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Synopsis

This is a synopsis of the thesis entitled “Phase Behaviour of Supercooled

Liquid Silicon”, delivered by Vishwas V Vasisht of the Theoretical Sciences

Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru,

India.

In this thesis an exhaustive simulation study of supercooled silicon (mod-

eled by Stillinger-Weber potential for silicon) is presented. The study can be

segregated into three main topics, namely (1) liquid-liquid transition, critical

point and phase behaviour, (2) structural and dynamic properties of liquid

phase and (3) crystal nucleation. These three topics are organized into six

chapters. The introductory chapter covers the investigations of liquid sili-

con pursued over three decades, where salient experimental, theoretical and

simulation results are elaborated. In the chapter 2, a brief discussion of com-

putational methods used in this thesis is given. The chapter 3 is devoted to

the work on phase behaviour of supercooled silicon, in which an evidence for

the existence of a liquid-liquid critical point associated with the liquid-liquid

phase transition is presented. The phase diagram of supercooled silicon which

includes the liquid-liquid coexistence line, the liquid-liquid critical point, the

loci density extrema, compressibility extrema and spinodal is also presented

in this chapter. The chapter 4 pertains to the study of structural and dy-

namic properties of supercooled silicon. As the system transform from a

high density liquid to low density liquid, the network of atoms having local

tetrahedral arrangement grows and in the low density phase, the network

spans the whole system. A strong relationship between local structural ar-

rangement and diffusivity over a wide range of temperature and pressure is
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found. A hierarchy of anomalies related to thermodynamics, dynamics and

structural order (as first discussed is the case of water) is also found in liq-

uid silicon. The last section of this chapter pertains to the breakdown of

Stokes-Einstein (SE) relationship. The locus of SE breakdown temperature

at different pressure values is found along with the loci of onset temperature,

dynamic heterogeneity and compressibility maxima. The breakdown of SE

relation is found to happen in the vicinity of onset temperature. In the chap-

ter 5 the crystal nucleation aspect of supercooled silicon is presented. The

crystal nucleation barrier as a function an order parameter which is related

to the crystalline nucleus size is calculated along different isobars varying

from positive to negative pressure values and for various under-cooling tem-

peratures (18% to 35%). The nucleation barrier and critical nucleus size

is found to decrease by an order of magnitude, approaching the low den-

sity liquid phase. The role of low density liquid atoms in the mechanism

of crystal nucleation in silicon is analysed. A wetting layer of low density

atoms is found around the crystalline nucleus. In the concluding chapter

the important question about the reliability of Stillinger-Weber potential in

describing the behaviour of real silicon is discussed. Structural, dynamical

and thermodynamic quantities obtained from the SW potential is compared

with available ab initio simulations data and experimental data, to provide

a critical assessment of the applicability of classical simulation results to

real silicon. This chapter ends with a summary of results discussed in this

thesis.
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bump at 4.5Å, which grows into a full peak (for reference the

pure crystal g(r) shown - blue dashed-line). . . . . . . . . . . . 71

xiii



3.2 Equation of state from NPT MD and NVT MD simulations.

Nine isotherms at temperatures above and below the critical

temperature of the liquid-liquid transition are shown. The

open symbols represent data from the NPT MD simulations

and the opaque symbols represent data from the NVT MD

simulation. The solid lines are polynomial fits to the data

points. (a) The isotherms above T = 1133K are monotonic

and continuous and below T = 1133K show a jump in density

for small change in pressure in constant pressure simulations.

(b) The NVT MD simulation data for T < 1133K show non-

monotonic behaviour indicating a first order phase transition. 73

3.3 Isothermal compressibility against pressure for different tem-

peratures from the NPT MD simulations. All the isotherms

shown in the figure are for temperatures above the liquid-

liquid critical temperature. With the decrease in temperature

the maximum value of the compressibility along an isotherm

increases, suggesting an approach to the critical point. The

lines represent the compressibility values calculated from the

equation of state by numerical differentiation. The symbols

represent the compressibility calculated from volume fluctua-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Equation of state of supercooled liquid silicon obtained from

first principles MD (FPMD) simulations displaying a van der

Waals-like loop for T < 1232K. [From Ganesh et al. [59] with

permission.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Density against temperature for different isobars from the

NPT MD simulations. The temperatures associated with the

maxima along each isobar defines the TMD line. . . . . . . . . 77

xiv



3.6 (top panel) Pressure against temperature for different isochores

from the NVT MD simulations. The pressure and tempera-

ture values at the minimum obtained along each isochore for

varying density define the TMD line in the (P, T ) plane. (bot-

tom panel) Isochores obtained from the NVT MD simulations

at the lowest three densities. Below these densities, the system

cavitates before the isochore passes through a minimum. . . . 77

3.7 Pressure against temperature for different isochores from par-

allel tempering MC simulations. The location of the maxima

along the isochores define the TMinD line. . . . . . . . . . . . 78

3.8 Isothermal compressibility against temperature for different

isobars from NPT MD simulations. The location of the min-

ima along the isobars define the TMinC line. . . . . . . . . . . 78

3.9 Isothermal compressibility against temperature for different

isobars from NPT MD simulations. The location of the max-

ima along the isobars define the TMC line. . . . . . . . . . . . 79

3.10 Pressure against density for high temperature isotherms (T >

2200K) from the NPT MD simulations. The location of the

minima along the isotherms define the spinodal line. . . . . . . 80

3.11 Pressure against density for low temperature isotherms (T <

2200K) from MD simulations. The dashed line indicate the

quadratic extrapolation of the form p0 + a1× (ρ− ρ0) + a2×

(ρ− ρ0)
2 which are used to locate the spinodal. . . . . . . . . 81

3.12 Applied pressure against measured density for different tem-

peratures from the NPT MD simulations. The stretching rate

in (a) corresponds to 0.1MPa/ps and in (b) corresponds to

10.0MPa/ps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.13 Pressure against temperature showing tensile limits obtained

from different stretching rates along with the estimated spin-

odal line from NPT MD simulations. . . . . . . . . . . . . . . 82

3.14 Density against temperature for four different isobars from the

NPT MD simulations. The jumps in the isobars were used to

identify the liquid-liquid transition line. . . . . . . . . . . . . . 84

xv



3.15 The phase diagram of supercooled liquid silicon in pressure-

temperature (P, T ) plane obtained from simulations. The

phase diagram shows the the location of (i) the liquid-crystal

phase boundary [179] - brown line, (ii) the liquid-gas phase

boundary and critical point - green line and blue star, (iii) the

liquid-liquid phase boundary and critical point - blue square

and brown star, (iv) the liquid spinodal - black circles (v)

the tensile limit - brown square (vi) the density maximum

(TMD) and minimum (TMinD) lines - red open and filled cir-

cles, and (vii) the compressibility maximum (TMC) and mini-

mum (TMinC) line - green closed and open circles. Lines join-

ing TMD and TMinD (dot-dashed), TMC and TMinC (solid),

Spinodal (black dotted line) are guides to the eye. . . . . . . . 85

4.1 The pair correlation function g(r) for crystal, low density liq-

uid, high density liquid and high temperature liquid calculated

from (a) NPT MD simulations and (b) minimised equilibrium

configurations or inherent structure (IS). . . . . . . . . . . . . 89

4.2 (a) The pair correlation function g(r) and (b) the structure

factor S(q) for different temperatures at P = 0GPa. The

inset in (a) shows the fifth neighbour distribution. . . . . . . . 91

4.3 (a) The pair correlation function g(r) and (b) the structure

factor S(q) for different temperatures at P = −1.88GPa. The

inset in (a) shows the fifth neighbour distance distribution. . . 92

4.4 (a) The pair correlation function g(r) at different tempera-

tures for P = 0GPa. The position of the first minimum of

g(r) remains unchanged till T < 1259K. (b) The pair correla-

tion function g(r) at different pressures for T = 1196K. The

position of first minimum of g(r) remains fairly unchanged for

a wide range of pressure values. . . . . . . . . . . . . . . . . . 93

xvi



4.5 Coordination number against pressure at different tempera-

tures. In the high density liquid (HDL) phase the coordina-

tion number varies from 4.6 to 5.4. In the low density liquid

(LDL) phase the coordination number is around 4.2. . . . . . 93

4.6 (a) The distribution of tetrahedrality order distribution P (qtetra)

for four different phases at P = 0GPa. (b) The distribution

of tetrahedrality order P (qtetra) for T = 1070K considering all

atoms (dark green line), only four coordinated atoms (green

line) and > 4 coordinated atoms (red line). . . . . . . . . . . . 95

4.7 (a) The distribution of local orientational order P (q3) for four

different phases at P = 0GPa. (b)The distribution of local

orientational order P (q3) for T = 1070K considering all atoms

(dark green line), only four coordinated atoms (green line) and

> 4 coordinated atoms (red line). . . . . . . . . . . . . . . . . 95

4.8 Snapshots of configurations at different temperatures obtained

from NPT MD simulations. The left panel corresponds to

P = 0GPa and the right panel corresponds to P = −1.88GPa.

The low density liquid, LDL-like atoms are coloured green,

The bonded blue coloured atoms are LDL-like atoms belonging

to the largest RTN cluster in the system and the high density

liquid, HDL-like atoms are coloured red. . . . . . . . . . . . . 97

4.9 Snapshots of crystalline silicon at P = 0GPa and T = 1070K

obtained from NPT MD simulations. . . . . . . . . . . . . . . 98

4.10 (a) Average cluster size of RTN atoms as a function of tem-

perature for three different pressures. (b) Average cluster size

of RTN atoms as a function of pressure for three different tem-

peratures. The vertical bold line represents the temperature

corresponding to density maxima. . . . . . . . . . . . . . . . . 99

xvii



4.11 RTN cluster size distribution along (a) P = 0GPa isobar for

different temperatures and (b) T = 1384K isotherm for differ-

ent pressures. At high temperatures and high pressures RTN

cluster size distribution shows a stretched exponential decay

(top panel in (a) and (b)). In the region of density anomaly

we find a distinctly peaked distribution, which is indicating at

existence of an indissoluble RTN cluster. . . . . . . . . . . . . 100

4.12 The mean square displacement (MSD) as a function of time

for (a) P = 0GPa and (b) P = −1.88GPa obtained from

NPT MD simulations. The inset of (b) show the maximum

in the MSD at the crossover from the ballistic to the caging

regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.13 The diffusivity (D) of the system (calculated from the mean

square displacement) as a function of inverse temperature for

(a) P = 0GPa and (b) P = −1.88GPa obtained from NPT

MD simulations. Diffusivity changes from an Arrhenius to a

non-Arrhenius behaviour at both pressure values. . . . . . . . 103

4.14 (a) Diffusivity (D) against pressure for different temperatures.

Diffusivity decreases with decrease in pressure. (b) Diffusivity

against pressures for T = 1259K. Diffusivity goes through a

maximum at around 4.5GPa. . . . . . . . . . . . . . . . . . . 104

4.15 The intermediate scattering function F (q, t) as a function of

time for (a) P = 0GPa and (b) P = −1.88GPa calculated

from NPT MD simulations. We note that at low temperatures

(T = 1055K at P = 0GPa and T1171K at P = −1.88GPa)

data may not be well equilibrated. . . . . . . . . . . . . . . . . 106

4.16 (a) Relaxation time (τα) against inverse temperature at P =

0GPa and P = −1.88GPa. An Arrhenius to a non-Arrhenius

behaviour in relaxation times is found in both pressure values

(b) Relaxation time against pressure at T = 1198K, T =

1259K and T = 1384K. . . . . . . . . . . . . . . . . . . . . . 107

xviii



4.17 The viscosity of the system as function of inverse temperature

for P = 0GPa and P = −1.88GPa obtained from NPT MD

simulations. Dotted lines suggesting an Arrhenius behaviour

of viscosity at high temperatures. . . . . . . . . . . . . . . . . 108

4.18 The temperature dependent activation energy obtained from

(a) diffusivity and (b) relaxation time. We define a 5% devi-

ation in diffusivity data or a 5 − 15% deviation in relaxation

time data, from the constant high temperature value marks

the onset of slow dynamics. . . . . . . . . . . . . . . . . . . . 110

4.19 Viscosity calculated from stress auto-correlation function against

the structural relaxation time obtained from F (q, t) for P =

0GPa. Viscosity is proportional to the relaxation time. . . . . 112

4.20 The Stokes-Einstein ratio Dτα/T against the temperature for

different isobars. At high temperatures the ratio is constant.

A deviation from the constant value indicates at a breakdown

of SE relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.21 Diffusivity against τα/T show for three different pressure val-

ues. (a) P = 0GPa (b) P = −1.13GPa and (c) P = −1.88GPa.

Stokes-Einstein relation is valid at high temperatures and hence

fractional Stokes-Einstein (FSE) exponent is around 1. At low

temperature the FSE exponent varies from 0.759 to 0.71. The

vertical green line indicates the SE breakdown temperature. . 115

4.22 The phase diagram of liquid silicon in (P, T ) plane showing

the onset temperature estimates obtained from diffusivity and

relaxation time along with the locus of Stokes-Einstein break-

down temperature. . . . . . . . . . . . . . . . . . . . . . . . . 116

4.23 Dynamic susceptibility χ4 (q = 2.14Å−1) calculated at P =
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Chapter 1

Introduction

Silicon, the second most abundant element in the earth’s crust, is ubiquitous

in the form of silica and silicates in the natural world. In the elemental form,

it is an essential component of the semiconductor technology. It was first

prepared in its amorphous form by J.J. Berzelius and later the crystalline

form by H.E. Sainte-Claire Deville [185] in the 1800’s. The crystalline and

amorphous solid are the two most familiar forms of silicon, which have been

studied extensively. The crystalline form of silicon is a tetravalent semicon-

ductor (as is the amorphous solid) and upon melting at 1687K at ambient

pressure, transforms to a metallic liquid with higher coordination number,

around 6. Liquid silicon is relatively less studied, given the elevated temper-

atures at which it exists. Nevertheless, it has been a subject of substantial

experimental, theoretical and computational investigation, both at temper-

atures above the melting temperature, and in the supercooled and stretched

(negative pressure) states. The investigations of the metastable liquid (see

FIG. 1.1) have been motivated, as this thesis seeks to demonstrate, by fun-

damental questions regarding (i) the eventual fate of metastable liquids upon

deep undercooling and stretching, (ii) the interest in the possibility of a novel

transition between two distinct liquid forms in a class of “tetrahedral” liq-

uids to which silicon belongs, and (iii) the role of the thermodynamics of

metastable liquid states on the kinetics of phase transformations, particu-

larly to the crystalline state.

1
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Figure 1.1: The schematic representation of Landau free energy as a function
of order parameter. A metastable phase corresponds to a local minimum
in free energy in comparison with the global minimum associated with the
stable phase. The metastable phase has to cross the free energy barrier ∆G∗

to transform into a stable phase. Here ∆µ is the chemical potential difference
between stable phase (µs) and metastable phase (µm).

Based on the extrapolated Gibbs free energies of amorphous solid and

liquid phases for germanium, and a scaling of temperatures for the case

of silicon, Bagley and Chen [14] and independently Spaepen and Turnbull

[154] suggested a first order phase change from the amorphous solid to

the liquid near T = 1349K for silicon, below the freezing point of liq-

uid Tm = 1687K. Subsequent experimental as well as simulations stud-

ies [24, 30, 45, 99, 116, 131, 132, 167, 174, 183] of non-crystalline silicon sup-

ported this notion though the precise nature of the transition was unclear

owing to the limited availability of information. Using a two-state model,

Aptekar [10, 48] in 1979 proposed a phase diagram that described the liquid

and amorphous states as two states of one noncrystalline (liquid) phase, and

further predicted a negative pressure critical point. The perspective that the

transition from amorphous silicon to the liquid should be viewed as a liquid-

liquid, rather than an (amorphous)solid-liquid transition, attracted renewed

interest in light of an independent proposal of a liquid-liquid transition in



3

the case of water [125], and the growing appreciation that such a possibility

was in principle also applicable to other substances such as, e. g. silica [135],

which exhibited thermodynamic and structural features similar to water.

The analogy was pursued by Angell et al. [5] who proposed a first order

liquid-liquid transition line as a feature in the pressure-temperature phase

diagram of silicon, based on simulation evidence using the Stillinger-Weber

(SW ) potential of silicon [159]. The experimental work of Deb et al. [39] ob-

served a pressure induced amorphous-amorphous transition and speculated

a possibility of an underlying liquid-liquid transition (LLT ), to be found at

ambient pressure at around (1400K). From extensive simulations of silicon

using the SW model potential Sastry and Angell [142] found evidence of a

liquid-liquid transition at zero pressure at around 1060K, which was also

subsequently supported by ab initio simulations [59, 77]. Considerable re-

cent simulation and experimental evidence lends support to the idea of a

liquid-liquid transition at ambient pressures in silicon [11, 20, 39, 59–61, 68,

76,77,106–108,120,141,142,148,176]. Computational studies [11,59,76] have

also demonstrated the liquid-liquid transition to be from a metallic high

temperature liquid to a low temperature liquid with substantially reduced

conductivity, which have been recently verified in an experiment [20]. How-

ever, such a transition is also consistent with a “critical point free” scenario,

proposed recently by Angell [4], and hence, the existence of a critical point

needs independent verification.

The supercooled liquid phase being a metastable phase eventual trans-

form in to a stable crystalline phase through an activated process. According

to the classical nucleation theory (CNT ), a small nucleus of the stable phase

can form within the bulk of the metastable phase, due to the thermal fluctu-

ations. The nucleus of the new phase will dissolve and re-form till it reaches a

critical size upon which the nucleus of stable phase continues to grow till the

metastable phase is completely transformed into the stable phase. Formation

of the critical nucleus is associated with a free energy barrier (see FIG. 1.1)

which has to be overcome and this process is called nucleation.

Liquid silicon transform into a stable cubic diamond crystal silicon, a
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technologically important material. Recent simulation studies of crystal nu-

cleation mechanism [18,44] have speculated that the low-density liquid phase

influence the formation of the crystalline nucleus. Hence there is a need for an

extensive study to understand the influence of liquid-liquid transition [142]

in supercooled liquid silicon on the crystal nucleation process. A better un-

derstanding of the underlying microscopic mechanism of the crystallisation

process may help in better crystal processing abilities. Therefore the inter-

est in the study of nucleation of supercooled liquid silicon stems from both

fundamental understanding as well as application point of view.

In this thesis we present an exhaustive simulation study of supercooled

liquid silicon modeled by the Stillinger-Weber empirical potential [159]. Our

study can be segregated into three main topics, namely (1.) liquid-liquid

transition, critical point and phase behaviour, (2.) structural and dynamic

properties of liquid phase and (3.) crystal nucleation. We organise these

studies into seven chapters. The introductory chapter covers the investiga-

tions on the liquid and metastable liquid phases of silicon pursued over three

decades, where we elaborate on salient experimental, theoretical and simu-

lation results. We broadly divide the investigations into those that address

an “amorphous solid to liquid” transition, and those that address a “liquid-

liquid” transition in supercooled liquid silicon. The parallel developments

in the case of water (and later by extension, other tetrahedral liquids) were

aimed at developing an explanatory framework for its anomalous properties.

Therefore in this chapter, we describe the various scenarios put forward for

fluids exhibiting density and related anomalies. The liquid-liquid transition

has been investigated in various materials, including water, silica, carbon and

hydrogen, which form a very significant component of our natural world. We

mention some of these works at the end of this chapter. In chapter 2, we

discuss computational methods and protocols, used in our study of super-

cooled liquid silicon. Chapter 3 is devoted to the work on phase behaviour of

supercooled liquid silicon, in which we provide an evidence for existence of

a liquid-liquid critical point associated with the liquid-liquid transition. The

phase diagram of supercooled liquid silicon which includes the liquid-liquid

coexistence line, the liquid-liquid critical point, the loci of density extrema,



5

compressibility extrema and the spinodal is also presented in this chapter.

In Chapter 4 we describe structural and dynamic properties of supercooled

liquid silicon. As the system transforms from a high density liquid to a low

density liquid, the network of atoms having local tetrahedral arrangement

grows and in the low density phase, this tetrahedral network spans the whole

system. A strong relationship between local structural arrangement and dif-

fusivity over a wide range of temperature and pressure is found. A hierarchy

of anomalies, as first discussed is the case of water [52], is also found in

liquid silicon. The last section of this chapter pertains to the breakdown

of the Stokes-Einstein (SE) relationship. The locus of the SE breakdown

temperature at different pressure values is found along with the loci of the

onset temperature, dynamic heterogeneity and compressibility maxima. The

breakdown of the SE relation is found to occur in the vicinity of the onset

temperature. In chapter 5 we present an analysis of crystal nucleation in su-

percooled liquid silicon. The crystal nucleation barrier as a function an order

parameter which is related to the size of the crystalline nucleus is calculated

along different isobars varying from positive to negative pressure values and

for various under-cooling temperatures (18% to 35%). The nucleation barrier

and critical nucleus size is found to decrease by an order of magnitude, as the

low density liquid phase is approached. The role of low density liquid-like

regions in the mechanism of crystal nucleation in high density liquid silicon

is analysed. A wetting layer of low density atoms is found around the crys-

talline nucleus. In chapter 6 the important question about the reliability of

the Stillinger-Weber potential in describing the behaviour of real silicon is

discussed. We compare structural, dynamical and thermodynamic quanti-

ties obtained from the SW potential with available ab initio simulations data

and experimental data, to provide a critical assessment of the applicability of

classical simulation results to real silicon. The concluding chapter contains

a summary of results discussed in this thesis.
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1.1 Early Work on Metastable Silicon

The earliest experimental work on metastable silicon includes studies car-

ried out by Bagley and Chen [14], Spaepan and Turbull [154], Donovan et

al. [45] and Thompson et al. [167]. Bagley and Chen [14], and independently

Spaepen and Turnbull [154], used the available thermodynamic data for ger-

manium (such as the heat capacities measured by Chen and Turnbull [28]),

and the kinetics of crystal growth, to estimate the temperature dependence

of the excess Gibbs free energy of amorphous and liquid silicon. The signif-

icantly different entropies of the two limiting states leads to the prediction

(by extrapolation) of a slope discontinuity in the Gibbs free energy, or a first

order phase transition from a four coordinated amorphous to a metallic liq-

uid state. The estimated transition temperature was Tal at 1349K for silicon

(by scaling the melting points of germanium and silicon). Later Donovan et

al. [45,46] performed differential scanning calorimeter (DSC) measurements

on amorphous silicon, produced by ion implantation and based on Gibbs free

energies deduced, estimated Tal to be 1420K. We show in FIG. 1.2 the Gibbs

free energies estimated by Donovan et al. [46]. This transition was also con-

firmed by experiments (using a pulsed-laser melting technique) carried out

by Thompson et al. [167].

The theoretical analysis of the thermodynamics of supercooled liquid sili-

con, presented by Aptekar [10] treats the liquid as a two component solution

(along lines explored in related contexts by Rappaport [128], Ponyatovsky

et al. [48, 123]). The two components are characterised by different local

bonding environments (covalent or metallic). Correspondingly, the Gibbs

free energy of the liquid is written as

Gl = G1(1−ω)+G2ω+W (1−ω)ω+RT [ω logω+(1−ω) log(1−ω)] (1.1)

The parameter ω describes the degree of metallisation and is determined

by the equilibrium condition of the liquid. Writing the free energy differ-

ence between the two pure liquids G1 and G2 phenomenologically, and using

values for the various parameters involved from available experimental data,
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Figure 1.2: An estimate of excess Gibbs free energy (∆G) against temper-
ature suggesting a first order transition. The brown and orange solids lines
represent two extreme estimates of ∆G for the amorphous phase and the
dashed lines are extrapolation of these ∆G into the liquid phase. The blue
line shows ∆G for the liquid phase and the purple line is the reference crys-
tal phase value. Tal, Tlc and Tac represent liquid-amorphous, crystal-liquid
and crystal-amorphous phase transition temperatures respectively. [Adapted
from Donovan et al. [46] with permission.]

Aptekar estimated phase diagrams for germanium and silicon, showing in

each case that the liquids exhibit metastable, negative pressure, liquid-liquid

critical points. Although this analysis is motivated by high pressure trans-

formation of semiconductors to metallic states, this analysis also offers a

rationalisation of results concerning the transformation of amorphous silicon

to liquid upon heating.

Given the difficulties in experimental studies of extreme states of matter

(high undercooling, high temperatures, pressures etc), computer simulations

have, over the last few decades, helped gain insights into states that are hard



1.1 Early Work on Metastable Silicon 8

to probe experimentally. Unlike in experiments, it is a relatively simpler

task to explore a wide range of temperatures and pressures in simulations

and thus bracket the region of interest for further experimental verification.

For more than three decades computer simulation studies of silicon have

been carried out using various empirical interaction potentials (a comparative

study of six different empirical potential is given in the reference [15]) and

also using first principle simulations [59, 76, 117, 173]. One of most widely

used potential [5, 11,24,99,142] for studying silicon in computer simulations

is the Stillinger-Weber (SW ) potential [159]. Using the SW potential in

molecular dynamics (MD) simulations, Broughton and Li [24] performed one

of the earliest studies of the liquid, crystal and amorphous phase diagram

of silicon. In this work Broughton and Li found that the crystal and liquid

phases are well represented by the SW potential, but the thermodynamics

of the amorphous phase is poorly described and that the supercooled liquid

phase does do not undergo a first order transition to an amorphous state

upon cooling. Luedtke and Landman [99] showed that this failure to obtain

amorphous silicon via direct cooling of the melt in simulations is related to

the quench rates employed. These authors [99] noted that upon cooling,

a sharp change in the energy and density of the system occurred at T ∼

1060K followed by a slow variation in these properties as cooling continues to

T = 300K. These authors compared their system obtained from quenching

with the amorphous phase obtained from an alternate method (involving

tuning of coefficient of three body part of the SW potential) and found that

both the systems have comparable structural composition. Angell et al.

[5] using the SW potential explored a relatively wide range of temperature

and pressure to chart out the phase diagram of metastable silicon. These

authors also suggested a well defined transition, at T ∼ 1060K, from a

highly diffusive liquid states to a non-diffusive “amorphous phase”, with a

coordination number of 4.1. The phase diagram as suggested by Angell et

al. is shown in FIG. 1.3 (note that at higher pressures, the transition occurs

at lower temperatures, leading to a negatively sloped transition line).

As noted earlier, the work of Angell et al. [5] made contact with the

possibility of a liquid-liquid transition in the case of water, which had been
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Figure 1.3: Phase diagram proposed by Angell et al. [5] based on simulations
of the SW potential, with a liquid-amorphous transition line that is negatively
sloped. Also shown are the locus of density maxima and the tensile limit line.
[From Angell et al. [5] with permission.]

proposed as one of the possible scenarios within which to understand the

anomalous properties of water. Since these scenarios are relevant for further

discussion we present in the chapter on Phase behaviour of supercooled liquid

silicon, we review them briefly in the next section.

1.2 Scenarios for Liquids Displaying Thermo-

dynamic Anomalies

It is well known that ice floats on water, owing to the solid form having a

lower density than the liquid. It is also well known that liquid water has the

maximum density at ambient pressure at 4◦C, below which the density de-

creases as temperature decreases, contrary to the normal behaviour wherein

liquids become denser as the temperature decreases. Hence, the decrease

in density of water with temperature is described as anomalous. The tem-

perature at which the density is maximum depends on pressure, and the
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locus of these maxima is termed as the temperatures of maximum density

(TMD). In water the TMD line is negatively sloped at the positive pres-

sures in the (P, T ) plane. Liquid water also shows anomalous behaviour in

thermodynamic quantities like compressibility (KT ) and heat capacity (CP ).

The compressibility of water, at ambient pressure, decreases with a decrease

in temperature like any other liquid, but reaches a minimum at 46◦C. Below

this temperature the compressibility increases with a decrease in temperature

and shows an apparent divergence at −45◦C [156] when only the anomalous

component of the compressibility is considered. The specific heat capacity

of liquid water also shows a similar behaviour, reaching a minimum at 36◦C

and diverging at around −47◦C [8]. Water also shows anomalous behaviour

in its dynamical properties. The diffusivity of liquid water increases with in-

crease in pressure which is abnormal for liquids. The work of Errington and

Debenedetti [52] identifies a region in the phase diagram where the structure

of the liquid behaves anomalously. This work also found that the anoma-

lies in density and diffusivity occur within the structurally anomalous region

(in (ρ, T ) as well as in (P, T ) plane). In the case of silicon, even though

simulations have predicted anomalies similar to that of water (discussed in

chapter 3 and 4), experimentally none of the anomalies have been verified

yet since these anomalies are found at deeply undercooled state points and

hence avoiding nucleation poses a technological challenge.

Various models and scenarios (based on thermodynamic constraints) have

been developed to explain the thermodynamic anomalies of water [25,40,110],

(and by extension, other liquids with water-like anomalous behaviour, in-

cluding silicon) which are briefly discussed in this section. The observation

of negative melting curves in various systems including water and silicon,

means (from the Clausius-Clapeyron relation dP/dT = ∆Sm/∆Vm, and as-

suming that the entropy of the crystal is lower than that of the liquid) that

the liquid density will be greater than that of the solid phase. This is a

feature that is typical of the substances to which the considerations in this

section apply.

Below, we describe some of the scenarios that have been explored as

a way of rationalising the thermodynamics of liquids displaying anomalies,
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Figure 1.4: The schematic phase diagrams in the pressure-temperature (P, T )
plane illustrating three scenarios for liquids displaying anomalous thermody-
namic behavior. (a.) The spinodal retracing scenario. (b.) The liquid-liquid
critical point scenario. (c.) The singularity free scenario. The green lines
represent the locus of compressibility extrema, and the red lines the locus
of density extrema. The dashed and dot-dashed lines represent liquid-gas
and liquid-liquid transition lines, and the blue lines represent the liquid-gas
spinodal.

such as water. These are: (1.) the stability limit conjecture [40,43,155,156],

(2.) the liquid-liquid critical point scenario [125], (3.) the singularity free

scenario [143] and (4.) the critical point free scenario [4].

The stability limit conjecture: The anomalous increase in wa-

ter’s heat capacity and compressibility with decrease in temperature, with

apparent power law divergences at Ts = 228K [156] was conjectured by

Speedy [155] to be due to the approach to a spinodal line originating from

the liquid-gas critical point (a spinodal line is defined by the condition

(∂P/∂V )T = 0). This spinodal has a positive slope in the (P, T ) plane

near the critical point, but upon intersection with the negatively sloped

TMD line, goes through a zero slope according to the thermodynamic con-

dition (dP/dT )spinodal = (∂P/∂T )isochore and retraces to higher pressures

with a negative slope. Hence in this scenario the spinodal constitutes both

the superheating and supercooling limit of the liquid. Debenedetti and

D’Antonio [36, 43] further proposed that thermodynamic consistency also

requires that the TMD line must necessarily have an end point. The TMD
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line should either intersect a density minima locus (locus of temperature of

minimum density - TMinD) and hence the liquid shows a normal behaviour

in its density or terminate by intersecting at a spinodal curve (FIG. 1.4 (a)).

Although some theoretical works have shown that [23, 138, 144] a re-entrant

spinodal is present in models with water like properties, no compelling ex-

perimental experimental verification exists of this scenario [42].

The liquid-liquid critical point scenario: Poole et al. [125] investi-

gated the retracing spinodal scenario using molecular dynamics simulations

of the ST2 model of water. In their simulation study, the spinodal was found

to be a monotonic function of T. The TMD line, although having a negative

slope at high pressures, changes to positive slope at low pressures (FIG. 1.4

(b)). Hence no intersection between the spinodal and the TMD line occurs.

Instead the authors found evidence for a second critical point, between two

forms of the liquid. Considerable simulation and theoretical investigations

since the original work of Poole et al. support the possibility of a second criti-

cal point [2,67,109,124,126,137,190]. Indeed earlier theoretical analyses using

a two state description [10, 128] also generically lead to this possibility [33].

There has been a substantial amount of experimental work to verify the pos-

sibility of a liquid-liquid transition in water that has lead to much evidence in

support of this possibility, including recent work on confined water as a way

of circumventing crystallisation in bulk water experiments [97,102,109,191].

Such evidence has been critically reviewed in [42,54,71].

The singularity free hypothesis: Sastry et al. [143] proposed that a

minimal scenario that was consistent with the salient anomalies did not re-

quire recourse to any thermodynamic singularities, such as a critical point or

a retracing spinodal. They analysed the interrelationship between the locus

of density and compressibility extrema, and showed that the change of slope

of the locus of density maxima (TMD) was associated with an intersection

with the locus of compressibility extrema (TEC) (FIG. 1.4 (c)). The rela-

tion between the temperature dependence of isothermal compressibility at



1.3 Recent Studies of Metastable Silicon 13

the TMD and the slope of the TMD is given by

(

∂KT

∂T

)

P,TMD

=
1

v

∂2v/∂T 2

(∂P/∂T )TMD

(1.2)

where KT is the isothermal compressibility. The subscript P and TMD

represents the slope at constant pressure and at the TMD at a given pres-

sure. Since ∂2v/∂T 2 > 0 at the TMD, the above relation shows that for an

anomalous liquid exhibiting a negatively sloped TMD, the isothermal com-

pressibility at constant pressure increases upon decreasing temperature and

hence such increases in compressibility are not a priori an indication of sin-

gular behaviour. Calculations with a lattice model displaying the singularity

free scenario [90, 129, 143] reveal a line of compressibility maxima at low

temperatures. The metastable critical point scenario may be considered to

be a special case where the compressibility along the line of compressibility

maxima diverges (at the critical point). Alternatively, the singularity free

scenario can be described as a limiting case where the critical point moves

to zero T [55].

Critical point free scenario: Recently Angell [4] has discussed a

possibility, related to some of the early observation of Speedy and Angell

[156], in which the high temperature liquid encounters a spinodal at positive

pressure, but this is a spinodal associated with a first order transition between

two liquid states. Such a first order transition however does not terminate

in a critical point, but may terminate at the liquid-gas spinodal. A weaker

version of this picture is that no critical point may exist at positive pressures.

Analysis of a model calculation by Stokely et al. [160] indicates that such a

scenario may indeed arise in the limit of extreme co-operativity of hydrogen

bond formation.

1.3 Recent Studies of Metastable Silicon

As described before, the early studies of metastable silicon [5, 14, 24, 45, 99,

154,167] probed the possibility of a liquid-amorphous transition. More recent

work has attempted to find evidence that the transition is one between two
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liquid phases. In this section we present a brief discussion of these works.

1.3.1 Experimental Studies

Experimental studies of supercooled liquid silicon are very challenging be-

cause of high crystallisation rates. To explore supercooled states by cooling

from the high temperature liquid, one would need to quench the liquid at

rates exceeding 109Ks−1 [68] to avoid crystallisation and hence using simple

quenching techniques to study the deeply undercooled metastable liquid sil-

icon is not possible. Alternate methods like chemical vapour deposition and

pressure induced techniques [68] have been employed to study the amorphous

phase. Studies have been also performed using methods like aerodynamic lev-

itation [9,75,86] or electromagnetic levitation [50,69,73,84,85,182] to avoid

crystallisation induced by the containers during the experiments.

In silicon, the phase change from a low density liquid (LDL) to a high

density liquid (HDL) involves a change in electrical conductivity (from a low

temperature semiconducting to a high temperature metallic state), which in

turn presents a number of measurable properties that can be used to detect

the phase transition. Optical micrograph methods have been used to mea-

sure the change in optical reflectivity upon a change in phase [107], and the

luminescence of the material is also used to detect the phase transition [39].

X-ray diffraction spectra and Raman spectra have also been used to observe

the phase transition [39,107]. Experimental measurement of densities is quite

difficult but in-situ measurement of structural quantities and electronic prop-

erties have been reported by various groups [20,50,69,70,73,91,130,145,182].

Evidence for a pressure induced amorphous-amorphous transition in sili-

con was first shown by Deb et al. [39]. These authors studied porous silicon

- π-Si (silicon having nano-porous holes in its microstructure and a large

surface to volume ratio) because of its luminescence property. At ambi-

ent pressure π-Si exhibits red luminescence upon irradiating with an argon

laser. With the application of pressure (using a diamond anvil cell) the

luminescence shifted to longer wavelengths and became opaque at around

P = 10GPa. X-ray diffraction measurements showed that at around P = 7



1.3 Recent Studies of Metastable Silicon 15

to 8GPa the crystal diffraction pattern disappears and a broad diffraction

pattern, characteristic of an amorphous material, is observed. At around

P = 10 to 12GPa, the crystalline peak disappears entirely. The authors

performed Raman scattering measurements both during compression and

decompression and found that upon compression to P = 13GPa, the sharp

crystalline feature at around wave number 520cm−1 disappears, and a broad

peak appears between 200 to 400cm−1, distinct from the Raman signature

of a tetrahedral low density amorphous (LDA) silicon (a broad peak around

400 to 500cm−1). This feature is interpreted as due to transformation to

a high density amorphous (HDA) phase. Upon decompression, this fea-

ture disappears giving way to a broad peak around 400 to 500cm−1, which

corresponding to the LDA at low pressure. These observation led to the con-

clusion that π-Si undergoes a pressure induced amorphous-amorphous phase

transition. In turn, this amorphous-amorphous transition was suggested to

be related to a liquid-liquid transition, employing a theoretical model [118].

The schematic phase diagram of metastable silicon is shown in FIG. 1.5.

Direct optical observation and electrical resistance measurements carried

out on amorphous silicon by McMillan et al. [107] showed that the HDA is

highly reflective and the LDA phase is non-reflective (see FIG. 1.6). From the

electrical resistance measurements the authors found that there is an abrupt

decrease in resistivity across the LDA-HDA transition around P = 11GPa,

indicating a transformation to metallic HDA. The sample was verified to be

in its amorphous state (using Raman spectroscopy), since pressure induced

crystallisation to β-Sn phase could also lead to a drop in resistivity.

The above experiments suggest the possibility of a liquid-liquid transition

but are performed under conditions at which the amorphous forms of silicon

are solid. In an attempt obtain a more direct evidence that the transition

is between two liquids, Hedler et al. [68] performed ion bombardment exper-

iments on amorphous silicon. The plastic deformations they observe of the

samples are similar to the deformation seen in conventional glasses undergo-

ing the glass transition, and the authors deduce a glass transition of around

1000K.
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Figure 1.5: The schematic phase diagram of metastable silicon in the
pressure-temperature (P, T ) plane discussed in [35,39]. The brown line repre-
sents the liquid-crystal (cubic diamond) transition line, extended into the β-
tin phase. The black lines represent the liquid-β-tin and the cubic diamond-
β-tin transition lines. The red line is the liquid-liquid transition line ending
at a critical point represented by a red circle. The blue dotted lines rep-
resent spinodals associated with the liquid-liquid transition. The green oval
represents the amorphous-liquid transition as predicted by some of the earlier
experiments [14, 45, 154]. [Adapted from McMillan [35,39] with permission.]

(a) (b)

Figure 1.6: Optical micrographs of an amorphous silicon sample show that
HDA at P = 16.6GPa (left) is highly reflective and LDA at P = 13.5GPa
(right) is non-reflective (compared to the surrounding metal gasket). [With
permission from McMillan and Daisenberger [34, 107].]
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Simulations using classical interaction potential as well as in ab initio

simulations predict the liquid-liquid transition in supercooled liquid sili-

con [11, 59, 61, 75, 108, 142, 176] and this transition has been characterised in

different ways including a change in coordination number as well as the elec-

tronic properties. The LDL phase has coordination number ∼ 4 and is less

metallic than the 5 coordinated HDL phase. Different Experimental groups

have tried to measure the coordination number seeking evidence for liquid-

liquid transition. To circumvent the container induced crystallisation these

experiments are carried out by levitating the sample. The coordination num-

ber obtained from different experimental reports are put together in FIG. 1.7.

With the state of the art in experimental techniques, the lowest temperature

achievable, keeping the sample in liquid state, is around T = 1380K [84]. As

it can be seen from FIG. 1.7, there is quite a large spread in the coordination

numbers as calculated from different experimental groups. Secondly in the

measured range of temperatures the coordination number remains greater

than 5. These results do not agree with the predicted liquid-liquid phase

transition temperature at ambient pressure from earlier experimental works,

and this issue needs to be understood properly. A possible explanation is

that the coordination number is quite sensitive to the density of the liquid (a

quantity which is difficult to measure in experiments). Another possibility is

that indeed the previous estimates of the transition temperature are high.

Recently, Beye et al. [20] used femto-second pump-probe spectroscopy,

examining the expected changes in the electronic structure of silicon and

hence attempting a direct verification of the liquid-liquid transition, by mon-

itoring the evolution of electronic density of state (DOS). After exciting a

sample of the crystal with a pump X-ray pulse, they monitored the evolution

of the electronic DOS, and found it to evolve in a two step process, with the

intermediate step showing clear resemblance to the DOS of LDL, and the

DOS at later times resembling that of the HDL phase. Although the process

during which these measurements are made are highly non-equilibrium in na-

ture and there are gaps in our understanding, these results point the way to

how direct evidence for the liquid-liquid transition under extreme metastable

conditions may be obtained experimentally.
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Figure 1.7: Compilation of coordination number measurements plotted
against temperature (at P = 0GPa) as reported by different experimental
reports, first principle MD (FPMD) simulations as well as classical simula-
tions results. [From Ansell et al. [9], Kimura et al. [85], Jakse et al. [75], Kim
et al. [84], Higuchi et al. [69], Krishnan et al. [86], Morishita [117], Wang et
al. [180] with permission.]
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1.3.2 Simulation Studies: Liquid-Liquid Transition at

Zero Pressure

Previous simulation studies, although support a first order transition to a low

density liquid upon cooling below T = 1060K, are subject to uncertainties

of interpretation owing to the low mobility of the low temperature states

which did not permit an unambiguous demonstration of a first order liquid-

liquid transition. The simulation study of Sastry and Angell [142] addressed

these uncertainties, by seeking evidence of (a) phase co-existence, and (b)

finite mobility in the low temperature phase. To probe whether a first-

order transition exists, the authors carried out constant enthalpy (NPH)

simulations. A non-monotonic dependence of the enthalpy on temperature

was found (FIG. 1.8), which is an indication of a first order phase transition.

The transition temperature was found to be around T = 1060K at zero

pressure. Similar behaviour is also observed in first principles simulations by

Jakse and Pasturel [76] and independently by Ganesh and Widom [59].

Further, Sastry and Angell studied the nature of the two phases, by look-

ing at their structural and dynamic properties. The mean square displace-

ment (MSD) obtained from constant pressure simulations on either side of

the phase transition showed a linear behaviour with time, indicating that the

phases are in the liquid state with finite diffusivity. The diffusivity values

calculated from MSD at various temperatures showed roughly a two orders

of magnitude drop as the high temperature liquid transforms into the low

temperature liquid (FIG. 1.9). The equilibration times in the low tempera-

ture liquid phase (see below) range from tens to hundreds of nanoseconds.

The T-dependence of the diffusivity in the high temperature liquid phase

(till T = 1070K) was found to be highly non-Arrhenius, characteristic of a

fragile liquid [140].

It has been argued [6] that silicon, along with other tetrahedral liquids
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such as water and silica, should undergo a transition from fragile liquid be-

haviour (non-Arrhenius temperature dependence of viscosity and other trans-

port coefficients) to strong liquid behaviour (Arrhenius temperature depen-

dence) as the liquid makes a transition from the HDL to the LDL (either dis-

continuously or continuously at pressures below the critical pressure). Since

data over a sufficient range of temperatures in the low temperature phase was

not available to judge this matter directly for silicon, Sastry and Angell [142]

took recourse to an empirical observation that the intermediate scattering

function (F(q,t)) shows oscillatory behaviour in strong liquids that becomes

more pronounced in small systems. In the HDL phase (T = 1055K) no oscil-

lations were observed in the F(q,t) (see FIG. 1.10) and upon transition to the

LDL phase (T = 1070K) oscillatory behaviour appears and it becomes more

significant at lower system sizes (inset of FIG. 1.10). Independent evidence

for such a transition also is obtained by the fact that the heat capacity CP

drops to a value of 3.6NkB in the low temperature phase [78].

The pair correlation function g(r), fifth neighbour distribution g5(r),

bond angle correlation function (G3) and local bond orientation order (Q3)

were calculated to study the structural properties of the two liquids. Coor-

dination numbers calculated by integrating the g(r) till its first minimum.

The average coordination number was found to change from 5.12 to 4.61 in

the high-temperature liquid and around 4.2 in the low-temperature liquid.

The fraction of four coordinated atoms increased from about 50% (at high

T) to 80% in the low T phase, indicating a greater degree of local tetrahe-

dral order. This change is also reflected in the local bond orientation order

Q3(see FIG. 1.11 (a)). The Q3 values for the low temperature liquid peaked

at the crystal’s Q3 value, suggesting a tetrahedral local ordering whereas the

high temperature liquid showed a broader peak in Q3. The fifth neighbour

distribution (which is distribution of distances of the 5th nearest neighbour

to a given atom) for the high temperature liquid was found to be unimodal

indicating that the fifth neighbour resides inside the first coordination shell,

whereas the low temperature liquid showed a bimodal g5(r) distribution (see

FIG. 1.11 (b)), with the larger amplitude peak shifting to the second neigh-

bour shell in the low temperature phase.
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Figure 1.8: (a) The enthalpy against temperature from NPH MD simulations
and NPT MD simulations using the SW potential for the supercooled liquid
above and below the liquid-liquid transition. (b) The crystal-liquid transition
is shown for comparison with the liquid-liquid transition data. [From Sastry
et al. [142] with permission.]
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Figure 1.9: The diffusion coefficientD against the inverse temperature, above
and below the liquid-liquid transition from MD simulations using the SW po-
tential. In the high temperature liquid phase, the diffusivity show a strongly
non-Arrhenius temperature dependence. [From Sastry et al. [142] with per-
mission.]
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Figure 1.10: (main panel) The intermediate scattering function F(q,t) from
MD simulations using the SW potential for a system size of 512 atoms, above
and below the liquid-liquid transition point at zero pressure. The low temper-
ature liquid displays damped oscillatory behaviour, characteristic of strong
liquids. The high temperature liquid shows a monotonic decrease, charac-
teristic of fragile liquids. (inset) The intermediate scattering function for a
smaller system size (108 atoms). [From Sastry et al. [142] with permission.]



1.3 Recent Studies of Metastable Silicon 23

1 2 3
Q3

0

1

2

3

4

P
(Q

3)

(a)

0.2 0.3 0.4
r (nm)

0

0.1

0.2

0.3

0.4

0.5

g
5(r

)

(b)

Figure 1.11: (a) The distribution of local bond orientation order (Q3) from
MD simulations using the SW potential. The continuous blue line is for the
low temperature liquid (at T = 1055K), which indicates local tetrahedral
ordering. (b) The fifth neighbour distance distribution g5(r). For the high
temperature liquid at T = 1070 (dotted line), T = 1259K (short dashed
line) and T = 1711 (long dashed line) g5(r) show a unimodal peak indicating
that the fifth neighbour is within the first coordination shell. For the low
temperature liquid (continuous blue line), a bimodal distribution emerges
indicating the expulsion of of the fifth neighbour in a majority of cases to
distances outside the first coordination shell. [From Sastry et al. [142] with
permission.]
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1.3.3 Electronic Structure

Among liquids that may exhibit a liquid-liquid transition, a feature that

is special to silicon (though not uniquely so; see earlier discussions) is the

change in electronic properties that accompany the liquid-liquid transition.

Indeed, this is a feature that has been exploited in studies from early on in

experimental probing of the transition. The amorphous-amorphous transi-

tion in silicon has been also found to be a transition from a semiconducting

low density state to a metallic high density state. The liquid form of these

phases have shown similar change in the conductivity. Given that the change

in electronic properties has a strong influence on the effective interatomic in-

teractions, a question has been raised about the extent to which a classical

empirical potential can capture the behaviour seen in silicon. To address

a part of this question, Ashwin et al. [11], performed electronic structure

calculations, using an empirical pseudo-potential, for atomic configurations

obtained from classical MD simulations using the SW potential. The elec-

tronic density of states (DOS(E)), obtained from these calculations is shown

in FIG. 1.12 and FIG. 1.13. Ashwin et al. found that the DOS remains rel-

atively unchanged at high temperatures till T = 1258K. A small dip in

the DOS(E) at Fermi energy (Ef ) was found at T = 1082K, near the esti-

mated liquid-liquid transition temperature (T = 1060K). In the LDL phase,

(T = 1055K), even though the DOS(E) remain finite, the authors found a

dramatic lowering of DOS(E) at the Fermi level Ef , indicating a change in

the conductivity. Further, the states near the Fermi level become localised in

the LDL, as shown in FIG. 1.13 (b), and the conductivity drops by roughly

an order of magnitude in going from the HDL to the LDL phase. Similar

features in the DOS(E) have also been found from first principles calcula-

tions [59, 77] as shown in FIG. 1.14 and 1.15, indicating that the results are

unlikely to be artifacts arising from the classical nature of the simulations.

As described earlier, Beye et al. [20, 141], have utilised these changes in the

electronic DOS to provide experimental evidence for a liquid-liquid transi-

tion. The estimated DOS in their pump-probe measurements are shown in

FIG. 1.16.
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Figure 1.12: Electronic DOS of the low density liquid (LDL) at 1055K, the
high density liquid (HDL) at 1082K and the high T liquid phases from DFT
calculations on the MD trajectory obtained using the SW potential. [From
Ashwin et al. [11] with permission]
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Figure 1.13: Electronic density of states (DOS) as a function of energy and
inverse participation ration for (a) T = 1082K, high density liquid, and
(b) T = 1054K, low density liquid, from density functional theory (DFT)
calculations on the MD trajectory obtained using the SW potential. The
states near the Fermi energy at T = 1054K are localised. [From Ashwin et
al. [11] and SS Ashwin PhD thesis, JNCASR (2005) with permission.]
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Figure 1.14: Electronic density of states (DOS) of the low density liquid
(LDL) at 1050K(green), the high density liquid (HDL) at 1070K(blue) and
the high T liquid at Tm (red) phases from first principles MD (FPMD) sim-
ulations. [From Jakse et al. [77] with permission.]
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Figure 1.15: The plot of electronic density of states (DOS) of the crystal
(green), the low density liquid (LDL) (blue), the high density liquid (HDL)
(red) and the high T liquid (black) phases from first principles MD (FPMD)
simulations. Fermi energy EF for each of the phases is represented by vertical
dashed lines. [From Ganesh et al. [59] with permission.]
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Figure 1.16: Electronic density of states (DOS) of the crystal, low density
liquid (LDL), and high density liquid (HDL) phases. Measured data points
for the occupied electronic states are represented by red ovals and black lines
are from calculations. [From Beye et al. [20] with permission.]

For more than three decades, study of liquid-liquid transition has been

carried out in various materials which form an important part of our natural

world and other substances. We briefly mention next some of these works.

We have discussed the liquid-liquid transition studies in water, silica, car-

bon (which are network forming liquids), phosphorus, alumina-yttrium and

triphenylphosphite (which are material in which liquid-liquid transition has

been experimentally verified).
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1.4 Liquid-Liquid Transition and Critical Point

in Various Materials

1.4.1 Water

A liquid-liquid transition and a corresponding liquid-liquid critical point

has been proposed to occur in supercooled water as a possible explana-

tion of anomalies observed in the liquid phase of water. Poole and et al.

[125,126] performed MD simulations using the ST2 model of water to verify

the stability-limit conjecture [155, 156] (the re-entrant liquid spinodal sce-

nario - FIG. 1.17 (a)). Analysis of the spinodal and the TMD line suggested

that there is no intersection of a positively sloped liquid-gas spinodal with a

negatively sloped TMD line and hence one does not observe the re-entrant

liquid spinodal scenario proposed by the stability limit conjecture. The TMD

line was found to change its slope from negative (at high pressures) to posi-

tive (at low pressures). Further investigation suggested a novel critical point,

which was not related to the liquid-gas critical point (FIG. 1.17 (b)). The

proposed second critical point scenario was based on the observations of an

inflection in the low temperature isotherms, suggesting an approach to a

critical point. Further analysis of pair-correlation function g(r), below the

hypothesised critical point, suggested the onset of two phase coexistence.

The g(r) was compared with the experimental g(r) for the HDA and the

LDA phases. In a later study of the ST2 water Poole et al. [124], motivated

by singularity free thermodynamic analysis, charted out the complete phase

diagram which showed the interconnection between the density anomalies,

compressibility, heat capacity and liquid spinodal (see FIG. 1.18).
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(a)

(b)

Figure 1.17: (a) The schematic phase diagram in (P, T ) plane showing the
liquid-gas(L-G) coexistence line, the L-G critical point, the temperature of
maximum density (TMD) line and the spinodal. According to stability-limit
conjecture, the spinodal intersects the TMD line and the point of intersection
spinodal goes through a minima. (b) Schematic of P-T plot showing the L-G
coexistence line, the L-G critical point, the TMD line, the spinodal and HDA-
LDA coexistence and critical point. (Adapted from Poole et. al. [125, 126]
with permission.)
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Figure 1.18: The phase diagram of liquid water in (P, T ) plane obtained
from simulations using the ST2 model potential. C is the location of the
liquid-liquid critical point, the diamonds and the triangles represent the spin-
odals related to liquid-gas critical point and and liquid-liquid critical point
respectively, the black line corresponds to density extrema, the blue line cor-
responds to the compressibility extrema and the green line corresponds to
the heat capacity extrema. [From Poole et al. [124] with permission].

Computer simulations using various different models of water [2,67,124–

126, 137, 190] have provided evidence for the liquid-liquid transition. Exper-

imental verification of the simulation results are still inconclusive. Owing to

the issues related to crystallisation various indirect paths have been taken to

verify the liquid-liquid transition in water [109]. Experimental evidence for

liquid-liquid transition have been obtained for confined water [97, 102, 191].

Even though the confinement avoids crystallisation, the relation between the

behaviour of confined water and the bulk water is yet be clarified [54,103,189].

Recent studies of Limmer and Chandler [95] and Moore and Molinero

[113] have sparked debate about the existence of the liquid-liquid transition.

Limmer and Chandler have computed the free energy surface as a function

of density and global orientational order Q6 at various state points and find

no free energy basin corresponding to the low density liquid. Moore and
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Molinero in their work interpret the low density liquid to be an intermediate-

ice phase and the nucleation barrier in the state points near to the low density

liquid phase is of the order of T . The work Limmer and Chandler and Moore

and Molinero claim that the liquid-liquid phase transition is a transition from

the liquid to a solid phase. But these interpretations have been unchallenged

[83,151].

1.4.2 Silica

Using computer simulations, a liquid-liquid transition was predicted by Saika-

Voivod et al. [135] for silica. In this work, the authors found (for two different

model interaction potentials namely BKS and WAC) that in silica for wide

range of densities, the potential energy U is a linear function of T 3/5 (as

predicted by Rosenfeld and Tarazona [163] for a simple dense liquid at low

temperature). The authors utilize this behaviour and fit the available ther-

modynamic data from simulations to an equation of state. Extrapolation

of this equation of state to low T predicted an existence of a liquid-liquid

transition for both models. Further simulations at these low temperatures

were carried out to confirm the existence of liquid-liquid transition in silica

by examining the local structural changes.

Rosenfeld and Tarazona [163] predicted that there exist an isochoric T

dependence of the potential energy U of a simple, dense, cold liquid, which

is given by U = a+ bT 3/5. In this work on silica, to begin with, the authors

identify the region (in T and V) where the above dependence of potential

energy U is obeyed and found that the relation is valid over a wide range

of T and V and the coefficients a(V ) and b(V ) vary smoothly with V. A

functional representation of U(V,T) given by U(V, T ) = a(V ) + b(V ) T 3/5

was obtained. Since the internal energy is E = U + Uk, where the kinetic

energy Uk = 9
2
RT , R being the gas constant, one can write

E(V, T ) = a(V ) + b(V )T 3/5 +
9

2
RT

A functional representation of the entropy S(V,T) and hence Helmholtz
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free energy A(V,T) (= E(V, T ) − T S(V, T )) was obtained to calculate

the equation of state P (V, T ) = ∂A
∂V

|T . The entropy S at arbitrary V and

T, relative to the entropy of a reference state (S(Vo, To)) was evaluated by

thermodynamic integration which was carried out in two steps, first along an

isotherm and then along an isochore. The equation of entropy so obtained is

given by

S(V, T ) = S(V0, T0) + ∆ST +∆SV

where ∆ST was computed along an isotherm and ∆SV was computed along

an isochore. Using the above equation of entropy, polynomial fits of the V

dependence of a and b and one reference isotherm of P a model equation

of state was constructed. The authors found that the isochores evaluated

directly from simulation and as calculated from the model equation of state

matches well and for both WAC and BKS silica there is a range of V in which

the curvature of a verses V is negative. The value of a, at T → 0 limit, gives

an estimate of U . The Helmholtz free energy in the same limit of T → 0 is U

(since A = U − TS) and hence the a gives an estimate of A. The negative

curvature in a verses V is a precursor to mechanical instability, which the

authors suggest as the indication of liquid-liquid phase separation at low T.

Using the model equation of state, authors evaluate locus of three dif-

ferent thermodynamic constraints, which were (1.) the line of temperature

of maximum density (TMD), (2.) the spinodal line and (3.) the line of

compressibility maxima. The locations of these lines are shown in FIG. 1.19

projected onto the (P, T ) plane. The pattern of behaviour in BKS silica is

similar to that of water (in which one observes a negatively sloped TMD, no

intersection of liquid spinodal and TMD, change of slope of TMD upon in-

tersecting the locus of compressibility maxima), but in WAC silica the TMD

line seems to come very close to the spinodal but may not be intersecting,

since the spinodal doesn’t show any re-entrant behaviour (which is a thermo-

dynamic necessity in case of intersection with TMD). At the low temperature

regime, in both the model potentials, a spinodal line which is distinct from

the liquid-gas spinodal boundary was found. This spinodal is predicted to be
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Figure 1.19: Plot of pressure against temperature for BKS (left panel) and
WAC (right panel) silica. Plot shows the estimates of the spinodals (solid
lines), TMD line (dotted-dashed) and Kmax

T line (dashed), evaluated from
model equation of state [135]. (From Saika-Voivod et. al [135] with permis-
sion.

the metastability boundary associated with a liquid-liquid phase transition.

To verify if the liquid-liquid spinodal curves predicted by the equations

of state are correct, the authors performed equilibrium simulations in these

regions to seeking characteristic signs of phase separation. The local coordi-

nation environment of silicon atoms were examined to test the occurrences of

such a phase separation. The fifth neighbour distribution was calculated at

different temperatures along the isochores and they observe that for T above

certain critical temperature TC , g5(r) distribution was a unimodal function

of r and as T decreases the width of the distribution increases. For tem-

peratures near TC , the distribution becomes bimodal, which indicates the

emergence of two distinct 5th nearest neighbour coordination environments.

From this observation and the analysis of spatial correlations in Si atoms

with similar coordination environment in a bigger system simulation (6000

atoms), the emergence of two distinct phases was predicted. In an indirect
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way, the authors estimate the liquid-liquid critical point in real silica to be

around TC = 730K, which is well below the glass transition temperature

(Tg = 1450K) and hence can not be directly observed in supercooled liquid

silica.

Karki et al. [79] have performed FPMD simulation study of liquid silica

which is briefly discussed here. In this work, the authors perform FPMD sim-

ulation for 24 silica unit (72 atom) system in NVT ensemble at state points

varying from T = 3000K to 6000K and pressure ranging up to 150GPa.

The protocol followed in the simulation is as follows: The crystalline struc-

ture at each volume is melted and equilibrated at T = 10000K for a period

of 3ps and then quenched to the desired temperature at which the simulation

is performed till the MSD shows a linear regime. The maximum simulation

time period (at T = 3000K) reported to be around 58ps. The authors find no

evidence of TMD which is in contract with the results from semi-empirical

potential simulations discussed above. Also over the entire range of density

and pressure no spinodal instabilities was found in these simulations.

The discrepancies and disagreement between classical interaction poten-

tial simulation and first principles simulation results either calls into question

the accuracy of empirical potential or equilibration issues and intricacies re-

lated to pseudo potentials in first principles simulations. Even in the case

of carbon results from classical simulations and first principles simulations

contradict each other. For the case of silicon a detailed comparative study is

presented in later chapter of this thesis (see Applicability to real silicon).

1.4.3 Carbon

Carbon, in the context of liquid-liquid transition, is the most debated element

in the literature. Experimental investigation by Togaya [168] suggested that

there exist a maxima or a cusp in the melting line of graphite in the (P, T )

plane. This led to the speculation for existence of a liquid-liquid transition,

wherein the liquid-liquid transition line intersect the graphite melting line

(see FIG. 1.20). Using computer simulations further investigation of the

proposed liquid-liquid transition was done. Glosli and Ree [65] performed
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classical MD simulation using a empirical Brenner potential and predicated

a first order phase transition between two different liquid forms of carbon,

which terminates at low T at a triple point on the graphite melting line

(T = 5133K, P = 1.88GPa) and at a critical point at high T (T =

8801K, P = 10.56GPa). The authors measured the local coordination and

found that the coordination is highly correlated with the geometry of the

local structure. This means that the fourfold coordinated atoms were found

to be nearly tetrahedral (sp3 hybridized), threefold coordinated atoms were

centers of planar structure with neighbors at angles close to 120 deg (sp2

hybridized) and twofold coordinated atoms were linear (sp hybridized). The

LDL phase was found to be predominantly having sp structures and very little

sp3 hybridized atoms, where as the HDL phase was found to be containing

mostly sp3 bonded atoms and very little sp hybridized atoms. The authors

report that there exists an intimate relation between the relative stability of

sp2 hybridized atoms and the torsional energy about the sp2 bonds. Since

sp2-bonded sites was found to be inhibited by a large torsional barrier and

a low entropy associated with the π bond, the authors suggest that there is

an absence of an sp2 dominated phase. The authors also comment on the

empirical potential, which ignores the van der Waals interaction, and note

that the inclusion of such an interaction would reduce the density difference

between the LDL and HDL phase.

A first principles MD simulation of carbon was carried out by Wu, Glosli,

Galli and Ree [187] which suggest that there is continuous evolution from

a sp-bonded liquid to an sp2-like fluid to an sp3-like fluid as a function of

pressure, above the graphite melting line and hence contradicts the classical

Brenner potential results. The primary reason for the contradictory results

was found to be the inability of the Brenner potential to calculate the correct

torsional energy corresponding to a torsional angle. This deficiency of the

classical interaction potential introduced an error in describing the entropy

of a three-coordinated carbon liquid and hence sp2-bonded sites were not

found in the classical simulations carried out by Glosli and Ree [65].



1.4 Liquid-Liquid Transition and Critical Point in Various Materials 37

Figure 1.20: Phase diagram of carbon in (P, T ) plane showing the three
different phases and the respective coexistence lines. The melting line of
graphite shows a maxima or cusp. The expected liquid-liquid transition line
is shown as dotted line.

1.4.4 Phosphorus

A clear experimental evidence of liquid-liquid transition in black phosphorus

was given by Katayama et al. [80], who have performed an in situ X-ray

diffraction measurement on the black phosphorus melt and found that liq-

uid phosphorus (a tetrahedral liquid) undergoes a first order transition from

a tetrahedral molecular liquid (below 1GPa) to a polymeric liquid (above

1GPa). Black phosphorus is one of the least reactive allotropic forms of

phosphorus and has a melting temperature Tm = 880K. A schematic phase

diagram of black phosphorus is shown in FIG. 1.21. The melting curve of or-

thorhombic block phosphorus has a maxima at around 1GPa. In the region

of negatively sloped melting curve in the phase diagram, the volume of liquid

is less than that of the solid. This feature is associated with the existence

of liquid-liquid transition [128]. Katayama et al. found in their experiments,

at around T = 1000K and P = 1GPa, a sharp and rapid change in the

structural quantities (structure factor - S(q) and radial distribution function

- g(r)) corresponding to a small variation in pressure (around 0.02GPa). The

S(q) of the liquid melt at low pressure was found to resemble that for the
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Figure 1.21: Phase diagram of black phosphorus in (P, T ) plane showing the
three different phases and the respective coexistence lines. The melting line
of orthorhombic phase shows a maxima. The liquid-liquid transition line is
shown as dotted line (Adapted from Katayama et. al. [80] with permission.)

white phosphorus melt (which has a prominent first peak at around 1.5Å
−1

attribute to correlation between the P4 molecules) and hence the low pressure

phase was determined as a molecular liquid. In the high-pressure form, the

analysis of g(r) showed a distinct second peak around 3.5Å was found. Since

the strong correlation between the second-nearest neighbours is not consis-

tent with the nature of molecular liquid the authors consider the possibility

of a polymeric liquid in which P atoms form network structures. From the

comparison of the g(r) of the high pressure form with g(r) of the red amor-

phous phosphorus(which has a polymeric nature), the authors conclude that

it is very likely that the high-pressure liquid is a polymeric liquid.

Monaco et al. [112] extended the study of liquid-liquid transition in phos-

phorus to higher temperatures (up to 2473K) and lower pressures (up to

0.3GPa). The slope of the liquid-liquid transition line was found to be nega-

tively sloped in the whole range of examined temperature and pressure. The

estimated latent heat was found to be quite large, which seems to be due

to the substantial change involved in polymerisation process in fluid. Even

though the authors speculate the existence of liquid-liquid critical point no
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definite evidence was found in their experiments.

Liquid-liquid transition in phosphorus has been extensively studied using

computer simulations. One of the earliest studies using first principles MD

was carried out by Morishita [115], in which it was clearly shown that the

transition is driven not only by pressure but also by temperature (which was

confirmed by experiments from Monaco et al. [112]). The author carried

out structural analysis by looking at the bond-angle distribution function,

which suggested that at low pressure the distribution has a single peak at

θ) = 60◦ (indicating that the majority of molecules are tetrahedral) and at

high pressure the distribution is bimodal (strongly peaked at θ) = 90◦ and

a weak peak at θ) = 90◦), indicative of a polymeric phase. Even though

a critical point associated with the liquid-liquid transition was suggested

in Car-Parrinello MD simulations [63], further investigation is required to

confirm this prediction.

1.4.5 Al2O3 Y2O3

Phase transitions in liquid mixtures into liquids with different composition is

a known phenomena. But the phenomena of the liquid-liquid transition dis-

cussed here is different in the sense that the composition remains intact but

the phase separated liquids differ in density and other properties. Aasland

and McMillan [1] studied the supercooled liquid phase of Al2O3 − Y2O3 (at

normal pressure) by hot-state microscopy (a technique which uses a micro-

scope with the ability to control the temperature of the sample). The authors

found, during the liquid quenches to obtain glass, spontaneous formation of

bubbles of a second liquid phase before the sample glassified. The glass phase

of the second liquid form inclusions in the glassy matrix of the first liquid.

Using electron probe microanalysis, the composition of the two glassy phases

were determined and was found to be identical.

1.4.6 Triphenylphosphite

Cohen et al. found that when triphenylphosphite TPP was cooled rapidly

enough, it first enters a supercooled liquid state (called liquid I) below the
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melting point TM = 295K as usually liquids do and then into a glassy state

(called glass I) at the glass-transition temperature T I
g = 205K. This super-

cooled liquid was found to behave as a typical fragile glass former. On the

other hand, if TPP is quenched to temperatures between 210K and 223K

(above T I
g ) and then annealed at that temperature, a new phase was found

to have emerged, which was termed as the glacial phase. Many explanations

were given for the nature and origins of this glacial phase, which included the

presence of an exotic defect-ordered phase to transformation into a plastic

crystal. Tanaka et al. [162] provided an experimental evidence which indi-

cated that the TPP undergoes a liquid-liquid transition and that the glacial

phase is the glassy state of a second liquid (liquid II). A critical point associ-

ated with this liquid-liquid transition has been also reported [89]. Recently

an application of liquid-liquid transition in TPP has has also been shown

by Kurita et al. [88], wherein the authors report that one can control the

fluidity and miscibility of its mixture with another molecular liquid (toluene

or aniline).
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1.5 Crystal Nucleation

In this section we begin with an introduction to the homogeneous nucleation

process. Later we briefly discuss the essential ideas behind simulation studies

of nucleation.

Nucleation, as mentioned earlier, is the process of transformation of a

metastable phase to the stable phase. Nucleation facilitated by surface

boundaries, impurities or any other preferential crystallisation sites is termed

as the heterogeneous nucleation. The homogeneous nucleation process in-

volves spontaneous formation of a stable phase nucleus, due to the thermal

fluctuations, inside the metastable phase, which is the focus of our study in

the system of liquid silicon. Such a formation of nuclei creates an interface

with the metastable phase, which is energetically unfavourable and hence

these nuclei often melt back in to original phase. On reaching a sufficiently

large sizes, the energy penalty due to the surface formation is over come, as

the atoms in the metastable phase would find it favorable to be part of the

stable nucleus (which is at lower chemical potential). After crossing such a

threshold size, the nucleus can only grow and this is termed as the critical

nucleus (n∗) and the energy associated with the formation of critical nucleus

is called the nucleation barrier (∆G∗ or W (n∗)). The critical nucleus size

and the nucleation barrier is closely related to the undercooling or supersat-

uration as we show below.

Let us consider a pure metastable phase at a constant temperature T and

applied pressure P0 (see FIG. 1.22). By pure phase, we mean that there is

no occurrence of the stable phase in any part of the system. Let N0 be the

number of atoms in the metastable phase and V0 be the volume. Due to

thermal fluctuations, a nucleus of size Ns (with volume Vs) is formed. Let

the pressure inside the nucleus be Ps. Since the total number of atoms in

the system is conserved, the metastable phase will now have Nm = N0 −Ns

number of atoms with a volume Vm. Let the energy of the system before the

formation of nucleus be U(S0, V0, N0) and after the formation be U(S ′, V ′, N ′)
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Figure 1.22: A sketch representing system having pure metastable phase
(left) and formation of a stable phase with in the metastable phase (right).

which can be written as

U(S0, V0, N0) = TS0 − P0V0 +N0µm(P0, T ) (1.3)

U(S ′, V ′, N ′) = [TSm − P0Vm +Nmµm(P0, T )] +

[TSs − PsVs +Nsµs(Ps, T )] + σA

(1.4)

Here the subscript m represents the metastable phase and the subscript s

represents the stable nucleus. Let the interfacial free energy be σ, the area

of the interface be A and the final volume of whole system be V ′ = Vm + Vs.

Using the fact that the number of atoms in the system is conserved (N0 =

N ′ = Nm +Ns), we can write the difference in energy as

∆U = (−Ps + P0)Vs − P0(V
′ − V0) + T (Sm + Ss − S0) + (1.5)

+σA+Ns(µd(Ps, T )− µm(P0, T ))

= (−Ps + P0)Vs − P0∆V + T∆S + σA+Ns(µd(Ps, T )− µm(P0, T ))

The change in Gibbs free energy is given by G = ∆U + P0∆V − T∆S. By
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inserting the above calculated difference in energy we get

∆G = (−Ps + P0)Vs + σA+Ns(µs(Ps, T )− µm(P0, T )) (1.6)

Note that the chemical potential is evaluated at the pressure inside the nu-

cleus (Ps). Using the Gibbs-Duhem equation SdT − V dP + Ndµ = 0, we

can rewrite the chemical potential in terms of applied pressure (P0) as

Nsµs(Ps, T ) = Nsµs(P0, T ) + Vs(Ps − P0) (1.7)

and hence the change in Gibbs free energy ∆G will be

∆G = Ns(µs(P0, T )− µm(P0, T )) + σA (1.8)

= Ns∆µ+ σA

where ∆µ is the chemical potential associated with moving of a single atom

from metastable phase to the stable phase and this quantity is negative. If

a nucleus contains n atoms, then the change in Gibbs free energy represent

the minimum workW (n) for nucleus formation. The first term is the volume

term or the gain term which represent the driving free energy for phase

transition and the second term is the surface term or the loss term which

represents the energy penalty for the creation of an interface. The volume of

the nucleus scales with n and the surface scales with n2/3 and hence we can

write W (n) = −bn + an2/3, where a and b are positive constants. We show

the profile of W (n) in FIG. 1.23 (a). The maximum correspond to the size

of critical nucleus (n∗) and the free energy barrier ∆G∗ and is given by

n∗ =

(

2a

3b

)3

(1.9)

∆G∗ =
4a3

27b2

For a spherical nucleus, the surface area A = 4πr2 can be expressed in term

of volume per unit atom nv′ = (4/3πr3), as A = (36π)1/3(nv′)2/3. Hence the
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(a) (b)

Figure 1.23: (a) Schematic diagram showing the Gibbs free energy difference
(∆G) as a function of nucleus size (n). (b) Schematic diagram showing the
chemical potential as a function of temperature. The dashed line represent
the metastable branch and the solid line represent the stable branch of liquid
(red) and crystal (blue) phases. The chemical potential difference is zero at
the melting temperature (Tm).

maximum corresponds to

n∗ =
32π

3

(

(v′)2/3σ

(−∆µ)

)3

(1.10)

∆G∗ =
16π

3

(

v′σ3/2

(−∆µ)

)2

r∗ =
2σv′

(−∆µ)

As shown in FIG. 1.23 (b) the chemical potential difference increases with

the undercooling. Therefore from Eq. 1.11 we find that the critical nucleus

size as well as the free energy barrier should decrease with undercooling.

The probability of formation of a critical nucleus depends on the free energy

barrier as

P (n∗) ∝ exp(−∆G(n∗)/kBT ) (1.11)

The crystal nucleation rate (net number of crystal nucleus passing the critical

size per unit time per unit volume) is given by the product of P (n∗) and a
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kinetic pre-factor κ

I = κexp(−β∆G∗) (1.12)

where kinetic pre-factor κ ≡ ρZfn∗

+ , where ρ is the number density, Z is

the Zeldovich factor and fn∗

+ is the attachment rate of atoms to the critical

nucleus. The Zeldovich factor Z =
√

|∆G”(n∗)|
2πkBT

represents the local curvature

of the free energy barrier. The attachment rate fn∗

+ = 24D(n∗)2/3/λ2 is

a function of diffusion coefficient D, mean free path λ and critical nucleus

size n∗. Hence the nucleation rates depends both on thermodynamics and

dynamics of the system.

Nucleation rates and supercooling limit: From the Eq. 1.12 we

know that the nucleation rate depends on two factors namely free energy

barrier ∆G∗ (a thermodynamic factor) and kinetic pre-factor which basically

is a function of diffusivity (D). From the Stokes-Einstein relation (D/T ∝ τα)

we can associate the diffusivity to the relaxation time (τα). The free energy

barrier diverges at the melting point and decreases exponential as we go

lower in temperature. The relaxation time is very small at high tempera-

tures but decreases as one lowers the temperature (following Arrhenius or

Vogel-Tammann-Fulcher equation). Hence the nucleation time (τn ≡ 1/I), a

product of a decreasing and an increasing function, goes through a minimum

(see FIG. 1.24). The the nucleation time and the relaxation time together

defines a time window within which we can observe a equilibrated supercooled

liquid phase. If we quench our system faster than the relaxation times, the

system will end up in a glassy state and if we quench too slow (slower than

the nucleation time) the system will crystallise. Hence the eventual fate of

a supercooled liquid depends on the nucleation rates and the relaxation dy-

namics of the liquid.

Nucleation mechanism and Crystal formation: A better under-

standing of the nucleation mechanism helps in controlling various properties

of crystals, including the size and polymorphism [178]. If process of nucle-

ation is fast (due to small free energy barrier), the crystal forms in many



1.5 Crystal Nucleation 46

Figure 1.24: Sketch of time against temperature showing the behaviour of
relaxation time and nucleation time. Here Tm represents the melting tem-
perature near which the relaxation time of the supercooled liquid is small
and the nucleation free barrier diverges.

places in the system and hence depleting the liquid phase, which affects the

growth of a single large crystal. With an understanding of the mechanism of

nucleation and growth (e.g. environment of critical nucleus, preferential ar-

rangement of liquid atoms, favorable local density changes) one grow crystals

in a controlled way.

1.5.1 Simulation Studies of Crystal Nucleation

Experimental studies on crystallisation phenomena mainly focus on the nu-

cleation rates [82,177], since direct observation a critical nucleus is a difficult

task. In some cases, in which the system has slow timescale and large molec-

ular size, experiments indeed have provided microscopic details (size, shape,

configuration of the new phase) [62, 82]. Like in many other cases, where

experimental studies are difficult, the computer simulations have provided

various insights resulting in the progress of the field and in the following

section we discuss essential ideas behind the simulation studies.
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Order Parameter

The first and foremost important aspect of simulation/theoretical studies

of nucleation is recognising the suitable order parameter to distinguish the

phases. We distinguish different phases by choosing an appropriate reaction

coordinate or order parameter. In the case of bubble nucleation or liquid

drop formation, one can use density as the order parameter. But in the case

of crystal nucleation density alone is not a good order parameter, since the

difference in density between the crystal and metastable liquid can be very

less or even zero. Since the crystal has translational order and orientational

order which is distinct from that of a liquid, one can use them as order

parameters to distinguish the two phases. Such an order parameter, which

depends on the local geometrical arrangement of the atoms, should be a

sensitive measure of crystallinity but should not be bound to the symmetry

of the crystal, even if one knows a priori the equilibrium crystal phase, since

the nucleation pathway can be complex and the liquid phase can nucleate

to a phase which is closest in free energy before transforming into a stable

crystal phase.

Bond orientational order, introduced by Steinhardt et al., is one such

order parameter which meets the above requirement and is discussed in the

chapter on Methods and calculations.

Nucleation Rate and Free Energy Barrier

Calculation of nucleation rates from an equilibrium simulation (MD or MC)

is straight forward task once we have recognised the critical cluster size.

We know that up on reaching a critical size (n∗), the cluster should not

melt to smaller size. If the time taken reach the critical size is t∗, then we

can calculate the nucleation rate as I ≡ 1/ < t∗ > V , where < t∗ > is

calculated from averaging t∗ from many independent crystallised equilibrium

simulation runs. For low super saturations, the critical cluster size will be

fairly big and the transformation to crystal phase will be sharp and hence

we can obtain a good estimate from t∗. But at high super saturations or

deeper undercooling, the critical cluster size will be small (hence difficult to
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pinpoint) and the transformation to crystal phase will be slow (owing to the

smaller mobility at lower temperatures) and hence obtaining good estimates

of t∗ will be difficult.

Another quantity of interest is the free energy difference ∆G(n). Accord-

ing to Eq. 1.11, ∆G(n) = −kBT ln[P (n)], where P (n) is the equilibrium

distribution of cluster sized n. We can calculate P (n) directly from MD sim-

ulations (by recognizing the crystal like particles and cluster of crystalline

particles), for clusters small than the critical size only. Since the formation

of a critical cluster is a rare event, the probability of formation of a critical

cluster will be small. Secondly formation of clusters sized beyond the critical

cluster size is a irreversible process. Hence the estimates of P (n) for n ≥ n∗

we obtained from MD simulations is inaccurate.

To counter the above mentioned issues, various simulation techniques

have been developed which basically focus on improving the sampling in the

interested region of the phase space - vicinity of the critical cluster. These

include umbrella sampling Monte Carlo [170,171] (which is used in our work

for the calculation of free energy barrier - detailed discussion in the chapter

on Methods and calculations), Transition Path Sampling [22], Forward Flux

Sampling [3], Mean First Passage Time (MFPT ) based method [184] to men-

tion a few methods. A recent article [175] reviews some of these simulation

methods.



Chapter 2

Methods and Calculations

In this chapter we discuss silicon model potential, Molecular dynamics and

Monte Carlo simulation techniques and other definitions and calculations of

various properties (Eg. correlation functions, order parameter etc.,) used in

this thesis.

2.1 Stillinger-Weber Potential

The Stillinger-Weber (SW) potential [159], by far the most widely used inter-

action potential for silicon (around 3000 citations), comprises of a two-body

and a three-body interaction potential. The crystalline phase of silicon at

low pressures has a diamond cubic structure and it melts into a higher den-

sity liquid phase. Stillinger and Weber [159], after a search through a class

of interaction potentials with two and three body interactions, defined their

empirical potential as follows:

USW =
∑

i<j

v2(rij/σ) +
∑

i<j<k

v3(ri/σ, rj/σ, rk/σ) (2.1)

where σ is the diameter of the atom, ri is the position of atom i, and rij is

the distance between atoms i and j. The two-body potential is short-ranged

and has the form

49
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v2(r) =

{

A ǫ (Br−4 − 1) exp
(

1
r−a

)

r < a

0 ≥ a
, (2.2)

where A = 7.049556277, B = 0.6022245584, and a = 1.8. The repulsive

three-body potential is also short-ranged, and is given by

v3(ri, rj , rk) ≡ h(rij, rik, θjik) + h(rij, rjk, θijk)

+h(rik, rjk, θikj) (2.3)

where θjik is the angle formed by the vectors rij and rik and

h(rij, rik, θjik) = ǫ λ exp[
γ

rij − a
+

γ

rik − a
] (cos θjik + α)2

×H(a− rij)H(a− rik), (2.4)

where λ = 21.0, γ = 1.20, andH(x) is the Heaviside step function. The choice

α = 1/3 in (cos θjik + α)2 favors a tetrahedral arrangement of atoms as found

in silicon. The length and energy scales are set by the choice σ = 2.0951Å,

ǫ = 209.5kJ/mol. The choice of parameters were identified by taking into

account the stable structural arrangement of the crystal to be cubic diamond,

the melting point and the liquid structure. The depth of the potential ǫ and

diameter of the atom σ were chosen such that one obtains the correct lattice

spacing and atomisation energy of crystalline Si at 0 K. The strength of the

three-body potential is determined by the value of λ. Both the two-body and

the three-body part of the potential smoothly goes to zero at the cut off a.

2.1.1 Double Sum Implementation

In the Stillinger-Weber potential, calculation of the three-body term obvi-

ously involves a triple-loop implementation and hence is computationally
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more expensive than the two-body sum. A proposal to reduce the three-

body term to a product of two-body terms was put forward by Biswas and

Hamann [21] and later by Makhov and Lewis [101] to perform Monte Carlo

simulation. Saw et al. [146] extended this scheme to calculate the force and

hence perform Molecular Dynamics simulations. The expression of the SW

potential as suggested by the above mentioned works is given by

USW =
∑

i

∑

j<i

veffij +
∑

i

Ud
i (2.5)

where veffij contains the two-body term of the SW potential (Eq. 2.2) and

a correction term (which comes from the double sum implementation of the

three-body term). The expression for veffij is given by:

veffij = v2(rij)− λ[g2ij(1 + α)2] (2.6)

where gij = exp
[

γ
rij−a

]

. The second term in the Eq. 2.5 is the three-body

term of SW potential written as double sum and has an expression:

Ud
i =

λ

2
α2h2i + λα

∣

∣s2i
∣

∣+
λ

2
Tr
[

T2
i

]

(2.7)

where hi is a scalar, si is a vector and Ti is tensor of rank 2, having the

following expression:

hi =
∑

j 6=i

gij (2.8)

si =
∑

j 6=i

gij r̂ij (2.9)

Ti =
∑

j 6=i

gij(r̂ij ⊗ r̂ij) (2.10)
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The force expression is as follows:

−Fi = ▽USW (2.11)

=
∑

j<i

1

rij

∂v2
∂rij

rij −
∑

j 6=i

2λ(1 + α)2
gij
rij

∂gij
∂rij

rij +

∑

j 6=i

(cij + cji)rij +
∑

j 6=i

2λα
gij
rij

(si − sj) +

∑

j 6=i

2λgij
Ti +Tj

r2ij
rij

where (cij + cji) is given by

cij + cji = λα2∂gij
∂rij

hi + hj
rij

+ (2.12)

2λα

(

∂gij
∂rij

−
gij
rij

)

rij.(si − sj)

r2ij
+

λ

(

∂gij
∂rij

−
2gij
rij

)

rij .(Ti −Tj)

r3ij
rij

We find that this implementation of the SW potential is about six time faster

than the conventional implementation of SW potential.

2.1.2 Conversions

In this subsection we provide the reduced to real unit conversion factors

for various observable measured using the SW potential. The basic unit of

length is σ (the diameter of the atom), energy is ǫ (the depth of the two-

body potential) and mass is m (the mass of the atom). Using the basic units

we calculate the conversion factors which are shown in the following table.

As we discussed in the previous section the Stillinger-Weber potential was

parametrised with σ = 2.0951Å, ǫ = 209.5kJ/mol and m = 28.0855gm/mol.

To obtain distance in real units we multiply the reduced distance by a factor

2.0951. Similarly for other variable we show the multiplicative factor in the

following table.
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Observable Factor (Unit)

Length r∗ × 2.0951 (Å)
Energy E∗ × 209.5 (kJ/mol)
Mass m∗ × 28.0855 (gm/mol)

Temperature T ∗ × 25173 (K)
Pressure P ∗ × 37.776 (GPa)
Density ρ∗ × 5.0571 (gm/cm3)
Time t∗ × 76.6 (fs)

Diffusivity D∗ × 0.005730345 (cm2/s)
Viscosity η∗ × 0.029060146 (poise)

Table 2.1: Conversion factor for various observables calculated from the
Stillinger-Weber model potential for silicon.

2.2 Molecular Dynamics Simulation

Molecular Dynamics (MD) simulations have proven to be a powerful simula-

tion tool to study thermodynamic as well as dynamic properties of material

(characterised by an interaction potential). Given the information of state

point of interest (e.g. number of atoms N , applied pressure P or density ρ

and applied temperature T ) an MD simulation typically involves three main

steps which are (1.) Initialisation of the system, (2.) Evolution of system

towards equilibrium and (3.) Calculation of equilibrium properties.

Based on the input density and temperature, we do the initialisation of

the coordinates and velocities of the atoms. Since the focus of our study is

the liquid phase, which is in a disordered state, the atomic coordinates are

randomly initialised within the simulation box. We make sure that no two

atom’s coordinates over lap on each other, since this would lead to unreal-

istically large energy and force values, which may eventually terminate the

simulation. For crystal phase simulations we do a cubic diamond initialisa-

tion of atomic coordinates. For a given temperature, the initial velocities of

the atoms are drawn from the corresponding Maxwell-Boltzmann distribu-

tion.
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Evolution of the system involves calculation of forces on the atoms and

integration of the equations of motion. If r(t) and v(t) represent the current

positions and velocities of the atoms, for the time evolution of the system

we need to calculate r(t + ∆t) and v(t + ∆t), where ∆t is the time step

of MD simulation. Various algorithms have been developed for the integra-

tion of Newton’s equation of motion which include the Verlet algorithm, the

Leap-frog algorithm, velocity-Verlet algorithm etc [56]. In order to perform

MD simulations in a Isochoric-Isothermal (NVT) ensemble or in a Isobaric-

Isothermal (NPT) ensemble, we need methods for applying a thermostat and

a barostat. This is achieved by methods which use a Lagrangian formula-

tion for obtaining the equations of motion [56]. In our work we have used

the LAMMPS MD package [121], which uses the Nose-Hoover thermostat,

to perform NVT MD simulations. For NPT MD simulation we use a home

grown code which implements the integration algorithm following the work

of Brown and Clarke [26]. In all our MD simulations we have used periodic

boundary condition and unless otherwise mentioned the system size is 512

atoms and the time step of integration is ∆t = 0.005 in reduced units, which

is equivalent to 0.3830fs. At each state point we have performed a minimum

of 60 million MD steps which corresponds to 22ns and minimum of 3 − 5

independent samples.

From the equilibrated configurations we have measured the average quan-

tities like pressure, density etc, space correlation functions like radial dis-

tribution function, structure factor etc and time correlation function like

intermediate scattering function, van Hove function etc. Some of these mea-

surements (e.g. static properties like pressure, density etc) can be easily

calculated while the simulation is in progress (“on the fly”). Even though,

on the fly, it is possible to calculate time or space correlation function on the

fly [56], it is simpler to output the atomic coordinates and velocities period-

ically and to calculate after the simulation gets completed. We calculate the

temperature of the system from the average kinetic energy using the relation

T =
∑N

i=1
m<v2i >

3kB
, where m is the mass of the atom, vi is the velocity of the

atom i and kB is the Boltzmann constant. We can calculate the pressure
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from virial equation for the pressure [56] and for pair-wise additive inter-

actions (like the Stillinger-Weber interaction potential), the expression for

pressure is given by

P =
ρ

β
+

1

V

1

3

∑

i

∑

j>i

f(rij).rij (2.13)

where ρ is the number density, β = 1/kBT , V is the volume, f(rij) and rij

represent the force and distance between atom i and j respectively. Other

quantities which we have computed in this work is discussed in the last sec-

tion of this chapter. Note that we have outputted the simulation trajectory

(containing coordinates and velocities of atoms, simulation box length, in-

stantaneous temperature and pressure) in terms of equally spaced blocks of

data. Further in each block the frequency of storing the the data is in log

scale. Writing the trajectory in this style, we store the information related

to both small time and long time periods, while optimising the demand for

data storage.

2.3 Monte Carlo Simulation

Monte Carlo (MC) simulations have been extensively used in the study of

equilibrium properties of condensed matter systems. Especially when there

are large energy barriers and the system can get trapped at low energy basins,

MC is the method of choice since algorithms to overcome such barriers may

be defined. MC simulations have been also employed in the study of rare

events, like crossing a nucleation barrier. Unlike in an MD simulation, MC

simulation method can employ un-physical moves which can overcome the

issues related to entrapment in local basins. This advantage comes at a price

i.e., we cannot obtain the dynamical properties directly from a conventional

MC simulation.

In an MC simulation a series of configurations are generated such that the

probability distribution of these configurations will be proportional 1
Z
e(−βE(rN )),

where E(rN) is the Hamiltonian of the system, which depends on coordinates
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of the atoms and Z is the partition function. After obtaining such a sequence

of configurations which follow the desired equilibrium distribution the average

of any thermodynamic property can be calculated as < A >= 1
M

∑M
i=1A(r

N
i ),

where M total number of sampled configurations. One of the well known

procedures for generating such a sequence of configurations is the Metropolis

method. Let o be the current configuration with an equilibrium probability

proportional toN(o). The procedure to generate new configuration should be

such that an equilibrium distribution of configurations should remain invari-

ant, which is achieved by following the detailed balance condition, according

to which, the average number of moves from o to any new state n is equal to

the moves from n to o. Hence

N(o)π(o→ n) = N(n)π(n→ o) (2.14)

where π(o→ n) is the transition probability (from o to n) which can be split

into probability associated with the generation of a new state represented

by α(o → n) and an acceptance probability acc(o → n) which represents

the probability with which the new configuration is accepted. In all our

simulations we assume α to be symmetric i.e., α(o→ n) = α(n→ o). Hence

we get

N(o)acc(o→ n) = N(n)acc(n→ o) (2.15)

Using the expression for N we can rewrite the above equation as

acc(o→ n)

acc(n→ o)
=
N(n)

N(o)
= exp(−β[E(n)− E(o)]) (2.16)

In the Metropolis algorithm one chooses the following scheme to evolve

the system (represented schematically in FIG. 2.1).

acc(o→ n) = min(1, exp(−β[E(n)− E(o)])) (2.17)
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Figure 2.1: A schematic representation of Metropolis algorithm shown for
three different temperatures. For ∆E < 0 the trial move is always accepted.
At high temperatures acceptance probability is high.

We summarise below the procedure for performing an MC simulation in

the NVT ensemble. At a chosen density (ρ) and temperature (T )

1. Randomly select an atom and calculate its energy energy E(o).

2. To generate a trial configuration, a random displacement is given to

the atomic coordinate and the new energy E(n) is calculated.

3. The trial move is accepted with a probability min(1, exp(−β[E(n) −

E(o)])).

In an NPT MC simulation we have to perform a volume change trial move

along with the random displacement move. We can perform trial move in

the logarithm of the volume and the acceptance criteria for such a trial move

is given by

acc(o→ n) = min(1, exp(−β[E(n)− E(o) + P (Vn − Vo) (2.18)

−(N + 1)β−1ln(Vn/Vo)]))

where E(o) and E(n) represents the energy of the system before and after
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the volume trial move, P is the applied pressure, Vo and Vn is the old and

new volume.

As noted in previous work [142] the study of the supercooled phase of

silicon faces the challenge of slow equilibration and high crystallisation. To

circumvent the issue of slow equilibration we have use the parallel tempering

MC technique.

The parallel tempering MC simulation is a method to accelerate the equi-

libration of a system. The simulation method is based on the replica exchange

sampling scheme. At low temperatures the time evolution of atomic coordi-

nates is characterised by long periods of time when the system is stuck in

local free energy minima that are separated by large barriers. For proper

sampling of the phase space, the system has to make transitions between

such minima in an efficient way. In ordinary MC simulations, as it can be

seen from FIG. 2.1, the acceptance probability goes down with a lowering of

temperature for moves that increase the energy. The solution offered by the

parallel tempering MC method is to perform simulations MC simulations at

’M’ randomly initialised copies of the system, each copy being at a differ-

ent temperature. The range of temperatures varies between the temperature

of interest and the temperature at which system explores the phase space

easily. According to Metropolis criterion we swap copies belonging to differ-

ent temperatures. If the difference in temperature is very large, according

the acceptance criterion, such a swap move will have a very low probabil-

ity. Hence we use intermediate temperatures, having small differences, to

attempt a swap move (which is analogous to using small displacement steps

in ordinary MC simulation). In this way, a system would come out of a

local free energy minima and hence properly sample the phase space. The

acceptance criterion associated with such a swap move is given by

acc((1, β1), (2, β2) → (2, β1)(1, β2)) = min(1, exp[(β1 − β2)(U(1)− U(2))])

(2.19)

where the system 1 and system 2 have energies U(1) and U(2) respectively

and β1 and β2 represent the inverse temperatures at which simulations are

carried out. We decide upon the intermediate temperatures by looking at
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the extent of overlap between the distribution of energies of the two system

which we attempt to swap. The swap frequency is chosen such that the

system spends at least an amount of time corresponding to a mean square

displacement of 1σ at the highest T. We note that the above acceptance

criterion assumes that all the copies are swapped with their nearest (in T)

copies.

We have performed parallel tempering MC in a NPT ensemble, in which

we not only swap between temperatures, but also between different pressure

values [51]. The acceptance criteria associated with such a swap move is

given by

acc((1, β1, P1), (2, β2, P2) → (2, β1, P1), (1, β2, P2)) (2.20)

= min(1, exp(∆(βP )∆V +∆β∆E))

where

∆(βP ) = β2P2 − β1P1 (2.21)

∆V = V (o)2 − V (o)1

∆E = E(o)2 − E(o)1

The subscript 1 and 2 represent the systems at different temperature and

pressure values. Note that in a NPT MC simulation, for each system, we also

have to change the volume of the box and hence involves current volume and

its associated energy (represented by V (o) and E(o)) and new trial volume

and its associated energy (V (n) and E(n)). The above acceptance criteria is

in terms of current volume and energy.

We have used the Mersenne Twister random number generator [105] for

all our MC simulations. In each MC cycle the maximum displacement an

atom can make is 0.12σ and the maximum change in volume is 0.05σ3. The

parallel tempering MC simulations were performed with a system size of 512

atoms for about 60 million MC cycles. To check the equilibration of the

system we verify that each copy of the system gets swapped up and down in

temperature T at least 100 times. We also ascertain that every atom in the



2.4 Other Calculations and Techniques 60

system has moved at least 5σ2.

2.4 Other Calculations and Techniques

2.4.1 Mean Square Displacement

The mean square displacement (MSD) is a measure of average distance an

atom travels in a given time interval and is defined as:

〈

r2(t)
〉

≡
1

N

〈

N
∑

i=1

|~ri(t)− ~ri(0)|
2

〉

(2.22)

where N is the total number of atoms. The angular bracket represents an

average over different time origins. In the FIG. 2.2 we show the MSD profile

for a system in the liquid phase, in which we see three distinct regimes of

dynamics. At small time interval atoms in the system travels ballistically

(with no collisions) and hence we find that the MSD is proportional to t2.

The time interval when the atoms starts to collide with its neighbouring

atoms is associated with the caging regime. The MSD shows a plateau like

feature, since atoms are less mobile in this time interval. After a certain

time interval the atoms come out of the cage and the motion of the atoms

can be associated with that of a random walk. In this regime the MSD

is proportional to t and motion of the atoms is termed as diffusive (since

the evolution of the atoms in this time interval can be approximated by the

diffusion equation). The slope of the MSD in the diffusion regime is related

to the self-diffusion coefficient through the Einstein-Smoluchowski equation

and is given by (for the case of three dimensional system)

D = lim
t→∞

〈r2(t)〉

6t
(2.23)

Since our system of interest is in a metastable phase, the MSD provides

a quick way determine whether the system is in a liquid state or it has crys-

tallised, since the diffusion coefficient is quite sensitive to the presence of

crystalline clusters in the system.
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Figure 2.2: Mean square displacement (MSD) of a system in liquid phase
showing three regimes of dynamics.

2.4.2 Radial Distribution Function and Fifth Neigh-

bour Distribution

Radial distribution function or pair correlation function (g(r)) is a 2-point

correlation function which is defined as

g(r) =
V

N2

〈

∑

i

∑

j 6=i

δ(~r − ~rij)

〉

(2.24)

where V is the volume of the system, N is the number of atoms, rij represents

the distance between atoms i and j. Physically, 4πr2ρg(r)dr gives the number

of neighbours a reference atoms has at a distance between r and r+dr. Here

ρ is the number density of the system. In the FIG. 2.3 we show a typical

g(r) profile for a liquid and a crystal system. The minima separate different

coordination shells, which are well defined in the case of crystalline system.

We can obtain the coordination number (Cnn), which is the number of nearest
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neighbours to a reference atom, using the relation Cnn =
∫ rc
0
ρg(r)4πr2dr,

where rc the distance corresponding to the first minimum of g(r).

The pair correlation function can be decomposed according to the contri-

butions from the successive nearest neighbors of a reference atom to define a

sub-RDF gi(r) [135] such that g(r) =
∑N

i=1 gi(r). For i = 5 we get the fifth

neighbour distribution. Physically, g5(r) gives the probability of observing

a 5th nearest neighbour from a reference atom at a distance between r and

r + dr. Note that if the 5th is found within the first coordination shell, the

g5(r) has a uni-model peak (see FIG. 2.4).

0 5 10
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g(
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Figure 2.3: Radial distribution function g(r) for a system in liquid and crystal
phase.

Static Structure Factor

Structure factor can be obtained from Fourier transform of g(r) as

S(q 6= 0) = 1 + ρ

∫

eiq.r[g(r)− 1]dr (2.25)



2.4 Other Calculations and Techniques 63

1 1.2 1.4 1.6 1.8 2

r (Å)

0

0.1

0.2

0.3

0.4

g
5(r

)

5
th

 neigh. within

5
th

 neigh. outside

Figure 2.4: Fifth neighbour distribution g5(r) for a system in liquid phase.

This is an experimentally accessible quantity determined by various scatter-

ing techniques. We can also defined S(q) in terms of the density-density

correlation function in the Fourier space as

S(q) =
1

N
< δρ(q)δρ(−q) > (2.26)

2.4.3 van Hove Function and Intermediate Scattering

Function

The van Hove function is a density-density space-time correlation function

given by

ρG(r, t) =

〈

1

N

N
∑

i=1

N
∑

j=1

δ(r+ rj(0)− ri(t))

〉

(2.27)

We can separate out the self (same atom at different times) and distinct

(different atoms at different times) contributions of the atoms to the G(r, t)
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and write the above equation as

G(r, t) = Gs(r, t) +Gd(r, t)

where

Gs(r, t) =

〈

1

N

N
∑

i=1

δ(r− |ri(t)− ri(0)|)

〉

(2.28)

Gd(r, t) =

〈

1

N

N
∑

i=1

N
∑

j 6=i

δ(r− |ri(t)− rj(0)|)

〉

Physically G(r, t)dr is the number of atoms j at r within a region dr

around a point r at time t given that there was an atom i at the origin at

time t = 0. For equal time, the distinct part of van Hove function reduces

to the pair correlation function i.e., Gd(r, 0) = ρg(r). For t, r → ∞, the self

part of van Hove function follows a Gaussian distribution i.e., Gs(r, t) →
1

(4πDt)3/2
exp

(

− r2

4Dt

)

, where D is the diffusion constant.

The intermediate scattering function (F (q, t)) is the spacial Fourier trans-

form of the van Hove function G(r, t). It can be shown that the intermediate

scattering function is the correlation function of the Fourier components of

the density, hence we can write

F (q, t) =
1

N
〈δρ(q, t)δρ(−q, 0)〉 (2.29)

where δρ(q, t) is the local density fluctuation in in Fourier space and is given

by

ρ(q, t) =
N
∑

i=1

exp (i q · ri(t)) (2.30)

In our work we obtain the alpha relaxation time (τα) as the time at which

the F (q, t) (at a q value corresponding to the first peak of S(q)) decays by a

factor of e.
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2.4.4 Structural Order Parameters

In this section we provide the definitions of different measures of structural

order which we have used to characterise the local arrangement of silicon

atoms.

Translational Order

The translational order ttrans [172] is defined as

ttrans =

∫ ξc
0

|g(ξ)− 1| dξ

ξc
(2.31)

where ξ = rρ(1/3) is the scaled coordinate, r is the distance between the two

atoms, ρ is the number density and ξc is a cutoff distance, where the system’s

g(r) goes to 1 to a high degrees of precision. In all our calculations, ξc is

chosen to be 4.0σ or 8.3Å. Scaled coordinates are used so that the above

integral sums over an equivalent number of coordinate shells at each density.

For the ideal gas, since g(r) = 1, ttrans is zero and for a crystal (which has

long range crystalline order) ttrans has a large but finite value. In the liquid

phase the ttrans will have a value in between that of the ideal gas and a

crystal.

Tetrahedrality Order

The tetrahedrality order (qtetra) [52] is defined as

qtetra = 1−
3

8

3
∑

j=1

4
∑

k=j+1

(

cos(ψjk) +
1

3

)2

(2.32)

where ψjk is the angle formed by the lines joining a reference atom i and its

nearest neighbours j and k. The average qtetra varies between 0, for the case

of an ideal gas and 1, for the case of a perfect tetrahedral network.
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Bond Orientational Order

The bond orientational order [158] is defined using the spherical harmonics

evaluated from the knowledge of unit vectors of the neighbouring atoms.

Two atoms are considered to be neighbours or bonded if they are within a

distance cutoff corresponding to the first minimum of g(r). Let the atom i

have j as its neighbour at a distance |~rij| and with an orientation r̂ij. The

bond orientation order around the atom i is given by

qlm(i) ≡
1

Nn(i)

Nn(i)
∑

j=1

Ylm(r̂ij) (2.33)

whereNn(i) is the number of neighbours of atom i, Ylm(r̂ij) ≡ Ylm(θij , φij) are

the spherical harmonics calculated along the vector r̂ij between the particles

i and j, θij and φij represent the polar and azimuthal angles respectively.

By summing qlm(i) over all the ij bonds in the system, instead of only those

around an atom i, we can obtain a global orientational order Qlm. We can

define rotationally invariant global orientational order Ql as

Ql =

(

4π

2l + 1

l
∑

m=−l

|Qlm|
2

)(1/2)

(2.34)

In the liquid phase Ql will have a very small value. As the system size in-

creases, Ql goes to zero. For the crystal phase Ql will have a finite value as

shown in the the FIG. 2.5 for cubic diamond crystal.

From Eq. 2.33 we can also define a rotationally invariant local orienta-

tional order ql(i) as

ql(i) =

(

4π

2l + 1

l
∑

m=−l

|qlm(i)|
2

)(1/2)

(2.35)

Note that unlike global orientational order parameter, the ql(i) will have a

finite value for liquid phase also. For the case liquid silicon ql(i) between 0.2
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Figure 2.5: The orientational (Ql) order calculated for cubic diamond crystal
unit cell for various l values

and 0.7.

2.4.5 Viscosity (η)

We calculate the shear viscosity η using the Green-Kubo formula [66], wherein

we integrate the auto-correlation function (obtained using the LAMMPS MD

package [121]) of the stress tensor is given by

η =
V

kBT

∫ ∞

0

< Pαβ(t)Pαβ(0) > dt (2.36)

where V is the volume of the simulation box, kB is the Boltzmann’s constant

and Pαβ is the stress tensor defined as

Pαβ(t) =
1

V

(

N
∑

i=1

PiαPiβ/m+
N
∑

i=1

N
∑

j>i

rijαfijβ

)

(2.37)

α, β ∈ (x, y, z) denotes the component of the vector, rij is the distance be-

tween particle i and j and fij = −∂USW (rij)/∂rij .



Chapter 3

Phase Behaviour of

Supercooled Liquid Silicon

The phenomenon of the liquid-liquid phase transition (LLT ) is an unusual

phase transformation between two liquids in a single component system. The

liquid-liquid transition has been investigated in a wide variety of substances

(as we already discussed in the introduction) including water [125], silica

[135], germanium [10], carbon [31, 65, 187] and hydrogen [114, 147] - these

substances form a very significant component of our natural world.

For the case of silicon, using a two-state model, Aptekar [10, 48] in 1979

proposed a liquid-liquid transition and further predicted a negative pressure

critical point. Even though some of the early experimental as well as sim-

ulation work proposed a liquid-amorphous transition [14, 24, 30, 45, 99, 116,

131, 132, 154, 167, 174, 183], the precise nature of the transition was unclear

owing to the limited availability of information. Based on simulation evi-

dence using the Stillinger-Weber (SW ) potential for silicon [159] Angell et

al. [5] proposed a first order liquid-liquid transition line as a feature in the

pressure-temperature phase diagram of silicon. The experimental work of

Deb et al. [34,39] observed a pressure induced amorphous-amorphous transi-

tion and speculated the possibility of an underlying liquid-liquid transition,

to be found at ambient pressure at around (1100K). From extensive simula-

tions of silicon using the SW model potential Sastry and Angell [142] found

68
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evidence of a liquid-liquid transition at zero pressure at around 1060K, which

was also subsequently supported by ab initio simulations [59, 77].

In case of water, computer simulations in various model potentials have

shown that the line of liquid-liquid transition ends at a liquid-liquid critical

point (LLCP ) [2,67,124,125,137,190]. But the recent proposal by Angell [4],

suggests that a liquid-liquid transition is also consistent with a “critical point

free” scenario. Hence the existence of a critical point needs independent ver-

ification. In this chapter we discuss such a evidence from computer simu-

lations for critical point with an associated line of first order liquid-liquid

transitions in supercooled liquid silicon. We identify the critical temperature

and pressure and find that the critical point is indeed at a negative pressure

value. Further we construct the whole phase diagram of supercooled liquid

silicon and find interconnections between the thermodynamic anomalies and

phase behaviour as suggested in previous works [41, 124,125,143,155,156].

3.1 Liquid-Liquid Critical Point

A liquid-gas critical point marks a second order phase transition which is

characterised by the singular behaviour of second derivative of the free energy

(e. g., the heat capacity and the isothermal compressibility). The equation

of state (pressure vs. density) for an isotherm above the critical temperature

is continuous, whereas an isotherm below the critical temperature shows a

density discontinuity (indication of a first order phase transition). Similar

behaviour is expected to be seen in the case of liquid-liquid transition, and

hence our approach to find the LLCP is to compute the equation of state

(EOS) for a range of temperatures. We have employed Molecular Dynamics

(MD) simulations using the SW for silicon for this purpose. Before we go

into a detailed discussion of our results we summarise the simulation protocol

followed to obtain the equilibrated data.

In order to obtain the equilibrium EOS for the supercooled liquid sili-

con we have performed constant pressure (NPT ) MD simulations (employ-

ing an efficient algorithm for energy and force evaluations [146]) with a
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time step of 0.383fs. The system size is 512 atoms for all our MD sim-

ulations (unless otherwise mentioned). We have also performed constant

volume (NV T ) MD simulations with the same system size and time step

(using the LAAMPS parallelised MD package [122]). The equilibration of

the system was monitored by the observing the mean square displacement

(MSD) and from the relaxation of intermediate scattering function and

self overlap function Q(t). (Note that the overlap function is defined as

Q(t) = 1
N

∑N
i=1w |~ri(t0)− ~ri(t+ t0)|, where w(r) = 1, if r ≤ 0.3σ, zero oth-

erwise). At each state point we have simulated a minimum of 3 to 6 inde-

pendent samples for ∼ 100 relaxation times (∼ 10 ns). At low temperatures

we find that the crystallisation (monitored by energy jumps and pair corre-

lation function as shown in FIG. 3.1) rates are high. At these state points we

have performed around 10 to 50 initial runs, each of 22 ns. Non-crystallising

samples (average of 5) were run up to 100ns (300 million MD steps) or for a

time required for the MSD to reach 1nm2 (5 σ2, where σ is the atomic diam-

eter) or whichever was larger. In order to equilibrate the system at very low

temperatures and high negative pressures we have employed parallel temper-

ing Monte Carlo (MC) simulation technique [51, 56] (details related to MD

simulations and MC simulations are given in the Methods and calculations

chapter).

We have performed MD simulations at temperatures ranging from T =

900K to 2500K and pressures ranging from −3.77GPa to +3.77GPa to ob-

tain the EOS. From the EOS the upper and lower bound in temperature

for the critical point was found. Above the critical temperature the EOS

is a continuous and monotonic curve as shown in FIG. 3.2 (a). Below the

critical temperature, the system phase separates and hence these isotherms

(below T = 1133K), in the NPT MD simulations, showed jumps in densities

for a small change in pressure (see FIG. 3.2 (b)) The NVT MD simulations

performed at these temperatures (T = 1133K to 1070K) (and at densi-

ties spanning the range of the density jumps in the NPT MD simulations)

showed non-monotonic isotherms (see FIG. 3.2 (b)). Such non-monotonicity

in simulations arises from metastability on the one hand, and on the other
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Figure 3.1: Plot of energy (top panel) and radial distribution function g(r)
(bottom panel) for the system that is crystallising (T = 1075K and P =
0GPa). As the system crystallises g(r) develops a bump at 4.5Å, which grows
into a full peak (for reference the pure crystal g(r) shown - blue dashed-line).

hand, incomplete phase separation owing to finite sample sizes in the un-

stable region, and constitutes a clear indication of a first order transition.

The highest phase-coexisting temperature and lowest continuous isotherm

bounds the critical temperature. Similarly, the pressure at which the contin-

uous isotherms are flattest (above the critical temperature) and the pressure

at which a density jump is seen (below the critical temperature) determine

the bounds for the critical pressure. The estimated critical temperature and

pressure are Tc ∼ 1120± 12K, and Pc ∼ −0.60± 0.15GPa respectively.

Approaching the critical point from above leads to increased density fluc-

tuations. We calculated the compressibility (KT ) values from density fluc-

tuations (in the NPT MD simulation), in addition to evaluating the KT
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from the EOS. After doing a polynomial fit to an isotherm obtained from

the NPT simulation, we obtain the KT by taking numerical derivative of

the EOS. To calculate KT from the volume fluctuations we use the relation

KT = 1
kBT

<V 2>−<V >2

<V >
, where kB is the Boltzmann constant and V is the

volume of the system. In FIG. 3.3, we show the compressibility values cal-

culated from both methods for temperatures above T = 1133K. As seen in

FIG. 3.3 the EOS estimates agree well with those from density fluctuations

in the high pressure side of the compressibility maximum (which corresponds

to the high density liquid (HDL) phase), but poorer agreement is obtained

for the low pressure side the compressibility maximum (which corresponds

to the low density liquid (LDL) phase), because of lack of good sampling.

First principles simulations: In case of carbon and silica, computer

simulations using classical empirical potentials have predicted liquid-liquid

transition [65, 135] which are contradicted by first principle MD (FPMD)

simulations [79, 187]. In silicon, Jakse and Pasturel [77] and independently

Ganesh and Widom [59] have reported first principle simulation results, both

of which support the proposed liquid-liquid transition in silicon. In the work

of Ganesh and Widom, the authors report the emergence of a van der Waals-

like loop (shown in FIG. 3.4), as a signature of a first order phase transition

at temperatures below 1182K. The maximum time span of these simulations

is around 40ps [77], which seems to be very small compared to the relaxation

times of LDL (tens to hundreds of nanoseconds). But the FPMD calculations

are computationally very expensive compared to classical MD simulations.

It would be interesting to compare the equilibration times of the system

simulated in FPMD and classical MD and do a systematic study of relaxation

processes in these two different methods of simulation.
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Figure 3.2: Equation of state from NPT MD and NVT MD simulations. Nine
isotherms at temperatures above and below the critical temperature of the
liquid-liquid transition are shown. The open symbols represent data from the
NPT MD simulations and the opaque symbols represent data from the NVT
MD simulation. The solid lines are polynomial fits to the data points. (a)
The isotherms above T = 1133K are monotonic and continuous and below
T = 1133K show a jump in density for small change in pressure in constant
pressure simulations. (b) The NVT MD simulation data for T < 1133K
show non-monotonic behaviour indicating a first order phase transition.
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Figure 3.3: Isothermal compressibility against pressure for different temper-
atures from the NPT MD simulations. All the isotherms shown in the figure
are for temperatures above the liquid-liquid critical temperature. With the
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isotherm increases, suggesting an approach to the critical point. The lines
represent the compressibility values calculated from the equation of state by
numerical differentiation. The symbols represent the compressibility calcu-
lated from volume fluctuations.

Figure 3.4: Equation of state of supercooled liquid silicon obtained from first
principles MD (FPMD) simulations displaying a van der Waals-like loop for
T < 1232K. [From Ganesh et al. [59] with permission.]
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3.2 Phase Diagram

In order to obtain the complete phase behaviour of supercooled liquid silicon

we have analysed the interplay of various loci of extremal behaviour, namely

the spinodal, temperature of density extrema and temperature of compress-

ibility extrema. Loci of temperature of maximum and minimum density,

temperature of maximum and minimum compressibility and the spinodal

were evaluated by employing, in addition to the MD simulations, parallel

tempering MC simulations [51, 56] (at low temperature and pressures) and

restricted ensemble MC simulations [32] (for locating the spinodal at low

temperatures). Results concerning these features of the phase diagram are

described below.

Temperature of maximum density (TMD): The TMD line is defined

as the locus of isobaric maxima of density ρ vs. T ((∂ρ/∂T )P = 0) or

the locus of isochoric minima of pressure P vs. T ((∂P/∂T )V = 0). For

pressure values above P = −3.80GPa, we have obtained the TMD line from

the NPT MD simulations. Below P = −3.80GPa, cavitation in the NPT

MD simulations was observed and hence the NVT MD simulations were

performed to locate isochoric minimum in pressure. In FIG. 3.5 and FIG. 3.6

we show the TMD obtained from density maxima along isobars and pressure

minima along isochores respectively.

Temperature of minimum density (TMinD): The TMinD line is the

locus of density minima points, crossing which, the system returns to the

normal behaviour in density (increase in density with the decrease in tem-

perature). Finding the TMinD line in supercooled liquid silicon is quite

challenging since we must simulate the system deep inside the supercooled

region of the phase diagram (where fast crystallisation, slow equilibration and

cavitation pose hurdles to obtaining equilibrated data). In order to obtain

equilibrated data we have employed NPT parallel tempering MC simulation

technique [51], in which copies of the system at different T and P are swapped

periodically according to a Metropolis acceptance criterion, thereby avoiding

the possibility of the system getting stuck in phase space at low temperatures

(details given in the Methods and calculations chapter). In FIG. 3.7 we show
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the TMinD obtained from maxima along isochores. There have been very

few reports of density minima for any substance. Experimental and simula-

tion observation for water were reported only recently [96, 124].

Temperature of minimum compressibility (TMinC): Using the NPT

MD simulations we obtain the line of TMinC (see FIG. 3.8 top panel). At

pressure values below P = −3.80GPa system cavitates quite easily and of-

ten. Hence care was taken by performing simulations for a minimum of 10

independent samples to construct the equation of state, from which we cal-

culate the compressibility values.

Temperature of maximum compressibility (TMC or Widom line ):

The value of TMC at the high pressure values (P > −2GPa) is obtained

from FIG. 3.3. In the FIG. 3.9 we show the compressibility data from which

Kmax
T were obtained for P < −2GPa. As the system crosses the Kmax

T line

from high T to low T (at a chosen pressure value), the relaxation times

were found increase from picoseconds to tens of nanoseconds. Nearing the

locus of compressibility maxima, crystallisation of samples was also found

to be frequent. The KT values shown in FIG. 3.9 are calculated from both

volume fluctuations measured in the NPT MD simulations and from deriva-

tives of pressure from the NVT MD simulations. For pressure values below

−3.90GPa, the system cavitates easily and hence the location of Kmax
T at

these state points were not evaluated.
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Figure 3.5: Density against temperature for different isobars from the NPT
MD simulations. The temperatures associated with the maxima along each
isobar defines the TMD line.
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Figure 3.6: (top panel) Pressure against temperature for different isochores
from the NVT MD simulations. The pressure and temperature values at the
minimum obtained along each isochore for varying density define the TMD
line in the (P, T ) plane. (bottom panel) Isochores obtained from the NVTMD
simulations at the lowest three densities. Below these densities, the system
cavitates before the isochore passes through a minimum.
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Figure 3.7: Pressure against temperature for different isochores from parallel
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define the TMinD line.
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Figure 3.9: Isothermal compressibility against temperature for different iso-
bars from NPT MD simulations. The location of the maxima along the
isobars define the TMC line.

Liquid spinodal: The locus of limit of stability points which satisfy the

thermodynamic condition (∂P/∂V )T = 0 is termed as spinodal. It denotes

the boundary between stable (or metastable) and unstable state points. In

FIG. 3.10 we show high temperature spinodal isotherms (T > 2200K). These

isotherms were obtained from the NVT MD simulations. For T < 2200 K,

cavitation was observed in the NVT simulations before the minimum along

an isotherm is reached, due to which a drastic increase in the pressure was

observed. In an attempt to circumvent this problem, we have performed re-

stricted ensemble MC simulations wherein an arbitrary bound was imposed

on the magnitude of the allowed density fluctuations by dividing the simu-

lation box into a number of equal sub-cells and constraining the number of

atoms in each of these sub-cells [32]. However, even in the restricted ensem-

ble MC simulations, the system was found to cavitate occasionally, with the

formation of voids across sub-cell boundaries (with each sub-cell satisfying

the applied constraint on number of atoms). Hence the estimation of the

spinodal at these state points were done from a quadratic extrapolation of
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Figure 3.10: Pressure against density for high temperature isotherms (T >
2200K) from the NPT MD simulations. The location of the minima along
the isotherms define the spinodal line.

the isotherms. The data points obtained from restricted ensemble MC sim-

ulations was fitted with a quadratic function (p0 + a1(ρ− ρ0) + a2(ρ− ρ0)
2),

where p0 and ρ0 are the spinodal pressure and density values. The data and

the fits are shown in FIG. 3.11.

As a further check of the spinodal estimate, we obtain the tensile limit of

the liquid phase by increasing the tensile pressure on the simulation cell at

different constant rates. The tensile limit line is defined as the the locus of

maximum tensile stress (negative pressure) a system can withstand before it

fails. At a given temperature we equilibrate the system at a high pressure

value (for T < 1510K at P = −2.26GPa and for T > 1510K at P = 0GPa,

by performing NPT MD simulation) and then we apply a tensile pressure

which increases at a specified rate. We have performed simulations at four dif-

ferent constant rates of change of tensile pressure (0.1MPa/ps, 1.0MPa/ps,

10.0MPa/ps, 50.0MPa/ps). When the system reaches its limit of tensile

strength, the system’s density decreases drastically towards zero. In FIG.
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Figure 3.11: Pressure against density for low temperature isotherms (T <
2200K) from MD simulations. The dashed line indicate the quadratic ex-
trapolation of the form p0 + a1× (ρ− ρ0) + a2× (ρ− ρ0)

2 which are used to
locate the spinodal.

3.12 we show the applied pressure against the measured density for a range

of temperatures, from which the tensile limit line was obtained. At faster

stretching rate (10MPa/ps) we find that the tensile limit is consistent with

the spinodal estimates. For slow stretching rate (0.1MPa/ps) we find that

the system cavitates at higher (less negative) pressure values. At an interme-

diate rate, (1.0MPa/ps) the estimated tensile limit line lies between the esti-

mates obtained from the faster (10MPa/ps) and slow (0.01MPa/ps) stretch-

ing rates. At very high rate of change of tensile pressure (50.0MPa/ps), we

find that the tensile limit to be below the spinodal estimates, indicating per-

haps that the stretching rates are faster than microscopic relaxation time

scales of the system.
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Figure 3.12: Applied pressure against measured density for different temper-
atures from the NPT MD simulations. The stretching rate in (a) corresponds
to 0.1MPa/ps and in (b) corresponds to 10.0MPa/ps.
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Figure 3.13: Pressure against temperature showing tensile limits obtained
from different stretching rates along with the estimated spinodal line from
NPT MD simulations.
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In FIG. 3.13, the tensile limit obtained from different stretching rate

along with the spinodal estimate is shown in the P − T plane. At around

P = −4.0GPa, the slope of the tensile limit changes to a bigger value, and

based on the location of the compressibility maximum line, the states near

the tensile limit change from HDL to LDL-like. In the phase diagram, the

region of the slope change of the tensile limit correspond to the region where

the TMD line meets the TMinD line and the TMC line meets the TMinC line.

The connection between the change in slope of tensile limit to the changes

in the nature of the states (HDL to LDL-like) is very interesting and needs

to be investigated further.

Phase diagram: The liquid-liquid coexistence line was obtained from

identifying the jumps in density for small changes in temperature isobars

generated using the NPT MD simulations (see FIG.3.14). The complete

phase behaviour of supercooled liquid silicon modeled by the SW potential

is summarised in FIG. 3.15. The phase diagram includes the liquid-liquid

critical point, liquid-liquid coexistence line, crystal-liquid coexistence line,

liquid-gas coexistence line, the loci of TMD, TMinD, TMC and TMinC along

the liquid-spinodal and tensile limit line. The estimated spinodal is mono-

tonic in pressure vs. temperature T , i.e., not “re-entrant” as predicted to

be the case [155] if it intersects the TMD. The TMD, changes slope upon

intersection with the TMinC, as analysed in [143]. Evaluating the relevant

equation of state data as the TMD approaches the spinodal is particularly

challenging. From available data, we can conclude that the TMinC appears

to be smoothly joining with the TMC (line of compressibility maxima) that

emanates from the liquid-liquid critical point. We have performed paral-

lel tempering MC simulation below the critical temperature and pressure

to recognise the line of density minima which appears to smoothly join the

TMD line, as required by thermodynamic consistency.
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Figure 3.14: Density against temperature for four different isobars from the
NPT MD simulations. The jumps in the isobars were used to identify the
liquid-liquid transition line.
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Figure 3.15: The phase diagram of supercooled liquid silicon in pressure-
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3.3 Summary

Using the SW potential for silicon we have performed a detailed simulation

study of the supercooled phase of silicon at wide range of temperatures and

pressures and we have constructed a detailed phase diagram of supercooled

liquid silicon. We have identified the critical point associated with the liquid-

liquid transition and the line of liquid-liquid coexistence. The interconnection

between thermodynamic anomalies and liquid spinodal have been verified

from our simulations. We find that the phase behaviour of silicon is similar

to that of metastable water. Unlike in water, we find in silicon the TMD

line approaches very close to the liquid spinodal. A careful analysis of the

free energy landscape, and finite size analysis would an important study to

be pursued.

In the next chapter we analyse various structural and dynamic properties

of silicon.



Chapter 4

Properties of Supercooled

Silicon

In this chapter we discuss structural and dynamic properties of the liquid

silicon which we have analysed across the phase diagram for a wide range of

temperature and pressure values. The structure of the system is quantified

by the radial distribution function or the pair correlation function (g(r)), the

coordination number (Cnn), the structure factor (S(q)) and the structural

order parameters. We have calculated the diffusivity (D) from the mean

square displacement (MSD), the relaxation time (τα obtained from the co-

herent intermediate scattering function (F (q, t)) and the viscosity (η), to

characterise the dynamical properties of the system. We have also analysed

the relation between the structural arrangement of atoms and the dynam-

ics of the system and find a strong relationship between them over a wide

range of temperature and pressure values. Stokes-Einstein (SE) relation,

which relates the diffusion coefficient of the liquid with the shear viscosity

(or the α relaxation time), is tested across the phase diagram and at low

temperatures in the vicinity of onset temperature, the SE relation fails. In

the phase diagram, we have recognised the location of the SE breakdown

temperature for different pressure values. A hierarchy in different anomalous

regions has been previously observed in the case of water [52, 139], in which

it was found that the different anomalous regions (corresponding to density

87
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(ρ), diffusivity and structural order) cascade on each other which indicates

an interconnection between these anomalies. This has been studied in vari-

ous other systems [38, 72, 74, 153] and the findings has been also associated

with changes in the structural entropy. In our work we have carried out an

analysis on similar lines, which is presented in the section entitled Nesting of

anomalies.

We note that most of the analysis presented in the following sections are

at P = 0GPa and P = −1.88GPa, which corresponds to pressure values

above and below the critical pressure in the phase diagram in (P, T ) plane.

4.1 Structural Properties

4.1.1 Radial Distribution Function, Coordination Num-

ber and Structure Factor

From the analysis of the radial distribution function (g(r)) we can obtain

information about the local structural arrangements of silicon atoms and the

average coordination number. In FIG. 4.1 (a) we show the g(r) calculated

from the equilibrated configurations at constant pressure (P = 0GPa) and

four different temperatures corresponding to high T liquid, high density su-

percooled liquid (HDL), low density supercooled liquid (LDL) and stable

crystal phase of silicon. The g(r) of the crystalline phase is calculated at

around T = 1070K and it has periodic peaks even at large r values indi-

cating a long range order. Since the crystal is at finite temperature, atoms

will be vibrating about their mean positions and hence the g(r) peaks have

finite width (which vanishes when we calculate g(r) from energy minimised

equilibrium configurations (also termed as inherent structure configurations)

- see FIG. 4.1 (b)).

From the equilibrium liquid g(r) analysis we can infer the following fea-

tures: (1.) The LDL phase has a sharper first coordination shell which is

more clearly separated from the second coordination shell as compared to

HDL and high density phase. As the system transforms from high T liquid

to HDL to LDL, the amplitude of the first peak of the g(r) (at r ∼ 2.6Å)
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Figure 4.1: The pair correlation function g(r) for crystal, low density liquid,
high density liquid and high temperature liquid calculated from (a) NPT
MD simulations and (b) minimised equilibrium configurations or inherent
structure (IS).

increases and the peak shift towards lower values of r approaching the crys-

talline peak. (2.) At larger r values the liquid g(r) depart significantly from

the crystal g(r), decaying to ideal gas g(r) value of 1. (3.) As the sys-

tem transform from LDL to HDL to high T liquid the coordination number

changes from 4 to 5 to 6. This leads to the rearrangement of atomic positions

around the first and second coordination shell, hence we find a shoulder like

feature at r ∼ 3.25Å.

The liquid g(r) calculated from the minimised configurations enhances the

above features. Especially in the High T liquid phase, the shoulder becomes

more prominent as it is seen in FIG. 4.1 (b).

In FIG. 4.2 and FIG. 4.3 we show the g(r) and the S(q) along P =

0GPa and P = −1.88GPa isobars respectively for a set of ten different

temperatures. We have also calculated the fifth neighbour distribution g5(r)

(see inset of FIG. 4.2 and FIG. 4.3), which represent the distribution of

distances of a 5th nearest neighbour to a chosen atom (defined inMethods and

calculations chapter). At P = 0GPa we find that the g(r) profile changes in

a discontinuous manner (see g(r) for T = 1062K and T = 1055K in FIG. 4.2
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(a)), whereas at P = −1.88GPa, we find a continuous evolution of structural

change. These changes are more evident in the g5(r) distribution. At P =

0GPa, we find g5(r) change from from a unimodal to bimodal distribution,

as the temperature changes from T = 1062K to T = 1055K (the liquid-

liquid transition temperature for P = 0GPa is at T = 1060K) and at P =

−1.88GPa we see a continuous change in the g5(r).

The static structure factor S(q) is an experimentally accessible quantity.

In computer simulations we can obtain S(q) either from the Fourier transform

of g(r) or directly by evaluating the density-density correlation function in the

Fourier space. We show the evolution of S(q) with varying temperatures for

P = 0GPa and P = −1.88GPa in FIG. 4.2 (b) and FIG. 4.3 (b) respectively.

We find that in the LDL phase we have two distinct peak. As the system

transform to a HDL phase the amplitudes of the peak decreases and the

difference in the q values corresponding to two peak decreases. In all the

structure factors we have analysed, we find that at q → 0 limit the S(q)

has a finite value, implying that the system has a finite compressibility. We

compare our results with the structure factors obtained from experiments in

a later chapter ( see Applicability to real silicon chapter).

The coordination number Cnn represents the number of atoms in the

first coordination shell, and is calculated by integrating the g(r) till its first

minimum (rc) from the relation Cnn =
∫ rc
0

4πr2ρg(r)dr. The so calculated

coordination number is found to be sensitive to the location of the first

minimum of g(r). At P = 0GPa for temperatures less than 1259K we find

rc ∼ 2.96Å. But for T > 1259K, the minimum was found to shift towards

higher values of r (FIG. 4.4 (a)). For a given temperature, with varying

pressure, rc does not to vary much (FIG. 4.4 (b)). In FIG. 4.5 we show

the coordination number as a function of pressure for different temperature

values. For T < 1259K the coordination number was found to vary from 4.6

to 5.0 in the HDL phase, which decreases to around 4.2 in the LDL phase. At

T = 1510K, the coordination number varies between 4.8 and 5.5. Note that

in [142] and [176] the integration was performed up to the first minimum of

4πr2ρg(r), rather than the g(r) directly, which leads to a small underestimate

in the coordination number at high temperatures and pressures.
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Figure 4.2: (a) The pair correlation function g(r) and (b) the structure factor
S(q) for different temperatures at P = 0GPa. The inset in (a) shows the
fifth neighbour distribution.
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Figure 4.3: (a) The pair correlation function g(r) and (b) the structure factor
S(q) for different temperatures at P = −1.88GPa. The inset in (a) shows
the fifth neighbour distance distribution.
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Figure 4.4: (a) The pair correlation function g(r) at different temperatures for
P = 0GPa. The position of the first minimum of g(r) remains unchanged till
T < 1259K. (b) The pair correlation function g(r) at different pressures for
T = 1196K. The position of first minimum of g(r) remains fairly unchanged
for a wide range of pressure values.
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Figure 4.5: Coordination number against pressure at different temperatures.
In the high density liquid (HDL) phase the coordination number varies from
4.6 to 5.4. In the low density liquid (LDL) phase the coordination number
is around 4.2.
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The coordination number of silicon is a much debated quantity in the

literature [9, 69, 75, 84–86, 117, 180]. The large discrepancy between different

experimental calculations of the radial distribution function and of the den-

sity (see FIG. 1.7) leads to large variations in the calculated coordination

number (see Applicability to real silicon chapter).

4.1.2 Random Tetrahedral Network (RTN)

The g(r) analysis has shown the variation of average coordination number

for different phases (∼ 6 in the high T liquid phase to ∼ 5 in the HDL

phase to ∼ 4 in the LDL phase). We now focus our attention on at the local

arrangement of atoms quantified by the tetrahedrality order qtetra and the

local bond orientational order q3 (defined in the Methods and calculations

chapter. These quantities measure the extent of tetrahedral environment

around a chosen atom.

The tetrahedrality order is defined such that the average qtetra varies

between 1 (perfect tetrahedron) and 0 (gas). We show the distribution of

qtetra in FIG. 4.6 (a) for P = 0GPa. Silicon crystallises into a cubic diamond

phase and hence the local arrangement of atoms is a perfect tetrahedron. This

is reflected in the qtetra distribution which is indeed peaked around 1. In the

LDL phase we find broader qtetra distribution (peaked near 1) compared to

the crystal phase and in the HDL phase we find a second peak evolving at

qtetra ∼ 0.53, which becomes more prominent in high T phase. The bimodal

distribution of the qtetra is indicative of the presence of atoms having very

different local environment. When we calculated the qtetra distribution of

4-coordinated atoms and of > 4-coordinated atoms separately, we find two

overlapping unimodal distributions (see FIG. 4.6 (b)). Since these are time-

averaged distributions we can not interpret this result as co-existence of two

different kinds of liquids. These are transient arrangement of tetrahedrally

coordinated atoms and distorted tetrahedral or non-tetrahedral atoms.
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Figure 4.6: (a) The distribution of tetrahedrality order distribution P (qtetra)
for four different phases at P = 0GPa. (b) The distribution of tetrahedrality
order P (qtetra) for T = 1070K considering all atoms (dark green line), only
four coordinated atoms (green line) and > 4 coordinated atoms (red line).
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Figure 4.7: (a) The distribution of local orientational order P (q3) for four
different phases at P = 0GPa. (b)The distribution of local orientational
order P (q3) for T = 1070K considering all atoms (dark green line), only four
coordinated atoms (green line) and > 4 coordinated atoms (red line).



4.1 Structural Properties 96

The definition of the tetrahedrality order considers the first four nearest

neighbours to calculate qtetra, which will become ambiguous if an atom has

5 or more neighbours within the first coordination shell. Hence we calculate

the local orientational order q3 which considers all the neighbouring atoms.

In FIG. 4.7 (a) we show the q3 distribution for different phases. The q3 takes

a value of ∼ 0.75 for a pure diamond crystal. The finite temperature crystal

phase is indeed peaking around this value. The liquid phases show bimodal

distribution in q3, peaked at either side of q3 = 0.6 value, clearly demarcating

the two transient species of atoms (see FIG. 4.7 (b). We use this criterion to

recognise 4-coordinated or LDL-like atom (q3 ≥ 0.6) and > 4-coordinated or

HDL-like atom (q3 < 0.6).

The crystalline phase of silicon can be considered as a network of atoms

having perfect tetrahedral local environment. From the q3 distribution (as

well as from the coordination number) there is a clear indication of an increase

in the number of tetrahedrally coordinated atoms as we approach the LDL

phase from high temperature. Hence it is interesting to look at the evolution

of network of LDL-like atoms. We define a cluster of LDL-like atom using

a criterion in which two atoms are connected if they are within a distance

of 2.9Å(which corresponds to the distance of the first minimum of g(r)). In

FIG. 4.8 we show snapshots of equilibrium configurations at various different

temperature values for P = 0GPa and P = −1.88GPa. In these snapshots,

green coloured atoms are LDL-like atoms, blue coloured bonded atoms are

LDL-like atoms belonging to the largest cluster in the system and the red

colour represents the HDL-like atoms. In comparison with a crystal phase

(see FIG. 4.9) which has an ordered network of tetrahedral atoms, the cluster

of LDL-like atoms can be termed as the random tetrahedral network (RTN).

For P = 0GPa as the system transforms from HDL to LDL phase, we clearly

observe a drastic change average size of RTN cluster. At P = −1.88GPa,

the growth of RTN cluster is more continuous.
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Figure 4.8: Snapshots of configurations at different temperatures obtained
from NPT MD simulations. The left panel corresponds to P = 0GPa and
the right panel corresponds to P = −1.88GPa. The low density liquid,
LDL-like atoms are coloured green, The bonded blue coloured atoms are
LDL-like atoms belonging to the largest RTN cluster in the system and the
high density liquid, HDL-like atoms are coloured red.
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Figure 4.9: Snapshots of crystalline silicon at P = 0GPa and T = 1070K
obtained from NPT MD simulations.

The RTN clusters are open clusters hence we can relate the presence of

these cluster to the density anomaly found in liquid silicon. In FIG. 4.10 (a)

we show the behaviour of average size of the largest RTN cluster as a function

of temperature for three different pressure values in which two pressures

P = 0.75GP , P = 0GPa and P = −1.88GPa. The vertical solid line in

the figure indicated the temperature of density maxima. We find that at all

pressure value, at high temperatures, size of the largest RTN cluster is less

than 3% of the system size (around 15 atoms in the system size of 512 atoms)

and the system shows normal behaviour in density. As the RTN cluster

size becomes greater 10% of the system size, the system’s density decreases

with decrease in temperature, showing an anomalous behaviour. Instead of

moving along an isobar, if we decrease the pressure sitting at one particular

temperature, even then the above argument should hold good, which is what

we find, as shown in FIG. 4.10 (b). We show in FIG. 4.11 the cluster size

distribution of RTN atoms along (a) an isobar and (b) an isotherm. At

high temperatures (keeping pressure constant) and at high pressures (keeping

temperature constant) we find stretched exponential decay in cluster size

distribution. In the region of density anomaly, we find a distinctly peaked

distribution, which is indicating at existence of an indissoluble RTN cluster.
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Figure 4.10: (a) Average cluster size of RTN atoms as a function of temper-
ature for three different pressures. (b) Average cluster size of RTN atoms as
a function of pressure for three different temperatures. The vertical bold line
represents the temperature corresponding to density maxima.



4.1 Structural Properties 100

0 50 100

0.001

0.01

0.1

1

P
(n

R
N

T
)

T 2517 K
T 1510 K
T 1384 K

0 50 100 150 200
Cluster size of RNT atoms (n RNT)

0.001

0.01

0.1

P
(n

R
N

T
) T 1259 K

T 1196 K
T 1133 K

(a)

0 50 100

0.001

0.01

0.1

1

P
(n

R
N

T
) P 0.75 GPa

P 0.37 GPa
P 0 GPa

0 50 100 150 200
Cluster size of RNT atoms (n RNT)

0.001

0.01

0.1

1

P
(n

R
N

T
) P -0.37 GPa

P -1.13 GPa
P -1.88 GPa

(b)

Figure 4.11: RTN cluster size distribution along (a) P = 0GPa isobar for
different temperatures and (b) T = 1384K isotherm for different pressures.
At high temperatures and high pressures RTN cluster size distribution shows
a stretched exponential decay (top panel in (a) and (b)). In the region of
density anomaly we find a distinctly peaked distribution, which is indicating
at existence of an indissoluble RTN cluster.



4.2 Dynamic Properties 101

4.2 Dynamic Properties

Mean Square Displacement and Diffusivity

The mean square displacement (MSD) is a measure of the average distance

an atom travels within a given time period. The slope of the MSD in the

long time regime gives the coefficient of diffusion or diffusivity, which is a

measure of average mobility of an atom in the system. In FIG. 4.12 we show

MSD for different temperatures at P = 0GPa and P = −1.88GPa. At all

temperatures we find a ballistic regime at the initial time period followed

by a caging regime and a diffusive regime at the long time interval. We

find that the caging regime is bigger in the LDL phase as well as in the

vicinity of locus of compressibility maxima or the Widom line. In the LDL

phase we also observe a maximum in the MSD (at the crossover from the

ballistic to the caging regime), which has been related to the Boson peak [7],

a feature in the short time dynamics. The slope of the MSD in the diffusive

regime gives us the diffusivity of the system. In FIG. 4.13 we show the

temperature dependent of diffusivity for P = 0GPa and P = −1.88GPa

and we find a crossover from an Arrhenius to a non-Arrhenius behaviour

in the T dependence of diffusivity. In FIG. 4.14 (a) we show the pressure

dependence of D for a range of temperatures above and below the critical

temperature. We find that as the liquid transforms from HDL to LDL, the

diffusivity change by two orders of magnitude. Also with the decrease in

compression or pressure we find that D is decreasing, which is an anomalous

behaviour. Similar feature has been reported in water and silica [52,153]. At

a higher pressure value diffusivity goes through a maximum and return to

the normal behaviour as we show in FIG. 4.14 (b) for T = 1259K.
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Figure 4.12: The mean square displacement (MSD) as a function of time for
(a) P = 0GPa and (b) P = −1.88GPa obtained from NPT MD simulations.
The inset of (b) show the maximum in the MSD at the crossover from the
ballistic to the caging regime.
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Figure 4.13: The diffusivity (D) of the system (calculated from the mean
square displacement) as a function of inverse temperature for (a) P = 0GPa
and (b) P = −1.88GPa obtained from NPT MD simulations. Diffusivity
changes from an Arrhenius to a non-Arrhenius behaviour at both pressure
values.
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Figure 4.14: (a) Diffusivity (D) against pressure for different temperatures.
Diffusivity decreases with decrease in pressure. (b) Diffusivity against pres-
sures for T = 1259K. Diffusivity goes through a maximum at around
4.5GPa.
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Structural Relaxation Time

For further understanding of the dynamics of the system we have calculated

the intermediate scattering function F (q, t) for the wave vector k corresponds

to the first peak of the static structure factor [37]. In FIG. 4.15 we show the

behaviour of F (q, t) at P = 0GPa and P = −1.88GPa. As we lower the

temperature, approaching the liquid-liquid transition line at P = 0GPa and

the Widom line at P = −1.88GPa, we find a two step relaxation process.

We find a ballistic regime at short time which is followed by a plateau in

the intermediate time window, which corresponds to β relaxation regime.

The time window in which the F (q, t) decays to zero corresponds to the α

relaxation regime. We also find that with the lowering of the temperature

the decay of F (q, t) changes from exponential to stretched exponential, with

the exponent varying from 1.0 to 0.5.

We define the α relaxation time (τα), also termed as the structural relax-

ation time or just the relaxation time, as the time at which the F (q, t) decays

by a factor of e. In FIG. 4.16, we show τα as a function of inverse temperature

at P = 0GPa and P = −1.88GPa. Similar to diffusivity, we find a crossover

from an Arrhenius to a non-Arrhenius behaviour in the T dependence of re-

laxation time. In FIG. 4.16 we show the relaxation times as a function of

pressure for three different temperatures values. As system goes from high

T liquid to HDL to LDL, the relaxation time varies from ps to hundreds of ns.
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Figure 4.15: The intermediate scattering function F (q, t) as a function of
time for (a) P = 0GPa and (b) P = −1.88GPa calculated from NPT MD
simulations. We note that at low temperatures (T = 1055K at P = 0GPa
and T1171K at P = −1.88GPa) data may not be well equilibrated.
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Figure 4.16: (a) Relaxation time (τα) against inverse temperature at P =
0GPa and P = −1.88GPa. An Arrhenius to a non-Arrhenius behaviour in
relaxation times is found in both pressure values (b) Relaxation time against
pressure at T = 1198K, T = 1259K and T = 1384K.



4.2 Dynamic Properties 108

3 4 5 6 7 8 9

10
4
/T (K

-1
)

0

0.02

0.04

0.06

0.08

V
is

co
si

ty
 (

po
is

e)

P 0 GPa
P -1.88 GPa

Figure 4.17: The viscosity of the system as function of inverse temperature for
P = 0GPa and P = −1.88GPa obtained from NPT MD simulations. Dotted
lines suggesting an Arrhenius behaviour of viscosity at high temperatures.

Viscosity

Viscosity is a measure of the rate of dissipation of energy per unit volume

per unit shear rate. Physically it a measure of the momentum transfer in a

field perpendicular to the direction of flow of liquid. In order to compute the

viscosity we first calculate the stress auto-correlation function at a chosen

state point using the LAMMPS MD package [121]. We integrate the stress

auto-correlation function (see Methods and calculations chapter) to obtain

the viscosity of the system. In FIG. 4.17 we show the viscosity as a function

of inverse temperature calculated for P = 0GPa and P = −1.88GPa. We

find a crossover from an Arrhenius to a non-Arrhenius behaviour in the T

dependence of viscosity, similar to other two dynamical quantities we have

measured.

Even though not very sharp, we do find a crossover from an Arrhenius to

a non-Arrhenius temperature dependence in all three measure of dynamical

property. The temperature (Tonset) associated with this crossover is termed
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as the onset of slow dynamics. To obtain a good estimate of Tonset we can

define a temperature dependent activation energy following the REF. [140]

as

E(T )/E0 = kBT ln(D/D0) (4.1)

where E0 and D0 is obtained from an Arrhenius fit to the high T data, D

is the dynamical quantity which can be either diffusivity, relaxation time or

viscosity. The onset temperature is obtained from 1% to 5% (in diffusivity

data) or 5 to 15% (in relaxation time data) deviation from the high temper-

ature value of 1. This change reflects as large error bars in the estimation

of the onset temperature. In FIG. 4.18 where we show the E(T ) obtained

from diffusivity and relaxation time against temperature. In FIG. 4.22 we

show the locus of onset temperature obtained from above protocol in phase

diagram of supercooled silicon.

We next discuss our study related to the breakdown of Stokes-Einstein

relation in supercooled liquid silicon.
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Figure 4.18: The temperature dependent activation energy obtained from (a)
diffusivity and (b) relaxation time. We define a 5% deviation in diffusivity
data or a 5− 15% deviation in relaxation time data, from the constant high
temperature value marks the onset of slow dynamics.
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4.3 Stokes-Einstein Breakdown

The diffusion coefficient is connected to the the viscosity of the system by

the Stokes-Einstein (SE) relation given by

D =
mkB
6πR

T

η
(4.2)

where kB is the Boltzmann constant, η is the viscosity and R is the hydrody-

namic radius. Even though originally the above relation was derived for the

probe particle which are much bigger than the solvent particles, the relation

has been found to hold good even for the case of self-diffusion coefficient

(where both the probe and solvent particles are of same size) [49]. Assuming

that we can avoid crystallisation, the viscosity (and the relaxation time) of

the liquid increasing with the decrease in temperature. At these low temper-

atures, many experimental and simulation work ( [19,29,188] and references

within ) have shown a breakdown in the SE relation. The Eq. 4.2 can be

rewritten as
Dη

T
= const. (4.3)

An increase in the above ratio with the decrease in temperature is termed

as the breakdown in SE relation. It has been empirically observed that a

fractional SE relation D ∝ (η/T )−ξ holds good for temperatures below which

SE relation fails. The exponent ξ, reported in various literature, normally

varies between 0.7 and 0.8 ( [19] and references with in). Note that ξ = 1 if

the SE relation is valid.

In this section we test the validity SE relation in the liquid silicon and

recognise the locus of SE breakdown temperature at different pressure values.

We note that the viscosity of the system is proportional to the relaxation

time [47] and hence we can use τα in place of η (since calculation of viscosity

is computationally expensive compared to F (q, t), from which we obtain τα).

In FIG. 4.19 we show plot of relaxation time against the viscosity for

P = 0GPa and we find that to a good approximation they are proportional

to each other. Hence in rest of our analysis in this section, we have used τα

in place of η. In the FIG. 4.20 we show the SE ratio (defined in Eq. 4.2)
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Figure 4.19: Viscosity calculated from stress auto-correlation function
against the structural relaxation time obtained from F (q, t) for P = 0GPa.
Viscosity is proportional to the relaxation time.

as a function temperature for five different pressure values. We find that at

high temperatures the SE ratio is indeed constant and hence the liquid follow

the SE relation. With the lowering of temperature, an increase in the SE

ratio is clearly seen indicating a breakdown of the SE relation. In the FIG.

4.21 we show the plot of D against τα/T for P = 0GPa, P = −1.13GPa

and P = −1.88GPa. We find that the slope ξ distinctly change from −1

(at high temperatures) to a value varying between 0.76 and 0.71 for different

pressures. The temperature associated with the cross over from ξ = 1 to

ξ < 1 is recognised as the SE breakdown temperature. In FIG. 4.22 we show

the locus of SE breakdown temperature. We notice that the the locus SE

breakdown temperature is near to the density maxima line and the locus

onset temperature. We note that below the density maxima line the system

contains clusters RTN atoms which have low mobility compared to HDL

atoms. Further analysis is required to understand the role of RTN cluster in

the SE breakdown.

A feature of the low temperature liquid which has often been associated

with the breakdown of the SE relation is dynamic heterogeneity in the system,

which refers to spacially correlated heterogeneous dynamics. The diffusivity
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of the system is determined by the high mobility particles, whereas the vis-

cosity is determined by the low mobility particles [157]. The work of Kevilson

and Tarjus [164] argues that these domains of different mobility particles can

lead to breakdown in the SE relation. In network forming liquids like water,

dynamic heterogeneity is found increase approaching the Widom line and

hence the onset of SE breakdown is associated with the Widom line [87].

Dynamic heterogeneity in a system can be quantified in various ways. The

heterogeneity associated with the relaxation dynamics can be quantified by

measuring the dynamic susceptibility χ4, which is a defined as the variance

in the density-density correlation function (e.g. Fs(q, t)) [169] and is given

by

χ4(t) = N
(

< Fs(q, t)
2 > − < Fs(q, t) >

2
)

(4.4)

The χ4(t) is maximum at a time proportional to the α-relaxation time and

the χ4 value corresponding to the maximum is a measure of the number of

particles involved in correlated motion.

Another measure of dynamic heterogeneity given in terms particle dis-

placements is the non-Gaussian parameter α2 [127] which is defined as

α2(t) =
3

5

< r4(t) >

< r2(t) >2
− 1 (4.5)

where < r2 > is the mean square displacement and < r4(t) > is given by

< r4(t) >= (1/N)

〈

N
∑

i=1

|ri(t)− ri(0)|
4

〉

The non-Gaussian parameter is a measure of the departure of the particle

displacement distribution from the Gaussian distribution.

In FIG. 4.23 and 4.24 we show plot of χ4 and α2 for P = −1.88GPa

as a function of time for temperatures varying from high T to temperatures

crossing the Widom line. The peak amplitude of the χ4 appears to decrease

up on crossing the Widom temperature (Tw = 1221K), whereas the peak

amplitude α2 is monotonically increasing. At very high T values, we find that



4.3 Stokes-Einstein Breakdown 114

1000 1500 2000 2500
Temperature (K)

1

5

D
τ α/T

 (
R

.U
.)

P  0.00 GPa
P -0.75 GPa
P -1.13 GPa
P -1.51 GPa
P -1.88 GPa

Figure 4.20: The Stokes-Einstein ratio Dτα/T against the temperature for
different isobars. At high temperatures the ratio is constant. A deviation
from the constant value indicates at a breakdown of SE relation.

the peak amplitude of χ4 is found to increase again. Further analysis of these

interesting features in different measures of heterogeneity would shed light

on the decoupling between τα and D and hence provide better understanding

of SE breakdown phenomenon.
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Figure 4.21: Diffusivity against τα/T show for three different pressure values.
(a) P = 0GPa (b) P = −1.13GPa and (c) P = −1.88GPa. Stokes-Einstein
relation is valid at high temperatures and hence fractional Stokes-Einstein
(FSE) exponent is around 1. At low temperature the FSE exponent varies
from 0.759 to 0.71. The vertical green line indicates the SE breakdown
temperature.
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Figure 4.22: The phase diagram of liquid silicon in (P, T ) plane showing the
onset temperature estimates obtained from diffusivity and relaxation time
along with the locus of Stokes-Einstein breakdown temperature.
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Figure 4.23: Dynamic susceptibility χ4 (q = 2.14Å−1) calculated at P =
−1.88GPa for different temperatures varying from high T liquid state to
temperatures crossing the Widom line (Tw = 1221K).
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Figure 4.24: non-Gaussian parameter α2 calculated at P = −1.88GPa for
different temperatures varying from high T liquid state to temperatures cross-
ing the Widom line (Tw = 1221K).
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4.4 Relationship between Structure and Dy-

namics

From the data of the coordination number and the diffusivity, it is evident at

a qualitative level that the diffusivity in silicon is correlated with coordination

number, with higher coordination number corresponding to larger diffusivity.

We show that the diffusivity depends quite strongly on coordination number

and has only a weak temperature dependence (see FIG. 4.25). Scaling the

diffusivity to its value at a fixed Cnn in the HDL phase for different tempera-

tures, a remarkable data collapse is obtained that spans two distinct phases,

a wide range of temperature and pressure, and four decades of change in

diffusivity (see inset of 4.25). The resulting master curve was found to fit

well to a Vogel-Fulcher-Tammann (V FT ) form, D(Cnn) = D0 exp(−
A

Cnn−n0
)

with n0 = 3.86, and also to a power law D(n) = D0(n−n0)
3, with n0 = 4.06.

These results suggest that the mobility of atoms is strongly tied to the pres-

ence of coordination larger than four, and that regions of higher coordination

number act as “defects” that promote faster rearrangements of atomic po-

sitions. This observation is consistent with previous analysis of the role of

bifurcated bonds or the fifth neighbour in determining molecular mobility

in water [149,150], though seen here for a remarkably wide temperature and

pressure range. Note that the role of RTN cluster in the context of dynamical

properties needs to be investigated and it is not included in this thesis.
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Figure 4.25: Diffusivity (D) against coordination number (Cnn) at different
temperatures. Lines through the data points are guides to the eye, and high-
light the remarkably similar dependence of D on Cnn at all temperatures, in-
cluding those below the critical temperature, where both D and Cnn change
discontinuously. (Inset) Diffusivity (scaled to match at Cnn = 4.8) ver-
sus Cnn, showing data collapse. The solid line is a Vogel-Fulcher-Tammann
(V FT ) fit, with a Cnn of vanishing diffusivity = 3.86. The dashed line is a
power law fit, with a coordination number of vanishing diffusivity = 4.06.
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4.5 Nesting of Anomalies

Anomalous behaviour in tetrahedral liquids has been explored in terms of

thermodynamic consistency and phase behaviour (as we have already dis-

cussed in the preceding chapters). Some of these anomalies, found in net-

work forming liquids like water and silica, has also been studied in terms of

underlying structural properties [38,52,72,74,152,153,172]. Network forming

liquids have locally ordered structures, which can be analysed using struc-

tural order parameters. We have already discussed in the earlier parts of

this chapter two such order parameters, qtetra and q3, which measure the

orientation of neighbours surrounding a reference atom. Another measure

of structural order is associated with the inter-atomic distances, which is

termed as the translational order (ttrans). The ttrans measures the degree to

which neighbours of an atom are organised at preferred distances rather than

randomly distributed.

A computer simulation study of water (modeled by SPC/E potential)

carried out by Errington and Debenedetti [52] looked at the behaviour of

above mentioned structural orders and we put down salient points from their

work below.

1. The tetrahedrality order qtetra and the translational order parameter

qtrans were calculated for a range of density and temperature.

2. The distribution of qtetra was found to be bimodal and with decrease

in temperature (keeping density fixed) the peak of the distribution at

high qtetra value increased at the expense of low qtetra peak.

3. At a given temperature, starting at low densities, average values of qtetra

and ttrans increased with increase in compression -termed as structurally

normal region- till a maximum in tetrahedrality order was reached.

4. With further increase in compression, both the order parameters de-

creased -termed as the structurally anomalous region- till ttrans goes

through a minimum (after which, continued compression increased ttrans

without much change in the trend of qtetra).



4.5 Nesting of Anomalies 122

5. The structurally anomalous region is demarcated by a maximum in

qtetra at low pressure (low density) and by a minimum in ttrans at high

pressure (high density) (see Fig. 4.26 (a)).

6. In the structurally anomalous region the two order parameters were

found to be strictly correlated with each other (for particular value of

qtetra there is an associated unique value of ttrans).

7. The loci of structural order extrema (qtetra maxima and ttrans minima)

was found in the (T, ρ) plane. Interestingly the loci of structural order

extrema was found to be enclosing the region of diffusivity anomaly

(demarcated by the loci of diffusivity maxima at the high density and

diffusivity minima at the low density), which in turn enclosed the region

of density anomaly (demarcated by the loci of density maxima).

In the Fig. 4.26 (b) we show the nesting of anomalous regions in the (T, ρ)

plane as well as in the (P, T ) plane for the case of water.
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(a)

(b)

Figure 4.26: (a) The schematic phase diagram showing the structurally
anomalous region for a fixed temperature bounded by tetrahedrality order
maxima at low density and translational order minima at high density (b)
The schematic phase diagram showing the regions of structural, diffusivity
and density anomalies in (T, ρ) plane (left panel) and in (P, T ) plane (right
panel).
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A similar analysis was carried out by Shell et al [153] for a model of

silica. Even though most feature were akin to that of water there were

two exceptions. Firstly in the structural anomalous region, the correlation

between the two order parameters was not as tight as in the case of water and

secondly, the hierarchy in the cascading of anomalous region was different.

The loci of diffusivity extrema enclosed the structurally anomalous regions

in the (T, ρ) plane.

We now present our analysis of supercooled liquid silicon.

4.5.1 Results

We have performed calculations of translational order (ttrans), tetrahedral-

ity order parameter (qtetra), local orientational order parameter (q3), excess

entropy S2, diffusivity D and density ρ over a temperature range varying

between T = 1070K and T = 6300K and pressure range varying between

P = −3.7GPa and P = 15.0GPa. We begin with the behaviour of structural

order parameters.

Behaviour of Structural Order Parameters

In FIG. 4.27 and FIG. 4.28 we show ttrans and qtetra as function of density

and pressure respectively for different temperatures. As we lower the density

(or pressure) the translational order goes through a minima indicating at be-

ginning of anomalous behaviour. For temperatures greater than T = 2517K

we encounter the liquid spinodal (and the system cavitates). Therefore we do

not find a minimum in ttrans for there temperatures. Curiously at very high

temperatures, T > 5000K we once again find that the ttrans goes through a

minima. The tetrahedrality order parameter increases with the decrease in

density (or pressure) for 1145K < T < 3147K and we do not find a maxi-

mum in qtetra which marks the end of the anomalous region, in this range of

temperature. We do find normal behaviour in qtetra at very high tempera-

tures (T > 3776K). At high temperatures (and low density / pressure) we

encounter the liquid spinodal and at very low temperature (and low density

/ pressure) the system’s dynamics slow and crystallisation rates are high,
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which hinders our attempt to obtain qtetra maximum. In FIG. 4.29 we show

the parametric plot of ttrans vs qtetra. Similar to water [52], we find that in

the region of structural anomaly, there is tight correlation between the two

order parameters.

We also find a re-entrant feature for temperature ranging between T = 1145K

and T = 2130K at high compressions (which in FIG. 4.28 is seen as a minima

at high density (pressure) values). This indicates an increase in tetrahedral-

ity order, which is unexpected, since the coordination number at these states

points is around 6. We believe this is an artifact from the definition of tetra-

hedrality order parameter. While calculating the qtetra we consider the first

four nearest neighbour, which becomes ambiguous if the first coordination

shell has around more than 5 atoms at equal distances from a reference atom.

To verify this we have calculated the local orientational order parameter q3

which considers all the neighbours within the first coordination shell. In FIG.

4.30 (a) we show the parametric plot of ttrans vs q3, which clearly shows that

at high compressions the q3 values remains fairly unchanged. But the tight

correlation between the two order parameter is absent. When we calculate

the q3 order parameter by considering only the first four nearest neighbour,

we should get back features of qtetra, which we indeed find (see FIG. 4.29

(b)). We note that in silica, Shell et al [153] do find a similar result and in

their work they use tetrahedrality order parameter considering six nearest

neighbours.
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Figure 4.27: The average translational order ttrans as a function of (a) density
and (b) pressure for different temperatures obtained from NPT MD simula-
tions. At low pressures and densities, the translational order goes through a
minimum indicating at beginning of structural anomalous region.
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Figure 4.28: The average tetrahedrality order qtetra as a function of (a) den-
sity and (b) pressure for different temperatures obtained from NPT MD
simulations.



4.5 Nesting of Anomalies 128

0.5 0.6 0.7 0.8 0.9
Tetrahedrality Order Parameter (q tetra )

0.25

0.3

0.35

0.4

0.45

T
ra

ns
la

tio
na

l O
rd

er
 P

ar
am

et
er

 (
t

tr
an

s
) T 1145 K

T 1196 K
T 1259 K
T 1385 K
T 1510 K
T 1636 K
T 1762 K
T 1888 K
T 2140 K
T 2517 K
T 2895 K
T 3147 K
T 3776 K
T 5035 K
T 6293 K

Com
pre

ssi
on

Figure 4.29: Parametric plot of translation order against the tetrahedrality
order for different temperatures obtained from NPT MD simulations. The
arrow mark represents the direction of increase in compression for each tem-
perature.
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Figure 4.30: Parametric plot of translation order parameter against the (a)
local orientational order parameter and (b) local orientational order parame-
ter calculated from first four neighbours for different temperatures obtained
from NPT MD simulations. The arrow mark represents the direction of
increase in compression for each temperature.
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Anomaly in Diffusion Coefficient

The anomalous behaviour in diffusion is characterised by increase in diffusiv-

ity with an increase in pressure or density. FIG. 4.31 we show diffusivity as

a function of density and pressure for different temperatures. The isotherms

ranging between T = 1145K and T = 2895K shows a maxima in diffu-

sivity, hence dividing the region of anomalous and normal behaviour in D.

For T > 3000K we encounter the liquid spinodal and hence we do not find

anomalous diffusivity for these isotherms. The locus of diffusivity maxima

defines the beginning of the anomalous region in phase diagram. The locus of

diffusivity minima (which we has not found this in our study) marks the lower

bound of anomalous region and is expected to be found at low temperatures

where system’s dynamics slow and crystallisation rates are high.

In FIG. 4.32 and FIG. 4.33 we show the nesting of different anomalous

regions in (T, ρ) and (P, T ) planes respectively. The cascading of different

region of anomaly is similar to that of silica - region structural anomaly

enclose the region of dynamic anomaly which in turn enclose the region of

thermodynamic anomaly.
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Figure 4.31: The diffusivity as a function of (a) density and (b) pressure for
different temperatures obtained from NPT MD simulations.
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Figure 4.32: The phase diagram of liquid silicon in (T, ρ) plane showing the
loci of density maxima, translational order minima and diffusivity maxima
along with the liquid spinodal.
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Figure 4.33: The phase diagram of liquid silicon in (P, T ) plane showing the
loci of density maxima, translational order minima and diffusivity maxima
along other features of the phase diagram.
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Excess Entropy

The feature of nesting of anomalous regions has been related to the two-body

excess entropy [53, 172]. The Excess entropy, Sx = S − Sid, where S is the

total entropy of the system and Sid is the entropy of an ideal gas system, can

be calculated from the multi-particle correlation function truncated at the

two-body term [16,119] and is given

S2/kB = −2πρ

∫

dr{g(r)ln(g(r))− [g(r)− 1]}r2dr (4.6)

where g(r) is the pair correlation function, ρ is the number density and kB

is the Boltzmann constant. The S2 entropy is zero for an ideal gas and in-

finity for a crystal. The S2 entropy has been found to match reasonably well

with the total excess entropy (Sx) [53]. In the following discussion we look

at the relation between excess entropy and translational order, density and

diffusivity.

Translational order and Sx: The excess entropy by definition (Sx =

S−Sid) characterise the reduction in the accessible states relative to an ideal

gas, due to the inter-particle correlation. Hence we can vaguely associate the

in increase in translation order to decrease in the excess entropy [53]. Inside

the region of structural anomaly, the translational order decreases with in-

crease in density and hence the criterion to observe a structural anomaly can

be written in terms of ln(ρ) as ∂Sx/∂ln(ρ)|T > 0.

Density and Sx: To associate the excess entropy with the density we

consider the following thermodynamic relation [100]

∂ρ

∂T

∣

∣

∣

∣

P

= ρ2
∂ρ

∂P

∣

∣

∣

∣

T

∂S

∂ρ

∣

∣

∣

∣

T

(4.7)

where S is the total entropy of the system. The condition for density anomaly

is that ∂ρ/∂T |P should be greater than zero. Since the compressibility is a

positive definite quantity for an equilibrium system, we can deduce from the
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above equation that for system showing density anomaly should satisfy the

condition ∂S/∂T |P > 0. We know Sx = S − Sid, where Sid = −ln(ρ) +C(T )

and C(T ) is temperature dependent constant. By taking a partial derivative

w.r.t ln(ρ) of Sx at a constant temperature we get

∂Sx

∂ln(ρ)

∣

∣

∣

∣

T

=
∂S

∂ln(ρ)

∣

∣

∣

∣

T

+ 1 (4.8)

From the above equation we can infer that to observe a density anomaly,

∂Sx/∂ln(ρ)|T should be greater than 1.

Diffusivity and Sx: Even though there is no rigorous thermodynamic

relation which associates the diffusivity and Sx, there are scaling relations

obtained empirical observations. One of the earliest proposal was by Rosen-

feld [133] in which the reduced diffusion coefficient (D∗) is related to the

excess entropy Sx as

D∗ = aD exp

(

bDSx

NkB

)

(4.9)

where D∗ = Dρ1/3/(kBT/m)1/2, D is the diffusion constant, m is the mass

of the system, N is the number of particles, kB is the Boltzmann constant,

aD and bD are system dependent constant (which takes the values 0.6 and

0.8 respectively for system interacting with pair-potential like hard-sphere,

soft-sphere and Lennard-Jones). Taking the partial derivative of Eq. 4.9

w.r.t ln(ρ) we get
∂Sx

∂ln(ρ)

∣

∣

∣

∣

T

=
C

3bD
(4.10)

where C = 1+3 ∂ln(D)
∂ln(ρ)

∣

∣

∣

T
. Hence the criterion to observe a diffusivity anomaly

in the system would be ∂Sx/∂ln(ρ)|T > c, where c is a positive quantity which

is system dependent.

We now present our analysis of excess entropy in the context of density

and structural anomaly. To begin with we look at the relation between S2

entropy and structural anomaly.
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Excess entropy and structural anomaly: In FIG. 4.34 (a) we show

S2 entropy as a function of density for different temperatures and we find

that at low densities the S2 entropy has a positive slope hence we expect that

these state points should correspond to the region of anomaly in translational

order and the locus of S2 maxima should correspond to the beginning region

of structural anomaly. In FIG. 4.34 (b) we show the locus of S2 maxima and

the locus of translational order parameter (qtetra) minima, which agree well

with each other.
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Figure 4.34: (a) The pair-correlation excess entropy (S2) as a function of
density for different temperatures. (b) The locus of pair-correlation excess
entropy (S2) maxima and the locus translational order (ttrans) minima in the
(T, ρ) plane.

Excess entropy and density anomaly: To observe a density anomaly

the criterion that has to be satisfied by S2 entropy is Σx ≡ ∂Sx/∂ln(ρ)|T > 1.

In FIG. 4.35 we show Σx as function of ρ for different temperatures. We ex-

tract the density corresponding to Σx = 1 at each temperature and locus of

these points is expected to follow the locus of density maxima and we do find

that to be the case (see FIG. 4.35 (b)).
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Figure 4.35: (a) Σx, the derivative of pair-correlation excess entropy (S2)
w.r.t ln(ρ) as a function of density for different temperatures. (b) The locus
of points satisfying Σx = 1 and the locus of density maxima in the (T, ρ)
plane.
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4.6 Summary

In this chapter we analysed the changes in structural and dynamical prop-

erties as the system evolves from high T liquid to HDL to LDL phase. We

found that the structure plays a very important role in determining the dy-

namics. A sufficiently large cluster of bonded LDL atoms (recognised as ran-

dom tetrahedral networking forming atoms) is formed near locus of density

maxima. The RTN cluster is found to grow with the decrease in tempera-

ture and this tetrahedral network spans the whole system approaching the

LLT line and the Widom line. We find that at low temperatures the system

show breakdown in Stokes-Einstein relation. The Stokes-Einstein breakdown

temperature is found to be in the vicinity of density maxim and the onset

temperature. Most of the computer simulation literature on the SE relation-

ship assumes that the structural relaxation time or the α-relaxation time

(τα), calculated from F (q, t) at q corresponding to the first peak of structure

factor, is proportional to viscosity. The validity of this assumption needs to

be carefully analysed, by studying τα at various q values. We have analysed

the link between the thermodynamic, dynamic and structurally anomalous

region and found a nesting of anomalous regions in the phase diagram. Unlike

in water and more like in silica we find that the region of structural anomaly

and thermodynamic anomaly lie with in the region of dynamic anomaly.



Chapter 5

Crystal Nucleation

In the previous chapters we have looked at various aspects of the metastable

liquid phase of silicon. The metastability related to stretching of the liquid (or

negative pressure liquid) ends at the spinodal, as we have already discussed

in the context of phase behaviour. The eventual fate of a metastable liquid

upon continued undercooling is the stable crystal phase. The process of

nucleation of liquid silicon to a cubic diamond crystal phase is the topic of

this chapter.

Upon lowering the temperature below the Tm (the melting temperature)

the difference in chemical potential ∆µ between the crystal and the liquid

phase increases and from classical nucleation theory (CNT) we know that

the nucleation barrier decreases monotonically. Hence the system is prone

to crystallisation at deeper undercooling. The CNT predictions are based

on the fact that the nucleation process is a single step process, in which the

parent metastable phase transforms into new stable phase. The formation of

a stable critical nucleus from a liquid state involves change in density as well

as the structure. During the nucleation process the change in these two or-

der parameters may occur simultaneously, in which case we would observe a

single-step process. Recently many simulations and theories [58,161,177,186]

have suggested a multi-step mechanism of crystal nucleation in which the

density fluctuations precedes the fluctuations associated with structure. The

work of ten Wolde and Frenkel [186] on globular proteins (modeled by a

138
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generalised Lennard-Jones potential) found that the metastable liquid-liquid

critical point separates out the contribution of density fluctuation and struc-

tural fluctuation to the crystal nucleation process. Close to the critical point

it was found that a crystal nucleus of critical size formed within a nucleus of

dense liquid. Away from the liquid-liquid critical point a single-step nucle-

ation process was observed, wherein a critical nucleus directly formed from

the parent liquid phase.

Crystal nucleation process, can also be influenced by pre-structured liquid

phases, as some recent work suggest [64, 92]. A pre-structured liquid is a

phase which has local structural arrangement similar to the local structure of

crystal. Ghiringhelli et al. [64], looking at the nucleation process in carbon (a

locally tetrahedral crystal), found that with the change in local coordination

of the liquid from threefold to fourfold the nucleation rates increased by

many orders of magnitude. The free-energy cost to create a diamond-liquid

interface was found to be lower in the fourfold than in the threefold liquid.

In our work, as discussed in the previous chapters, we have shown exis-

tence of a liquid-liquid critical point (LLCP ) in supercooled phase of silicon.

Also in our study we find that approaching the liquid-liquid critical point and

the Widom line the system predominantly contains four-folded RTN atoms

whose local structure is similar to that of a crystal. Hence it is interesting

to understand how different is the nucleation process in a HDL phase away

from the LLCP, where the system is predominantly five-folded, as compared

to the nucleation process approaching the LLCP from high temperatures,

where number of four-folded atoms steadily increases. To address this ques-

tion we analyse the spontaneously crystallising run and also compute free

energy difference (∆G) across various state points in the phase diagram. We

begin this chapter with a discussion of computational details related to the

recognising of crystal phase and calculation of ∆G.
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Figure 5.1: Distribution of density comparing (a) high density liquid (HDL)
and crystal phase and (b) low density liquid (LDL) and crystal phases.

5.1 Computation of Crystal Nucleation Bar-

rier

In order to compute the free energy barrier we need to define a reaction

coordinate (or an order parameter), which can distinguish between the liquid

phase of silicon and the cubic diamond crystal phase. The structural order

of the liquid phase invariably differs from that of a crystal. Density on the

other hand can be similar as we show in FIG. 5.1. The bond orientational

order introduced by Steinhardt et al. can capture the changes in structural

arrangements of the atoms effectively and hence has been used in previous

crystal nucleation studies ( [12, 166] and references within) efficiently. As

discussed in the chapter on Methods and calculations one can define both

global as well as local orientational orders. But the global orientational order

was found in a previous study to have issues related to overestimation of

critical nucleus size [165] and also had dependence of system size [93]. In our

study we use a global order parameter is defined by a local orientational order

as prescribed in the work of ten Wolde [166] and Auer [12]. We elaborate the

details of order parameter next.
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5.1.1 Identification of Crystalline Nucleus

The local bond orientational order ql(i) is given by

ql(i) =

(

4π

2l + 1

l
∑

m=−l

|qlm(i)|
2

)(1/2)

(5.1)

where qlm(i) is defined as

qlm(i) ≡
1

Nn(i)

Nn(i)
∑

j=1

Ylm(r̂ij) (5.2)

where Nn(i) is the number of neighbouring atoms which are within a distance

of 2.9 Åfrom a reference atom i (see FIG. 4.1), Ylm(r̂ij) ≡ Ylm(θij, φij) are

the spherical harmonics calculated along the vector r̂ij between the atoms

i and j, θij and φij represent the polar and azimuthal angles respectively.

In FIG. 5.2 we show local orientational order distribution obtained from

isobaric-isothermal (NPT ) molecular dynamics (MD) simulations of liquid

and crystal phases. We find that in both q3 and q6 distribution there is an

overlap in the distributions of liquid and crystal. To enhance this separa-

tion we calculate the correlation function between the ql vectors of the two

neighbouring atoms i and j as

ql(i).ql(j) ≡
m=l
∑

m=−l

qlm(i).qlm(j)
∗ (5.3)

Physically this means that if the local environment of atom i and j are

similar then the two environments will be correlated. The distribution of the

correlation function for l = 3 and l = 6 is shown in FIG. 5.3. We find that

both q3 and q6 differentiate the phases to a similar resolution. In our work

we have used q3 to recognize the crystal-like atom. An atom i is crystal-like

atom if q3(i).q3(j) < −0.23 (see 5.3 (a)). In addition to this we also apply a

second criterion by defining a threshold number of connections a crystal-like

atom should have with its neighbours crystal-like atoms. From FIG. 5.4 we
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Figure 5.2: Distribution of local orientational order (a) q3 and (b) q6 for high
density, low density and crystal phases.

define that every crystal-like atom should be connected with minimum 3 other

crystal-like atoms. Finally to identify a crystalline nucleus we define that two

crystal-like atoms belong to the same nucleus if the distance between them

is ≤ 3.77 Å(cut-off of the two-body part of the Stillinger-Weber potential).

The size of largest crystalline nucleus (n0) in the system is used as the order

parameter for the free energy computation at high temperature and pressure

values away from the Widom line.

Next we discuss the umbrella sampling MC method used to compute the

free energies. We also discuss the issues related to using n0 as the order pa-

rameter to compute ∆G at low temperatures and pressures near the Widom

line.
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Figure 5.3: Distribution of (a) q3(i).q3(j) and (b) q6(i).q6(j) correlation for
high density, low density and crystal phase. Any atom is considered crystal-
like if q3(i).q3(j) < −0.23.
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Figure 5.5: Equilibrium distribution of crystalline nuclei obtained from NPT
MD simulation at T = 1080K and P = 0GPa.

5.1.2 Gibbs Free Energy Barrier - Order Parameter

and System Size

The nucleation free energy barrier can be computed from the equilibrium

distribution of crystalline nuclei P (n) = N(n)/N , where N(n) represent

number of nuclei consisting of n crystalline atoms and N is the total number

of liquid-like atoms in the system. The free energy difference ∆G(n) is related

P (n) by

∆G(n) = −kBT ln[P (n)] (5.4)

The P (n) as obtained from an NPT MD simulation (which has not sponta-

neously crystallised) at T = 1080K and P = 0GPa is shown in FIG. 5.5,

which clearly illustrates that the formation of large crystalline nucleus is less

probable. Even in cases of a crystallising runs, the statistical accuracy with

which we determine the ∆G(n) at bigger nucleus size will be very poor. In

order to sample larger nucleus sizes with better sampling we have employed

the umbrella sampling MC technique introduced by Torrie and Valleau [171].

The basic idea behind the umbrella sampling MC technique is to bias
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the simulation to sample the configurations of interest (for which the Boltz-

mann factor is small). In our study we need to sample configurations of

specified nucleus sizes. In a conventional MC simulation we generate config-

urations such that the distribution of the configuration will be proportional

to exp(−βE(rN))/Z, where E(rN) is the Hamiltonean of the system. In a

umbrella sampling MC by modify the Hamiltonean by adding a bias poten-

tial and generate configurations having specified nucleus size. The average

number of nucleus size n in a biased ensemble can be written as

< N(n) >NPT=

〈

N(n)/W (rN)
〉

W

〈W (rN)〉W
∼

∑

[N(n)/W (rN)]
∑

W (rN)
(5.5)

where the summation is over all the measured configuration in the biased

ensemble. Note that when the nucleus formations are rare it can been shown

[134] that P (n) = P (n0), where n0 is the size of the largest crystalline nucleus.

This is a valid approximation when the critical nucleus sizes are big and the

free energy barriers are large.

The distribution obtained from umbrella sampling is in a biased ensem-

ble. Since Pbias(n0) = exp(−(∆G(n0) +W (n0))/(kBT )), where Pbias(n0) is

the nucleus size distribution in a biases ensemble, ∆G(n0) is the free en-

ergy difference, and W (n0) is the bias potential, we can easily unbias the

distribution using the relation

P (n0) ≡ exp(−∆G(n0)/(kBT )) = −Pbias(n0)exp(W (n0)/(kBT )) (5.6)

We perform umbrella sampling MC simulation at different n0 values using

a harmonic bias potential and in the FIG. 5.6 (a) and (b) we show the biased

and unbiased distribution respectively. The free energy difference ∆G(n0)

computed from above expression will be accurate up to a constant term

(note that we do not know the denominator
∑

W (rN) in the Eq. 5.5). In

order to obtain the missing constant, we fit the ∆G(n0) estimates obtained

from simulations performed at different windows of n0 to a single polynomial
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of n0. This can be done by a least square fit, by minimising

χ =
Nw
∑

n=1

Nd
∑

d=1

[

∆Gd(n)−

p
∑

i=1

(ain
i)− bn

]

(5.7)

where Nw is the total number of windows of n0, Nd is the total number

of data points in each window of n0, p is the order of the polynomial with

coefficients ai, which is same for all the windows and bn, which will give us

the missing constant. From CNT we know that ∆G(n) = −a0n + a1n
2/3.

Hence we have used a polynomial of the form a0n+ a1n
2/3+ a2n

2+ a3n
3 · · · .

We next discuss the choise of bias potential and the issues related to the

use of largest crystalline nucleus as the order parameter.

Bias Potential and Choice of Order Parameter

Harmonic bias potential: A bias potential which is a harmonic function

of size of the largest crystalline nucleus is found to be a good choice in many

of the previous work ( [13,94,134,165] and references within). The harmonic

bias potential W (n0) is defined as

W (n0) = (k/2)(n1(r
N)− n0(r

N))2 (5.8)

The constant k is chosen such that the P (n0) obtained at different windows

of n0 have sufficient overlap (which is necessary for better polynomial fitting).

We found that k = 0.02ǫ is a good choice for all the state points at which we

performed the free energy computation.

In our simulation using the harmonic bias potential we came across vari-

ous issues related to second crystalline nucleus growth which we summarise

below:
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Figure 5.6: Distribution of size of largest nucleus size (n0) obtained from
umbrella sampling MC simulation using the SW potential for silicon at T =
1221K and P = 0GPa. (a) with bias potential and (b) after removing
contribution of bias potential.
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Figure 5.7: (a) The free energy difference ∆G(n0)/kBT obtained from taking
logarithm of unbiased n0 distribution. (b) ∆G(n0)/kBT after fitting the free
energy data from different windows to a single polynomial (Note that to fit a
polynomial we have also included the data obtained from umbrella sampling
using hard wall bias potential).



5.1 Computation of Crystal Nucleation Barrier 148

0 5e+06 1e+07 1.5e+07 2e+07
MC cycle

0

10

20

30

40

50

60

70

C
lu

st
er

 s
iz

e
1

st
 largest

2
nd

 largest

3
rd

 largest

4
th

 largest

Figure 5.8: Crystalline nucleus size as a function of MC cycle obtained from
umbrella sampling MC simulation in the n0 = 60 window using SW potential
for silicon at T = 1259K and P = 0GPa. The second nucleus growth (red)
was observed approaching the critical nucleus size of ∼ 90.

1. Crystal nucleus size of 60− 90 atoms: In umbrella sampling MC simu-

lations performed with a system size of 4000 atoms, we observed that

approaching the critical nucleus size the system contained more than

one largest nucleus (see FIG. 5.8). This issue was resolved by perform-

ing parallel tempering MC simulation (explained in later subsection)

wherein we swapped two replicas having different largest nucleus size.

2. Crystal nucleus size of ∼ 20 atoms: In these cases the assumption

P (n) = P (n0) is no longer valid. Hence umbrella sampling simulation

using a hard wall bias potential in which we build the distribution by

including nucleus of all sizes (explained below).

3. Post critical nucleus: Crossing the critical nucleus size the free energy

for formation of nucleus decreases. Hence we observe formation of

multiple nucleus of n0. This issue was resolved by performing umbrella

sampling simulation using a hard wall bias potential.
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Figure 5.9: Comparison of free energy difference (∆G) obtained from hard
wall bias potential and harmonic bias potential in umbrella sampling MC
simulation using SW potential for silicon at T = 1221K and P = 0GPa.

Hard wall bias potential: When the formation of a crystalline nucleus

is no longer a rare event the assumption P (n) = P (n0) breaks down [134].

Hence we have calculate the distribution of nuclei instead of largest nucleus

distribution. In these cases we apply a hard wall bias potential and obtain

distribution of all the nuclei in the system whose size vary between the bounds

specified in the bias potential. The hard wall bias potential is defined as

δ(n1) = 0 if nl
0 ≤ n1 ≤ nh

0

= ∞ otherwise (5.9)

We have compared the ∆G(n0) from both the bias potential at states point

where the harmonic potential works well and we find that both methods

match with each other (see 5.9).

System Size Dependence

The free energy barrier and the critical nucleus size are intensive quantities

and hence should not depend on the system size. In simulations, since we
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Figure 5.10: Free energy barrier (∆G) computed for different system sizes
(T = 1221K and P = 0GPa).

apply a periodic boundary condition, care has to be taken while choosing the

system size, because the periodic image of large crystalline nucleus can affect

the procedure of identification of crystalline atom. We explain this point

with an example taken from our simulation. In the HDL phase the typical

density is around ρ ∼ 0.5σ−3, where σ is the diameter of the atom and in a

crystalline phase ρ ∼ 0.45σ−3. If we the system size is 512 atoms, the cubic

simulation box will have a length l ∼ 10σ. For a crystal nucleus size is around

80 atoms, the diameter of the nucleus is ∼ 7σ, which larger than l/2 and

hence the periodic image will influence the environment of the atoms in the

original simulation box. In FIG. 5.10 (a) we show the free energy computed

at T = 1221K (27% undercooling) and P = 0GPa for three different sizes

of the system (512, 1000 and 4000) atoms. In FIG. 5.10 (b) we show the

free energy barrier as function of inverse system size. By extrapolating the

inverse system size to zero, we find that 4000 atoms is the right system size

for the state point we are interested to compute free energies.
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5.1.3 Umbrella Sampling with Parallel Tempering

At state points approaching the Widom line, the dynamics of the system be-

comes very slow and relaxation times are big. Hence along with the umbrella

sampling we also implement parallel tempering scheme. Note that we can

perform parallel tempering in temperature, pressure and also in the order

parameter (n0). Since we are interested in computing free energies along

isobars, we perform replica swap between nearest two temperature windows

and nearest two n0 windows in the same temperature window as illustrated

in the FIG. 5.11. The acceptance criterion for the n0 swap is given by

acc((1, n
(1)
0 , T1), (2, n

(2)
0 , T2)) → ((2, n

(1)
0 , T1), (1, n

(2)
0 , T2))) (5.10)

= min(1, exp(−β(Wn −Wo)))

whereWn = 0.5k(1)(n
(1)
1 −n

(1)
0 )2+0.5k(2)(n

(2)
1 −n

(2)
0 )2 andWo = 0.5k(1)(n

(2)
1 −

n
(1)
0 )2 + 0.5k(2)(n

(1)
1 − n

(2)
0 )2. The superscripts within braces represent the

replica index. The swap frequency for temperature was chosen such that the

system spends at least an amount of time corresponding to the mean square

displacement of 1σ2 at the highest temperature and for the n0 swap we chose

a swap frequency such that the system get enough time to change its largest

nucleus size to the applied n0.

We summarise the entire umbrella sampling procedure below.

1. For an given temperature (T ), pressure (P ) we perform normal MC

simulation in NPT ensemble.

2. Every MC step, we perform the umbrella sampling move for a given

nucleus size value of n0 which involves

(a) Recognising largest crystalline nucleus size recognized (n1).

(b) Calculating the change in bias potential energy W (n1) −W (n0)

and invoking the Metropolis acceptance criterion.

3. Every Tswap MC steps we perform the parallel tempering in T .
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Figure 5.11: Illustration of parallel tempering scheme. The arrows indicate
the swap between nearest two temperature windows and nearest two n0 win-
dows.

4. Every n0swap MC steps we perform the parallel tempering in n0.

5. After the equilibration run, we obtain the nucleus size distribution

(Pbias(n0)) from the production run. (Implementation note: One has

to use long int data type for an array which stores the nucleus size

distribution).

6. We then unbias the distribution and obtain the free energy at different

windows of n0.

7. In the end we fit a single polynomial for different windows of n0 and

obtain the complete ∆G(n0) profile from which we recognise the free

energy barrier ∆G(n∗
0) and critical nucleus size n∗

0.

Note that in the cases where we have to perform simulations at large crys-

talline nucleus, the initial configuration is seeded with a sufficiently big crys-

talline nucleus.

We now discuss our results, starting with an analysis of spontaneous

crystallising runs.



5.2 Spontaneous Crystallising Runs 153

5.2 Spontaneous Crystallising Runs

From the exhaustive MD simulations which we have performed during the

course of our study of phase diagram of supercooled liquid silicon we have

obtained statistics related to how often a system crystallises. We find that

the system is prone to crystallisation in the vicinity of liquid-liquid critical

point (LLCP ) and the Widom line. Also we find that the crystallisation

process in HDL is markedly different from LDL phase. We elaborate these

observation below.

We have considered state points that belong to P = 0GPa and analyse the

MD configurations at different temperatures. We can pick out a crystallising

samples looking at the drop in energy as a function of MD time step and

by counting the number of crystalline atoms in the system. All our analysis

were done on the system having a size of 512 atoms. Our observations are

as follows:

1. In the HDL phase, uptill 35% undercooling (T = 1095K), we do not

find any of the 5 independent MD simulations (which were all run for a

minimum duration of 22ns) to show any signature of crystallisation. In

fact in these samples we find very few crystalline atoms. At a slightly

lower temperature T = 1080K we find that 50% (8 out of 16) of our

samples crystallised, with in a duration of run ranging between 2ns

and 22ns. At T ∼ 1060K all the 35 independent samples crystallised

with in a duration of run ranging between 2ns to 13ns (see FIG. 5.12

- corresponds to HDL phase at T = 1080K).

2. In the LDL phase (T = 1055K) we have performed around 50 indepen-

dent runs. A few samples (∼ 20) show clear indication of crystallisation

with a few ns. In the rest of the samples it is difficult to decide whether

the system has crystallised or not, since we find in these samples, a

considerably large crystalline nucleus (∼ 30% of the system size) which

appears arrested and did not grow in the simulation time we looked at

(100ns to 200ns)(see FIG. 5.13).

At positive pressure value P = 0.75GPa we do not find any crystallising
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sample in the temperature range (till T = 755K) we have performed simu-

lation.

Now we consider the P = −1.88GPa isobar, which is below the critical

pressure. Along this isobar for T ≥ 1258K we find that none of the 8 samples

(each run for minimum of 22ns) crystallised. Approaching the Widom line

from high temperature we find that all our 40 samples crystallised (duration

of run ranging between 5ns and 25ns). At the low temperature side of Widom

line we find similar trends as that of LDL phase at P = 0GPa. These ob-

servations are consistent for the rest of the isobars below the critical pressure.

To understand these observations we calculate the ∆G along different

paths in the phase diagram. Understanding the influence of various features

in the phase diagram on the crystal nucleation process becomes complicated

as these features are closely related to each other. For example with under-

cooling along an isobar, the ∆µ increase, the coordination number decreases

and the compressibility increases. In our study we have computed ∆G fol-

lowing four different paths in the phase diagram, which are (1.) Changing

compressibility and keeping coordination number fixed at a fairly larger than

the tetrahedral coordination. (2.) Changing the coordination number and

keeping the compressibility fixed, (3.) Along an isobar crossing the Widom

line and (4.) Along different isobars approaching the Widom line from high

temperature. In the FIG. 5.14 we show the state points where we compute

the free energy employing the umbrella sampling Monte Carlo simulation.
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Figure 5.12: (a) Total energy (top panel) and density (bottom panel) of the
system as a function of MD time step. (b) largest crystalline nucleus as a
function of MD time step. Each color represent an independent NPT MD
simulation run performed at T = 1080K and P = 0GPa using the SW
potential for silicon. As the system transform into a crystal phase, a jump
in energy to a lower value is detected, along with an increase in crystalline
nucleus size. The crystallisation time vary from 5ns to 20ns. All the samples
show fairly sharp increase in the crystal growth.
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Figure 5.13: (a) Total energy (top panel) and density (bottom panel) of
system, (b) largest crystalline nucleus as a function of MD time step. Each
color represent an independent NPT MD simulation run performed at T =
1055K and P = 0GPa using the SW potential for silicon. As the system
transform into a crystal phase, a jump in energy to a lower value is detected,
along with an increase in crystalline nucleus size. Even though all the samples
show signature of crystallisation, we find a big difference in the extent of
crystal growth. Note that in all the samples the density of LDL phase is
similar to that of crystal.
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Figure 5.14: The phase diagram of liquid silicon in (P, T ) plane depicting the
state points where we have computed the free energy barrier. (1) magenta
triangles are state points where the coordination number is constant (Cnn =
4.66), (2) two violet triangles represents state points where compressibility
is constant (KT = 1.5 reduced units), (3) orange diamonds are state points
where P = −1.88GPa and (4) brown triangles represent state points where
P = 0GPa.

5.3 Free Energy and Compressibility

We have chosen state points in the HDL region of phase diagram, such that

the coordination number remains constant as the compressibility increases.

We have chosen a coordination number of Cnn = 4.66, a fairly larger than

the tetrahedral coordination so that we can analyse the effect of density fluc-

tuations on the free energy barrier. We find that all these state points sit

parallel to Widom line. In the FIG. 5.15 we show the free energy difference

∆G as a function of order parameter n0. As we approach the critical point,

the compressibility increases and the free energy barrier decrease to around

10kBT . The critical nucleus size change from 35 atoms to less than 10 atoms

(in the vicinity of LLCP).
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Figure 5.15: Free energy difference ∆G/kBT against the nucleus size ob-
tained from NPT umbrella sampling MC simulation. At all the state points,
the coordination number is same (Cnn = 4.66), but the compressibility is
decreasing monotonically with temperature and pressure.

We next look at the effect of local coordination number on the free energy

barrier keeping the compressibility fixed.

5.4 Free Energy and Coordination Number

Keeping the compressibility fixed we try to find the effect of coordination

number on ∆G of the system. We chose the compressibility value such that

the difference in the coordination number is largest. In the FIG. 5.16 (inset)

we show the dependence of compressibility on the pressure for two isotherms

T1259K and T1510K. The symbols represent the state points where the

compressibility is constant and the coordination number varies by 3%. In

the FIG. 5.16 (main panel) we show the corresponding change in the free

energy, where in we find a dramatic change in the free energy barrier and
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critical nucleus size as we approach the smaller coordination number. Since

the temperature difference is around 250K,we should expect a big change in

chemical potential difference ∆µ, hence it is inconclusive whether the effect

is due to the change in local structure.
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Figure 5.16: Free energy difference ∆G/kBT against the nucleus size obtained
from NPT umbrella sampling MC simulation. At both the state points,
the compressibility is fixed (KT = 1.5 reduced units), but the coordination
number changes by 3%.

We next look at the change in ∆G across the Widom line at P =

−1.88GPa isobar.

5.5 Free Energy across the Widom Line at

P = −1.88GPa

In the previous two cases we restricted our analysis in the HDL phase. We

now analyse the change in ∆G as we go from high T liquid to low T liquid
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crossing the compressibility maxima line or the Widom line. We fix the

pressure at P = −1.88GPa and vary the temperature from T = 1385K to

T = 1171K (see FIG. 5.14). The compressibility maxima is at T ∼ 1230K.

At the low temperature state points we have performed around 150 million

parallel tempering MC cycles. We show our results in FIG. 5.17. We find

that free energy barrier decreases monotonically as we go from high T liquid

to low T liquid. In the low temperature side of Widom line, the free energy

barrier changes by 2kBT for a 50K change in temperature. Also the free

energy barrier shows a broader peak. At the high temperature side, we find

that for a similar change in temperature, the free energy barrier changes by

10kBT .

We next look at the behaviour of ∆G(n) along P = 0GPa approaching

the vicinity of critical point.
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Figure 5.17: Free energy difference ∆G/kBT against the nucleus size obtained
from NPT umbrella sampling MC simulation at P = −1.88GPa. (a) Low
temperature side of Widom line (b) High temperature side of Widom line.
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5.6 Free Energy along P = 0GPa

Keeping the pressure constant at P = 0GPa, starting from T = 1296K (∼

23% undercooling) to T = 1059.8K (∼ 37% undercooling) we have calculated

the ∆G as a function of crystal nucleus size n0 (see FIG. 5.18). We find that

the barrier at the highest temperature is around 60kBT which decreases to

around 8kBT in the vicinity of LLT. The critical nucleus size changes from

around 140 atoms to less then 10 atoms (see FIG. 5.19). For T <= 1082K,

free energy barrier shows a broader peak which are evidently different from

high temperature free energy profiles. We note that from the MD simulation

statistics we find that the system crystallise more often for T ≤ 1080K. It

is just an observation and we can not conclude much from this since we lack

good statistics of crystallising MD runs.

We make an attempt to compare these results with the CNT predictions.

According to CNT the free energy barrier and the critical nucleus is given by

∆G(n∗
0) =

16π

3

(

v′σ3/2

(−∆µ)

)2

(5.11)

n∗
0 =

32π

3

(

(v′)2/3σ

(−∆µ)

)3

where v′ is the volume of the critical nucleus, σ is the surface free energy.

To make a proper comparison we need v′, σ and ∆µ. We have used the ∆µ

from the work of Broughton and Li [24] and the other variables v′ and σ are

unknown, which we get as fit parameter from the plot of (a) ln(n∗
0) against

ln(−∆µ) and (b) ln(∆G(n∗
0) against ln(−∆µ). From the CNT we expect

the slope of the curve (a) to be 3 and from (b) to be 2. In the FIG. 5.20 we

find that no region of the curve follows CNT, which can be due to the fact

that we are assuming that both v and σ varies linearly with temperature.
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Figure 5.18: Free energy difference ∆G/kBT against the nucleus size obtained
from NPT umbrella sampling MC simulation at P = 0GPa. (a) ∆G(n0) for
T ≥ 1296K (b) ∆G(n0) for T ≤ 1108K.
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Figure 5.19: (a) Free energy barrier ∆G(n∗
0) and (b) Critical nucleus size n∗

0

as a function of temperature for P = 0GPa.
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Figure 5.20: Comparison of CNT prediction. The ∆µ estimates for P =
0GPa were obtained from Broughton and Li [24]. The solid lines are CNT
fit lines.
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5.7 Free Energy across the Phase diagram

We now present our results of free energy computation across the whole phase

diagram for pressure values ranging from from 0.75GPa to −3.02GPa and

temperature values ranging from 1000K to 1450K. In FIG. 5.21, 5.22, 5.23,

5.24, 5.25, 5.26 we show the ∆G computed for P = 0.75GPa, −0.60GPa,

−1.13GPa, −1.51GPa, −2.64GPa, −3.02GPa respectively. At all the pres-

sure values below the critical pressure we find that the the free energy barrier

decreases monotonically as we approach the Widom line from high tempera-

ture. In the FIG. 5.27 we show free energy barrier and critical nucleus size as

a function of temperature for different pressure values, from which we extract

the iso-free energy barrier lines and iso-critical nucleus size lines (see FIG.

5.28). These results suggest that within the accuracies of our computation

there is no particular change in the free barrier or the critical nucleus size

near the liquid-liquid critical point. According to the CNT prediction the

∆G(n∗
0) ∝ (n∗

0)
(2/3). Interestingly we do find this relation to be valid for a

wide range of data as shown in the FIG. 5.29 where we have plotted scaled

data of free energy barrier ∆G(n∗
0) against the critical nucleus n

∗
0 (Choosing

a high temperature free energy value reference we have scaled was done by

hand).
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Figure 5.21: Free energy difference ∆G(n0) against the nucleus size (n0) ob-
tained from NPT umbrella sampling MC simulation along the P = 0.75GPa
isobar.
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Figure 5.22: Free energy difference ∆G(n0) against the nucleus size (n0)
obtained from NPT umbrella sampling MC simulation along the P =
−0.60GPa isobar.
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Figure 5.23: Free energy difference ∆G(n0) against the nucleus size (n0)
obtained from NPT umbrella sampling MC simulation along the P =
−1.13GPa isobar.
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Figure 5.24: Free energy difference ∆G(n0) against the nucleus size (n0)
obtained from NPT umbrella sampling MC simulation along the P =
−1.51GPa isobar.
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Figure 5.25: Free energy difference ∆G(n0) against the nucleus size (n0)
obtained from NPT umbrella sampling MC simulation along the P =
−2.64GPa isobar.

0 50 100 150 200
Cluster size (n 0)

0

10

20

30

40

50

∆G
/k

B
T

T 1322 K
T 1334 K
T 1347 K
T 1384 K
T 1447 K

Figure 5.26: Free energy difference ∆G(n0) against the nucleus size (n0)
obtained from NPT umbrella sampling MC simulation along the P =
−3.02GPa isobar.
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Figure 5.27: (a) Free energy barrier ∆G(n∗
0) and (b) Critical nucleus size n∗

0

as a function of temperature for eight different isobars.
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Figure 5.28: Phase diagram of silicon in (P, T ) plane showing (a) the constant
free energy barrier lines and (b) the constant critical nucleus size lines
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Figure 5.29: Free energy barrier ∆G/kBT against the critical nucleus ob-
tained across the phase diagram. Choosing a high temperature free energy
value as reference we have scaled the rest on the data on to that value by
hand.
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5.8 Nucleation Mechanism

In this section we perform detailed analysis of local structural and density

changes as the system transform from liquid to crystal state. We have anal-

ysed the NPT MD runs as well as the NPT umbrella sampling MC runs.

5.8.1 Analysis of spontaneously crystallising runs

In the earlier section we discussed to some extent crystallising MD configura-

tions, where in we looked at the change in energy, density and size of largest

crystal nucleus as a function of MD time step. We extend the analysis and

recognize, along with largest crystal nucleus (which we represent by blue

color in all plots), number of other crystalline atoms (orange), number of

5-coordinated atoms or atoms with q3 < 0.6 (red), number of 4-coordinated

atoms or atoms with q3 ≥ 0.6 (green) and number of random tetrahedral

network forming atoms or RTN atoms (magenta). The state points chosen

for analysis are along P = 0GPa isobar and for T = 1055K, correspond-

ing to the LDL phase, T = 1065K, corresponding to the HDL phase and

T = 1080K, corresponds to the highest T at which we find spontaneous

crystallisation.

T = 1055K, P = 0GPa: We begin with the analysis of T = 1055K

isotherm, at which the critical nucleus is around 5 − 6 atoms. In the FIG.

5.13 (a) we show change in energy and density for five different samples, out

of which we have chosen sample 1 and sample 3 to analyse. In case of sample

1 we find a sharp jump in the energy of the system as system crystallise. The

sample 3 has not completely crystallised but we find steady increase in the

number of crystalline atoms (see FIG. 5.13 (b)). In FIG. 5.30 we show the

evolution of number of atom belonging to different local environment as the

system crystallise and we summarise our observations below.

1. In both the samples, number of crystalline atoms (orange) not belong-

ing to the largest crystalline nucleus is small in number.

2. A majority of 4-coordinated atoms (green) are part of RTN cluster
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(magenta).

3. In the sample 1 we find that as the number of crystalline atoms begin to

increase (MD time step t < 10ns) the number of RTN atoms decreases

but the number of 5-coordinated atoms remains fairly constant. For

t > 10ns, the number of crystalline atoms increase very steeply as

number of both 4-coordinated and 5-coordinated atoms decrease.

4. In the sample 3 we find that the crystallisation in the system is very

slow. Like in sample 1, number of crystalline atoms increase with

the decrease in number of RTN atoms, during which number of 5-

coordinated atoms do not change much. For t > 15ns we find that

there is no change in the number of RTN atoms and the crystallisation

process almost stops at this point.

T = 1065K, P = 0GPa: At this state point the critical nucleus has

around 8 atoms. In the FIG. 5.31 we show the change in energy and density

for two different samples which we are going analyse. In the sample 1 we find

a step-like feature in the total energy of the system as the system crystallise

and in the sample 2 we find that the system does not crystallise even though

the largest crystalline nucleus is bigger then the critical nucleus. In the FIG.

5.32 we show the evolution of different types of atoms as the system crystallise

and we summarise our observations below.

1. Similar to the case of T = 1055K we find that most of the 4-coordinated

atoms belong to the RTN cluster.

2. In the sample 1, below t = 12ns we find number of 5-coordinated as

well as RTN atoms remain fairly unchanged and number of crystalline

atoms are small in number (around 8-10). Between t = 12nsand15ns,

we see decrease in 5-coordinated atoms and increase in number of RTN

and crystalline atoms. For t > 17ns we find a sharp decrease in number

of RTN and 5-coordinated atoms resulting in drastic increase in the size

of crystalline nucleus.
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3. In the sample 2, we again observe at the initial stage of crystallisation

(t < 15ns, decrease in number of 5-coordinated atoms and increase in

number of RTN and crystalline atoms. But at later stages the number

of RTN atoms remain constant and the crystallise nucleus seizes to

grow.

T = 1080K, P = 0GPa: At this state point the critical nucleus is around

12 atoms. In the FIG. 5.12 we show change in energy and density for different

samples among which we have chosen sample 1 and sample 3 to analyse. In

the FIG. 5.33 we show the evolution of different types of atoms as the system

crystallise and we summarise our observations below.

1. Similar to the previous two cases we find that most of the 4-coordinated

atoms belong to the RTN cluster.

2. In sample 1 we find that a sharp decrease in 5-coordinated atoms results

in a sharp increase the size of the crystalline nucleus, as the RTN atoms

remains constant.

3. In sample 3 at around 13ns, we find that the number of 5-coordinated

atoms decreases as the the number of RTN atoms increase. We also

find a small increase in crystalline atoms. For t > 17ns the number

of RTN atoms remain constant, but as the number of 5-coordinated

atoms decrease the crystalline nucleus grows slowly.

From the above analysis of spontaneously crystallising MD runs we find

that that even though the size of critical nucleus is of the order of few atoms

the system continuos to state in liquid state. The role of RTN atoms seems to

be important since we find in all the spontaneously crystallising state points

the rate of crystallisation distinctly depends on how fast the RTN cluster

shrinks.

All spontaneously crystallised samples belong to deeply undercooled state

point. To understand the precise role of RTN cluster we also need to analyse

the high temperature crystallising runs. Since we do not have any sponta-

neously crystallising sample in the duration of run we have simulated, we
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have to seed the high temperature samples with crystalline nucleus of size

larger than the critical size. Instead we analyse umbrella sampling MC con-

figurations at various stages of nucleation process.
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Figure 5.30: Evolution of different kinds of atoms in two different samples
(a) and (b) as the system at T = 1055K and P = 0GPa crystallise. Blue
represents the atoms belonging to the largest crystalline nucleus, orange rep-
resents other crystalline atoms (orange), red represents 5-coordinated atoms
or liquid atoms with q3 < 0.6, green represents 4-coordinated atoms or liquid
atoms with q3 ≥ 0.6 and magenta represents random tetrahedral network
forming atoms or RTN atoms.
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Figure 5.31: (a) Total Energy (top panel) and density (bottom panel) of sys-
tem as a function of MD time step from two independent NPTMD simulation
runs performed at T = 1065K and P = 0GPa. As the system transform
into a crystal phase, a jump in energy to a lower value is detected.



5.8 Nucleation Mechanism 175

0 5 10 15 20 25
MD step (ns)

0

100

200

300

400

500

N
um

be
r 

of
 p

ar
tic

le
s

Largest crystalline nucleus
Other crystal atoms
4 coord. atoms
RTN atoms
5 coord. atoms

(a)

0 5 10 15 20 25
MD step (ns)

0

100

200

300

400

500

N
um

be
r 

of
 a

to
m

s

Largest crystalline nucleus
Other crystal atoms
4-coord. atoms
RTN atoms
5-coord. atoms

(b)

Figure 5.32: Evolution of different kinds of atoms in two different samples
(a) and (b) as the system at T = 1065 and P = 0GPa crystallise. Blue
represents the atoms belonging to the largest crystalline nucleus, orange rep-
resents other crystalline atoms (orange), red represents 5-coordinated atoms
or liquid atoms with q3 < 0.6, green represents 4-coordinated atoms or liquid
atoms with q3 ≥ 0.6 and magenta represents random tetrahedral network
forming atoms or RTN atoms.
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Figure 5.33: Evolution of different kinds of atoms in two different samples
(a) and (b) as the system at T = 1080 and P = 0GPa crystallise. Blue
represents the atoms belonging to the largest crystalline nucleus, orange rep-
resents other crystalline atoms (orange), red represents 5-coordinated atoms
or liquid atoms with q3 < 0.6, green represents 4-coordinated atoms or liquid
atoms with q3 ≥ 0.6 and magenta represents random tetrahedral network
forming atoms or RTN atoms.
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5.8.2 Analysis of Umbrella Sampling Runs

Using the umbrella sampling MC configurations we have analysed the change

in local density in the surrounding regions of the crystalline nucleus. Since

in an umbrella sampling MC scheme we can bias the system to sample a

particular size of the crystalline nucleus we can obtain better statistics of

quantities which were analysed in the previous section, at different stages

(pre-critical, critical and post-critical) crystallisation process. Note that all

the umbrella sampling MC simulations were performed with a system size of

4000 atoms.

To perform local density analysis we first recognize the center of mass

of the largest crystalline nucleus and the boundary of the of the crystalline

nucleus. We assume the crystalline nucleus to be spherical and define the

boundary as the distance between the centre of mass and the farthest crys-

talline atom in the nucleus. We count the number of crystalline atoms (nc),

LDL atoms (nldl) and HDL atoms (nhdl) within a shell of volume dV at a

distance r from the center of mass and hence obtain local density as

ρc = nc/dV

ρldl = nldl/dV

ρhdl = nhdl/dV (5.12)

Spontaneously crystallised samples we analysed were at state points cor-

responding to T = 1055K, T = 1080K and T = 1080K along P = 0GPa

isobar. We now analyse T = 1108K and T = 1196K along P = 0GPa

isobar.

We now discuss the results from the local density analysis for T = 1108K

and P = 0GPa. At this state point the critical nucleus size is around 17-20

atoms and 30% of the system contains 4-coordinated or LDL atoms. The

local density analysis is performed for configuration having crystal nucleus

of size 9, 20 and 26 atoms. In FIG. 5.34 (a) we show local LDL density

(top panel) and local HDL density (bottom panel) as a function of distance

from the center of crystalline nucleus. The orange line in corresponds to the
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Figure 5.34: (a) Local LDL density (top panel) and local HDL density (bottom
panel) as a function of distance from the center of crystalline nucleus at
T = 1108K and P = 0GPa for different n0 values. (b) Local density of
crystalline, LDL and HDL atoms as a function of distance from the center
of crystalline nucleus at T = 1108K and P = 0GPa at n0 = 20.

equilibrium density of respective atoms. We find that at all state of crys-

tallisation an excess in local density of LDL atoms near the boundary of the

crystalline nucleus. But this wetting layer of LDL atoms starts diminish-

ing as the crystalline nucleus size grow. In FIG. 5.34 (b) we show the local

density for all the crystal, LDL and HDL atoms at n0 = 20.

In FIG. 5.35 we show the local density analysis for T = 1196K and P =

0GPa. At this state point the critical nucleus size is around 50 atoms and

25% of the system contains 4-coordinated or LDL atoms. At this state point

the wetting layer of LDL atoms seems to persist at all stages of nucleation.
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Figure 5.35: (a) Local LDL density (top panel) and local HDL density (bottom
panel) as a function of distance from the center of crystalline nucleus at
T = 1195K and P = 0GPa for different n0 values. (b) Local density of
crystalline, LDL and HDL atoms as a function of distance from the center
of crystalline nucleus at T = 1195K and P = 0GPa at n0 = 55.
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5.9 Summary

In this chapter we have studied the crystal nucleation process in supercooled

silicon. From the crystal nucleation barrier calculated across various state

point in the phase diagram we find that in the vicinity of LLCP and the

Widom line, separating out the influence of density fluctuations and struc-

tural arrangement on the nucleation barrier is not possible. Approaching the

LLCP and the Widom line from high temperature, we find that the nucle-

ation barrier is of the order of 10kBT and the critical nucleus size is around

10-15 atoms. At the low temperature side of the Widom line, nucleation

barrier is of the order of 7kBT and the critical nucleus size is around 7-10

atoms. Analysis of spontaneously crystallising sample at these state points

reveal very interesting fact related to the growth of the crystal nucleus. Even

though size of critical nucleus is of the order of few atoms the system con-

tinuos to be in liquid state due to the presence of RTN cluster. The role of

RTN atoms is important as crystallisation rate distinctly depend on the how

fast the RTN cluster melts. Local density analysis at moderately high tem-

peratures reveal a wetting layer of LDL atoms surrounding the crystalline

nucleus.



Chapter 6

Applicability to Real Silicon

The supercooled phase of silicon has been extensively studied in the past

three decades and a vast amount of knowledge has come from computer

simulations using the classical Stillinger-Weber (SW ) model potential, al-

though there have also been many ab initio simulations performed in recent

years. Any model interaction potential is parameterised so as to reproduce

certain experimentally known properties like phase transition temperature,

crystalline structure etc and hence it is difficult for a single empirical inter-

action potential to reproduce a wide range of properties in different phases

of matter. Unlike empirical interaction potentials, in ab initio simulations

the effective atomic interactions are obtained on the fly from quantum me-

chanical calculations such as Density Functional Theory (DFT ) and hence

free of parameterisation, although not free of errors arising from necessary

approximations involved in such calculations. But, ab initio simulations are

computationally very expensive and hence it is difficult to access large system

sizes and time scales using them. These shortcomings becomes a real bottle-

neck when one needs to study systems at low temperatures or near a critical

point, as is the case with supercooled silicon. Relaxation times increase with

the lowering of temperature and also with the approach to a critical point.

The spatial correlation in the system increases with the approach to a crit-

ical point which makes it necessary to study larger system sizes (though we

181
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must mention that this shortcoming also applies to much of the classical sim-

ulation results presented in our work). In the studies involving supercooled

phases we have to also confront the issue of crystallisation. Since crystallisa-

tion is inherent to a supercooled phase, it is not a feature that can be easily

eliminated without introducing artefacts in the sampling. Hence, it may be

necessary to perform simulations of multiple independent samples to obtain

reasonable information on the metastable states. Given these considerations,

in the case of silicon, one must of necessity perform some of the simulations

using a classical empirical potential such as the SW potential. It is therefore

interesting to see to what extent the liquid state properties evaluated using

the SW potential agree with the available first principles and experimental

properties.

In this chapter we carry out such a comparison of various properties

obtained in the simulations using the SW potential with the available ex-

perimental as well as ab initio and other model potential results. These

comparisons allow us to understand to what extent the SW silicon results

are applicable to real silicon. We note that a previous work by Balamane et

al. [15] compare six different empirical potentials for silicon looking at vari-

ous properties at T = 0K, but very little focus was given to the liquid state

of silicon.

The Stillinger-Weber potential is one of the best model potentials for

studying the liquid and supercooled liquid phases of silicon, since the pa-

rameters of the model potential are chosen explicitly to predict the struc-

tural properties of real liquid silicon. However, whether the model faithfully

captures temperature as well as pressure variations of thermophysical, struc-

tural and dynamic properties is unclear, and one should expect that the re-

sults obtained from the simulation will be sensitive to the model parameters.

Beaucage and Mousseau [17], based on their study in which they modify the

strength of the three body potential (λ), interrogate the finding of a liquid-

liquid transition (LLT ) in supercooled liquid silicon using the SW potential.

In this context, these authors make the following two observations from their

simulation (1.) At negative pressures (authors report at P = −2GPa) the
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system does not show a first order liquid-liquid transition but instead a sec-

ond order transition is observed (2.) For a small increase in λ (by 5%) the

LLT disappears or totally gets hidden by crystallisation. Hence these authors

claim that the nature of the transition in SW silicon is highly sensitive to

model parameters and therefore no strong claims can be made for what must

happen in real silicon based on simulations of the SW potential. From the

phase diagram of supercooled liquid silicon which we discussed in detail in

previous chapters, it is clear that there is no phase transition at P = −2GPa,

and examination of well equilibrated data does not reveal any second deriva-

tive singularity to suggest a second order transition. In fact the observations

like dramatic change in coordination number and diffusivity these authors

make is due the crossing of Widom line from high T to low T along the

P = −2GPa isobar. Regarding the second point raised by these authors, it

is clear that a change in model parameters will change the phase diagram.

Importantly, a shift by 5% in the value of λ changes the LLT temperature to

higher values [111], to about T = 1390K at which Beaucage and Mousseau

see crystallisation. In our work (Crystal Nucleation chapter) we show that

the crystal nucleation barrier and the size of critical nucleus decreases dra-

matically when the transition boundary to the low density liquid (LDL) is

crossed. Hence it is not surprising that crystallisation is observed at an el-

evated temperature compared to the normal SW parameters. In the FIG.

6.1 we have shown the phase diagram of supercooled silicon (including the

LLT points [111], the density maxima and compressibility maxima at zero

pressure) for two different values of λ (20.5 and 21.5) along with λ = 21.0

(for silicon). With a small increase in λ the phase diagram shift towards

the high temperature (and higher pressure) but the salient features of the

phase diagram do not change. In the FIG. 6.2 we show the change in density

with temperature for different values of λ. A detailed work on change in nu-

cleation rates with strengthening or weakening of λ will shed more light on

what Beaucage and Mousseau observe, but clearly, the qualitative features

of the phase diagram including the LLT remain intact even with a change in

parameters.
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Figure 6.1: Phase diagram of supercooled silicon (in PT plane) at λ =
20.5, 21.0(Si) and 21.5 from MD simulations using the SW potential. The
liquid-liquid transition data [111] are shown in orange circles, the density
maxima point are shown in bold red squares and compressibility maxima
points are shown in bold opaque green squares. The values of λ are stated
over the symbols.
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NPT MD simulations using the SW potential.
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To evaluate the reliability of the SW potential for silicon, we examine

the extent to which there is an agreement between the properties obtained

from SW silicon and from experiments or first principles simulations. Such

a comparison is made here on the basis of an extensive literature search of

experiments, first principles simulations and other empirical potential sim-

ulations performed on liquid silicon. We compare results for density (ρ),

structure factor (S(q)), radial distribution function (g(r)), diffusivity (D)

and viscosity (η) obtained from various reports with the SW silicon data.

Before we go in to the details we would like to mention that the criterion

for choosing the simulation works for the comparison is solely based on the

reported temperature range (T = 1100K to 1700K).

Density: We have extracted the densities at normal pressure from the

experimental reports of Langen et al. (1998) [91], Egry (1999) [50], Sato et

al. (2000) [145], Rhim (2000) [130], Higuchi et al. (2005) [69], Inatomi et al.

(2007) [73] and Watanabe et al. (2007) [182]. We have used the simulation

data reported by Keblinski et al. (2002) [81] using the environment depen-

dent interaction potential, Morishita (2006) [117] using ab initio simulation

and Timonova et al. (2010) [104] using the MEAM potential. We show the

comparison of densities from different reports in FIG. 6.3 and we infer the

following points:

1. The differences within different experimental values of density are large.

All the experiments (within error bar) show monotonically increasing

density with decrease in temperature till the lowest reported temper-

ature of measurement [130] and hence density anomaly is not yet ex-

perimentally verified.

2. The SW potential considerably underestimates the densities. However

it is comparatively better than other estimates from other classical

empirical potentials [81, 104]. The density maximum as predicted by

SW potential at zero pressure is at T = 1350K. The EDIP simulations

estimate for the density maximum is T = 1300K and the MEAM

potential estimates at T = 2500K.
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Figure 6.3: Compilation of density against temperature from different exper-
iments and simulations. The experimental data are represented by symbols
and the simulation data are represented by line and symbol. [From Langen
et al. [91], Egry [50], Sato et al. [145], Rhim [130], Higuchi et al. [69], Inatomi
et al. [73] and Watanabe et al. [182], Keblinski et al. [81], Morishita [117]
and Timonova et al. [104] with permission.]

3. Estimates of density from ab initio simulations compare better with the

experimentally measured values. The density maximum as predicted

by FPMD simulation is at T = 1200K.
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Structure factor S(q) and Pair correlation function g(r): In exper-

iments S(q) is measured using various scattering techniques. The Fourier

transform of S(q) yields g(r). From our literature search we find that agree-

ment between experiments and simulations is as good (or bad) as the agree-

ment between different experiments. We also find that agreement between

experiments and MD simulations using the SW potential is as good as be-

tween experiments and first principles simulations. A detailed comparison of

S(q) and g(r) is discussed below.

At normal pressures, experimental investigations have measured S(q)

down to 1382K [84] and not below. For T = 1382K we compare the SW simu-

lation data with the experimental data extracted from Kim et al. (2005) [84].

Between T = 1447K to 1667K we compare the SW simulation data with ex-

perimental data extracted from Waseda et al. (1995) [181], Ansell et al.

(1998) [9], Kimura et al. (2001) [85], Jakse et al. (2003) [75], Higuchi et al.

(2005) [69], Kim et al. (2005) [84], Watanabe et al. (2007) [182], Krishnan

et al. (2007) [86]. Comparison with FPMD and other empirical potential

simulations is made from the data extracted from Jakse et al. (2003) [75],

Morishita (2006) [117], Wang et al. (2011) [180] and Colakogullari et al.

(2011) [27].

We show the comparison of S(q) obtained from SW simulation and ex-

periments in the FIG. 6.4. and comparison between different simulations is

shown in the FIG. 6.5. We use the recent experimental S(q) of Krishnan et

al. (2007) [86] as a reference for comparing with different simulations results.

Following are our observations.

1. The differences in S(q) among different experimental reports as well as

among different FPMD simulations are significant.

2. Even though all the experimental data (except Ansell et al. [9] at T

1542 K) show similar trends, we find a noticeable difference in the

amplitudes of S(q). The trend captured by ab initio simulations is

similar to that of SW simulations.

3. The feature of split peaks is seen in both ab initio and SW simulation.

But in comparison with experiments, it seems that ab initio simulation
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captures better the first peak and the SW potential captures better the

second peak of S(q).

4. The minima and maxima of S(q) for q > 4 Å
−1

is well captured by the

SW potential.

5. The ratio of the first peak to the second peak is better captured by SW

potential than by the ab initio simulations.

We now focus on radial distribution function obtained from experiments

and simulations (shown in FIG. 6.6 and 6.7) and note the following points:

1. The most noticeable feature is the difference in the first minimum of

g(r) within different experiments. The coordination number is very

sensitive to the location of the first minimum of g(r). The results

from Jakse et al. [75] and Krishnan et al. [86] are consistent with each

other and shows the minimum of g(r) at around 3.3Å. The results from

Kim [84] shows the minimum is at around 3Å.

2. Both ab initio and SW simulations have the first minimum of g(r) at

around 3Å(except for Wang et al. [180] which shows the first minimum

of g(r) at 3.3Å).

3. The second important difference is in the amplitude of the first peak

of g(r). Both ab initio and SW simulations have similar amplitudes of

and are bigger than the observed amplitudes in experiments.

4. The intermediate peak between the first and the second prominent

peak of g(r) as reported by Kim [84] is not found in the experiments of

Jakse [75] and Krishnan [86]. But it is a prominent feature in both ab

initio and SW simulations.

5. For r > 3.5Å(second and higher peaks), the g(r) from SW simulations

compare better with the results of Kim et al. [84] than the ab initio

results. Results from SW and ab initio simulations are less consistent

with the experimental results reported by Jakse [75] and Krishnan et

al. [86].
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A comparison of S(q) and g(r) at T = 1328K, the lowest temperature

experimentally achieved [84], is shown in FIG. 6.4 (a) and 6.6 (a). We find

that even though there are differences in the amplitudes of the peaks of S(q)

and g(r), the SW potential captures all the salient features found in the

experimental results of Kim et al. [84].

High pressure S(q) and g(r): In FIG. 6.8 and FIG. 6.9 we compare the

SW simulation data with experimental S(q) and g(r) [57] at three different

high pressure values at T = 1737K . We find that at P = 4GPa, the SW

simulation data compare reasonably well with experimental data. But at

around P = 14GPa the SW potential fails to capture the experimental S(q)

and g(r).

From the above comparisons we find that there are noticeable differences

between the structural properties (characterised by S(q) and g(r)) obtained in

different experiments as well as from different simulations. We find from the

comparison of simulation results with experiments, that the SW potential

does as good a job as the ab initio simulations. At high pressure values

(P ∼ 14GPa) the SW potential fails to capture the details of experimental

S(q) and g(r).

Coordination number: The coordination number Cnn is calculated by

integrating the g(r) till its first minimum (rc) using the equation Cnn =
∫ rc
0

4πr2ρg(r)dr. Hence the most important inputs that goes into the cal-

culation of the Cnn are rc and density of the liquid. The differences in g(r)

and densities between the experiments and simulations will reflect in the dif-

ferences we find in the calculated Cnn as it can seen in the FIG. 1.7. To

illustrate how much the coordination numbers from the SW potential are af-

fected by the underestimation of density, we have also shown (see FIG. 1.7)

the coordination numbers calculated using the densities obtained from the

experimental density values (Rhim et al. [130]).
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Figure 6.4: Comparison of the structure factor S(q) from NPT MD simu-
lations using the SW potential and from experiments at four different tem-
peratures, T = 1382K, T ≈ 1455K, T ≈ 1550K and T ≈ 1770K. [From
Waseda et al. [181], Ansell et al. [9], Kimura et al. [85], Jakse et al. [75],
Higuchi et al. [69], Kim et al. [84], Watanabe et al. [182], Krishnan et al. [86]
with permission.]
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Figure 6.5: Comparison of the structure factor S(q) from different simulation
works at four different temperatures, T = 1100K, T ≈ 1455K, T ≈ 1550K
and T ≈ 1700K. We also show the recent experimental S(q) measurements
for comparison purposes. [From Krishnan et al. [86], Jakse et al. [75], Mor-
ishita [117], Wang et al. [180] and Colakogullari et al. [27] with permission.]
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Figure 6.6: Comparison of the pair correlation function g(r) from NPT MD
simulations using the SW potential and from experiments at four different
temperatures, T = 1382K, T ≈ 1455K, T ≈ 1550K and T ≈ 1770K. [From
Ansell et al. [9], Jakse et al. [75], Kim et al. [84], Krishnan et al. [86] with
permission.]
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Figure 6.7: Comparison of the pair correlation function g(r) from different
simulation works at four different temperatures, T = 1100K, T ≈ 1455K,
T ≈ 1550K and T ≈ 1700K. We also show the recent experimental g(r)
measurements for comparison purposes. [From Krishnan et al. [86], Jakse et
al. [75], Morishita [117], Wang et al. [180] and Colakogullari et al. [27] with
permission.]
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Figure 6.8: Comparison of the structure factor S(q) from NPT MD simu-
lations using the SW potential with the experimental data at high pressure
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Stich et al. [173], Jakse et al. [75], Colakogullari et al. [27], Wang et al. [180],
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Diffusivity and Viscosity: In the FIG. 6.10 we show the comparison

of temperature dependence of diffusivity (at normal pressure) reported by

various simulation and experimental reports. We could only find experimen-

tal report of diffusivity at Tm (Sanders et al. [136] and Lu et al. [98]) and

we show them in our comparison. The FPMD data was extracted from the

reports of Stich et al. [173], Jakse et al. [75], Colakogullari et al. [27] and

Wang et al. [180]. From our comparison we find that only FPMD simulation

of Stich et al. [173] predict the diffusivity close to the experimental data.

All other FPMD as well as SW simulation estimates of diffusivity (at Tm) is

smaller than the experimental value. We find that the SW simulation data

is comparable with the FPMD data only down to T = 1250K.

In the FIG. 6.11 we compare the experimentally determined viscosity

values with that of the SW potential estimates. The experimental data was

extracted from the report of Rhim et al. [130] (in which we also find the

viscosity data of Sasaki et al. and Sato et al.). Similar to diffusivity we find

that SW under estimates the η compared to experimental values.
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6.1 Summary

In this section, we have compared thermodynamic (density), structural and

dynamical properties of liquid silicon, obtained from various reports from ex-

periments, first principle simulations and other model potential simulations

with our data obtained from simulations using the SW potential for silicon.

We find that the SW potential, while displaying significant differences with

experimental data for the quantities we have discussed here, does so within

deviations that are comparable to the spread between different experimental

results, and these differences are comparable to those displayed by first prin-

ciples simulation results. For the different quantities compared the summary

of observations are as follows:

1. There are noticeable differences in structure factors and radial distri-

bution functions reported by different experimental groups.

2. The density values reported by different experimental groups have a

variation of about 10%.

3. The coordination numbers calculated are very sensitive to the location
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of the first minima of g(r) and the density. There is a large spread in

the coordination numbers reported by different experimental groups,

between 5 and 6.5.

4. The first principles simulation estimates of S(q), g(r) and diffusivity do

not show any better agreement with experiments than SW simulations.

5. The SW potential underestimates the density by 5%, which leads to

lower estimates of the coordination number by 4%. Even then these

numbers are within the error bars of reported experimental data.

6. The SW potential estimates of diffusivity (which is comparable to the

first principle simulations) is approximately a factor of 4 less than the

experimental value and viscosity is approximately a factor of 3 higher

than the experimental value.

It is evident that the most significant shortcoming of the SW potential ap-

pears to be in the estimates of the density. Given the detailed understanding

of the SW potential, it may be interesting to fine tune the potential by vary-

ing the strength of the three body interactions and the range of interactions,

which is a useful future direction to pursue.



Chapter 7

Conclusions

We present in this chapter the main conclusion drawn from our studies on the

phase behaviour of supercooled liquid silicon. In our study we have primarily

focused on three topics of interest namely (1.) liquid-liquid transition, critical

point and phase behaviour, (2.) structural and dynamic properties and (3.)

crystal nucleation.

The phase behaviour of supercooled liquid silicon studied in chapter 3,

we provide an evidence for existence of liquid-liquid critical point associated

with the liquid-liquid transition. We chart out the complete phase diagram

of supercooled liquid silicon which includes (a) liquid-liquid coexistence line

(LLT ), (b) liquid-liquid critical point, (c) loci of density extrema, (d) loci

of compressibility extrema and (e) liquid spinodal. We find that the phase

behaviour of silicon is very similar to that of water. This similarity in the

phase behaviour is interesting for the fact that both liquids belong to the class

of network forming liquids. A careful analysis of the free energy landscape,

and finite size analysis would an important study to be pursued.

An elaborate analysis of structural and dynamical properties of liquid and

supercooled liquid silicon presented in the chapter 4 provides insights into the

evolution of the liquid as we go deeper in to the metastable region. Approach-

ing the LLT line or the Widom line from the high temperature liquid state,

change the system’s coordination number from 6 in the high T liquid to 5 in

the high density supercooled liquid to 4 in the low density supercooled liquid

199
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(LDL) is observed. From the analysis of dynamical properties including dif-

fusivity, relaxation time and viscosity in the same range of temperatures, we

find that the dynamics of the system changes by four order of magnitude. We

find a strong correlation between the local structural arrangement (quantified

by coordination number) and the dynamics of the system. Analysis of local

structural order reveals formation of Random Tetrahedral Network (RTN)

of low density liquid atoms. The cluster of RTN atoms grows with lowering

of temperature and spans the whole system approaching the LLT line or the

Widom line. The presence of RTN clusters leads to anomalous behaviour in

density. We also show that in silicon there is a hierarchy in thermodynamic,

dynamic and structural region of anomaly, similar to silica and water. Our

study of the breakdown of the Stokes-Einstein relation shows that the locus

the breakdown temperature is closely related to the onset of slow dynamics in

the system and also the growth of RTN clusters. Analysis of local dynamics

within the RTN clusters would shed more light on the SE relation and its

breakdown.

Analysis of the crystal nucleation barriers and the mechanism of nucle-

ation presented in the chapter 5 looked at crystallisation process in super-

cooled silicon. Employing the umbrella sampling MC simulation, nucleation

free energy barriers were computed across the phase diagram. The free en-

ergy barrier varies from around 60kBT at the around 23% undercooling to

7 − 10kBT at around 37% undercooling. In the same range of undercooling

the critical nucleus size was found to vary between 150 atoms to 7 − 15

atoms. Up on approaching the liquid-liquid critical point or the Widom line

from the high temperature, the nucleation barrier is found to be of the order

of 10kBT and critical nucleus size is of the order of 10− 15 particles. Anal-

ysis of nucleation mechanism in the spontaneously crystallising samples as

well as the umbrella sampling configurations reveal a preliminary evidence

of two step nucleation process in high density liquid phase (HDL). Obtain-

ing free energy barrier associated with LDL to crystal and HDL to crystal

transformation along with free energy landscape as a function of two order

parameters (density and structural order) would provide a clear evidence for

two step nucleation in supercooled silicon.
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D. J. 2011 An investigation of the local structure and dynamic proper-

ties of undercooled liquid silicon using the orbital-free ab-initio molec-

ular dynamics method European Physical Journal Special Topics 196,

45–52.

[28] Chen, H. S. & Turnbull, D. 1969 Specific heat and heat of crys-

tallization of amorphous germanium Journal of Applied Physics 40,

4214–4215.

[29] Chen, S., Mallamace, F., Mou, C., Broccio, M., Corsaro,

C., Faraone, A. & Liu, L. 2006 The violation of the stokes–einstein

relation in supercooled water Proceedings of the National Academy of

Sciences 103(35), 12974.

[30] Cook, S. J. & Clancy, P. 1993 Comparison of semi-empirical poten-

tial functions for silicon and germanium Physical Review B 47, 7686–

7699.

[31] Correa, A., Bonev, S. & Galli, G. 2006 Carbon under ex-

treme conditions: phase boundaries and electronic properties from

first-principles theory Proceedings of the National Academy of Sciences

103(5), 1204.

[32] Corti, D. & Debenedetti, P. 1994 A computational study of

metastability in vapor–liquid equilibrium Chemical Engineering Sci-

ence 49(17), 2717–2734.

[33] Cuthbertson, M. J. & Poole, P. H. 2011 Mixture like behavior

near a liquid-liquid phase transition in simulations of supercooled water

Physical Review Letters 106(11), 115706.

[34] Daisenberger, D., Deschamps, T., Champagnon, B.,

Mezouar, M., R., Q. C., Wilson, M. & McMillan, P. F. 2011

Polyamorphic amorphous silicon at high pressure: Raman and spatially

resolved x-ray scattering and molecular dynamics studies The Journal

of Physical Chemistry B 115(48), 14246–14255.



Bibliography 205

[35] Daisenberger, D., Wilson, M., McMillan, P. F., Quesada

Cabrera, R., Wilding, M. C. & Machon, D. 2007 High-pressure

X-ray scattering and computer simulation studies of density-induced

polyamorphism in silicon Physical Review B 75(22), 224118.

[36] D’Antonio, M. C. & Debenedetti, P. G. 1987 Loss of tensile

strength in liquids without property discontinuities: A thermodynamic

analysis The Journal of Chemical Physics 86, 2229–2235.

[37] De Gennes, P. G. 1959 Liquid dynamics and inelastic scattering of

neutrons Physica 25(7-12), 825–839.

[38] de Oliveira, A. B., Franzese, G., Netz, P. A. & Barbosa,

M. C. 2008 Waterlike hierarchy of anomalies in a continuous spherical

shouldered potential The Journal of Chemical Physics 128(6), 064901.

[39] Deb, S. K., Wilding, M., Somayazulu, M. & McMillan, P. F.

2001 Pressure-induced amorphization and an amorphous-amorphous

transition in densified porous silicon Nature 414, 528–530.

[40] Debenedetti, P.Metastable liquids: concepts and principles Physical

Chemistry Princeton University Press, 1996.

[41] Debenedetti, P.&DAntonio, M. 1986 On the nature of the tensile

instability in metastable liquids and its relationship to density anoma-

lies The Journal of Chemical Physics 84, 3339.

[42] Debenedetti, P. G. 2003 TOPICAL REVIEW: Supercooled and

glassy water Journal of Physics: Condensed Matter 15, 1669.

[43] Debenedetti, P. G. & D’Antonio, M. C. 1988 Stability and ten-

sile strength of liquids exhibiting density maxima AIChE Journal 34,

447–455.

[44] Desgranges, C. & Delhommelle, J. 2011 Role of liquid polymor-

phism during the crystallization of silicon Journal of the American

Chemical Society .



Bibliography 206

[45] Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. &

Jacobson, D. C. 1983 Heat of crystallization and melting point of

amorphous silicon Applied Physics Letters 42, 698–700.

[46] Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. &

Jacobson, D. C. 1985 Calorimetric studies of crystallization and re-

laxation of amorphous Si and Ge prepared by ion implantation Journal

of Applied Physics 57, 1795–1804.

[47] Dyre, J. 2006 Colloquium: The glass transition and elastic models of

glass-forming liquids Reviews of Modern Physics 78(3), 953–972.

[48] E.G., P. & O.I., B. 1992 Pressureinduced amorphous phases Mate-

rials Science Reports 8(4), 147 – 191.

[49] Egelstaff, P., Egelstaff, P., Egelstaff, P. & Physicist, G.

An introduction to the liquid state vol. 162 Academic Press London,

1967.

[50] Egry, I. 1999 Structure and properties of levitated liquid metals Jour-

nal of Non-Crystalline Solids 250, 63–69.

[51] Ekdawi-Sever, N., Conrad, P. & de Pablo, J. 2001 Molecular

simulation of sucrose solutions near the glass transition temperature

The Journal of Physical Chemistry A 105(4), 734–742.

[52] Errington, J. & Debenedetti, P. 2001 Relationship between

structural order and the anomalies of liquid water Nature 409(6818),

318–321.

[53] Errington, J. R., Truskett, T. M. & Mittal, J. 2006 Excess-

entropy-based anomalies for a waterlike fluid The Journal of Chemical

Physics 125(24), 244502.

[54] Findenegg, G., Jahnert, S., Akcakayiran, D. & Schreiber,

A. 2008 Freezing and melting of water confined in silica nanopores

ChemPhysChem A European Journal Of Chemical Physics And Phys-

ical Chemistry 9(18), 2651–2659.



Bibliography 207

[55] Franzese, G., Marqués, M. & Stanley, H. E. 2003 Intramolecu-

lar coupling as a mechanism for a liquid-liquid phase transition Physical

Review E 67(1), 011103.

[56] Frenkel, D. & Smit, B. 2002 Understanding molecular simulation,

2nd Ed. Academic press .

[57] Funamori, N. & Tsuji, K. 2002 Pressure-induced structural change

of liquid silicon Physical Review Letters 88(25), 255508.

[58] Galkin, O. &Vekilov, P. 2000 Control of protein crystal nucleation

around the metastable liquid–liquid phase boundary Proceedings of the

National Academy of Sciences 97(12), 6277–6281.

[59] Ganesh, P. & Widom, M. 2009 Liquid-liquid transition in super-

cooled silicon determined by first-principles simulation Physical Review

Letters 102(7), 075701.

[60] Ganesh, P. & Widom, M. 2011 First-principles coexistence simu-

lations of supercooled liquid silicon Journal of Non-Crystalline Solids

357, 442–445.

[61] Garcez, K. M. S. & Antonelli, A. 2011 Pressure effects on the

transitions between disordered phases in supercooled liquid silicon The

Journal of Chemical Physics 135(20), 204508.

[62] Gasser, U., Weeks, E., Schofield, A., Pusey, P. & Weitz, D.

2001 Real-space imaging of nucleation and growth in colloidal crystal-

lization Science 292(5515), 258–262.

[63] Ghiringhelli, L. M. & Meijer, E. J. 2007 Simulating the phos-

phorus fluid liquid phase transition up to the critical point Journal of

Physics: Condensed Matter 19, 6104.

[64] Ghiringhelli, L. M., Valeriani, C., Meijer, E. J. & Frenkel,

D. 2007 Local structure of liquid carbon controls diamond nucleation

Physical Review Letters 99(5), 055702.



Bibliography 208

[65] Glosli, J. & Ree, F. 1999 Liquid-liquid phase transformation in

carbon Physical Review Letters 82(23), 4659–4662.

[66] Hansen, J. & McDonald, I. Theory of simple liquids Academic

press, 2006.

[67] Harrington, S., Poole, P. H., Sciortino, F. & Stanley, H. E.

1997 Equation of state of supercooled water simulated using the ex-

tended simple point charge intermolecular potential The Journal of

Chemical Physics 107, 7443–7450.

[68] Hedler, A., Klaumünzer, S. L. & Wesch, W. 2004 Amorphous

silicon exhibits a glass transition Nature Materials 3, 804–809.

[69] Higuchi, K., Kimura, K., Mizuno, A., Watanabe, M.,

Katayama, Y. & Kuribayashi, K. 2005 Precise measurement of

density and structure of undercooled molten silicon by using syn-

chrotron radiation combined with electromagnetic levitation technique

Measurement Science and Technology 16, 381–385.

[70] Higuchi, K., Kimura, K., Mizuno, A., Watanabe, M.,

Katayama, Y. &Kuribayashi, K. 2007 Density and structure of un-

dercooled molten silicon using synchrotron radiation combined with an

electromagnetic levitation technique Journal of Non-Crystalline Solids

353, 2997–2999.

[71] Holten, V., Bertrand, C. E., Anisimov, M. A. & Sengers,

J. V. 2012 Thermodynamics of supercooled water The Journal of

Chemical Physics 136(9), 094507.

[72] Hujo, W., Shadrack Jabes, B., Rana, V. K., Chakravarty,

C. & Molinero, V. 2011 The rise and fall of anomalies in tetrahedral

liquids Journal of Statistical Physics 145, 293–312.

[73] Inatomi, Y., Onishi, F., Nagashio, K. & Kuribayashi, K. 2007

Density and thermal conductivity measurements for silicon melt by



Bibliography 209

electromagnetic levitation under a static magnetic field International

Journal of Thermophysics 28, 44–59.

[74] Jabes, B., Agarwal, M. & Chakravarty, C. 2010 Tetrahedral

order, pair correlation entropy, and waterlike liquid state anomalies:

Comparison of geo with bef, sio, and ho The Journal of Chemical

Physics 132, 234507.

[75] Jakse, N., Hennet, L., Price, D., Krishnan, S., Key, T., Ar-

tacho, E., Glorieux, B., Pasturel, A. & Saboungi, M. 2003

Structural changes on supercooling liquid silicon Applied Physics Let-

ters 83, 4734.

[76] Jakse, N. & Pasturel, A. 2007 Liquid-liquid phase transformation

in silicon: Evidence from first-principles molecular dynamics simula-

tions Physical Review Letters 99(20), 205702.

[77] Jakse, N. & Pasturel, A. 2008 Dynamic aspects of the liquid-

liquid phase transformation in silicon The Journal of Chemical Physics

129(10), 104503.

[78] Jakse, N., Pasturel, A., Sastry, S. & Angell, C. A. 2009 Re-

sponse to “Comment on ‘Dynamic aspects of the liquid-liquid phase

transformation in silicon’ ” [J. Chem. Phys. 130, 247102 (2009)] The

Journal of Chemical physics 130(24), 247103.

[79] Karki, B. B., Bhattarai, D. & Stixrude, L. 2007 First-principles

simulations of liquid silica: Structural and dynamical behavior at high

pressure Physical Review B 76(10), 104205.

[80] Katayama, Y., Mizutani, T., Utsumi, W., Shimomura, O., Ya-

makata, M. & Funakoshi, K.-I. 2000 A first-order liquid-liquid

phase transition in phosphorus Nature 403, 170–173.

[81] Keblinski, P., Bazant, M., Dash, R. & Treacy, M. 2002

Thermodynamic behavior of a model covalent material described by



Bibliography 210

the environment-dependent interatomic potential Physical Review B

66(6), 064104.

[82] Kelton, K. & Greer, A. Nucleation in condensed matter: Applica-

tions in materials and biology vol. 15 A Pergamon Title, 2010.

[83] Kesselring, T., Franzese, G., Buldyrev, S., Herrmann, H. &

Stanley, H. 2012 Nanoscale dynamics of phase flipping in water near

its hypothesized liquid-liquid critical point Scientific Reports 2.

[84] Kim, T., Lee, G., Sieve, B., Gangopadhyay, A., Hyers, R.,

Rathz, T., Rogers, J., Robinson, D., Kelton, K. & Goldman,

A. 2005 In situ high-energy x-ray diffraction study of the local structure

of supercooled liquid si Physical Review Letters 95(8), 85501.

[85] Kimura, H., Watanabe, M., Izumi, K., Hibiya, T., Holland-

Moritz, D., Schenk, T., Bauchspieß, K. R., Schneider, S.,

Egry, I., Funakoshi, K. & Hanfland, M. 2001 X-ray diffraction

study of undercooled molten silicon Applied Physics Letters 78, 604.

[86] Krishnan, S., Hennet, L., Key, T., Glorieux, B., Saboungi,

M. & Price, D. 2007 The structures of normal and supercooled liquid

silicon metal and sige alloy Journal of Non-Crystalline Solids 353(32-

40), 2975–2981.

[87] Kumar, P., Buldyrev, S., Becker, S., Poole, P., Starr, F. &

Stanley, H. E. 2007 Relation between the widom line and the break-

down of the stokes–einstein relation in supercooled water Proceedings

of the National Academy of Sciences 104(23), 9575.

[88] Kurita, R., Murata, K.-I. & Tanaka, H. 2008 Control of fluidity

and miscibility of a binary liquid mixture by the liquid-liquid transition

Nature Materials 7, 647–652.

[89] Kurita, R. & Tanaka, H. 2004 Critical-like phenomena associated

with liquid-liquid transition in a molecular liquid Science 306, 845–848.



Bibliography 211

[90] La Nave, E., Sastry, S., Sciortino, F. & Tartaglia, P. 1999

Solution of lattice gas models in the generalized ensemble on the Bethe

lattice Physical Review E 59, 6348–6355.

[91] Langen, M. 1998 Measurement of the density and the thermal ex-

pansion coefficient of molten silicon using electromagnetic levitation

Journal of Crystal Growth 186, 550–556.

[92] Lechner, W., Dellago, C. & Bolhuis, P. 2011 Role of the pre-

structured surface cloud in crystal nucleation Physical Review Letters

106(8), 85701.

[93] Leyssale, J., Delhommelle, J. & Millot, C. 2005 Atomistic

simulation of the homogeneous nucleation and of the growth of n crys-

tallites The Journal of Chemical Physics 122, 104510.

[94] Li, T., Donadio, D. & Galli, G. 2009 Nucleation of tetrahedral

solids: A molecular dynamics study of supercooled liquid silicon The

Journal of Chemical Physics 131, 224519.

[95] Limmer, D. T. & Chandler, D. 2011 The putative liquid-liquid

transition is a liquid-solid transition in atomistic models of water The

Journal of Chemical Physics 135(13), 134503.

[96] Liu, D., Zhang, Y., Chen, C., Mou, C., Poole, P. & Chen, S.

2007 Observation of the density minimum in deeply supercooled con-

fined water Proceedings of the National Academy of Sciences 104(23),

9570.

[97] Liu, L., Chen, S.-H., Faraone, A., Yen, C.-W. & Mou, C.-Y.

2005 Pressure dependence of fragile-to-strong transition and a possible

second critical point in supercooled confined water Physical Review

Letters 95(11), 117802.

[98] Lu, H. M., Wang, T. H. & Jiang, Q. 2006 Surface tension and

self-diffusion coefficient of liquid Si and Ge Journal of Crystal Growth

293, 294–298.



Bibliography 212

[99] Luedtke, W. D. & Landman, U. 1989 Preparation, structure, dy-

namics, and energetics of amorphous silicon: A molecular-dynamics

study Physical Review B 40, 1164–1174.

[100] Lynden-Bell, R. M. & Debenedetti, P. G. 2005 Computational

Investigation of Order, Structure, and Dynamics in Modified Water

Models The Journal of Physical Chemistry B 109(14), 6527–6534.

[101] Makhov, D. V. & Lewis, L. 2003 Isotherms for the liquid-gas phase

transition in silicon from npt monte carlo simulations Physical Review

B 67(15), 153202.

[102] Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Ma-

jolino, D., Venuti, V., Liu, L., Mou, C.-Y. & Chen, S.-H. 2007

Evidence of the existence of the low-density liquid phase in supercooled,

confined water Proceedings of the National Academy of Science 104,

424–428.

[103] Mancinelli, R., Bruni, F. & Ricci, M. A. 2010 Controversial evi-

dence on the point of minimum density in deeply supercooled confined

water The Journal of Physical Chemistry Letters 1(8), 1277–1282.

[104] Maria, T. & Barend, J. 2010 Thermodynamic properties and phase

transitions of silicon using a new meam potential Computational Ma-

terials Science 48(3), 609 – 620.

[105] Matsumoto, M. & Nishimura, T. 1998 Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number gen-

erator ACM Transactions on Modeling and Computer Simulation

(TOMACS) 8(1), 3–30.

[106] McMillan, P. F. 2004 Amorphous materials: Relaxing times for

silicon Nature Materials 3, 755–756.

[107] McMillan, P. F., Wilson, M., Daisenberger, D. & Machon,

D. 2005 A density-driven phase transition between semiconducting and

metallic polyamorphs of silicon Nature Materials 4, 680–684.



Bibliography 213

[108] Miranda, C. R. & Antonelli, A. 2004 Transitions between dis-

ordered phases in supercooled liquid silicon The Journal of Chemical

Physics 120, 11672–11677.

[109] Mishima, O.& Stanley, H. E. 1998 Decompression-induced melting

of ice IV and the liquid-liquid transition in water Nature 392, 164–168.

[110] Mishima, O.& Stanley, H. E. 1998 The relationship between liquid,

supercooled and glassy water Nature 396, 329–335.

[111] Molinero, V., Sastry, S. & Angell, C. A. 2006 Tuning of tetra-

hedrality in a silicon potential yields a series of monatomic (metal-

like) glass formers of very high fragility Physical Review Letters 97(7),

075701.

[112] Monaco, G., Falconi, S., Crichton, W. A. & Mezouar, M.

2003 Nature of the first-order phase transition in fluid phosphorus

at high temperature and pressure Physical Review Letters 90(25),

255701.

[113] Moore, E. B. & Molinero, V. 2011 Structural transformation in

supercooled water controls the crystallization rate of ice Nature 479,

506–508.

[114] Morales, M., Pierleoni, C., Schwegler, E. & Ceperley,

D. 2010 Evidence for a first-order liquid-liquid transition in high-

pressure hydrogen from ab initio simulations Proceedings of the Na-

tional Academy of Sciences 107(29), 12799.

[115] Morishita, T. 2001 Liquid-liquid phase transitions of phosphorus

via constant-pressure first-principles molecular dynamics simulations

Physical Review Letters 87(10), 105701.

[116] Morishita, T. 2004 High density amorphous form and polyamorphic

transformations of silicon Physical Review Letters 93(5), 055503.

[117] Morishita, T. 2006 How does tetrahedral structure grow in liquid

silicon upon supercooling? Physical Review Letters 97(16), 165502.



Bibliography 214

[118] Moynihan, C. & Angell, C. A. 2000 Bond lattice or excitation

model analysis of the configurational entropy of molecular liquids Jour-

nal of Non-Crystalline Solids 274, 131–138.

[119] Nettleton, R. E. & Green, M. S. 1958 Expression in terms of

molecular distribution functions for the entropy density in an infinite

system The Journal of Chemical Physics 29, 1365–1370.

[120] Okada, J. T., Sit, P. H.-L., Watanabe, Y., Wang, Y. J.,

Barbiellini, B., Ishikawa, T., Itou, M., Sakurai, Y., Bansil,

A., Ishikawa, R., Hamaishi, M., Masaki, T., Paradis, P.-F.,

Kimura, K., Ishikawa, T. & Nanao, S. 2012 Persistence of co-

valent bonding in liquid silicon probed by inelastic x-ray scattering

Physical Review Letters 108, 067402.

[121] Plimpton, S. 1995 Fast parallel algorithms for short-range molecular

dynamics Journal of Computational Physics 117(1), 1–19.

[122] Plimpton, S. 1995 Fast parallel algorithms for short-range molecular

dynamics Journal of Computational Physics 117(1), 1 – 19.

[123] Ponyatovsky, E. G. 2003 A thermodynamic approach to T P phase

diagrams of substances in liquid and amorphous states Journal of

Physics: Condensed Matter 15, 6123–6141.

[124] Poole, P., Saika-Voivod, I. & Sciortino, F. 2005 Density mini-

mum and liquid-liquid phase transition Journal of Physics: Condensed

Matter 17, L431.

[125] Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E.

1992 Phase behaviour of metastable water Nature 360, 324–328.

[126] Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E.

1993 Spinodal of liquid water Physical Review E 48, 3799–3817.

[127] Rahman, A. 1964 Correlations in the motion of atoms in liquid argon

Physical Review 136(2A), 405–411.



Bibliography 215

[128] Rapoport, E. 1967 Model for melting-Curve maxima at high Pressure

The Journal of Chemical Physics 46, 2891–2895.

[129] Rebelo, L. P. N., Debenedetti, P. G. & Sastry, S. 1998

Singularity-free interpretation of the thermodynamics of supercooled

water. II. Thermal and volumetric behavior The Journal of Chemical

Physics 109, 626–633.

[130] Rhim, W. 2000 Thermophysical properties measurement of molten

silicon by high-temperature electrostatic levitator: density, volume ex-

pansion, specific heat capacity, emissivity, surface tension and viscosity

Journal of Crystal Growth 208, 313–321.

[131] Rosato, V. & Celino, M. 1999 Tight binding simulation of the ther-

modynamic behavior of amorphous silicon Journal of Applied Physics

86, 6826–6834.

[132] Rosato, V. & Celino, M. 2000 Thermodynamic properties of amor-

phous silicon via tight binding simulations Computational Materials

Science 17(24), 374 – 379.

[133] Rosenfeld, Y. 1999 A quasi-universal scaling law for atomic trans-

port in simple fluids Journal of Physics: Condensed Matter 11, 5415.

[134] Saika-Voivod, I., Poole, P. & Bowles, R. 2006 Test of classical

nucleation theory on deeply supercooled high-pressure simulated silica

The Journal of Chemical Physics 124, 224709.

[135] Saika-Voivod, I., Sciortino, F. & Poole, P. 2000 Computer sim-

ulations of liquid silica: Equation of state and liquid˘liquid phase tran-

sition Physical Review E 63(1), 011202.

[136] Sanders, P. G. & Aziz, M. J. 1999 Self-diffusivity of liquid silicon

measured by pulsed laser melting Journal of Applied Physics 86, 4258–

4261.



Bibliography 216

[137] Sanz, E., Vega, C., Abascal, J. L. F. & MacDowell, L. G.

2004 Phase diagram of water from computer simulation Physical Re-

view Letters 92, 255701.

[138] Sasai, M. 1993 The random graph model of hydrogen bond network

Bulletin of the Chemical Society of Japan 66(11), 3362–3371.

[139] Sastry, S. 2001 Water structure: Order and oddities Nature 409,

300–301.

[140] Sastry, S. 2002 Onset of slow dynamics in supercooled liquid silicon

Physica A: Statistical Mechanics and its Applications 315(12), 267 –

273.

[141] Sastry, S. 2010 Illuminating liquid polymorphism in silicon Proceed-

ings of the National Academy of Science 107, 17063–17064.

[142] Sastry, S. & Angell, C. 2003 Liquid-liquid phase transition in su-

percooled silicon Nature Materials 2, 739–743.

[143] Sastry, S., Debenedetti, P., Sciortino, F. & Stanley, H. E.

1996 Singularity-free interpretation of the thermodynamics of super-

cooled water Physical Review E 53(6), 6144–6154.

[144] Sastry, S., Sciortino, F. & Stanley, H. E. 1993 Limits of sta-

bility of the liquid phase in a lattice model with water-like properties

The Journal of Chemical Physics 98, 9863–9872.

[145] Sato, Y., Nishizuka, T., Hara, K., Yamamura, T. & Waseda,

Y. 2000 Density measurement of molten silicon by a pycnometric

method International Journal of Thermophysics 21, 1463–1471.

[146] Saw, S., Ellegaard, N. L., Kob, W. & Sastry, S. 2011 Computer

simulation study of the phase behavior and structural relaxation in a

gel-former modeled by three-body interactions The Journal of Chemical

Physics 134(16), 164506.



Bibliography 217

[147] Scandolo, S. 2003 Liquid-liquid phase transition in compressed hy-

drogen from first-principles simulations Proceedings of the National

Academy of Sciences 100(6), 3051.

[148] Sciortino, F. 2011 Liquid-liquid transitions: Silicon in silico Nature

Physics 7, 523–524.

[149] Sciortino, F., Geiger, A. & Stanley, H. 1991 Effect of defects

on molecular mobility in liquid water Nature 354(6350), 218–221.

[150] Sciortino, F., Geiger, A. & Stanley, H. E. 1992 Network defects

and molecular mobility in liquid water The Journal of Chemical physics

96, 3857–3865.

[151] Sciortino, F., Saika-Voivod, I.& Poole, P. 2011 Study of the st2

model of water close to the liquid-liquid critical point Physical Chem-

istry Chemical Physics 13(44), 19759–19764.

[152] Sharma, R., Chakraborty, S. N. & Chakravarty, C. 2006 En-

tropy, diffusivity, and structural order in liquids with waterlike anoma-

lies The Journal of Chemical Physics 125(20), 204501.

[153] Shell, M., Debenedetti, P. & Panagiotopoulos, A. 2002

Molecular structural order and anomalies in liquid silica Physical Re-

view E 66(1), 011202.

[154] Spaepen, F. & Turnbull, D. Kinetics of motion of crystal-melt

interfaces in American Institute of Physics Conference Series vol. 50

of American Institute of Physics Conference Series 1979.

[155] Speedy, R. 1982 Stability-limit conjecture. an interpretation of the

properties of water The Journal of Physical Chemistry 86(6), 982–

991.

[156] Speedy, R. J. & Angell, C. A. 1976 Isothermal compressibility

of supercooled water and evidence for a thermodynamic singularity at

−45degC The Journal of Chemical Physics 65, 851–858.



Bibliography 218

[157] Starr, F. W., Douglas, J. F. & Sastry, S. 2013 The relationship

of dynamical heterogeneity to the adam-gibbs and random first-order

transition theories of glass formation The Journal of Chemical Physics

138, 12A541.

[158] Steinhardt, P., Nelson, D. & Ronchetti, M. 1983 Bond-

orientational order in liquids and glasses Physical Review B 28(2),

784.

[159] Stillinger, F. & Weber, T. 1985 Computer simulation of local

order in condensed phases of silicon Physical Review B 31(8), 5262–

5271.

[160] Stokely, K., Mazza, M., Stanley, H. & Franzese, G. 2010

Effect of hydrogen bond cooperativity on the behavior of water Pro-

ceedings of the National Academy of Sciences 107(4), 1301–1306.

[161] Talanquer, V. & Oxtoby, D. 1998 Crystal nucleation in the pres-

ence of a metastable critical point The Journal of Chemical Physics

109, 223.

[162] Tanaka, H., Kurita, R. & Mataki, H. 2004 Liquid-liquid transi-

tion in the molecular liquid triphenyl phosphite Physical Review Letters

92(2), 025701.

[163] Tarazona, Y. R. P. 1998 Density functional theory and the asymp-

totic high density expansion of the free energy of classical solids and

fluids Molecular Physics 95, 141–150.

[164] Tarjus, G. & Kivelson, D. 1995 Breakdown of the stokes–einstein

relation in supercooled liquids The Journal of Chemical Physics 103,

3071.

[165] Ten Wolde, P., Ruiz-Montero, M. & Frenkel, D. 1996 Simu-

lation of homogeneous crystal nucleation close to coexistence Faraday

Discussions 104(0), 93–110.



Bibliography 219

[166] ten Wolde, P. R. 1998 Numerical study of pathways for homoge-

neous nucleation Ph.D. thesis .

[167] Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy,

P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G. & Chew,

N. G. 1984 Melting temperature and explosive crystallization of amor-

phous silicon during pulsed laser irradiation Physical Review Letters

52, 2360–2363.

[168] Togaya, M. 1997 Pressure dependences of the melting temperature of

graphite and the electrical resistivity of liquid carbon Physical Review

Letters 79, 2474–2477.

[169] Toninelli, C., Wyart, M., Berthier, L., Biroli, G. &

Bouchaud, J. 2005 Dynamical susceptibility of glass formers: Con-

trasting the predictions of theoretical scenarios Physical Review E

71(4), 041505.

[170] Torrie, G. & Valleau, J. 1974 Monte carlo free energy estimates

using non-boltzmann sampling: Application to the sub-critical lennard-

jones fluid Chemical Physics Letters 28(4), 578–581.

[171] Torrie, G. & Valleau, J. 1977 Nonphysical sampling distributions

in monte carlo free-energy estimation: Umbrella sampling Journal of

Computational Physics 23(2), 187–199.

[172] Truskett, T. M., Torquato, S. & Debenedetti, P. G. 2000

Towards a quantification of disorder in materials: Distinguishing equi-

librium and glassy sphere packings Physical Review E 62, 993–1001.
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