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Chapter 1

Introduction

The broad aim of this thesis is to study different classes of two-dimensional

(2D) materials using first-principles methods. Surfaces and 2D systems are

interesting for a large number of reasons. Atoms at the surface have reduced

coordination with respect to the bulk, which is responsible for several unusual

phenomena observed only at the surface. Some of these include structural

relaxations and/or reconstructions, mixing of bulk-immiscible metals, en-

hanced chemical reactivity, high magnetic anisotropy and exotic magnetic

phases such as spin spirals. In this work, I have mainly focused on metallic

surface alloys and interfaces, with a common theme being magnetic materi-

als. We would like to understand various interactions which are dominant

at surfaces and interfaces, and how the interplay between them can lead

to interesting structural, magnetic and electronic properties. Some of the

interactions which are dealt with include elastic, chemical, and magnetic

interactions. This study has allowed us not only to gain insight into the rel-

ative importance of these interactions, but also to use our understanding to

1
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formulate design principles. Using these principles as a guideline, we have,

e.g., designed a novel surface alloy. In most of my projects, I have worked

alongside an experimental group, and have seen a great synergy between my

theoretical studies and experimental investigations.

I have primarily used density functional theory (DFT) calculations for my

studies. Using DFT, one can calculate the total energy of the system, which

can be used to determine the stability of various phases, and to calculate

quantities such as the formation energy and the adsorption energy. Also we

can obtain (approximate) wavefunctions and (exact) charge densities which

can be used to determine quantities such as charge transfer and hybridiza-

tion. However, DFT calculations become computationally very expensive as

the number of atoms in the system increases, and hence such calculations are

restricted to system sizes of the order of a few hundreds of atoms. Therefore,

in addition, I have also used the cluster expansion (CE) technique, which is

an Ising-like lattice model and uses the configurational dependence of var-

ious physical quantities. One can calculate model parameters by fitting to

the data from DFT, and then use the calculated CE Hamiltonian for larger

unit cells, or even to get high temperature properties. We have also used a

model, known as the Frenkel-Kontorova (FK) model, to study surface recon-

structions. The combination of such different techniques has proved essential

in our study to probe diverse phenomena occurring at the surface. In Chap-

ter 2, I have discussed the theoretical background – density functional theory

and the cluster expansion technique – while the FK model has been discussed

in Chapter 6.

When a surface is created, periodicity along one direction of the crystal



3

is broken, and atoms at the surface will have reduced coordination than

in the bulk. This gives rise to various phenomena such as relaxation or

reconstruction of the surface layer, enhanced magnetic moments, and surfaces

states in the electronic band structure. In our study, we have considered

an interface between two different metals such that one metal is deposited

on another metal to form a thin film. These type of systems are known

as heteroepitaxial systems. In heteroepitaxial systems, the metal surface

used for deposition is called the substrate, and can either be considered as

merely providing a periodic potential for the growth, or as actively interacting

with the deposited metal. The surface structure is primarily determined

by two quantities – the surface energy (the energy required to create the

surface) and the surface stress (stress arising from the reduced coordination).

The reduction of the surface stress can occur in many ways such as surface

reconstruction, dislocation formation, and alloying.

It has been known for a long time that alloying between two metals can

lead to enhanced properties. However, not all pairs of metals form alloys

in their bulk phases – the main restriction comes from elastic strain due to

atomic-size mismatch (the first Hume-Rothery rule). In recent years, it has

been shown that some pairs of metals which do not form alloys in the bulk

can mix at the surface; these alloys are called “surface alloys”. The formation

of bimetallic alloys at the surface is interesting for many applications such

as catalysis [1], magnetic storage [2], and fuel cell technology [3]. In the first

part of the thesis, we have studied surface alloy systems in which a pair of

metals – with one magnetic and one non-magnetic constituent – is deposited

on the surface of a third metal. We have shown a schematic diagram of this
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Figure 1.1: Schematic diagram introducing a main theme for the surface alloy
work: if two metals (orange and blue spheres) are deposited on a substrate (gray
spheres), then there are primarily two possibilities – mixing of the two overlayer
metals, or a phase-segregated form. In the first part of the thesis (Chapters 3 – 5),
we have looked at such systems and have studied which of these two possibilities
is energetically more favored, which interactions are dominant, and whether there
are any trends which will help to predict the properties of these types of systems.

phenomenon in Fig. 1.1. For these types of systems, we are interested in the

structure of the overlayer, and whether the two constituents will prefer to mix

at the surface, or would instead phase-segregate. The next three chapters of

this thesis (Chapters 3 – 5) deal with surface alloy systems.

In Chapter 3, we have studied the structural and magnetic properties of

surface alloys of the type MxN(1−x)/Ru(0001), where M is a magnetic metal

(Fe or Co), and N is a non-magnetic metal (Pt, Ag, Au, Cd, or Pb). Most of

these pairs of metals are immiscible in their bulk phases, and we would like

to know whether they mix on the surface; if yes, then which interactions are

responsible for mixing, and whether there are rules or trends which can be

explored for the further investigation of similar systems. We have separated
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out elastic and chemical interactions to study the relative importance of

each, because hitherto it was believed that the reduction of elastic stress

is primarily responsible for mixing at the surface. We have also examined

how magnetic interactions affect overall stability. Based on our analysis, we

have suggested promising candidate alloy systems for further experimental

investigation.

In Chapter 4, we have studied, in detail, one of our “predicted” surface

alloy systems – Fe-Au/Ru(0001) – which was investigated by our experimen-

tal collaborators – the group of Prof. S. Rousset. Their experiments show

that there is indeed an atomic-level mixing for this system, as predicted by

our calculations; it was also observed that Au-rich phases show long-range

order having a
√
3×

√
3 surface unit cell, but Fe-rich phases show only short

range order. The main aim of this chapter is to understand these experi-

mental findings. In the previous chapter, we have considered a large number

of systems, but only a few configurations; in contrast, in this chapter we

study many configurations for one particular system. This approach allows

us to compare our results with experiments over a large concentration range.

and to explain the dissimilar trends observed in experiments for Fe-rich and

Au-rich phases.

In Chapter 5, we have considered the effect of changing the substrate for a

Fe-Au overlayer, by replacing the Ru(0001) substrate by a Mo(110) substrate.

The Mo(110) surface is anisotropic, which might affect elastic interactions in

the Fe-Au overlayer. In some experiments, it has been observed that there

is atomic-level mixing for Fe-Au nanostructures on Mo(110), but no long-

range order. Our aim is to understand why there is no long range order for
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Figure 1.2: Schematic diagram introducing surface reconstruction: for heteroepi-
taxial systems, the surface stress can either be compressive or tensile leading to
different types of surface reconstructions. These reconstructed systems typically
have large unit cells, and cannot be handled by DFT calculations.

this system. For this study, we have combined two techniques: DFT and

CE. This allows us to search for the ground states in large systems (we have

considered up to 20 atoms per surface unit cell).

In the next part of the thesis, we will again work with heteroepitaxial sys-

tems, but only considering single-component overlayers. For the surface alloy

work, we have assumed that both the alloy and the phase-segregated single-

component overlayers are pseudomorphic with the substrate. It is essential

to examine whether this is a valid assumption. For the mixed alloy pseudo-

morphic systems, where the mixing has lowered the surface stress, and hence

the tendency towards reconstruction, this is probably a good approximation.

However, for single-component pseudomorphic monolayers on a Ru(0001)

substrate, the surface stress can be large enough to trigger reconstruction.

Thus we have studied this possibility for the single-component layers on a
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substrate, as shown in Fig. 1.2. The study of surface reconstruction itself is

often a great challenge because of the large unit cells of the reconstructed

surfaces, and various competing interactions present at the surface. The con-

trolling of surface reconstruction has potential applications in self-assembled

nanostructures [4] and molecular assemblies [5]. Here we have studied an

interface for possible reconstruction; we have assumed that the role of the

substrate is restricted to providing an external periodic potential, and that

structural changes mainly occur in the deposited overlayer.

In Chapter 6, we have studied the possibility of reconstruction for het-

eroepitaxial systems of the type O/Ru(0001), where O is an overlayer species,

using the Frenkel-Kontorova model. The reconstructed surfaces may have

very large unit cells and thus a complete DFT study is not feasible for these.

The FK model is a simple classical model which takes into account the dif-

ferent competing interactions at the surface, i.e., the cost of compressing or

stretching intralayer bonds in the overlayer, the cost of losing registry with

the substrate, and the cost of obtaining additional atoms from a reservoir or

dumping them into a sink. We have used two approaches – a mapping to the

one-dimensional (1D) FK model, which we have extended to the case of het-

eroepitaxial systems, and a complete numerical solution of the 2D FK model

using quenched molecular dynamics, which allows us to validate our extension

of the 1D model. The latter approach also provides additional information

such as the period of the reconstruction. We compare the two approaches

with each other and to experimental results, when these are available. We

have also examined the possibility of tuning the periodicity of reconstruc-

tion, which is useful for applications where the reconstruction is used as a
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Figure 1.3: Schematic diagram showing a change in the electronic band structure
at the interface: in the top panel, we have shown the side view of a substrate
(yellow spheres) along with an electronic band dispersion, that is, energy E as a
function of wave vector k. In the bottom panel, a thin film of another metal (red
spheres) has been deposited on the substrate, and as a result the band structure of
the clean substrate (dashed line) is altered to a new value shown by the red curve.

template for the growth of self-organized nanostructures.

Next, we have studied in great detail how the interface will affect the

electronic properties of the substrate. The schematic diagram corresponding

to this is shown in Fig. 1.3. In Chapter 7, we have studied the electronic

properties of Fe/Au(111), mainly concentrating on the effect of Fe deposition

on the Shockley surface state on the Au(111) surface. We have calculated

the band structure, focusing primarily on the surface state dispersion, and

analyzed the nature and origin of these states using the projected density of

states and charge density analysis. We have compared our results with the

experimental data. We have also considered the effect of different stacking

possibilities on the electronic properties.
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Finally in the last Chapter, we have summarized the main findings and

conclusions of this thesis.

There are also four appendices describing – (A) derivation of the formula

for surface stress (used in Chapter 3); (B) discussion of the formula to gener-

ate distinct structures (used in Chapters 4 and 5); (C) list of configurations

used for Fe-Au/Ru(0001); and (D) list of configurations used for the DFT

study of Fe-Au/Mo(110).



Chapter 2

Methodological Background

2.1 Introduction

In this chapter, I will discuss the theoretical framework which I have used to

study the properties of materials in my thesis. I have mainly used standard

density functional theory (DFT), which allows us to calculate the ground

state properties at zero temperature. I have also used the cluster expan-

sion method, which combines statistical mechanics with quantum mechani-

cal methods such as DFT; this allows us to go beyond some of the known

limitations of DFT. A brief discussion of both these methods follows.

10
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2.2 Density Functional Theory

In quantum mechanics, the complete information about any system can be

obtained by solving the non-relativistic Schrödinger equation. For any ma-

terial, the Hamiltonian is given by:

Ĥ = − ~
2

2me

∑

i

∇2
i −

∑

I

~
2

2MI

∇2
I +

∑

i,I

ZIe
2

|ri −RI |

+
1

2

∑

i 6=j

e2

|ri − rj|
+

1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
, (2.1)

where me and e denote the mass and charge of a free electron respectively;

MI and ZI denote the mass and the charge of a nucleus I respectively; ri

and RI denote the position of the ith electron and Ith nucleus respectively;

and ~ is the Planck’s constant divided by 2π. The sums are taken over

the total number of electrons and/or ions in the system. In this equation,

the first two terms give the kinetic energy of electrons and ions respectively,

and the last three terms include Coulomb interactions between electrons and

nuclei, electrons and electrons, and nuclei and nuclei respectively. Then, by

using the Born-Oppenheiemer approximation [6], one can separate electronic

and nuclear degrees of freedom. There is no analytical solution for this

equation, and even numerical solutions are restricted by the computational

cost required.

The density functional theory (DFT) maps such a many-body interacting

system onto an effective one-body system with the electronic density as the

basic variable, rather than the many-body wavefunction. The DFT formalism
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has arisen from the Hohenberg-Kohn theorems and the subsequent Kohn-

Sham equations, which we have briefly described below.

2.2.1 Hohenberg-Kohn Theorems

The Hohenberg-Kohn (HK) theorems introduced in 1964 [7] form the basis

of density functional theory. There are two theorems which are given by [8]:

• Theorem 1 – “For any system of interacting particles in an external

potential Vext(r), the potential Vext(r) is determined uniquely, except

for a constant, by the ground state particle density n0(r).”

• Theorem 2 – “A universal function for the energy E[n] in terms of the

density n(r) can be defined, valid for any external potential Vext(r).

For any particular Vext(r), the exact ground state energy of the system

is the global minimum value of this functional, and the density n(r)

that minimizes the functional is the exact ground state density n0(r).”

2.2.2 Kohn-Sham Equations

The real applicability of the HK theorems and the wide use of DFT for

many condensed matter systems was only possible after the formulation of

the Kohn-Sham (KS) equations. These equations map an interacting many-

body system onto non-interacting electrons which experience an effective

potential due to all the other electrons. The Kohn-Sham equations are given

by:
[−~

2

2me

∇2
i + Veff (r)

]

ψi(r) = ǫiψi(r), (2.2)
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where the effective potential is:

Veff (r) = VI(r) + VH(r) + Vxc(r). (2.3)

Here ψi is the wavefunction of electronic state i, ǫi is the ith Kohn-Sham

eigenvalue, VI(r) is the total ionic potential, and VH(r) is the Hartree poten-

tial of the electrons, given by

VH(r) = e2
∫

n(r′)

|r− r′|dr
′, (2.4)

and Vxc(r) is the exchange-correlation (XC) potential given by the functional

derivative:

Vxc(r) =
δExc[n(r)]

δn(r)
, (2.5)

where Exc[n(r)] is the exchange-correlation interaction between electrons.

The exchange interaction results from the Pauli exclusion principle which

forbids two electrons of the same spin having the same state which leads

to repulsion between them, and the correlation is the effect of many-body

interactions in the system. Here the charge density n(r) is defined as:

n(r) =
∑

i

ψ∗
i (r)ψi(r). (2.6)

The wavefunctions ψi(r) are orthonormal to each other. Note that here we

have not explicitly considered spin degrees of freedom; the description of

spin-polarized DFT is given in Section 2.2.9.
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The ground state energy of the system of electrons with ions at posi-

tions RI can be obtained by solving the KS equations. These equations

need to be solved self-consistently, because the calculated eigenfunctions on

the right hand side of Eq. (2.2) are needed to determine the charge density

of the electrons, which is needed to compute the exchange-correlation and

Hartree potential terms on the left hand side. A flow-chart demonstrating

this self-consistent loop is shown in Fig. 2.1. Note that the Kohn-Sham en-

ergy eigenvalues and eigenfunctions are not the “actual” single-particle elec-

tron eigenenergies and eigenfunctions, but the eigenvalues and eigenfunctions

of a fictitious one-particle system. Therefore, if used to calculate quantities

of interest, these must be interpreted with caution.

2.2.3 Exchange-correlation Functionals

The exact form of the exchange-correlation interaction is not known, which

leads to one of the main approximations required to use DFT for practical

purposes. One of the simplest approximations for the exchange-correlation

functional is the “local density approximation” (LDA), in which it is assumed

that the XC functional depends only on the density at the position r. In this

approximation, the XC functional is given by:

ELDA
xc =

∫

ǫxc(r)n(r)dr,

where ǫxc(r) = ǫhomxc [n(r)]. (2.7)
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Figure 2.1: Flow chart for self-consistent solution of the Kohn-Sham equations:
One starts with an initial guess for the charge density, ninp(r). Using this charge
density, the effective potential is calculated. Then solving the Kohn-Sham equa-
tions, the output charge density nop(r) is obtained. Self-consistency is achieved
when the difference between the input and output charge densities is less than the
predefined threshold value; if not, then a new density is constructed by a combina-
tion of the initial and new charge densities and the loop is started again.

Here ǫhomxc [n(r)] is the exchange-correlation energy of the homogeneous elec-

tron gas having density n(r). This has been calculated by Ceperley and

Alder [9] using quantumMonte Carlo simulations, and has been parametrized

by Perdew and Zunger [10]. This approximation may seem rather drastic,

and would seem to be applicable to only those systems in which the electronic

density varies slowly. However it is known to work well for many systems.

One can improve the accuracy by including a term which considers gradi-

ents of the density. There is no unique way to include gradients, and several

different forms for gradient corrections have been suggested – these are col-

lectively known as “generalized gradient approximations” (GGAs). Some of
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the more frequently used forms are the Perdew-Burke-Ernzerhof form [11]

and the Perdew-Wang form [12]. In these approximations, the XC functional

is given by:

EGGA
xc =

∫

ǫxc[n(r),∇n(r)]n(r)dr. (2.8)

Here ǫxc depends not only on the electronic density, but also on gradients of

the density.

The LDA is known to usually overbind and hence typically results in

lattice constants, for bulk materials that are too small, whereas the GGA

usually corrects this effect. However, the GGA is known to often underbind,

which results in larger lattice constants. Some properties such as magnetic

moments, are usually better estimated using the GGA.

2.2.4 Basis Sets

To solve the KS equations, the wavefunctions ψi’s are expanded using a

suitable basis set {φj(r)}:

ψi(r) =
∑

j

cjφj(r). (2.9)

Commonly used basis sets include plane wave basis sets, localized basis sets,

e.g., atomic orbitals, etc. In our study, we have used a plane-wave basis set

which is briefly introduced below.

The periodicity of crystal structures enables one to reduce the problem

of calculation for the infinite crystal to calculation for a small unit cell which

is repeated throughout space. The crystal potential satisfies the condition:
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V (r) = V (r + R), where R are the lattice vectors. Using the periodicity

and Bloch’s theorem, the electronic wavefunctions can be written as a sum

of plane waves:

ψi,k(r) =
∑

G

ci,k+Ge
i(k+G).r, (2.10)

where G are the reciprocal lattice vectors, and k are the wavevectors. To get

an exact expansion, an infinite number of plane waves ei(k+G).r are necessary

in the expansion. However, the truncation of basis set is possible, because

usually plane waves having smaller kinetic energy ~
2

2m
|k+G|2 contribute more

than the those with larger kinetic energy values. Therefore, one can define a

kinetic energy cut-off Ecut =
~
2

2m
|k+G|2cut such that all the plane waves having

kinetic energy below this cut-off value, are included in the expansion, that is,

for a given k, all the plane waves up to length |k +G|cut are included. The

error in total energy arising from the truncation can be reduced by increasing

cut-off energy.

2.2.5 Pseudopotential Approximation

This is another approximation that is sometimes used to reduce the compu-

tational cost; it is usually used when a plane wave basis is employed. This

uses the well-known fact that many of the physical and chemical properties

are primarily dependent on the valence electrons, and less (or not) affected

by the core electrons. Recall that the core electrons are tightly bound, that

is, highly localized in nature, and the wavefunctions of valence electrons have

many oscillations in the core region. These two facts together would neces-

sitate a large plane-wave basis set to perform all-electron calculations. In
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the pseudopotential (PP) approximation [13,14], these problems are circum-

vented by replacing the strong ionic potential by a weaker “pseudo” potential

which acts on “pseudo” wavefunctions of only the valence electrons. Effec-

tively the core electrons are removed, and their effect is accounted in the

“pseudo” potential of the ions. Also the oscillations of valence electrons in

the core region are removed; however it is ensured that the “pseudo” wave-

functions match with the “actual” valence wavefunctions beyond a certain

distance from the nucleus, known as the cut-off radius. A good PP should

have smoothness and transferability properties. The transferability of the

PP implies that the same PP could be used in several different chemical and

structural environments. The use of the PP drastically reduces the required

Ecut for the plane wave basis.

In addition, if the PP is constructed such that the integrated charge den-

sities, i.e., the integral of the squared amplitudes of wavefunctions, of the

real and pseudo wavefunctions are identical in both the core and the valence

regions, then it is known as a norm-conserving PP [15–17]. When the norm-

conserving criterion is relaxed, that is, the charge densities of the real and

pseudo wavefunctions are not identical, then a much softer PP (i.e., requir-

ing a much lower Ecut) can be constructed. This is done, e.g., in ultrasoft

pseudopotentials [18] which further reduce the computational time by using

an even smoother core region. However, this reduces the charge density in

the core region from its actual value; and hence it is required to take an extra

care to ensure that this does not result in significant errors. In this thesis,

we have used the ultrasoft pseudopotentials for all the studied systems.
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2.2.6 k-point Sampling and Smearing Technique

Various physical quantities, such as the total energy and the density of states,

are calculated by integrating over all the wavevectors in the first Brillouin

zone (BZ). However there is an infinite number of wavevectors in the BZ,

which will lead to infinite computational time. Therefore, for practical calcu-

lations, the summation is performed over a finite number of k-points instead

of integration; e.g., in computing the density n(r), the approximation is as

follows -

n(r) =
V

(2π)3

∫

nk(r)dk ≈
∑

{k}∈IBZ

nk(r)ωk, (2.11)

where V is the unit cell volume, and ωk is the weight associated with each

k-point, and

nk(r) =
∑

i

ψ∗
i,k(r)ψi,k(r). (2.12)

Here k indicates discrete k-points in the irreducible Brillouin zone (IBZ), and

the sum is taken over occupied states i. There are various ways to select the

k-points in the BZ to do these sums, such as taking a uniform k-mesh, as

suggested by Monkhorst and Pack [19], or special points, such as suggested

Chadi and Cohen [20]. The discretization of k-points would lead to small

errors in the calculation, however one can reduce the errors by considering a

larger number of k-points.

For metallic systems, one does not sum over entire bands, but only up to

the Fermi level. For any band i, the total occupation is the weighted sum
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over the IBZ of occupancies fi(k) at each k-point, and is given by:

f̄i =
∑

{k}∈IBZ

ωkfi(k)θi(Ei(k)− Ef ), (2.13)

where θi(Ei(k − Ef ) is the step function which ensures that the occupation

is one (zero) for the levels lying below (above) the Fermi level Ef . However,

such a sharp step function requires a very fine sampling in reciprocal space

(i.e., a large number of k-points) to be resolved adequately. Since this is

expensive, one can carry out “smearing”, where the sharp step function is

instead replaced by a smooth function Fi(Ei(k)) so that the total occupation

is written as:

f̄i =
∑

{k}∈IBZ

ωkfi(k)Fi(Ei(k)), (2.14)

which allows for partial occupation around Ef . The smearing allows us to

use fewer k-points than otherwise required to correctly account for a sharp

discontinuity at Ef , and also corrects the convergence problems arising from

level crossings.

Unlike semiconductors and insulators, metals do not have a band gap near

the Fermi level, and some bands may only be partially occupied. Therefore,

one can neglect the unoccupied high energy states in semiconductors and

insulators, but these levels need to be considered for metallic systems. As

number of bands included in the calculation increases, the computational

cost also increases.

There are several ways in which smearing can be applied such as Gaus-

sian smearing [21], Methfessel-Paxton smearing [22] and Marzari-Vanderbilt
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smearing [23]. In this thesis, we have used Methfessel-Paxton smearing.

2.2.7 Force calculation: Hellmann-Feynman Theorem

To calculate the optimized geometries of systems such as surfaces, molecules,

etc., one needs to calculate and minimize the forces on each atom in the

system. We have used the Hellmann-Feynman (HF) theorem [24] to calculate

the forces. The force on ion I is equal to the negative of the derivative of the

total energy with respect the ionic position RI , and is calculated using:

FI = −∂〈E(RI)〉
∂RI

= − ∂

∂RI

〈

ψ(R)|H|ψ(R)
〉

= −
〈

∂ψ

∂RI

|H|ψ
〉

−
〈

ψ| ∂H
∂RI

|ψ
〉

−
〈

ψ|H| ∂ψ
∂RI

〉

= −
〈

ψ| ∂H
∂RI

|ψ
〉

− E

[

〈 ∂ψ

∂RI

|ψ
〉

−
〈

ψ| ∂ψ
∂RI

〉

]

= −
〈

ψ| ∂H
∂RI

|ψ
〉

− E

[

∂

∂RI

〈ψ|ψ〉
]

= −
〈

ψ| ∂H
∂RI

|ψ
〉

, since 〈ψ|ψ〉 = 1. (2.15)

Here ψ(R) is the electronic eigenfunction of HamiltonianH. The HF theorem

is advantageous because it says that the force can be computed from a DFT

calculation at one configuration alone, rather than from having to compute

the total energy at a set of configurations and then computing derivative.

The HF theorem is based on the assumption that the basis set is complete.

In actual calculations, the basis set is usually truncated, which leads to an
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additional force called the Pulay force [25, 26]. This problem is not present

when the basis set is position-independent, such as the plane wave basis

set. This is one of the major advantages of using this basis set. We have

obtained optimized geometries of the surface by minimizing forces on the

surface atoms.

2.2.8 Stress Calculation

The stress tensor σαβ is defined as the derivative of the total energy Etot with

respect to the strain tensor ǫαβ:

σαβ = − 1

V

∂Etot

∂ǫαβ
, (2.16)

where α and β are Cartesian indices. using the HF theorem, Nielsen and

Martin [27] showed that the stress can be written as:

σαβ = − 1

V

〈

ψ| ∂H
∂ǫαβ

|ψ
〉

. (2.17)

Similar to the force calculations, the truncated basis set can lead to errors in

the calculated stress values. Therefore the stress calculations usually require

a higher energy cut-off Ecut for plane waves than that would be required for

total energy convergence to reduce errors.

2.2.9 Spin Polarized DFT

Till now I have described the DFT formalism which does not include a de-

pendence of the energy on electron spin. To study magnetic systems, it is
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necessary to consider spin polarized charge densities. One can define charge

densities for spin up and spin down electrons using -

n↑(r) =
∑

i

|ψ↑
i (r)|2 and (2.18)

n↓(r) =
∑

i

|ψ↓
i (r)|2. (2.19)

Here ψ↑
i (r) and ψ

↓
i (r) are the wavefunctions for spin up and down electrons

respectively. The total electronic density is then given by n(r) = n↑(r) +

n↓(r), and the magnetization is given by m(r) = n↑(r)− n↓(r). Now the KS

equations can be written in terms of the spin polarized charge density and

the magnetization, as follows:

[−~
2

2me

∇2
i + V ↑↓

eff (r)

]

ψ↑↓
i (r) = ǫ↑↓i ψ

↑↓
i (r), (2.20)

where the effective potential is given by:

Veff (r) = VI(r) + VH(r) + V ↑↓
xc (r). (2.21)

Here, only the XC potential depends on the electron spin and is given by:

Vxc(r) =
δExc[n(r),m(r)]

δn(r)
. (2.22)

These equations can be solved in a similar fashion to the non spin-polarized

DFT with approximations for the XC functional.
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Figure 2.2: Schematic representation of a supercell to model a surface: the su-
percell shown with dashed lines, is repeated in three directions to create artificial
periodicity.

2.2.10 Modeling Aperiodic Systems

In this thesis, we have studied surfaces which are not periodic in the direction

perpendicular to the surface. One cannot apply Bloch’s theorem to aperiodic

systems, and would then need a continuous plane wave basis set instead of

a discrete basis set. To model such systems within periodic boundary condi-

tions, an “artificial” supercell is constructed. For example, to study surfaces,

the surface is modeled by a crystal slab containing a number of atomic layers

separated by a vacuum region (see Fig. 2.2), and the supercell is repeated

in all three directions. In the supercell approach, it is extremely important

that there is no spurious interaction between periodic images which will af-

fect the properties of the system under study. One therefore has to test for

convergence with respect to the size of the supercell.
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2.2.11 Post-processing Techniques Used

Apart from calculating the total energies, we can use eigenvalues and eigen-

functions to calculate several other quantities such as the projected density

of states (PDOS), charge densities, and simulated scanning tunneling mi-

croscopy (STM) images. The projected density of states is the projection of

the eigenfunctions of the system onto atomic orbitals to get local properties

such as atomic magnetic moments. The spin polarized projected density of

states for the l,mth orbital of the nth atom is calculated as:

ρ
(n)↑↓
l,m (E) =

∑

i

|〈φ(n)
l,m|ψ

↑↓
i 〉|2δ(E − ǫ↑↓i ), (2.23)

where φ
(n)
l,m are the atomic orbitals for the nth atom, and ψ↑↓

i and ǫ↑↓i are

the Kohn-Sham wavefunctions and eigenvalues for spin up and down, re-

spectively, for the ith state. These can be then integrated to yield atomic

moments. The projected moment on the nth atom is given by:

Mn =
∑

l,m

∫ Ef

0

[ρ
(n)↑
l,m (E)− ρ

(n)↓
l,m (E)]dE. (2.24)

The simulated STM images are obtained by calculating the local density of

states at the Fermi level, which is based on the theory of tunneling between

the surface and a model tip, given by Tersoff and Hamann [28]. We can

directly compare the simulated images with the experimental STM images.



2.3 Cluster Expansion Method 26

2.2.12 Implementation of DFT

In this thesis, we have used the PWscf code implemented in the Quantum-

ESPRESSO package [29] to perform DFT calculations. It is an open source

code using a plane wave basis and pseudopotentials.

2.3 Cluster Expansion Method

2.3.1 Introduction

For first principles calculations, as the system size increases, the computa-

tional expense involved increases rapidly. For example, for substitutional

binary alloys with N lattice sites, there are 2N different configurations pos-

sible. Thus, even for N ∼ 20, the number of possibilities becomes more

than a million. Thus, the ground state (GS) search for such systems using

a purely quantum mechanical (QM) approach becomes a formidable task.

Also, as most density functional theory (DFT) calculations are done using

periodic boundary conditions, studying disordered configurations is not fea-

sible. There are a few approaches which are used to overcome this shortcom-

ing, such as the use of simplified electronic Hamiltonians, e.g., tight binding

model [30, 31], effective pair potentials [32, 33], etc., or guessing several pos-

sible structures either by prior experience or experimental observations, and

then using QM tools for calculating alloy stability versus composition phase

diagrams. However, in the former approach, the accuracy is lower than in

QM methods, and the method is not applicable to all systems; while in the

latter approach, finding the correct GS depends on how good the initial guess
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is or whether experimental data is available. To overcome these limitations,

there exists a method, called the cluster expansion method, which combines

quantum mechanical calculations with statistical mechanics.

The cluster expansion (CE) technique [34, 35], which is based on the

configurational dependence of the energy, can be used to find the ground

state structures or to study disordered phases. It involves parametrizing

the energy of an alloy in terms of its configurations, as is done in an Ising

model. Once we have obtained reliable parameters for a particular system,

the simplified model allows us much faster calculation of, e.g., temperature-

composition phase diagrams, by using statistical mechanics tools such as

Monte Carlo simulations [36]. The advantages of this technique are: (a)

it requires as an input first principles calculations of only a few ordered

structures for which there exist reliable methods such as density functional

theory; thus, the CE method can be applied to insulating, semiconducting

and metallic alloy systems [37], (b) it is applicable not only for energies, but

also for any property which depends on configurations of the system, such

as bond lengths [38], volumes [39] and band gaps [40, 41], and (c) it has

been shown that the cluster expansions effectively reduce noise in the input

data [42–44]. In the next section, the cluster expansion technique has been

discussed in detail.

2.3.2 Framework of the Technique

The cluster expansion technique is a lattice model based technique, similar

to the Ising model. Within its framework, a configuration σ is defined for
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a binary alloy A-B by specifying the occupation for each lattice site by an

atom A or B:

σ ≡ {Ŝi}, i = 1, 2, · · · , N, (2.25)

where N is the number of lattice sites in the system. The occupation variable

is defined as,

Ŝi = +1 if site i occupied by an atom B

= −1 if site i occupied by an atom A. (2.26)

Then the energy in terms of clusters of lattice points can be written as [34,35]:

ECE(σ) = J0+
∑

i

JiŜi(σ)+
∑

j<i

JijŜi(σ)Ŝj(σ)+
∑

k<j<i

JijkŜi(σ)Ŝj(σ)Ŝk(σ)+· · · ,

(2.27)

for a configuration σ. Here, the configurational dependence comes only

through occupation variables, as the interaction energies J ’s are indepen-

dent of the configuration σ. Each summation in this equation corresponds to

a sum over different clusters, for example, the first summation is over all the

point clusters (that is, each lattice point on the lattice), the second is over

all the two-body clusters (that is, pairs of lattice sites), the third over all the

three-body clusters, and so on. Alternatively, one can write Eq. (2.27) as:

ECE(σ) =
∑

α

mαJαφα, (2.28)

where α is a cluster which has l lattice points, and the sum is taken over all

the symmetry-inequivalent clusters α. The interaction terms Jα are termed
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as effective cluster interactions (ECI). For a given cluster α, φα denotes the

average of occupation variables taken for mα symmetry-equivalent clusters

β, which can be written as:

φα = 〈
∏

l∈β
σl〉

=
1

mα

∑

β

σ1σ2 · · · σl. (2.29)

φα is also known as a many-body or multipoint correlation function for the

cluster α.

One needs to find the values of all J ’s so as to determine the energy of

any arbitrary configuration σ. This requires the calculation of 2N interaction

energies to describe the energies of 2N configurations. The equation can be

written in a matrix form, and the exact solution is possible if the matrix of

occupation variables is non-singular. It has been proved that this description

of configurational energy is exact because the cluster functions form a com-

plete basis set of configuration functions [34]. However, the determination of

2N interaction terms will be as difficult as the calculation of energies for 2N

configurations. The usefulness of this technique comes from the fact that,

in general, one can truncate this series to a small number of terms, as it

converges rapidly for most systems. This can be understood intuitively, as

the farther two sites are, the less is the interaction between them. However,

there are no rules on how many and which ECI terms need to be included in

the solution, so as to get a converged solution. In the past, the truncation of

the series was done by a trial and error approach so as to get good agreement



2.3 Cluster Expansion Method 30

with experimental results.

2.3.3 Determination of ECIs

There exist several methods which can be used to obtain values of ECIs;

some of these are briefly described in this section. Fitting to the experimental

phase diagram is one of the earlier techniques used to evaluate the J ’s [45,46].

However, the availability of data will restrict the number of terms used in

the fitting and this approach cannot be used to explore systems which have

not been studied experimentally.

Instead, one of the simplest methods that can be used is a structure

inversion method [47]. In this method, a truncated form of Eq. (2.28):

ECE(σ) =
nc
∑

α=1

mαJα〈
∏

l∈β
σl〉, (2.30)

is fitted by using the ab initio energies for a small number of ordered struc-

tures. Here the infinite sum in Eq. (2.28) has been truncated to instead

include only nc cluster figures. The fitting can be done in one of two ways:

either by using the same number of ordered structures as the number of

ECIs [47], or by using more alloy configurations than the number of ECIs [39].

In the latter case, least-square fitting is used to get a solution set of ECIs

which gives a more stable solution, where the least square fit error is given

by,

δ2fit =
1

ns

∑

σ

wσ[EAI(σ)− Enc

CE(σ)]
2. (2.31)

Here the error is calculated for a set of ns configurations whose energies are
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evaluated both by the ab initio and cluster expansions, denoted respectively

by subscripts AI and CE. The ab initio energy for a configuration σ of an

alloy AxB(1−x), is given by the formation energy of the alloy defined by,

EAI(σ) = E(σ)− xE(A)− (1− x)E(B), (2.32)

where E(σ) is the energy for a configuration σ, whereas E(A) and E(B) are

the energies for pure A and B solids. The number of clusters used for fitting

nc is less than or equal to the number of structures ns. The special case

where ns = nc is the original structure inversion method. The constants wσ

are weights associated with each configuration σ, which can be used to em-

phasize more important structures such as ground state structures. Further-

more, an additional modification to include the effect of relative stabilities of

different structures has been suggested to improve predictability [48]. The

structure inversion method can take into account the effect of atomic relax-

ations on the alloy energy by allowing geometry relaxations in the ab initio

calculations [49]. Usually around 30-40 ordered structures are sufficient to

give a good converged CE solution. However, if there are long-range elastic

effects present in the system, these will result in a slow convergence, and then

it might be required to use a much larger database of ordered structures to

get the J ’s.

2.3.4 Cross Validation Method

This method was proposed to address the question of how to decide a good

truncation point while fitting with a limited number of structures [50–52].



2.3 Cluster Expansion Method 32

Inclusion of too few clusters may lead to a non-converged solution and hence

incorrect CE-calculated energies, and too many terms can lead to overfitting

of the data, reducing its predictive power for the configurations not included

in the fit. The criterion of the least mean-squared error used in the structure

inversion method will not be sufficient for the problem of overfitting. To

overcome this problem, a method of cross validation (CV) [53] from statistics

is used, which can estimate the prediction power of the CE [50]. In this

method, the set of input data (that is a set of ordered alloy configurations) is

divided into two subsets – one subset is used to fit Eq. (2.30) and determine

an optimal cluster set, and then this solution is used to calculate the energies

of the configurations belonging to the second subset {p}. Thus this allows a

direct comparison of the “predicted” values with the ab initio energies.

Here the strategy followed is to exclude, say, nex configurations from

the original data set, then find a solution cluster set using the remaining

(ns − nex) structures. Now use this cluster set, say, {no}, to predict the

energies of nex excluded configurations, and compare the predicted energies

with the ab initio energy. The predictive power can be gauged by calculating

the prediction error or the cross validation score, defined as:

δ2CV =
1

nex

∑

{p}
wp

(

EAI(p)− E
{no}
CE (p)

)2

, (2.33)

where the sum is taken over all the configurations {p} which were excluded

from the original data, and E
{no}
CE are the CE-calculated energies obtained

using the optimal solution {no}. This is usually called the “leave-nex out”

technique. The optimal cluster set is the one which minimizes both the
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fitting and prediction errors. To get this solution, we start with a large pool

of clusters and then calculate the least-square fitting error and the CV score

using the leave-nex out scheme. Then one or more clusters are removed from

the initial pool, such that the increase in the errors is minimum. The removal

of clusters and the calculation of errors with the new reduced cluster pool

is repeated several times, so as to get a small cluster set; removal of even a

single cluster from this set may result in a large increase in the errors. A

large increase in the error indicates that the cluster figures in this small set

are dominant and cannot be excluded. To ensure that the initial choice of

clusters in the pool does not affect the solution, in the work in this thesis,

we have started with about five to ten different pools.

We have used the cross validation method to determine the optimal ex-

pansions for the enthalpy of mixing of Fe-Au/Mo(110) in Chapter 5. It is im-

plemented in the variational cluster expansion (VCX) code; see Refs. [43,44].



Chapter 3

Structural and Magnetic

Properties of Surface Alloys:

MxN1−x/Ru(0001)

3.1 Introduction

3.1.1 Alloys

Alloys are defined as a solid solution of two or more metals, or at least a

homogeneous mixture containing a metal as its major component. They have

been used through many centuries for their enhanced properties compared

to any of their constituent elements.

Alloys can be classified into two different types based upon the structural

arrangement: A first type is substitutional alloys, in which the constituent

metals are of similar “size”. These are formed by substituting the atoms of

34
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one component into the other. For example, brass is an alloy made up of cop-

per and zinc. The formation of a solid solution in bulk substitutional alloys

is governed by some empirical rules known as the Hume-Rothery rules [54]

which can be stated as follows:

1. Atomic size factor rule: If the difference in size of the elements is greater

than ±15%, lattice distortions can restrict the formation of a solid

solution.

2. The electronegativity rule: If the electronegativities (ionization ener-

gies) of the two elements are close, the formation of a solid solution is

favored.

3. Valency rule: A metal will dissolve another metal of greater valency

much more than a metal of lower valency.

4. Crystal structure rule: If the two elements have the same crystal struc-

ture there could be formation of a solid solution.

A second type of alloy is an interstitial alloy, in which atoms of one of

the constituent elements are significantly smaller than the other, and hence

occupy the interstitial voids in the crystal structure of the bigger atoms. For

example, carbon atoms sit in the interstitial sites of iron to form steel.

In the early days, before the full understanding of microscopic crystal

structure or detailed composition of alloys was achieved, alloys were mainly

used for their enhanced mechanical properties. Since the modern era of met-

allurgy started, alloys have also been designed for their thermal and magnetic
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properties. For example, FeNi alloys known as invars have almost zero co-

efficient of thermal expansion over a wide range temperature; these were

invented in 1896. Heusler alloys such as Cu2MnAl, studied for the first time

in 1903 [55], are ferromagnetic even though the constituent elements are

not. This is a result of a double-exchange mechanism between neighboring

magnetic ions, e.g., Mn atoms.

3.1.2 Surfaces

The study of surfaces is important for applications such as catalysis and

magnetic storage. At the surface, periodicity is broken along the direction

perpendicular to the surface, and the coordination number of the atoms at

the surface is less than that of bulk atoms. As a consequence, the atomic

and electronic structure at the surface can be drastically different from that

in the bulk. If atoms on the surface minimize their energy only by changing

the interatomic distance between layers while retaining the bulk-terminated

structure, it is known as ‘surface relaxation’. On the other hand, if atoms

are displaced from their bulk-truncated positions so as to change the surface

unit cell, it is known as ‘surface reconstruction’. While studying structural

properties of surfaces, two important physical quantities are the surface en-

ergy and the surface stress. These quantities largely drive relaxation and

reconstruction.

There are different experimental techniques which can provide informa-

tion about the atomic positions in the surface layers and the composition

at the surface. Some of the most commonly used techniques are low-energy
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electron diffraction (LEED), electron microscopy such as transmission elec-

tron microscopy or scanning electron microscopy, scanning probe microscopy

such as scanning tunneling microscopy (STM) which can provide atomic

resolution, ion scattering, photoelectron diffraction, atom probe field ion mi-

croscope, etc. A brief summary of these techniques has been given, e.g., by

Bardi [56]. The increased sensitivity of such structure-determining probes

has helped to study the atomic arrangements at surfaces, and thus to under-

stand surface properties better.

3.1.3 Magnetism in Low-dimensional Systems

Most isolated atoms have a net magnetic moment due to the spin and orbital

angular momenta of the electrons. However in the bulk solid form, only a

few elements, such as iron, retain a net magnetic moment. This reduced

magnetic moment is attributed to the interatomic exchange interaction and

non-central crystal-field quenching [57].

In general, a reduced dimensionality is found to enhance the magnetic mo-

ment of the system. This can be seen, for example, in two-dimensional (2D)

thin films, one-dimensional (1D) linear chains and zero-dimensional nanoclus-

ters. This observation can be rationalized by the Stoner argument [58]. The

Stoner model for ferromagnetism shows that itinerant electrons can have a

net magnetic moment if it is energetically favorable for electrons to occupy

one of the spin directions. This is decided by two competing energies: the

exchange interaction between the electrons favors ferromagnetism, while on

the other hand, preferentially occupying only one spin direction costs kinetic
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and potential energy. However, if the density of states (DOS) at the Fermi

level is large, then filling of higher-energy states will not cost as much energy

as is gained by the exchange interaction. In low dimensional systems, atoms

have a reduced coordination number, which leads to narrower and higher

peaks in the DOS, and hence increases the tendency towards magnetism.

One manifestation of this tendency is an increase in the magnetic moment

at lowered dimensions for ferromagnetic elements. For example, Apsel et

al. in 1996 [59] did experiments on Ni clusters containing 5 to 740 atoms.

They showed that while a Ni5 cluster has a magnetic moment of 1.81 µB

per atom, this decreases to the bulk value (= 0.61 µB) as the cluster size is

increased. This dependence of magnetic moment on cluster size is a highly

non-monotonic function, which depends on the geometry and shape of the

cluster and its surface area. Similar observations for Fe, Co and Ni clusters

have been made [60, 61] using both experimental techniques and theoretical

models.

Another manifestation of this tendency leads to induced moments on the

clusters or surfaces of 4d transition metals which are non-magnetic in the

bulk [62–67]. Using first-principles ab initio calculations, it has been shown

that 4d transition metals such as Ru, Rh and Pd are close to fulfilling the

Stoner criterion in the bulk [68], which explains this phenomenon when their

coordination is reduced. Also small Pt clusters have been shown to have non-

zero magnetic moments using both theoretical calculations and experimental

techniques [69–71].
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(a) (b) (c)

Figure 3.1: (a) Side view of an alloy surface which has layer-dependent composi-
tion near the surface of bulk alloy. (b) and (c) Side views of surface alloys showing
two types of surface alloys; in the first one, deposited atoms substitute some of the
atoms in the top layer of a substrate to form an alloy restricted to the surface
and in the second one, two different metals deposited on a substrate (consisting
of a third metal) mix atomically on the surface, but do not diffuse into the bulk
substrate.

3.1.4 Alloys Surfaces versus Surface Alloys

An alloy surface is the surface of a bulk alloy, where the composition at the

surface may be different from that in the bulk phase (see Fig. 3.1(a) for

a schematic depiction) due to phase segregation [72, 73]. These have long

been studied and are interesting for their catalytic properties, since reaction

selectivity and rates depend upon composition. However, a more recent field

of study is surface alloys, where mixing between constituents is restricted

to a few surface layers only (see Figs. 3.1(b) and (c)). Such surface alloys

display a rich phenomenology of structural and magnetic phase transitions

as a function of coverage. Another interesting feature observed is that metals

which are immiscible in the bulk can mix atomically at the surface. These

surface alloys have been suggested to be stabilized by strain due to atomic-

size mismatch [74]. These issues are discussed in detail in the next section.
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3.2 Previous Work on Surface Alloys

In recent years, there have been a large number of studies on the structural,

electronic and magnetic properties of metallic thin films on a metal substrate.

This field is gaining more attention due to the observed catalytic, electronic

and magnetic properties of thin films. The nucleation and growth mode

of a metal A on another metal B is, in general, a function of temperature

and the total coverage of A. In earlier studies, the growth morphology of

metal-on-metal heteroepitaxial systems was predicted from thermodynami-

cal equilibrium considerations, that is, comparing the surface energies (γA

and γB) of the two metals and the interface energy (γi) [75]. If γi ≤ 0, then

the two metals will mix to lower their energy. If γA + γi < γB, there will

be layer-by-layer growth, otherwise there is island formation. The different

growth modes of A on B are usually classified into three categories [76] as

shown schematically in Fig. 3.2. Even though this approach neglects de-

tails of atomic structure, it is still useful as a starting point to understand

growth morphology and intermixing. To understand formation of complex

structures, one has to consider strain energy (misfit between the lattice pa-

rameters of the two metals), mobility of overlayer atoms on the surface, and

possible reconstruction of the overlayer and/or substrate at the interface.

There have been reports that two metals which are immiscible in the bulk

due to a large atomic-size mismatch, can form stable 2D surface alloys e.g.,

Au on Ni(110) [77]. For such systems, using a simple model containing only

strain energy, Tersoff in 1995 [74], showed that surface-confined mixing is,

in general, expected in systems dominated by atomic-size mismatch. The
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(a) (b) (c)

Figure 3.2: Different growth modes of deposition of a metal A on another metal
B: (a) Frank–van der Merwe growth mode in which metal A completely wets the
surface of B to give layer-by-layer growth; (b) Stranski–Krastanov growth mode
in which an incomplete wetting results in island formation after the layer-by-layer
growth for a few monolayers and (c) Volmer–Weber growth mode consists of for-
mation of islands with no wetting of the surface.

same atomic-size mismatch leads to immiscibility in the bulk, as explained

in Sec. 3.1.1 above. These systems are referred to as strain-stabilized surface

alloys.

Another type of strain-stabilized alloy (see Fig. 3.1(c)) has also been con-

sidered. These can be termed as tertiary surface alloys, in which, two bulk-

immiscible metals A and B are deposited on a substrate S, and A and B mix

to form a 2D alloy on the surface. The reduction of strain has been suggested

as the driving mechanism for alloy formation by Stevens and Hwang for the

system consisting of an Ag-Cu monolayer on Ru(0001) [78], experimentally

first observed by Schick et al. [79, 80]. For such systems, e.g., Pd-Au on

Ru(0001) [81] and Pb-Sn on Rh(111) [82], the strain induced by the sub-

strate plays an important role in the surface alloying mechanism. In general,

it has been suggested that the strain energy can be minimized by mixing of

two overlayer metals, if the bulk nearest neighbor (NN) distance of one of

the overlayer metals is greater than that of the substrate and that for the

other overlayer metal is less than that of the substrate. However, in some

cases, co-deposition of two metals on the third metal can lead to a spon-

taneous organization of patterns having alternating domains of individual
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metals [83, 84]; these also may be desirable for certain applications.

With recent improvements in experimental techniques, it is possible to

control the growth rate and temperature with greater accuracy, and a num-

ber of new phases have been observed in such systems. For example, the

Ag/Cu(100) system was first studied by Palmberg and Rhodin [85] in 1968

using LEED, and was identified to have a c(10×2) pattern upon deposition of

1 ML (monolayer) of Ag. The observed diffraction pattern was explained by

proposing that the silver atoms form a close-packed, hexagonal Ag(111)-like

overlayer structure on the Cu(100) substrate which has a square symme-

try. This pseudo-hexagonal structure was confirmed as the lowest energy

configuration after further experimental studies using angle-resolved photoe-

mission [86,87], and electron-energy-loss spectroscopy [88], and theoretically

using a tight-binding molecular-dynamics scheme [89]. The intermixing of Ag

with the Cu(100) surface had been ruled out, until Sprunger et al. in 1996 [90]

showed, using variable-temperature STM, that though below 250 K earlier

conclusions held true, above 300 K, a substitutional Ag-Cu alloy forms. Such

examples underline the requirement of careful study of structural properties

and the energetics which drive these structures.

Of particular relevance to our study is the work on the system of submono-

layer films of Co-Ag/Ru(0001) [91–94]. All the three elements are immiscible

in the bulk with each other due to a large size mismatch. The substrate, Ru,

has a bulk NN distance greater than that of bulk Co and smaller than that

of bulk Ag by about 7% and 8% respectively. As already discussed, stress

due to atomic-size mismatch between the film and substrate can influence

film structure. In such multi-component films, there exist two stress relief
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mechanisms: (i) formation of dislocations, which occurs above certain crit-

ical thickness of film, and (ii) alloy formation. Thayer et al. [92, 94] have

observed a number of distinct types of phases in this system: the first is an

alloy phase with lower stress and higher commensurability than in pseudo-

morphic single-component films; a second phase consists of a pure Ag phase

with dislocations, and the third phase has a coexistence of the first two

phases. The Co-rich submonolayer exhibits an alloy-like structure, but Ag

in this alloy is not atomically dispersed and forms irregular droplets. For

compositions containing more than 40% Ag, the film decomposes into two

distinct phases, an alloy phase similar to the irregular droplet structure and

a pure Ag phase with a misfit dislocation structure.

For this system, researchers had expected an atomistically mixed alloy

formation based on the argument by Tersoff [74]. The argument was that a

surface with average NN spacing approximately equal to the NN spacing of

the substrate will reduce the strain significantly. However the experimental

observations do not accord with this argument. To explain this, they have

suggested the chemical interaction as a competing driving force for structure

formation, since the chemical interaction in the system favors Co-Co and Ag-

Ag bonds rather than Co-Ag bonds [94]. Comparing 2D Frenkel-Kontorova

model calculations with the strain measurements from STM images, they

have also estimated the strain relaxation energy [93,94]. These observations

lead to questions such as (i) is there a criterion based on atomic size that

will predict whether or not a surface alloy will form? (ii) what is the relative

importance of elastic and chemical interactions?

Furthermore, magnetic properties of thin films are gaining huge attention
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because of their applications in magnetic storage devices. A number of phe-

nomena observed at the surface such as localized electronic states, magnetic

moment enhancement, perpendicular magneto-crystalline anisotropy [95,96]

and complex magnetic ordering [97] are not only of basic physical interest,

but have practical applications too. Experiments performed on systems con-

sisting of thin magnetic films on a non-magnetic substrate demonstrate that

the magnetism can affect the structure and stability of surfaces [98]. Also the

reverse is true, i.e., the presence of the surface affects magnetic properties

such as magnetic ordering and moments. Some examples of systems in which

these effects have been observed are Fe/Cu(100) [99], Mn/Ag(001) [100],

Mn/Cu(100) [101] and Mn/Cu(111) [102].

Using ab initio calculations, one can separate the contributions of strain,

surface energies and magnetization on the growth and geometry of the films

and so get greater insight into the interrelations between these quantities. For

example, Blügel et al. [101] have shown, using the full-potential augmented

plane-wave method, that for the Mn layer on Cu(100), buckling of Mn atoms

occurs due to a magnetic ground state, and is totally absent in the non-

magnetic state. This buckling of the overlayer has also been confirmed by

LEED experiments.

3.3 Systems under Study

In this work, we have studied the formation of binary surface alloys (MxN(1−x))

on a substrate, S (the Ru(0001) surface), where M is an element which is
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(Å) Pt Au Ag Cd Pb
Fe 2.63 2.69 2.69 2.73 2.99
Co 2.64 2.70 2.70 2.75 3.01

Table 3.1: Average of NN spacings of M and N in their bulk structures: Compare
these numbers with as NN distance of Ru in bulk = 2.70 Å. All the values used in
this table are experimental values, taken from Ref. [103]

ferromagnetic in the bulk (Fe or Co) and N denotes an element that is non-

magnetic in the bulk (Pt, Au, Ag, Cd or Pb). Here, x is the fraction of

“magnetic” element. The selection of non-magnetic element was based on

the atomic-size mismatch between the S, M and N . In their bulk structures,

both the magnetic elements have a NN spacing less than that of Ru (approx-

imately 7-8%), thus non-magnetic elements all having a NN spacing greater

than that of Ru are selected. The non-magnetic elements are selected so as

to have a large variation in size: the NN distance of Pt is 3% more than that

of Ru, whereas this difference for Pb is almost 30%. This large variation in

size should enable us to recognize size-dependent trends in the alloy forma-

tion, if there are any. We have computed the averages of bulk NN spacing

of M and N , given in Table 3.1. When we compare these values with the

Ru NN spacing in the bulk (as = 2.70 Å), we note that the nearest match is

for alloys with Ag and Au, while Pb alloys seem to be the worst choice. We

note here that out of the ten systems studied here two of the systems have

been studied previously: Co-Ag/Ru(0001) [91–94] and Fe-Ag/Ru(0001) [84].

In the systems we are studying, the atomic-size mismatch between the

substrate element and the overlayer element is rather large, which leads to

the question of whether the pseudomorphic geometry of a monolayer is stable



3.3 Systems under Study 46

against reconstruction. In earlier experiments, it has been shown that a single

monolayer of Fe [104], Co [105] and Pt [106] on the Ru(0001) surface does

not reconstruct, whereas that of Au [107] and Ag [78,107,108] reconstructs;

there is no experimental data available for Cd and Pb deposition on the

Ru(0001) surface. In this chapter, we have not considered the possibility of

reconstructions or dislocations. We have assumed a pseudomorphic single

overlayer in which the atoms are allowed to occupy one of the two possible

hollow sites as explained below. This issue will be discussed further later.

In crystallography, there are two possible closed-packed structures, face-

centered cubic (fcc) and hexagonal closed-packed (hcp). The atomic arrange-

ment in the two differs only in atomic plane stacking, as shown in Fig. 3.3.

Out of the different crystallographic surfaces for these closed-packed struc-

tures, the (111) surface of fcc and the (0001) surface of hcp are the closed-

packed surfaces. In heteroepitaxy on the closed-packed surfaces, it is ener-

getically favorable for the deposited atoms to occupy one of the hollow sites

and hence atoms in the surface layer can either sit vertically above atoms in

the third layer to give · · ·ABA stacking at the surface (called the hcp site)

or can occupy the other set of hollow sites to give · · ·ABC stacking at the

surface (called the fcc site).

To enable us to get different alloy compositions, we need to consider a

larger unit cell than the (1×1) cell for the surface. We have used a (2×2)

surface unit cell which has four atoms per layer. This particular unit cell

allows us to study five different compositions as shown in Fig. 3.4. For the

unit cell we have considered, each composition permits us to consider only

one non-equivalent configuration.
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Figure 3.3: Closed-packed structures: Atoms in each plane A (light blue), B
(dark blue) and C (magenta) form a closed-packed layer in 2D where each atom
is surrounded by six other atoms in the plane. Note the hexagonal symmetry in
a plane. The stacking of the type ABCABC · · · (left) leads to the fcc structure,
while ABABAB · · · kind of stacking (right) gives the hcp structure.

3.4 Computational Details

The calculations are done using ab initio spin-polarized (SP) density func-

tional theory (DFT) with the PWscf package of the Quantum-ESPRESSO

distribution [29]. However, in order to gauge the effects of magnetism on

alloying, we have also done some non-spin-polarized (NSP) calculations. A

plane-wave basis set is used with a kinetic energy cutoff of 20 Ry and a

charge-density cutoff of 160 Ry. Convergence with respect to the basis size

and the k-point grid has been carefully verified for the bulk structures of

all the elements. A (4×4) Monkhorst-Pack mesh of k-points [19] is used for

Brillouin zone integrations for the (2×2) surface unit cell.

Ultrasoft pseudopotentials [18] are used to describe the interaction be-

tween ions and valence electrons. For the exchange correlation functional, a

Generalized Gradient Approximation (GGA) of the Perdew-Burke-Ernzerhof

form [11] is used. As all the systems are metallic, the Methfessel-Paxton

smearing technique [22] is used with a smearing width equal to 0.05 Ry.
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Figure 3.4: Top view of the system studied : x = 1.00, 0.75, 0.50, 0.25 and 0.00
(from top left) with 2×2 surface unit cell shown (green solid line). The S denotes
the substrate atoms (gray) and M and N denote magnetic (blue) and non-magnetic
(orange) elements.

We have used a supercell approach to study the surface within periodic

boundary conditions. We have performed convergence tests with respect

to the number of atomic and vacuum layers to ensure there is no spurious

interaction between two surfaces via the “bulk” or the “vacuum”. Based on

these convergence tests, we use six Ru layers to model the substrate and seven

vacuum layers (approximately 17.38 Å). For energetics calculations, we have

deposited an alloy overlayer on only one side of the substrate; whereas to get

the variation of the surface stress of M or N on S with in-plane distance

we have used symmetric slabs. To get the lowest energy structure, we have

allowed the overlayer alloy and the three topmost layers of Ru to relax. To

obtain the relaxed structures, Hellmann-Feynman forces are used.

This formalism gives us the total energy and magnetization for the whole

system. To extract atomically resolved properties, there exists a technique
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known as the ‘projected density of states’ (PDOS) method. In this method,

the contribution of each atom is separated out by projecting wavefunctions

of the whole system onto the atomic wavefunctions. It gives the density of

states (DOS) for all the atomic orbitals separately and for the spin-polarized

calculations, spin-up and spin-down DOS are computed separately. Using

this method, we have obtained the magnetization for each atom and the DOS

at the Fermi level for the total system, as well as for each atom. This helps

us to understand effects such as the enhancement of magnetic moment of the

magnetic atoms, induced moments on the non-magnetic overlayer atoms and

the substrate atoms, and magnetic ordering if present, in detail.

3.5 Results and Discussion

3.5.1 Bulk Calculations

We have first performed calculations for the bulk structures of the substrate

element (Ru), magnetic elements (M = Fe and Co) and non-magnetic ele-

ments (N = Ag, Au, Cd, Pb, and Pt). For fcc and body-centered cubic (bcc)

structures, there is only one parameter (lattice constant, a) to be optimized,

but in the hcp structures, one needs to optimize both a and c/a where c/2 is

the interplanar distance along the [0001] direction. Here we have optimized

only a for all structures and used the experimental value of c/a for the hcp

structures. The experimental values of c/a [103] used here for Ru, Co and Cd

are 1.584, 1.622 and 1.886 respectively. The calculated values of the nearest

neighbor (NN) spacing, acalc, for all the bulk elements are listed in Table 3.2
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Element Structure acalcbulk(Å) aexpt(Å) ∆a0%
1 Ru hcp 2.74 2.70 1.48
2 Fe bcc 2.47 2.48 -0.40
3 Co hcp 2.49 2.51 -0.80
4 Pt fcc 2.83 2.77 2.12
5 Au fcc 2.93 2.89 1.45
6 Ag fcc 2.95 2.89 1.92
7 Cd hcp 3.04 2.98 1.94
8 Pb fcc 3.56 3.50 1.73

Table 3.2: The calculated and experimental nearest neighbor spacing in the bulk
structure of all the elements under study. ∆a0 is the percentage difference in
calculated and experimental values.

below, compared with the experimental values aexpt [103]. The errors in NN

distances are seen to be small.

The calculated total magnetic moments for bulk Fe and Co are 2.36 and

1.71 µB per atom respectively, whereas the experimental values [109] for

these are 2.22 and 1.72 µB, which are comparable with the calculated values.

The calculated values of lattice constants for all elements (except for Cd),

and the magnetic moments for the magnetic elements match well with pre-

viously reported values [110–115]; the agreement is reasonable considering

some of the known shortcomings of different theoretical approaches such as

underbinding of GGA. For the bulk cadmium, we were not able to find any

previous calculations.

We have calculated the total NSP-DOS for each of the metals considered

here in their bulk structures, which is plotted, in the vicinity of the Fermi

energy in Fig. 3.5. Note that, the elements which are ferromagnetic in the

bulk, i.e. Fe and Co, have higher DOS at the Fermi level than any other

elements. Also Pt and Ru, which are shown to get magnetized in the reduced
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Figure 3.5: Non-spin polarized density of states in the bulk for (a) Fe and Co,
(b) Ru and Pt, and (c) Ag, Au, Cd and Pb in their bulk structure is plotted in the
vicinity of the Fermi energy. The DOS at the Fermi level for magnetic elements
is the highest among all the metals and among non-magnetic elements, Pt has the
highest DOS at the Fermi energy.

dimensions (as explained in the introduction), have significant DOS at the

Fermi level; whereas non-magnetic elements other than Pt have negligible

DOS at the Fermi level. This is in accordance with the Stoner argument for

ferromagnetism.

3.5.2 Clean Ru(0001) Surface

Before deposition of different elements, we have studied the clean Ru(0001)

surface, using a slab having six layers of Ru atoms, out of which the top

three layers are allowed to relax. The distance between two adjacent layers
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in bulk ruthenium, dbulk, is 2.17 Å, but when allowed to relax, the distance

between the topmost layer and the adjacent layer, d12, becomes 2.11 Å, that

is the topmost layer undergoes an inward relaxation with respect to the bulk

by 2.76%. Also the other two layers adjacent to the topmost layer, which

are allowed to relax, relax to distances d23 = d34 = 2.18 Å, undergoing an

outward relaxation of 0.46%. The calculated surface energy is 1.13 eV per

surface atom, which compares well with earlier reported values [116,117].

It has been shown that small Ru clusters get magnetized [63,65–67] due

to reduced coordination; however, we have verified that the ground state for

Ru(0001) surface remains non-magnetic.

3.5.3 Monolayers of M and N on Ru(0001) Surfaces

For a single-element monolayer (x = 0.00 for N/Ru(0001) and x = 1.00

for M/Ru(0001)), all the “magnetic” elements M prefer to occupy overlayer

hcp sites rather than fcc sites; whereas except for Pt, we find that all the

“non-magnetic” elements N prefer to occupy fcc sites. The values of the

energy difference between the two stacking sites are given in column two of

Table 3.3. In the same table, the third column gives the nearest neighbor

interatomic bond length between the overlayer atoms and the Ru atoms in

the top layer. The next three columns in the table contain the interplanar

distances dij between layers i and j with the overlayer labelled as “1”. Note

that, as expected, d12 for the monolayer of M (or N) is smaller (or greater)

than the interplanar distance of 2.17 Å for the Ru bulk. From the d23 values,

we find that the topmost Ru layer always relaxes inward (∼ 1-3%) with a



3.5 Results and Discussion 53

M/N δE Bond length S-M/N d12 d23 d34 σsurf

Fe -55.9 2.62 2.08 2.15 2.17 -0.139
Co -88.1 2.56 2.01 2.15 2.17 -0.397
Pt -3.8 2.79 2.30 2.12 2.18 0.138
Au 7.3 2.95 2.49 2.10 2.18 0.425
Ag 4.9 2.92 2.45 2.11 2.18 0.372
Cd 2.3 2.97 2.51 2.12 2.17 0.135
Pb 1.8 3.00 2.55 2.13 2.17 2.213

Table 3.3: For monolayers of M or N on Ru(0001), δE(= Eslab(hcp) −
Eslab(fcc)) is the difference between total energies of the slab when the overlayer
occupies hcp and fcc sites, in units of meV per surface atom; dij is the interplanar
distance between layers i and j with layer ‘1’ being the overlayer (all distances are
in Å); σsurf is the surface stress for a monolayer of M or N on S in units of
eV/Å2.

value depending on the overlayer element, whereas the second Ru layer shows

either no relaxation or a slight outward relaxation. In the last column of the

table, the calculated surface stress in units of eV/Å2 is given; the surface

stress calculations are explained in Sec. 3.6.2.

The magnetic moments on the Fe and Co monolayers when put on the

Ru surface are found to be 2.93 and 1.78 µB per magnetic atom respectively;

these values correspond to the local moments (that is, the induced moments

on Ru are not included) calculated using PDOS. For both Fe and Co, the

moments are higher than in the bulk (given in Sec. 3.5.1) as expected from the

Stoner argument.Though Pt clusters are shown to have non-zero magnetic

moment [118], we find that there is no magnetic moment induced on the

Pt/Ru(0001) system.

The monolayers of magnetic elements induce magnetic moments on adja-

cent Ru layers. This induced magnetic moment shows a decaying oscillatory

nature, as shown in Fig. 3.6, in which we have plotted the induced moment
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on Ru layers as a function of the distance from the overlayer. This oscillatory

nature is similar to the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interac-

tions [119] which exist in the system consisting of magnetic impurities in a

non-magnetic element. Note that the Co monolayer has induced a ferromag-

netic moment on the first Ru layer with magnitude 0.18 µB, whereas the

Fe monolayer induces an antiferromagnetic moment on it, having a very low

magnitude ∼ 0.06 µB. However for Fe/Ru(0001), the second layer of Ru

has a larger induced moment (∼ 0.1 µB) than the first layer, unlike the Co

case, again with the antiferromagnetic (AFM) coupling to the Fe layer as

was observed by Hardrat, et al., [120]. We can fit data points with a simple

oscillatory function [97] of the form:

µ(z) = µ0
sin(2qz + φ)

(2qz)2
, (3.1)

where µ is the induced magnetic moment on an atom at a distance z from

the magnetic atom, and q and φ are a wavevector and phase which are

determined by fitting. The fits for each M/Ru(0001) system are shown with

lines in Fig. 3.6. However, we note that this fit need not be unique, one can

obtain a rather good fit with other sets of parameters as has been pointed

by previous authors [97].

3.5.4 Alloy Monolayers (MxN1−x) on Ru(0001)

For all surface alloy configurations considered here, we find that the overlayer

atoms prefer to be at hcp sites over the fcc sites with an energy difference

of the order of 5-75 meV per surface atom. The alloy layers exhibit buckling
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Figure 3.6: Induced magnetic moments on Ru layers: The variation of magnetic
moments induced on Ru layers by overlayers of magnetic elements as a function
of the distance from the overlayer is shown for Fe (circles) and Co (squares). We
have fitted the ab initio data with a simple oscillatory function of the form given
in Eq. (3.1); the fits are shown with solid (Fe) and dashed (Co) lines.

upon permitting geometric relaxations; an example is shown in Fig. 3.7. The

buckling follows the trend expected from the atomic-size mismatch. Thus, Pt

alloys do not show any visible buckling, whereas Pb alloys show the maximum

buckling among the N ’s considered.

In order to gauge the stability of the surface alloys, we have calculated

the formation energy, ∆H, of an alloy relative to the phase-segregated mono-

layers of M and N on Ru(0001), which we define as:

∆H = Eslab(MxN1−x/S)− xEslab(M/S)− (1− x)Eslab(N/S), (3.2)
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Figure 3.7: Relaxed geometries for (a) Fe-Pt, (b) Fe-Ag and (c) Fe-Pb with x
=0.25. Here gray, red, purple, green and blue spheres represent Ru, Fe, Pt, Ag
and Pb atoms, respectively. Note that the amount of buckling increases from Pt to
Ag to Pb, in accordance with the increase in the atomic size of N , resulting in a
larger size mismatch between Fe and N .

where Eslab(A/S) is the ground state energy per surface atom for a single

monolayer of A on substrate, S. When ∆H is negative, the two metals prefer

to mix rather than to segregate in separate islands, and hence the alloy phase

is more stable than the phase-segregated one.

We have plotted SP-∆H (shown with solid lines) as a function of compo-

sition x in Fig. 3.8. For all the pairs of elements, ∆H is negative (indicating

atomically-mixed alloy configurations are stable), except for Co-Ag alloys;

this is in accordance with the experimental observation of phase-segregation

of Co-Ag/Ru(0001) alloy [92, 94]. One can see that for all the magnetic ele-

ments, Pb alloys are the most stable, whereas Ag alloys are the least stable.

This result is not according to our expectation based on the size based selec-

tion criterion (see Sec. 3.3). Also all the curves are approximately symmetric

about x=0.5; this points towards the fact that pairwise interactions are dom-

inant. However, though both the magnetic elements have almost the same

bulk lattice constant, the values of ∆H and the order of stability are not

similar in the two cases. Similarly, Au and Ag which have almost the same

lattice constant in the bulk display distinctly different behavior: M -Au alloys

are stable, whereas Fe-Ag alloys are right at the boundary of stability, and
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Figure 3.8: Formation energy per unit surface area for each configuration as a
function of x, the fraction of magnetic elements: It is plotted for (a) Fe and (b)
Co alloyed with non-magnetic elements. The solid and dashed lines show results
for spin-polarized and non-spin-polarized calculations respectively.

Co-Ag alloys are unstable. These observations suggest that in some cases

chemical interactions are more dominant than elastic interactions.

Next, to see the effect of magnetism on mixing, we have also calculated

and plotted the NSP-∆H (shown with dashed lines) in Fig. 3.8 as a func-

tion of x. For all the systems, except for Co-Cd and Co-Pb, mixing is more

favorable when the systems are spin-polarized than when magnetism is sup-

pressed, as has been found before also for the monolayers of 3d transition

metals on the Cu(100) surface [98]. The effect of magnetism on mixing is

maximum for Fe-N alloys (except for Fe-Pb alloys), followed by Co alloys.

This can be understood from the fact that the magnetic moment is larger on
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Figure 3.9: Magnetic moment µB per magnetic atom of each configuration as a
function of x: The results are plotted for (a) Fe and (b) Co alloys. For comparison,
the magnetic moment of M in their bulk structures are shown by dashed line.

Fe alloys than Co alloys (see Fig. 3.9).

In Fig. 3.9, we have plotted the calculated total magnetic moment, per

magnetic atom, as a function of composition for each configuration. Note that

these moments include induced moments on the “non-magnetic” overlayer

atoms and the substrate atoms. We have plotted the bulk magnetic moment

for each magnetic element as a dashed line, on the same plot, for comparison.

For Fe alloys, the moments for the alloy systems are always greater than that

for bulk Fe. The same is true for Co alloys, except for Co-Pb alloys. As the

percentage of magnetic atoms increases, in the case of Fe alloys, Mtot per

magnetic atom decreases; for Co alloys, Mtot per magnetic atom increases for
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N = Cd and Pb, whereas it decreases for N = Ag, Au and Pt.

We have observed that there are induced moments on N atoms and Ru

layers, and in some cases these values are quite significant. Among all the

N elements considered by us, M -Pt alloys acquire the highest moments be-

cause of the highest induced moments on the Pt atoms; this is expected

based on the bulk NSP-DOS shown in Fig. 3.5. For Ru layers, Co alloys

result in higher induced moments than that for Fe, which was also seen for

single-component M/Ru(0001) (as was shown in Fig. 3.6). The pattern of

such induced moments is rather complex for all the systems, with both ferro-

magnetic (FM) and antiferromagnetic (AFM) alignments present. One such

example has been shown in Fig. 3.10 for the Fe0.50Cd0.50/Ru(0001) configu-

ration. This suggests that the surface alloy systems have a large number of

interactions present, and understanding all the properties will need a very

detailed analysis.

3.6 Analysis

We now analyze in detail the ab initio results for the magnetic properties

and the miscibility of surface alloys. One needs to take into account the fact

that both the structural and the magnetic properties depend on the surface

effects as well as alloying effects.

3.6.1 Magnetic Properties

Initially we have analyzed magnetic properties of these surface alloys. Ac-

cording to Stoner’s criterion for ferromagnetism, the higher the paramagnetic
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Figure 3.10: Magnetic moments induced in Fe0.50Cd0.50/Ru(0001) system: We
have shown a side view of the system Fe0.50Cd0.50/Ru(0001) along with the values
of magnetic moments induced on each of the Cd and Ru atoms. The values in
black (blue) indicate positive (negative) moments.

DOS at the Fermi energy, the larger is the magnetic moment. We have plot-

ted the total magnetic moment for the system (not per magnetic atom),

versus the NSP density of states at the Fermi energy, for each configuration

in Fig. 3.11. If the Stoner criterion holds true, then we should see a mono-

tonic increase of moments as the DOS at the Ef increases. This is seen to

hold in the case of all the Fe alloys (panel a), except for Fe-Pb alloys, and

all Co alloys (panel b). A similar analysis could be done for local magnetic

moments on atoms in overlayers calculated from the PDOS. The plot of local

magnetic moments for the magnetic atoms as a function of the NSP-PDOS

for that M is shown in the top panel of Fig. 3.12; while the induced mo-

ments on the non-magnetic atoms versus the NSP-PDOS for that N atom

are plotted in the middle and bottom panels. In all of these plots, we observe

that most of the plots are not according to our expectation based on Stoner’s
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Figure 3.11: Total magnetic moment, Mtot in µB as a function of non-spin-
polarized DOS of the system at the Fermi energy, Ef . According to Stoner model,
Mtot should increase with DOS at Ef . Note that, for the Fe-N alloys the behavior
is as expected except for Pb alloy; for Co-N alloys, it is true for all alloys.

criterion; also we see no general trend to correlate these two quantities. This

suggests that the Stoner argument does not suffice to explain the magnetic

properties of these surface alloys. The reason may be that the Stoner model

is based on the rigid bond approximation which breaks down for a number

of systems, as is known for transition metal impurities and compounds, and

antiferromagnetic systems [121].

Another quantity of interest which might enable us to see the effect of

the surface and alloying on individual atoms in the overlayer is the effective

coordination number. In crystallography, the coordination number (CN) of

any atom is defined as the number of nearest neighbors in the crystal struc-

ture. Even for atoms, not in periodic lattices, one can define an equivalent
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Figure 3.12: Magnetic moment of an atom (A) in overlayer as a function of
non-spin-polarized density of states at the Fermi level of A. (A = magnetic atom
M in top panel and A = non-magnetic atom N in middle and bottom panels).

measure, known as the effective coordination number (ECN) [122]; this can

be done using the electronic density due to all the nearest neighbor atoms.

The ECN for an atom A is defined as follows,

ECN(A) =

∑n

i=1 ρ(| ri |)
∑m

i=1 ρA(a)
, (3.3)

where the sum is taken over all neighboring atoms i which are at a distance

| ri | from atom A, ρ(| ri |) is the atomic charge density at a distance | ri |

from the nucleus of an isolated atom i and ρA(a) is the atomic charge density
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at a distance a from the nucleus of A. a and m are the NN spacing and the

coordination number of atom A in the bulk. By this definition, for any atom

in its bulk equilibrium structure, the effective coordination number will be

equal to 1.0. The ECN is a measure of the electron density from surrounding

atoms which is used extensively to determine local energetics in semiempir-

ical approaches such as the embedded atom method [123, 124]. Atoms at

the surface have a smaller coordination number than those in the bulk, and

therefore will have ECN < 1. However, when a material is compressed then

the ECN of its atoms would increase, which might be the case for N atoms in

the overlayer. When the coordination number of an atom is reduced (either

by changing crystal structure or by reducing the dimensionality from bulk to

surface to isolated atom), the magnetic moment of the atom increases. This

is in accordance with the Stoner criterion; the less the number of neighbor-

ing atoms, the sharper is the DOS at the Fermi level and the larger is the

magnetic moment.

We have calculated the ECN for M and N atoms in the overlayer using

the charge densities for isolated atoms. In Fig. 3.13, we have plotted the

local magnetic moment of an atom M or N as a function of its effective

coordination number. We observe that for all configurations, the ECN forM

atoms is less than one on alloying, whereas for N atoms it is greater than 1.

This implies that for N , the effect of compressing to smaller NN distances is

more dominant than being at the surface. One can see that for Fe alloys (see

Fig. 3.13a), the magnetic moments decrease as ECN increases as expected

from Stoner’s argument. but only some of the alloys of Co show this trend;

and no definite trend can be inferred for induced moments on non-magnetic
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Figure 3.13: Local magnetic moment of an atom A in the overlayer as a function
of effective coordination number of A. (A = magnetic atom M in the top panel
and A = non-magnetic atom N in middle and bottom panels).

elements. This implies that the change in the coordination number cannot

alone explain the observed trends for magnetic moments. Thus, we conclude

that a complete understanding of the magnetic properties will require further

analysis.

3.6.2 Calculation of Surface Lattice Constants

Now we will analyze in detail the miscibility trends for ∆H obtained for the

surface alloys. As is described in the introduction, it is generally accepted
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that there are two main contributions to the stability of such surface al-

loys: an elastic contribution and a chemical contribution. We would like to

separate out the two contributions.

For homoepitaxial systems, the bulk truncated surface is usually under

tensile stress [125], which can be released through relaxation and/or recon-

struction. Therefore, the effective radius of the atoms at the surface is differ-

ent from that of the bulk. For heteroepitaxial systems, there is atomic-size

mismatch between the overlayer element and the substrate, which can lead

to either compressive or tensile stress depending on whether the overlayer

element has larger or smaller NN spacing than the substrate NN spacing.

In the systems studied here, we are interested to see whether the mixing of

two size-mismatched metals can lead to a stress release, and hence provide an

additional mechanism for the stress release at the surface of a heteroepitaxial

system.

To estimate the atomic radii of M or N atoms placed on the Ru(0001)

surface, termed here as surface lattice constant (SLC), we have used two

different approaches. The first approach is a very simple zeroth level approx-

imation in which we assume a hard sphere model and estimate the SLC from

the buckling of the alloy overlayer (explained previously in Sec. 3.5.4). Using

relaxed structures at the x = 0.50 composition, we find the bond length S−M

(S−N) and subtract from it the atomic radius of Ru (= Ru NN distance/2)

which gives the atomic radius of M(N). The values of SLC calculated using

this method are given in Table 3.4 along with the corresponding bulk lattice

constant. For Au, Ag and Cd, the effective atomic size at the surface is larger

than that in the bulk and smaller for the remaining elements. However, if
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Element acalcbulk (Å) astrssurf (Å) abucklsurf (Å)

Fe 2.47 2.59 2.44
Co 2.49 2.36 2.42
Pt 2.83 2.79 2.74
Au 2.93 2.90 3.00
Ag 2.94 2.92 3.04
Cd 3.04 2.80 3.22
Pb 3.56 3.45 3.48

Table 3.4: Comparison of surface lattice constants, asurf , calculated from two
different methods, with the NN spacing in the bulk.

calculated at a different composition, then the SLC values differ from those

reported here. Also these values are useful estimates, but will not enable us

to separate out an elastic contribution for each configuration.

Therefore in the second method, we have used a simple understanding

that the surface stress will be equal to zero if the surface atoms are at their

preferred neighboring distance. To find this preferred distance, one would

ideally like to compress/stretch the surface layer, while the substrate is fixed

at its equilibrium distance, till the surface stress goes to zero. To achieve a

small compression or expansion only in the overlayer, one needs a huge unit

cell, e.g., to get 1% of expansion of the surface layer, one needs to have 100

atoms in the slab on which 99 overlayer atoms are put. This is computation-

ally very expensive. The simpler way is to compress the whole slab with a

pseudomorphic overlayer, and then subtract out the additional contribution

coming from the stressed bulk slab to compute the surface stress [126]. We

calculate the surface stress of an overlayer on Ru(0001) surface by subtract-

ing the bulk stress due to the substrate from the slab stress. The expression
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for surface stress (obtained by us) is given as follows,

σsurf =
1

2

(

(σV,slab
xx )Lz − (na − 2)σV,bulk

xx

c

2
+ σV,bulk

zz

l2xy
3c

)

, (3.4)

where, σsurf is the surface stress at an in-plane NN bond length lxy for a

slab with na atomic layers and σV,slab
αα , and σV,bulk

αα is the α-component of the

“volume stress” of the slab and the bulk respectively at the same lxy. The

detailed derivation for this expression is given in Appendix A. This method

of calculating the SLC is advantageous because one just needs to calculate

the stress tensor at different in-plane lattice constants for both bulk and slab

cells, and then subtract appropriate terms; there is also an error cancellation

due to the subtraction. Using this method, we can also determine the param-

eters for the interaction potential between the overlayer atoms, as is shown

further below. Previously used methods for the parametrization of surface

interactions, included either using a jellium background [127] or fitting to the

experimental data [128,129].

Now we perform total energy calculations at different intraplanar bond

lengths; the surface stress σsurf as a function of lxy is obtained for each

single-component monolayer on Ru(0001). Note that for these calculations,

we have used a symmetric slab, that is, the overlayer is deposited on both

sides of the slab. As an example, our results for the variation of the surface

stress with in-plane strain, for monolayer of Au and Cd on Ru(0001), are

shown in Fig. 3.14; we obtain qualitatively similar curves for other elements

(not shown here). The value of the SLC is given by the value of lxy at which

the graph cuts the x-axis. These values are tabulated in the second column
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Figure 3.14: Plot of surface stress σsurf versus in-plane bond length lxy for
(a) Au/Ru(0001) and (c) Cd/Ru(0001): the dots represent the calculated values,
whereas the solid line is a fit to data using an expression derived from the Morse
potential. The Morse potential obtained from the fitted Morse parameters is shown
for (b) Au and (d) Cd on Ru(0001). As expected, for Au and Cd, b is larger than
the NN spacing of bulk Ru.

of Table 3.4. Note that the values of SLC obtained from the two methods do

not match.

It is also instructive to plot the surface stress for each single-component

monolayer on Ru(00001) as a function of atomic-size mismatch, defined as

(abulkcalc − as)/as; the plot is shown in Fig. 3.15. When abulkcalc is less than as, as

in the case ofM overlayers, one expects that the system will be under tensile

stress, and vice-versa: when abulkcalc is greater than as, as for N overlayers, one
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Figure 3.15: Surface stress, σsurf , for a single-component monolayer of M or
N on Ru(0001), as a function of atomic-size mismatch, defined as (abulkcalc −as)/as.
The positive (negative) surface stress indicates that that the overlayer is under
compressive (tensile) stress.

expects compressive surface stress for the system. We have observed that for

all N/Ru(0001), the overlayer is under compressive stress, whereas both the

magnetic overlayer systems – Fe and Co – are under tensile stress. These

observations follow the trend expected from the atomic-size mismatch.

3.6.3 Elastic Model

We have used a model to separate out the elastic and chemical contributions

to the formation energy. In this model, we have assumed that the elastic

energy for each composition is given by the sum of individual bond energies.
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We have assumed here that only the NN pairwise interactions are most dom-

inant, and hence ignored further-neighbor terms. The elastic interaction for

each NN bond has a typical form of potential, such as harmonic or Morse

potential. The elastic energy is then written by counting the total number

of bonds in the (2×2) surface unit cell. Initially, we started with a simpler

harmonic potential as the approximation for NN bond potential. Then using

the SLC values obtained using the surface stress method and force constants

obtained by fitting σsurf plots, one can separate the elastic contribution to

∆H. However, we observed that the harmonic bond approximation is not

sufficient to explain many of the observed trends. Therefore, we then con-

sidered NN bonds to have a Morse potential form.

For the NN bonds, we assume that the elastic interactions have the fol-

lowing Morse potential form:

Vij(r) = Aij
0 (1− e−A

ij
1
(r−bij))2, (3.5)

where r is the distance between the NN atoms i and j, bij is the equilibrium

bond length, and Aij
0 and Aij

1 are the parameters associated with the depth

and width of the potential well respectively. In the surface unit cell, there

are three types of bonds: M − N , M −M and N − N . By counting the

number of bonds of each type, we can write the elastic contribution to ∆H
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in terms of Morse parameters as follows,

∆Hela
x=0.25 = 6VMN(as)− 3VMM(as)− 3VNN(as) (3.6)

∆Hela
x=0.50 = 8VMN(as)− 4VMM(as)− 4VNN(as) (3.7)

∆Hela
x=0.75 = 6VMN(as)− 3VMM(as)− 3VNN(as). (3.8)

Note that Eqs. (3.6) and (3.8) are identical, that is, within our model, the

elastic interactions lead to a ∆Hela which is symmetric about x = 0.50. For

bulk alloys of M and N , the second and third terms in the above equations

will have zero contribution because these will be calculated at bMM or bNN ,

and not at the substrate NN spacing as. Thus these terms arise only due

to the presence of the substrate. Consequently, the mixing rules for these

types of surface alloys would be quite different from those applicable for bulk

alloys.

To calculate ∆Hela, we need values of the Morse parameters A0, A1 and b.

To determine the Morse parameters, we have fitted the plots of σsurf versus

lxy which were obtained as explained in Sec. 3.6.2. The plots are fitted with

an expression derived from a Morse potential:

σsurf =

√
3

as

∂V

∂r
, (3.9)

i.e., σsurf =

√
3

as

(

2A0A1

(

1− e−A1(r−b)
)

e−A1(r−b)

)

. (3.10)

When this functional form is fitted for each of the elements M/N as shown

in Fig. 3.14, we get Morse parameters for i − i bonds which are tabulated

in Table 3.5. The value of bii is a measure of the effective size of an atom i
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M/N A0 (eV) A1 (Å−1) b (Å)
Fe 0.1309 2.412 2.56
Co 0.5827 2.052 2.37
Pt 0.6744 1.817 2.79
Au 0.4341 1.797 2.90
Ag 0.3638 1.669 2.92
Cd 0.6564 1.680 2.79
Pb 0.2027 1.563 3.42

Table 3.5: Morse parameters for M −M and N −N bonds: The values of Morse
parameters are obtained by fitting σsurf versus lxy curve for each element.

on the Ru(0001) substrate, which is termed as SLC in the previous section.

Note that for all the nonmagnetic elements considered by us, bNN is greater

than as, whereas for Fe and Co, bMM is smaller than as. Also we find that the

values of b are different from acalcbulk. This difference results from the presence of

the surface (i.e., no neighbors above) and the substrate (different neighbors

below). Except for Fe/Ru(0001), for all elements, b < acalcbulk. For Fe, this

probably results from the fact that in its bulk form Fe has the bcc structure

with a coordination number of 8, whereas all other elements have either the

fcc or hcp structures with a coordination number equal to 12. Therefore,

when placed on the closed-packed Ru(0001) surface, only Fe atoms are more

effectively coordinated than the rest of the overlayer elements. We do not

find any simple correlation between the values of b and acalcbulk.

To get the corresponding parameters forM−N bonds, we use mixing rules

analogous to the Lorentz-Berthelot mixing rules [130]. TheM−N bonds are

assumed to have the form AMN
0 =

√

AMM
0 ANN

0 , AMN
1 =

√

AMM
1 ANN

1 and

bMN = (bMM + bNN)/2. With these approximations, we have calculated the

formation energies within this model. We have checked that the mixing rules
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Figure 3.16: The elastic contribution to the formation energy: ∆Hela is plotted
as a function of x, for (a) Fe and (b) Co, for both spin-polarized (solid lines) and
non-spin-polarized (dashed lines) calculations.

do not introduce considerable errors by comparing the surface stress values

of the mixed alloy phases obtained by ab initio results with those calculated

using the Lorentz-Berthelot mixing rules.

The results for the elastic contribution to the formation energy, calculated

for spin-polarized cases, are shown in Fig. 3.16 with solid lines. For all pairs

considered by us, elastic interactions always favor mixing of the two overlayer

elements. which is in accordance with the predictions by Tersoff [74]. For

both the magnetic elements, Pb alloys are the most stable, followed by Au and

Ag alloys, whereas Pt and Cd alloys are the least stable. At first sight, this

order is not expected based on the atomic-size mismatch given in Table 3.1.



3.6 Analysis 74

However, unlike bulk alloys, for the surface alloys, the phase-segregated forms

can cost a high elastic energy because of the substrate. Pseudomorphic

Pb/Ru(0001) is under a high compressive stress and hence costs higher elastic

energy, compared to which a mixed phase is strongly favored.

To make the above-mentioned statement clear, in Fig. 3.17, we have dis-

played the individual contributions to the right-hand side of Eq. (3.7). The

first (M −N) term is always positive, while the second (M −M) and third

(N −N) terms are always negative. For ∆Hela to be negative, the first term

should be small, while the second and third terms should be large in magni-

tude. The first term is following the expectation from considerations of sizes

for Fe-N and Co-N alloys: Ag and Au alloys are the most favored, followed

by Pt and Cd, and then Pb. Note that both Cd and Pt alloys have roughly

the same contributions from the first term even though in the bulk phase

Cd atoms are much larger than Pt atoms; this is because Cd undergoes a

relatively large contraction in size on the Ru(0001) surface, relative to the

bulk. Elastic interactions favor the formation of Co-N alloys over Fe-N alloys

because a Co monolayer on Ru(0001) has a significant contribution to the

elastic part of the formation energy. Similarly a Pb monolayer on Ru(0001) is

extremely unfavorable energetically, which leads to the high stability against

phase-segregation of M -Pb alloys. However, recall that we have made the

assumption that the alloys as well as phase-segregated monolayers remain

pseudomorphic. For the alloys, this is probably a valid assumption, since the

elastic energy is small, i.e., the stress is unlikely to be high enough to drive

the overlayer to reconstruct, but, for single-component monolayers this may

not be a valid assumption. Despite the significant elastic energy contained
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Figure 3.17: The separate contributions from M −N , M −M and N −N bonds
[from Eq. (3.7)] to ∆Hela in units of eV/Å2, for x = 0.50, for the spin polarized
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alloys respectively. For easier comparison, all the bar charts have been plotted on
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in a Co/Ru(0001) monolayer, experimentally this system has been shown to

grow pseudomorphically [131]. For Pb/Ru(0001), there is no experimental

data describing its growth, however the very high elastic energy suggests that

this system is very likely to reconstruct. Thus, the high stability we obtain

for M -Pb alloys may be misleading; the stability would be lowered if the

phase segregated form were to reconstruct since the third term in the elastic

energy would then be decreased in magnitude. The study of possible surface

reconstructions in these systems has also been done and we will discuss it in

Chapter 6.
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We now repeat our calculations for the elastic contribution to ∆H, for

the NSP case. For this case, the values of b – the effective size on the surface

– for Fe and Co, are 2.46 Å and 2.36 Å respectively. As expected, for both

M , the NSP values of b are less than the SP ones (see Table 3.5). The per-

centage decrease is more for Fe (∼ 4%) than for Co (∼ 0.4%). The computed

elastic contribution to the NSP ∆H is plotted in Fig. 3.16 (dashed lines).

We observe that when only elastic effects are considered, spin polarization

disfavors mixing for all alloys. On examining the separate contributions from

M − N , M −M and N − N bonds, we find that the main reason for the

reduced miscibility of SP configurations is that Fe and Co monolayers are

relatively less stressed when spin polarized. The difference between the SP

and NSP values is higher for Fe alloys than for Co alloys.

Finally, we have shown our results for the chemical contribution to the

formation energy ∆Hchem, calculated for the spin-polarized case, in Fig. 3.18,

with solid lines; these were obtained by subtracting out the elastic contribu-

tion (shown in Fig. 3.16) from the total formation energy computed ab initio

(shown in Fig. 3.8). When only chemical contributions are considered, Co

alloys are the least stable. The stability of Pt alloys is largely due to the

favored M -Pt bonds, which accords with the formation of M -Pt alloys in

the bulk. Also the Ag alloys are not stable, because Fe-Ag and Co-Ag bonds

cost high chemical energy; this is in accordance with previous results [92,94].

Note that Fe-Au bonds favor mixing, while Co-Au bonds cost chemical en-

ergy, which explains the particular order of stability observed in our ab initio

results.

Similarly we have plotted NSP-∆Hchem in the same Fig. 3.18, with dashed
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Figure 3.18: The chemical contribution to the formation energy as a function of
fractional composition, x, for (a) Fe and (b) Co surface alloys . The solid lines
show results for spin polarized calculations and the dashed lines are for non-spin
polarized calculations.

lines. Note that in the absence of magnetism, the chemical interactions for

Fe and Co are quite similar – this implies that magnetic moments alter the

chemical interactions. The effect of magnetism is maximum in the case of Fe

alloys. Spin polarization promotes mixing in all the cases except Co-Cd and

Co-Pb alloys when chemical contribution terms are considered.

3.7 Summary and Conclusions

In this chapter, we have studied magnetic and structural properties of sur-

face alloys of the type MxN1−x/Ru(0001) by performing density functional
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theory calculations. We have separated out elastic contribution to under-

stand the factors governing the energetics of these strain-stabilized alloys.

For many pairs of metals, we find that the surface alloy is stable against

phase-segregation, even though the constituent elements are immiscible in

the bulk. We have also studied the magnetic properties of these alloys and

observe that magnetic moments are enhanced for Fe and Co alloys as com-

pared to bulk magnetic moments. The effect of magnetism on the miscibility

is also studied. In general, mixing is promoted by the presence of magnetism.

We note that the general trends observed for these surface alloys are

similar to those observed in the surface alloys on the Rh(111) surface [132,

133]. The NN distances for bulk Rh and Ru are almost identical (2.69 and

2.70 Å), and both the surfaces studied have a hexagonal unit cell which leads

to similar values of ∆H on two substrates, however the magnetic moments

are higher on the Rh(111) surface, owing to a larger paramagnetic DOS at

the Fermi energy for bulk Rh than that of Ru.

The observed miscibility trends are not in accordance with a simple ar-

gument that the mean atomic size of the overlayer elements should be ap-

proximately equal to the substrate lattice spacing. From our analysis, we

have observed that even though miscibility is mainly governed by the elastic

interactions, chemical interactions also are important. In some cases, chem-

ical interactions are more dominant leading to immiscibility, even if it costs

elastic energy. Also for these strain-stabilized surface alloys, unlike for bulk

alloys, the phase-segregated forms can cost elastic energy. Thus, there are

three factors that determine possibility of mixing at the atomic level: (i) the

elastic energy of the alloys, (ii) the elastic energies of the single-component
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overlayers on the substrate, and (iii) chemical interactions. Additionally,

all these factors can be affected by the presence of magnetism. Because of

these interrelated factors, a simple criterion, analogous to the first Hume-

Rothery rule for bulk alloys which is based only on the elastic energy of each

constituent of an alloy, does not seem possible for such systems.

We have found that the effective size of M or N atoms on the Ru sur-

face is not equal to their bulk size. Several pairs of M and N co-deposited

on Ru(0001) surface favor atomically mixed alloy phases against the phase-

segregated forms; this is primarily because the effective size of M atoms is

smaller than the nearest-neighbor spacing of the substrate, while that of N

atoms is larger. Of the total 10 systems which we have studied, we feel

that Fe-Au, Fe-Cd and Co-Cd are promising candidates for experimental in-

vestigations. In these systems, both elastic and chemical interactions favor

mixing. Though this is also true for Fe-Pt and Co-Pt alloys, these form alloys

in their bulk phases. Also M -Pb alloys are found to strongly favor alloying,

however our assumption of Pb forming a pseudomorphic layer on Ru(0001)

may not be valid. For this reason, we do not believe that the Pb alloys are

good candidates to observe atomic-level mixing.

Some of the results presented in this chapter were published by us in

Ref. [132,134].



Chapter 4

Ordered Surface Alloy of

Bulk-Immiscible Fe and Au on

Ru(0001)

4.1 Introduction

In the previous chapter, we had studied the formation of surface alloys from

two bulk-immiscible metals on the Ru(0001) surface. After a detailed analysis

of the energetics of these strain-stabilized surface alloys, we had predicted

that a few of the pairs are promising candidates to observe atomic-level

mixing at the surface [134]. Out of these predicted systems, we believe that

Fe-Au/Ru(0001) is a perfect system to study surface alloying, because as

shown in Chapter 3, both elastic and chemical interactions favor mixing for

this system. Also because the effective sizes of Fe and Au atoms on the

Ru(0001) surface are 2.56 and 2.90 Å respectively, therefore their average

80
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value (= 2.73 Å) matches well with the nearest neighbor spacing of Ru (= 2.74

Å). Based on these theoretical predictions, our experimental collaborators –

the group of S. Rousset, et al., – have performed experiments on one of these

systems, namely, FexAu(1−x) on the Ru(0001) surface, where x is the Fe

concentration. Both Fe(110) and Au(111) have smaller surface energies (=

0.98 and 0.61 eV/atom respectively) than Ru(0001) (= 1.57 eV/atom) [117]

which makes it less likely that deposited atoms will diffuse into the Ru bulk.

In their bulk phases, Fe and Au are immiscible except at high temper-

atures, and at small concentrations. The phase separation can be clearly

seen in the bulk phase diagram for the Fe-Au system shown in Fig. 4.1 [135].

However, there have been some reports which show that Au deposited on

the Fe(001) surface forms a surface alloy for coverages below 0.5 ML [136];

this surface alloy was shown to have only a short-range order [137]. This

kind of surface alloying leads to new ordered phases which were not observed

before. A better understanding of these phases is essential because structural

properties at the surface determine magnetic and transport properties.

There have been many reports on single-component Fe or Au layers de-

posited on the Ru(0001) surface. It has been observed in experiments that

even at a single monolayer coverage, Au deposited on the Ru(0001) surface

has a striped pattern of dislocations forming a herringbone pattern, and

at higher coverages, it has a triangular pattern of dislocations [107]. This

happens because a pseudomorphic layer would be under a large compressive

stress, arising from the large atomic-size mismatch between Au and Ru. In

contrast, Fe forms two-dimensional, pseudomorphic layers on the Ru(0001)

surface till a critical thickness [104, 138]. For annealing temperatures > 800
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Figure 4.1: Bulk phase diagram for the binary Fe-Au system is shown; it is taken
from Ref. [135]. The strong tendency towards phase separation of the two elements
can be clearly seen.

K, Fe and Ru are observed to form an interfacial alloy [104]. The Fe/Ru(0001)

system has been extensively studied for its magnetic properties because the

Fe layer has a pseudo-hexagonal structure. The hexagonal closed packed

phase of bulk iron is known to be stable at very high pressures [139,140], and

extensive theoretical and experimental studies have observed the absence

of magnetic ordering [141, 142] for this phase. In earlier experiments, the

Fe/Ru(0001) system was found to have magnetic dead layers (i.e., no ferro-

magnetic ordering) up to 2 ML thickness [143] similar to the bulk hcp Fe; this

was found to result from in-plane anti-ferromagnetic ordering by theoretical

calculations [120,144]. Hardrat et al., have also shown that as Fe layers have

a triangular lattice, the AFM coupling leads to frustration giving rise to a

more complicated spin ordering [120], which makes this system interesting

to study.
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When Fe and Au are co-deposited on Ru(0001), the structural properties

are observed to change drastically. In experiments in the group of S. Rousset,

this system shows a long-range ordered, atomically mixed pseudomorphic

surface alloy at compositions where the Fe concentration is about 33%. These

experiments are discussed in Section 4.2. In the present work, we have studied

a large number of configurations for Fe-Au/Ru(0001), to understand various

trends observed in the experiments. Note that in the work discussed in the

previous chapter, we were interested in studying general trends which govern

mixing properties of surface alloys, so we investigated a large number of pairs

of metals but only for a few configurations, whereas now we are interested in

studying one particular system at lots of different configurations. To analyze

the effects of magnetism on mixing properties, we have also done non-spin

polarized calculations for all the configurations. In addition, to see the effect

of the presence of the substrate, we have performed calculations on free-

standing monolayers of Fe-Au constrained to have the same geometry as

that of the Ru(0001) surface, i.e., a triangular lattice at the NN spacing of

the Ru(0001) surface.

4.2 Experimental Background

In this section, we have described experiments done on the Fe-Au/Ru(0001)

system by our collaborators in the group of S. Rousset [145]. All the experi-

ments were performed in an ultrahigh vacuum (∼ 2 × 10−10 mbar) where a

Ru(0001) single crystal was cleaned by cycles of oxygen exposure at 1400 K
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and then flashing at 1800 K. The purity of the sample was checked by per-

forming Auger electron spectroscopy after each cycle till signals for carbon

and oxygen impurities became vanishingly small; this was also confirmed by

sharp diffraction spots in the low energy electron diffraction (LEED) pat-

tern. The clean sample was observed to have large terraces (∼ 200 nm wide)

using scanning tunneling microscopy (STM). The alloy films were prepared

by depositing one metal on the Ru single crystal and annealing the complete

system, and then the same procedure was followed for the second metal.

This two-step annealing is necessary to achieve larger and flatter islands,

because the mobility of Fe and Au on the surface is kinetically limited, and

one-step annealing after deposition of both the overlayer elements leads to

smaller islands separated by patches of the bare Ru surface. The final con-

figurations obtained did not depend on whether Fe or Au was deposited first,

indicating that the equilibrium configuration has indeed been achieved. Au

was deposited from an electron-beam heated Mo crucible at the rate of 0.04

ML/min, and Fe was deposited from an electron-beam heated Fe rod at the

rate of 0.07 ML/min. All STM and LEED measurements were performed at

room temperature.

Ru is nearly completely immiscible with both Au and Fe up to 600 K,

and has a higher surface energy; therefore mixing between the overlayer and

substrate is not favored. It was found that when only Au is deposited, the

growth is in the layer-by-layer mode, with no diffusion into the substrate

up to an annealing temperature of 750 K. On large islands of deposited

gold, stacking fault lines and a herringbone-like shape were observed, in

agreement with previous studies [107]. When only Fe was deposited on the
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Figure 4.2: STM images of FeAu/Ru(0001) at different compositions (figure
courtesy S. Mehendale, et al.): (a) 50 × 50 nm2 image after deposition of 0.40
ML of Au, annealed at 600 K and then followed by 0.36 ML of Fe at 300 K but
not annealed. The image shows large circular islands consisting of Au atoms, and
Fe atoms grow on top of these Au islands (brighter small islands) and along their
perimeter (slightly darker dendritic shapes). (b) 50 × 50 nm2 image of a 0.7 ML
coverage of Fe0.25Au0.75 deposition, after annealing at 600 K. Inset shows a zoom
of part of an island formed by overlayer metals, showing 7.9 × 7.9 nm2 area.
(c) An example for Au-rich phase showing 4 × 4 nm2 area of 0.9 ML coverage
of Fe0.33Au0.67 deposition, after annealing at 600 K, and (d) 4 × 4 nm2 area of
0.7 ML coverage of Fe0.55Au0.45 deposition, after annealing at 600 K showing a
representative Fe-rich phase. This figure has appeared in Ref. [146].

surface, it grows pseudomorphically in accordance with previous results [104,

138]. There is no mixing between Fe and the substrate till the annealing

temperature is higher than 700 K. As a result, the annealing temperature

was restricted to 600 K for the experiments on surface alloys, so mixing

between overlayer elements and Ru could be avoided; thus the substrate can

be considered as only a periodic potential on which overlayer atoms sit. It was

observed that the mobility had a temperature dependence, and hence also
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the resultant structure – for annealing temperatures less than 500 K, both

the Fe and Au atoms did not have sufficient mobility on the surface, thus

the mixing mainly started at about 520 K and the phase equilibrium could

be achieved only around 600 K. So there is a lower limit to the annealing

temperature required.

In Fig. 4.2, STM images are shown for co-deposited Fe and Au on Ru(0001)

at different concentrations. Fig. 4.2(a) shows a typical starting configuration

of co-deposited 0.40 monolayer (ML) of Au and 0.36 ML of Fe before an-

nealing. In this, Au forms large islands and Fe atoms either sit at the edges

of islands (imaged slightly darker because of the size difference between the

two metals) or form small islands on the Au islands. Fig. 4.2(b) shows a

typical image observed after annealing at 600 K; it is obtained for a sample

of 0.53 ML of Au and 0.17 ML of Fe. Note that there is a large variation in

the morphology after annealing the sample. The annealed sample consists of

homogeneous islands, with a slight contrast within the island due to alloying

on the surface as shown in the inset. At the boundary of the island, the

contrast has not changed, implying that segregation effects are negligible as

compared to the enthalpy of mixing.

In Figs. 4.2(c) and (d), atomic resolution STM images are shown for

Au-rich and Fe-rich phases respectively. For Au-rich phases – with Fe con-

centration of about 0.33 – a periodic structure having a long-range order

is observed, except for some local defects. The long-range order (LRO) for

these compositions is confirmed by a clear LEED diffraction pattern. How-

ever, for configurations having Fe concentrations x near 0.50, there is no LRO

present, as shown in Fig. 4.2(d); only a short-range correlation between Au
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Figure 4.3: A comparison of the experimental and the calculated results for (
√
3×√

3) structure of the Fe0.33Au0.67 alloy: (a) A high resolution 2.1×2.1 nm2 STM
image of 0.9 ML coverage is shown, after annealing at 600 K. (b) The LEED
pattern taken at 62 eV confirms the (

√
3 ×

√
3) structure. Here the spots near

the boundary correspond to the Ru(0001) surface and additional spots, which are
rotated by 30◦ and located at 1/

√
3 distance compared to Ru spots (connected by a

hexagon) correspond to the (
√
3×

√
3) unit cell. (c) Simulated constant height STM

image taken at a height of 5.7 Å and a bias of 400 mV is shown to compare with the
experimental STM image. (d) The atomistic model of the (

√
3×

√
3) surface unit

cell is shown. Black points show the positions of substrate atoms in the topmost
layer, and red and yellow spheres represent Fe and Au atoms respectively.

and Fe atoms is present, with some local order. For all other concentrations

studied – Au-rich phases with x < 0.33, and Fe-rich phases – no LRO has

been observed in STM images. Furthermore, for very high Au concentra-

tions (> 80%), it has been observed that, along with the alloy islands, clean

Au islands are present, containing herringbone reconstruction lines [145]; for

smaller Au concentrations, no reconstruction has been observed.

A high resolution STM image of 0.9 ML coverage of Fe0.33Au0.67 depo-

sition is shown in Fig. 4.3(a); it shows a (
√
3 ×

√
3) structure with perfect
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order. In Fig. 4.3(b), the LEED pattern taken at 62 eV on a 0.7 ML of

Fe0.30Au0.70 is shown and confirms the structure. The atomistic model for

this structure is shown in the Fig. 4.3(d); this is the two-dimensional ordered

phase with the smallest possible unit cell for x = 0.33 on a hexagonal lattice.

We will discuss this in detail further below.

4.3 Computational Details

We have performed spin polarized ab initio density functional theory calcula-

tions using a plane-wave basis set along with ultrasoft pseudopotentials [18]

as implemented in the Quantum-ESPRESSO package [29]. We have used a

generalized gradient approximation of the Perdew-Burke-Ernzerhof form [11]

for the exchange-correlation functional. All the parameters used for the fol-

lowing calculations are the same as those used in the previous chapter. The

energy cut-off for wave functions is taken to be 20 Ry and the charge density

cut-off is 160 Ry. We have used a supercell approach to model the surface

within periodic boundary conditions. The supercell has a slab which consists

of six Ru layers, one overlayer of Fe or Au or Fe-Au and a vacuum spacing

of about 17.4 Å. The overlayer was deposited on only one side of the slab

occupying the hcp sites, and is assumed to be pseudomorphic to the sub-

strate. The overlayer and three adjacent Ru layers are allowed to relax using

Hellmann-Feynman forces to get optimized geometries, whereas the three

bottommost layers are kept fixed. We have used an (8×8) Monkhorst-Pack

k-point grid [19] for the surface Brillouin zone of the smallest (1×1) unit cell

for the triangular lattice; and for the larger unit cells, k-meshes proportional
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to this are used. The Methfessel-Paxton smearing technique [22] is used with

the smearing width equal to 0.05 Ry.

We have considered a total of 43 different configurations, which consist of

all possible configurations [148] containing two, three, four, and five atoms

per unit cell, and several containing six atoms per unit cell. The formula used

to generate all these distinct unit cells is given in Appendix B, and a detailed

description of each of the configurations studied is given in Appendix C.

4.4 Results and Discussion

We have first studied the mixing properties of all the alloy configurations

by computing the formation energy ∆H as a function of Fe concentration

x using Eq. (3.2) given in the previous chapter. The results for all the SP-

configurations are plotted in Fig. 4.4(a). On the same figure, we have also

plotted a convex hull (orange dashed line) which is defined as a set of straight

lines connecting the lowest energy structures, forming a convex shape, such

that all the remaining structures lie above the hull. The description of each

configuration lying on the convex hull is tabulated in Table 4.1, and top views

for a few selected configurations are shown in Fig. 4.3(d) and Fig. 4.5; for

the remaining configurations one can refer to Appendix C.

For all the configurations considered here, we find that ∆H is negative,

which indicates that mixing is favored even though Fe and Au do not mix in

the bulk. We find that mixing tendencies are not symmetric about x = 0.50

concentration, with slightly higher |∆H| for the Au-rich phases than the Fe-

rich phases. The most stable structure is the (
√
3×

√
3) structure at x = 0.33
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Figure 4.4: Formation energy as a function of Fe concentration x from (a) spin-
polarized and (b) non-spin polarized calculations: The convex hulls for SP and NSP
calculations have been highlighted by orange stars and red plus signs respectively.
For both panels, the same scale is used for easier comparison. Note that for a
given configuration, the SP phase is always more favored than the corresponding
NSP phase.

(top view shown in Fig. 4.3(d)), which is the same phase as the one observed

in the experiments to be the stable phase with LRO. In addition, at this

composition, the difference in the ∆H values of the structure on the convex

hull and the next stable structure is much larger than that for the other points

on the convex hull; and also around this composition other phases have ∆H

values which lie much above the convex hull unlike for other concentrations.

These two observations together explain the observed LRO and the stability

of this structure over a large range of compositions in the experiments. In

contrast, at other values of x, there are several nearly degenerate phases

lying close to the phase on the convex hull, higher in energy only by a few
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meV per surface atom. For example, at x = 0.5, there is one more ordered

alloy structure, separated by only 3 meV, near the structure on the convex

hull. We have shown top views of these two configurations in Fig. 4.5(a) and

(b). Note that, as was shown in Fig. 4.2(d), in the experiments, one can

locally observe presence of these two phases around 50% composition which

agrees well with the theoretically predicted structures. Recall that the DFT

calculations are done at zero temperature, whereas the experiments are done

at high temperatures. Thus such structures lying very near to the convex

hull will compete in energy under experimental conditions. This explains

the fact that, except near x = 0.33 concentration, no LRO was observed

in the experiments. Furthermore, the convex hull passes through only two

structures in the Au-rich region, but through five structures in the Fe-rich

region. Thus for the Fe-rich phases, there are many competing phases at and

around each x which will also lead to a lack of ordering at longer length scales.

All of this demonstrates a remarkable agreement between the experiments

and our calculations.

To further compare with the experiments, we have simulated a constant

height STM image for the Fe0.33Au0.67 alloy having (
√
3 ×

√
3) structure,

which is shown in Fig. 4.3(c). The simulation is done at a bias of 400 mV

and a height of 5.7 Å. From the simulated STM image, we observe that Fe

atoms are imaged darker than Au atoms, in agreement with the experiments.

Though in the experiments, constant current image is recorded, there is a

good agreement between the experimental STM image, shown in Fig. 4.3(a),

and the simulated image. This strongly supports the observed structure of

the alloy.
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x Deposited SP phases Deposited NSP phases FSM-SP phases

0.167 - - -

0.20 (
√
7×

√
3) Fig. C.2b - -

0.25 - - (2× 2) Fig. C.3b

0.333 (
√
3×

√
3) Fig. C.4b (6× 1)1 Fig. C.4e -

0.40 - (5× 1)1 Fig. C.5a -

0.50 (2×
√
3) Fig. C.6c (4× 1) Fig. C.6b (2× 1) Fig. C.6a

0.60 (
√
7×

√
3)2 Fig. C.5d - -

0.667 (
√
3×

√
3) Fig. C.4b (2

√
3×

√
3)2 Fig. C.4d -

0.75 (2×
√
3) Fig. C.3c - (2× 2) Fig. C.3b

0.80 (
√
7×

√
3) Fig. C.2b - -

0.833 (2
√
3×

√
3) Fig. C.1b (2

√
3×

√
3) Fig. C.1b -

Table 4.1: List of configurations which fall on the convex hulls for deposited SP,
deposited NSP and FSM-SP calculations at each x: To see each alloy configuration,
refer to the schematic top views of each unit cell given in Appendix C; here we have
also given the corresponding figure labels.

Upon a further examination of the energetics of the various configurations

considered by us, we find that for a given x, the lowest energy structure is

almost always the one that maximizes the number of heteroatomic pairs

and triplets, that is, structures having isolated Fe or Au atoms surrounded

by atoms of the other species are preferred. This implies an inclination

towards atomic-level mixing. We will return to this point again in the further

discussion below.

Next, we have performed non-spin polarized calculations (to suppress

magnetism). In Fig. 4.4(b), we have plotted NSP-∆H along with the convex

hull obtained for the NSP phases (shown with red dashed line). For each

configuration, the SP alloy is more favored then the NSP alloy. The misci-

bility is reduced considerably in the absence of magnetism which indicates
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Figure 4.5: Top views of (a) (2 ×
√
3) and (b) (2

√
3 ×

√
3) structures for x

= 0.50. Black points indicate positions of top Ru layer and red (yellow) spheres
show Fe (Au) atom positions in the overlayer. The surface unit cell is shown with
black lines. The first structure lies on the SP convex hull, however the second
one is separated by only 3 meV per surface atom in energy from the previous one;
therefore both these structures are likely to be observed in the experiments. In (c),
we have shown a top view of (6× 1) structure which is found to be the most stable
structure at x = 0.33 in NSP calculations.

the importance of magnetism in determining the stability of surface alloy

phases. Also, the order of stability for structures is different for SP and NSP

calculations. We note that fewer phases lie on the NSP convex hull as com-

pared to the SP convex hull, and also as tabulated in Table 4.1, the actual

structures lying on the convex hull differ from those on the SP curve. If we

compare the structures on the two convex hulls, then we note that for the

NSP calculations the striped structures are more favored indicating a slightly

greater tendency towards phase segregation which is in contrast to the SP

phases. For example, at x = 0.33, the most stable structure has a (6 × 1)

unit cell (shown in Fig. 4.5(c)) which differs markedly from the (
√
3 ×

√
3)

structure favored in the case of the SP phases.

For these types of surface alloys, surface stress reduction was hitherto

believed to be the driving force for the mixing of overlayer metals. To examine

the validity of this assumption, for all the configurations under study, we have
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Figure 4.6: Surface stress as a function of x for all the configurations under
study: Top (bottom) panel shows results for SP (NSP) phases. The xx and yy
components are plotted in left and right panels respectively. The same scale has
been used for all the panels. On each panel, stress values corresponding to the
structures on the convex hulls are highlighted by orange stars (for SP) or by red
plus signs (for NSP). Note that for SP, σsurf goes to zero at x ∼ 0.8 indicating
Fe-rich phase are more favored, however for NSP, it goes to zero at x ∼ 0.5.

computed the surface stress σsurf as a function of x; the expression used to

calculate the surface stress components has been derived in Appendix A.

Note that the surface stress equation was derived for a symmetric slab, that

is, a slab having an overlayer on each side, however in these calculations we

have considered an asymmetric slab. Therefore one needs to subtract the

stress coming from the unrelaxed Ru surface, that is, from the other side of

the slab which is not allowed to relax. The surface stress of the overlayer
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σsurf
overlay can then be written as:

σsurf
overlay = σsurf − σsurf

unrel, (4.1)

where σsurf is the surface stress which is derived in Appendix A, σsurf
unrel is the

surface stress for the ideal, bulk-truncated Ru(0001) surface which is equal

to -0.405 eV/Å2. We now use this modified equation to compute the surface

stress for these systems.

The xx and yy components of the surface stress for the SP phases are

plotted in Fig. 4.6(a) and (b) respectively. On each of these plots, the points

corresponding to the configurations on the convex hull (given in Fig. 4.4(a))

are highlighted by orange stars. Note that the stress is reduced on mixing,

having higher magnitudes for both Fe (x = 1.0) and Au (x = 0.0) single-

component monolayers. As x increases, the stress varies from compressive

to tensile values, following an almost linear trend. The stress is observed to

be asymmetric around x ∼ 0.5 which results from anharmonic interatomic

potentials and the differing interatomic force constants for Fe and Au. Con-

sidering only elastic terms, one would expect that Fe-rich alloy phases should

be favored over Au-rich phases, because both the surface stress components

go to zero at x ∼ 0.8. However, as demonstrated above, we have found that

Au-rich phases are more favored. Also at a given composition, the most

stable structure does not correspond to the lowest surface stress at that com-

position, as can be seen from the position of the highlighted convex hull

structures. From these observations, we conclude that for this particular

system, stress reduction is not the dominant factor governing the mixing of
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overlayer metals.

Next, we see how the surface stress is affected when magnetism is ab-

sent. We have plotted the xx and yy components of σsurf obtained for NSP

phases in Fig. 4.6(c) and (d) respectively. On these plots, the structures cor-

responding to the NSP convex hull are highlighted by red plus signs. Note

that the single-component Fe/Ru(0001) layer is less stressed when magnetic;

this point was discussed in the previous chapter. The overall trends such as

reduction on mixing and linear variation with x are still present for NSP cal-

culations, however the main difference is that the stress goes to zero at x ∼

0.5 implying that the NSP-∆H should be more or less symmetric about x =

0.5. Unlike the SP-σsurf , the lowest surface stress at a given x, in general,

corresponds to the lowest energy structure at that x. This implies that, in

the absence of magnetism, the surface stress becomes the dominant factor

which governs the mixing.

In Fig. 4.7, we have plotted magnetic moments per Fe atom, as a function

of x, for all the configurations considered by us. In general, the values of

magnetic moments decrease as the Fe concentration increases. The structures

lying on the convex hull for the SP-∆H are shown with orange stars. Our

most striking result is that we observe that the lowest energy structure is

always the one with the highest magnetic moment per Fe atom. This is in

accordance with our observation that the structures with “isolated” Fe atoms

have lower ∆H. This underlines the importance of magnetism in stabilizing

the mixed phases, which was earlier demonstrated by reduction of mixing

on switching off magnetism. In our case, magnetism not only increases the

mixing, but also tilts the balance towards Au-rich phases, implying that the
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Figure 4.7: Magnetic moment per Fe atom as a function of x for all the con-
figurations: We have highlighted those structures which lie on the convex hull by
orange stars. For each x, we see that the highest magnetic moment corresponds to
the lowest energy structure.

exchange interactions are more dominant than the elastic interactions for

this system. Similar ideas have been previously discussed by S. Blügel for

the binary alloy of Mn/Cu(001) [98].

4.4.1 Free-standing Monolayers

Now we discuss briefly the results for free-standing monolayers (FSM) of

FexAu(1−x) layers, which are constrained to have the same geometry as that

of the Ru(0001) surface, but placed in vacuum. In this case, the layers

are not allowed to relax geometrically because in the x-y plane, we want to

confine the free-standing monolayers to the Ru(0001) surface lattice constant,

and in the z direction, for some example systems, we did not observe any
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relaxation. Even though such free-standing layers are not feasible in actual

experiments, examining their properties allows us to separate out the effect

of dimensionality (confining the Fe-Au layer to two-dimensions) from the

substrate effects (interaction of Fe-Au layer mediated via Ru layers).

The main results for FSM configurations are summarized in Fig. 4.8. In

Fig. 4.8(a), we have plotted the formation energy as a function of x. For

all the configurations, ∆H is negative implying that the mixing is favored

even for free-standing Fe-Au monolayers. This is in contrast to the three-

dimensional Fe-Au phases which do not form alloys over the entire concentra-

tion range. Comparing the plot with the results from deposited monolayers

in Fig. 4.4(a), we see that the values of ∆H are in the same range for both the

cases, which implies that the mixing is more affected by confined dimensions

than the presence of the substrate. However, there are fewer structures on

the convex hull and the structures on the hull differ from those observed for

deposited monolayers, as seen from Table 4.1. Thus the presence of the sub-

strate influences the relative stability of various phases, but not the presence

or absence of mixing itself.

Next, we have calculated the components of surface stress for the FSM

phases. Note that in this case, there is no contribution from the substrate, so

σsurf is given by the “volume stress” multiplied by the length of the supercell

along the [0001] direction. The xx and yy components of σsurf are plotted

in Figs. 4.8(b) and (c) respectively. Except for a pure Au monolayer, all the

phases are under tensile stress. This can be understood in terms of reduced

coordination of each atom which will tend to decrease the NN spacing of the

FSM phases. For the Au monolayer, even though coordination is reduced, it
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Figure 4.8: Results for (a) the formation energy, (b) xx and (c) yy components of
the surface stress and (d) the magnetic moments as a function of the Fe concentra-
tion x for SP calculations of free-standing monolayers: The convex hull structures
are shown with magenta crosses. The overall trends observed for these phases are
similar to the trends observed for the deposited monolayers.
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has been compressed to Ru NN distance which will lead to compressive stress.

For the Fe layer, the value of surface stress has increased compared to that in

the deposited monolayer case, whereas for Au, it has decreased. The reason

is that Fe/Ru(0001) is already under tensile stress which increases on reduced

coordination, but the Au/Ru(0001) system was under compressive stress, the

tendency towards which is opposed on reduced coordination. For the free-

standing monolayers, we have not observed any correspondence between the

lowest energy structure and a lower stress at a given x.

Finally in Fig. 4.8(d), we have plotted the magnetic moments for all the

configurations under study as a function of x. The overall trends are the

same as for the deposited monolayers (see Fig. 4.7). However the values of

moments are higher for FSM phases which results from the narrowing of d

bands for the reduced coordination number. There is no correlation between

structures with highest magnetic moments and the structures with lowest

energies as was observed for deposited case. This underlines the importance

of the presence of the substrate to meditate exchange interactions which leads

to atomic-level mixing.

4.5 Summary and Conclusions

In this chapter, we have studied two-dimensional surface alloys of the form

FexAu(1−x) on the Ru(0001) surface, using ab initio calculations. We com-

pare our results with experimental results obtained on this system using STM

and LEED techniques. Even though Fe and Au are largely immiscible in the

bulk phase, we have found that they form commensurate alloyed phases on
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Ru(0001). We have calculated the formation energy for a large number of

configurations and found that the most stable structure occurs at x = 0.33,

with a (
√
3 ×

√
3) structure. The same structure is observed in the experi-

ments, having a long-range ordering, over a range of Au-rich compositions.

We have calculated the surface stress and the magnetic moments for all the

configurations under study. We have also performed non-spin polarized cal-

culations on all the configurations to separate out the effects of magnetism.

From comparison of the SP and NSP results, we conclude that on alloying

the surface stress is reduced which favors the atomic-level mixing, however

the relative stability of various phases is primarily decided by the exchange

interaction. From a closer examination of the structures on the convex hull

for this system, we were able to explain several trends observed in the exper-

iments.

We have also done calculations for free-standing monolayers of FexAu(1−x)

constrained to have the geometry of the Ru(0001) surface. By comparing the

results for FSM and deposited monolayers, we have concluded that the mixing

is more affected by the dimensionality than the substrate, but the relative

stability of individual phases at a given concentration depends largely on the

presence of the substrate.

Note that for the calculations in this chapter, we have made two as-

sumptions: the first is that the pure Fe and Au monolayers, and all the

alloy overlayers are taken to be pseudomorphic to the substrate. For the

Fe layer, this is known to be a correct assumption [104, 138, 147]. For alloy

layers, the assumption may or may not be valid; however in the previous

chapter, we have shown that the elastic contribution from Fe-Au bonds is
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small (refer to Fig. 3.17 and the corresponding discussion), and therefore we

believe the likelihood of reconstruction is low. For the Au layer, this as-

sumption is known to be incorrect [107,147]; however our calculations, using

the Frenkel-Kontorova model, have shown that the energy difference between

reconstructed and unreconstructed surfaces is not more than a few meV per

atom (see Chapter 6) [147]. The second assumption is to consider only the

ferromagnetic configuration for the pure Fe layer on Ru(0001), which, how-

ever, has been theoretically shown to have non-collinear Néel state [120,144].

However, we believe these two assumptions might change the actual numer-

ical values of various quantities, but not the observed trends or qualitative

behavior.

Some of the results presented in this chapter have been published by us

in Ref. [146].



Chapter 5

Effect of Substrate on the

Stability of Surface Alloys:

FexAu1−x/Mo(110)

5.1 Introduction

In the previous chapter, we have shown that a single layer of co-deposited

Fe and Au forms a long-range ordered surface alloy on the Ru(0001) sur-

face [146]. Here we would like to investigate how a change in geometry and

substrate will affect the structural properties of a Fe-Au monolayer, so we

have replaced Ru(0001) by the Mo(110) surface. The NN spacing values of

Ru (= 2.70 Å) and Mo (= 2.73 Å) differ by about only 1%. However, the

anisotropy of the Mo(110) surface might play a dominant role in determin-

ing the relative stability of various configurations. This surface was chosen

because it has been studied extensively, and techniques to prepare a clean

103
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Figure 5.1: Schematic diagram for the unit cell of (a) centered-rectangular
bcc(110) surface (b) hexagonal fcc(111) surface: In (a), the centered-rectangular
unit cell for the bcc(110) surface with different crystallographic directions is shown.
ai’s are the distances along the various crystallographic directions; a1 is the NN
distance. In (a), a1 6= a2 6= a3, but as shown in (b), for the fcc(111) surface,
a1 = a2 6= a3.

surface are known [149]. Similar to the case of Ru discussed in the previous

chapter, the Mo(110) surface has a higher surface energy (= 1.5 eV/atom)

than the Au(111) and Fe(110) surfaces (= 0.61 and 0.98 eV/atom) [117].

Further the solubility of Fe and Au in bulk Mo is very limited. These two

facts indicate that diffusion of atoms of either of the overlayer species into

the substrate, or alloying with the substrate, should be restricted.

The substrate molybdenum has a body-centered cubic (bcc) structure in

the bulk. We are considering the (110) surface of Mo which has a centered-

rectangular unit cell (schematic diagram shown in Fig. 5.1a). This surface

is anisotropic along different directions, unlike the Ru(0001) surface. This

implies that the atomic-size mismatch criterion which was used to estimate

strain reduction should be modified to account for this. Therefore we have

compared the most stable surface for each overlayer element, i.e., Fe(110) and

Au(111), with the Mo(110) surface [83]. The Fe(110) surface has the same

geometry (with different lattice constants) as that of the Mo(110) surface as

shown in Fig. 5.1(a), and the geometry of Au(111) is shown schematically
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Crystal directions
Size mismatch
Fe Au

[1̄11] (NN direction) −9.2 5.3
[001] (along y-axis) −9.2 −9.0
[1̄10] (along x-axis) −9.2 11.6

Table 5.1: Atomic-size mismatch (in %) of Fe and Au with Mo, calculated by
considering the anisotropy of the (110) surface: The values for bond lengths used
to calculate the mismatch are experimental values taken from Ref. [103].

in Fig. 5.1(b). The mismatch values are tabulated in Table 5.1, calculated

for different crystallographic directions. For the Fe layer, the stress along

different directions is identical (∼ −9.0 %), owing to the fact that both the

surfaces have the same geometry. However for Au, both the value and the

sign of the mismatch are different along different directions. Along the [001]

direction, both Fe and Au layers would be under tensile stress. Along the

other two directions, the Fe layer would be under tensile stress, whereas the

Au layer would be compressed, and thus along these two directions strain

reduction by mixing may be expected. These mismatch values could be used

as indicators to gauge whether the surface stress should be compressive or

tensile along different directions.

5.2 Previous Work

A lot of work has been done to study the properties of a single-component

Au or Fe monolayer deposited on the Mo(110) surface. For the Au/Mo(110)

system, the growth process is temperature-dependent and the mobility of

deposited atoms is limited at room temperature. For a monolayer coverage,

near room temperature, there is two-dimensional layer formation (Frank–van
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der Merwe growth mode), however there is no long-range order; but at high

temperatures, the layer relaxes to form large islands [150, 151]. At higher

coverages, the growth mode changes from Frank–van der Merwe to Stranski–

Krastanov growth mode [152]. The growth is not pseudomorphic even at low

coverages. No alloying with the substrate has been observed for this system.

The growth of iron on the Mo(110) surface proceeds in a number of steps

depending on deposition temperatures and growth rates. Using STM and

LEED measurements, pseudomorphic growth in the Frank–van der Merwe

mode has been observed at room temperature, which is followed by Stranski–

Krastanov mode at intermediate temperatures and alloying at high tempera-

tures (> 600 K) [153,154]. However, there is no alloying until deposition of a

single monolayer is complete, even at very high temperatures. At higher cov-

erages, there is formation of dislocation lines to reduce the stress, but misfit

dislocations are not observed for a single monolayer [154,155]. Previous calcu-

lations have shown that for Fe/Mo(110), there are magnetic moments induced

on the adjacent Mo layers with antiferromagnetic (AFM) coupling [156].

Also, it has been shown that there is a strong magnetic anisotropy for 1

ML Fe on Mo(110), with in-plane easy axis along the [11̄0] direction [157].

However some experimental studies observed the in-plane easy axis of mag-

netization pointing along the [001] direction [158]. Notably Fe nanoislands

and nanowires have shown perpendicular magnetization [159–161] in contrast

to thin layers. So it will be interesting to study how the magnetic properties

will be affected when Fe forms an alloy with a non-magnetic element such as

gold.

There have also been some reports which study Fe-Au nanostructures on
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the Mo(110) surface [162, 163]. In these studies, the authors have shown

that at room temperature, Au deposited on the pre-deposited Fe nanostripes

on Mo(110) forms islands elongated along the [001] direction; this indicates

anisotropic diffusion on the surface, unlike that on the pure Mo(110) surface.

However, on annealing the sample, the formation of homogeneous FeAu alloy

nanoislands was observed, along with a few double-layer islands consisting of

a Fe layer covered by Au atoms. No superstructure or long-range order was

observed for the alloy layer. As the coverage of Au increases, spin reorienta-

tion has been observed, from the out-of-plane magnetization of the pure Fe

nanostripes on Mo(110), to in-plane magnetization [163]. These studies have

given us an additional motivation to understand why there is no long-range

order for FeAu/Mo(110) in contrast to FeAu/Ru(0001).

There have also been some studies of surface alloying on the Mo(110)

surface by the co-deposition of two metals. For example, thin films of Fe-Ag

and Co-Ag deposited on the Mo(110) surface have been characterized by STM

and LEED measurements by Tober, et al., [83]. In this study, the authors

have observed an ordered alloy having a striped pattern with alternating

rows of Fe (or Co) and Ag; these rows coincide with the [001] direction

of the surface. The formation of the striped structures was explained by

the stress reduction along that direction. Further theoretical investigations

have also confirmed the striped structure as the most stable phase for Fe-

Ag/Mo(110) [84]. These reports are relevant to our study because Ag and

Au have similar sizes in their bulk phases and hence we may expect similar

behavior, if elastic effects dominate. Recall that in Chapter 3, we have found

that the elastic interactions for Fe-Ag/Ru(0001) and Fe-Au/Ru(0001) are
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almost equal, but chemical interactions differ, and hence lead to different

mixing properties. Therefore, it would be interesting to see whether various

properties differ for Fe-Au/Mo(110) from those observed for Fe-Ag/Mo(110).

5.3 Computational Details

The calculations are done using spin-polarized density functional theory with

a plane-wave basis set as implemented in the PWscf package of the Quantum-

ESPRESSO code [29]. The kinetic-energy and charge density cut-off values

are taken to be 25 and 200 Ry respectively, following rigorous convergence

tests. We have used ultrasoft pseudopotentials [18]. For the exchange-

correlation functional, we have used a generalized-gradient approximation

of the Perdew-Wang form [12]. Brillouin zone sampling was performed using

a (17×17) Monkhorst-Pack k-point grid [19] for the smallest (1×1) surface

unit cell of the substrate. The system being metallic, we have used the

Methefessel-Paxton smearing technique [22] with a smearing width of 0.05

Ry.

To study surface properties within periodic boundary conditions, we have

used a supercell approach. The coordinate system used for constructing the

supercell is such that that the surface normal, i.e., the [110] direction, is along

the z-axis, and the x and y-axes are along the [1̄10] and [001] directions,

respectively. The supercell consists of a slab of one overlayer of Fe or Au or

Fe-Au deposited on 8 atomic layers of Mo, separated by vacuum of about 16

Å. We have allowed the overlayer and three adjacent layers of the substrate

to relax, using Hellmann-Feynman forces. In this study, we have considered
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only a pseudomorphic monolayer of alloy configurations on the substrate.

The convergence of the surface energy with respect to the number of vacuum

and atomic layers has also been checked (see Sec. 5.4.2).

For the DFT calculations, we have considered more than 100 different

alloy configurations; a detailed description of all the configurations is given

in Appendix C. All the distinct configurations possible for the surface unit

cell having up to six atoms, as well as a few with seven atoms, were included.

Similar to the previous case, to gauge the effect of the substrate as opposed

to the dimensionality effect, we have considered two types of systems - one

containing an overlayer of Fe or Au or Fe-Au deposited on the Mo(110) sur-

face, referred as deposited monolayers (DM) and another containing only

an overlayer without the substrate, but having the same geometry and lat-

tice spacing as that of the substrate, referred to as free-standing monolayers

(FSM). These FSM are constrained to two-dimensions without allowing any

structural relaxations because in the x-y plane we want the free-standing

layers to be confined as on the Mo surface. (In test calculations on a few sys-

tems, we found that permitting relaxations in the z-direction had no effect.)

By comparing results from these two kinds of systems, we can separate the

effect of the presence of the substrate from pure dimensionality effects. Here,

we have mainly concentrated on the structural properties of the alloy layers.

After performing the DFT calculations, we have applied the cluster ex-

pansion technique (explained in Chapter 2) to the formation energy. To

obtain an optimal number of clusters, we have here used the variational clus-

ter expansion code [43, 44]. In this, we start with a pool of a large number

of clusters, nc (nc is less than the total number of structures ns), and then
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reduce the number such that both the fitting and prediction errors are mini-

mized. To do this, we have used the “leave nex-out” type of estimation, that

is, to fit the cluster expansion, we use (ns − nex) structures and predict the

physical property of interest for the remaining nex structures. In this work,

we have mainly used the “leave 1-out” method, however we also did some

calculations with nex = 5 and 10, to ensure that the results did not change

significantly. This is in agreement with the conclusions of Arnold, et al., [44]

who showed that for a large enough database, a leave 1-out cross validation

(CV) is sufficient to select the optimal expansion from noisy databases. We

have considered at least five to ten smallest l-point clusters, where l = 1, 2,

3, 4, 5, and 6, and also some 7-point clusters. To make sure that we have

reached a stable solution, we have worked with a large number of starting

pools containing different clusters. Note that the formation energies of both

the single-component monolayers – Fe/Mo(110) and Au/Mo(110) – are used

as reference levels, and therefore taken equal to zero. While cluster expanding

this quantity, we have ensured this constraint by using a linear transforma-

tion for the constant term (J0) and the linear term (J1); see Eq. (2.27).

5.4 Results and Discussion: ab initio Studies

5.4.1 Bulk Calculations

For Mo, the bulk calculations are done using two different unit cells - a

conventional bcc unit cell and a monoclinic unit cell with two atoms per

unit cell which is commensurate with the (110) surface geometry. For Fe
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Element Unit cell aexpt (Å) acalc (Å)

Mo
bcc 2.73 2.75

monoclinic 2.73 2.75
Fe bcc 2.48 2.46
Au fcc 2.89 2.93

Table 5.2: The experimental and the calculated values of NN spacing for the
elements in their bulk crystal structure: the percentage difference in the calculated
and experimental values is not more than 2% for all three elements.

and Au, the bulk calculations are done in their respective bulk unit cells,

that is bcc and face-centered cubic (fcc). The results for the NN spacing for

each of the elements are tabulated in Table 5.2. There is good agreement

between the calculated and the experimental values; for Fe and Au, the

calculated values match well with those calculated in Chapter 3 using the

PBE exchange-correlation. For Fe, spin-polarized calculations are performed.

The calculated value of the magnetic moment for bulk Fe is 2.35 µB as

compared to the experimental value of 2.22 µB; this also matches well with

the value calculated in Chapter 3 using the PBE exchange-correlation.

5.4.2 Clean Mo(110) Surface

To ascertain that there is no interaction between the two surfaces of the slab,

either through vacuum or bulk layers, we have done extensive convergence

tests for the surface energy with respect to the number of atomic and vacuum

layers. The surface energy is defined as:

Esurf =
Eslab − naE

bulk

2
, (5.1)
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Esurf (eV) k-point grid
nv 10×10×1 15×15×1
5 1.233 1.233
6 1.232 1.232
7 1.232 1.233
8 1.232 1.233
9 - 1.233

Table 5.3: The surface energy Esurf for Mo(110) is tabulated as a function of
the number of vacuum layers nv, calculated using two different k-point grids. For
this convergence test, we have used a slab containing six atomic layers, and the
outer two atomic layers on each side of the slab were allowed to relax.

where Eslab is the total energy for a slab containing na atomic layers, and

Ebulk is the total energy per atom for the bulk structure commensurate with

the slab (in this case the monoclinic unit cell). For these convergence tests,

we have allowed relaxations of the outer two layers of Mo on each side of the

slab.

Initially keeping the number of atomic layers na fixed (na = 6), the cal-

culations were done for convergence with respect to the number of vacuum

layers nv. The results for the surface energy as a function of nv, calculated for

two different k-point meshes, are tabulated in Table 5.3. For both the cases,

satisfactory convergence has been achieved at nv = 7, which approximately

corresponds to a vacuum thickness of 15.8 Å.

Now fixing nv = 7, we have varied na, the number of atomic layers in the

slab. The surface energy as a function of na, calculated for several k-point

meshes, is plotted in Fig. 5.2. From the plot, we can see that a dense k-point

mesh (21×21) and a large number of atomic layers (12 to 14) are required to

achieve a very high degree of convergence. However, using these parameters

would be very demanding for the surface alloy calculations. Therefore we
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Figure 5.2: The surface energy of the clean Mo(110) surface: The calculated
surface energy of a slab of Mo(110) as a function of number of atomic layers in
the slab is plotted for different k-point meshes.

have selected intermediate but acceptable parameters, viz., a (17×17) k-point

mesh and 8 atomic layers. For this particular choice, the surface energy value

is equal to 1.232 eV per atom as compared to the converged surface energy

1.234 eV per surface atom which gives an error of 0.16 %. Our calculated

Esurf value is smaller than the previously reported values which range from

1.29–1.53 eV/atom [117,164–167].

The interlayer distance between the topmost layer and the adjacent layer,

d12, is 2.16 Å, as compared to the interlayer distance for bulk Mo, dbulk, which

is 2.25 Å. This indicates that the topmost layer relaxes towards the substrate

by about -4.0%. For the next layer, the interlayer distance d23 is 2.26 Å, which

indicates that the second layer from the surface relaxes outward by about
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0.4%. These results match reasonably well with previous results [156]. The

ideal bulk-truncated Mo(110) surface is under tensile stress; the calculated

values of the xx and yy components of the surface stress are equal to -0.608

eV/Å2 and -0.578 eV/Å2 respectively. After allowing two surface layers to

relax, the surface stress values are reduced from those for the bulk-truncated

surface, the xx and yy components being equal to -0.423 eV/Å2 and -0.449

eV/Å2 respectively.

5.4.3 Single-component Monolayers on Mo(110)

Initially we have studied the properties of single-component monolayers of

either Fe or Au deposited on the Mo(110) surface. For a single layer of Fe

on the surface, the magnetic moment is equal to 2.72 µB per Fe atom, which

is enhanced compared to that of bulk Fe, as was observed before [156]. The

Fe monolayer induces magnetic moments on the adjacent Mo layers with

AFM coupling; the moment on the adjacent layer is -0.15 µB and that on

the next layer is -0.01 µB; these values are slightly higher than the ones

calculated before [156]. The induced moments on the remaining layers are

much smaller, as shown in Fig. 5.3.

After geometric relaxations, the interlayer distance between the Fe layer

and the adjacent Mo layer becomes 2.01 Å, which is contracted by about

-11.0 % relative to the bulk Mo interlayer distance; this is expected based

on the atomic size mismatch between bulk Fe and Mo. On Fe deposition,

the interlayer distance between two adjacent Mo layers decreases to 2.26 Å,

which is expanded by 0.4% relative to the bulk; this is much less compared
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Figure 5.3: Induced magnetic moments on Mo layers when an Fe layer is de-
posited on the surface: we have shown here induced magnetic moments on the Mo
atoms (in µB) as a function of distance from the Fe layer. Black circles are actual
data points and dotted line is a fit to a simple oscillatory function using Eq. (3.1).
This is similar to RKKY interaction.

to the clean surface. These trends are qualitatively consistent with earlier

observations [156].

For Au/Mo(110), the relaxed interlayer distance between the deposited

Au layer and the adjacent Mo layer is equal to 2.39 Å, which is expanded

by 6.2% with respect to the bulk Mo interlayer distance. On Au deposition,

the interlayer distance between the first and the second Mo layers relaxes to

2.19 Å, which is compressed by 2.7% relative to the bulk; this is slightly less

compared to the clean surface.
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Figure 5.4: Dependence of the formation energy ∆HDFT on the Fe concentration
x calculated using DFT: black circles denote ∆H for the deposited monolayers and
red triangles denote that for the free-standing monolayers. The configurations lying
on the convex hulls are highlighted by stars and crosses connected by dashed lines
for DM and FSM respectively. Each configuration on both of the convex hulls is
labeled and the top view of each is given in Fig. 5.5.

5.4.4 Free-standing versus Deposited Alloy Monolay-

ers

In this work, we are interested in determining whether mixing of Fe and

Au in 2D is dependent on the nature of the substrate, and how much is

the effect of the substrate on stability. Therefore for each configuration, we

have calculated the formation energy, which is a measure of miscibility. The

formation energy of an alloy is defined as follows:

∆H = E(FexAu1−x)− xE(Fe)− (1− x)E(Au), (5.2)
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where E(A) is the total energy per atom of a monolayer (either free-standing

or deposited) of A. If ∆H is negative, then the mixing of the two components

is favored. We have plotted ∆H as a function of the Fe concentration x, as

obtained from ab initio DFT calculations, for both FSM and DM in Fig. 5.4,

where each point corresponds to a different configuration. The formation

energy is negative for all the configurations studied for both free-standing

and deposited monolayers, which implies alloying is favored whether or not

the substrate is present. This observation is the same as the Fe-Au/Ru(0001)

system described in the previous chapter, implying that the 2D single-layer

Fe-Au alloyed phases are stable, unlike the 3D bulk Fe-Au phases. However,

unlike the previous case (refer to Figs. 4.4(a) and 4.8(a)), here in the presence

of the substrate the tendency towards mixing is reduced considerably, that is,

for each configuration, the |∆H| values are significantly smaller for DM than

for FSM configurations. In the same plot, we have highlighted the convex

hulls (stars and crosses connected by dashed lines) signifying the ground

state (GS) structures for both the cases. For FSM, we see that there is a

slight asymmetry around x = 0.50 indicating that Au-rich phases are more

stable as compared to the Fe-rich phases; whereas for DM, the mixing is

more-or-less symmetric about x = 0.50.

A closer look at the structures on the convex hull would be useful to un-

derstand trends in alloy phases (if they exist) such as whether configurations

having stripes are more favored or configurations in which one of the metals

(Fe or Au) likes to be surrounded by the other metal, leading to a high degree

of atomic-level mixing. We have labeled each structure on the convex hull in

Fig. 5.4; schematic top views for each of these configurations are shown in
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√
5α)

(F2) FeAu2 in the
unit cell (2

√
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5α)

(F3) Fe2Au3
in the unit cell
(2
√
2α × 3) -

configuration 1

(F4) Fe2Au in the
unit cell (

√
7α ×

2α)

(F5) Fe5Au in the
unit cell (3× 4α)

(D1) FeAu5 in the
unit cell (2
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Figure 5.5: Schematic top view for each configuration falling on the convex hull
for free-standing and deposited monolayers: Each structure is labeled by the same
label as was done in Fig. 5.4. Here α = 1/

√
3. Yellow spheres denote the Au

atoms, and red spheres denote the Fe atoms.
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Fig. 5.5. For FSM, out of five configurations on the convex hull, four have

isolated atoms of either Fe (for Au-rich phases) or Au (Fe-rich phases). the

exception is the structure labeled as F4 at x = 0.667, which has stripes along

the [001] direction. In contrast, for the DM phases, for x < 0.50, each of

the configurations on the convex hull has one Fe stripe separated by a vary-

ing number of Au stripes oriented along the [1̄10] direction. Similar striped

structures are observed for D5 and D6 also, but the Fe stripe width has in-

creased from one to three. The only exception to this is D7, with has no

stripes. Note that at x = 0.33, both the DM and FSM phases have the same

structure on the convex hull, viz., (2
√
2α×

√
5α) unit cell where α = 1/

√
3.

We are also interested in the magnetic properties of these alloys, so we

have plotted the total magnetic moment per Fe atom as a function of x, for

both DM and FSM systems in Fig. 5.6. Note that for all the configurations

for either deposited or free-standing monolayers, the magnetic moment on

the Fe atom is increased from its calculated bulk value which is equal to 2.35

µB. As x increases, the magnetic moment per Fe atom decreases. There

is a significant decrease in magnetic moments when a FeAu monolayer is

deposited on the substrate, which is expected from the Stoner argument. In

the same plot, we have marked the configurations falling on the convex hull

by stars and crosses for DM and FSM phases respectively. However, we do

not see any direct correlation between the most stable structures and the

magnetic moments, as was seen in the previous chapter for Fe-Au/Ru(0001),

except in two cases – for FSM configurations at x = 0.33 and 0.4 the highest

moments correspond to the most stable states.

We have performed non-spin-polarized calculations for a few deposited
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Figure 5.6: Dependence of the magnetic moment, per Fe atom, on Fe concen-
tration x: Circles denote moments for deposited monolayers and triangles denote
those for free-standing monolayers. On deposition of FeAu layer on the substrate,
there is a significant decrease in magnetic moments. For DM and FSM configura-
tions, structures on the convex hulls are marked by stars and crosses respectively.

configurations; for example, the formation energy values for some configura-

tions are tabulated in Table 5.4 along with those for the SP calculations. We

do not see any clear trend of reduced miscibility on turning off the magne-

tization, as was observed for Fe-Au/Ru(0001) (compare with Fig. 4.4). This

observation along with the absence of correlation between the highest mo-

ments and the most miscible structures, imply that magnetic interactions are

not the dominant interactions which drive mixing.

As explained in Chapter 3, the surface stress has been considered as the

main driving force for the formation of surface alloys [74, 78]. Therefore, we

have calculated surface stress σsurf components for each configuration. The



5.4 Results and Discussion: ab initio Studies 121

Configuration ∆HNSP ∆HSP ∆HNSP −∆HSP

FeAu (2× 1) -0.069 -0.039 -0.030

FeAu (2
√
2α× 2α) -0.039 -0.033 -0.006

Fe2Au (3× 1) -0.062 -0.046 -0.016

Fe2Au (2
√
2α×

√
5α) -0.151 -0.053 -0.098

Fe2Au (
√
7α× 2α) -0.075 -0.061 -0.014

FeAu2 (3× 1) -0.060 -0.062 0.002

FeAu2 (2
√
2α×

√
5α) -0.098 -0.077 -0.021

FeAu2 (
√
7α× 2α) -0.076 -0.058 -0.018

Table 5.4: We have tabulated here ∆H values (in eV/atom) of some configu-
rations for non-spin polarized (second column) and spin polarized (third column)
calculations. The last column is the difference between SP and NSP values. Note
that magnitude of ∆H increases in some cases, and reduces for others after switch-
ing off the magnetization. Here α = 1/

√
3, and description of each configuration

is given in Appendix D.

xx and yy components of the surface stress as a function of the Fe concen-

tration x are plotted in Fig. 5.7(a) and (b) for supported and unsupported

monolayers, respectively. For most of these configurations, the off-diagonal

terms are very small compared to diagonal terms, and are therefore not

shown here. For all the alloy configurations (either FSM or DM), the surface

stress has a negative sign, indicating that the overlayers are under tensile

stress. For free-standing monolayers, this is not unexpected because atoms

have lower coordination than in the bulk, and hence want to reduce the NN

distance between atoms. Further, for the free-standing monolayer of Fe, the

stress values are almost equal, as compared to Au FSM, for which the stress

value along the y-direction is larger compared to that along the x-direction.

For deposited monolayers, one might have expected that the pure Au layer

on Mo(110) will be under compression in the x direction based on atomic-size

mismatch for the bulk (see Table 5.1); however, this is not the case. This
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Figure 5.7: Surface stress σsurf as a function of x: The xx and yy components
of the surface stress are plotted as a function of Fe concentration x for (a) DM
and (b) FSM. The stress is tensile for all the configurations in both DM and FSM
systems. However, the stress values for the DM are higher than those for the FSM.
The stars and crosses indicate the configurations on the convex hull.

might be attributed to the reduced coordination of Au atoms on the Mo(110)

surface, which can affect the effective size on the surface, thus driving the

surface stress from compressive to tensile. For all the configurations, the

magnitude of xx-component of the stress is larger than the yy-component,

which can be attributed to a larger atomic-size mismatch in the x-direction.

For each quantity on this plot, we have marked those configurations which

fall on the convex hull for DM and FSM systems using stars and crosses

respectively. There seems to be no clear trend correlating a lower surface

stress with a higher stability of a configuration. For this system, we observe

that both Fe and Au layers on the Mo(110) surface are under tensile stress
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so the mixing need not eliminate the stress. This may suggest that for

this system the elastic interactions may not be a driving force for the alloy

formation.

5.4.5 Comparison with FeAu/Ru(0001)

We have already referred to qualitative similarities or differences between two

systems – FeAu thin films on Mo(110) and Ru(0001) – now we will quanti-

tatively compare these two systems. We have compared both the deposited

and free-standing configurations for these systems. Recall that the two sub-

strates have very similar NN distances (larger for Mo by about 1 %), and

the centered-rectangular lattice of the bcc(110) surface can be considered as

a strained hexagonal lattice; therefore we expect similar results for the FSM

configurations in the two geometries. In Fig. 5.8(a) and (b), we have plotted

the formation energy as a function of the Fe concentration x for the DM and

FSM phases respectively for both systems. For the FSM phases, the values

of ∆H are comparable to each other in the two geometries, as expected. In

contrast, for the DM phases, all the studied alloy configurations are more

stable on Ru(0001) as compared to those on Mo(110). For example, at x =

0.33, the most stable structure for FeAu/Ru(0001) has ∆H equal to −177.4

meV/atom as compared to ∆H of −77.2 meV/atom calculated for the most

stable structure on Mo(110). At any concentration, the difference between

the formation energies of the most stable configurations for the hexagonal

and centered-rectangular geometries is less than 40 meV/atom, whereas for

the deposited phases, it is always more than 50 meV/atom.
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Figure 5.8: Comparison of the formation energy, magnetic moments and surface
stress components for the two substrates: we have plotted here ∆H, the magnetic
moments and xx and yy components of the surface stress for 2D FeAu films de-
posited on the Mo(110) and Ru(0001) substrates (a, c and e) and for free-standing
configurations at those two geometries (b, d and f). Circles and triangles denote
results for Ru(0001) or hexagonal geometry and Mo(110) or centered-rectangular
geometry respectively. For each system, we have also shown the structures on the
corresponding convex hulls.
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In Fig. 5.8(c) and (d), we have plotted the magnetic moment as a function

of x for DM and FSM phases respectively. For free-standing monolayers,

the magnetic moments are very similar to each other irrespective of different

geometries. However, for the deposited monolayers, we observe that magnetic

moments are reduced when the substrate is changed from Ru to Mo; the

reduction is however only slight. The reduced moments correspond to a

higher stability of the alloys on the Ru(0001) surface.

In Fig. 5.8(e) and (f), we have plotted the xx and yy components of

the surface stress for deposited and free-standing monolayers respectively for

both systems. Note that the surface stress for FSM in the hcp geometry

is smaller than that in the centered-rectangular geometry except for Fe-rich

phases (x > 0.7). This can be explained by the slightly smaller NN distance

of Ru, because free-standing monolayers would prefer smaller bond lengths

owing to less number of neighbors. As expected, in the case of centered-

rectangular geometry, we can clearly see an anisotropy between xx and yy

components, which is not present in the hexagonal phases. For example,

at x = 0.5, the highest stress values for hcp alloy monolayers are −0.29

eV/Å2 and −0.27 eV/Å2 for xx and yy components respectively, and those

for centered-rectangular alloy monolayers are−0.32 eV/Å2 and−0.41 eV/Å2.

Further, this is in correspondence with higher |∆H| value for the hcp alloy

monolayers (168.1 meV/atom) than that for alloy centered-rectangular (130.4

meV/atom).

For the DM phases, we clearly observe that the surface stress values

are higher for monolayers deposited on the Mo(110) surface at most of the

concentrations. This is in accordance with the slightly larger atomic-size
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mismatch for both Fe and Au on the Mo(110) surface than on Ru(0001)

along the x as well as y directions. As an example, consider the x = 0.5 case:

the highest stress values for Fe-Au/Ru(0001) are 0.18 eV/Å2 and 0.21 eV/Å2

respectively, which are smaller in magnitude than those for Fe-Au/Mo(110),

which are equal to −0.55 eV/Å2 and −0.47 eV/Å2. This accords well with

the higher |∆H| on the Ru(0001) surface (176.0 meV/atom) than that on

the Mo(110) surface (82.67 eV/atom). We would like to note here that as

we change the substrate from Ru to Mo, we have observed an increase in the

surface stress, and reduction in the miscibility. This increase in σsurf along

with the reduced magnetic moments would explain the reduced mixing on

the Mo(110) surface, as compared to Ru(0001).

Further, we have seen that on the Ru substrate structures having isolated

Fe or Au atoms are preferred, whereas striped structures are preferred on

the Mo(110) substrate. The anisotropy of the latter can give rise to this

difference.

5.5 Results and Discussion: Cluster Expan-

sion Studies

We have used the cluster expansion technique to search for the GS configu-

rations for both the FSM and DM systems. To achieve this, we have cluster

expanded the formation energy for each system.

First, we have started with the formation energy for the free-standing

monolayers. We have shown a typical plot for the fitting and cross-validation
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Figure 5.9: (a) Fitting and cross-validation errors as a function of the number
of clusters for FSM: We have encircled the area where we observe a large error
introduced by removing just a single cluster figure around nc = 7. (b) Comparison
between ab initio and CE predicted ∆H for the FSM phases using a set of seven
clusters: The predicted values match within 5 meV/atom for all the configurations.
On the same plot, we have also plotted the formation energy values for random
alloys calculated using the same cluster set. (c) The error distribution, that is, the
number of structures having (∆HCE −∆HDFT ) values in 5 meV/atom window is
shown. Here dots correspond to the data points, while the solid line is a smooth
spline fit to the data points.

(CV) errors as a function of number of clusters nc in the pool, in Fig. 5.9(a).

The errors remain almost constant till nc is reduced to less than 20, and a

significant increase in errors is observed only when nc = 7. Therefore, we

have considered this to be an optimum solution, where both types of errors

are still less than 5 meV/atom. Then, to determine the quality of this set, we

use this solution to calculate the formation energies for all the configurations
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using the effective cluster interactions (ECI) in the Hamiltonian. We have

plotted the predicted ∆H along with the ab initio values in Fig. 5.9(b) for

comparison. There is good agreement between the two sets of values. This

can also be seen from the error distribution plot shown in Fig. 5.9(c); this

plot shows the number of structures which have (∆HCE − ∆HDFT ) values

in 5 meV/atom energy window. The error distribution looks more-or-less

symmetric about zero error, which implies that the solution obtained would

well describe the system [50]. However, there are not enough data points to

gain quantitative information about the distribution. The average squared

error δ between the DFT values and the CE values, defined by:

δ2 =

∑

i |∆HCE −∆HDFT |2
ns

, (5.3)

where ∆HCE and ∆HDFT are the CE calculated and the ab initio formation

energies respectively, and the sum is taken over ns structures, is equal to 4.52

meV/atom for this particular cluster set for FSM structures. Note that we

have confirmed that the truncation of the series does not lead to significant

errors, by considering a larger cluster pool as a solution, and comparing

between the cluster expanded and the DFT formation energies. This optimal

cluster pool required for good prediction of the data has seven cluster figures

– five of which are the first five nearest-neighbor pair interactions, one three-

body interaction, and one four-body interaction. These clusters are shown

in Fig. 5.10, along with a bar chart showing the effective cluster interactions

for each of the cluster. The most dominant term is the nearest-neighbor

pair interaction with the highest value of ECI, followed by a next-NN pair



5.5 Results and Discussion: Cluster Expansion Studies 129

Figure 5.10: (a) The optimal cluster set required to get a good convergence for
the formation energy of free-standing monolayers containing seven cluster figures
is shown here. Here each cluster figure is labelled by lPx where l is the number of
lattice points in that cluster, and x is an integer taking values 1, 2, · · · and so on,
indicating increasing length of the cluster figures. For example, 2P1 is the two-
point cluster between the shortest possible length (NN atoms). (b) The bar chart
shows the effective cluster interactions (in meV/atom) corresponding to each of
the clusters shown in (a).

interaction.

In Fig. 5.9(b), along with ∆HCE for the ordered configurations, we have

plotted the formation energy for random alloys, shown with blue stars. Here

the random alloy at each concentration x is defined by defining a cluster

function by the product of averages of the occupation variable,

〈φα〉random = (2x− 1)nα , (5.4)

where 〈φα〉 is the occupation variable for the cluster figure α having nα sites.

Using this and the calculated effective cluster interactions, we have calculated

the formation energy for random alloys. Note that for all x, ∆H for random

alloys is negative, indicating that random alloys are stable. At x = 0.33,

where we have obtained the most stable structure, the difference between

the GS and random alloy formation energies is large – about 40 meV/atom.
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This suggests that ordering is more favored than the formation of random

alloys.

Next, we have followed the same procedure as was used for the FSM

system, to obtain a solution for cluster expansion of the formation energy

of the DM phases. In Fig. 5.11(a), we have plotted the fitting and cross-

validation errors for an optimal cluster pool obtained by us. Note that for

the FSM phases, both the errors were almost zero for large pool sizes, whereas

for the DM phases, even at large pool sizes, the errors are about 3 meV per

atom. This error remains almost constant as nc is lowered till about nc =

9, and then it starts to increase as nc is lowered further. Therefore we have

considered a cluster pool containing nine clusters to predict the formation

energies using the corresponding ECI values. To crosscheck this solution, we

have compared the formation energies obtained from the CE Hamiltonian,

with those from DFT, as shown in Fig. 5.11(b). In general, we observe a

good agreement between the predicted and calculated GS structures, that is,

within the CV error (∼ 5 meV/atom). The average squared error δ between

the DFT values and the CE values is equal to 4.12 meV/atom. In the same

figure, we have also plotted ∆H for random alloys for a range of x; we see

that for all x, the formation energy for random alloys is negative, and the

magnitude of ∆H for random alloys is smaller than the ordered structures.

In Fig. 5.11(c), we have plotted the error distribution, that is, the number of

structures having (∆HCE −∆HDFT ) values in 5 meV/atom energy window.

As for the FSM, the error distribution is more-or-less symmetric and hence

will describe the system well [50].

For the ∆H of deposited monolayers, we have found that more clusters are
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required to describe interactions more accurately, with six two-body interac-

tions, two three-body interactions and one four-body interaction term. This

might be because when a Fe-Au layer is deposited on the Mo(110) surface,

there will be additional interactions present, mediated through the substrate

layers. The optimal cluster figures are shown in Fig. 5.12, along with the

corresponding effective cluster interactions. The most dominant interaction
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Figure 5.11: (a) Fitting and cross-validation errors as a function of the number
of clusters for DM: We have encircled the region where we see a large increase in
the errors after removing just a single cluster. (b) Comparison between ab initio
and CE predicted ∆H for the DM phases using a set of nine clusters: The predicted
values match within 5 meV/atom for all the configurations. On the same plot, we
have also plotted the formation energy values for random alloys calculated using
the same cluster set. (c) The error distribution, that is, the number of structures
having (∆HCE − ∆HDFT ) values in 5 meV/atom window is shown. Here dots
correspond to the data points, while the solid line is a smooth spline fit to the data
points.
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Figure 5.12: Optimal cluster set for the formation energy for deposited monolay-
ers with the corresponding effective cluster interactions: (a) We have shown here
nine clusters which are required to get converged results to predict the formation
energies of the DM phases. (b) The bar chart shows effective cluster interactions
(in meV/atom) for each of the clusters shown in (a).

for the DM systems is the fifth longest two-body interaction (2P5), which is

followed by the next-NN pair interaction.

5.5.1 Search for the Ground State Structures

One of the advantages of the cluster expansion technique is that it can be

used to calculate the energies of very large structures with much less com-

putational effort as compared to complete DFT calculations, as explained in

Chapter 2. So after obtaining solutions for the cluster expansion of forma-

tion energies, we have considered a large number of alloy configurations for

which we calculate formation energies using the optimized CE solution. This

will enable us to find the ground state structures, if present, which are not

included in our DFT database because of their large size. We have used the

enumeration code developed by G. Hart, et al. [168] to generate a large struc-

tural database. This code uses an algorithm (based on a group theory ap-

proach) to determine all distinct superlattice structures and then to generate
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Figure 5.13: Ground state search using CE calculated formation energies for (a)
FSM and (b) DM: The formation energy ∆HCE as a function of x is plotted for all
the alloy configurations containing up to 20 atoms per unit cell. For comparison,
we have also shown here the DFT calculated convex hulls for both the systems
with orange stars. In panel (c), we have shown a zoomed-in region near x =
0.50 to panel (b), to clearly compare the DFT convex hull with the lowest lying
configurations obtained from CE.

all possible atomic configurations on each superlattice; the symmetry opera-

tions of the lattice are used to exclude symmetry-equivalent structures [168].

For the ground state search, we have included all the distinct configurations

up to Na = 20, and thus the total number of structures considered for the

ground state search is more than a million.

In Fig. 5.13, we have plotted the formation energy calculated using the

CE Hamiltonian for all larger structures – not included in the original DFT

database – for both (a) free-standing and (b) deposited monolayers. On each
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plot, we have also plotted the respective convex hull for FSM and DM, as ob-

tained by the DFT calculations, for comparison. For both kinds of systems,

we note that all the configurations have negative ∆H values, implying that

mixing is favored at all x. For FSM phases, around x = 0.33 and 0.4, the

lowest energy structures are the same as were obtained by ab initio methods,

and at the remaining x values, there are a large number of structures which

appear to have energies either lower or very near to those structures lying

on the convex hull. The CE-calculated values have an error bar of about

5 meV/atom, and thus it is difficult to exactly define the convex hull us-

ing the ∆HCE values. Note that at the two concentrations where we have

obtained clearly defined ground states, we have also observed a one-to-one

correlation between the highest magnetic moment and the greatest stability

(see Fig. 5.6).

For DM phases, at each x, there are many structures which appear below

or near the convex hull calculated with the DFT database; this can be clearly

seen in panel (c) where we have shown a zoomed-in region for the DM data.

Many of the low-lying structures have comparable values which lie within

the error bars for ∆HCE, and thus it is difficult to define the ground state

structures. The convex hull for the DM phases is a continuous smooth curve

implying only short range order is possible. We note that many of the struc-

tures near the convex hull have striped structures, with the stripes aligned

along the [1̄10] direction. At any x, there are several low energy structures

which have very small energy differences, and hence the system has many

competing structures. These observations are consistent with the previous

experimental result [163] where the authors have reported the formation of
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an Fe-Au alloy, but an absence of ordering.

5.6 Summary and Conclusions

In summary, we have studied the structural and magnetic properties of a

large number of ordered alloy configurations of an FeAu monolayer deposited

on the Mo(110) surface. We have shown that the alloy phases are favored

over the phase segregated phases for all the configurations of a Fe-Au mono-

layer, whether or not it is supported. This confirms the conclusion that the

mixing is largely affected by the dimensionality. The magnetic moments are

enhanced as compared to the bulk Fe moments for these surface alloys. We

have also calculated the surface stress for each configuration. In general, we

do not find any correlation between the greatest stability and the highest

magnetic moments or the lowest surface stress.

In our study, we have found that deposited monolayers prefer to have

striped structures with stripes along the [1̄10] direction. This is in contrast

to the experimental studies on Fe-Ag/Mo(110) [83] in which stripes along the

[001] direction of the surface were observed. This may arise from different

chemical interactions for Ag and Au alloys with Fe, which lead to different

mixing properties on the Ru(0001) surface, as described in Chapter 3.

Using the DFT results, we have cluster expanded the formation energy of

alloys for both types of systems and found the effective cluster interactions

required to calculate the formation energy of the larger unit cells. We have

compared the direct DFT results (done for two to six atoms per unit cell)

with those obtained from the CE Hamiltonian; the two results match within
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error bars. We have then calculated the formation energy for all the alloy

configurations containing seven to 20 atoms per unit cell to extend the ground

state search. For the FSM phases, around x = 0.33 and 0.4, the lowest

energy structures are the same as those calculated using DFT, but at all

other concentrations, there are a large number of structures which fall below

the DFT convex hull and are nearly degenerate in energy. Similarly, for

the DM phases, at all concentrations under study, we have observed that a

number of configurations lie below the DFT convex hull, and at a given x,

many of these configurations have energies within the error bars of the CE

calculation. This implies that the configurations on the smaller unit cell DFT

“convex hulls” are not the “real ground states”. Because of the presence of

a huge number of competing phases, defining the exact ground states is very

difficult, but this observation accords with the experimental observation of

atomic-level mixing of Fe and Au in nanostripes on Mo(110) [163], but the

absence of long-range order.



Chapter 6

Frenkel-Kontorova model for

heteroepitaxial systems:

O/Ru(0001)

6.1 Introduction

In the last three chapters, we have considered surface alloy systems in which

mixing between two metals on a third metal was studied in detail. However,

recall that we have always assumed that an overlayer (whether a single-

component or an alloy) is pseudomorphic with the substrate, which in actual

experimental conditions need not be true. In this chapter, we have studied

whether single-component overlayers (O = Fe, Co, Pt, Ag, Au, and Pb) on

the Ru(0001) surface would reconstruct or not, using the Frenkel-Kontorova

model. This study is complementary to our work on MxN(1−x)/Ru(0001),

and would enable us to check whether our assumption of pseudomorphic

137
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layers is valid. In that study, we had considered that the reduction of the

surface stress occurs by mixing, and neglected other possibilities such as

surface reconstruction and dislocation formation [169]. Note that we have

not considered here the Cd/Ru(0001) system, because the known toxicity of

Cd made it not a good choice from the application point of view.

Surface reconstruction is a change in the positions of the atoms in the

topmost layers such that the surface unit cell is no longer the same as that

of the ideal-bulk truncated surface. A famous example is the herringbone

reconstruction of the Au(111) surface [170–172]. Often, the main driving

force for the reconstruction is the surface stress, which is usually compres-

sive for homoepitaxial systems. For heteroepitaxial systems, the atomic-size

mismatch between the substrate and the overlayer atoms can lead to either

compressive or tensile stress, which can result in reconstruction of the over-

layer. Depending on the sign of the stress, the reconstructed overlayer will

have either increased or reduced density of overlayer atoms as compared to

the substrate. Different types of reconstructions have been observed such as

stripes, triangles and rotated domains [173].

In many systems, the reconstructed surface has a long-range order which

provides a periodic potential for the growth of nanoislands [4], molecular as-

semblies [5], etc. In some cases, the small mismatch between the overlayer

and the substrate leads to either incommensuration or large-period commen-

suration. This leads to very large system sizes, and hence these systems

cannot be handled by DFT. The Frenkel-Kontorova (FK) model [174] is a

simple classical model which can be used to study the surface structure and

various interactions at the surface. It has been extensively used to study
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the surface reconstruction in homoepitaxial systems [126, 127, 175–178] as

well as for some heteroepitaxial systems [128, 129]. The model is discussed

in detail in Section 6.2.

6.2 Frenkel-Kontorova Model

The model Hamiltonian can be written as,

H =
∑

i

VOO(li) +
∑

j

VOS(rj) +
∑

j

Γ, (6.1)

where the first term denotes the interaction between the overlayer atoms and

the sum is over all the nearest neighbor bonds of length li; the second term is

the substrate potential experienced by overlayer atoms and the sum is taken

over all overlayer atoms at positions rj ; and the third term accounts for the

extra energy required to change the number of atoms in the overlayer. Γ is

usually referred as the “chemical potential”, however it consists of two terms

– one is the energy cost for adding (removing) atoms to (from) the overlayer,

and the second is the energy required to form (break) new bonds when extra

atoms are added to (removed from) the surface [175]. It is actually related to

the negative of the chemical potential; however, in papers in this field, it has

been conventional to refer to it as the chemical potential, and in this chapter

we will maintain this convention. Here, the addition of an atom leads to

compressive reconstruction, and the removal of an atom leads to expansive

reconstruction. Therefore, this simple model can take into account different

competing mechanisms which result in surface reconstruction. There are two
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Figure 6.1: Schematic diagram showing various surface interactions considered
in the Frenkel-Kontorova model: The substrate potential is modeled by a sinusoidal
potential with a period of a and depth of W , and the overlayer atoms O shown by
brown spheres are connected by harmonic springs with an equilibrium length of b
and a spring constant µ.

approaches used for obtaining solutions for any system – first, consideration

of a simple parameter obtained by mapping a two-dimensional (2D) surface

on to a one-dimensional (1D) chain, and second, complete quenched molec-

ular dynamics (QMD) simulations for a 2D Hamiltonian. The first approach

has primarily been used for homoepitaxial systems, whereas QMD simula-

tions can be performed for both homoepitaxial and heteroepitaxial systems.

I will describe and compare both these approaches in the following sections.

6.2.1 One-dimensional Frenkel-Kontorova Model

In its simple 1D form, the model considers a chain of atoms sitting in a

periodic potential. The schematic figure depicting the different interactions

present in the 1D model is shown in Fig. 6.1. The 1D chain consists of over-

layer atoms O which are connected by harmonic springs with equilibrium

bond length b and spring constant µ. A periodic potential describing the

substrate is modeled by a sinusoidal potential having period a and ampli-

tudeW . As a 6= b in general, the model can take into account two competing
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periodicities present at the surface. Depending on the relative strengths of

the depth of the substrate potential and the stiffness of the springs, solutions

of the system can vary from pseudomorphic (in which overlayer atoms sit

exactly in the valleys of the substrate potential) to having dislocation lines

which are periodically spaced. The latter solution corresponds to stable sur-

face reconstructions. Note that real surfaces are 2D and so such an approach

may not work for all systems.

Mansfield and Needs [175] mapped the fcc(111) surface onto such a 1D

model, and derived an expression for a simple dimensionless parameter R,

which is given by,

R =

√
3πa(γ − 4

3
σ)

8
√
µW

, (6.2)

where σ and γ denote the surface stress and the surface energy of the sub-

strate. Depending on the value of R, one can estimate whether the given

system will reconstruct or not, and its sign will tell whether the overlayer

would compress or stretch. If |R| < 1, then the system prefers pseudomorphic

positions over the reconstruction. If R < -1, then there will be a compressive

reconstruction, that is, the average distance between overlayer atoms will be

reduced, so as to have a larger density than that of the topmost substrate

layer; and if R > 1, the system will have an expansive reconstruction, that

is, the density of overlayer atoms will be smaller than those of atoms in the

topmost substrate layer. This simple indicator is shown to work well for the

fcc(111) surfaces [126, 178], for which mapping to the 1D chain is shown in

Fig. 6.2. The mapping is done along a zig-zag path that connects low-energy

sites on the surface. All the different physical quantities required to compute
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R can be calculated using DFT.

Till now, the R parameter has only been applied to homoepitaxial sys-

tems. We generalize it for heteroepitaxial cases by replacing the surface

energy γ by an interface energy γi. The interface energy is the energy re-

quired to deposit a single pseudomorphic layer of O on the substrate, defined

by:

γi =
Eslab −NOEO

bulk −NSES
bulk

2A
, (6.3)

where Eslab is the total energy of the slab containing N atoms and having

surface area A, the overlayer is deposited on both sides of the slab. NO and

NS are, respectively the total number of overlayer and substrate atoms in the

slab, and EO
bulk and ES

bulk are the total energies per atom of the overlayer and

the substrate in their bulk phases respectively. The interface energy consists

of two contributions, one coming from having overlayer atoms forming the

surface, and the second from stretching or compressing this “surface” to the

substrate lattice constant. In this work, we have examined whether this ex-

tension can reliably predict the presence or absence of surface reconstruction.

6.2.2 Two-dimensional Frenkel-Kontorova Model

We have simulated a complete two-dimensional form of the FK model by

considering realistic forms of the substrate potential and the interatomic

potential between overlayer atoms. The first term in Eq. (6.1), that is, the

interaction between overlayer atoms, VOO, is described by a Morse potential

of the form:

Vij(rij) = Aij
0 (1− e−A

ij
1
(r−bij))2, (6.4)
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Figure 6.2: Schematic diagram showing different stacking sites possible for the
hcp(0001) surface: a top view of the hcp(0001) surface where red circles represent
atoms in the first layer, and blue squares in the second layer. Red circles show
atop sites, green triangles show fcc sites, blue squares show hcp sites, and only one
of the bridge sites is shown with a star. The black zig-zag line connecting the fcc
sites to the hcp sites via bridge positions shows the line considered for 1D mapping
of the closed-packed surface.

where rij is the distance between the NN atoms i and j, bij is the equilibrium

bond length, and Aij
0 and Aij

1 are the parameters associated with the depth

and width of the potential well respectively. To get the Morse parameters,

we have followed the same procedure as was described in Chapter 3 with a

few slight changes described later in this chapter.

The second term in Eq. (6.1), the substrate potential VOS at any point

(x, y) on the surface, can be obtained by Fourier interpolation between the

values of different stacking site energies. An hcp(0001) surface has a triangu-

lar lattice. Four of the different stacking sites possible for a triangular lattice

are fcc, hcp, atop and bridge sites; these are shown schematically in Fig. 6.2.
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The substrate potential is given by:

VOS(x, y) =
VB + 3VP

4
+

(

2VB − VA − VC
9

)

×
{

cos

[

2π

a

(

x− y√
3

)]

+ cos

[

4π√
3a
y

]

+ cos

[

2π

a

(

x+
y√
3

)]}

−
(

VC − VA

3
√
3

)

×
{

sin

[

2π

a

(

x− y√
3

)]

+ sin

[

4π√
3a
y

]

− sin

[

2π

a

(

x+
y√
3

)]}

+

(

VB − 9VP + 4VA + 4VC
36

)

×
{

cos

[

4π

a
x

]

+ cos

[

2π

a

(

x+
√
3y
)

]

+ cos

[

2π

a

(

−x+
√
3y
)

]}

.

(6.5)

In this equation, VC , VA, VB and VP denote the stacking site energies for fcc,

hcp, atop and bridge sites, respectively.

The third term in Eq. (6.1), referred as the “chemical potential”, is more

difficult to define for heteroepitaxial systems. While mapping to the 1D

model, it was assumed that the extra atoms needed to increase the density

of overlayer atoms (for a compressive reconstruction) come from the bulk

phase. This may not be true in actual experimental conditions, where extra

atoms can be obtained from adatoms or step-edges with smaller energy cost.

In the case of heteroepitaxial systems, there is no accessible “bulk” phase for

overlayer atoms. In the case of expansive reconstructions, the source would

be replaced by a sink for the atoms removed from the overlayer.

In previous studies done on heteroepitaxial systems, there have been a

number of different approaches used. A few such choices are to set Γ to a
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value such that the model results match known results [176] or to take Γ to

be equal to the cohesive energy per atom in the monolayer with bulk lattice

spacing [128], or the energy cost to take a single adatom at equilibrium on the

surface [179], or set it to zero [180]. To study surface alloying of two elements

on a third one, the formation energy has been used in the place of Γ [181],

which ignores the origin of atomic reservoirs. For the Pt(111) surface, it has

been shown that depending on whether the extra atoms come from the bulk

or the adatoms, the tendency towards reconstruction alters [126]. Therefore

in this work, we have have considered two different cases – (i) consider that

the extra atoms originate from the bulk phase, that is, the same assumption

used for the 1D model, and (ii) consider Γ to be a free parameter and see

its effect on each system. The previous case would be useful for the direct

comparison between results from the 1D and the 2D models, and the latter

would be useful to tune the periodicity of reconstruction.

We will also examine whether it is possible to control the formation of the

reconstruction by tuning the chemical potential. There have been some theo-

retical and experimental studies which show that varying physical conditions

can affect the surface structure [182–185]. In this study, we have assumed

that the overlayer reconstructs by densifying or rarefying along only one di-

rection. This is a generally observed structure for reconstructions of a single

monolayer of overlayer atoms. We would expect qualitatively similar behav-

ior for other types of reconstructions such as isotropic triangular patterns.
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6.3 Computational Details

We have used the PWscf code of the Quantum-ESPRESSO package [29] to

perform density functional theory calculations to compute the various param-

eters required to solve the Frenkel-Kontorova model. For magnetic overlayer

systems, that is, for Fe or Co on Ru(0001), we have performed spin polarized

calculations. We have used a plane-wave basis set along with ultrasoft pseu-

dopotentials [18]. We have used a generalized gradient approximation of the

Perdew-Burke-Ernzerhof form [11] for the exchange-correlation functional.

The plane-wave cutoff energies for wavefunctions and charge densities are

equal to 20 Ry and 160 Ry respectively.

A supercell approach is used to model the surface within periodic bound-

ary conditions. The calculations to get energetics of different stacking pos-

sibilities were performed using an asymmetric slab containing six Ru layers,

one pseudomorphic O overlayer, and vacuum spacing of around 17.4 Å. The

surface normal (the z-direction) is along the [0001] crystallographic direction.

We have allowed the overlayer and three adjacent Ru layers to relax using

Hellmann-Feynman forces, while the three bottom layers are kept fixed. The

calculations done to determine the Morse parameters were done using a sym-

metric slab with an overlayer deposited on both sides of a six-layer Ru slab.

For these calculations, only the overlayer is allowed to relax, and all the Ru

layers are fixed at the bulk distance. We have used an (8 × 8) Monkhorst-

Pack k-mesh [19] in the surface Brillouin zone. For better convergence, we

have used the Methfessel-Paxton smearing technique [22], with the smearing

width equal to 0.05 Ry.
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We have performed quenched molecular dynamics simulations to solve

the 2D Hamiltonian given in Eq. (6.1). Based on atomic-size mismatch be-

tween the overlayer atoms and the substrate, we have modeled compressive

reconstruction for the Fe and Co overlayers, and expansive reconstruction for

the Pt, Ag, Au and Pb overlayers.

6.4 Results and Discussion

6.4.1 One-dimensional Frenkel-Kontorova Model

The value of the period of the substrate potential, a, is equal to the NN

distance of Ru. The calculated value of a is equal to 2.74 Å, as was reported

in Chapter 3. Next, we have calculated the stacking fault energies for four

different stacking sites (see Fig. 6.2). Note that to calculate the bridge site

energies, relaxation of overlayer atoms in the surface plane is not permitted,

so as to ensure that the system does not relax to a minimum energy position

rather than the needed saddle point configuration. The energies are tabulated

in Table 6.1; the values are given relative to the most stable site for that

overlayer system, so for Fe, Co, and Pt with respect to the hcp site, and for

Ag, Au, and Pb with respect to the fcc site. The atop sites are the least

favored, whereas hollow sites (fcc or hcp) are the most favored sites. The

amplitude of the substrate potential along the zig-zag line connecting hcp and

fcc sites (see Fig. 6.2), is given by the energy difference between the energy

of the bridge site and the most favored site, Vmin, that is, W = |VP − Vmin|.

The values are tabulated in Table 6.2.
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Overlayer Stacking fault Morse potential
element energies (meV) parameters

O
VA VB VC VP A0 A1 b
hcp atop fcc bridge (eV) (Å−1) (Å)

Fe 0.0 541.5 55.9 79.8 1.4111 0.997 2.65
Co 0.0 563.5 88.1 217.6 1.0608 1.450 2.52
Pt 0.0 178.3 3.8 112.7 1.1061 1.656 2.78
Ag 4.9 268.6 0.0 58.3 0.5449 1.588 2.89
Au 7.3 195.9 0.0 54.1 0.7165 1.684 2.86
Pb 1.8 202.0 0.0 36.7 0.6706 1.336 3.26

Table 6.1: The calculated stacking fault energies for four different stacking sites
and the fitted Morse parameters, for overlayer O atoms on the Ru(0001) surface
are tabulated. The stacking site energies are given relative to the lowest energy site
for that particular system.

To determine the interactions between overlayer atoms VOO for the 2D

model and the spring constant µ for the 1D model, we have assumed that the

NN bond has a Morse potential form. We have calculated the corresponding

Morse parameters using the same procedure which has been described in

Chapter 3, that is, to fit a plot of the surface stress versus the in-plane

lattice constant to a derivative of a Morse form. There is a slight variation

in the procedure to calculate the stress – in the previous chapter, we allowed

the interlayer distance between the overlayer and the substrate to relax as

we varied the in-plane distance, while here we have kept it fixed at the value

corresponding to the substrate lattice constant. (In reality, we are interested

in the surface stress when only the overlayer is stretched or compressed, and

not the complete slab. In this case, the interplanar distance between the

overlayer and the substrate would have an intermediate value between the

value it has at the substrate lattice constant and the one when the complete

slab is stretched or compressed pseudomorphically. Therefore, these two
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O γi σ µ W R
Fe 0.196 0.139 2.801 0.080 0.04
Co 0.181 0.396 4.464 0.218 -0.66
Pt 0.100 -0.138 6.068 0.113 0.64
Ag 0.146 -0.371 2.748 0.058 2.99
Au 0.120 -0.424 4.064 0.054 2.73
Pb 0.380 -2.212 2.394 0.037 21.0

Table 6.2: Calculated quantities required to evaluate the reconstruction parameter
R and the corresponding values of R: The interface energy γi, the surface stress σ,
and the spring constant µ are in eV/Å2 and the amplitude of the substrate potential
W is given in eV. The R-parameter is a dimensionless quantity.

approaches may be considered as two limiting cases for the actual value

we need to compute. One might then expect that the actual values of the

stiffness and equilibrium bond length of the intraplanar overlayer bonds also

will have intermediate values between the two limiting cases.) The calculated

values of A0, A1 and b are tabulated in Table 6.1, and the calculated surface

stress at the Ru bulk NN spacing and the values of spring constant µ (=

2A0A
2
1) are given in Table 6.2. Note that the values of the surface stress are

the same as those shown in Fig. 3.15. However, in that chapter we had used

the convention that positive (negative) sign denotes compressive (tensile)

stress, while in the derivation of R [175], the opposite sign convention has

been used. Therefore to be consistent with the derivation, we have considered

here a positive (negative) sign for the tensile (compressive) stress.

Now the only remaining quantity required to compute R is the interface

energy which is defined by Eq. (6.3). These calculations were done using a

symmetric slab, and the values are tabulated in Table 6.2.

After computing all the different quantities required, we have calculated

the R-parameter for all the systems. The values are given in the last column
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of Table 6.2. For the monolayers of Fe, Co and Pt on the Ru(0001) surface,

we find that |R| < 1, which implies that there is no reconstruction for these

systems, whereas for the monolayers of Ag, Au and Pb on Ru(0001), we

obtain |R| > 1, which means that these overlayers would reconstruct. These

results match with experimental results whenever available (see Table 6.4).

Note here that just examining the various parameters in columns 2-5 of

Table 6.2 will not be sufficient to give us an idea about reconstructions.

For example, for Co/Ru(0001), the surface stress and the spring stiffness

are higher than those for Ag/Ru(0001) which would suggest that the Co

overlayer would reconstruct, but Ag would not. However, this is opposite to

what is observed. This is because in the case of Co/Ru(0001), the substrate

potential is much deeper than that for Ag/Ru(0001), which compensates for

the other two effects.

Based on the atomic-size mismatch between O and Ru, one expects Fe

and Co to have negative R values, but Pt, Ag, Au and Pb to have positive R

values. Except for Fe/Ru(0001), this is true for all the systems studied. Note

that for Fe/Ru(0001), the values of VC and VP are very close to each other

as compared to other systems. This breaks the assumption of sinusoidal

potential which is valid if VP − VA >> |VC − VA|. This may lead to the

slight discrepancy from expectations, observed for this particular system.

For the Pb/Ru(0001) system, the value of R is very large which indicates

a strong tendency towards reconstruction. This corresponds with the very

large atomic-size mismatch between the Pb and Ru atoms.
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Substrate atoms
Overlayer atoms

(a) Au/Ru(0001)

(b) Fe/Ru(0001)

Figure 6.3: Examples of surface unit cells used for simulation of the 2D FK
model: show top views of an (n ×

√
3) surface unit cell with n = 10. The black

circles denote underlying substrate atoms. The blue squares represent the optimized
final positions for overlayer elements – (a) Au/Ru(0001) having n− 1 = 9 atoms
in a row (expansive reconstruction), and (b) Fe/Ru(0001) having n+1 = 11 atoms
in a row (compressive reconstruction).

6.4.2 Two-dimensional Frenkel-Kontorova Model

Next we will simulate the complete 2D FK model for all the systems consid-

ered above. For these simulations, we have considered an (n×
√
3) unit cell

(an example is shown in Fig. 6.3) which contains 2n atoms for the pseudo-

morphic overlayer configuration. For compressive (expansive) reconstruction,

there is an increase (decrease) in the density of overlayer atoms, that is, the

unit cell would contain (2n+ 2) [or(2n− 2)] atoms; an example of each type

of reconstructed unit cell is shown in Fig. 6.3. We start with various initial

positions for these (2n ± 2) atoms, and then these positions are optimized

using a conjugate gradient algorithm to obtain the minimum energy config-

uration. To ensure that we have indeed reached a global minimum, we start

with a few different initial atomic positions.

Before we start our study, we need to define the chemical potential. As
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O
Γb Ec Ead Γad

(eV) (eV) (eV/atom) (eV)
Fe 1.24 5.28 -4.02 -0.03
Co 0.94 5.54 -4.42 -0.18
Pt 0.64 5.72 -3.75 -1.33
Ag 0.83 2.51 -1.39 -0.29
Au 0.67 2.98 -1.43 -0.88
Pb 0.50 2.93 - -

Table 6.3: The ab initio values of cohesive energies Ec , the adsorption energies
Ead for adatoms on the heteroepitaxial systems, and values of chemical potential
obtained from the bulk Γb and the adatoms Γad, are tabulated here.

mentioned before, we have first considered the bulk phase as the source or

sink for “extra” atoms. We need to find the chemical potential associated

with the bulk phase of overlayer atoms. Note that the interface energy γi for

the unreconstructed overlayer can be calculated in two ways – (i) from ab

initio calculations as was done using Eq. (6.3), and (ii) from the FK model

Hamiltonian which gives us,

γi =
3E0 + Γb√

3
2
a2

, (6.6)

where E0 is the elastic energy for the NN bond of an atom in the unrecon-

structed overlayer which is given by E0 = A0{1 − e−A1(a−b)}2, and Γb is the

“bulk” chemical potential. Therefore, we can compute the “bulk” chemical

potential:

Γb =

√
3a2γi
2

− 3E0, (6.7)

using the ab initio calculated interface energies. The computed values of Γb

are tabulated in Table 6.3.

After defining the chemical potential, we compare the energies of the
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reconstructed overlayer with that of the unreconstructed overlayer, to see

whether the reconstruction is favored or not. We define the quantity:

∆γ(n) =
Erec(n)− Eunrecon(n)√

3na2
, (6.8)

where Erec(n) is the energy of a reconstructed overlayer [having overlayer

density (n+1)/n for compressive reconstruction and (n−1)/n for expansive

reconstruction], while Eunrec(n) is the energy of an unreconstructed surface

[with density = n/n = 1]. The energies are minimized for an (n×
√
3) unit

cell, with area =
√
3na2.

In Fig. 6.4, we have shown our results for ∆γ, taking chemical potential Γ

equal to Γb, as a function of the change in the density of the overlayer atoms

relative to the substrate. We have plotted using ∆ρ = ± 1
n
as the abscissas

rather than n. Note that ∆ρ is positive for compressive reconstruction and

negative for expansive reconstruction. If ∆γ(n) is negative, then reconstruc-

tion is favored over the pseudomorphic structure, and a minimum at a finite

value of n = n∗ gives the periodicity of reconstruction for the reconstructed

surface. We observe that Au, Ag, and Pb overlayers prefer to reconstruct,

whereas Pt, Co, and Fe overlayers do not reconstruct. For Au/Ru(0001),

the energy cost to reconstruct is minimum when ∆ρmin ∼ -8.33%, which

corresponds to n = 12, i.e., 11 Au atoms on 12 Ru atoms. Similarly, for

Ag/Ru(0001), the energy cost to reconstruct is minimum when 7 Ag atoms

sit on 8 Ru atoms, that is, ∆ρmin = -12.5%. For Pb/Ru(0001), a minimum is

obtained for 2 Pb atoms on 3 Ru atoms which corresponds to ∆ρmin = -33%.
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Figure 6.4: The difference in surface energy per unit area of the reconstructed
and the unreconstructed surface, ∆γ, as a function of the change in the density
of overlayer atoms, ∆ρ, calculated using the 2D Frenkel-Kontorova model: these
were obtained by taking Γ = Γb. We have shown results for (a) Ag and Au, (b) Pb,
(c) Pt, and (d) Fe and Co. Note that the y-axis scale is different for each panel.

Note that the gain in energy upon reconstruction is much larger for this sys-

tem as compared to the Ag or Au overlayers, this is because of the very large

tensile stress present in the pseudomorphic Pb/Ru(0001). We observe that

there is a monotonic relationship between the value of |R| obtained using the

1D FK model and |∆ρmin| obtained from the 2D FK model, since R serves

as a measure of the tendency toward reconstruction when Γ = Γb.

As we have already explained, for heteroepitaxial systems, the chemical

potential from the bulk phases may not be the correct parameter to use. So
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we estimate the chemical potential if the source or sink for extra atoms is

considered to be adatoms on the O/Ru(0001) system. The values of chemical

potential can be estimated using the relation:

Γad = Γb − Ec − Ead. (6.9)

Here, Ec is the cohesive energy which is defined as the difference between

the energy per atom in the gas phase (that is, an isolated atom), E(Oiso),

and in the bulk phase, Ebulk. The adsorption energy Ead for an adatom on

O/Ru(0001) is defined as Ead = E(Oad/O/Ru(0001)) − E(O/Ru(0001)) −

E(Oiso), where E(Oad/O/Ru(0001)) is the total energy for an adatom ad-

sorbed on the O/Ru(0001) surface, and E(O/Ru(0001)) is the total energy

for the pseudomorphic overlayer of O on the Ru(0001) surface. For the

adatom calculation, we have used a (3 × 3) O/Ru(0001) surface unit cell.

The computed values of Ec, Ead and Γad are tabulated in Table 6.3, for all

the systems except Pb/Ru(0001). For the Pb/Ru(0001) system, when a Pb

adatom is adsorbed, we find that the whole system reconstructs, and we were

not able to get a stable geometry. The probable reason for this instability is

the high compressive stress for Pb/Ru(0001). Note that for all the systems,

Γb is positive, whereas Γad is negative.

Next, we will examine how the reconstruction is affected when the chem-

ical potential Γ is varied. The values of Γ are chosen in the vicinity of Γb

and Γad to ensure that the values are reasonable for experimental conditions.

For all the systems under study, we have computed the difference in sur-

face energy between the reconstructed and unreconstructed surface, ∆γ, as
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Figure 6.5: Controlling surface reconstruction by varying the chemical potential
for Ag/Ru(0001) and Au/Ru(0001): the difference in the surface energy between
the reconstructed and unreconstructed surfaces, as a function of the change in the
density of overlayer atoms, for (a) Au/Ru(0001) and (c) Ag/Ru(0001), is plotted
for different values of Γ. The values of Γb and Γad, for both the systems, are given
in Table 6.3. In panels (b) and (d), we have plotted the optimal values of the period
of reconstruction, n∗ (black circles), and the decrease in density ∆ρmin (red stars),
as a function of Γ, for Au and Ag respectively. The blue dashed lines correspond
to the experimentally observed range of ∆ρmin values.

a function of the change in the density of overlayer atoms relative to the sub-

strate, ∆ρ, at different values of Γ. The plots are shown in Figs. 6.5-6.7. We

have found that, for all the systems under study, the behavior can smoothly

be switched from unreconstructed to reconstructed by changing the chemical

potential values. Note that the effect of a change in Γ is opposite for com-

pressive and expansive reconstructions. For compressive reconstructions, a

positive value of the chemical potential indicates that an extra atom required
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for the overlayer to reconstruct costs higher energy, and thus the compressive

reconstruction is less favored. In contrast, for expansive reconstructions, a

positive value of Γ would favor reconstruction because it costs less energy to

give away an extra atom. Therefore, for Fe/Ru(0001) and Co/Ru(0001), as Γ

becomes more positive it is less favorable for the overlayer to reconstruct, and

larger n and smaller |∆ρ| values are observed. However, for Pt/Ru(0001),

Ag/Ru(0001), Au/Ru(0001), and Pb/Ru(0001), as Γ becomes more positive,

expansive reconstruction becomes more favorable, and smaller n and larger

|∆ρ| are favored. In growth experiments for heteroepitaxial systems, one can

tune the chemical potential by controlling temperature, the metal deposi-

tion flux, or the adatom density in ultra-high vacuum conditions [186, 187],

and for chemical growth, by controlling the electrochemical potential, and

concentration [188–190].

In Fig. 6.5(a) and Fig. 6.5(c), we have shown the results for Au/Ru(0001)

and Ag/Ru(0001) respectively. For both these systems, at very negative

values of Γ, ∆γ is positive and does not show a minimum, which implies that

the pseudomorphic overlayer is favored. As Γ increases, the reconstruction

starts becoming favorable. For both these systems, around Γ = Γad (-0.9 eV

for Au and -0.3 eV for Ag), ∆γ becomes negative and the reconstruction is

favored. At the Γad value, for Au/Ru(0001), a minimum in ∆γ occurs when

∆ρmin = -3.12%, which corresponds to 31 gold atoms on 32 Ru atoms, and

for Ag/Ru(0001), ∆ρmin = -5.88%, which corresponds to 16 silver atoms on

17 Ru atoms.

There is lot of experimental data available for both these systems, so we

will now examine how our results compare with the experimental data. In
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Figure 6.6: Controlling surface reconstruction by varying the chemical potential
for (a) Pb/Ru(0001) and (b) Pt/Ru(0001): change in the surface energy ∆γ as a
function of reduced density of overlayer atoms, ∆ρ, is plotted at different values
of Γ. The values of Γb and Γad for both the systems are given in Table 6.3. Note
that the y-axis scales in the two panels differ by an order of magnitude.

Fig. 6.5(b) and Fig. 6.5(d), we have plotted n∗ and ∆ρmin as a function of

the chemical potential Γ. We have shown the experimental data with blue

dashed lines, which show a range of ∆ρmin observed in STM experiments – for

Au/Ru(0001), the reported periodicity for the stripe width is 6.8 nm [107],

corresponding to ∆ρmin = -4%, while in the group of S. Rousset, et al., they

have observed a periodicity of 4 nm, which corresponds to ∆ρmin = -6.7%

[unpublished]. For Ag/Ru(0001), reported periodicities are 3.8 nm [107] and

4.3 nm [108], which correspond to ∆ρmin values of -7.14% and -6.25% respec-

tively. These values correspond to Γ values of -0.5 to 0.3 eV for Au/Ru(0001)
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and -0.20 to 0.01 eV for Ag/Ru(0001). Recall that the values for Γb and Γad

values for Au are equal to 0.67 eV and -0.88 eV respectively, and for Ag, 0.83

eV and -0.29 eV respectively. Therefore, our results using the FK model are

comparable with those from experiments.

In Fig. 6.6, we have shown similar results for Pb/Ru(0001) and Pt/Ru(0001).

For Pb/Ru(0001), the system prefers to reconstruct until Γ values become

very strongly negative. At all physically relevant values of Γ, we have ob-

tained negative ∆γ values with sharp minima. This is expected based on the

large surface stress value computed for this system, implying that a pseudo-

morphic overlayer costs a very high elastic energy. This observation also ac-

cords with the large R value obtained from the 1D model. For Pt/Ru(0001),

for both Γ = Γb and Γ = Γad, the system prefers to remain pseudomorphic.

Only at high Γ values (> 1.2 eV), is reconstruction more favored as compared

to the pseudomorphic layer.

In Fig. 6.7, we have shown our results for Fe/Ru(0001) and Co/Ru(0001),

to see the effect of varying chemical potential. For both these systems, at low

negative values of Γ, we get negative ∆γ values, indicating that reconstruc-

tion is favored. For Co/Ru(0001), when Γ & 0 eV, there is no reconstruction,

and for Fe/Ru(0001), no reconstruction is observed when Γ & -1 eV.

6.4.3 Comparison with Experiments and our Previous

Work

In Table 6.4, we have compared our results from the 1D model and the 2D

model with each other, and with experiments. The predictions from the 1D
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Figure 6.7: Controlling surface reconstruction by varying the chemical potential:
change in the surface energy ∆γ, as a function of increased density of overlayer
atoms, ∆ρ, for (a) Co/Ru(0001) and (b) Fe/Ru(0001), for varying values of chem-
ical potential Γ. The values of Γb and Γad for Fe and Co are given in Table 6.3.

model are based on the value of R, and the predictions from the 2D model

are based on simulations done at Γ = Γb, which is the appropriate value

to compare with the R-parameter. We observe that the results from the

two approaches match with each other. In the last column, we have also

tabulated whether the overlayer is observed to reconstruct in experiments.

For all the systems, our results agree with experimental observations (when

data is available). Though we were unable to find experimental reports of

whether or not Pb/Ru(0001) reconstructs [191], it is almost certain that it

will do so, given the large size mismatch between Pb and Ru, and the results

of our attempted ab initio calculations of a single adatom on pseudomorphic
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O 1D model 2D model Experimental
Fe No No No [104]
Co No No No [105]
Pt Yes Yes Yes [106]
Ag Yes Yes Yes [78, 107,108]
Au Yes Yes Yes [107]
Pb Yes Yes -

Table 6.4: Comparison between the results from the 1D Frenkel-Kontorova model,
2D Frenkel-Kontorova model and experiments: we have tabulated our predictions
of whether or not the overlayer O would reconstruct on the Ru(0001) surface. For
the 2D model, the predictions are based on the simulations done at Γ = Γb. The
reported experimental data has been taken from previous studies. Note the excellent
agreement between all three columns.

Pb/Ru(0001).

Recall that in Chapter 3, we have considered mixing of pairs of these

metals on the Ru(0001) surface with the assumption of pseudomorphic over-

layers. Most crucially, the energy of the mixed phase was compared with

that of phase segregated pseudomorphic phases. By comparing the energy

of reconstruction with the formation energy of alloys, we will get an idea

whether our predictions of preferred alloying will be valid, in case one of the

phase segregated components reconstructs. For this comparison, we have

considered the energies calculated at the bulk chemical potential. Both the

magnetic overlayers – Fe and Co, do not reconstruct, while, except for Pt,

all the non-magnetic elements (Ag, Au and Pb) reconstruct. Therefore the

results for M -Pt alloys will remain unchanged, while in the case of M -Ag

alloys (which were already at the boundary of mixing), the reconstruction of

the Ag layer implies that the mixing is even less favored. For Pb/Ru(0001),

the ∆γ value at the minimum is about -298 meV/Å2 which when compared
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with the lowest formation energy of about -150 meV/Å2 (see Fig. 3.8), im-

plies that the reconstruction of the Pb layer would be energetically more

favored than the mixing. It was for this reason that we did not consider the

Pb systems as good candidates to observe surface alloying, despite the large

values of |∆H| obtained for Pb systems in Chapter 3. However, in the case of

Au alloys, the formation energy of alloys is lower as compared to the energy

of reconstruction. This is in accordance with the experimental observation

(see Chapter 4) that Fe-Au/Ru(0001) forms a surface alloy.

6.5 Summary and Conclusions

In this chapter, we have studied the possibility of reconstruction for a mono-

layer of O (= Fe, Co, Pt, Ag, Au, and Pb) on the Ru(0001) surface using the

Frenkel-Kontorova model. We have used two approaches – the 1D mapping

of the model, and quenched molecular dynamics simulations to solve the 2D

model. We have generalized the definition of the R-parameter to use in the

heteroepitaxial systems, then shown that its predictions match well with ex-

periments. Therefore, this extension allows us a simple way to estimate the

possibility of surface reconstruction in heteroepitaxial systems. Our results

from the 1D and 2D models match with each other and with the available

experimental data. We were also able to show that by varying the value of

chemical potential, one can tune the periodicity of reconstruction. The effect

of changing Γ is found to be opposite for compressive and expansive recon-

structions, that is, a positive value of Γ inclines the system towards expansive
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reconstruction, but makes the system energetically less stable towards com-

pressive reconstruction. In future work, it will be interesting to extend this

to the case where the overlayer itself consists of more than one component.

However, we note that the formation of surface alloys, of the kind studied in

Chapters 3 and 4, usually reduces the surface stress, and therefore surface

alloy systems are less likely to reconstruct than single-component overlayers.

A part of this work has been published in Ref. [147].



Chapter 7

Spin Polarized Surface States:

Fe/Au(111)

7.1 Introduction

In the previous chapters, we have looked at the properties of surface alloys,

now in this chapter we will study the properties of interfaces. Here we will

look at the effect of an interface on the electronic properties – in particular

we have studied the effect of Fe deposition on the Shockley surface state of

the clean Au(111) surface.

The presence of the surface gives rise to additional states in the band

structure of the solid due to symmetry breaking. These new states, known

as surface states, peak near the surface and decay exponentially as one moves

away from the surface (see Fig. 7.1). Within the independent electron approx-

imation, there are two different ways in which the theory of surface states can

be treated - using the nearly free-electron method, or using localized orbitals,

164
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Figure 7.1: Schematic illustration of the potential near the surface for a one-
dimensional lattice and the corresponding surface state: solid circles denote the
atomic positions in the lattice, the red line shows schematically the potential near
the surface, and the black line shows the corresponding surface state which decays
exponentially in the vacuum.

that is, the tight-binding method [76]. The first approach is mostly used to

study the surface states observed on metal surfaces which have free electron

like dispersion; these are known as Shockley surface states [192]. The second

approach is more suitable for semiconductor surfaces and the corresponding

states are known as Tamm states [193]. Surface states of both kinds of sys-

tems can be studied using ab initio density functional theory. Surface states

can be characterized using various experimental techniques such as angle-

resolved photoemission spectroscopy, scanning tunneling microscopy (STM)

and scanning tunneling spectroscopy (STS). It has been observed that sur-

face states are sensitive to small changes in the surface structure, and hence

can be used as a probe to study the presence of defects and adsorbates on

the surface.

Many noble metal surfaces, for example, copper, silver, and gold, are

known to have a Shockley surface state present in their band structure [194].

There have been a large number of studies on the electronic properties of
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these noble metal surfaces [127, 195, 196]. The electronic properties of the

Shockley state are shown to be sensitive to deposition of another metal on

noble metal surfaces. For example, it has been observed experimentally that

for the Au(111) and Cu(111) surfaces, the deposition of a single layer of

Ag shifts the surface state band-edge by about 165 and 200 meV respec-

tively [197]; in the same study, it has been observed that the band-edge of

the Shockley state varies as a function of the Ag thickness up to about 10

ML. Buried interfaces can be detected using such thickness dependence of the

surface states. Rare gas deposition is also known to cause shifts in the sur-

face state [198, 199]. Further, surface defects such as vacancies, adsorbates,

nanoislands, atomic steps, etc., can scatter the surface state electrons which

then might lead to standing wave patterns [200–204]. The scattering can also

induce long-range interactions which could effectively influence the growth

mechanism of adsorbates [205–210]. Deposition of organic molecules can form

charge-density waves in the surface state electrons, which can cause indirect

interaction between adsorbates and lead to self-assembled monolayers [211].

All these different examples illustrate that the study of the electronic proper-

ties of surface states is not only important to examine changes in the surface,

but can also be utilized to obtain desired properties by altering the surface

environment.

Magnetic nanostructures and thin films grown on metal surfaces have

shown interesting magnetic properties such as enhanced moments and high

magnetic anisotropy. When a magnetic element is deposited on a noble metal

surface, the presence of a two-dimensional (2D) free electron gas from the

Shockley state influences its magnetic structure. For example, spin polarized
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surface states originating from d3z2−r2 minority and sp majority bands have

been observed for Co nanoislands on Cu(111), and a shift in the majority

state is observed as the Co coverage changes [212]. By controlling nanostruc-

ture geometry on the noble metal surfaces, the spin polarization can be tuned;

the mechanism responsible for this is a local modulation of surface states and

spin polarized quantum confinement [213, 214]. The existence of spin polar-

ized surface states and quantum confinement of the surface state electrons

has also been observed for Co nanoislands on the Au(111) surface [215,216].

The Au(111) surface has been studied extensively and is known for its

herringbone reconstruction [170–172]. For this surface, atoms in the surface

layer occupy different crystallographic sites – mainly two regions, one with

face-centered cubic (fcc) stacking and another with hexagonal closed-packed

(hcp) stacking, which are separated by discommensuration lines having the

bridge site stacking. Because of the symmetry of the surface, there are three

different orientations possible for these striped domains; domains of two of

these orientations arrange periodically in a zig-zag fashion resulting in the

long-range ordered herringbone reconstruction. At the elbow of two rotated

domains, there is a point defect which is known as a kink site. The regu-

lar pattern of the kink sites provides a good template for the nucleation of

deposited materials, which leads to self-assembled monolayers or regularly

organized nanoislands.

Our experimental collaborators – the group of S. Rousset et al. – have

investigated the electronic properties of Fe nanoislands on Au(111), using

STM and STS measurements. Using the free-electron and the tight-binding

models, they have demonstrated that features in the local density of states
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can be explained in terms of confined Shockley surface states [217]. Here we

have studied the electronic properties of a monolayer of Fe on the Au(111)

surface, and then we have compared our results with the experimental mea-

surements. We have calculated the spin polarized band structure of the

Fe-deposited surface, and have observed a large number of new states ap-

pearing in the projected bulk band gap. Only one of the new states is in the

majority spin channel, while the others are in the minority spin channel. We

have then analyzed our results using charge density plots and the projected

density of states, to show that the state in the majority channel originates

from the Shockley state on the clean surface and has similar properties to

it, whereas the other states, except for one, originate from the Fe d-orbitals

and are mostly localized on the Fe layer. We have also studied the effect of

different stacking possibilities on the band structure. After we had obtained

some of our results, a report was published which also studied the electronic

properties of the Fe/Au(111) system [218]; we have compared our results

with the reported results.

7.2 Experimental Background

Our collaborators – the group of S. Rousset, et al. – have performed STM and

STS measurements on self-organized Fe nanoislands grown on the Au(111)

surface [217]. The measurements were taken in ultra-high vacuum (pressure

≈ 10−10 mbar) and at low temperatures (5 K). The gold surface was cleaned

by performing Ar+ sputtering and then annealed by heating to temperatures

of 750 K; this cycle is repeated several times to achieve a sufficiently clean
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Figure 7.2: (a) Local dI/dV spectrum measured on a Fe nanoisland on the
Au(111) surface: Clear peaks are observed at the energies marked by vertical bars.
The inset shows the 5.5 × 5.5 nm2 STM image (taken at a bias of 1 V and a tip
current of 500 pA) of the Fe island for which the spectrum is measured. Panels
(b)-(d) show the conductance maps measured at the bias values at which peaks ap-
pear in the spectrum, that is, at 0.09 V, 0.59 V, and 1.05 V respectively [217]. The
inhomogeneity in the conductance maps corresponds to the standing wave patterns
of confined surface state electrons.

surface. Iron deposition was carried out by sublimation of a Fe rod at room

temperature and under ultra-high vacuum conditions. An electrochemically

etched tungsten tip was used for the measurements. At low coverages, there

is a formation of Fe nanoislands which nucleate at the kink sites. The is-

lands are monatomic in height and grow pseudomorphically on the surface,

in agreement with previous results [219, 220]. Most of the islands are ob-

served to have a triangular shape or a truncated triangular shape, e.g., an

STM image of a typical nanoisland is shown in the inset of Fig. 7.2(a).
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The local electronic properties of the system are studied by STS mea-

surements on several islands; one example of such a spectrum is shown in

Fig. 7.2(a). The spectrum shows a number of peaks; the peak positions shift

as a function of the size of the nanoisland. The conductance maps measured

near these peak energies (shown in Fig. 7.2(b)-(d)) show spatial inhomogene-

ity in the local density of states. Using the free-electron and the tight-binding

models to analyze the experimental data, it was shown that the measured

spectrum can be explained in terms of the confinement of the Shockley-like

surface state electrons in nanoislands. By fitting the experimental data with

the parameters calculated from the free electron model [217], one can ob-

tain the dispersion of the surface state, which is shown in Fig. 7.4(d) and

discussed further below. The band-edge of the measured surface state for

the Fe-deposited gold surface is shifted up by about 100 meV relative to

the clean surface, and the effective mass has increased. To understand these

experimental observations, we have studied the electronic properties of the

Fe/Au(111) surface. However for the ease of calculations, we have considered

a single layer of Fe instead of nanoislands, which enables us to see how the

Shockley state on the Au(111) surface is affected by the deposition.

7.3 Computational Details

We have used spin polarized density functional theory calculations as imple-

mented in the PWscf code of the Quantum-ESPRESSO package [29]. We

have used a plane wave basis set with an energy cut-off 20 Ry for the wave
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functions and a charge density cut-off equal to 180 Ry. We have used ul-

trasoft pseudopotentials [18], and the local density approximation (LDA) of

the Perdew-Zunger form [10]. for the exchange-correlation functional. We

have used a (15 × 15 × 1) Monkhorst-Pack [19] k-point mesh for Brillouin

zone sampling; and the Methfessel-Paxton smearing technique [22] with the

smearing width kept equal to 0.01 Ry. We have performed convergence tests

to obtain an optimum energy cut-off and k-point grid.

We have used a supercell geometry to model the surface within periodic

boundary conditions. The supercell is constructed in such a way that the

surface normal, i.e., the [111] direction, is along the z-axis, and the x and

y-axes are along the [1̄10] and [1̄1̄2] directions respectively. Since we are

interested in studying the effect of Fe deposition on the Shockley surface state

of the clean Au(111), it is necessary to ensure that there is no splitting of the

surface state due to an interaction between the top and bottom surfaces of the

constructed slab. It has been reported previously that structural relaxations

are described well by much thinner slabs than that required to avoid surface

state splitting, e.g., Takeuchi, et al. [127], have used a seven-layer slab to

find the surface structure and a 15-layer slab for its electronic properties,

and in another study, Nicolay, et al. [196], have reported that a 23-layer

slab is required to avoid splitting. Therefore we have performed detailed

convergence tests with respect to the number of atomic layers (na), which

are described in Section 7.4. Based on these tests, the supercell chosen for the

clean surface consists of 39 atomic layers separated by about 18.7 Å vacuum;

and for the Fe-deposited surface, we have deposited a pseudomorphic Fe layer

on both sides of the slab. We have allowed relaxation of the topmost Fe layer
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along with the three adjacent Au layers on both sides of the slab.

7.4 Results and Discussion

We have first calculated the nearest neighbor (NN) distance for bulk Au

which is equal to 2.86 Å; this matches quite well with the experimental

value (= 2.89 Å) [103] with an error of about 1%. The value is slightly

underestimated as opposed to those calculated in the earlier work in this

thesis, where we had used the generalized gradient approximation. It is well

known that the LDA functional generally overbinds. Note that the error in

the calculated lattice constant is smaller for the LDA than the GGA. For bulk

Fe in the body-centered cubic structure, the calculated NN distance is equal

to 2.38 Å, which compared with the experimental value (= 2.48 Å) [103]

gives an error of about 4%. The error is slightly larger than those found with

GGA functionals in the earlier chapters. However, here we will be studying

a pseudomorphic Fe layer on the Au surface which is better described by

the LDA, so we have used LDA exchange-correlation for this study. The

calculated magnetic moment for bulk Fe is equal to 2.09 µB per atom, as

compared to the experimental value of 2.22 µB per atom [109].

As described in Section 7.3, we have done extensive convergence tests

with respect to the number of atomic layers, so as to avoid splitting of the

surface states resulting from even slight interaction between the two surfaces.

We have calculated the band structure for the clean gold surface for different

numbers of atomic layers na. We found a splitting of 7 meV when na is equal

to 21, which reduces to 1 meV when na is increased to 33, and vanishes only
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Figure 7.3: Induced magnetic moments on Au atoms when Fe layers are deposited
on both sides of (a) a 21-layer and (b) a 39-layer gold slab: an oscillatory pattern
commonly observed for the RKKY-type of interaction is observed, which extends
up to the middle layers of the slab for a 21-layer slab, but not for a 39-layer slab
which can be clearly seen in the insets of each panel showing a central part of the
slab.

when na = 39; this is contrary to previous reports where it was claimed that

convergence was achieved with thinner slabs [127,196,218].

For the deposited Fe layer, we find that the magnetic moment is equal to

3.0 µB per Fe atom, which is enhanced as compared to the bulk Fe moment,

as has been reported earlier [218, 221]. This value is more or less insensitive

to the number of Au layers in the slab. Due to the presence of Fe layers on

both sides, there is an additional interaction present – the Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction through the Au slab. This interaction

will decrease as the thickness of the slab increases. The presence of the

interaction can be seen by the induced moments on the Au layers extending

even to the center of the slab; this was found to be the case for, e.g., na =

21, as shown in Fig. 7.3(a). However, when we increase the number of gold

layers in the slab to 39 layers, then the induced moments on the Au atoms
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at the center of the slab go to zero as can be seen in Fig. 7.3(b). Therefore

we have used a (39+2)-layer slab for further calculations to ensure that the

RKKY interaction between the two Fe layers is absent.

As we have discussed in the introduction, the top layer of the Au(111)

surface is reconstructed and various atoms in the top layer have different

stacking. The deposited Fe atoms can also occupy different stacking sites

on the surface. These different stacking possibilities may conceivably lead to

different electronic properties. Therefore, we have calculated the energetics

of various possible stacking sites for the clean and the Fe-deposited surfaces.

For the clean surface, we have considered two possibilities – the topmost

layer occupying either fcc or hcp stacking sites. Note that here we have not

considered atop or bridge sites because it is known that these two sites are

much higher in energy [127]. We find that the fcc stacking site is lower in

energy than the hcp site by about 14.4 meV per surface atom, which agrees

with previous results [127]. For the Fe/Au(111) system, we have considered

four possibilities, in which both Fe and the top Au layer occupy either fcc

or hcp stacking sites; these possible stacking sequences are tabulated in Ta-

ble 7.1 along with their relative energies. We find that the first case in which

the Fe layer and the top Au layer occupy fcc sites (labelled as Fe-f/Au-f) is

the most stable configuration, followed by the case in which the Fe layer is

at the fcc site, and the top Au layer is at the hcp site; these two cases differ

in energy by about 3 meV per surface atom. The remaining two cases are

higher in energy by more than 25 meV per surface atom, therefore we have

considered only the first two cases for further calculations.

Next we have calculated the electronic band structure for the clean Au(111)
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Case number (1) (2) (3) (4)
and name Fe-f/Au-f Fe-f/Au-h Fe-h/Au-f Fe-h/Au-h

Fe A C B B
Au1 C A C A
Au2 B B B B
Au3 A A A A
Au4 C C C C
Au5 B B B B
Au6 A A A A
δE 0.00 2.95 29.4 26.8

Table 7.1: Various stacking possibilities for the Fe/Au(111) system and their
relative energies: δE is the relative energy of each case with respect to the most
stable configuration, given in meV per surface atom.

surface, which is shown in Fig. 7.4(a), along two high symmetry directions

Γ̄-K̄ and Γ̄-M̄ in the surface Brillouin zone (SBZ); here it is shown for the

fcc-stacked top Au layer. The SBZ for this surface is shown in Fig. 7.5. On

the same plot, we have also shown the projected band structure for bulk

Au, so as to see the effect of the surface clearly. We observe a single band

appearing in the projected band gap of the bulk just below the Fermi energy

Ef , with the band-edge at E −Ef ≈ -0.47 eV, and having effective mass m∗

equal to 0.20 me, where me is the mass of a free electron. This state is con-

sistent with the experimentally observed Shockley state on the Au surface.

The values of the band-edge and the effective mass agree well with previ-

ous results [196, 222, 223]. In Fig. 7.4(b), we have compared the dispersion

of this surface state (labelled as C) with the experimental dispersion of the

clean Au(111) surface state (shown with orange dashed line and taken from

Ref. [222]), and we see good agreement between our results and the experi-

mental results. On the same plot, we have also shown the band dispersion of

the surface state for the configuration in which the topmost Au layer occupies
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Figure 7.4: The band structure for (a) the clean Au(111) surface and (c) the
Fe/Au(111) surface plotted along two high symmetry directions Γ̄-K̄ and Γ̄-M̄ in
the surface Brillouin zone. In panel (a), we have also plotted the projected band
structure for bulk gold (green diamonds) for comparison. In panel (c), red squares
(blue triangles) denote bands in the majority (minority) spin channel. In panels
(b) and (d), we have shown the dispersion of the surface states appearing below the
Fermi energy Ef for different stacking possibilities for the clean and Fe-deposited
surface respectively along with the experimental dispersion curves (dashed orange
line). In the lower panels, for clarity, we have only shown regions near Ef and
areas of the SBZ for small k.

instead the hcp stacking site (dotted line). We do not observe any significant

effect of the stacking on the Shockley surface state (see Table 7.2).

We have then calculated the spin polarized band structure for the Fe/Au(111)

surface, shown in Fig. 7.4(c) for case (1), in which both the Fe layer and the

topmost Au layer occupy fcc stacking sites. We observe the appearance of

a single state in the majority spin channel, and a large number of states in

the minority spin channel in the bulk band gap. The state in the majority
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Figure 7.5: 2D Brillouin zone for the fcc(111) surface: two high symmetry
directions are shown from the zone center Γ̄ = (0, 0) to K̄ = 2π

a
(23 , 0) and to

M̄ = 2π
a
(12 ,

1
2
√
3
). The shaded area shows the irreducible SBZ.

Case Au-f (1) Fe-f/Au-f Au-h (2) Fe-f/Au-h
State label C Su Sd1 Sd2 C Su Sd1 Sd2

Band-edge (eV) -0.47 -0.35 -0.61 0.06 -0.46 -0.36 -0.61 0.06
m∗/me Γ̄-K̄ 0.20 0.26 0.55 -2.73 0.20 0.26 0.54 -3.06

Γ̄-M̄ 0.21 0.27 0.55 -2.62 0.21 0.27 0.53 -2.62

Table 7.2: The position of the band-edge, and the effective mass m∗, of the
dispersive surface state electrons, along high symmetry directions, are tabulated
for two different stacking possibilities. Here me is the mass of a free electron, and
the band-edge position is the energy of the band at Γ̄ with respect to the Fermi
energy. The slope of the band along the two symmetry directions can be slightly
different, and therefore we have calculated the effective mass for both directions
separately.

channel, which we call Su, is shifted upward in energy as compared to the

state C; it has the band-edge at E −Ef ≈ -0.35 eV, and its effective mass is

equal to 0.26 me. Only one of the surface states, called Sd1, in the minority

channel, appears below the Fermi energy. This state is shifted downward in

energy relative to the state C, and has the band-edge at E −Ef ≈ -0.61 eV,

and effective mass equal to 0.55 me. The effective mass has increased on Fe

deposition, as was observed in the experiments, as explained in Section 7.2,

however the increase is more for the minority surface state than that for the
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majority surface state. In Fig. 7.4(d), we have compared the band disper-

sions of these two bands, for two different configurations – case (1) and case

(2); we have plotted only in the region of interest, that is, in the vicinity

of Ef . As was the case for the clean surface, we see only a slight effect of

stacking on the band dispersion; we have tabulated the band-edge and the

effective mass values in Table 7.2 for both the cases. In the same plot, we

have also shown the experimental band dispersion (dashed orange line), we

observe that the state Su shows a shift similar to that seen in the experimen-

tal results. We will discuss this point further below. The remaining states

in the minority channel, which appear in the bulk band gap, lie above Ef .

At E − Ef ≈ 0.06 eV, there is a single state labelled as Sd2 with a very flat

dispersion; its effective mass is given in Table 7.2. At the energies E −Ef ≈

0.27 eV and 0.99 eV, there are states which are doubly degenerate near Γ,

which we have labelled as Sd3 and Sd4 respectively. For most of these states

appearing above the Fermi level, the dispersion is very flat indicating a high

effective mass.

Now we analyze the electronic properties further using the projected den-

sity of states (PDOS), local density of states (LDOS) and charge density pro-

files, to understand the origin and the nature of the new states which appear

in the bulk band gap on Fe deposition. For this detailed analysis, we have

considered only the most stable stacking configurations, that is, for the clean

surface the topmost Au layer is fcc stacked, and case (1) for the Fe-deposited

system, because as seen from the band structure plots, the effect of different

stacking is not significant on the electronic properties.
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Figure 7.6: Projected density of states for the surface states, obtained by perform-
ing calculations restricted to the Γ̄-point: We have plotted relative contributions
from different layers to the total DOS for the surface states (a) C, (b) Su, (c) Sd1,
and (d) Sd2; we have decomposed into contributions only from the top three surface
layers. In (a), the topmost layer is Au, whereas for (b), (c), and (d), it is Fe.

To calculate the density of states, we have restricted ourselves to contribu-

tions coming from k = 0, which results in δ-function peaks in the bulk band

gap, at the energies corresponding to the surface states. By projecting onto

atomic orbitals, these can be decomposed to calculate contributions from

different layers and different atomic orbitals. These PDOS plots calculated

for the states C, Su, Sd1 and Sd2 are shown in Fig. 7.6, where the δ-functions

have been modeled by Gaussians, ρ0(E), of width 0.001 Ry. Note that for the

state C, the main contribution is from the topmost Au layer, as is expected

for the Shockley surface state. Further, we have observed that the s and p
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orbitals of Au mainly contribute to this state. For the Fe-deposited surface,

the state Su has almost equal contributions from the Fe layer and the top-

most Au layer, whereas for the states Sd1 and Sd2, the main contribution is

from the Fe layer, and only a small contribution from the Au layers. Further

analysis of atomic orbital contributions shows that the state Su has main

contributions from the s and p orbitals of Au and the s orbital of Fe, and

the state Sd1 mainly originates from the dz2-orbitals of Fe; whereas the state

Sd2 originates mainly from the s and dz2-orbitals of Fe. The surface states

Sd3 and Sd4 (not shown here) arise purely from the remaining d-orbitals of

the Fe atoms – the dx2−y2 and dxy orbitals of Fe contribute to the state Sd3

and the dzx and dyz orbitals to the state Sd4.

Next, we have calculated the charge density profiles for the surface states,

again by restricting ourselves to the Γ̄-point. These are shown in Fig. 7.7

for the states C, Su, Sd1 and Sd2; for plotting, we have selected a yz-plane

perpendicular to the slab. By calculating the planar average of these charge

densities in different xy planes as a function of z, we can calculate the decay

lengths for the surface states in the vacuum. The decay length of any state

is a measure of the spread of that state in the vacuum, and only states which

have significant charge density at distances of & 5 Å (a typical distance

between the STM tip and the surface) can be detected by STM. For the

state C, shown in Fig. 7.7(a), we observe that the charge density is mainly

spread near the uppermost surface layer and decays as one moves away from

the surface, either towards the vacuum or towards the bulk. When we look

at the planar average of the charge density corresponding to this state (see

Fig. 7.8(a)), we observe a large peak in the charge density just above the
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Figure 7.7: Charge density profiles corresponding to the surface states: we have
shown here the charge density profiles for (a) state C on the clean Au(111) surface,
and states (b) Su, (c) Sd1, and (d) Sd2 on the Fe/Au(111) surface. The spheres
denote atomic positions – red (yellow) for the Fe (Au) atoms. The contours show
the charge density values (in electrons/Å3) with the scale shown for each panel
separately.

topmost Au layer, which decays exponentially in the vacuum; the decay

length is equal to 0.45 Å. Within the bulk, the charge density decays slowly

with small peaks appearing between atomic planes, and decreases to almost

zero beyond the fourth layer.

Now we consider the charge density profiles for the surface states on the

Fe-deposited surface. In Fig. 7.7(b), we have shown the charge density for

the state Su, which we find to be very similar to that for the Shockley state

of the clean surface. As can be seen from the planar average of the charge

density for this state, shown in Fig. 7.8(b), (green solid line), it has a peak

just above the Fe layer with an exponential decay into the vacuum, and it

decays slowly into the bulk, having smaller peaks in between atomic planes.

The decay length for this state in the vacuum is equal to 0.51 Å. This is in
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accordance with the PDOS analysis showing that this state arises from both

the Shockley state of Au as well as the Fe s orbital. The states Sd1 and Sd2

are more localized on the Fe layer, as can be seen from Fig. 7.7(c) and (d),

however for Sd2, there is a small spread in the vacuum. When their respective

planar averages of charge densities are examined (see the red dashed and blue

long-dashed lines in Fig. 7.8(b)), we clearly see that the state Sd1 is localized

only on the Fe layer, whereas the state Sd2 extends into the vacuum, similar

to the state Su, and has a comparable decay length of 0.54 Å. However, unlike

Su, the Sd2 state decays very quickly into the bulk. This also is in accordance

with our PDOS analysis. From this analysis, it may be expected that the

state Sd2 will lead to a peak just above the Fermi level in the experimental

STS spectrum. However, as shown in Fig. 7.2(a), the confined Su state also

leads to a peak close to the Fermi level. Thus it would be difficult to separate

out these two contributions in the experimental spectrum.

Finally, we have calculated the local density of states (LDOS) as a func-

tion of energy, by integrating over the complete surface Brillouin zone at

various distances d from the surface plane. The plots for the LDOS, calcu-

lated for three different d values, are shown in Fig. 7.9. Note that there is a

sharp peak at the Fermi level in the minority spin channel (blue dashed line).

A similar feature was also observed by Donati, et al., [218] in the LDOS, how-

ever with a slight shift in the peak position, which can be attributed to the

small difference in the lattice constant of Au in our study and theirs. As

d increases, the LDOS values decay rapidly (note that the y-axis scale on

each panel in Fig. 7.9 is different), however the reduction is slower for the

peak at Ef which can be seen prominently even at 4 Å above the surface.
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Figure 7.8: Planar average of the charge densities corresponding to the charge
density profiles shown in Fig. 7.7: They are plotted as a function of distance along
the z-direction for (a) the clean surface and (b) the Fe/Au(111) surface. The states
C, Su and Sd2 have a large spread in the vacuum, while the state Sd1 is localized
on the Fe layer.

The state Sd2 is responsible for this peak, which has a large decay length in

the vacuum, and its flat dispersion gives rise to the sharpness of the peak.

This will not be the case for the electrons in the Su state which has a free

electron-like dispersion.

In the STS measurement shown in Fig. 7.2(a), there are multiple peaks

observed, in contrast to a single peak in the calculated LDOS. Recall that the

experiments were done for nanoislands, whereas our calculations are done for

a complete monolayer, therefore we cannot directly compare the LDOS plot-

ted in Fig. 7.9 with the spectrum in Fig. 7.2(a). The presence of nanoislands
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Figure 7.9: Local density of states as a function of energy, at distances d above
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for a gold slab containing 21 layers with the Fe layer deposited on each side of the
slab. Each panel has a different y-axis scale because by increasing d by ∼ 1 Å, the
LDOS values decrease by an order of magnitude. The solid black and dashed blue
curves are for the majority and minority spins respectively.

can lead to the scattering of the surface state electrons. The scattering is pos-

sible only in the case of the Su state, which has free-electron like dispersion,

and not for the electrons in the Sd2 state having flat dispersion. The peaks

observed in the measured STS spectra arise mainly due to the confinement

of the Su state electrons, in contrast to the calculated LDOS. In accordance

with this observation, the properties of the surface state observed in the ex-

periments match well with the calculated Su state in the majority channel,
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because the measured dispersion was derived from the confined Shockley-

state on the Fe/Au(111) system.

7.5 Summary and Conclusions

We have studied here the effect of deposition of a single pseudomorphic Fe

layer on the Shockley surface state of the Au(111) surface, and compared our

results with experiments. The magnetic moments on the deposited Fe atoms

are enhanced as compared to those on bulk Fe atoms. We have calculated

the band structure for the system, and observe that a large number of states

appear in the projected bulk band gap; out of these states, only one appears

in the majority spin channel and others are present in the minority spin

channel. For most of these states, the effective mass of electrons is higher than

that for the clean gold surface state electrons. The detailed analysis, using

the projected density of states and the local density of states, shows that only

the states Su and Sd2 have a large extent in the vacuum, however only the

state Su, in the majority spin channel, behaves in a very similar manner to

the Au Shockley surface state. Thus we conclude that the Shockley surface

state gets spin polarized on Fe deposition. The remaining states appearing

in the bulk band gap originate from Fe d states and therefore are not “true”

surface states. Because of their large extent in the vacuum, only the states

Su and Sd2 are likely to be detected in experimental STS measurements.

However, only the state Su can be scattered at the nanoisland edges and

hence lead to the standing wave patterns observed in the STS spectrum. We

have also shown that the effect of different stacking (of the Fe overlayer and
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the topmost Au layer) is very small on the band-edge values and the effective

masses of the surface state electrons.

Some of the work presented here has been published in Ref. [224].



Chapter 8

Summary and Conclusions

In this chapter, I will summarize the main findings and highlights of this

thesis. We had set out to study various aspects of the surface, such as the

structural properties of magnetic surface alloys, the effect of various interac-

tions on the miscibility of such alloys, the possibility of surface reconstruction

in heteroepitaxial systems, and the electronic properties of an interface. We

have primarily used density functional theory calculations for these studies,

along with the cluster expansion method and the Frenkel-Kontorova model

wherever necessary.

One of the main highlights of our work was to show that it is possible to

design a surface alloy using first principles methods. This reduces the time

and cost otherwise required to examine various possibilities with experimen-

tal techniques. We have shown that the mixing of a pair of bulk-immiscible

metals is possible when restricted on the Ru(0001) surface . By studying

a large number of such pairs of metals, we have shown that both elastic

and chemical interactions are important to determine the miscibility. We

187
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have shown that one should not expect to find any size-dependent rules for

mixing, unlike in the bulk alloys. Based on our analysis, we were able to

suggest the best possible candidates for the experimental observation of al-

loy formation from bulk-immiscible components. One of these candidates –

Fe-Au/Ru(0001) – was experimentally investigated by our collaborators, and

was indeed observed to form an atomically mixed surface alloy, and to also

have long-range order. By performing further calculations on this system, we

were able to show that the configurations which have the highest magnetic

moments are always preferred, rather than the configurations with the lowest

surface stress. Also, the magnitude of the enthalpy of mixing is significantly

lowered when spin polarization is suppressed. These two findings imply that

the main driving force for alloy formation in this system is magnetism, and

not surface stress reduction as was believed previously. Recall that Fe and

Au are completely bulk-immiscible, however we have shown that they do

form a long-range ordered alloy on the Ru(0001) surface.

We have then proceeded to check whether the formation of thin film

Fe-Au alloys is dependent on the nature of the substrate by replacing the

Ru(0001) surface by the Mo(110) surface. For this study, we have used a

combined study with density functional theory and cluster expansion meth-

ods, which allowed us to study very large unit cells. We have shown that

the mixing properties are largely affected by changing the substrate. For

Fe-Au/Mo(110), we have observed a smooth convex hull which would lead

to many competing structures and therefore we would not expect long-

range order as was observed on Ru(0001). This agrees with previous ex-

periments done on Fe-Au nanostructures on Mo(110), in which atomic-level
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mixing was observed, but without any long-range order. We have also shown

that magnetism is not the dominant driving force for mixing, unlike for Fe-

Au/Ru(0001). We speculate that this difference might arise from anisotropy

of the Mo(110) surface, but this issue needs further exploration.

Mixing of overlayer metals need not be the only mechanism which re-

duces the surface stress, the single-component and/or alloy overlayer may

reconstruct to reduce the stress. Thus we have studied the possibility of

reconstruction for the single-component overlayers on the Ru(0001) surface.

We have not considered alloy overlayers for this study because we have shown

that mixing reduces the surface stress, and therefore, we believe that recon-

struction is more unlikely for these. We have used the Frenkel-Kontorova

model for this study, because the system sizes are large, making DFT stud-

ies computationally expensive. One of two approaches have previously been

used to solve the FK model for similar systems – first, mapping it to a

one-dimensional chain of atoms, and second, a complete solution of the

two-dimensional Frenkel-Kontorova Hamiltonian using quenched molecular

dynamics simulations. In the first approach, one can find a dimensionless

parameter R which can estimate the possibility of reconstruction, but this

was previously only applicable for homoepitaxial systems. We have extended

the definition of R to heteroepitaxial systems, and shown that this extension

works well, by comparing our results with those obtained by numerically

solving the complete 2D Frenkel-Kontorova Hamiltonian, and also with ex-

perimental results. This extension simplifies the estimation of the possibility

of reconstruction. We were also able to show that by tuning the chemical

potential (required to add or remove an atom leading to reconstruction), we
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can control the periodicity of reconstruction. This is useful from the point

of view of possible applications, where the reconstructed surface is used as a

template of self-organized nanostructures.

We have also studied the electronic properties of Fe/Au(111). We have

shown that the deposition of a single layer of Fe layer results in spin po-

larization of the Shockley surface state on the clean Au(111) surface. We

have calculated the band-edge and the effective mass for the surface state

electrons. By further local density of states and projected density of states

analysis, we were able to examine the nature and origin of various new states

observed in the projected bulk band gap of Fe/Au(111). Scanning tunnel-

ing spectroscopy measurements performed on Fe nanoislands on the Au(111)

surface have observed a number of peaks in the spectrum, and spatial inho-

mogeneity in the local density of states. By comparing these results with our

theoretical work, we were able to establish that the standing wave patterns

observed for this system, originated from the Shockley state.

In our work, we have seen a great synergy between theory and experi-

ments. Both the experimental and theoretical studies were used to comple-

ment results from the other – thus experiments could confirm predictions

from the theory and theoretical investigations could shed light on experi-

mental findings by examining the underlying mechanisms. In the case of

surface alloys, theory preceded the experimental investigation, and suggested

the best candidates for surface alloys. The existence of long-range ordered

surface alloys for bulk-immiscible components could be established by experi-

ments. Such parallel work would increase the efficiency of designing materials

with required properties. For spin polarized surface states on Fe/Au(111),
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the experiments were performed before the calculations, and the observation

of some interesting standing wave patterns for Fe nanoislands motivated our

calculations. In turn, our theoretical investigation was beneficial to analyze

experimental observations.

Outlook

There are many open questions which can be addressed in the future: e.g.,

temperature dependent properties, such as the temperature-composition phase

diagram for two of the surface alloy systems studied in this thesis – Fe-

Au/Ru(0001) and Fe-Au/Mo(110) – using the cluster expansion method;

and a better understanding of dissimilar properties of Fe-Au overlayers on

the two substrates by (i) separating out the elastic and chemical interac-

tions for Fe-Au/Mo(110), and by comparing the relative importance of these

interactions with the situation for Fe-Au/Ru(0001), and (ii) computing the

magnetic interactions for each system which might involve non-collinear mag-

netic calculations.

In this thesis, we have only considered collinear magnetism, and further

only ferromagnetic alignment of spins was studied. It would be interesting

to study the possibility of antiferromagnetic alignment or non-collinear mag-

netic structures. Especially for surface alloys on the Ru(0001) surface, the

triangular lattice can lead to frustrated spin structures, in case antiferromag-

netic interactions are favored; this might give rise to novel spin structures

such as spin spirals. Also for applications in magnetic storage devices, a high

magnetic anisotropy energy is necessary, therefore it would be interesting to
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examine magnetic anisotropy properties. This would necessitate the inclu-

sion of spin-orbit interactions in our calculations. Further, alloying may lead

to increased reactivity, and these types of surface alloys would be potential

candidates as catalysts. To examine whether these systems are good cat-

alysts or not, it would be interesting to study chemical reactions on these

surfaces as well as look at other indicators of catalytic activity such as the

positions of d-band centers [122,225].



Appendix A

Derivation of surface stress

In this appendix, we have described our procedure to separate various con-

tributions to the stress in the slab so as to obtain the surface stress as a

function of intralayer bond length. This expression is derived for the (0001)

surface of a hcp crystal. This surface has a triangular lattice with three-fold

symmetry. We have considered a slab with na atomic layers with lxy and d

as intralayer and interlayer NN bond lengths respectively; the schematic pic-

ture is shown in Fig. A.1. For this derivation, we have assumed a symmetric

slab with a single layer of “magnetic” elementM or “non-magnetic” element

N on each side of substrate. To get the surface stress, we need to subtract

out the contribution coming from the substrate layers, to the total stress.

To be able to do this subtraction, we need to consider all the bonds which

contribute to the total stress.

We have considered the area element LyLz in the yz-plane passing through

the slab and then count all the NN bonds which cut the area and forces

coming due to these bonds. There will be na intralayer NN bonds and (na - 1)

interlayer NN bonds. Among these terms, the surface contribution comprises

two intralayer terms corresponding to the two overlayers and two interlayer

terms corresponding to the bonds between the overlayer and the adjacent

substrate layer. The “volume stress” has dimensions of force per unit area,

whereas the surface stress has dimensions of force per unit length. The xx-

component of the “volume stress” σV,slab
xx can then be written in terms of the
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Figure A.1: (a) Side view of the slab and (b) and (c) top views of the surface unit
cell, considered for deriving surface stress as a function of intralayer bond length,
are shown. The unfilled and filled circles in the right hand panel show stacking for
two adjacent layers. In panel (b), dotted lines show interlayer NN bonds considered
to derive Eq. (A.6), and in panel (c) the shaded area shows a projection of an area
element LyLz.

forces exerted by these various bonds:

σV,slab
xx =

F tot,slab
xx

LyLz

=
2F intra,surf

xx + (na − 2)F intra,b
xx + (na − 3)F inter,b

xx + 2F inter,surf
xx

LyLz

,

(A.1)

where F tot,slab
xx is the xx-component of the total force on the slab which is

the sum total of all the forces due to intralayer bonds in the two surface

layers F intra,surf
xx ; (na − 2) intralayer terms F intra,b

xx ; (na − 3) interlayer terms

F inter,b
xx coming from the substrate layers, and two interlayer bonds between

the surface layers and adjacent substrate layers F inter,surf
xx . The last term in

the above expression can be approximately neglected if one allows the surface

layers to relax toward or away from the substrate. Then we can write the
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xx-component of the “volume stress” as,

(σV,slab
xx )Lz =

2F intra,surf
xx

Ly

+
F intra,b
xx

Ly

+
(na − 3)F tot,b

xx

Ly

= σsurf
xx +

F intra,b
xx

Ly

+
(na − 3)F tot,b

xx

Ly

, (A.2)

where σsurf
xx is the surface stress – the quantity we would like to find, and

F tot,b
xx = F intra,b

xx + F inter,b
xx . However, among the various terms in the above

equation only σV,slab
xx is directly obtained from ab initio calculations, therefore

we would like to express the remaining terms using other quantities directly

accessible via DFT calculations. For this purpose, we have considered a bulk

unit cell having a unit cell commensurate to that of the slab, and then by

stretching or compressing the bulk unit cell in-plane to the same lxy, we can

calculate the “volume stress” for the bulk at different in-plane bond lengths.

We know that the xx-component of the “volume stress” for the bulk is

given by,

σV,bulk
xx =

F tot,b
xx

Ly(
c
2
)

=⇒ F tot,b
xx

Ly

=
c

2
σV,bulk
xx , (A.3)

where c/2 is the interlayer distance between two adjacent layers of the bulk

along the [0001] direction.

Substituting (A.3) in equation (A.2), we get

(σV,slab
xx )Lz = σsurf

xx +
F intra,b
xx

Ly

+ (na − 3)σV,bulk
xx

c

2
. (A.4)

Now, to find the contribution due to one extra intralayer term, we have

considered the zz-component of the “volume stress” for the bulk which has

contributions only from interlayer bonds, and not from intralayer bonds:

σV,bulk
zz =

F tot,b
zz

LxLy

, (A.5)

where F tot,b
zz is the total force due to all NN bonds cutting an area ele-

ment LxLy. To compute this, we have considered this area element having

area equal to the surface unit cell, therefore, Lx = lxy and Ly =
√
3lxy/2.
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There are three NN interlayer bonds which cut this area (as can be seen in

Fig. A.1b). The force exerted by each of these bonds is equal, therefore we

can write,

F tot,b
zz = 3× F inter,b

(c/2

d

)

. (A.6)

Substituting this in Eq. (A.5), we get

σV,bulk
zz = 3× F inter,b

(c/2

d

) 1
√
3
2
l2xy

i.e., F inter,b = σV,bulk
zz

l2xyd√
3c
. (A.7)

We are interested in the xx-component of the interlayer force F inter,b,

which we can find by

F inter,b
xx = F inter,b

( lxy/2

d

)

=
[

σV,bulk
zz

l2xyd√
3c

]( lxy/2

d

)

. (A.8)

Now substituting Eq. (A.8) in Eq. (A.3), we get

σV,bulk
xx (

c

2
) =

F intra,b
xx

Ly

+
F inter,b
xx

Ly

=
F intra,b
xx

Ly

+
1√

3lxy/2

[

σV,bulk
zz

l2xyd√
3c

]( lxy/2

d

)

F intra,b
xx

Ly

= σV,bulk
xx (

c

2
)− 1

3
σV,bulk
zz

( l2xy
c

)

. (A.9)

Substituting this in Eq. (A.4) and rearranging terms, we can write

σsurf
xx = (σV,slab

xx )Lz −
[

σV,bulk
xx

( c

2

)

− 1

3
σV,bulk
zz

( l2xy
c

)

]

− (na − 3)σV,bulk
xx

c

2

= (σV,slab
xx )Lz − (na − 2)σV,bulk

xx

c

2
+ σV,bulk

zz

l2xy
3c

=⇒ σsurf
xx = (σV,slab

xx )Lz − (na − 2)σV,bulk
xx

c

2
+ σV,bulk

zz

l2xy
3c
. (A.10)
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This expression gives the surface stress in the overlayer as a function of

lxy, i.e., the intralayer bond length. Recall that this expression is for the total

surface stress coming from two surfaces of the slab, therefore for a symmetric

slab one has to divide by a factor of two to get the required value and for an

asymmetric slab, one has to subtract the stress coming from the unrelaxed

substrate surface.
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Appendix B

Formula for generating

different unit cells

In this appendix, we have described the formulae used for generating different

unit cells. For a two-dimensional lattice, one can obtain a general formula

to determine all the distinct unit cells using group theory [148]. Let ā1 and

ā2 be the basis vectors for the lattice. Then for the unit cell with na atoms,

the basis vectors for possible unit cells are defined separately for two cases.

Consider the first case in which na is a prime number, then let na = p. The

total number of possible unit cells is equal to (p + 1) and the unit cells are

defined by basis cell vectors –

(pā1, ā2)

(ā1 + 0× ā2, pā2)

(ā1 + 1× ā2, pā2)

...

(ā1 + (p− 1)× ā2, pā2) (B.1)

In the second case, na is not a prime number, then the basis vectors for all

possible unit cells can be written as –

(bā1 + cā2, dā2), (B.2)
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where b× d = n, b ≥ 1 and 0 ≤ c < d.

We have used these formulae to obtain all the smallest unit cells (na ≤ 6)

for the hexagonal and the centered-rectangular unit cells which are used by us

for the DFT calculations of Fe-Au/Ru(0001) and Fe-Au/Mo(110). Further,

for a given unit cell, one has to determine various distinct ways to place Fe

or Au atoms at each lattice point in the cell to determine all the possible

distinct configurations.
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Appendix C

List of Configurations for

FexAu(1−x)/Ru(0001)

In this appendix, we have listed all the configurations considered in our

study of FexAu(1−x)/Ru(0001). For a triangular lattice, the basis vectors

(primitive lattice vectors for the (1 × 1) cell) are given by ā1 = (a, 0) and

ā2 = (−a
2
,
√
3a
2
), where a is the NN spacing of the substrate. Using the

formulae given in Appendix B, we have found all the possible distinct unit

cells for the number of overlayer atoms in the unit cell na = 2, 3, 4, 5, and

6; out of these, except for six-atom unit cells, we have considered all possible

configurations for our ab initio calculations. For the six-atom unit cells, we

have only considered some possibilities. After finding all the distinct unit

cells, we have also checked for all the possible atomic arrangements in each

of these unit cells.

We have shown below the schematic top views for the surface unit cells of

Fe-rich configurations (x ≥ 0.50). In all the figures, red and yellow spheres

indicate Fe and Au atoms respectively; and small black dots indicate the

positions of Ru atoms in the layer adjacent to Fe-Au overlayer. The corre-

sponding configurations for Au-rich phases can be obtained by interchanging

red and yellow spheres.
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(a) (6×1) unit cell (b) (2
√
3 ×

√
3)

unit cell

Figure C.1: Configurations for x = 0.833 (or 0.167) corresponding to Fe5Au (or
FeAu5).

(a) (5×1) unit cell (b) (
√
7×

√
3) unit

cell

Figure C.2: Configurations for x = 0.80 (or 0.20) corresponding to Fe4Au (or
FeAu4).
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(a) (4×1) unit cell (b) (2×2) unit cell (c) (2 ×
√
3) unit

cell

Figure C.3: Configurations for x = 0.75 (or 0.25) corresponding to Fe3Au (or
FeAu3).

(a) (3×1) unit cell (b) (
√
3×

√
3) unit

cell
(c) (2

√
3 ×

√
3)

unit cell - configu-
ration 1

(d) (2
√
3 ×

√
3)

unit cell - configu-
ration 2

(e) (6×1) unit cell
- configuration 1

(f) (6×1) unit cell
- configuration 2

Figure C.4: Configurations for x = 0.667 (or 0.333) corresponding to either
Fe2Au (or FeAu2) or Fe4Au2 (or Fe2Au4).
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(a) (5×1) unit cell
-configuration 1

(b) (5×1) unit cell
-configuration 2

(c) (
√
7×

√
3) unit

cell - configuration
1

(d) (
√
7×

√
3) unit

cell - configuration
2

Figure C.5: Configurations for x = 0.60 (or 0.40) corresponding to Fe3Au2 (or
Fe2Au3).

(a) (2×1) unit cell (b) (4 × 1) unit
cell.

(c) (2 ×
√
3) unit

cell
(d) (2

√
3 ×

√
3)

unit cell - configu-
ration 1

(e) (2
√
3 ×

√
3)

unit cell - configu-
ration 2

(f) (6×1) unit cell
- configuration 1

(g) (6×1) unit cell
- configuration 2

Figure C.6: Configurations for x = 0.50 corresponding to either FeAu or Fe2Au2
or Fe3Au3.
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Appendix D

List of Configurations for

FexAu(1−x)/Mo(110)

In this appendix, we have listed all the configurations used in the ab initio

calculations in our study of FexAu(1−x)/Mo(110). For this study, we have

considered all the distinct alloy configurations containing two, three, four, five

and six atoms per unit cell, and also two configurations with seven atoms

per unit cell. The total number of configurations is more than 100. The

distinct unit cells containing na number of atoms can be found using the

formula described in the Appendix B. For a centered-rectangular unit cell,

the basis vectors (primitive lattice vectors for (1× 1) cell) are given by ā1 =

α(
√
2, 1)a and ā2 = α(−

√
2, 1)a, where a is the NN spacing of the substrate

and α = 1/
√
3.

Here we have shown the schematic top views of all the configurations for

Fe-rich systems, that is, x ≥ 0.50, where x is the fractional composition of

Fe. Fe atoms are shown with red (small) spheres and Au atoms with yellow

(large) spheres. One can obtain corresponding Au-rich configurations just by

exchanging red and yellow spheres. We have not shown the configurations

for the cluster expansion calculations, as these number more than a million.
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Number of atoms Corresponding number of Number of
per unit cell distinct unit cells structures

2 2 2
3 3 6
4 5 14
5 4 24
6 7 56
7 1 2

Table D.1: Summary of structures considered: For two, three, four, five and six
atoms per unit cell, we have considered all the distinct alloy configurations possible.
For seven atoms per unit cell, we have considered only two configurations as a test.

(a) (6×1) unit cell (b) (2×3) unit cell (c) (6
√
2α × 2α)

unit cell
(d) 2

√
2α × 6α

unit cell

(e) (3×
√
5α) unit

cell
(f) (2 ×

√
8) unit

cell
(g) (3 × 4α) unit
cell

Figure D.1: Configurations with composition x = 0.833 (or 0.167) corresponding
to Fe5Au (or FeAu5).
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(a) (5×1) unit cell (b) (
√
8 ×

√
5α)

unit cell
(c) (

√
17α × 2α)

unit cell
(d) (2

√
2α × 3)

unit cell

Figure D.2: Configurations with composition x = 0.80 (or 0.20) corresponding
to Fe4Au (or FeAu4).

(a) (4×1) unit cell (b) (4
√
2α × 2α)

unit cell
(c) (2

√
2α × 4α)

unit cell
(d) (2×

√
5α) unit

cell

(e) (2×2) unit cell

Figure D.3: Configurations with composition x = 0.75 (or 0.25) corresponding
to Fe3Au (or FeAu3).
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(a) (3×1) unit cell (b) (
√
7α × 2α)

unit cell
(c) (2

√
2α×

√
5α)

unit cell
(d) (6×1) unit cell
- configuration 1

(e) (6×1) unit cell
- configuration 2

(f) (2×3) unit cell
- configuration 1

(g) (2×3) unit cell
- configuration 2

(h) (6
√
2α × 2α)

unit cell - configu-
ration 1

(i) (6
√
2α × 2α)

unit cell - configu-
ration 2

(j) (2
√
2α × 6α)

unit cell - configu-
ration 1

(k) (2
√
2α × 6α)

unit cell - configu-
ration 2

(l) (40-13) unit
cell - configuration
1

(m) (4
√
2α×

√
5α)

unit cell - configu-
ration 2

(n) (2 ×
√
8) unit

cell - configuration
1

(o) (2 ×
√
8) unit

cell - configuration
2

(p) (3 × 4α) unit
cell - configuration
1

(q) Fe4Au2 in (3×
4α) unit cell - con-
figuration 2

Figure D.4: Configurations with composition x = 0.667 (or 0.333) corresponding
to either Fe2Au (or FeAu2) or Fe4Au2 (or Fe2Au4).
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(a) (5×1) unit cell
- configuration 1

(b) (5×1) unit cell
- configuration 2

(c) (
√
7α ×

√
5α)

unit cell - configu-
ration 1

(d) (
√
7α ×

√
5α)

unit cell - configu-
ration 2

(e) (2
√
2α × 3)

unit cell - configu-
ration 1

(f) (2
√
2α × 3)

unit cell - configu-
ration 2

(g) (
√
17α × 2α)

unit cell - configu-
ration 1

(h) (
√
17α × 2α)

unit cell - configu-
ration 2

Figure D.5: Configurations with composition x = 0.60 (or 0.40) corresponding
to Fe3Au2 (or Fe2Au3).

(a) (
√
7α×3) unit

cell

Figure D.6: Configuration with composition x = 0.571 (or 0.429) corresponding
to Fe4Au3 (or Fe3Au4): This is the only configuration with seven atoms per unit
cell.
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(a) (2×1) unit cell (b) (2
√
2α × 2α)

unit cell
(c) (4×1) unit cell (d) (4

√
2α × 2α)

unit cell

(e) (2
√
2α × 4α)

unit cell
(f) (2×

√
5α) unit

cell
(g) (6×1) unit cell
- configuration 1

(h) (6×1) unit cell
- configuration 2

(i) (2×3) unit cell
- configuration 1

(j) (2×3) unit cell
- configuration 2

(k) (6
√
2α × 2α)

unit cell - configu-
ration 1

(l) (6
√
2α × 2α)

unit cell - configu-
ration 2

(m) (2
√
2α × 6α)

unit cell - configu-
ration 1

(n) (2
√
2α × 6α)

unit cell - configu-
ration 2

(o) (4
√
2α×

√
5α)

unit cell - configu-
ration 1

(p) (4
√
2α×

√
5α)

unit cell - configu-
ration 2

(q) Fe3Au3 in (2×√
8) unit cell - con-

figuration 1

(r) Fe3Au3 in (2×√
8) unit cell - con-

figuration 2

(s) Fe3Au3 in (3×
4α) unit cell - con-
figuration 1

(t) Fe3Au3 in (3×
4α) unit cell - con-
figuration 2

Figure D.7: Configurations with composition x = 0.50 corresponding to either
FeAu or Fe2Au2 or Fe3Au3.
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[98] S. Blügel, Apply. Phys. A 63, 595 (1996).

[99] W. Daum, C. Stuhalmann and H. Ibach, Phys. Rev. Lett. 60, 2741

(1988).

[100] B. T. Jonker, J. J.Krebs and G. A. Prinz, Phys. Rev. B 39, 1399 (1989).

[101] M. Wuttig, Y. Gauthier and S. Blügel, Phys. Rev. Lett. 70, 3619
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[199] T. Andreev, I. Barke and H. Hövel, Phys. Rev. B 70, 205426 (2004).

[200] M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature 363, 524 (1993).

[201] J. Li, W. Schneider, R. Berndt and S. Crampin, Phys. Rev. Lett. 80,

3332 (1998).

[202] L. Bürgi, O. Jeandupeux, A. Herstein, H. Brune and K. Kern, Phys.

Rev. Lett. 81, 5370 (1998).

[203] F. E. Olsson, M. Persson, A. G. Borisov, J. P. Gauyacq, J. Lagoute
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