations based 

on previous work. Figure 4.4(b) shows the corresponding force distributions 

for the two dimensional polydisperse system, which also displays Gaussian 
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force distributions. 

While the results shown so far conform to expectations by and large, 

an interesting exception is the Kob-Andersen liquid at low temperatures for 

N = 10000 where the system is not properly equiHbrated, but we neverthe­

less observe force distributions that are similar to the cases which are well 

equilibrated. It should be noted that in Ref [88] the glass transition is defined 

to occur when threshold relaxation time of r = 1000 (in reduced units) is 

reached. For all case presented, e.g., in Fig. 4.4(b), our results are for T's 

below the effective glass transition as defined by O'Hern et al. [88-90] even 

though our system is in equilibrium. To clarify, we perform additional sim­

ulations (both constant energy and constant temperature) for 5 million time 

steps, quenched from a high temperature initial run, for the Kob-Andersen 

liquid, A'̂  = 256, at T = 0.38. At this temperature, the system does not equi­

librate for runs exceeding a few hundred million time steps, cind therefore the 

system is clearly out of equilibrium in the 5 million time step run. Further, 

in view of the lack of self averaging indicated in [89], we calculate the force 

distribution with and without normalizing the forces to the configuration-

wise average of the repulsive forces. These distributions are shown in Fig. 

4.5. It is seen that the force distributions are exponential in each case. This 

indicates that lack of self-averaging is not an issue in this instance. 

We next consider the two dimensional binary soft sphere liquid, for which 

the force distributions are shown in Fig. 4.6. In this case, as the temperature 

is lowered, but with the liquid still in equilibrium, a small force peak is seen 

to develop, and be clearly visible at the lowest two temperatures. This case 

provides a second counterexample to expectations, since one sees a finite 
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Figure 4.4: Force distribution for (a) A type particles for inherent structure 
configurations of the Kob-Andersen system for A'' = 10000. (b) Inherent 
structure configurations of the two dimensional polydisperse LJ liquid. 
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Figure 4.5: Force distribution for A type particles for instantaneous config­
urations of the out of equilibrium Kob-Andersen liquid, for Â  = 256 and 
T = 0.38. The force distribution is calculated both (a) without normaliza­
tion (P(f) in figure), and (b) normalizing to the average repulsive force for 
each configuration (Pl/fy)) "i figure. Data for (b) has been scaled by 7.454 
(x axis) to match the range of curve (a) and shifted by 0.656 (y axis) for 
clarity. 
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Figure 4.6: Force distribution for instantaneous configurations of the two 
dimensional binary soft sphere liquid. 

force peak appear in a liquid in equilibrium. 

From previous results, we expect the binary soft sphere liquid to display 

"strong" behaviourKSuch liquids have so far not been analyzed and therefore 

the possibility that strong liquids exhibit force distributions that differ qual­

itatively from fragile liquids deserves further exploration. To this end, we 

consider two liquids for which evidence of strong behaviour exists. The first 

is liquid silicon. In a recent study [103] of silicon using the Stillinger-Weber 

potential [119] it has been shown that a liquid-liquid transition exists around 

'Evidence that the 50:50 soft-sphere mixture has some features of a strong liquid comes 
from three sources. First, the self intermediate scattering function F,{k, t) shows marked 
short-time oscillations characteristic of strong Uquids [58,93]. While it is known that 
the strength of such oscillations is dependent on system size [85], the appearance of such 
behaviour at aJl is indicative of strong behaviour. Second, the 50:50 soft-sphere mixture 
shows marked finite size effects in the alpha relaxation time [65] that is expected for strong 
liquids [59]. Lastly, the ratio of the Tc of mode-coupling theory [51] to the expected ideal 
glass transition temperature TK where an entropy crisis would occur in the mean-field 
limit [29] is large for the 50:50 soft-sphere mixture compared to the more fragile BMLJ 
system of Kob and Andersen [30]. This is consistent with strong behaviour on the fragility 
scale. 
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T = 1060/(' and the low temperature phase displays strong behaviour which 

the high temperature phase displays fragile behaviour at zero pressure. We 

therefore calculate the force distribution for liquid silicon at T = 1055K 

(below the transition), T = 1070/C (above the transition) and T = 1710/(' 

(above the liquid-solid transition). Figures 4.7(a,b,c) show the force distri­

butions at these temperatures.^ 

In each case,the distribution of nearest neighbor repulsive forces shows 

a Gaussian character (or a tendency to plateau), and the distribution of all 

forces shows a small force peak. However, the peak corresponds to neighbors 

farther away than the first shell, as seen by a comparison with the distri­

bution considering the nearest neighbors alone. Therefore, in this case also, 

the non-exponential force distribution for small forces (or the appearance of 

a plateau) does not correspond to a glass transition. Further, the qualita­

tive form of the distribution remains roughly the same (but with a growing 

exponential regime in the tail of the distribution at higher temperatures) at 

all temperatures. Thus, a sharp connection with strong behaviour is also 

not obvious. It is likely that the nature of the distributions is related to the 

type of interactions that may lead to strong dynamical character in a limited 

temperature domain. In order to investigate further the role of fragility in 

determining the nature of the force distributions, we study liquid silica, sim­

ulated using the BKS potential [128]. We calculate P(f) for T =2750, 3000, 

^In addition to two body interactions, the Stillinger-Weber potential includes a sum 
over three body terms of the form t/3(rj,r^, rjt). The a"* component of the total force on 
a given atom i can be written as, 

p. — _ V 9t/3(ri,rj,rt) _ r^ p 

where the second step defines what we consider to be "pair-wise" forces between i and 
j , arising from three body interactions. 
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3580, 4000, 4700 and 6100K as shown if Fig 4.8 (a,b). BKS silica is known 

to have a strong to fragile transition at around 3500K [57]. We investigate 

the P(f) for the repulsive parts i.e., Si - Si and O - O interactions. The 

force distributions in this case display much richer structure, reflecting the 

static structure of the Hquid. Comparison with the nearest neighbor force 

distributions reveals that the largest force peak arises from nearest neighbor 

interactions. 

The overall picture that emerges is one that is grossly consistent with 

that of O'Hern et al. [88-90] with some interesting exceptions. We have 

found that the LJ mixtures do not show a plateau in P(f) at small F even 

at temperatures where equilibration is no longer possible, while the soft-

sphere mixture shows a plateau in the liquid phase, above Tp. While inherent 

structures always display Gaussian profiles, in accordance with Ref [73,88-

90], the appearance of a plateau in P(f) may not be a sensitive measure 

of the location of Tg. What can one draw from the results presented in 

this section? It appears that there is indeed some correlation between the 

properties of P(f) at small f and the strong-fragile properties of the liquid. 

In particular, if we confine our discussion to spherical particles where the 

analogy with granular media is clearer, then we find that the appearance of 

a plateau at small f occurs in the case of the stronger soft sphere mixture 

and not in the more fragile LJ liquids. 

Silicon and silica are also liquids that display a peak at low repulsive force 

values, and are systems that may exhibit characteristics of strong liquids. It 

was noted above, however, that these features persist above the strong-to-

fragile crossover temperatures in these systems. Given that the inherent 
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structures of all systems show peaks in P(f) at small f, while instantaneous 

configurations may not, a useful correlation between the average number 

of imaginary modes (in the language of instantaneous normal modes) at a 

given set of thermodynamic parameters and the low / properties of P(f) may 

exist. While it may be useful to pursue this connection in future work, we 

will argue in the next section that P(f) has some fundamental limitations as 

an indicator of the rheological properties of a glassy system. 

4.4 Response to Deformation 

In order to investigate other possible connections between mechanical prop­

erties of glass forming systems, and their dynamical properties, we study the 

response of inherent structures to shear deformations, for the Kob-Andersen 

binary LJ liquid, and the polydisperse Lennard-Jones systems with Â  = 110 

particles. Each inherent structure is subjected to a deformation given by 

Xj = Xj + 7yj, where 7 is a strain variable. After such a deformation, the de­

formed configuration is subjected to energy minimization, and the resulting 

inherent structure is compared with the initial one. In each case, we deter­

mine the smallest value of 7 which results in a transition to a new inherent 

structure. This critical 7 is averaged over 1000 inherent structures for each 

temperature studied. 

Figure 4.9(a) shows 7c for the polydisperse LJ system. While at the 

high temperatures 7c is relatively constant, a trend towards larger values 

is seen at low temperatures, indicating that the inherent structures become 

more "robust" at low temperatures. A comparison with the average inherent 
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structure energy vs. temperature, shown in Fig. 4.9(b), indicates that the 

resistance to shear of the inherent structures follows that of the inherent 

structure energies; in particular, the increase of % is coincident with the 

onset of a decrease in the inherent structure energies. It has been shown in 

previous work [101,104] that the progressive decrease of inherent structure 

energies marks the onset of slow dynamics in the liquid. The resistance to 

a shear strain deformation of the inherent structures thus also reflects the 

onset of slow dynamics. Figure 4.9(c) shows jc '"s. temperature for the Kob-

Andersen binary liquid, for which the onset temperature has been previously 

estimated to be TQ ~ 1.0 [101,104]. It is clear that for this system as well, 

the behaviour of 7c reflects the onset of slow dynamics, and the decrease of 

average inherent structure energies. 

What may be drawn from the results shown in Figs. 4.9(a-d)? The 

demonstration of a sharp change in the yielding behaviour of the inherent 

structures sampled below To is interesting in its own right. Taken with the 

results of the previous section, the data presented in Figs. 4.9(a-d) suggest 

that some care should be taken in attempting to judge changes in mechani­

cal behaviour based on force distributions. In particular, while the yielding 

behaviour of the sampled inherent structures show a rather dramatic change 

near To, the force distributions generated from the same inherent structures 

(the information shown in Figs. 4-^) show only continuous and gradual 

changes as the temperature is lowered below Tg. 
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4.5 Force Networks 

In the context of granular materials and models thereof, a quantity of interest 

have been "force chains" which characterize the distribution of load in these 

jammed systems [26,32,73]. 

We calculate the force network for inherent structures in the polydisperse 

LJ liquid at T = 1.0, an example of which is shown in Fig. 4.11(a). Given 

the absence of a directionality to the load (provided in granular materials 

by gravity), we observe a two dimensional network of forces which are more 

homogeneous than the corresponding liquid configuration (not shown), con­

sistently with the observation of Makse et al. [73]. 

We next consider transitions between inherent structures and the corre­

sponding changes in particle positions as well as forces. These are shown in 

Figs. 4.11(b) and 4.11(c) for the same inherent structure transition. The 

particle displacements and force changes show a clear and predictable cor­

relation, and further, illustrate the spatial extent of rearrangement involved 

in the inherent structure transition. A more detailed study of such transi­

tions may be valuable in understanding spatially heterogeneous dynamics, 

and the emergence of a growing length scale of collective particle motions 

in glass forming liquids. In particular, consideration of changes in the force 

network may make the task of defining an associated length scale, connected 

to dynamic heterogeneity, simpler. In an interesting recent study, Wittmer 

et al. have studied force networks and the elastic properties of disordered 

solids [121,132]. They have found "soft" elastic regions of a particular average 

length scale exist in the inherent structure samples, and that these regions are 
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Figure 4.10: (a) Force network in an inherent structure in the polydisperse 
LJ liquid at T = 1. Each line connects two particles and represents the 
repulsive force between them. The thickness of the lines are proportional to 
the magnitude of the forces, (b) Particle displacements during an inherent 
structure transition in the polydisperse LJ liquid at T = 1.0. The size of the 
lines are proportional to the magnitude of the displacement, (c) Changes in 
forces during an inherent structure transition in the polydisperse LJ liquid 
at T = 1.0. The size of the lines are proportional to the magnitude of the 
change in the forces. 
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likely responsible for the anomalous vibrational properties of glasses in the 

Tera Hertz frequency domain. Wittmer et al. did not study the history de­

pendence of this length scale. Our results from this and the previous section 

suggest that a careful study of the length scale associated with local elcisticity 

and local rupturing of the force network in inherent structures sampled as the 

temperature is lowered below known crossover temperatures {To,Tc) might 

be useful in understanding dynamical heterogeneity in supercooled liquids 

and elastic heterogeneity in glasses. 

4.6 Discussion and Summary 

We have studied [10] the relationship between mechanical properties of glass 

forming liquids and their dynamical behaviour. First, we studied force distri­

butions in a variety of model liquids and corresponding inherent structures. 

While most equilibrated atomic liquids display exponential force distribu­

tions, and inherent structures display Gaussian distributions, consistent with 

expectations based on previous work, we have observed some interesting ex­

ceptions. The out-of-equilibrium low temperature Kob-Andersen liquid does 

not show a finite force peak and instead shows an exponential distribution 

like the equilibrated liquid. Further, we do not find any evidence of a lack of 

self-averaging in the force distribution. On the other hand, the two dimen­

sional binary soft sphere system displays a finite force peak in equilibrium. 

This observation, in conjunction with the known "strong" dynamical be­

haviour of this system, leads us to the speculate that the force distributions 

may look qualitatively different for strong liquids. Silicon and silica, which 
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show strong behaviour, display features in the force distributions previously 

attributed to jammed states, and further display considerably richer force 

distributions than seen in other systems previously. These cases lend sup­

port to the idea that force distributions may be correlated with the fragility 

of the liquids in question. However, the correlation is not entirely clear at 

present and would require further work to elucidate the precise relationship 

between fragihty and the features seen in P(f). 

The behaviour of inherent structures to a shear strain 7, on the other 

hand, shows a clear connection with the onset of slow dynamics. The exact 

reason for the observed connection needs to be better understood. Taken 

together with the gradual dependence of P(f) for inherent structures mea­

sured as a function of temperature, the sharp change in the critical value of 7 

needed to melt an inherent structure implies that P(f) alone cannot be sen­

sitive to the yielding properties of glasses themselves, even if the transition 

from a liquid to a glass might be grossly indicated by the behaviour of P(f) 

at small f. 

A study of force networks and force changes during inherent structure 

transitions has been presented here. A detailed study of such behaviour 

may be useful in understanding spatially heterogeneous dynamics and length 

scales relevant to the slow of dynamics in glass forming liquids, as well as 

elastic heterogeneity in glasses. 



Chapter 5 

Limits of a Liquid: Ideal Glass 

Transition and the Spinodal 

Line 

5.1 Introduction 

A liquid has two extreme limits of existence. When the liquid is brought to 

quasi equilibrium below its freezing temperature by avoiding crystallization 

it is said to be in the supercooled phase. A liquid cannot remain in this 

phase as we keep cooling it further. It turns to a glass at a temperature 

depending on its cooling rate. Faster the cooling rate higher the tempera­

ture of glass transition. If we were to cool the liquid infinitesimally slowly, a 

thermodynamic description would predict the liquid to become a glass at the 

Kauzmann temperature. This temperature marks the lowest temperature 

limit wherein the liquid remains a liquid. The other extreme is when we heat 

124 
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the liquid high enough that it converts to gas. The metastable liquid whose 

temperature is above the liquid boiling point, is called a superheated liquid. 

This metastable liquid has its limit of stability at the liquid-gas spinodal 

point. In mean field theory, beyond the spinodal point the compressibil­

ity becomes negative indicating thermodynamic instability. The Kauzmann 

temperature and the liquid gas spinodal point define two extreme limits of 

existence of a liquid for temperature. Figure 5.1 (a,b) we have a schematic 

picture of the van der Waals equation of state in the pressure-density (P 

vs p) plane for temperatures above and below the critical temperature (Tc). 

The spinodal points are defined as points where | p = 0, beyond which the 

superheated liquid will become unstable and depending on the ensemble we 

may have a phase separation or conversion to gas. Indicated in Figure 5.1 

(c) is the scenario of entropy crisis wherein the configurational entropy be­

comes zero as we cool the liquid to the Kauzmann temperature. AS is the 

configurational entropy. At low temperatures, the configurational entropy 

(defined in section 1.3) can be approximated by the difference of entropy of 

the liquid and the corresponding crystal at the same temperature. At the 

Kauzmann temperature (T/c) the supercooled liquid transforms to an ideal 

glass. Indicated in Figure 5.1 (d) is the density dependence of the Kauzmann 

temperature, which we call the ideal glass line. An interesting question to ask 

is, do the locus of the spinodal points and the ideal glass transition line meet 

at a finite temperature, leading to the possibility of a glass-gas transition 

? This question was answered using computer simulation and the inherent 

structure approach by Sastry [100] for a model liquid. It was shown that the 
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Spinodal line 

(d) 

Ideal glass transition line 

Figure 5.1: (a) The Pressure vs density isotherms for a typical mean field 
model like the van der Waals gas. The spinodal points are the points where 
I j = 0. (b) Spinodal densities as a function of temperature. (c)The config-
urational entropy AS becomes zero at the Kauzmann temperature TK, TM 
indicates the melting temperature, (d) Dependence of TR- on the density. 

locus points describing these two limits intersect at a finite temperature, in­

dicating a possibility of an amorphous to gas transition at low temperatures. 

It was also shown that the inherent structure pressure vs density display a 

van der Waals type loop indicating the lowest density for glass formation 

now known as the Sastry density. 

Here [11] we study this scenario in the context of liquid state theory 

and a thermodynamic theory for the glass transition proposed by Mezard 

and Parisi [77]. We begin by describing what was done earlier [100] using 

computer simulation. We then introduce elements of liquid state theory to 

estimate the structure of the liquid and hence all the related thermodynamic 

quantities. We will then describe how the liquid gas spinodal is estimated. 

We then go on describe the calculation of the Kauzmann temperature using 
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the Mezard and Parisi scheme [77]. 

5.2 Prior Work 

We describe here briefly how the above mentioned problem was handled [100] 

using computational means. The model studied earlier was the KABMLJ 

liquid of 204 of A particles and 52 B particles. We describe briefly first how 

the spinodal line is calculated and then we describe how the glass transition 

line is calculated. 

5.2.1 Spinodal Line 

To estimate the spinodal line [100] a restricted ensemble Monte Carlo (REMC) 

was performed for eight temperatures and ten densities. The run lengths be­

tween 3 X 10̂  to 1.8 X 10̂  time steps were performed. In the restricted 

ensemble Monte Carlo the system is divided into cells and the fluctuations of 

density in each cell is restricted. Isotherms were calculated to display van der 

Waals loop in order to calculate the liquid gas spinodal. P vs p from these 

curves were fit to cubic polynomials and further compressibility K {={1/Pgp) 

was calculated from MD simulation. The inverse of compressibility K~^ was 

calculated and the density at which it vanishes (on polynomial extrapolation) 

indicates the Hquid gas spinodal point, which compares well with the REMC 

simulation. 

Further an empirical equation of state was constructed from MD simula­

tion. In order to do this we need to calculate the free energy of the system. 

The absolute free energy which is of interest is the sum of the ideal gas free 
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Figure 5.2: Pressure vs density Isotherms from REMC points connected with 
curves. The continuous curves display empirical equation of state (EOS). 
Also shown are the equation of state obtained for the Inherent structures. 

energy A^ and the excess free energy A^^, 

^(p,T) = Ad(p,T) + 4,^(p,T) (5.1) 

The ideal gas component of the free energy is given by 

>lid(p,T) = iV[3/n(A) + / n ( p ) - l ] (5.2) 

A is the De Broglie wave length and /3 = HkeT. The excess free energy at 

a reference temperature % can be integrated from the pressure equation of 

state. 

^A^{p, Tr) = PrAliO, Tr) + N f ^ 
Jo P 

/3rP 
- 1 (5.3) 



5.2 Prior Work 129 

Where PrAl^{0,Tr) arises from mixing entropy at zero density, which is 

given by, 

^'^<°'^''=-'"(ivlb) <'-̂ ' 
The excess free energy at the reference temperature was fit to fifth order 

polynomial in p and the free energy at any temperature is calculated through 

the following integral. 

l3AeM P) = PAe,{p, Pr) + / E{p, P')d^' (5.5) 

It is difficult to do molecular dynamics simulations near the spinodal points. 

The energy E{p, /3) near the spinodal region is predicted using a fit to data 

away from the spinodal point. E{p,/3) was fit to the form E{p,/3)/N = 

Eo{p) + Ei{p)T^^^p\ where EQ,EI,E^ are fit to polynomials in p (for details 

see [100]). We then get one more independent estimate of the spinodal point 

via the relation. 

Shown in Fig 5.2 are the isotherms and the spinodal points calculated 

through the two different methods. 

5.2.2 Glass Transition Line 

Two estimates of the ideal glass transition were obtained via (i) Vogel-

Fultcher-Tammann (VFT) [44,120,130] equation (discussed in section 1.1.2) 
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and (ii) vanishing of configurational entropy. The difFusivity D{p,T) is cal­

culated as a function of density and temperature using MD. The difFusivity 

of the A type particles are then fit to the VFT equation 

D{p,T) = Doip)exp A{p) 

T-UP) 
(5.7) 

To{p) is estimated, which happens to be the lower estimate of the lab­

oratory glass transition temperature. To{p) is then calculated for various 

densities. 

Thermodynamic estimate of the Ideal glass transition involves calculating 

the configurational entropy. Consider the partition function of the liquid. 

QM{P, T) = ^-'"j^^ f dr^exp (^$) (5.8) 

This partition function can be written in terms of contribution from the 

inherent structures in the following manner, 

Qi^ip, T) = J2 exp{-P^k)\-''' [ dr^'exp [/?($ - $ 0 ] (5-9) 

Here $fc is the potential energy of the minima. We further write 

QN{P,T) = J d^,n{^,)exp[-fi{^, + iV/6a.i„(<^fc,T))] (5.10) 

n($;t) is the number of inherent structures of energy $fc. 
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The partition function can further be written in terms of the configura-

tional entropy Sc = kBlnQ, 

QN{P,T) = y d$ ,exp[- /3($ , + Nhasin{^k,T)-TS,)] (5.11) 

The basin free energy is given by 

Pfbasin — ^ftherm + Pfvib (5-12) 

Aj are eigen values of the Hessian matrix of the inherent structures. The 

vibrational part is a slowly varying function of temperature. The vibrational 

free energy Pfyif, was fit to the form fo{p) + ^^ with 1000 inherent structure 

below T = 1 and 100 inherent structure above T = 1. The total entropy of 

the liquid 5 was calculated as a function of density and temperature. Thus 

the configurational entropy is calculated as 

Sc{p, T) = Sip, T) - Sf^sinip, T) (5.13) 

The ideal glass temperature TK is identified as 

5c(p,T^) = 0 (5.14) 

Shown in Fig 5.3 are the glass transition line estimated via VFT, ther­

modynamic integration and the spinodal lines via REMC, thermodynamic 

integration and the compressibility inverse. The ideal glass transition line 
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and the spinodal line intersect at a finite temperature. The intersection den­

sity is now known as the Sastry density. 
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Figure 5.3: Pressure vs density Isotherms from REMC points connected 
with curves. The spinodals are calculated using restricted ensemble Monte 
Carlo (REMC), Inverse compressibility, fit to the pressure and thermody­
namic integration. The ideal glass transition line is calculated using VFT 
and thermodynamic integration. From [100]. 

5.3 Elements of Liquid State Theory 

Before we describe how we go about solving this problem using semi analytic 

and numerical schemes, We introduce key elements of liquid state theory 

which will be extensively used from now on. 

Consider A'̂  particles in a volume V and temperature T. Let P(^^ (ri, r2...rN) 

be the probability that particles l...A^ are existing in a volume element 
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dri dPN- This probability is then given by 

Here Z;v is the configurational part of the partition function defined as 

ZN = I exp[-/3UN]dTidT2...dTr^ (5.16) 

and UN is the potential energy of the system, for any n < N 

••N 

If we assume the molecules to be identical, the probability that the 

molecules are dXr^.-.TN is given by. 

The bulk density p is defined as 

^ J p^'\T,)dr, = p (5.19) 

We define a correlation function such that 

p("Hri r„) = pV"Hri....r„) (5.20) 
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We thus have 

i/n /ui If 
5^"Hri....r„) = JfnjN^^^Y-J ^^W-/5t/^]dr„,x. .dr^ (5.21) 

The function 5^^^(ri,r2) is of special interest as it can be determined exper­

imentally and also a great deal of liquid state theory deals with various ap­

proximate methods to determine it. We will discuss in brief how one obtains 

the pair correlation function S^^H^'IJ^'Z) or simply g(ru) through theoretical 

means. We define the /i(ri2) through the following equation. 

h{rn) = 9{ri2) - 1 (5.22) 

The motivation for this definition is that it is Fourier transformable unlike 

g{ri2). It measures the total influence of molecule 1 on molecule 2 at a 

distance of ri2- It was proposed by Orenstien and Zernike that h{ri2) would 

have two parts 

• The direct part which we call c{r 12), which arises due to the direct 

influence of molecule 1 on molecule 2, which we will call the direct 

correlation function. 

• The indirect part, the amount molecule 1 influences molecule 2 via 

other molecules. It was proposed that the above definition of the direct 

correlation function captured the indirect influence in the form, 

P / c(ri3)/i(r23)dr3 (5.23) 
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The Orenstien-Zernike (OZ) equation is thus, 

him) = c(ri2) + p I c(ri3)/i(r23)(ir3 (5.24) 

This equation requires a closure in order to solve for the pair correla­

tion function. There are various approximations to solve the above integral 

equation. The important ones which are required further are dealt with in 

this section. The direct correlation function is short ranged. We introduce a 

function y{r) relating the pair correlation as, 

g{r) = exp [-/Sw(r)] y{r) (5.25) 

t 
outside the range of the potential g{r) and y{r) would be the same. In order 

to obtain the short range function c{r) we try out the following approximation 

c(r) = g{r) - y{r) (5.26) 

This approximation is known as the Percus Yevick closure. On combining 

this with the OZ equation we have the Percus Yevick equation (PY). PY 

equation has been the most successful approximation for the first order inte­

gral equation for short range potentials. It has wide variety of applications 

especially for hard sphere systems. Yet another approximation for c{r) is 

y(r) = exp[h{r) - c{r)] (5.27) 

This approximation is known as the hypernetted chain closure (HNC). Along 
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with the OZ equation it is known as the HNC equation. Another way to solve 

the OZ equation is by splitting the potential, into the reference part Vi (r) 

and the perturbation part ^2(^)1 using a projector Pi and its compliment 

P2 = 1 — Pi, at the position of the potential minimum r^. 

vi{r) = Piv{r) = v{r)-v{rm) r<r,n 

Vi{r) = Piu(r) = 0 r > r. i_ ' m 

V2{r) = P2v{r) = v{rm) r < r, m 

V2{r) = P2v{r) = v{r) r > r^ 

(5.28) 

The closure for the soft core mean spherical approximation (SMSA) reads. 

g{r) = exp[-l3vi{r)] (1 + h{r) - c{r) - Pv2ir)) (5.29) 

HNC is generally good to describe long range potentials and PY has been 

successful in describing short range potentials as well as hard sphere systems. 

A generic problem with all liquid state theories (PY and HNC inclusive), is 

the so called thermodynamic inconsistency, i.e., equation of state derived 

through the virial and compresibility routes are different. Rogers and Young 

[95] resolved this issue by constructing an interpolation function, which uses 
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a switching parameter which can interpolate the closure between PY and 

HNC. The interpolation parameter is found such that the thermodynamic 

inconsistency vanishes. We discuss in detail later, one other interpolation 

function between SMSA and HNC which yield very good pressure density 

van der Waals loop for the case of KABMLJ liquid. 

5.4 Treatment of the Integral Equations 

Using the Eq 5.27 and Eq 5.25 we can write the direct correlation function 

for the HNC in the following manner 

c{r) = exp[—^v{r) + j{r)] — 7(r) - 1 (5.30) 

where the function 7(r) is defined as, 

7(r) = h{r) - cir) (5.31) 

Where the direct correlation function c{r) and the pair correlation function 

g{r){= h{r) + 1) are related through the OZ relation 

h{r) - c{r) = p I dr'c(|r - r'|)/j(|r'|) (5.32) 

The procedure to solve the HNC with the OZ closure is as follows. We divide 

the real space range \r\ into A'̂  equal parts. The mesh points are labeled by 

Ti = i5r, i ranges from 1 to N. All other functions (eg., 7i = 7(rj)) are 
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evaluated at these mesh points. We then define following Fourier transforms. 

c{k) = / dTexp{ik.T)c{r) (5.33) 

7(/c) = / drexp(ik.r)7(r) (5.34) 

Our motivation to work with the Fourier transforms becomes apparent if we 

notice that the OZ equation (Eq. 5.32) involves a convolution. Using the 

convolution theorem we could write the OZ equation in the following simple 

manner in the Fourier space, 

c{k) = h{k) - ph[k)c{k) (5.35) 

Thus 7(A;) from Eq 5.31 and Eq. 5.34 is 

* ) = ^ r ^ c-'̂ ' 

Since we intend to numerically solve these equations, we discretized the equa­

tions in the real (index i) and the k space (index j) in following manner. 

c{ri) = exp[-^v{ri) + -f{ri)]--f{ri)-l (5.37) 
(N/2)-l 

c{kj) = {4n6r/kj) ^ risin{kjri)c{ri) (5.38) 
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jikj) = fx:''{kj)/[l-pc{kj)] (5.39) 
{N/2)-l 

7(ri) = (5fc/27rVi) ^ kjSin{kjri)'y{kj) (5.40) 

fj — iSri (5-41) 

% = 2Trj/Ndr (5.42) 

We will now use these equations to describe the algorithm we use to solve 

these equations. 

5.4.1 Computational Details 

The algorithm in use is the traditional form of solving the HNC equation with 

OZ closure. Our aim is to estimate the pair correlation function g{r) for a 

given state point. We start with trial solutions at low density and high tem­

perature limit. The solutions to these conditions would be the ideal gas g{r). 

We estimate this g{r) by setting j{r) to zero and using the HNC equation 

(Eq. 5.37) to obtain the direct correlation function c{r). The Fourier trans­

form of the direct correlation is calculated (Eq. 5.38). We then obtains the 

new 7(A;) using Eq 5.39 in the k space (OZ closure). We then inverse Fourier 

transforms to the real space to obtain 7(r) using Eq 5.40. We then estimates 

g{r) using the discretized form of Eq. 5.31. We continue this process until 

the difference in the pair correlation function between successive iterations 

becomes smaller than a tolerance of 10"^^ i.e., Y^^ |^n+i(^t)~5n(^t)P < 10"^°, 

where n and n -I- 1 are the iteration numbers, and r ,̂ is the i*'^ radial mesh 

point. We then slightly decrement the temperature until the g{r) of the 
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required temperature is obtained. We further follow the process while incre­

menting the density, until the g{r) for the right temperature and density is 

obtained. We derive now in detail the equations involved for the KABMLJ 

liquid. For KABMLJ pure HNC over estimates the liquid gas phase separa­

tion temperature, whereas the SMS A underestimates estimates it [30]. For 

this reason we use the Zerah Hansen approach [134] in which is an interpola­

tion between SMSA and HNC. For the binary system the direct correlation 

function (OZ equation) is given by, 

hab{k) = Cab{k) + ^ PiCai{k)hib{k) (5.43) 
i=a,6 

We then have, 

lab{r) = hab{r) - Ca6(r) (5.44) 

Using Eq. 5.44 in Eq. 5.43 we have, 

lab{k) = Yl PiCai{k){cib{k) + -fit,{k)) (5.45) 
t=a,6 

We then solve for jaa, lab, Iba, Ibb- The Zerah Hansen closure is of the 

form 

C'c'p'gabir) = exp{-pV^\r)) 

^ , exp[r»ir){r'>{r)-pVf{r))]-l\ ^^ ^^^ 
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where VR and VA are given by 
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VR = { 

Vir)-Vmin r< 

^ — ^min 

VA = < 

' TTj.m ' _ ' n 

V{r) r >r„ 

(5.47) 

c" and c^ are the concentrations of the species a and b. / is the interpolation 

function which interpolates between SMSA and HNC approximation. 

f — I — exp 
a aba 

(5.48) 

a is switch parameter from HNC to SMSA. In the limit of a —>• oo we have 

SMSA and HNC in the limit a -)• 0. 

5.4.2 Estimate of Switching Parameter 

The parameter a, which switches the relation between HNC and SMSA; is 

both a function of density as well as temperature. We propose a fit for a as 
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Figure 5.4: Comparison of Pressure vs Temperature Isotherms from the 
Zerah Hansen scheme and equation of state (EOS) obtained from MD simu­
lation. Isotherms considered are for T = 0.4,0.5 and 0.6. 

a function of temperature and density. The way to choose a in general is 

through the thermodynamic consistency. As discussed earlier what we mean 

by thermodynamic consistency is that the thermodynamic equation of state 

obtained from the virial route or the compressibility route should match. The 

ZH scheme was originally proposed [134] with success to solve the problem of 

thermodynamic inconsistency for the Lennard Jones potential for HNC/PY, 

this scheme does not yield an a which results in thermodynamic inconsistency 

for the KABMLJ. Though it would be desirable to have such a scheme for the 

KABMLJ, it is not of primary interest to us. In this project we are satisfied 
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03 

Figure 5.5: Pressure vs density isotherms for the temperature range T = 
0.9 - 0.4. These calculations have been done using Zerah Hansen scheme. 

with an a which yields pressures and temperatures that match simulation. 

We are interested in getting the spinodals and the entropy (later section), 

for which we need to have good estimates of the pressure and energy. In 

order to get a fit for a as a function of temperature and density we compare 

energy and pressure from molecular dynamics simulation to the pressure and 

energy from the Zerah-Hansen scheme for various a. Tabulated in tables 

5.1-5.12 are the pressures and energy calculated for various values of a for 

three different temperatures for densities 1.0,1.1,1.15,1.2 and 1.25. The 

error estimate between the simulation and the ZH equations for the pressure 

and energy (Shown in Fig 5.6) are studied as a function of a for selected 
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p ^ 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

pressure 
5.732041 
6.458 
6.384 
6.316 
6.196 
6.094 
5.896 
5.864 
5.731 
5.707 

error (%) 
0 
12.66 
11.37 
10.19 
8.10 
6.32 
2.86 
2.31 
-0.0143 
-0.424 

energy 
-5.218465 
-5.124 
-5.134 
-5.144 
-5.160 
-5.175 
-5.202 
-5.207 
-5.225 
-5.229 

error (%) 
0 
-1.80 
-1.60 
-1.42 
-1.10 
-0.82 
-0.299 
-0.21 
0.1415 
0.203 

a 
MD 
2.431 
2.586 
2.741 
3.051 
3.362 
4.123 
4.270 
5.000 
5.150 

Table 5.1: Pressure and temperature for various a. for inverse temperature 
/? = 1.0 and density p = 1.1 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 

cases. The a which gives minimum errors for the energy and pressure are 

different. We choose an optimum a, which minimizes the errors in both these 

parameters. The energy is found not to be so sensitive to a but the pressure 

is. The optimum a{p, P) is nonlinear in p and /3. Since the energy is not very 

sensitive to a, we try a simple linear fit to p and ^ to reproduce the simulation 

results. Coefficients in the linear relation are further tuned by inspection so 

that the pressures away from the spinodal points match the simulation well. 

We find the form of a = 11.17 -11.17p + 6.65/3, to be a reasonable fit for the 

densities studied here. We compare the isotherms from this scheme to the 

isotherms obtained from equation of state for temperatures T = 0.4,0.5,0.6 

(See Fig.5.4). These equation of states were obtained from [100]. We then 

calculate isotherms for reduced temperature T = 0.4 - 0.9. (See Fig. 5.5). 

The spinodal points are finally obtained from the condition | ^ = 0 
dp 
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p 
1.1 

/? 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 

pressure 
3.943859 
4.627 
4.552 
4.485 
4.368 
4.270 
4.064 
3.958 
3.947 
3.936 
3.925 

error (%) 
0 
17.32 
15.43 
13.72 
10.76 
8.28 
3.05 
0.377 
0.0858 
-0.197 
-0.47 

energy 
-5.488472 
-5.390 
-5.4058 
-5.417 
-5.433 
-5.446 
-5.473 
-5.488 
-5.489 
-5.491 
-5.492 

error (%) 
0 
-1.638 
-1.455 
-1.29 
-1.00 
-0.76 
-0.26 
-0.0078 
0.020 
0.046 
0.071 

a 
MD 
2.689 
2.887 
3.086 
3.482 
3.879 
5.0 
5.8 
5.9 
6.0 
6.1 

Table 5.2: Pressure and temperature for various a for inverse temperature 
/? — 1.25 and density p = 1.1 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 

p p 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 

pressure 
1.947087 
2.673 
2.600 
2.536 
2.427 
2.338 
2.178 
2.114 
2.090 
1.992 
1.966 
1.953 
1.942 
1.920 

error (%) 
0 
37.31 
33.57 
30.25 
24.64 
20.08 
11.88 
8.58 
7.35 
2.31 
0.972 
0.349 
-0.245 
-1.35 

energy 
-5.790953 
-5.692 
-5.701 
-5.709 
-5.723 
-5.734 
-5.754 
-5.762 
-5.765 
-5.777 
-5.788 
-5.782 
-5.783 
-5.786 

error (%) 
0 
-1.702 
-1.54 
-1.40 
-1.168 
-0.97 
-0.63 
-0.492 
-0.440 
-0.229 
-0.173 
-0.147 
-0.122 
-0.075 

a 
MD 
3.103 
3.370 
3.637 
4.172 
4.706 
6.000 
6.700 
7.000 
8.500 
9.000 
9.250 
9.500 
10.000 

Table 5.3: Pressure and temperature for various a for inverse temperature 
P = 1.65 and density p = 1.1 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 
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p 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 

Table I 

/3 
1.10 

).4: Pr 

pressure 
6.862516 
6.979 
6.945 
6.923 
6.882 
6.872 
6.862 
6.852 
7.243 

essure and 

error (%) 
0 
1.7 
1.20 
0.88 
0.28 
0.14 
-0.002 
-0.14 
5.54 

temperatui 

energy 
-5.459717 
-5.454 
-5.459 
-5.462 
-5.468 
-5.470 
-5.471 
-5.472 
-5.4157 

•e for variou 

error (%) 
0 
-0.0871 
0.0011 
0.057 
0.16 
0.189 
0.21 
0.23 
0.804 

s a for inv( 

a 
MD 
4.55 
4.70 
4.80 
5.0 
5.05 
5.10 
5.15 
5.20 

?rse tei 
fi = 1.1 and density p = 1.15 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 

p 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 

P 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 

pressure 
5.732776 
5.934 
5.901 
5.880 
5.840 
5.830 
5.821 
5.812 
5.803 
5.768 
5.751 
5.743 
5.735 

error (%) 
0 
3.51 
2.93 
2.57 
1.87 
1.71 
1.54 
1.38 
1.22 
0.615 
0.323 
0.181 
0.041 

energy 
-5.625903 
-5.608 
-5.612 
-5.615 
-5.621 
-5.622 
-5.623 
-5.625 
-5.626 
-5.632 
-5.6334 
-5.634 
-5.635 

error (%) 
0 
-0.316 
-0.235 
-0.183 
-0.085 
-0.061 
-0.038 
-0.0160 
0.0063 
0.0925 
0.133 
0.1538 
0.173 

a 
MD 
4.55 
4.70 
4.80 
5.0 
5.05 
5.10 
5.15 
5.20 
5.40 
5.50 
5.550 
5.60 

Table 5.5: Pressure and temperature for various a for inverse temperature 
/3 = 1.25 and density p = 1.15 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 
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p 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 

/3 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 

pressure 
3.789415 
3.796 
3.788 
3.557 
3.772 
3.764 
3.757 
3.749 

error (%) 
0 
0.17 
-0.034 
-0.242 
-0.44 
-0.64 
-0.8461 
-1.04 

energy 
-5.914100 
-5.921 
-5.925 
-5.923 
-5.924 
-5.925 
-5.926 
-5.9279 

error (%) 
0 
0.122 
0.140 
0.157 
0.175 
0.192 
0.209 
0.226 

a 
MD 
5.30 
5.35 
5.40 
5.450 
5.50 
5.550 
5.60 

Table 5.6: Pressure and temperature for various a for inverse temperature 
/3 = 1.65 and density p = 1.15 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 

p 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 

/? 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

pressure 
10.5340 
11.339 
11.221 
11.113 
10.921 
10.757 
10.646 
10.561 
10.540 
10.521 
10.482 

error (%) 
0 
7.64 
6.52 
5.49 
3.68 
2.11 
1.06 
0.25 
0.06 
-0.12 
-0.48 

energy 
-5.352063 
-5.257 
-5.274 
-5.290 
-5.318 
-5.3418 
-5.357 
-5.370 
-5.373 
-5.376 
-5.3815 

error (%) 
0 
-1.76 
-1.44 
-1.15 
-0.63 
-0.1904 
0.109 
0.33 
0.39 
0.44 
0.550 

a 
MD 
2.431 
2.586 
2.741 
3.051 
3.362 
3.600 
3.80 
3.85 
3.9 
4.0 

Table 5.7: Pressure and temperature for various a for inverse temperature 
/? = 1.0 and density p = 1.2 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 
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p 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 

/? 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 

pressure 
8.210453 
8.985 
8.864 
8.75 
8.566 
8.407 
8.295 
8.23 
8.203 
8.1745 

error (%) 
0 
9.43 
7.97 
6.64 
4.33 
2.39 
1.04 
0.274 
-0.0877 
-0.437 

energy 
-5.689269 
-5.598 
-5.615 
-5.631 
-5.657 
-5.680 
-5.696 
-5.705 
-5.709 
-5.713 

error (%) 
0 
-1.59 
-1.29 
-1.02 
-0.55 
-0.15 
0.120 
0.277 
0.351 
0.422 

a 
MD 
2.689 
2.887 
3.080 
3.482 
3.879 
4.20 
4.4 
4.5 
4.6 

Table 5.8; Pressure and temperature for various a for inverse temperature 
/3 = 1.25 and density p = 1.2 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 

p 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 

/? 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 

pressure 
5.763603 
6.455 
6.336 
6.230 
6.050 
5.9026 
5.832 
5.810 
5.788 
5.767 

error (%) 
0 
12.01 
9.94 
8.10 
4.97 
2.41 
1.19 
0.80 
0.431 
0.0658 

energy 
-6.044759 
-5.965 
-5.981 
-5.996 
-6.021 
-6.041 
-6.051 
-6.0544 
-6.0573 
-6.060 

error (%) 
0 
-1.31 
-1.04 
-0.801 
-0.38 
-0.051 
0.108 
0.159 
0.209 
0.25 

a 
MD 
3.103 
3.370 
3.637 
4.1724 
4.7068 
5.00 
5.10 
5.20 
5.300 

Table 5.9: Pressure and temperature for various a for inverse temperature 
P = 1.65 and density p = 1.2 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 
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p 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 

/? 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

pressure 
13.86074 
14.640 
14.493 
14.358 
14.119 
13.913 
13.860 

error (%) 
0 
5.62 
4.56 
3.59 
1.86 
0.381 
-0.0024 

energy 
-5.32987 
-5.244 
-5.265 
-5.285 
-5.320 
-5.350 
-5.357 

error (%) 
0 
-1.60 
-1.20 
-0.83 
-0.18 
0.37 
0.52 

a 
MD 
2.431 
2.586 
2.7413 
3.0517 
3.3620 
3.45 

Table 5.10: Pressure and temperature for various a for inverse temperature 
/3 = 1.0 and density p — 1.25 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a. that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 

p 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 

P 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 

pressure 
11.507220 
11.988 
11.838 
11.701 
11.628 
11.567 
11.538 
11.509 
11.463 
11.262 
11.207 

error (%) 
0 
4.18 
2.87 
1.68 
1.05 
0.52 
0.269 
0.019 
-0.38 
-2.12 
-2.607 

energy 
-5.665433 
-5.622 
-5.6437 
-5.663 
-5.6737 
-5.6824 
-5.6866 
-5.6909 
-5.697 
-5.726 
-5.733 

error (%) 
0 
-0.76 
-0.38 
-0.036 
0.14 
0.30 
0.375 
0.44 
0.56 
1.07 
1.20 

Q 

MD 
2.689 
2.887 
3.086 
3.2 
3.3 
3.35 
3.4 
3.482 
3.879 
4.0 

Table 5.11: Pressure and temperature for various a for inverse temperature 
P — 1.25 and density p — 1.25 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 
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Figure 5.6: Pressure vs a for two representative densities and temperatures 
(indicated in the figure) are shown. The dashed line is the true pressure 
which has been obtained from molecular dynamics simulation. 

5.5 Thermodynamic Approach to Glass Tran­

sition 

The basic idea of the thermodynamic approach to glass transition was dis­

cussed in section 1.3 of the introduction. In this section we go into the details 

of evaluating the replicated free energy in order to estimate the Kauzmann 

temperature. Consider m replicas of a liquid. We assume an artificial attrac­

tive interaction between the particles in these different replicas. Given the 
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p 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 

P 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 

pressure 
8.539 
9.131 
8.980 
8.846 
8.617 
8.588 
8.569 
8.551 
8.544 
8.533 
8.498 
8.430 
8.341 

error (%) 
0 
6.92 
5.16 
3.59 
0.91 
0.570 
0.353 
0.140 
0.056 
-0.068 
-0.47 
-1.27 
-2.32 

energy 
-6.0906 
-6.0300 
-6.051 
-6.070 
-6.1022 
-6.106 
-6.108 
-6.111 
-6.112 
-6.114 
-6.118 
-6.128 
-6.141 

error (%) 
0 
-0.99 
-0.64 
-0.33 
0.18 
0.258 
0.301 
0.34 
0.359 
0.38 
0.46 
0.62 
0.82 

a 
MD 
3.103 
3.370 
3.637 
4.1724 
4.25 
4.30 
4.35 
4.37 
4.40 
4.500 
4.706 
5.000 

Table 5.12: Pressure and temperature for various a for inverse temperature 
P = 1.65 and density p = 1.25 for the KABMLJ. Errors are relative to the 
MD simulation (whose pressure and temperature are indicated in the first 
row). The a that yields the lowest error for both pressure and temperature 
is chosen for the linear fit. 

interaction between different replicas the replicated Hamiltonian is 

"̂̂  = 2 S ^̂^̂  - 4) + ̂  S S "'̂ ^̂  ~ ̂ '') (5.49) 
i=l,Af/:=l,m t=l ,nfc<i=m 

Where w is the attractive term between the replicas, v is the inter atomic 

potential, k is the replica index and i , j are the particle indices, and e is 

the control parameter which controls the interaction between the replicas, 

which is switched to zero at the end. We then write the replicated partition 

function as 

Zn. = j ^ / n n {d'x>l)exp[-?Hr„) (5.50) 
*• •'' -^ i=l,N k=l,m 

The idea of the replica formalism for the structural glasses is, that when 
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the configurational entropy of the system is finite (in a liquid), and e is 

made to go to zero, the system has access to exponential number of states. 

But at the Kauzmann temperature where the configurational entropy of the 

system is not extensive any more, the system is stuck to a very small number 

of states. This scenario which leads to a thermodynamic transition at the 

Kauzmann temperature is captured using the replica formalism. 

5.5.1 Replicated Free Energy for the One Component 

Atomic Liquid 

For the sake of simplicity we will explain these ideas for a mono atomic liquid, 

which will be generalized later to the binary case. The partition function for 

such a mono atomic liquid is written using center of mass coordinates TJ and 

the relative coordinates uf, with x* = r̂  + uj' as follows, 

^m = }-J u id'n) n n (̂ '"i) n ("^'-^(E^')) (̂ -si) 
• "̂  i=l,N i=l,Nk=l,m i=l,N k 

X exp -P'^v {ri - Tj + u'l - ufj - /3e E E '^^'^'i ~ "i) 
i<hk i k,l 

k, I are replica indices, i, j are particle indices. This would imply studying 

a system of "replica molecules''' each of them consisting of m atoms, which 

forms a loop or a cage. If the temperatures are low, these atoms in the cage 

would vibrate with a small amplitude. It is reasonable to use a harmonic 

potential as inter replica potential, this is called the small cage expansion. 
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We make a variable change e = ^ . The partition function is now written as, 

^m = j-J u {d\ n n (̂ '"') n ^^'^^Y.'^I)) (5-52) 
i=l,Af i=l,Nk=l,m i=l,N k 

i<j,k 

If we were to Taylor expand the potential and consider terms up to the 

quadratic order of relative coordinates, we will have the following form for 

the partition function. 

Zm = y * n ^ ' ^ - ' I I ^ ' " ' (rn'5{J2um exp i-^mY,v{ Vi - rj) 

exp 
i<j k,ii,i' a,b 

(5.53) 

We notice that we have a Gaussian integral for the evaluation of the partition 

function. If we were to work directly with - = 0 and do the integration over 

the Gaussian relative variables, we would have the following form of the 

partition function. 

= C / J J d^Viexp (5.54) 

Here C is given by. 

C = 
m^i(v/7r)'^3{m-i) 

TV! 
(5.55) 
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The matrix M is 3iV x 3N matrix defined as follows 

M(î )(jV) = Sij I J ^ Vf,^{ri - rfc) J - v^^^in - TJ) (5.56) 

where v,j.„ = 3^-^. On taking the logarithm; using a further approximation 

/exp \-^~^Trlog{m^) \ ^ exp - ^ ^ {Trlog{m^)) , the replicated free 

energy is written as follows: 

2m 2m mN 2m 

(5.57) 

Much of the effort from this point is to calculate the Trace spectrum of 

instantaneous normal modes. We make the following approximation. 

^v^:,{ri - Tk) « V o / d^g*[r)Ilv{r) = To (5.58) 

This approximation would mean that the diagonal terms do not fluctuate 

much at high densities. Therefore we could substitute for them with a con­

stant value To- We can factor out the terms containing TQ and the write the 

trace of the logarithm for a liquid at temperature T*, the temperature scaled 

by m. The "*" denotes the scaled temperature. 

{TrlogM)* = 3Nlog{r„) + [Trlog (5.59) 

We could now do a perturbative expansion in the powers of —. The p*'' 

order term in the perturbative expansion of the trace would then be 
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P'o \ I 

(5.60) 

We then need to evaluate the ja*'' order correlation function. If we assume 

the chain approximation, this would be easily calculated through the pair 

correlation function. We can thus write the p"* term in the trace expansion 

as 

7- = E/•^-.•^--'fa.»-(-.-%)K..(-.-^) 
/ i i - . / i p 

. .• 'y^p_l^p(37p_iXpjt;^p^j (Xp — Xi)\ 

^ Yl j dxidx2....dxp[g*{xi - X2)Vf,,f,^{xi - X2)] 
M l - M p 

...[g*{xp - xi)v.^, {xp - xi)] (5.61) 

This integral is easily done in the Fourier space. We define Fourier trans­

formed functions a{k) and b{k) as follows 

Ig*{rK.ir)e""-d'r = 6,,a{k) + (^ - ^^S,^ b{k) (5.62) 

Thus the p*'' order term in the trace expansion would be 

Tp= f d^k \{a{k) + '^b{k)) " + 2 fd^k \{a{k) - ^Kk))] (5.63) 
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{TrlogiPM))* = dlog{l5ro) + I SkL^ l^^^' ^ ~^^^^' 

'a{k) - \b{k) [(fklJ-I I rlO L. I \ ; ^ 3_̂  

where the function L3 is defined as 

Lz{x) = log{l - x) + X + x^ 1% (5.65) 

5.5.2 Replicated Free Fiuergy for Binary Mixture 

Let us consider the case of the KABMLJ system. The ideas are same as 

illustrated for the mono atomic case. The Hamiltonian is given by 

H= J2 V^'i^i-Xj) (5.66) 
l<i<j<N 

Here V^'' is the inter particle potential given by, 

Vp^ir) = 4 e p J ^ - ^ ] - V^,{r) (5.67) 

Where p, q run over particle type index A and B of the KABMLJ. The cutoff 

Vcut is given by 

Vkt(r) = [(Qal'Jrll^) - {3a'Jr!j]{r/r,,,)' (5.68) 
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We start from the replicated partition function 

157 

^ m — 
N+\N-] 

(5.69) 
i=l,N 

X exp -/3m Y^ V'^ir, - r,) - ! ^ r r / o 5 ( ^ M ) 

^<J 

Where M is a Nd x Nd matrix given by the following relation, 

^ M b v ) = -̂ 'i * • * CM 

- Vmn - r,) (5.70) 

A'̂ "'" and A'̂ " are the number of A and B type particles. 

Where V̂ ^ is defined as ^^ ^ , r̂  are positions of the molecules at the 

effective temperature T* = ~ . The so called quenched approximation is 

invoked, 

exp 
m — \ 

Trlog{m) exp 
m — \ 

{Trlog{(5M))^^ (5.71) 

We substitute for this in the partition function to get, 

Zm = m'''l'y/{2T^f''^"'-'^Zu,{0,m)exp 
m — \ 

{Trlogi^M))^^ (5.72) 

This approximation becomes exact near the Kauzmann temperature when 

m -^ 1. On normalizing the matrix elements we have. 

V r^^^"^''''^ (5.73) 
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where Cp and c, are the concentrations of the p"* and q"* components of the 

mixture, rp is defined as 

rp = Y,Cppjd'rgp^{r)\l\V^'{r) + ^ (5.74) 

The free energy now becomes 

^ ^ 2m ^^ ^ 2m ^^ ^ mN 

+ ^ ~ (cp/off(/Srp) + Cglogiprg)) 

log{Zug{P, m) 

+ 

2m 

1 ( m - 1 ) 

iV 2m 
Trlog (5.75) 

We then write the free energy up to second order in Y^f. C^f-u- ^^^ of ̂ ii 

is resummed within the chain approximation. The free energy is then given 

by 

mm,P) = - A / o g ( m ) - ^ ^ ^ ^ ^ ^ M 2 7 r ) 

1 

+ 

mN 
d{m - 1) 

2m 
1 m - 1 

2iV 2m 

log[Ziig{^,m)] 

Cplogi^rp) + CglogiPrg)] 

{{Trcr,,.cr,,,:) - dN) 
, i(^f;/T.?\ 

iV 2m 
p=2 P / 

(5.76) 

We once again encounter a p point correlation function 
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{TrCn = E E fd'z,..d'z,ffg''--'^^{zr...z,)Cf,\%iz2-z^) CX%{z,-z,) 
qi..qp{A,B} fii-Hp 

(5.77) 

Using the chain approximation, we write the correlation as follows 

{TrC) = f d^.-cfz, E T.P'^'^\VMzi-Z2) Cll%{zr>-zMzp-Zi) 
Hl-UpQl-qp 

(5.78) 

We then compute the traces in the Fourier space, for that we define a 

matrix D whose elements are given by 

£)P9 
HI/ = J dW{r)C'^l{r)e'"' (5.79) 

If we were to decompose this matrix into a diagonal (longitudinal) and a 

traceless (transversal) part, 

Df:i{k) = 5,.a^''{k) + ( ^ ^ - ^ ) ffik) (5.80) 

We then can diagonalize in the space of its components, corresponding to 

the longitudinal 

Dfl' = a^{k) + "^(^"{k) (5.81) 

and the transverse part 

D^' = oF^ik) - V ' ( fc) (5-82) 
a 
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The eigen values then are 

All = \[Df + Dl" + ^{{D^^" - Dp'+ ^D^i')] (5.83) 

m = \[D^ + Dl" - ^{{Dl'- Dir + ^D^] 

The total replicated free energy is now given by, 

<t>{mj) = ^log{m) - -̂ "̂̂  ^hog{2Tr) - -^log [Zu,{P, m)] (5.84) 

"̂̂  " ^̂  ^ / 0 E aHk)a^''{k)h'^'{k) + ( l - ^ ) bHk)V'{k)h'm 
2m ^ .. ^.. 

ijk 

X — [H\{k) + /Z||(̂ ) + {d- l)(Ax(/c) + ti±{k))] 

( m - 1 ) 
j d'rpY,g'^^{r)Y,K2{r)Y 

2m 

We then compute the complexity from 

Egg — m^—— — Siiq - Ssoi (5.85) 

Siiq is the entropy of the liquid at effective temperature T, which would 
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equal the actual temperature at m = 1. The solid entropy to be given by 

Ssoi = -log{2ne) - — {Trlog{/3m)) (5.86) 

The condition of the Kauzmann temperature is 

'^sol — Jliq (5.87) 
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Figure 5.7: Energy the Liquid for densities p = 1.1,1.15,1.20,1.25 got from 
simulation and ZH scheme. 
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5.5.3 Calculation of the Kauzmann Temperature 

In order to evaluate the Kauzmann temperature, we need to calculate the 

entropy of the liquid and the solid phase. The entropy of the liquid is obtained 

via the following thermodynamic equation, 

5,i,(p, T) = Si + /?e«,(/3) - [ d0'eu,{P') (5.88) 

Here, S^ is the entropy of a perfect gas with density p, in the binary mixture 

case it is given by, 

5° , = 1 - log{p) - clogic) - (1 - cjlogil - c) (5.89) 

c here is the concentration of one of the components. The internal energy 

eiiq is obtained from the ZH scheme. We show in Fig 5.6 the potential energy 

match from ZH and simulation for p = 1.0,1.05,1.10,1.15,1.20 as a function of 

temperature. This is further proof that the fits for the interpolation function 

is a good one. The entropies of the liquid phase for these densities are shown 

in Fig 5.7. The entropy of the solid phase is given by 

Ssoiip, T) = 3/2 (1 + /05(27r)) - ^ {TrlogWM)) (5-90) 
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where {Trlog{l3M)), can be obtained using Eq. 5.84-5.85; at m = l and com­

paring with Eq. 5.86 

{TrlogiPM)) = ^Klog{Prj,) + c.logWr,)] (5.91) 

ijk 

/

fjdl. 

—^ [UXnik] + f,\\{k) + {d- l){X^{k) + Mx(A;))] 

ay fiiy 

The ZH equations become unstable at low temperatures. We need to 

extrapolate the liquid and the solid entropies. The liquid entropies are ex­

trapolated using the power law [96] [30], 5,i,(T) = aT''^^^ + h. Solid phase 

entropy is extrapolated as Ssoi — a + blog{T) [31]. The configurational en­

tropy Ssoi — Siiq is illustrated in Fig 5.8. The Kauzmann temperature is found 

as the temperature when Ssoi — Sug = 0. 

5.6 Phase Diagram 

We now have the complete phase diagram which bounds the limit of stabil­

ity of a liquid. We compare our results with earlier computer simulations 

(illustrated in Fig 5.9). The spinodals points deviate from those of the sim­

ulations at low temperatures, this we attribute to the extrapolated equation 

of state in the case of computer simulation. Also the Kauzmann temperature 

happens to be slightly higher with the Mezard-Parisi scheme as compared to 
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w 

Figure 5.8: Excess entropy of the liquid relative to the ideal gas for densities 
p = 1.0,1.05,1.10,1.15,1.20,1.25 calculated through thermodynamic integra­
tion. 

those calculated from simulation. This we attribute to the harmonic resum-

mation scheme which becomes less accurate as the density is lowered. We 

have qualitative consistency with computer simulations, and we show that 

indeed the two limits of stability meet at a finite temperature. The Sastry 

density in our case is slightly under estimated at p « 0.95 as compared to 

p « 1.08 in simulations. 
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CO 

3 -

T -

- p=1.00 
^ p=1.05 
-• p=1.1 
•^ p = 1 . 1 

-^ p=1.20 

Figure 5.9: The configurational entropy of the the liquid has been calculated 
for p = 1.0,1.05,1.10,1.15,1.20. The temperatures at which the configura­
tional entropy is zero is identified as the Kauzmann temperature for that 
particular density. 

5.7 Conclusions 

In conclusion we have demonstrated theoretically that the loci of the extreme 

limits of stability namely the ideal glass transition line and the liquid-gas 

spinodal curve intersect at a finite temperature. We find that our results [11] 

match qualitatively well with the eaxlier computer simulations. 
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Figure 5.10: Depicted in the phase diagram s the spinodal lines and the 
ideal glass transition line. The spinodals are calculated from REMC (red 
circles), inverse compressibility (violet star), fit from the equation of state 
(green diamond), thermodynamic integration (red dashed line) and analytic 
spinodal through the ZH scheme (violet circles). Glass transition line is 
calculated from VFT (blue diamonds), thermodynamic integration (green 
dotted line) and Mezard-Parisi scheme (magenta diamonds). The big violet 
star in the T = 0 indicates the Sastry density through simulation. 



Chapter 6 

Onset of Breakdown of the 

Stokes-Einstein Relation 

In the introduction we mentioned that the dynamics changes at the onset 

of slow dynamics temperature [104]. Above this temperature the liquid dis­

plays Arrhenius temperature dependence of diffusivity and super-Arrhenius 

dependence below. The situation below the onset temperature has been de­

scribed as energy landscape influenced [104]. In order to characterize this 

cross over one could examine various physical characteristic such as inherent 

structure energies, extent of heterogeneity etc. In this chapter we examine 

the Stokes-Einstein relation (S-E) and show that it breaks down at the onset 

temperature. 

For simple liquids at high temperatures the viscosity r] and the diffusivity 

D are related by the well known Stokes-Einstein relation. 

^ = ^ ( " ' 

167 
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T is the temperature and d is called the hydrodynamic diameter, it char­

acterizes the size of the particle. This relation yields d to be 

As one lowers the temperature below the onset temperature, this relation 

starts to break down yielding a varying d [21]. We wish to establish in 

this chapter that the Stokes-Einstein relationship indeed breaks down at 

the onset temperature of slow dynamics. We do these calculations for two 

densities p = 1.1 and 1.2 for the KABMLJ liquid whose onset temperature is 

known [101]. The onset temperature for density 1.1 is around 0.7 and that of 

density 1.2 is around 1.0 in KABMLJ reduced units [67]. In order to calculate 

the viscosity we use Miiller-Plathe's algorithm [84]. The diffusivity is also 

calculated simultaneously from the mean squared displacement (MSD). We 

will first describe Miiller-Plathe's method and then we discuss our results. 

6.1 Miiller-Plathe's Algorithm 

Consider a fluid subjected to shear. See Fig. 6.1. One could consider the 

flow to be in a series of layers as indicated in Fig 6.1. The velocity in each 

of the layer would be different depending on the boundary conditions. The 

momentum flux along z corresponding to the velocity gradient is given by 

JziPx) = -^-Q^ (6-3) 
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-Vx 

Jz(Px) 

Vx 

Lx 
Ly 

Figure 6.1: Simulation box showing the direction of atom velocities and 
momentum transfer along z-directions. 

The proportionality constant is defined as the the viscosity. The simulation 

box is of size Lz along the z-direction and one divides the the simulation 

box along the z-direction into N equal slabs as shown in Fig. 6.2. Miiller-

Plathe's method for calculating the shear viscosity involves the imposition of 

a momentum flux and measuring the velocity gradient in the steady state. 

It is done in the following manner. Consider the slab with z=0. One chooses 

the particle with the largest momentum p^ along the -x direction. One also 

chooses the the atom with the largest momentum along the -|-x direction from 

the slab corresponding z = Lz/2 and then one exchanges the x component 

of the velocity of these two atoms. This operation conserves the linear mo­

mentum, kinetic energy and the potential energy (relative positions remain 

unchanged) of the system. When many such operations are performed one 

has a velocity profile as illustrated in Fig. 6.2. After many such operations 
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the amount of momentum Ap^. transferred from the z = L^f^ to 2 = 0 is P^. 

The momentum flux is then given by 

j(Px) 
ZtLx-Ly 

(6.4) 

Here Lx, Ly are the lengths of the simulation box along the x and the y 

direction, t is the time interval over which the exchanges are made and the 

factor of 2 arises due to the periodicity in the system. The flow velocity Vx 

is calculated as an average over all the atoms. Under the condition that the 

momentum flux is small the velocity profile < ^ > would be linear. One 

can then calculate the viscosity from equation (6.3). 

z 

^ 

V 

• ^ -

• ^ 

^-

1^-

-^ 

-L7J2 

0 

-Lz/2 

Figure 6.2: Simulation box with velocity profiles shown as arrows. The 
different slabs have different velocities. 
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6.2 Results and Discussions 

We have used Miiller-Plathe's algorithm to calculate viscosity for the densi­

ties p = 1.1 and p = 1.2. We use a 750 atom Kob Andersen binary Lennard 

Jones system [67] (see chapter 1). The simulation box is divided into 16 

slabs as discussed in the previous section. We use a time step of 0.003 in 

KABMLJ units. We do the calculations for twelve temperatures varying be­

tween T = 0.35 — 1.60 for density 1.1. We have done simulations for 20-40 

million time steps. For density 1.2 we do simulations for 11 temperature 

between T = 0.59 — 1.99. We have done simulations for 20-65 million time 

steps. We calculate the velocity profiles as shown in Fig 6.3-6.4. We get 

the expected velocity profile. One notices that there is a slight hump in the 

middle, this is caused because the small [20] exchange period used. If one 

were to increase the exchange period one may have to do longer runs. So we 

let this be, since this does not effect the velocity gradient. 

0.04 

0.02 

0 

0.02 

P= 

' ' 

/A^—" 

. 1 ^ 1 

.1 

' 
T=1.64 
T=0.35 

• 

^ ^ 

' 
10 

Figure 6.3: velocity profile ?; as a function of the slab height z for density 1.1. 
These profiles have been calculated for temperatures between T=0.35-1.64. 
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p=1.20 

0.02 

-0.02 

-0.04 

Figure 6.4: velocity profile t; as a function of the slab height z for density 1.2. 
These profiles have been calculated for temperatures between T=0.59-1.99. 

We calculate the the viscosity and fit it to the VFT equation 

7](r) = r/ooexp 
AT^ 

T-T„ 
(6.5) 

Fig. 6.8 and Fig. 6.10 show very good fit of the viscosity to the VFT 

equation. We tabulate the fit parameter r/oo, A and To for densities 1.1 and 

1.2 in Table 6.1. 

p 
1.1 
1.2 

/?oo 

2.785 

3.00866 

A 
2.848 

3.65319 

T 
•'0 

0.20486 

0.2976 

Table 6.1: The fit parameters of viscosity vs temperature using the VFT (Eq 
1.1). 

The diffusivity was calculated from the mean squared displacement (MSD) 
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Figure 6.5: Mean squared displacement as a function of time for density 1.1. 
These calculation are done for temperatures between T=0.35-1.64. 

< r^ >. The diffusivity and the MSD are related via D =< r^ > /6t. Simu­

lation were done till the MSD showed linear behavior with time (Fig 6.5-6.6). 

This MSD was fit to a linear equation from which the slope is calculated to 

determine the diffusivity. This diffusivity was calculated for several temper­

atures shown in Fig 6.7. and Fig 6.9. The estimate of the particle size is 

sensitive to the errors in the diffusivity and viscosity from the simulations. 

In order to get a smooth curve of d vs T, to determine the onset tempera­

ture, the fits becomes necessary. At low temperatures the evolution of shear 

viscosity differs from the Arrhenius behaviour and is captured well by the 

VFT equation (Eq 6.5). For the diffusivity we use here a modified form of 

the VFT equation [21]. 

T 
D{T) = -exp 

ATQ 

'T-T„ (6.6) 
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Figure 6.6: Mean squared displacement as a function of time for density 1.2. 
These calculation are done for temperatures between T=0.59-1.99. 

p 
1.1 

1.2 

^ 
18.2344 

24.2196 

A 
5.0873 

3.65319 

T 
0.136002 

0.2767 

Table 6.2: The fit parameters of diffusivity vs temperature using the modified 
VFT. 

The fits parameters are tabulated in Table 6.2. 

We then calculate the hydrodynamic diameter as a function of temper­

ature. We note that for density 1.1 (Fig. 6.11) the hydrodynamic diameter 

is no more a constant below T ~ 0.7 and for density 1.2 (Fig. 6.12) this 

happens around T ~ 1.0. This is precisely around the temperature predicted 

for the onset temperature for slow dynamics [101]. 

6.3 Fractional Stokes-Einstein 

A common explanation for the break down of S-E equation in supercooled 

liquids is the presence of the so called dynamical heterogeneity (DH) [116, 
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Figure 6.7: DifFusivity vs Temperature calculated from the MSD for density 
1.1, the fit modified VFT given in the text. 

123]. In a supercooled liquid one finds spatially correlated regions of varying 

mobility that persist for finite life times. These regions grow in size as one 

decreases the temperature. These regions with varying mobility has been 

thought of to cause a break down in S-E. Though the S-E relation fails, 

another empirical relation, the so called fractional Stokes-Einstein (FSE) 

D ~ (r/r/)« (6.7) 

is seen to hold for many hquids. This empirical law seems to be consistent 

for KABMLJ below the onset temperature (Fig 6.13,6.14). We estimate K 

for two densities p = 1.1 and 1.2 to be 0.83 and 0.82 respectively. It must be 

pointed out that DH explanation is still under active investigation and not yet 

a completely accepted theory. Recent MD simulations [16] using ST2 model 

for water show that the same FSE relation holds both for mobile as well 
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Figure 6.8: Viscosity vs Temperature calculated from the MSD for density 
1.1, the fit VFT given in the text. 

as immobile regions. Further recent simulations [68] on polydispersed hard 

spheres show the break down of S-E was primarily due to particles involved 

in hopping dynamics, which do not obey the S-E relation. This could also 

be a possible scenario for the case of KABMLJ at the onset temperature. 

6.4 Conclusions 

We have calculated here the viscosity and diffusivity through an algorithm 

given by Miiller-Plathe for the KABMLJ liquid. We investigated the tem­

peratures where the well known Stokes-Einstein relation starts to fail at the 

onset of slow dynamics temperature. We do these calculations for densities 

1.1 and 1.2. It is know that the KABMLJ liquid has an onset temperature of 

around 0.7 and 1.0 for densities 1.1 and 1.2 respectively. We conclude that 

indeed the Stokes-Einstein relation breaks around these temperatures and 
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Figure 6.9: Diffusivity vs Temperature calculated from the MSD for density 
1.2, the fit modified VFT given in the text. Data of Bordat, et al., [21] is 
compared. 

fractional S-E consistent with data below the onset temperature. 
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Figure 6.10: Viscosity vs Temperature calculated from the MSD for density 
1.2, the fit VFT given in the text. Data of Bordat, et al., [21] is compared. 
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Figure 6.11: Hydrodynamic diameter calculated as function of non equi­
librium temperature for density p = 1.1. The onset of break down of the 
Einstein stokes relation at around T=0.7. 
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p=1.2 

Figure 6.12: Hydrodynamic diameter calculated as function of non equi­
librium temperature for density p = 1.2. The onset of break down of the 
Einstein stokes relation at around T=1.0. 
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Figure 6.13: Fractional S-E is consistent for the KABMLJ liquid with p = 1.1 
below the onset temperature with K = 0.837. The onset of break down of 
the Einstein stokes relation at around T=0.7. 
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Figure 6.14: Fraction S-E is consistent for the KABMLJ liquid with p = 1.2 
below the onset temperature with K = 0.82. The onset of break down of the 
Einstein stokes relation at around T=1.0. 
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