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Abstract

Hydrodynamic stability, an important branch of fluid mechanics, owes its popularity to the

successful prediction of the transition of (unstable) laminar states in a wide class of flows. While

the traditional approach has been reliant on an analysis within a modal framework, the merits of

a nonmodal approach have been recognized in the last two and a half decades particularly in the

context of shearing flows. Although the non-modal approach typically involves the solution of

an initial value problem, the resulting temporal response, for short times and at large Reynolds

numbers (Re), may also be understood in terms of the dynamics of the underlying inviscid

continuous spectra (CS). The equations governing the evolution of small-amplitude perturbations

in shearing flows in this limit are usually singular, and the continuous spectra owe their origin

to such singular points. The thesis is mainly concerned with the structure of the singular

eigenfunctions comprising such inviscid continuous spectra in rotating flows, and to a lesser

extent, with the singular eigenfunctions in homogeneous and stratified parallel shearing flows,

and rotational flows in the presence of elasticity. The manner in which such eigenfunctions may

be superposed to obtain a solution of the initial value problem is also considered. The detailed

analysis is devoted to the singular modes of a Rankine vortex both in two and three dimensions;

an analytically soluble problem that nevertheless offers insight into the singular eigenfunctions

associated with more general vorticity profiles. The Rankine analysis is then extended to smooth

vortices. In three dimensions, such an extension is made by drawing an analogy with (stably)

stratified shear flows and the associated continuous spectra. The final part of the thesis discusses

the continuous spectrum of an elastic vortex column in the limit of high Reynolds and Deborah

numbers. Further, a novel two-dimensional instability of an elastic vortex column, that arises

from the resonant interaction of elastic shear waves, is analyzed in detail both numerically and

via an asymptotic analysis valid in the limit of weak elasticity.

Effects of Rotation and Stratification

The motivation to study singular eigenfunctions in rotating flows is, in part, to understand

the response of a vortex column to imposed vortical disturbances, the vortical disturbance here

being regarded as a surrogate for ambient turbulence. Vortices are ubiquitous in nature and

range from massive tropical cyclones, large trailing vortices shed by aircrafts down to the tiny

whorls in a coffee cup. At high Reynolds numbers, vortices offer an economical description of

fluid motion and a clear understanding of their dynamics aids better prediction and control in

fluid dynamical problems of both engineering and geophysical interest.

The Rankine vortex is the simplest canonical vortical structure, consisting of a core of rigidly

rotating fluid surrounded by an irrotational exterior. On account of Coriolis forces, the vortex

vii



column supports an intricate array of oscillations eponymously known as the Kelvin modes, and

that comprise the discrete spectrum. The Kelvin modes possess vorticity only inside and at

the edge of the core, and are thus incapable of representing the effect of an exterior vortical

disturbance. However, recent numerical investigations have highlighted the algebraic growth

of vortex columns subject to appropriate exterior disturbances (optimal perturbations). The

incompleteness of the discrete spectrum is, in fact, a generic feature of shearing flows, and a

complete basis is obtained only on inclusion of the appropriate CS-eigenfunctions. Accordingly,

the work in the thesis, on one hand, develops an extended modal picture that includes the CS-

eigenfunctions capable of representing vortical disturbances outside the core; and simultaneously

solves the Cauchy initial value problem on the other. The CS-modes in two dimensions have

a twin-vortex-sheet structure, the vortex sheets being threaded by axial vortex lines. In three

dimensions, the CS-modes have core vorticity and belong to one of two families depending on

the nature of the singular structure at the critical radius. The Λ1 family is an extension of the

2D CS-modes since the singularity is again a vortex-sheet now threaded by helical lines; the Λ2

family has a localized axial jet riding at the critical radius leading to a dipole-singularity in the

perturbation vorticity field. It is shown, for a Rankine vortex, that the modal representation

for the evolution of an arbitrary initial vorticity field, including both discrete and continuous

spectra, is identical to the solution of the initial value problem, thereby resolving the issue of

completeness of the eigenfunction expansion. The solution of the initial value problem also

identifies three mechanisms that in isolation, and when acting in consonance, lead to short-time

algebraic growth. These involve the stretching-tilting of perturbation vorticity by the mean

shear (termed the anti-lift up effect), the transverse alignment of perturbations with an initial

favorable tilt that allows for an extraction of energy from the mean shear (the Orr mechanism),

and resonant interactions of the discrete and continuous spectra. The growth rates obtained for

the Rankine vortex appear to be consistent with the recent numerical findings.

Having characterized the spectrum of a Rankine vortex in its entirety, we examine smooth

vorticity profiles corresponding to more realistic vortices. The structure of the 2D CS-modes

for this case are developed based on a recipe already known for homogeneous plane parallel

flows with curved velocity profiles. The eigenfunctions depart from those of a Rankine vortex

in having a non-local PV-singular contribution arising from the base-state vorticity gradient.

The modal superposition of the 2D CS-modes, again developed in a manner similar to that for

parallel flows, allows for the identification of an exponentially damped solution known as a quasi-

mode. The resulting solution of the initial value problem in two dimensions exhibits exponential

asymptotics in an intermediate time regime. This quasi-mode regime precedes the inevitable

algebraic decay associated with the long-time dephasing of the 2D CS-modes. Analysis of the

3D CS-modes associated with a smooth vortex is more complicated. A local analysis, in the

vicinity of the critical radius, highlights the similarity between the 3D CS-modes and the CS-

modes in stratified shear flow, allowing one to define analogs of the Λ1 and Λ2 families for a

smooth vortex. The 3D CS-modes of a smooth vortex are generalized functions that require a

Hadamard-finite-part interpretation. Further, based on the analogy between the role of buoyancy

forces in stratified flows, and Coriolis forces in rotational flows, we develop analytically soluble

stratified flow analogs of both a Rankine and a smooth vortex. The soluble analogs highlight



the approach of the modal superposition for a stratified shear flow towards the more familiar

form for the homogeneous case.

Effects of Elasticity

Here, we focus on the singular eigenfunctions associated with an elastic vortex column in two

dimensions. The parameter regime considered corresponds to high Reynolds and Deborah num-

bers (De) and is relevant to rapid swirling flows of elastic liquids (dilute polymer solutions).

Inertia and elasticity are the dominant physical factors, and their relative importance is de-

termined by the ratio of the aforementioned parameters known as the elasticity number (E =

De/Re). The singular eigenfunctions comprising the 2D CS-spectrum now have a pair of singu-

larities corresponding to forward and backward propagating (pre-stressed) elastic shear waves.

Next, we analyze a novel instability of an elastic vortex column whose physical origin may be

traced to the resonant interaction of a pair of transverse shear waves at the edge of the vor-

tex core - a backward travelling wave at the vortex edge has the same velocity as a forward

travelling wave located at a distance O(
√
E) from the edge. The unstable mode is determined

numerically using two complementary techniques. The first technique adopted for solving the

boundary value problem is a shooting method using a ‘carpet-bombing’ approach. The second

technique is a Chebyshev collocation based compound matrix method for solving the governing

nonlinear eigenvalue problem. An analytical approach, involving a (multiple)-boundary layer

analysis, shows that the growth rate in the limit of small but finite E is transcendentally small.

The difficulties in both numerical and analytical approaches, in the small E limit, arise due to

the close approach of the unstable mode towards the continuous spectrum with the marginally

stable mode being a singular one; this is unlike classical inviscid theory wherein the marginal

mode is a regular S-wave.
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Chapter 1

Introduction

“... not every solution of the equations of motion, even if it is exact, can actually occur in

Nature. The flows that occur in Nature must not only obey the equations of fluid dynamics, but

also be stable.”

- Landau & Lifshitz [1987]

This has been a question that has perplexed fluid dynamicists for centuries. The ubiquitous

nature of turbulence, and the inability to offer a universal theory of it, led many to try tackling

what was perceived as a simpler problem: of transition from a laminar state to a turbulent one.

In the last two centuries, such efforts have offered remarkable insights many-a-times and have

helped in making successful predictions. The description has undergone major reforms from

time to time, progressing from the early experiments of Osborne Reynolds and G I Taylor to the

sophisticated machinery of control theory used presently. Interested reader can find excellent

references in the form of both monographs (Lin [1955], Chandrasekhar [1961], Drazin & Reid

[1981], Craik [1985], Schmid & Henningson [2001], Charru [2011]) and reviews (Bayly et al.

[1988],Huerre & Rossi [1998],Huerre [2000], Chomaz [2005], Schmid [2007]).

Early studies in hydrodynamic stability arose from the theory of water waves, with Newton

Figure 1.1: Experimental observations of
streaky structures in boundary layers (Mat-
subera & Alfredsson [2001])

Figure 1.2: Direct numerical simulations (DNS)
depicting vortex interaction with fine-scale ho-
mogeneous, isotropic turbulent field (Melander
& Hussain [1994])

followed by seminal works by Laplace, Cauchy, Poisson and later, by Stokes. Incidentally most of

the early work was done before the world got acquainted with Fourier series, although Cauchy

employed de facto Fourier transforms (Craik [2004],Craik [2005]). The advent of harmonic

analysis facilitated the study of stability of mechanical systems by introducing the notion of

1
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normal modes. A normal mode is a pattern of oscillations in which the entire system oscillates

in space/ time with the same wave-length/ frequency. A coupled pendulum with two degrees of

freedom has two normal modes whereas a vibrating string has infinitely many normal modes,

often labelled as harmonics in musical instruments. The beauty of normal modes lies in their

ability to offer a complete description for the evolution of any arbitrary disturbance in most

cases. We mention most because the normal modes usually referred to, constitute the discrete

(a) Trailing vortices (http://www.myskymom.com/) (b) Numerical evidence of ‘bursting’ of a trailing vortex (Moet
et al. [2005])

(c) Jupiter’s Giant Red Spot (source: Wikipedia) (d) Tropical cyclone approaching Andhra
Pradesh, India on Dec. 17, 2003 (nasa.gov)

Figure 1.3: Vortices in various engineering and geophysical scenarios.

spectrum of the linearized stability operator. As it turns out, problems in hydrodynamic stability

of shearing flows are exceptional in the above sense in that the governing operator almost always

has an associated continuous spectrum. Among other things, a continuous spectrum arises due to

an unbounded domain, or due to the operator having singular points in the (possibly bounded)

domain of interest1. Continuous spectrum for shear flows is mathematical manifestation of

1Strictly speaking, a differential operator has a purely discrete spectrum if the associated integral operator happens
to be compact. An operator K ∈ L(H) (H is a Hilbert space and L(H) are bounded operators on H) is said to

http://www.myskymom.com/
nasa.gov
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filamentation process to small scales. The continuous spectra that arise due to the former reason

(for instance, the viscous continuous spectrum for the Blasius boundary layer - Grosch & Salwen

[1978]) will not be investigated in the present dissertation. The focus in this thesis will thus be

on the continuous spectra that arise due to the latter reason, namely , the governing differential

operator possesses singular points in the flow domain. Although the first reference to such

singular eigenfunctions in the context of hydrodynamic stability can be found as early as Rayleigh

[1945], the role of the continuous spectrum in various problems of transport theory received a

major impetus from the works of Eliassen et al. [1953] and Case [1960] in hydrodynamic stability

and Van Kampen [1955] and Case [1959] in the context of plasma oscillations. The framework

developed in the present thesis, for analyzing singular eigenfunctions, is largely motivated by

the above efforts. Despite being known for such a long time, singular eigenfunctions have

remained relatively obscure entities to classical hydrodynamics stability practitioners, in part

due to exponential stability theory finding them to be mostly neutrally stable (such singular

modes may also be damped on occasion; this is the case for complex fluids such as dilute

polymer solutions (Gorodtsov & Leonov [1967]) and bacterial suspensions (Subramaniam &

Nott [2011]), when one accounts for the finite relaxation time of the underlying microstructure).

An equally important reason for this obscurity is the notion that a superposition of such singular

eigenfunctions would always exhibit an algebraic decay for long times due to the de-cohering

action of differential shear. This belief has, however, undergone a change with a revival of

interest in non-modal stability theory in the last two decades (Trefethen et al. [1993], Schmid

[2007])2. In the specific context of turbulence, this revival (Farrell [1984], Farrell [1987]) has led

to the notion of the transition route to turbulence being generalized to include one involving an

algebraic instability in addition to the more traditional exponential instability route. Figures 1.1

and 1.2 show nonlinear manifestations of non-modal behavior in two systems - streak formation

(a consequence of the most dangerous initial condition in shear flows as predicted by non-modal

stability theory) in a boundary layer and an isolated vortex, an exponentially stable structure,

that can respond to external disturbances (a turbulent field as shown in the DNS) via non-modal

dynamics (to be discussed in detail in this thesis).

This thesis studies the nature of the singular eigenfunctions comprising the continuous spectra

in the shear flow problems involving rotation, stratification and elasticity. Physically these

singular eigenfunctions occur due to the allowance for arbitrarily large cross-stream gradients

in the absence of diffusion of vorticity/momentum (due to viscosity in Newtonian fluids) or

diffusion of stress (due to macromolecular diffusion in complex fluids).

A major portion of this thesis tries to address evolution of disturbances in swirling flows.

Besides being one of the most easily identifiable objects in any turbulent flow, vortices/coherent

structures are objects of immense engineering and geophysical interest (figure 1.3). Efforts in

understanding aircraft trailing vortices (Widnall [1975], Spalart [1998]) or geophysical vortices

be compact if for every bounded sequence, zn, of vectors of H, the sequence, Kzn, has a convergent subsequence.
In finite dimensions, by Bolzano-Weierstrass theorem this is automatically true. In infinite dimensions this is
not necessarily true. E.g - an infinite sequence of orthonormal basis functions in a Hilbert space is bounded but
fails to contain a convergent subsequence.

2It would be unfair to portray non-modal stability theory as a recent development in hydrodynamic stability
theory. Orr [1907] can easily be attributed to be the first to provide a comprehensive explanation for non-modal
behavior of disturbances in shear flows. One can find an excellent literature review in this regard in Monin &
Yaglom [1997].
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(a) (b)

Figure 1.4: Bending waves in vortices - (a) A nonlinear bending wave (a ‘soliton’) in a vortex
filament, (b) A tornado exhibiting bending waves (Aref & Flinchem [1984]).

like Jupiter’s giant red spot and tropical cyclones (Montgomery & Kallenbach [1997]) have

been instrumental in creating a vast body of literature on vortex stability. An isolated vortex

supports waves and as already mentioned, is a modally stable object. In chapter 2 we will

discuss the existing knowledge about vortex column oscillations, known as Kelvin modes in

detail. The popularity of Kelvin modes stems from their frequent observations in experiments

and simulations (figure 1.4) and also their role in cooperative instabilities. As it would be seen in

chapter 2, these Kelvin modes are by construction incapable of representing linear interaction of

an isolated vortex column with an external vortical disturbance field (a linear representation of a

turbulent field). Thus scenarios like the one in figure 1.2 cannot be understood purely in terms of

the dynamics of Kelvin modes. Recent efforts (Antkowiak & Brancher [2004], Pradeep & Hussain

[2006],Antkowiak & Brancher [2007]) have identified non-modal mechanisms to be crucial in the

understanding of the linear response of a vortex column. In the current study this is done using

the singular eigenfunctions, which serve as a basis for representing the initial vortical disturbance

residing outside the vortex core. The singular eigenfunctions are first found for the Rankine

vortex and then extended to more realistic vorticity profiles for both 2D and 3D disturbances.

While studying the continuous spectra for 3D disturbances in vortices with smooth vorticity

profiles, an approximate analogy with stratified shear flow is exploited. It involves drawing the

analogy between density stratification and angular momentum stratification (figures 1.5 and 1.6,

adapted from Antkowiak [2005]). To complement the modal analysis, an initial-value problem

is carried out in chapter 3. After proving completeness of the modal expansion, qualitative

comparisons are then made with the optimal-perturbation based transient growth calculations.

Vortices/coherent structures being the “the sinews and muscles of fluid motion”, a suppression of

such structures in presence of additives (e.g. - polymers) serves as a common diagnostic for drag

reduction in turbulent flows. Figure 1.7 shows such a scenario where the addition of polymers

in few parts per million (ppm) leads to dramatic alteration of the boundary layer vortices. A

minimal set for such systems is an isolated vortex evolving in the presence of high inertia and

elasticity. In chapter 4, a vortex which is modally stable for a Newtonian fluid exhibits elastic
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Figure 1.5: Stratified flow.
Consider a fluid parcel being displaced

vertically (δz) with velocity uz in a density
stratified fluid (ρ0(z), with ρm being its

reference value).

∂uz
∂t

∼ δz
dρ0
dz

g,

∂2δz

∂t2
+N2δz = 0, N2 = − g

ρm

dρ0
dz

where N is the Brunt-Väisälä frequency.

Figure 1.6: Rotating flow.
Consider a fluid parcel being displaced radially
(δr) in a rotating fluid in cyclostrophic balance
(Ω being its angular velocity). ur,θ being its

radial and azimuthal velocity.

∂ur
∂t

∼ 2Ωuθ,
∂uθ
∂t

+
κ2

2Ω
ur = 0,

∂2δr

∂t2
+ κ2δr = 0, κ2 =

2Ω

r

d

dr

(

r2Ω
)

where κ is the epicyclic frequency.

instability due to resonance of shear waves. The knowledge of the singular eigenfunctions helps

to understand instability as the unstable mode emerges from the elastic continuous spectra.

Finally in chapter 5 optimal perturbation calculations are carried out for stratified shear flows

- both linear shear and stratification being chosen as an example.

In the present thesis, chapters 2-4 have been done under the supervision of Prof. Ganesh

Subramanian, and chapter 5 has been done under the supervision of Prof. Rama Govindarajan.
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Figure 1.7: Near wall vortex structures of Newtonian flow (left) and polymer drag reduced (60%)
flow (right) White & Mungal [2008]



Chapter 2

Linearized oscillations of a vortex

column: the singular eigenfunctions

2.1 Introduction

Helmholtz’s demonstration of the permanence of vortical structures in an inviscid fluid, and

the resulting implications for a theory of vortex atoms, motivated Lord Kelvin to carry out

exhaustive investigations on inviscid vortex motion and stability in the late nineteenth century.

Of particular importance is his 1880 paper wherein he characterized the spectrum of waves

supported on a central core of rigidly rotating liquid surrounded by an irrotational flow (Kelvin

[1880]). The top-hat vorticity profile of a column of uniform vorticity surrounded by irrotational

fluid, commonly referred to as the Rankine vortex, was shown to support a countable infinity

of neutrally stable oscillations now known as the Kelvin modes. The resulting dispersion curves

are shown in figure 2.1 where the modal frequency (ω) is plotted as a function of the axial

wavenumber (k) for a fixed non-zero azimuthal wavenumber (m). For any non-zero k, one may

evidently classify the modes into two groups - the co-grade modes (ω > mΩ, Ω being the core

angular velocity) that travel faster than the fluid in the undisturbed core and the retrograde

modes (ω < mΩ) that travel slower (Saffman [1992]). An underlying feature of the Kelvin modes

is that the perturbation vorticity arises due to the oscillating column, and is evidently restricted

to the region within the core and its edge; there is no perturbation vorticity outside the core.

The analysis here shows that the Kelvin modes constitute the discrete spectrum of the Rankine

vortex. There is an additional continuous spectrum consisting of singular non-axisymmetric

modes that make up the frequency intervals between the neighboring retrograde dispersion

curves in figure 2.1 (see, for instance, figure 2.3 in section 2.2.2), thereby spanning the entire

base-state range of frequencies (ω ǫ (0,mΩ)). These singular eigenfunctions have perturbation

vorticity (2D - axial vorticity, 3D - 2 families providing all components of vorticity) outside the

vortex core. While the Kelvin modes are sufficient to determine the linearized inviscid evolution

of an initially deformed vortex column (Arendt et al. [1997]), the inclusion of additional singular

modes is necessary to similarly characterize the interactions of such a column with external

vortical disturbances.

Apart from its fundamental significance, the interaction of a vortex column with ambi-

ent turbulence is relevant to the stability of aircraft trailing vortices (Widnall [1975],Spalart

[1998]), to the dynamics of coherent structures in quasi-geostrophic turbulence (McWilliams

[1984]) and intense geophysical vortices such as tropical cyclones (Montgomery & Kallenbach

[1997], McWilliams et al. [2003] and Graves et al. [2006]). Motivated by such applications, there

have been several studies of vortex column dynamics from both modal and non-modal perspec-

tives. Modal analyses include those of Le Dizès and co-workers who have examined, using a

7
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Figure 2.1: The figure is a sketch of the dispersion curves for the non-axisymmetric (m 6=
0) modes associated with a Rankine vortex. m is the azimuthal wavenumber, k is the axial
wavenumber and n is the modal index.

WKBJ formalism1, the characteristics of Kelvin modes for a wide class of homogeneous swirling

flows with or without an axial flow component in appropriate asymptotic limits (Fabre [2002],Le

Dizès & Lacaze [2005],Fabre et al. [2006],Heaton [2007a],Le Dizès & Fabre [2007],Fabre & Le

Dizès [2008]); recent investigations along these lines have included the effects of a stable strat-

ification along the rotation axis (Le Dizès & Billant [2009]). Fabre and co-workers (Fabre et al.

[2006]) have conducted a detailed numerical study of the viscous eigenspectrum of a Lamb-Oseen

profile. The authors show that, in contrast to the neutral retrograde modes of the Rankine vor-

tex, one obtains instead multiple families of singular (inviscidly) damped modes in the base-state

range of frequencies, the damping arising from a viscous critical layer; further, there arises a new

family of modes that owes its origin entirely to viscosity. These results, although substantially

more complicated, are similar in a sense to the non-trivial differences originally identified between

the eigenspectra of the Rayleigh and the Orr-Sommerfeld equations in the context of parallel

shearing flows (Lin [1955]). Complementing such modal investigations are the studies of Hus-

sain and co-workers (Melander & Hussain [1993],Pradeep & Hussain [2006],Pradeep & Hussain

[2010],Heaton [2007b]; also see Antkowiak & Brancher [2004]) who have examined the transient

growth of a vortex column via both linear and non-linear direct numerical simulations. The

short-time algebraic growth of column perturbations owes its origin to the non-normal evolution

operator and the physics of the transient growth, in the linear regime, has been elucidated in

detail (Pradeep & Hussain [2006]). However, quantitative results for the growth amplitude, and

1WKBJ (Wentzel-Kramers-Brillouin-Jeffreys; also known as the Liouville-Green method) is a perturbative tech-
nique in mathematical physics used for solving linear differential equations via a multiple scale approach (Bender
& Orszag [1999], Hinch [1995]). WKBJ is used for problems which suffer a global breakdown, unlike bound-
ary layer techniques (popularly used in fluid mechanics) which suffer a local breakdown, with decreasing small
parameter (ǫ → 0). E.g - ǫ2y′′(x) + Q(x)y(x) = 0 can be solved via WKBJ method to have solution of the
form - y(x) ∼ c1Q(x)−1/4 exp[ǫ−1

´ x
dx′

√

Q(x′)] + c2Q(x)−1/4 exp[−ǫ−1
´ x

dx′
√

Q(x′)]. In the context of vor-
tex stability, WKBJ technique has been used to do a large-axial-wavenumber asymptotic analysis of the vortex
waves.



2.1 Introduction 9

the nature of optimal perturbations, are restricted to a Lamb-Oseen profile, and for Reynolds

numbers (Re) upto O(104).

The formidable difficulty of the eigenvalue problem for a general swirling flow implies that the

above modal investigations are typically restricted to a fraction of the full eigenspectrum. The

complexity of the latter is evident with the inclusion of an axial flow which leads to an intricate

array of instabilities of both invsicid (Lessen et al. [1974],Heaton & Peake [2006],Heaton & Peake

[2007]) and viscous origins (Mayer & Powell [1992],Fabre & Le Dizès [2008]). The instabilities

typically occur as nearly-convected center-modes, in the vicinity of the continuous spectrum,

with the eigenfunction concentrated in a region asymptotically close to the critical radius - the

spatial location that corresponds to the singularity of the inviscid equations. Such modes have

been shown to determine the inviscid stability characteristics of the Batchelor vortex (Heaton

[2007b]). However, even for a linearly stable base-state with a purely azimuthal flow and a

monotonically decreasing (axial) vorticity profile, a sensible comparison of the results (Fabre

[2002],Fabre et al. [2006]) with those of a Rankine vortex is impeded by the unavailability

of the complete eigenspectrum in the latter case. The Rankine vortex may be regarded as the

Couette-flow-equivalent for swirling flows - both correspond to (piecewise) constant vorticity pro-

files, leading to analytically soluble eigenvalue problems. It was originally shown by Case (1960)

that the singular modes comprising the inviscid continuous spectrum of Couette flow are flow-

aligned vortex sheets in two-dimensions; for a non-linear base-state, these eigenfunctions possess

a principal-value singularity in addition to the vortex-sheet contribution (Balmforth & Morrison

[1995a]). While the Rankine vortex eigenfunctions in two dimensions consist of cylindrical vortex

sheets, similar to Couette flow, the three-dimensional spectrum exhibits interesting differences.

In contrast to Couette flow (a purely continuous inviscid spectrum (Fadeev [1971])) or piecewise

variants of the same (discrete neutral modes arise solely due to kinks in the base-state pro-

file (Sazonov [1989])), as already mentioned, the restoring action of Coriolis forces implies that

the Rankine vortex supports a denumerable infinity of discrete modes; only one of these, the

so-called structureless or isolated mode, (the dispersion curve in figure 2.1 with ω → (m − 1)Ω

for k → 0), arises from the discontinuity in the top-hat vorticity profile. Even for the CS-

modes, the singularity in the vorticity eigenfunctions, in three dimensions, differs from that

known for parallel flows (Sazonov [1996]). The analysis here, while similar in spirit to that of

Case (1960), accounts for these differences in characterizing the Rankine continuous spectrum.

The discrete (Kelvin) modes emerge as exceptional instances when the amplitude of the singular

vortical structure goes to zero; indeed, the requirement that this amplitude equal zero yields the

Kelvin-mode dispersion relation. The normal-mode analysis here may be regarded as a ‘baseline’

scenario for more general vorticity profiles - at least as far as the singular modes are concerned.

It should also serve as a starting point towards unravelling the more complicated continuous

spectra that would emerge with the incorporation of stratification or viscoelasticity. To this end,

we present a local analysis, based on Frobenius expansions, that examines the non-trivial effect

of a small but finite base-state vorticity (present for a smooth vorticity profile) on the nature of

the singularity in the CS-eigenfunctions; the approach to the Rankine CS-modes is elucidated.

The initial value problem (IVP) for a Rankine vortex that extends the analysis of Arendt

et al. [1997] to include exterior vortical disturbances, and its equivalence to the modal rep-
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resentation given here, will be the subject of chapter 3. It is nevertheless worth noting the

relation between the modal and non-modal (IVP) perspectives. Studies on parallel shearing

flows show that the transient growth phenomenon is intimately related to an underlying in-

viscid continuous spectrum. While the original IVP analyses for Couette flow were in terms

of Fourier modes with time-dependent wave vectors (also known as Kelvin modes, see Farrell

[1984]), an equivalent description exists in terms of a convected superposition of flow-aligned vor-

tex sheets (the CS-modes). The work of Farrell and co-workers (Farrell [1984],Farrell [1989],Far-

rell & Ioannou [1993b]) has shown that one of the mechanisms leading to transient growth, the

Orr-mechanism (Orr [1907]), involves the progressive phase-alignment of an initially staggered

superposition of singular vortex-sheet eigenfunctions. The lift-up mechanismLandahl [1980],

responsible for the growth of spanwise perturbations, may also be interpreted in terms of a

gradual de-phasing of a vortex-sheet eigenfunction and the corresponding ensemble of singular

Squire-jet modes (chapter 6). In general, for problems where the continuous spectrum governs

the temporal evolution, the dynamics may be divided into three regimes: an initial phase char-

acterized by the aforementioned algebraic growth, a terminal phase with an algebraic-decay in

integral measures such as the perturbation kinetic energy due to the eventual de-phasing of

the CS-modes by differential shear (Bassom & Gilbert [1998]), and an intermediate phase with

exponential asymptotics. In this latter regime, appropriate superpositions of the CS-modes

behave as decaying discrete (quasi)-modes, a phenomenon known as Landau damping (Briggs

et al. [1970],Schecter et al. [2000],Schecter & Montgomery [2003]). Both Couette flow and the

Rankine vortex constitute important and singular limiting scenarios in that although neither ex-

hibits the aforementioned exponential asymptotics, the addition of a small curvature or a small

vorticity-gradient/vorticity does lead to quasi-modes (Balmforth et al. [2001],Shrira & Sazonov

[2001],Shrira & Sazonov [2003]). For instance the solution of the two-dimensional IVP shows

that a ‘near-Rankine’ profile exhibits an exponential decay phase with the damping rate be-

ing proportional to the (small) vorticity gradient at the critical radius (Schecter et al. [2000],Le

Dizès [2000]). The analogous scenario for three dimensions is not known, however; numerical

results for a Lamb-Oseen profile indicate a denumerable infinite of quasi-modes (Fabre [2002]).

Although we discuss the Rankine vortex and ‘near-Rankine’ profiles from the normal-mode per-

sective in this thesis, the above discussion highlights the relevance of these limiting scenarios

from the IVP perspective.

This chapter is organized as follows. In section 2.2, we examine the inviscid continuous

spectrum of a Rankine vortex. Section 2.2.1 analyzes the family of 2D-singular modes (zero

axial wavenumber, k = 0) for which the perturbation vorticity is confined to a pair of cylindri-

cal vortex sheets - one at the edge of the core and the other at the critical radius, the radial

location where the base-state angular velocity equals the modal frequency; a physical interpre-

tation of the twin-vortex-sheet structure is given. A second family of singular eigenfunctions,

in two dimensions, takes the form of (infinitely) localized axial jets. The localization of the

axial velocity perturbation implies that these jets remain valid eigenfunctions for an arbitrary

base-state vorticity profile. It is then shown that an arbitrary distribution of axial vorticity may

be evolved as a superposition of the 2D CS-modes. In section 2.2.2, the analysis is extended to

three-dimensional modes all of which also possess vorticity in the interior of the core. The CS-



2.2 Inviscid normal mode analysis for a Rankine vortex 11

eigenfunctions that arise, in addition to the denumerably infinite number of Kelvin modes, may

be conveniently classified based on the nature of the singularity in the perturbation vorticity

at the critical radius. The first family (6.3.1) resembles the two-dimensional singular modes in

that the singularity is again a cylindrical vortex sheet, one threaded by helical vortex lines, in

the otherwise irrotational exterior. For the second family (6.3.2), the singular structure includes

radial vorticity and has a dipole-singularity at the critical radius; members of this family asymp-

tote to the aforementioned axial-jet eigenfunctions in the limit of a vanishing axial wavenumber.

In section 2.2.2, it is shown that an arbitrary initial distribution of vorticity may be evolved as

a superposition of the discrete and continuous spectrum modes, this modal representation being

equivalent to the solution of the corresponding IVP for the Rankine vortex (chapter 3). In sec-

tion 2.3.1, the Rankine modal representation in section 2.2.1, for an initial distribution of axial

vorticity, is extended to the case of a smooth vorticity profile. Next, we examine the singular

eigenfunctions associated with a smooth vorticity profile in three dimensions. The analysis is,

of necessity a local one using Frobenius expansions, and determines the perturbation vorticity

field in the vicinity of the critical radius by drawing on an analogy with the eigenfunctions

known for the case of a stratified shear flow. The approach of these eigenfunctions towards the

singular forms, obtained for the Rankine vortex in earlier sections, is then examined. Section

2.5 summarizes the main results of the analysis, and connects them to other efforts that include

viscous and non-linear effects.

2.2 Inviscid normal mode analysis for a Rankine vortex

If a and Ω0 be the core radius and angular velocity, respectively, the Rankine velocity profile is

given by u
(0)
θ = rΩ(r), with Ω(r) = Ω0 for r < a and Ω(r) = Ω0(a/r)

2 for r ≥ a; the base-state

(axial) vorticity (Z) and vorticity gradient are Z(r) = 2Ω0H(a− r) and DZ(r) = −2Ω0δ(r− a),

H(z) and δ(z) being the Heaviside and delta functions, respectively. The Rankine vortex corre-

sponds to a stable stratification of angular momentum, and supports neutrally stable axisymmet-

ric oscillations in the absence of viscosity (Chandrasekhar [1961]). Further, Z being a monoton-

ically decreasing (generalized) function of r, the analog of Rayleigh’s inflection point theorem in

a cylindrical geometry implies (modal) stability to 2D non-axisymmetric perturbations (Drazin

& Reid [1981], Michalke & Timme [1967]). The governing equation for the linearized evolution

of inviscid perturbations is, however, singular at the point (the critical radius) where the modal

frequency equals the base-state angular velocity, and this leads to an inviscid continuous spec-

trum. The normal mode analysis in the following subsections is carried out with an emphasis on

the CS-modes. Two-dimensional perturbations are examined in section 2.2.1, and the analysis

is extended to perturbations with a finite axial wavenumber (k) in section 2.2.2.

2.2.1 The 2D continuous spectrum modes

Assuming small amplitude perturbations of the form (u′r, u
′
θ) = (ûr(r), ûθ(r))e

i(mθ−ωt), where m

is the azimuthal wavenumber and ω is the (real) angular frequency, the inviscid stability equation

governing the radial velocity eigenfunction, ûr(r), may be derived along lines similar to that for
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the Rayleigh equation for parallel shear flows (Drazin & Reid [1981]), and is given by:

[(ω −mΩ){r2D2 + 3rD − (m2 − 1)}+mrDZ]ûr = 0, (2.1)

where D ≡ d/dr. Since Z is constant within the core and zero outside it, (2.1) simplifies to:

(ω −mΩ){r2D2 + 3rD − (m2 − 1)}ûr = 0. (2.2)

or realizing the axial vorticity ŵz = 1/rD(rûr)− im/rûθ,

(ω −mΩ){−imrŵz} = 0. (2.3)

for r 6= a, and thereby allows for two possibilities. The first rather obvious one is the homoge-

neous solution,

{r2D2 + 3rD − (m2 − 1)}ûr = 0. (2.4)

Physically, this corresponds to an irrotational velocity perturbation both within and outside

the core. The perturbation vorticity resides in a cylindrical vortex sheet at r = a, and is

the linearized representation of a small amplitude wavy deformation. The eigenvalue problem

involving (2.4), with the required continuity of radial and (total) tangential velocity2 components

at r = a, was originally solved by Lord Kelvin (see Kelvin [1880]), and yields a single neutral

mode for each m with ωd = (m− 1)Ω0. In the context of stability of hurricanes and tornadoes,

this is also known as vortex ‘Rossby’ edge wave (Smith & Montgomery [1995], Guinn & Schubert

[1993]; see 2.2.1 for the discussion). In geophysical flows, Rossby waves arise due to a restoring

mechanism produced by planetary vorticity gradient (β-plane). Similarly Rankine vortex has

a background vorticity gradient, albeit localized at the edge of the vortex core (∝ δ(r − a)),

which is responsible for the Kelvin mode - a vortex ‘Rossby’ wave. Kelvin mode lags behind the

fluid motion in the core since the velocity perturbation acts to deform the core in a retrograde

sense. These Kelvin modes make up the 2D discrete spectrum (see Saffman [1992]). They

are interpreted here as (regular) discrete modes despite the singular vorticity eigenfunction (∝
δ(r − a)), since the singularity arises solely due to the kink in the base-state vorticity profile.

If the Rankine profile were to be smoothed such that Z decreases from 2Ω0 to 0 in a small but

finite interval ensuring it is a compact vorticity profile, then the vorticity eigenfunction would

no longer be singular. On the other hand, the CS-modes, to be discussed below, continue to

be singular even with this smoothing, since they owe their origin to the singular point in the

governing equation (2.2).

The second possibility, leading to the CS-spectrum, was recognized by Case [1960] (among

others; see Dikii [1960]), in the context of Couette flow; that (2.2) also allows for

{r2D2 + 3rD − (m2 − 1)}ûr ∝ δ(ω −mΩ), (2.5)

since xδ(x) = 0 is an equality in the generalized sense (Lighthill [1958]). Physically, (2.5) implies

the existence of a cylindrical vortex sheet, threaded by axial vortex lines, and coincident with

2This is equivalent to continuity of pressure perturbations.
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the streamsurface at the critical radius, rf , satisfying ω = mΩ(rf ). The sheet is convected with

the base-state velocity at r = rf , while its infinitesimal thickness prevents smearing out by the

shear. One has therefore a singular normal mode. The Rankine core is degenerate in the sense

that an arbitrary distribution of axial vorticity is convected unchanged in this region; thus, it is

sufficient to consider the case where the vortex sheet is located outside the core. The equality

ω = mΩ(rf ) implies rf = (mΩ0
ω )

1
2 a, and for rf ranging from a+ to infinity, one obtains the

2D-continuous spectrum with ω decreasing from mΩ0 to 0. There remains the one exceptional

value of rf where the vortex sheet amplitude goes to zero, corresponding to the Kelvin mode

above. To see this, one may rewrite (2.5) as:

{r2D2 + 3rD − (m2 − 1)}ûr = imrfA(rf )δ(r − rf ), (2.6)

where −A(rf ) denotes the (unknown) vortex sheet strength (see (2.3)). The solution of (2.6) is

readily obtained by separate consideration of the regions: r < a, a < r < rf , and rf < r < ∞.

The solutions in these regions, consistent with the absence of singularities at the origin and at

infinity, are:

û1r = d
( r

a

)m−1
, (0 < r < a), (2.7)

û2r = c1

( r

a

)m−1
+ c2

(a

r

)m+1
, (a < r < rf ), (2.8)

û3r =Ω0
a2

rf

(a

r

)m+1
, (r > rf ), (2.9)

where the constant in (2.9) is chosen as (Ω0a
2/rf ) for convenience. The constants c1 and

c2 may be determined following the standard procedure for the determination of the Green’s

function of a second order differential equation (Friedman [1990]). Thus, integrating (2.6) over

an infinitesimal interval including r = rf , one obtains the following matching conditions:

û2r = û3r at r = rf , (2.10)

Dû3r −Dû2r =
imA(rf )

rf
at r = rf , (2.11)

Since ûθ = i/mD(rûr), (2.11) denotes the jump in the tangential perturbation velocity across

the vortex sheet at r = rf . From (2.8), (2.9), (2.10) and (2.11),

c1 = − iA(rf )

2

(

a

rf

)m−1

, (2.12)

c2 =
Ω0a

2

rf
+

iA(rf )

2

(rf
a

)m+1
. (2.13)

The constant d in (2.7) is determined from the continuity of the radial velocity at r = a:

d =
Ω0a

2

rf
+

iA(rf )

2

[

(rf
a

)m+1
−
(

a

rf

)m−1]

. (2.14)

Finally, the vortex sheet amplitude, A(rf ), is determined by the jump in tangential velocity
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across r = a. The latter is obtained by integrating (2.1), with DZ = −2Ω0δ(r − a) included,

over an infinitesimal interval including r = a:

(ω −mΩ0)
[

Dû2r −Dû1r
]

= 2m
Ω0

a
ûr at r = a. (2.15)

Using ω = mΩ0(a/rf )
2, and after some algebra,

A =

2iΩ0

(

a2

rf

)

(ωd − ω)

Ω0

(

a

rf

)m−1

+ (ωd − ω)
(rf
a

)m+1
. (2.16)

where ωd = (m− 1)Ω0 is the frequency of the 2D Kelvin mode.

The denominator in (2.16) may be written in the form:

(m−1)
(rf
a

)m
−m

(rf
a

)m−2
+

(

a

rf

)m

=
[(

rf
a )

2−1]

(
rf
a )

m

[

[(
rf
a
)2m−2−1]+[(

rf
a
)2m−2−(

rf
a
)2]+. . . +[(

rf
a
)2m−2−(

rf
a
)2m−4]

]

,

(2.17)

and is therefore can be seen to be always positive when rf > a. The sign of Re(A(rf )) is therefore

determined by the numerator in (2.16); in particular, the vortex sheet disappears when ω = ωd;

critical radius of Kelvin mode rfk =
(

m
m−1

)
1
2
a. Thus, the generic eigenmodes comprising the 2D

CS-spectrum have a twin-vortex-sheet structure, and for the chosen normalization, the vorticity

eigenfunction is given by:

ŵCSM
z (r; rf ) =

[

2iΩ0d

ω −mΩ0
δ(r − a)−A(rf )δ(r − rf )

]

. (2.18)

The jumps in tangential velocity across the two vortex sheets having the same sign for r >

rfk (Re(A) < 0), and having opposite signs when a < rf < rfk (Re(A) > 0); see figure 2.2.

The amplitude of the second vortex sheet vanishes for rf = rfk, leading to the Kelvin mode

eigenfunction:

ŵKelvin
z (r) = −2iΩ0a

2

rfk
δ(r − a), (2.19)

with a single vortex sheet at r = a. In contrast to Case’s original analysis of the 2D continuous

spectrum in Couette flow, wherein the normal component of the velocity perturbation in Couette

flow is required to vanish at each boundary (or at infinity for an unbounded domain), the radial

velocity field induced by the vortex sheet at r = rf will not, in general, vanish at r = a. Instead,

it acts to deform the core, leading to the additional edge vortex sheet. Although the strength,

A(rf ), of the vortex sheet at r = rf is still arbitrary, as in Couette flow, the ratio of the strengths

of the two vortex sheets is not, and a discrete mode arises when this ratio is zero. The exact

analog of Couette flow would be a point vortex that results for Ω0 → ∞, a→ 0 with Ω0a
2 fixed.

In this limit, rfk → 0, and a purely continuous spectrum remains. On the other hand, the

parallel flow analog of the Rankine vortex would be the piecewise linear profile, with a single

jump in the velocity gradient, analyzed by Sazonov [1989].

The existence of singular modes, in addition to well-known Kelvin mode, becomes evident
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Second vortex sheet reduces

the source and sink strengths

Tangential velocity jump
decelerates the fluid en-route

to vortex core

(a)

Second vortex sheet increases

the source and sink strengths

Tangential velocity jump
accelerates the fluid en-route
to vortex core

(b)

Figure 2.2: (a) The disturbance velocity field when the vortex sheet at r = rf co-rotates with
the elliptically deformed vortex core at a frequency lower than the m = 2 Kelvin mode; (b)
the disturbance velocity field when the vortex sheet at r = rf co-rotates with the elliptically
deformed vortex core at a frequency higher than the m = 2 Kelvin mode. The dash-dot circle
denotes the ring of fluid rotating at the Kelvin mode frequency.
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on considering the underlying physical mechanism. Without loss of generality, one may look at

m = 2, in which case the Kelvin mode is the small amplitude limit of the well-known Kirchoff

vortex (Lamb [1932]). The exterior velocity field associated with the Kelvin mode may be

regarded as the result of a distribution of sources and sinks along the edge of the unperturbed

core, the strength of the source or sink being proportional to the local slope of the wavy core-

perturbation. The source and sink strengths are the greatest midway between the principal axes

of the elliptical core, and the regions of outflow and inflow are centered around these directions.

The core rotation may be slowed down or accelerated, and the modal frequency altered, by

an appropriate change of the strength of these radial flows. A co-rotating vortex sheet in the

otherwise irrotational region, via tangential velocity jumps, provides for just such a mechanism,

and leads to the 2D CS-modes. Figure 2.2 shows the velocity field associated with CS-modes

with frequencies both lower and higher than the corresponding Kelvin mode. In each case, the

perturbation velocity field for r > rf remains identical to the the Kelvin mode, but the jumps

in tangential velocity across r = rf alter the velocity field in the region r < rf .

The discussion above applies to m ≥ 2. The case m = 1, in two dimensions, corresponds

to a mere displacement of the vortex core. Translational invariance for an unbounded domain

implies the absence of any restoring force, and the 2D Kelvin modes are therefore restricted to

m ≥ 2 (rfk → ∞ for m = 1). The CS-modes continue to exist for m = 1 since the outer vortex

sheet breaks the invariance. However, naively setting m = 1 in (2.16) leads to a divergence of the

vortex sheet amplitude for any rf . This is because the analysis above proceeds by normalizing

the velocity field for r > rf , while for m = 1, the second vortex sheet ‘screens’ the disturbance

velocity field induced by the displaced core, and the velocity perturbation is confined to the

region r < rf . Physically, the m = 1 CS-modes correspond to the small amplitude orbiting

motion of the displaced (but undeformed) vortex core around the center of a cylindrical vessel

with radius rf . The image vorticity needed to satisfy the impenetrability condition is, to linear

order, a vortex sheet coincident with the vessel wall. The ratio of the vortex sheet strengths,

predicted by the analysis above, is unaffected by the velocity field normalization, and equals

−(a/rf ); the trivial translatory (discrete)mode thus corresponds to a vessel with an infinitely

large radius (rf → ∞). In section 2.2.2, we encounter modes of a similar nature for a finite axial

wavenumber. Unlike the two-dimensional case, where an m = 1 CS-mode may be interpreted as

a vessel mode for any rf > a, the analogy, for a non-zero axial wavenumber, remains true only

for a denumerably infinite sequence of rf ’s (see Appendix A).

The discussion of the CS-modes has thus far been for cases where the perturbation vorticity

is restricted to the region r ≥ a. As pointed out earlier, modes with core axial vorticity are

expected to have a degenerate character, since rigid-body rotation allows for an arbitrary axial

vorticity distribution to evolve with its structure unchanged. From a normal mode perspective,

there is still a mild restriction, however, since an arbitrary core vorticity distribution would

deform the core, thereby also exciting a Kelvin mode. This would lead to a pair of frequencies

that characterize the evolution for a given azimuthal wavenumber - one being the core angular

frequency (mΩ0) corresponding to the interior vorticity and the second being the Kelvin mode

frequency ((m − 1)Ω0) corresponding to the edge vorticity. Thus, any normal mode with core

vorticity must have, in addition, a projection at the edge of the core that cancels out the Kelvin
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mode contribution. Assuming the core vorticity distribution to be given by g(r) (with g(r) = 0

for r ≥ a), it may be shown that the (axial) vorticity eigenfunction of a core eigenmode is given

by

ŵcore

z
(r) = g(r)− δ(r−a)

ˆ

a

0

g(r ′)

(

r ′

a

)

m+1

dr ′, (2.20)

where the delta function denotes the additional edge-vorticity component. That g(r) is arbitrary

is consistent with the aforementioned degeneracy. The velocity eigenfunction is restricted to

r < a, so the exterior irrotational region remains quiescent. These 2D core eigenmodes find

a mention in Kopiev and Chernyshev (1997) in the context of vortex ring oscillations. Note

that g(r) may be expanded in terms of any of the standard orthogonal families, and each of

these representations will lead to a particular, denumerably infinite, representation of the core

eigenmodes. One such representation, in terms of Bessel functions, arises naturally as the

limiting form of the 3D structured modes in section 2.2.2.

The evolution of an initial axial vorticity distribution of the form wz0(r)e
imθ, as an integral

superposition of the 2D Kelvin and CS-modes, is given by:

wz(r, θ, t) = wcore
z eim(θ−Ω0t)+

ˆ ∞

a+
B1(rf )ŵ

CSM
z (r; rf )e

im(θ−Ω(rf )t)drf+

ˆ ∞

0
B2(rf )ŵ

Kelvin
z (r)ei(mθ−ωdt)drf ,

(2.21)

where ŵCSM
z and ŵKelvin

r are given by (2.18) and (2.19), and the respective eigenfunction am-

plitudes are given by B1(rf ) = −wz0(rf )

A(rf )
, B2(rf ) = − i

2

wz0(rf )rfk
a2(ωd −mΩ)

(

a

rf

)qm−1

and q =

sgn(rf−a). On substituting the expressions for B1, B2 and A(rf ), equation 2.21 can be simplified

to,

wz(r, θ, t) = wz0(r)e
i[m(θ−Ω(r)t)]H(r − a) + ŵ core

z eim[θ−Ω0t] + δ(r − a)

[

e−iωdt

ˆ a

0
wz0(rf )

(rf
a

)m+1
drf+

ˆ ∞

a+
Ω0

(

a

rf

)m−1

wz0(rf )
e−imΩ(rf )t − e−iωdt

(ωd −mΩ(rf ))
drf

]

eimθ (2.22)

In (2.21), the second term accounts for the distribution of CS-modes required to represent a

specified axial vorticity distribution outside the core. The edge-vorticity contribution that arises

from this superposition is then projected onto the Kelvin mode which appears as the third term

in (2.21); the lower limit a+ instead of a ensures that an initial condition consisting solely of

edge-vorticity evolves as a Kelvin mode. The equivalence of (2.21) to a solution of the 2D IVP

is readily established (section 3.2.1). The coefficients B1 and B2 are singular at rf = rfk, when

A(rf ) = 0, and this is a signature of the secular growth for an initial condition localized at the

Kelvin critical radius. The growth is linear in time for the velocity field, and with reference

to the plasma physics literature (Hirota et al. [2003]), the secular growth may be interpreted as

a resonance between the point and continuous spectra. The 2D linear response of a Rankine

vortex to an initial vortical perturbation was obtained by Smith & Montgomery [1995] using

a different ansatz than the present analysis. The authors split the vorticity response in terms

of a smooth response (one due to the advection of background angular velocity) and a vortex

sheet response at the edge of the core (due to the discontinuous base-state vorticity). (2.22)

is identical to the vorticity equation corresponding to equation 5.22 in Smith & Montgomery
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[1995].

For a point vortex, as pointed out earlier, the inviscid spectrum is purely continuous, and an

initial axial vorticity distribution evolves as a superposition of the CS-modes alone. Thus, (2.21)

reduces to the much simpler form:

wz(r, θ, t) =

ˆ ∞

0
wz0(rf )ŵ

CSM
z (r; rf )e

im(θ−Ω(rf )t)drf (2.23)

with ŵCSM
z (r; rf ) = δ(r − rf ).

Interestingly, the degeneracy associated with the core-eigenmodes of a vortex column dis-

appears on considering the analogous modes for a vortex ring. This is because the base-state

circumferential vorticity is required to increase in proportion to the distance from the axis of

symmetry in order satisfy the Euler equations that now include an additional vortex-stretching

term. The resulting differential shear in a meridional plane, even within the vortical ring core,

ensures that the CS-modes have a uniquely determined structure. The analog of the 2D-column

disturbances are the axisymmetrical ring-modes that do not depend on the coordinate along

the ring perimeter. For the isochronous ring, where the ratio of the azimuthal vorticity to the

transverse radial distance is a constant 3, the axisymmetrical CS-modes again exhibit a twin-

vortex sheet structure, the vortex sheets being in the form of hollow tori (Kopiev & Chernyshev

[1997]). The original analysis of Kopiev and Chernyshev (1997), for rings with a small cross-

section (µ≪ 1, where µ = a/R is the ratio of the cross-sectional radius to the ring radius), was

restricted to the CS-modes within the ring cores. In what follows, we digress a little to show that

their analysis applies equally to the CS-modes that govern the evolution of vortical disturbances

in the much-larger envelope of irrotational fluid that is entrained by the propagating ring.

Finally, there are certain exceptional eigenmodes, those that do not involve a radial velocity

perturbation, and are therefore not covered by the above analysis. The simplest among these

is the trivial case of an axisymmetric hollow vortex sheet at r = a. The resulting perturbation

velocity field corresponds to a quiescent core, and is identical to the base-state (u′θ ∼ 1/r) outside

it. This mode is, in fact, included in (3.12). In enforcing a quiescent exterior for all m, (3.12),

for m = 0, requires an axisymmetric vortex sheet at the edge of the core with a strength equal

and opposite to the core circulation. A second class of eigenmodes neglected by the analysis

are those wherein the axial velocity component itself has a delta-function singularity; physically,

this would be a concentrated jet-like profile. Although not relevant to an IVP involving only

an axial vorticity component as given by (2.21) above, these modes rise as limiting forms of the

3D CS-modes (the Λ2 family) that include radial vorticity. Sazonov [1996] has identified similar

modes for inviscid Couette flow which, together with the 3D-generalization of the Case vortex

sheets, complete the 3D-continuous spectrum.

Vortex Rossby waves

The importance of vortex waves in geophysical fluid dynamics, specially in the context of hur-

ricanes and tornadoes, deserves a separate mention. Though Kelvin’s circulation theorem is

extremely useful for inviscid, barotropic (density is a function of pressure) flows, for oceanic and

3As shown by Fraenkel (1970), in the limit of small-cored rings, this is only one of an infinite set of vorticity
distributions that allow for a steadily propagating distribution of vorticity.
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atmospheric applications a more relevant conserved quantity is the potential vorticity (Vallis

[2006]). Unlike the circulation theorem, the potential vorticity conservation is a conservation

law of a field and is valid for baroclinic flows too - crucial for geophysical flows. If Θ is the

potential temperature (the temperature a fluid would have if adiabatically moved to a reference

pressure) then the potential vorticity conservation is given as,

D

Dt

(

wa.∇Θ

ρ

)

= 0 (2.24)

where wa = w + f is the absolute vorticity (w is the flow vorticity while f represents the

planetary vorticity - the component of earth’s rotation at a certain latitude). Since f varies

with latitude (maximum at the poles and vanishing at the equator), it can be linearized as

f = f0 + βy (known as β−plane approximation). y is a locally cartesian coordinate in the

north-south direction. Thus for a fluid with uniform density we have from (2.24)

∂w

∂t
+ u.∇w + βuy = 0 (2.25)

On assuming plane-wave solutions, ∝ exp{i(kx + ly − ωt)}, the dispersion relation is obtained

to be

ω = −β k

k2 + l2
, (2.26)

a set of westward propagating waves known as Rossby waves. Thus Rossby wave arises due to

gradient of planetary (background) vorticity. From (2.1) the vorticity perturbation equation for

a swirling flow is,

(

∂

∂t
+ imΩ

)

wz +DZur = 0 (2.27)

Comparing (2.25) and (2.27) we realise the similarities in the evolution of flow vorticity, w, in

the β−plane and that of perturbation vorticity, wz, when the base-state vorticity gradient DZ

is seen as the equivalent of β, the planetary vorticity gradient. Thus the vortex waves discussed

so far can be seen as equivalent vortex analogs of Rossby waves and more importantly the 2D

Kelvin mode is an edge vortex Rossby wave (Guinn & Schubert [1993], Smith & Montgomery

[1995], Montgomery & Kallenbach [1997]).

2.2.2 The 3D continuous spectrum modes

In this section we analyze the CS-modes with a non-zero axial wavenumber. The equations

governing the inviscid evolution of 3D disturbances have been written down in various forms by

different authors. Howard & Gupta [1962] reduce the set of stability equations to a single one

governing the radial velocity eigenfunction (the Howard-Gupta equation) as in section 2.2.1. On

the other hand, Saffman [1992] derives an equation governing the disturbance pressure field that

has since been generalized to a base-state with axial flow (Le Dizès [2004]) . Herein, following

Arendt et al. [1997], we write down the stability equation in terms of the axial velocity eigen-
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function ûz(r) which is best suited for the Rankine vortex. For small amplitude perturbations

of the form (u′r, u
′
theta, u

′
z) = [ûr(r), ûθ(r), ûz(r)]e

i(kz+mθ−ωt), one obtains:

[(ω−mΩ)2{r2D2+rD−m2−k2r2}−r(ω−mΩ){m(2rΩ′D+DZ)+Q′Q−1{(ω−mΩ)rD−mZ}}+2k2r2ΩZ]ûz = 0,

(2.28)

for a general vorticity profile where Q ≡ {(ω − mΩ)2 − 2ΩZ}; here, 2ΩZ is proportional to

the Rayleigh discriminant governing centrifugal stability (see Chandrasekhar [1961]), and equals

4Ω2
0H(a − r) for a Rankine vortex. The radial and azimuthal components of the perturbation

velocity field are given by:

Qûr = − i

rk
(ω −mΩ)[(ω −mΩ)rD −mZ]ûz, (2.29)

Qûθ = − 1

rk
[Z(ω −mΩ)rD −m{(ω −mΩ)2 + rΩ′Z}]ûz. (2.30)

For a Rankine vortex, (2.28) may be solved, separately, inside the core (r ≤ a) and in the

irrotational exterior (r > a). Note that (2.28) involves the base-state vorticity itself in addition to

its radial gradient, and equations inside the core therefore differ in form from those outside. This

is a reflection of Coriolis forces coming into play within the core in three dimensions. Inviscid

axisymmetric oscillations (the ‘sausaging’ modes) of a vortex column result from Coriolis forces

driving the alternate expansion and contraction of closed material curves, within the core, in a

plane transverse to the rotation axis (Batchelor [1967]); there exists an equivalent interpretation

in terms of the periodic twisting and untwisting of vortex lines (Melander & Hussain [1994]).

Since Ω = Ω0, Z = 2Ω0 and Q′ = 0 inside the core, (2.28)-(2.30) reduce to:

[(ω −mΩ0)
2{r2D2 + rD −m2 − k2r2}+ 4k2r2Ω2

0]û
i
z = 0, (2.31)

{(ω −mΩ0)
2 − 4Ω2

0}ûir = − i

rk
(ω −mΩ0)[(ω −mΩ0)rD − 2mΩ0]û

i
z, (2.32)

{(ω −mΩ0)
2 − 4Ω2

0}ûiθ = − 1

rk
(ω −mΩ0)[2Ω0rD −m(ω −mΩ0)]û

i
z. (2.33)

In the outer irrotational region, Z = 0 and (2.28)-(2.30) simplify to:

(ω −mΩ)2[r2D2 + rD −m2 − k2r2]ûoz = 0, (2.34)

ûor = − i

k
Dûoz, (2.35)

ûoθ =
m

rk
ûoz, (2.36)

where the superscripts i and o denote the core and exterior regions, respectively.

The equation for ûiz may be rewritten as a Bessel equation, and analyticity at the origin

implies:

ûiz ∝ dJm(βr), (2.37)

In (2.37), β2 ≡ k2(4Ω2
0 − g2)/g2 with g = (mΩ0 − ω) may be regarded as a radial wavenumber.

The equation for ûoz is the modified Bessel equation, and similar to the 2D scenario, allows for
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two possibilities. The first is the homogeneous solution consistent with a decaying far-field:

ûoz ∝ Km(kr), (2.38)

Km(z) being the modified bessel function of the second kind, and leads to an irrotational velocity

field outside the core. Continuity of uz at r = a gives

ûiz =
Jm(βr)

Jm(βa)
, ûoz =

Km(kr)

Km(ka)
, (2.39)

and further, enforcing continuity of ur at r = a gives the familiar dispersion relation for the 3D

Kelvin modes (see Saffman [1992]):

g2

(4Ω2
0 − g2)

[

βaJ ′
m(βa)

Jm(βa)
+

2mΩ0

g

]

= −kaK
′
m(ka)

Km(ka)
. (2.40)

The relation (2.40) yields a denumerable infinity of modes for a fixed k and m. For a given non-

zerom, the dispersion curves (see LHS of figure 2.3) span the interval ω ≡ [(m−2)Ω0, (m+2)Ω0].

The modes may be classified based on the sign of the Doppler frequency; g < 0 corresponds to

the co-grade modes and g > 0 to the retrograde modes. The co-grade and retrograde families

are not symmetric (about mΩ0) for non-zero m and, apart from numerical differences in the

ω values for a given k, the retrograde family includes an additional (structureless) branch that

reduces to the 2D Kelvin mode, with ω = (m − 1)Ω0, for k → 0. It is convenient to use

a modal index, n, to enumerate the solutions (βn) of (2.40); thus, βn,−1 and βn,+1, with n

being a positive integer, correspond to the retrograde and co-grade afamilies, respectively. β1,−1

corresponds to the structureless mode, while the remainder of the dispersion curves, both co-

grade and retrograde, correspond to the ‘structured’ modes, a measure of this structure being the

number of zero-crossings of the axial vorticity (wz ∝ Jm(βnr)) which increases with increasing

n. Further, βn → ∞, ωn → mΩ0 for n→ ∞, so the structured modes become nearly-convected

modes, concentrated in the vicinity of the symmetry axis, for large n. The Kelvin-mode vorticity

eigenfunctions are given by:

ŵKelvin
z,n,±1(r) = − 2gnΩ0β

2
n

k{g2n − 4Ω2
0}
Jm(βnr)

Jm(βna)
H(a− r) + [ûθ]

r=a+

r=a− δ(r − a), (2.41)

ŵKelvin
r,n,±1 (r) = − 2iΩ0

r{g2n − 4Ω2
0}

[

gn
βnrJ

′
m(βnr)

Jm(βna)
+ 2mΩ0

Jm(βnr)

Jm(βna)

]

H(a− r), (2.42)

ŵKelvin
θ,n,±1(r) =

2Ω0

r{g2n − 4Ω2
0}

[

2Ω0
βnrJ

′
m(βnr)

Jm(βna)
+mgn

Jm(βnr)

Jm(βna)

]

H(a− r), (2.43)

where

[ûθ]
r=a+

r=a− =− 2Ω0

ka(g2n − 4Ω2
0)

{

gn
βnaJ

′
m(βna)

Jm(βna)
+ 2mΩ0

}

, (2.44)

with gn = (mΩ0−ωn) and β
2
n = k2(4Ω2

0−g2n)/g2n ; the subscript ±1 in (2.41)-(2.43) discriminates

between co-grade and retrograde modes.

As mentioned in the introduction, the 2D Kelvin mode transforms into a damped singular

mode for a general smooth vorticity profile with DZ(rf ) 6= 0 (Le Dizès [2000]). The damping
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rate is independent of Re for Re ≫ 1, arising due to an increasingly fine-scaled structure (the

spatial scale being O(Re−
1
2 )) inside a viscous critical layer with a thickness of O(DZ) around

rf (Lin [1955]). Both computations for large Re , and estimates based on a contour deformation

calculation, for a Lamb-Oseen profile, show that the 3D retrograde modes of a Rankine vortex are

again replaced by inviscidly damped critical-layer modes (Fabre [2002],Fabre et al. [2006]). There

appear to exist a countable infinity of such modes with the damping rate possibly dependent on

the values of both Z and DZ at rf . The singular effect of viscosity is especially important for

the structured modes; in sharp contrast to the predictions of (2.40), the dispersion curves for

the Lamb-Oseen profile do not asymptote to the core angular frequency in the limit k → 0.

Bending modes (m = 1) are particularly important in this regard, since (2.40) for m = 1

allows for modes with a negative ω (counter-grade) that then lie outside the base-state range of

frequencies. Every retrograde bending mode invariably becomes counter-grade for large enough

k, and correspondingly, the critical radius moves off to infinity and onto the complex plane.

Counter-grade modes for a smooth vorticity profile are therefore expected to remain qualitatively

unaltered for a general vorticity profile, and with the inclusion of viscosity, as is confirmed by

numerical calculations (Fabre et al. [2006]).

The dispersion curves for axisymmetric (m = 0) column oscillations are symmetric about

ω = 0, and denote sausaging modes that travel in opposite directions along the core. The

dynamics involves the alternate twisting and un-twisting of the vortex lines on surfaces approx-

imately concentric with the cylindrical core boundary; the associated radial displacements are

smaller for larger n, and the weaker (Coriolis) restoring forces imply that ωn → 0 for n → ∞.

Importantly, (2.28), for m = 0, defines a regular Sturm-Liouville problem for an arbitrary ax-

ial vorticity profile and the completeness of the denumerably infinite family of axisymmetric

modes follows (Chandrasekhar [1961],Ince [1956]). The absence of a critical layer singularity

also implies that the dispersion curves for the sausaging modes remain qualitatively unaltered

for a smooth vorticity profile and for large but finite Re (Fabre [2002]). Thus, for a general

non-compact vorticity profile, an arbitrary small-amplitude axisymmetric disturbance may still

be represented as a superposition of evolving axisymmetric Kelvin modes. For a Rankine vortex,

however, the complete separation of the regions of strain (r > a) and vorticity (r < a) implies

that one must distinguish between vortical perturbations related to an axisymmetric column

deformation and similar disturbances present in the irrotational exterior. The standard Sturm-

Liouville arguments allow one to infer the completeness of the axisymmetric Kelvin modes, with

frequencies obtained from (2.40), for the former class of disturbances (column deformations).

The question regarding the response of the Rankine vortex to exterior vortical perturbations

remains. Since any perturbation with m = 0 evolves unchanged even in the presence of dif-

ferential shear, there is evidently a degeneracy as regards a modal decomposition for exterior

perturbations. We return to this point, and the related implications for the transient growth

observed in recent simulations, even for m = 0 (Pradeep & Hussain [2006]), after the analysis

for the non-axisymmetric CS-modes in sections 6.3.1 and 6.3.2.

Since the Kelvin modes above arise from the homogeneous solution of (2.34), they have

vorticity within the core and an axial vortex sheet at its edge. A natural question is if these

modes can therefore represent an arbitrary vortical initial condition restricted to the region
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Figure 2.3: The figure on the left is a sketch of the dispersion curves that result from (2.40 for
a given m. The figure on the right includes the continuous spectrum depicted by the shaded
region; the additional dashed curves in the retrograde frequency range denote the 3D vessel
modes defined by (A.8). For each k, the singular eigenmodes that make up the continuous
spectrum fill up the frequency intervals between the retrograde dispersion curves.

r ≤ a; in effect, an arbitrary small-amplitude deformation of the vortex column. The discussion

in the preceding paragraph shows that this is certainly true for m = 0. For non-zero m,

however, (2.28) has singular coefficients, and the standard Sturm-Liouville arguments do not

apply. Thus, the completeness of the Kelvin modes alone, in the absence of additional singular

eigenmodes (constituting the continuous spectrum), is not obvious. This question has been

recently answered in the affirmative by Arendt et al. [1997], and our primary focus here is on

the complementary situation; that is, on the additional modes required for the evolution of an

arbitrary vortical initial condition outside the core, a situation of particular relevance to the

transient growth recently observed for single vortices (see Antkowiak & Brancher [2004],Pradeep

& Hussain [2006]). In what follows, we show that there are two families of singular eigenmodes

needed to evolve an arbitrary initial condition (an arbitrary solenoidal distribution of vorticity).

With the inclusion of these singular eigenmodes, every retrograde frequency except for those

corresponding to the Kelvin modes, is doubly degenerate. There is some leeway as to how the

aforementioned partition of the continuous spectrum may be made, and we choose a division

based on the presence or absence of radial vorticity in the singular part of the eigenfunction.

For the eigenfunctions in the first family, the singular structure is a cylindrical vortex sheet

at the critical radius, threaded by helical lines, and thereby devoid of radial vorticity. For the

eigenfunctions in the second family, the singular structure is again localized at the critical radius,

but possesses radial vorticity; the vortex lines in this case form cells of an infinitesimal thickness

in the plane transverse to the rotation axis.

3D continuous spectrum modes - the Λ1-family (zero radial vorticity)

The Λ1-eigenmodes are the natural generalization of the 2D CS-modes analyzed in section 2.2.1.

Equation (2.34) allows for a vortex sheet, threaded by helical lines, in the outer irrotational

region. Thus,

[r2D2 + rD −m2 − r2k2]ûoz = a1δ(ω −mΩ) + a2δ
′(ω −mΩ), (2.45)
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so that, as in (2.5), there is again an inhomogeneity proportional to a generalized function; here,

we have used the identity x2{a1δ(x) + a2δ
′(x)} = 0. One may rewrite (2.45) as:

[r2D2 + rD −m2 − r2k2]ûoz = A1(rf )δ(r − rf ) +A2(rf )δ
′(r − rf ), (2.46)

with rf = (mΩ0
ω )

1
2a denoting the location of the exterior vortex sheet. For the vortex sheet to

lie in the physical domain, rf must be real, and ω must therefore lie in the base-state range

of angular frequencies. The analysis that follows is thus restricted to the retrograde frequency

range (0,mΩ0]. Using w = ∇ ∧u, and in the absence of radial vorticity (ŵr = 0), the following

relation between ûz and the vorticity field holds for r ≥ a:

[r2D2 + rD −m2 − r2k2]ûz = −rD(rŵθ). (2.47)

Comparing (2.47) and (2.46), and noting that ŵθ for the Λ1-family is proportional to δ(r − rf ),

one obtains A2(rf ) = −rfA1(rf ). The azimuthal and axial components of the (helical) vortex

sheet strength (AΛ1) are AθΛ1 = A1(rf )/rf and AzΛ1 = −mA1(rf )/(kr
2
f ), respectively, the pitch

of a helical vortex line being |2πrf (AzΛ1/AθΛ1)| = (2πm)/k.

The solution of (2.46) is obtained by separate consideration of three (r < a, a < r < rf , and

r > rf ) rather than two regions (as was the case for the regular modes). The solutions in these

regions, consistent with regularity both at the origin and at infinity, are:

ûi1z = dJm(βr), (0 < r < a), (2.48)

ûo2z = c1Im(kr) + c2Km(kr), (a < r < rf ), (2.49)

ûo3z = f(ka)
Ω0a

2

rf
Km(kr), (r > rf ), (2.50)

where the normalization, as in section 2.2.1, is applied to the region outside the vortex sheet

at r = rf . The normalizing factor, f(ka) = −i/[mkaKm(ka)], enforces agreement between the

limiting forms of the 3D-modes, for k → 0, and the 2D-modes found earlier. The constants c1

and c2 are determined from the following matching conditions obtained by integrating (2.46)

over an infinitesimal interval including r = rf :

A2(rf ) = −rfA1(rf ), (2.51)

ûo2z − ûo3z = −A2(rf )

r2f
=
A1(rf )

rf
, at r = rf , (2.52)

Dûo2z = Dûo3z , at r = rf . (2.53)

The condition (2.51) has already been obtained above, and shows that the jumps in the axial

and azimuthal components of the velocity perturbation are not independent, being related by

the fact that the pitch of the helical vortex lines at r = rf is entirely determined by m and

k. (2.53) enforces continuity of the radial velocity perturbation, thereby excluding a singular

jet-like profile riding on the vortex sheet, while (2.52) characterizes the jump in the axial velocity
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across the helical vortex sheet at r = rf . From (2.49), (2.50), and (2.52), (2.53), one obtains:

c1 = −kK ′
m(krf )A1(rf ), (2.54)

c2 = f(ka)
Ω0a

2

rf
+ kI ′m(krf )A1(rf ), (2.55)

the simplified expressions arising from use of the Wronskian for the modified Bessel equation.

The constant d in (2.48) is determined from the continuity of the axial velocity at r = a, and

given by:

d =
(f(ka)Ω0a

2/rf )Km(ka) + kA1(rf ){I ′m(krf )Km(ka) −K ′
m(krf )Im(ka)}

Jm(βa)
(2.56)

From (2.32) and (2.35) we have the following expressions for radial velocity at r = a,

ûi1r |r=a = − idg

ka(g2 − 4Ω2
0)
{gβaJ ′

m(βa) + 2mΩ0Jm(βa)}, (2.57)

ûo2r |r=a = − i

I ′m(krf )
[c2{I ′m(krf )K

′
m(ka)−K ′

m(krf )I
′
m(ka)}+K ′

m(krf )I
′
m(ka)]. (2.58)

Equating (2.57) and (2.58), to enforce continuity of the radial velocity at r = a, one obtains,

after some algebra, the following expression for the vortex sheet amplitude:

A1(rf ) = f(ka)
Ω0a

2

rf

M(rf ; ka, βa)

k{K ′
m(krf )N(rf ; ka, βa) − I ′m(krf )M(rf ; ka, βa)}

, (2.59)

where

M(rf ; ka, βa) = g2βaJ ′
m(βa)Km(ka) + 2mΩ0gJm(βa)Km(ka) + (4Ω2

0 − g2)Jm(βa)kaK ′
m(ka),(2.60)

N(rf ; ka, βa) = g2βaJ ′
m(βa)Im(ka) + 2mΩ0gJm(βa)Im(ka) + (4Ω2

0 − g2)Jm(βa)kaI ′m(ka).(2.61)

As in section 2.2.1, the retrograde Kelvin modes naturally emerge as the ones for which A1(rf ) =

0. The functionsM andN remain finite for any finite rf , and so do the modified Bessel functions.

Further, since the zeroes of M and N interlace each other, the condition of a vanishing vortex

sheet amplitude impliesM = 0; this is precisely the dispersion relation for the Kelvin modes (see

(2.40)). In contrast to the 2D case, where a vanishing vortex sheet amplitude led to a single

value of rf (the structureless mode) for a fixed m (rfk = ( m
m−1)

1
2a), in 3D one has a countable

infinity of critical radii for a given m and k. The vorticity field associated with a Λ1-eigenmode
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is given by

ŵΛ1
z (r; rf ) = −2dgΩ0β

2Jm(βr)

k{g2 − 4Ω2
0}

H(a− r) + [ûθ]
r=a+

r=a− δ(r − a)− mA1(rf )

kr2f
δ(r − rf ),

(2.62)

ŵΛ1
r (r; rf ) = − 2idΩ0

r{g2 − 4Ω2
0}
[

gβrJ ′
m(βr) + 2mΩ0Jm(βr)

]

H(a− r), (2.63)

ŵΛ1
θ (r; rf ) =

2dΩ0

r{g2 − 4Ω2
0}
[

2Ω0βrJ
′
m(βr) +mgJm(βr)

]

H(a− r) +
A1(rf )

rf
δ(r − rf ),

(2.64)

where [ûθ]
r=a+

r=a− =
m

ka
[c1Im(ka)+c2Km(ka)] − dg

ka{g2 − 4Ω2
0}
[

2Ω0βaJ
′
m(βa)+mgJm(βa)

]

,

(2.65)

with the radial vorticity field, expectedly, being confined to the core region. Here, c1, c2 and d

are given by (2.54)-(2.56). The structure of typical Λ1-eigenmodes is shown in figure ??.

Figure 2.4 plots A1(rf ) as a function of rf for m = 2 and k = 3; the essential features

remain unchanged for other values of m and k. Interestingly, in addition to the values of rf

corresponding to the Kelvin mode frequencies, for which A1(rf ) = 0, there are values at which

A1(rf ) diverges. SinceM and N have zeroes interlacing each other as a function of rf , the zeroes

and singularities of A1(rf ) also interlace each other, and the latter again form a countably infinite

set. The divergences are an artifact of the normalization used in (2.48)-(2.50), and physically,

at these rf ’s, the vortex sheet entirely screens the perturbation velocity field induced by the

oscillating column (that is, ûo3z = 0). In doing so, the sheet acts as an impenetrable wall, and,

for the given m and k, the corresponding frequency must therefore be a solution of the dispersion

relation for a Rankine vortex in a cylindrical vessel of size rf . From (2.59), the locations at which

A1(rf ) → ∞ must satisfy K ′
m(krf )N − I ′m(krf )M = 0; in appendix A, it is shown that this

is indeed the relation governing the normal modes of a Rankine vortex with a core of radius a

embedded in a vessel of radius rf . For a fixed rf , and thence, a fixed ω (= mΩ0(a/rf )
2) in the

range [(m− 2)Ω0,mΩ0], the singular eigenmodes are coincident with vessel modes, in the region

0 < r < rf , at a denumerable infinity of axial wavenumbers (the limit point being infinity). Not

all vessel modes will be recovered from the present analysis since, although the vessel wall may

always be regarded as a vortex sheet, one has here the additional constraint that the vortex

sheet convect with the base-state flow velocity at r = rf .

A sketch of the frequency intervals spanned by the CS-modes, including the vessel mode loci,

appears on the RHS in figure 2.3. The CS-modes occupy the intervals between the discrete ret-

rograde frequencies, and with their inclusion, the Rankine spectrum, for fixed m and k, consists

of the denumerable infinity of co-grade frequencies together with the entire retrograde frequency

interval (0,mΩ0). The case m = 1 is an exception, since the counter-grade mode frequencies

remain unaffected, and the spectrum therefore remains discrete in the interval [−Ω0, 0]. The

analysis for the Λ1-eigenmodes above, although more involved algebraically, is still analogous to

the one in two dimensions; in that the difference between the regular (retrograde Kelvin) and

singular eigenmodes is the existence, in the latter case, of an additional vortex sheet at the crit-

ical radius. This may be seen from comparing the vorticity eigenfunctions for a Λ1-eigenmode,
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Figure 2.4: The vortex sheet amplitude, A1(rf ) for m = 2 and k = 3. The vertical dashed
lines, defined by 1/A1 = 0, correspond to the vessel mode loci (that interlace the Kelvin mode
frequencies). The amplitude changes sign at an increasingly rapid rate as rf → 1, and the inset
offers a magnified view of the variation near the core.

given by (2.62)-(2.64), to those of a Kelvin mode given by (2.41)-(2.43).

The singularity of the Λ2-eigenmodes analyzed below, although not a vortex sheet, is again

localized at the critical radius. This localization of the vorticity is possible due to the complete

spatial separation of the regions of (base-state) vorticity and shear for a Rankine vortex. For

a parallel flow, on the other hand, the lack of such a separation makes the three-dimensional

singular eigenmodes quite different from the two-dimensional ones. As shown in Sazonov [1996],

for unbounded Couette flow, the singular modes with wave vectors inclined to the plane of

shear are no longer localized vortex sheets coincident with streamlines of the base-state flow like

those originally found by Case [1960] in two dimensions. Instead, the spanwise variation of the

perturbation velocity field acts to stretch and tilt the ambient vorticity, leading to additional

non-local contributions (with a principal-value singularity) to the perturbation vorticity field.

As will be seen in 2.2.2, this makes the solution of the 3D IVP for the Rankine vortex, via a

modal superposition, (conceptually) easier than the one for Couette flow.

3D continuous spectrum modes - the Λ2-family (with radial vorticity)

Unlike the Λ1 family, the Λ2-eigenmodes possess radial vorticity localized in the singular vortical

structure at the critical radius. It is convenient to analyze this case starting from (2.47) now

generalized to a non-zero ŵr:

[r2D2 + rD −m2 − r2k2]ûz = −rD(rŵθ) + imrŵr. (2.66)

The Λ2 family, in its simplest form, may be obtained by setting ŵz = 0 for r > a, while

allowing for the radial vorticity field to include a delta function. The resulting singular structure

at r = rf is characterized by a vorticity field in the plane transverse to the rotation axis,
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(ŵr, ŵθ) ≡ [ArΛ2δ(r− rf ), rfAθΛ2δ
′(r− rf )], with rf ≥ a and ArΛ2 = −imAθΛ2 . Equation (2.66)

takes the form:

[r2D2 + rD −m2 − r2k2]ûoz = A1(rf )δ(r − rf ) +A2(rf )δ
′(r − rf ) +A3(rf )δ

′′(r − rf ), (2.67)

where A1 = (m2 − 1)rfAθΛ2 , A2 = 3r2fAθΛ2 and A3 = −r3fAθΛ2 . For the Λ2 modes, ûr is

discontinuous at r = rf , implying a delta-function singularity in ûz, and thence, a localized

axial jet riding on the convected singular structure. With ûz = ûregz + P1δ(r − rf ), P1 being

a measure of the jet volumetric flux, the following matching conditions result from integrating

(2.67) in an infinitesimal interval around rf :

r2f [Dû
reg
z ]

r+f

r−f
− rf [û

reg
z ]

r+f

r−f
− P1{(m2 − 1) + (krf )

2} = A1, (2.68)

−r2f [ûregz ]
r+f

r−f
+ 3rfP1 = −A2, (2.69)

2r2fP1 = 2A3. (2.70)

The expressions for the velocity fields and the different regions under consideration remain

identical to section 6.3.1. Enforcing the continuity of the radial and axial velocity components

at r = a, and a little algebra, leads to the following expressions for the constants characterizing

the velocity fields in the different regions (see equations (2.48), (2.49) and (2.50)):

c1 = AθΛ2Km(krf )(krf )
2, (2.71)

c2 = f(ka)
Ω0a

2

rf
−AθΛ2Im(krf )(krf )

2 (2.72)

d =
(f(ka)Ω0a

2/rf )Km(ka) +AθΛ2(krf )
2{Km(krf )Im(ka)− Im(krf )Km(ka)}

Jm(βa)
(2.73)

The amplitude of the singular vortical structure at r = rf is given by:

AθΛ2(rf ) = −f(ka)Ω0a
2

rf

M(rf ; ka, βa)

(krf )2{Km(krf )N(rf ; ka, βa) − Im(krf )M(rf ; ka, βa)}
. (2.74)

with P1 = rfAθΛ2 ; a sketch of a typical Λ2-eigenmode (m = 3) appears in figure ??(d). From

(2.74), and similar to the case of the Λ1-modes, the singular structure again disappears for

M = 0 - the dispersion relation for the Kelvin modes. The amplitude, AθΛ2 , also diverges at

the zeros of Km(krf )N − Im(krf )M with the zeroes and divergences of AθΛ2 interlacing each

other as shown in figure 2.5. The singularities again imply a quiescent exterior (r > rf ) as the

singular structure at these radii screens the perturbation velocity field induced by the column

oscillations. An analogy with a bounded domain problem is, however, not evident owing to the

axial jet riding on the vessel walls. Finally, the vorticity field associated with a Λ2-eigenmode is
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Figure 2.5: (a)The amplitude of the vortex sheet for Λ2 family, AθΛ2 , as a function of rf , for
m = 2 and k = 2; the figure on the right (b) offers a magnified view of the rapid variation
near the core of the amplitudes of the singular structures for the Λ2 (dashed) family and its
comparison with its Λ1 (continuous) counterpart. The amplitudes A1 and AθΛ2 evidently have
coincident zeros (which correspond to the Kelvin radii) but distinct singularities.
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given by

ŵΛ2
z (r; rf ) = −2dgΩ0β

2Jm(βr)

k{g2 − 4Ω2
0}

H(a− r) + [ûθ]
r=a+

r=a− δ(r − a), (2.75)

ŵΛ2
r (r; rf ) = − 2idΩ0

r{g2 − 4Ω2
0}
[

gβrJ ′
m(βr) + 2mΩ0Jm(βr)

]

H(a− r)− imAθΛ2δ(r − rf ),

(2.76)

ŵΛ2
θ (r; rf ) =

2dΩ0

r{g2 − 4Ω2
0}
[

2Ω0βrJ
′
m(βr) +mgJm(βr)

]

H(a− r) + rfAθΛ2δ
′(r − rf ),

(2.77)

where [ûθ]
r=a+

r=a− =
m

ka
[c1Im(ka)+c2Km(ka)]− dg

ka{g2 − 4Ω2
0}
[

2Ω0βaJ
′
m(βa)+mgJm(βa)

]

,

(2.78)

and c1, c2 and d being given by (2.71)-(2.73).

As shown in figure 2.5(b), in light of the Λ1 and Λ2 families, the Kelvin mode frequencies

and the corresponding eigenfunctions ((2.41)-(2.43)) may now be regarded as degenerate in that

they correspond to the zeroes of both A1(rf ) and AθΛ2(rf ).

The modal decomposition for an arbitrary vortical initial condition

For a fixed m (6= 0) and k, an arbitrary smooth initial distribution of vorticity of the form

w(x, 0) = [wr0(r), wθ0(r),
i

(kr)(imwθ0(r) + (rwr0(r))
′)]ei(kz+mθ) now evolves as the following

superposition of the Kelvin modes, and the Λ1 and Λ2 families:

w(x, t) =

ˆ ∞

a+

[

XΛ1(rf )ŵ
Λ1(r; rf )+XΛ2(rf )ŵ

Λ2(r; rf )
]

ei[kz+m(θ−Ω(rf )t)]drf

+

{

∑

b=±1

∞
∑

n=1

(Cnb −Anb)ŵ
Kelvin
nb (r)e−iωnt

}

ei(kz+mθ), (2.79)

where

XΛ1(rf ) =
rf
A1

[

wθ0(rf )H(rf − a)− i

m
(rfwr0(rf )H(rf − a))′

]

, (2.80)

XΛ2(rf ) =
i

m

wr0(rf )H(rf − a)

AθΛ2

, (2.81)

and ŵKelvin
nb , ŵΛ1 and ŵΛ2 are known from (2.41)-(2.43), (2.62)-(2.64) and (2.75)-(2.77), re-

spectively. The ωn’s in (2.79) are the Kelvin mode frequencies obtained from (2.40), and the

Cnb’s and Anb’s denote the corresponding modal amplitudes. The expression (2.79) may be

arrived at by examining the modal superposition at t = 0. The latter is obtained by first de-

termining the superposition of Λ2-eigenmodes needed to represent the initial radial vorticity

in r > a; the required amplitude distribution is given by (3.58). The difference between the

initial and Λ2-azimuthal vorticities, for r > a, may then be represented by a superposition

of Λ1-eigenmodes (the axial component is automatically determined from the solenoidal con-

straint) with the amplitude distribution being given by (2.80). This superposition of Λ1 and

Λ2-eigenmodes now accounts for the entire initial vorticity outside the core. What remains is



2.2 Inviscid normal mode analysis for a Rankine vortex 31

the initial vorticity inside the core (and a possible axial vortex sheet at its edge) and the addi-

tional core and edge vorticities generated by the Λi-superposition. Using the results of Arendt

et al (1997), both these contributions may be expressed as a summation over Kelvin modes. The

required Kelvin-mode amplitude distributions are

Cnb (Anb) =

[

gC(A)(a)J
′
m(kξna)

kξnaJm(kξna)
− a

g′C(A)(a)

(kξna)2
+ PC(A)

]

Bb
n, (2.82)

where

Bb
n =

2ξ2nbiΩ0

(ξ2n + 1)3/2

[

2J ′
m(kξna)

kξnaJm(kξna)
+

{

J ′
m(kξna)

Jm(kξna)

}2

+ 1− m2

(kξna)2
+

bm(ξ2n + 2)
√

ξ2n + 1(kξna)2

]−1

,

(2.83)

PC(A) =
1

k2a

{

2Ω0w
core
rC(A)(a) + i(ωn −mΩ0)w

core
θC(A)(a)

(ωn −mΩ0)2 − 4Ω2
0

}

, (2.84)

gC(A)(a) =

ˆ a

0

πr′

2

[

2Ω0ik

(ωn −mΩ0)2
wcore
zC(A) −

i

ωn −mΩ0

{

d

dr′
(r′wcore

θC(A))− imwcore
rC(A)

}]

,

{

Ym(kξna)Jm(kξnr
′)− Jm(kξna)Ym(kξnr

′)
}

dr′ (2.85)

ξn =
4Ω2

0

g2n
− 1, gn = (mΩ0 − ωn) (2.86)

Equation 2.82 could also be written in the following simplified manner,

Cnb (Anb) = − Bb
n

g2n(βna)
2

[
ˆ a

0

{

2Ω0ikr
′wcore

zC(A) + ign

{

d

dr′
(r′wcore

θC(A))−

imwcore
rC(A)

}} Jm(kξnr
′)

Jm(kξna)
dr′ + a

{

wcore
rC(A)(a)− ignw

core
θC(A)(a)

}

]

(2.87)

Here, wcore
C (x, t) is the initial vorticity in the core viz. (wcore

rC (r), wcore
θC (r) ≡ (wr0(r), wθ0(r))H(a−

r)ei(kz+mθ), and wcore
A (x, t) is the core projection of the Λi-modes given by

wcore
rA (r) =

ˆ ∞

a+
XΛ2(rf )ŵ

Λ2
r (r; rf )drf H(a− r), (2.88)

wcore
θA (r) =

ˆ ∞

a+

[

XΛ1(rf )w
Λ1
θ (r; rf )+XΛ2(rf )w

Λ2
θ (r; rf )

]

drf H(a− r). (2.89)

The expressions (3.60) and (2.86) suggest singularities at the frequency values ω = mΩ0 and

ω = (m ± 2)Ω0, corresponding to the limits k → 0 and k → ∞, respsectively, of the dispersion

curves. It may be shown that ω = (m ± 2)Ω0 are apparent singularities. The core angular

frequency (ω = mΩ0), although an essential singularity of the Bessel functions in (2.83), does

not contribute for any initial condition that lacks a singular wθ projection at the edge of the

core (∝ δ(r − a)).
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The modal superposition, (2.79), may be rewritten as:

w(x, t) =

ˆ ∞

a+

[

XΛ1(rf )ŵ
Λ1(r; rf )+XΛ2(rf )ŵ

Λ2(r; rf )
]

ei[kz+m(θ−Ω(rf )t)]drfH(r−a)+
{

∑

b=±1

∞
∑

n=1

Cnbŵ
Kelvin
nb (r)e−iωnt

−
ˆ ∞

a+

∑

b=±1

∞
∑

n=1

[

XΛ1(rf )G
Λ1
nb +XΛ2(rf )G

Λ2
nb

]

ŵKelvin
nb (r)(e−iωnt−e−imΩ(rf )t)drf

}

ei(kz+mθ),

(2.90)

with

GΛi
nb =

[

gi(a)J
′
m(kξna)

kξnaJm(kξna)
− a

g′i(a)

(kξna)2
+ Pi

]

Bb
n, (2.91)

where

Pi =
1

k2a

{

2Ω0w
Λi
r (a) + i(ωn −mΩ0)w

Λi
θ (a)

(ωn −mΩ0)2 − 4Ω2
0

}

, (2.92)

gi(a) =

ˆ a

0

πr′

2

[

2Ω0ik

(ωn −mΩ0)2
wΛi
z − i

ωn −mΩ0

{

d

dr′
(rwΛi

θ )− imwΛi
r

}]

{

Ym(kξna)Jm(kξnr
′)− Jm(kξna)Ym(kξnr

′)
}

dr′, (2.93)

and i = 1, 2. Using the expressions for CSMs (wΛi
r , wΛi

θ , w
Λi
z ) from equations (2.62)-(2.64) and

(2.75)-(2.77) one could simplify GΛi
nb as,

GΛi
nb =

dΛi

i(ωn −mΩ)

M

(ka)2Km(ka)

1

4Ω2
0 − g2

Bb
n (2.94)

where, M is defined in equation 2.60 (the Kelvin mode dispersion relation).

For any finite t, each of the Λi modes in the initial superposition is convected with the local

angular velocity Ω(rf ) in the irrotational exterior, leading to the first term in (3.58) that denotes

exterior vorticity. The evolution of the initial core vorticity is entirely characterized by the Kelvin

modes, leading to the second term in (3.58). Finally, the third term accounts for the de-phasing

between the core projection of the Λi eigenmodes, that is convected with Ω(rf ), and the Kelvin-

mode contributions, characterized by the ωn’s, that cancel out this core projection at the initial

instant. The amplitude coefficients in this term, Anb, have a denumerably infinite sequence of

singularities of at ω = ωn corresponding to the zeroes of A1 and AθΛ2. These singularities are the

signatures of the secular growth that would occur for singular initial conditions localized at the

Kelvin critical radii, and as in the two-dimensional case, may again be interpreted as resonances

between the point and continuous spectra. For helical vortex sheet-type initial conditions,

localized at one or more Kelvin radii, resonant interactions between the advected sheet and

the corresponding Kelvin mode (s) lead to a quadratic growth in the kinetic energy. In three

dimensions, one may also have a localized initial radial vorticity field, in which case there is a

further enhancement due to the tilting and stretching of the initial radial vorticity field by the

shear in the irrotational exterior. A resonant interaction arises now between a Kelvin mode and

a co-rotating exterior azimuthal vorticity field that grows linearly with time, and the resulting
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kinetic energy grows quartically with time (chapter 3).

For a point vortex, the spectrum is purely continuous, being made up of the Λ1 and Λ2

families, and only the first term in (3.58) remains. Redefining the CS-mode eigenfunctions as

w̃Λ1 ≡ (0,−krf δ(r−rf ),mδ(r−rf )) and w̃Λ2 ≡ (−imkrf δ(r−rf ), kr2f δ′(r−rf ), 0), an arbitrary

initial condition evolves as the following integral superposition of these convected modes:

w(x, t) =

ˆ ∞

0
{XΛ1(rf )ŵΛ1(r; rf ) +XΛ2(rf )ŵΛ2(r; rf )} ei[kz+m(θ−Ω(rf )t)]drf , (2.95)

where XΛ1(rf ) = − 1

krf

(

wθ0(rf )−
i

m

d

drf
(rwr0(rf ))

)

and XΛ2(rf ) =
i

m

wr0(rf )

krf
. For an initial

condition with wr0 = 0, the evolution is on account of differential convection, and (2.95) reduces

to w(x, t) = w(x, 0)ei[kz+m(θ−Ω(r)t)]; with radial vorticity, an integration by parts of δ′(r − rf )

naturally accounts for the (non-modal) linear growth in wθ with t, and one obtains w(x, t) =

[wr0(r), wθ0(r)− 2Ω(r)twr0(r), wz0(r)]e
i[kz+m(θ−Ω(r)t)]. The equivalence of (2.95) to the solution

of the corresponding IVP is readily established, while that of (3.58) is shown in chapter 3.

The axisymmetric eigenmodes

As already pointed out, axisymmetric Kelvin modes are the eigenfunctions of an ordinary dif-

ferential equation that conforms to classical Sturm-Liouville theory (Ince [1956]) provided only

that the base-state vorticity is non-zero. However, the spatial separation of the regions of strain

and vorticity in the Rankine vortex means that the completeness of these oscillatory modes only

extends to axisymmetric column deformations. Radial-vorticity in the region r > a leads to

a non-modal (secular) response. This is immediate from the governing (linearized) equation for

wθ which, for axisymmetric perturbations outside the core, takes the form ∂wθ
∂t = (wrr)

∂Ω
∂r with

Ω(r) = Ω0
a2

r2
; so, an arbitrary wr(r) for r > a leads to wθ(r, t) ∝ t. Although the modal repre-

sentation in the earlier section, given by (2.79), was developed for a non-zero m, the evolution

of an arbitrary axisymmetric vorticity field at the initial instant may nevertheless be obtained

by taking the limit m→ 0 in (2.79).

For m = 0, the dispersion curves for positive and negative ω are symmetric about ω = 0,

there no longer being a structureless branch. Thus, we have ωn(b = −1) = −ωn(b = 1), B−1
n =

−B+1
n , ŵKelvin

r,n(−1)(r) = −ŵKelvin
r,n(+1)(r) and ŵKelvin

θ,n(−1)(r) = ŵKelvin
θ,n(+1)(r), and the modal superposition

may be expressed in terms of either family. We choose the cograde branch with ŵKelvin
r,n (r) ≡

ŵKelvin
r,n(+1)(r), ŵ

Kelvin
θ,n (r) ≡ ŵKelvin

θ,n(+1)(r) and Bn = B+1
n . The resulting radial and azimuthal vorticity
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components at time t are then given by

wr(x, t) = wr0(r)H(r − a)eikz + 2

∞
∑

n=1

Bn

ω2
n(βna)

2
ŵKelvin
r,n (r) {2Ω0 cos(ωnt)Fn1 − ωn sin(ωnt)Fn2} eikz

+2

∞
∑

n=1

Bn

ωn
ŵKelvin
r,n (r)eikz

{

sin(ωnt)

ˆ ∞

a

K0(kr
′)

(ka)2K0(ka)

d

dr′
[r′wθ0(r

′)]dr′+

cos(ωnt)−1

ωn

ˆ ∞

a

K0(kr
′)

(ka)2K0(ka)
2Ωwr0(r

′)dr′
}

,

wθ(x, t) = {wθ0(r)− 2Ωt wr0(r)}H(r − a)eikz − 2i

∞
∑

n=1

Bn

ω2
n(βna)

2
ŵKelvin
θ,n (r) {2Ω0 sin(ωnt)Fn1+

ωn cos(ωnt)Fn2} eikz + 2i

∞
∑

n=1

Bn

ωn
ŵKelvin
θ,n (r)eikz

{

(cos(ωnt)−1)

ˆ ∞

a

K0(kr
′)

(ka)2K0(ka)

d

dr′
[r′wθ0(r

′)]dr′+

(

t− sin(ωnt)

ωn

)
ˆ ∞

a

K0(kr
′)

(ka)2K0(ka)
2Ωwr0(r

′)dr′
}

,

(2.96)

where

Fn1 =

ˆ a

0
ikr′wz0(r

′)
J0(βnr

′)

J0(βna)
dr′ + awr0(a), (2.97)

Fn2 =

ˆ a

0

d

dr′
(

r′wθ0(r
′)
) J0(βnr

′)

J0(βna)
dr′ − awθ0(a), (2.98)

and the secular terms arise due to the initial radial vorticity. With wr0(r) = 0, wθ(x, t) reduces

to the following simpler form:

wθ(x, t) = wθ0(r)H(r − a)eikz − 2i
∞
∑

n=1

Bn

ωn(βna)2
ŵKelvin
θ,n (r) cos(ωnt)Fn2 e

ikz

+2i

∞
∑

n=1

B−1
n

ωn
ŵKelvin
θ,n (r)eikz (cos(ωnt)− 1)

ˆ ∞

a

K0(kr
′)

(ka)2K0(ka)

d

dr′
(

r′wθ0(r
′)
)

dr′, (2.99)

without algebraically growing terms. The response given by (2.99) may be divided into two com-

ponents - the term proportional to Cb
n denotes core-vorticity that evolves as a discrete summation

of sausaging modes; the term proportional to Bb
n, together with the first term, denote the re-

sponse to exterior azimuthal vorticity and involve both a superposition of sausaging modes and a

steady contribution. The unsteady part arises due to the vortex column deformation induced by

the exterior vorticity. Since this deformation is driven by ur|r=a =
´∞
a

d
dr′ [r

′wθ0(r
′)]K0(kr

′)dr′,

the restriction
´∞
a

d
dr′ [r

′wθ0(r
′)]K0(kr

′)dr′ = 0, Cb
n = 0, leads to an undeformed vortex column

with a quiescent core. The resulting steady vorticity field, wθ0(r)H(r− a)eikz, or the associated

velocity field given by uz = eikz
[

K0(kr)
´ r
aI0(kr

′) d
dr′ [r

′wθ0(r
′)] dr′+I0(kr)

´∞
rK0(kr

′) d
dr′ [r

′wθ0(r
′)] dr′

]

H(r−
a) may be regarded as the degenerate zero-frequency axisymmetric eigenmode.

There are a couple of points worth emphasizing here. The first is that transient growth

has been observed in numerical simulations for axisymmetric perturbations to a smooth (Lamb-

Oseen) vorticity profile (Pradeep & Hussain [2006]) which would appear to go against the notion

of such growth only being associated with non-normal differential operators with an underlying
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continuous spectrum (Trefethen et al. [1993],Schmid & Henningson [2001]). There is no contra-

diction, however. The self-adjointness of the differential operator for the axisymmetric case is

not in the energy norm, and the velocity eigenfunctions are by themselves not mutually orthog-

onal. Except for rigid-body rotationGreenspan [1968], the energy associated with any modal

superposition will therefore necessarily vary with time, albeit only in an oscillatory fashion in the

inviscid limit (there are quantities such as the pseudo-momentum and the pseudo energy that

are indeed time-invariant, and point to additional weighting functions that must be included in

an inner product in order to render the eigenfunctions orthogonal (Held [1985])). Physically, the

presence of a shear allows for an exchange of energy between the base-state and the perturbation,

via a Reynolds stress contribution, but this exchange averages out to zero over a time period of

oscillation for m = 0. For sufficiently slow oscillations, the short-time dynamics of the energy is

indistinguishable from transient growth, and is governed by the same physical mechanisms.

The response of a Rankine vortex to an axisymmetric perturbation is a singular limiting

case of a smooth profile. In the latter case, the perturbation vorticity field associated with the

eigenfunctions extends throughout the domain, allowing for an arbitrary axisymmetric vorticity

field to be expressed as a summation over sausaging modes alone. For a monotonically decaying

base-state vorticity profile, the radial length scale of a typical vorticity eigenfunction increases

with increasing r with a corresponding decrease in the eigenfunction amplitude. For sufficiently

large modal indices, the vorticity eigenfunction for a smooth vortex exhibits a rapid large-

amplitude oscillation in the near-field that transitions to a small-amplitude increasingly gentle

waviness in the distant nearly irrotational exterior. If one now considers an initial distribution of

radial vorticity localized in the irrotational region, the required modal superposition will involve

eigenfunctions with a projection in this region having a length-scale of the same order as that

characterizing the initial condition. The near-field projection of each of these eigenfunctions

has a much larger amplitude, and is also characterized by a much smaller radial length scale.

These near-field contributions from the different eigenfunctions involved in the superposition will

cancel out at the initial instant, but the gradual de-phasing with time would eventually lead to a

large-amplitude fine-scaled oscillatory core response (Pradeep & Hussain [2006]). The approach

to this large amplitude oscillation would be via a short-time transient wherein core perturbations

are driven by an exterior azimuthal vorticity field that grows linearly with time. The deviation

from this behavior due to the eventual decay of the source term (wr), on account of Coriolis

forces, would occur on a much longer time scale of the order of the inverse eigenfrequency. The

Rankine limit corresponds to the oscillation time period approaching infinity, leading to a true

algebraic growth.

The relation between the 2D and 3D eigenspectra

It is easily shown that a Λ1-mode, characterized by (2.62)-(2.64), approaches the corresponding

2D singular mode given by (2.18) for k → 0 and for a fixed ω (or rf ). On the other hand,

a Λ2-mode, characterized by (2.75)-(2.77), approaches an axial jet localized at the critical ra-

dius (uΛ2
z ∝ δ(r − rf );u

Λ2
r , uΛ2

θ → 0) in the same limit, and plays no role in the evolution of

an axial vorticity distribution. Of most relevance is the k → 0 limit along a fixed dispersion

curve (rather than with ω fixed). The approach of the structureless mode, in this limit, to the

2D Kelvin mode given by (2.19), is well documented (see Leibovich & Ma [1983],Saffman [1992]),
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and we consider only the structured modes with ωn → mΩ0 for k → 0. The frequency intervals

between the structured modes, corresponding to the CS-spectrum, become vanishingly small for

k → 0, and it suffices to examine the dispersion curves alone. Further, consideration of the

cograde family is sufficient since the βn’s for the co-grade and retro-grade families (excluding

the structureless branch, n = 1) equal each other in the limit k → 0, and the corresponding

eigenfunctions are no longer independent. The cograde eigenfunctions are given by (2.41)-(2.43).

The small k asymptotes for ωn of cograde modes are given as,

ωn =























2ka

j0n

[

1− (1− 2 log ka)
(ka)2

2j0 2n

]

+ . . . form = 0,

mΩ0 +Ω0
2ka

jmn

[

1− (m− 2)

m

(ka)2

2jm 2
n

]

+ . . . form 6= 0

, (2.100)

and the βn’s are readily obtained from (2.40) as:

lim
k→0

(βna) = jmn − (ka)2

mjmn
, (2.101)

for m 6= 0, where jmn is the nth zero of Jm. The use of (2.101) in (2.41)-(2.43) leads to the

following limiting expressions for the vorticity components associated with the cograde modes:

lim
k→0

ŵKelvin
z,n(−1) =

mjmn
a(ka)2

[

jmn Jm(jmn
r
a)

J ′
m(jmn )

+ a δ(r − a)

]

, (2.102)

lim
k→0

ŵKelvin
r,n(−1) = − im2jmn

(ka)2

[

Jm(jmn
r
a)

rJ ′
m(jmn )

]

, (2.103)

lim
k→0

ŵKelvin
θ,n(−1) =

mjmn
a(ka)2

[

jmn J
′
m(jmn

r
a)

J ′
m(jmn )

]

. (2.104)

The above vorticity field drives an O(1/k2) flow within the core. The normalization used in

the analysis is based on the exterior axial velocity field which therefore remains O(1) with the

exterior radial component being O(1/k). Thus, the exterior becomes increasingly quiescent

relative to the core for k → 0, suggesting a relation between the long-wavelength structured

modes and the 2D core-eigenmodes in section 2.2.1. Considering the general expression, (3.12),

for the latter, and expanding g( ra) as a Fourier-Bessel series, one obtains

ŵ core
z =

∞
∑

n=1

an

[

Jm(jmn
r

a
)− δ(r − a)

ˆ a

0

(

r′

a

)m+1

Jm(jmn
r′

a
)dr′

]

, (2.105)

where the an’s are the coefficients in the Fourier-Bessel expansion of g( ra), being defined as

an =
2

J2
m+1(j

m
n )

ˆ 1

0
xg(x)Jm(jmn x)dx. (2.106)
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Using the relation xm =
∑∞

p=1
2Jm(jmp x)

jmp Jm+1(jmp ) (see Watson [1927]),

ŵ core
z =

∞
∑

n=1

an



Jm(jmn
r

a
)− δ(r− a)

∞
∑

p=1

2

jmp Jm+1(jmp )

ˆ a

0

r′

a
Jm(jmn

r′

a
)Jm(jmp

r′

a
)dr′



 . (2.107)

Using the orthogonality of the Bessel functions, and that Jm+1(j
m
n ) = −J ′

m(jmn ), the above

expression simplifies to

ŵ core
z =

∞
∑

n=1

an

[

Jm

(

jmn
r

a

)

+
aJ ′

m(jmn )

jmn
δ(r − a)

]

, (2.108)

which may be rewritten as

ŵ core
z =

∞
∑

n=1

a′n lim
k→0

ŵKelvin
z,n(−1), (2.109)

with a′n = an
J ′

m(jmn )
m ( ka

jmn
)2. Thus, a linear superposition of the axial vorticity components of the

structured Kelvin modes, in the limit of vanishing axial wavenumber, maps onto the Fourier-

Bessel representation of the general core eigenmode given by (3.12). Note that the radial and

azimuthal vorticity components of the structured modes are of the same order as the axial

vorticity for k → 0 (see (2.102) and (2.103)), but drive a purely axial flow. Thus, the original 3D

velocity field splits into independent axial ([ŵz ; ûr, ûθ] and transverse ([ŵr, ŵθ; ûz]) components.

For an initial condition of the form ŵ(x, t) = ŵz0(r)δ(k)e
imθ1z, the use of the limiting forms of

the discrete and CS-modes discussed above in (2.79) leads to (2.21) as must be the case.

The main result obtained thus far is a modal interpretation of the initial value problem

involving a Rankine vortex. Such an interpretation leads to the expressions (2.21) and (2.79)-

(3.58) for vortical initial conditions in two and three dimensions, respectively. Herein, we show

the manner in which (2.79) reduces to (2.21) in the limit of a vanishing axial wavenumber.

Consider an initial vorticity field devoid of radial vorticity, w(x, 0) = [0,−kr
mwz0(r), wz0(r)]e

i(kz+mθ).

Thus we have XΛ1 = − kr2f
mA1

wz0(rf )H(rf − a),XΛ2 = 0. Now we would need to consider the

k → 0 of the arbitrary time expression for axial vorticity,

wz(x, t) =

ˆ ∞

a+
XΛ1(rf )ŵ

Λ1
z (r; rf )e

i[kz+m(θ−Ω(rf )t)]drfH(r−a)+
{

∑

b=±1

∞
∑

n=1

Cnbŵ
Kelvin
z,nb (r)e−iωnt

−
ˆ ∞

a+

∑

b=±1

∞
∑

n=1

XΛ1(rf )G
Λ1
nb ŵ

Kelvin
z,nb (r)(e−iωnt−e−imΩ(rf )t)drf

}

ei(kz+mθ), (2.110)

Further simplification could be obtained by using the expression for GΛ1
nb from (3.62) and Cnb
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from (2.87),

wz(x, t) = wz0(r)e
i[kz+m(θ−Ω(r)t)]H(r − a) +

[

−ika
∑

b=±1

∞
∑

n=1

Bb
n

g2n(βna)
2
ŵKelvin
z,nb (r)

ˆ a

0
wz0(rf )

(rf
a

)

{

2Ω0
Jm(βnrf )

Jm(βna)
+
gn
m

βnrfJ
′
m(βnrf )

Jm(βna)

}

drfe
−iωnt +

∑

b=±1

∞
∑

n=1

Bb
nŵ

Kelvin
z,nb (r)

ˆ ∞

a+

(rf
a

)2 K ′
m(krf )

Km(ka)

wz0(rf )

m

e−iωnt−e−imΩ(rf )t

i(ωn −mΩ(rf ))
drf

]

ei(kz+mθ),

(2.111)

The summations in the above expression can be split into two contributions - arising from

structureless branch (ωn → (m − 1)Ω0) or structured branch (ωn → mΩ0) as k → 0. To draw

analogies the 2d limit of the structureless branch will be labelled ωd. Table 2.1 highlights the

various k → 0 asymptotic forms for both the structureless and structured branches. Glossing

through the expressions in table 2.1 and the revisiting equation 2.111 reveals that in the second

summation only the structureless branch survives as k → 0 (the structured branches are )(k2)

weaker). On the contrary the first summation will have contributions from both structured and

structureless branches. The double summation for the structureless branches can be reduced to

a single summation by realizing that B−1
n = −B+1

n and ŵKelvin
z,n(−1)(r) = −ŵKelvin

z,n(+1)(r) ≡ ŵKelvin
z,n (r).

On substituting expressions from table 2.1 in (2.111) and considering k → 0 limit,

wz(x, t) = wz0(r)e
i[m(θ−Ω(r)t)]H(r − a) +

[

δ(r − a)e−iωdt

ˆ a

0
wz0(rf )

(rf
a

)m+1
drf+

2

∞
∑

n=1

1

m

(

ka

jmn

)2 ˆ a

0
wz0(rf )

rf
a

Jm
(

jmn
rf
a

)

J ′
m(jmn )

drf
mjmn
a(ka)2

{

jmn Jm(jmn
r
a)

J ′
m(jmn )

+ a δ(r − a)

}

e−imΩ0t

+ δ(r − a)

ˆ ∞

a+
Ω0

(

a

rf

)m−1

wz0(rf )
e−imΩ(rf )t − e−iωnt

(ωd −mΩ(rf ))
drf

]

eimθ,

= wz0(r)e
i[m(θ−Ω(r)t)]H(r − a) + ŵ core

z eim[θ−Ω0t] + δ(r − a)

[

e−iωdt

ˆ a

0
wz0(rf )

(rf
a

)m+1
drf+

ˆ ∞

a+
Ω0

(

a

rf

)m−1

wz0(rf )
e−imΩ(rf )t − e−iωdt

(ωd −mΩ(rf ))
drf

]

eimθ (2.112)

The reduction of the summation to ŵ core
z has been done using equation (2.108). Thus we have

obtained the 2d modal superposition result as given in (2.21).

The absence of a contribution from ω = mΩ0 in the spectrum associated with the evolving

core vorticity (see (2.79)), but its relevance to the evolution of a 2D axial vorticity distribu-

tion (the core-eigenmode contribution in (2.21)), highlights the non-trivial relation between the

2D and 3D eigenspectra.

2.3 The singular eigenspectrum of a smooth vortex

The analysis for the non-axisymmetric modes has so far been restricted to the Rankine vortex.

The natural question is as to how the results, including the modal representations (2.21) and
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Structureless (ωd) Structured (Cograde)

ωn (m− 1)Ω0 mΩ0 +Ω0
2ka

jmn

gn Ω0 −Ω0
2ka

jmn

ξn
√
3

jmn
ka

βna
√
3ka jmn − (ka)2

mjmn

Bb
n

iΩ0

2

(ka)2

m

−2iΩ0

m2

(ka)5

(jmn )3

ŵKelvin
z,n (r)

2m

ka
δ(r − a)

mjmn
a(ka)2

{

jmn Jm(jmn
r
a)

J ′
m(jmn )

+ a δ(r − a)

}

Table 2.1: k → 0 asymptotic forms of quantities related to Kelvin modes

(2.79), generalize to a smooth vorticity profile. For 2D perturbations, this is answered in section

2.3.1 below by adapting the analysis of Balmforth and Morrison (1995), developed originally for

homogeneous non-linear parallel flows, to the case of a vortex. The nature of the regular singular

point in the governing linearized equations for 2D perturbations remains the same in both cases,

with DZ for the vortex column playing the role of U ′′ in a parallel flow. The Frobenius indices

are integers (0 and 1), and one of the radial velocity eigenfunctions must, for non-zero DZ, have

a logarithmic branch point at the critical radius (rf ). As a result, the vorticity eigenfunctions of

the 2D CS-modes associated with a smooth vortex include both a delta-function singularity and a

non-local principal-value (PV) singularity, proportional to DZ, arising from the aforementioned

logarithmic term. This latter contribution is absent for a Rankine vortex since DZ is zero for

r > a.

The 3D spectrum of a smooth vortex bears an analogy to stratified parallel flows, and

one may indeed define a Richardson number associated with a perturbation of a given axial

wavenumber involving the local vorticity and vorticity gradient [Le Dizès [2004]; also, see sec-

tion 2.4]. Physically, the Coriolis forces in the case of a smooth vortex play the same role as

buoyancy forces in the stratified context. This analogy is exploited in section 2.4 where we de-

velop stratified flow configurations whose eigenspectra bear a direct analogy to those of Rankine

and smooth vortices. Here, in section 2.3.3, we focus on the structure of the smooth vortex

3D CS-modes in the vicinity of rf . The differences in the nature of the singularity in the 3D

vorticity eigenfunctions relative to those of a Rankine vortex (where both 2D and 3D vorticity

eigenfunctions have only localized generalized function singularities), and those for 2D pertur-

bations (where the vorticity eigenfunctions have an additional non-local PV-singular term), that

arise due to the singular point of the Howard-Gupta equation now having fractional Frobenius

exponents, are highlighted. In particular, it is shown, based on the known solution for stratified

Couette flow [Engevik [1971]], that the singular terms in the vorticity eigenfunctions of the 3D

CS-modes must be interpreted in the sense of a principal finite part [Gel’fand & Shilov [1964],

Lighthill [1958]]. This in turn implies that the forcing terms, localized at the critical radius,
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that must appear in the governing equation for the 3D CS-modes (that is identical in form to

the Taylor-Goldstein equation in the vicinity of rf ), are not the delta function and its deriva-

tive - as for the Rankine vortex (see equations (2.46) and (2.67) for the Λ1 and Λ2 families).

The forcing terms must, in fact, correspond to genuinely non-summable singularities, and are

therefore, not even generalized functions [Gel’fand & Shilov [1964]]; they may, symbolically, be

likened to the product of a delta function and an inverse algebraic power that depends on the

Frobenius exponent.

2.3.1 2D singular eigenspectrum

With (2.5) governing the evolution of 2D perturbations, the axial vorticity eigenfunction for the

CS-mode associated with a smooth vortex may be written as [Van Kampen [1955]]:

ŵCSM
z (r; rf ) = A1(rf )δ(r − rf )− P 1

r

DZ(r)ψ̂CSM(r; rf )

Ω(r)− Ω(rf )
, (2.113)

where the symbol P implies that the second term in (2.113), integrated over an interval that

includes rf , must be interpreted in the sense of a Cauchy principal value. Thus, the 2D CS-modes

associated with a smooth vortex have, in addition to a delta-function singularity, a non-local

PV-singular contribution proportional to DZ. This latter singularity arises because, for any

DZ however small, the azimuthal convection of ŵz becomes asymptotically weak, close to rf ,

compared to the radial convection of the base-state vorticity by ûr (∝ ψ̂). The PV-singular

contribution depends on the radial inhomogeneity of the base-state vorticity, and is therefore

absent for a Rankine vortex. Note that the perturbation streamfunction, ψ̂CSM , in (2.113)

satisfies

(

rD2 +D − m2

r

)

ψ̂CSM(r; rf ) = −rŵCSM
z (r; rf ). (2.114)

A normalization that is particularly convenient is one based on the total (axial) vorticity in a

CS-mode. As shown by Balmforth and Morrison (1995), with
´∞
0 ŵCSM

z (r′; rf )dr
′ = 1, (2.113)

takes the form

ŵCSM
z (r; rf ) =

{

1 + P
ˆ ∞

0

1

r′
DZ(r′)ψ̂CSM(r′; rf )

Ω(r′)− Ω(rf )
dr′
}

δ(r − rf )− P 1

r

DZ(r)ψ̂CSM(r; rf )

Ω(r)− Ω(rf )
.

(2.115)

The streamfunction ψ̂CSM then satisfies an inhomogeneous Fredholm integral equation of the

second kind (rather than a Cauchy integral equation with a PV-singular kernel), and is readily

obtained numerically. Using (??) and (2.115), it is easily shown that

ψ̂CSM(r; rf )−
ˆ ∞

0
M(r, r′; rf )ψ̂

CSM(r′; rf )dr
′ = −rfG(r; rf ), (2.116)
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where G(r; rf ) = − 1

2m

(

r<
r>

)m

, with r<(r>) denoting the smaller (larger) of r and rf , is the

Green’s function of (2.114), and the regularized kernel, M(r, r′; rf ), is given by

M(r, r′; rf ) =
DZ(r′)

r′

{

r′G(r; r′)− rfG(r; rf )
Ω(r′)− Ω(rf )

}

(2.117)

An artifact of the above normalization is that the CS-modes that are homogeneous solutions

of (2.116) must be handled separately (see Balmforth & Morrison [1995a] for details). Such

solutions are expected for smooth vortices, at least those that closely approximate the Rankine

profile, and correspond to the CS-mode having zero net axial vorticity in r ǫ [0,∞) for any θ.

For the Rankine vortex, this would be equivalent to the sum of the vortex sheet amplitudes at

r = a and r = rf being zero; using (2.16) and (2.18), this implies m(a/rf )
2 + (a/rf )

(m−1) =

(m − 1), which has a unique solution in (a,∞) for any m > 1. It must be emphasized that

the homogeneous solutions of the Fredholm equation are generic CS-modes and do not have

any particular physical significance. However, the homogeneous solutions of the original Cauchy

integral equation (that is, those with A1 = 0) correspond to singular free oscillations; this is in

contrast to the 2D Kelvin mode of the Rankine vortex. Such singular oscillations (one for each

m ≥ 2) are consistent with a non-linear critical layer at the particular rf , of a vanishingly small

thickness that supports a zero phase-jump across it, and are therefore the vortex-analogs of the

Benney-Bergeron-Davis modes for parallel flows [Benney & Bergeron [1969]].

2.3.2 The modal decomposition for an arbitrary distribution of

axial vorticity

The evolution of an initial axial vorticity distribution of the form wz0(r)e
imθ, as an integral

superposition of the 2D CS-modes (and the singular discrete mode), is given by:

wz(r, θ, t) =

ˆ ∞

0
Π(rf )ŵ

CSM
z (r; rf )e

im(θ−Ω(rf )t)drf , (2.118)

where the amplitude distribution of the CS-modes is given by

Π(rf ) =
1

(ǫ2R + ǫ2L)

{

ǫRwz0(rf )−
ǫL
π

Ω′(rf )

ψ̂CSM(rf ; rf )
P
ˆ ∞

0

wz0(r
′)ψ̂CSM(rf ; r

′)

Ω(r′)− Ω(rf )
dr′
}

;(2.119)

ǫR = 1 + P
ˆ ∞

0

1

r′
DZ(r′)ψ̂CSM(r′; rf )

Ω(r′)− Ω(rf )
dr′; ǫL = π

DZ(rf )ψ̂
CSM(rf ; rf )

rfΩ′(rf )
. (2.120)

The above modal representation is obtained from the solution of a Riemann-Hilbert problem in

the complex plane [Gakhov [1990]], and is the required extension of (2.21) to a smooth vorticity

profile. Note that the representation is only known in terms of the singular eigenfunctions, and

for a general smooth vorticity profile, the latter must be obtained from the numerical solution

of (2.116). The analysis leading to (2.118) closely follows that of Balmforth and Morrison (1995)

for parallel shearing flows, and is therefore relegated to appendix C.

As pointed out in the introduction, unlike the Rankine vortex, the large-t analysis of (2.118)

reveals an intermediate asymptotic regime, with an exponential decaying velocity perturbation
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associated with a quasi-mode, that precedes the eventual (and expected) algebraic decay for still

longer times arising from the de-phasing of the CS-mode superposition. For smooth vortices

approaching the Rankine profile, the decay rate (Landau damping) in this exponential regime is

well known (see, for instance, Briggs et al. [1970]; Schecter et al. [2000]) and may be obtained

from (2.118) by identifying the zeroes of ǫ2R + ǫ2L in the complex plane. The integration con-

tour (over r ǫ [0,∞)) in the PV-singular integral in (2.120) is now interpreted as passing below

the critical radius of the quasi-mode in the complex plane; regarding the contour as the real

axis would lead to no zeros for a monotonically decaying vorticity profile, consistent with the

Rayleigh criterion. Writing ǫ2R + ǫ2L = ǫ+ǫ− (see appendix C), with

ǫ± = 1 + P
ˆ ∞

0

1

r′
DZ(r′)ψ̂CSM(r′; r)

Ω(r′)− Ω(r)
dr′ ± πi

DZ(r)ψ̂CSM(r; r)

rΩ′(r)
, (2.121)

and anticipating a decaying mode, the zeroes must correspond to those of ǫ−. Further, assuming

the critical radius of the quasi-mode (rQ) to be close to the real axis with the real part being

rQr (rQr → rfk for DZ → −2Ω0δ(r − a)), one may write Ω(rQ) ≈ ΩrQr
− iΩi with Ωi ≪ ΩrQr

and rQi ≈ Ωi
Ω′(rfk)

. The relation ǫ−(rQ) = 0 takes the approximate form:

1 +

ˆ ∞

0

1

r′
DZ(r′)ψ̂CSM(r′; rQr)

Ω(r′)−Ω(rQr) + iΩi
dr′ − πi

DZ(r)ψ̂CSM(rQr; rQr)

rQrΩ′(rQr)
= 0, (2.122)

where, for non-zero Ωi, the integral does not need a PV-interpretation. Expanding for small Ωi,

one obtains

1 + P
ˆ ∞

0

1

r′
DZ(r′)ψ̂CSM(r′; rQr)

Ω(r′)− Ω(rQr)
dr′ ≈ 0, (2.123)

from the real part with the resulting rQr determining the angular frequency of the quasi-mode.

Using the approximate form, DZ ≈ −2Ω0δ(r − a), for a Rankine vortex, one obtains rQr = rfk

and ΩrQr
≈
(

m−1
m

)

Ω0. The imaginary part of (2.122) leads to

Ωi ≈
−πDZ(rQr)ψ̂

CSM(rQr; rQr)

rQrΩ′(rQr)
[

P
ˆ ∞

0

DZ(r′)Dψ̂CSM(r′; rQr)

r′Ω′(rQr)

1

(Ω(r′)− Ω(rQr))2
dr′ + Pf.

ˆ ∞

0

1

r′
DZ(r′)ψ̂CSM(r′; rQr)

(Ω(r′)− Ω(rQr))2
dr′
] ,

(2.124)

which characterizes the decay rate of the quasi-mode; here, Pf. denotes the principal finite

part of the singular integral. Again, using the expressions for DZ, ψ̂CSM and Dψ̂CSM for a

Rankine-profile, one obtains

Ωi ≈ − πa

4m2
DZ(rQr)

(

m− 1

m

)m− 3
2

. (2.125)

Although the expression for the damping rate originally given by Briggs et al (1970) is correct,

there appears to be an error in the expressions given in Balmforth and Morrison (1995) (the

analog of (2.125) for parallel flows), and in Le Dizès (2000) which has the exponent in (2.125)

as (m− 1) rather than (m− 3
2).
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2.3.3 3D singular eigenspectrum

The 3D eigenvalue problem for a smooth vorticity profile is, of course, analytically intractable,

and we therefore analyze the 3D smooth vortex CS-modes only in the vicinity of rf . This is the

region of interest since the Rankine vortex is a singular limit, and the approach of the vorticity

eigenfunctions of a smooth (Rankine-like) profile to the corresponding Rankine eigenfunctions

is therefore non-uniform; there always being an arbitrarily large difference between the two

sufficiently close to rc. The Howard-Gupta (HG) equation for ûr, rather than (2.28) for ûz, is

suited to such a local analysis, and is given by [Howard & Gupta [1962]]:

(

S

r
(rûr)

′
)′

− ûr +

(

SZ

r2

)′ mrûr
Σ

+
2k2SZΩ

Σ2
ûr = 0, (2.126)

with S =
r2

m2 + (kr)2
. For r close to rf , (2.126) reduces to

û′′r +
2k2Z(rf )Ω(rf )

[mΩ′(rf )]2
ûr

(r − rf )2
= 0. (2.127)

which is similar to the well-known Taylor-Goldstein (TG) equation that governs the inviscid

evolution of infinitesimal disturbances in stratified shear flows [Turner [1973]]. The TG equation

for stratified Couette flow, with U(y) ∝ y1x, is given by

(

d2

dy2
− k2

)

ûy +Ri
ûy

(y − yc)2
= 0, (2.128)

for the normal velocity component of a single Fourier mode of the form uy = ûy(y)e
ik(x−ct), with

yc being the critical level at which the wave speed (c) equals that of the shear flow. Here, Ri is

the Richardson number, a dimensionless measure of competing buoyancy and inertial forces (see

section 2.4). Notwithstanding the additional term proportional to k2uy which does not affect the

nature of the singular point (as characterized by the Frobenius exponents; see (2.129) below), the

similarity between (2.127) and (2.128) is evident. One may therefore define Riv =
2k2Z(rf )Ω(rf )

[mΩ′(rf )]2

as a local Richardson number for a smooth vortex [Le Dizès [2004]], and the singularity of the 3D

CS-modes must be analogous to those of the CS-modes in stratified shear flows. The solution

of (2.127) in the vicinity of rf may then be written in the general form:

ûr = A0|r−rf |
1
2
−ν{1 + α1(r−rf ) +O(r−rf )2}+B0|r−rf |

1
2
+ν{1 + β1(r−rf ) +O(r−rf )2},

(2.129)

where

A0 =A
−
0 H(rf − r) +A+

0 H(r − rf ), B0 = B−
0 H(rf − r) +B+

0 H(r − rf ), (2.130)

and ν =
√

1
4 − Riv; the series coefficients αi and βi in (2.129) may be determined in the usual

manner. From (2.129), we see that, for any finite Riv(rf ) however small, the constraining effects

of Coriolis forces cause the radial velocity associated with any 3D singular mode to approach
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zero at the critical radius. An appropriate choice of the constants A±
0 and B±

0 in (2.130) should

lead to the analog of the Λ1 and Λ2 CS-mode families. Since the Frobenius exponents (12 + ν)

and (12 − ν) approach 1 and 0 in the Rankine limit (Riv → 0 due to Z → 0 with k and rf fixed),

the radial velocity eigenfunctions corresponding to the Λ1 and Λ2 families, for r close to rf , are

given by:

ûΛ1
r (r; rf ) =A0|r − rf |

1
2
−ν +B−

0 |r − rf |
1
2
+ν r < rf , (2.131)

=A0|r − rf |
1
2
−ν +B+

0 |r − rf |
1
2
+ν r > rf ,

ûΛ2
r (r; rf ) =A

−
0 |r − rf |

1
2
−ν +B0|r − rf |

1
2
+ν r < rf , (2.132)

=A+
0 |r − rf |

1
2
−ν −B0|r − rf |

1
2
+ν r > rf .

The connection with the Λi-families of the Rankine vortex may be seen by expanding the

Frobenius forms above for small Riv [Maslowe & Nigam [2008]], whence one obtains the cor-

responding forms for the homogeneous case except in a region of O(e−
1

Riv ) around rf wherein

the expansion breaks down. Consistent with the Rankine analysis in section 2.2.2, this outer

solution has an apparent kink at r = rf for the choice of constants (A−
0 = A+

0 = A0) in

(2.131) and an apparent step-discontinuity for the choice (B−
0 = −B+

0 = B0) in (2.132). Us-

ing ûθ = ik2S
(

−Z
Σur +

m
(kr)2

(rur)
′
)

, and the continuity equation, one obtains the remaining

velocity components as:

ûΛi
θ (r; rf )=R

Λi
1 |r−rf |−

1
2
−ν+RΛi

2 |r−rf |−
1
2
+ν+RΛi

3 |r−rf |
1
2
−ν+RΛi

4 |r−rf |
1
2
+ν+RΛi

5 |r−rf |
3
2
−ν+O(|r−rf |

3
2
+ν),

(2.133)

ûΛi
z (r; rf )=Q

Λi
1 |r−rf |−

1
2
−ν+QΛi

2 |r−rf |−
1
2
+ν+QΛi

3 |r−rf |
1
2
−ν+QΛi

4 |r−rf |
1
2
+ν+QΛi

5 |r−rf |
3
2
−ν+O(|r−rf |

3
2
+ν),

(2.134)

where the coefficients RΛi
1 −RΛi

5 , QΛi
1 −QΛi

5 are listed in appendix B. In obtaining (2.133) and

(2.134), we have used that |x|αδ(x) = 0 for any α > 0. Strictly speaking, the product of the two

generalized functions |x|α and δ(x) is not a generalized function, and thus, xαδ(x), for fractional

α cannot be regarded as a generalized zero; the interpretation needed is discussed below after

the expressions for the vorticity eigenfunctions.

Given the local forms (2.131)-(2.134) for the Λ1 and Λ2 families, it is now of interest to

determine the singular forcing that must appear in the HG equation in each case. Note that,

in doing so, we are proceeding for the smooth vortex in a manner opposite to that for the

Rankine vortex. This is because the nature of the singular structures in the the latter case,

a vortex-sheet for the Λ1 family (see (2.46) in section 6.3.1) and a localized axial jet for the

Λ2 family (see (2.67) in section 6.3.2), was clear from physical considerations associated with a

shape-preserving inviscid normal mode; from the mathematical standpoint, the required singular

forcings were the usual generalized functions. In contrast, a vortex-sheet (or any derivative

singular structures thereof) cannot constitute the singular forcing for a smooth vortex since

such a structure leads to a non-zero radial velocity at rf , and is thereby inconsistent with the

aforementioned Frobenius forms. To arrive at the singular forcing for a smooth vortex CS-mode,

we first note that the dominant contribution to the axial vorticity eigenfunction, for r close to rf ,
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is proportional to d2ûr
dr2 , implying that the vorticity eigenfunctions associated with the Λ1 or Λ2-

analogs of a smooth vortex are, on one hand, non-local due to the distributed ‘baroclinic’ source

of vorticity, and on the other hand, have a non-integrable singularity at rf . A non-integrable

singularity at the critical radius is, however, inconsistent with the requirements of a modal

superposition which involves an integration over the CS-spectrum, with appropriately weighted

amplitudes, over the entire domain. It was first shown by Engevik (1971), in the context of

Couette flow with a uniform (stable) stratification, that a sensible modal superposition emerges

only when the divergent integrals involving the vorticity eigenfunctions are interpreted in the

sense of a principal-finite-part (Pf.)[Gel’fand & Shilov [1964]]. Based on the local analogy with

the stratified flow CS-modes, the CS-modes, given by (2.131) and (2.132), must therefore be

regarded as generalized functions requiring a Pf. interpretation; the Pf. interpretation also

implies that the singular forcing cannot be a generalized function. The vorticity eigenfunctions

corresponding to (2.131) and (2.132) may now be written as:

ŵΛ1
z (r; rf ) = Pf.

iSfm

rf

(

B−
0 +B+

0

2

)

(ν − 1

2
)|r − rf |−( 3

2
−ν) + . . . ,

(2.135)

ŵΛ1
r (r; rf ) = −Pf.

mA0

krf
(ν − 1

2
) sgn(r − rf )|r − rf |(

1
2
+ν) + . . . , (2.136)

ŵΛ1
θ (r; rf ) = Pf. ikSf

(

B−
0 +B+

0

2

)

(
1

2
− ν)|r − rf |−( 3

2
−ν) + . . . , (2.137)

and

ŵΛ2
z (r; rf ) = Pf.

imSf
2rf

(

A−
0 −A+

0

2

)(

α1 +
1

rf

)

(ν − 1

2
)
{

|r − rf |−( 3
2
−ν) + |r − rf |−( 1

2
+ν)
}

+ . . . ,(2.138)

ŵΛ2
r (r; rf ) = Pf.

m

krf

(

A−
0 −A+

0

2

)

(
1

2
− ν)|r − rf |−( 1

2
+ν) + . . . , (2.139)

ŵΛ2
θ (r; rf ) = −Pf.

i

k

(

A−
0 −A+

0

2

)

(
1

2
− ν) sgn(r − rf )|r − rf |−( 3

2
+ν) + . . . , (2.140)

where we have only included the most singular contributions. From generalized function the-

ory [Lighthill [1958], Gel’fand & Shilov [1964]], it is known that,

lim
λ→−2k−1

|x|λ
Γ
(

λ+1
2

) =
(−1)kk!

(2k)!
δ(2k)(x), (2.141)

lim
λ→−2k

|x|λsgn(x)
Γ
(

λ+2
2

) =
(−1)k(k − 1)!

(2k − 1)!
δ(2k−1)(x), (2.142)

and zero otherwise. Using this, one obtains from (2.135)-(2.137), limν→ 1
2
ŵΛ1
z = iScm(B−

0 +

B+
0 )/rf δ(r − rf ), limν→ 1

2
ŵΛ1
θ = −ikSc(B−

0 +B+
0 )δ(r − rf ), limν→ 1

2
ŵΛ1
r = 0; and from (2.138)-

(2.140), limν→ 1
2
ŵΛ2
z = 0 ,limν→ 1

2
ŵΛ2
r = m/(krf )(A

−
0 − A+

0 )δ(r − rf ), limν→ 1
2
ŵΛ2
θ = i/k(A−

0 −
A+

0 )δ
′(r− rf ); all regular contributions, not explicitly included in (2.135)-(2.140), vanish in this

limit. This then ensures consistency with the singular form of the Rankine CS-modes in the

irrotational exterior.

The nature of the singular forcing leading to the 3D smooth vortex CS-modes is an issue
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that needs clarification. For shearing flows, the discrete spectrum is almost always finite [Drazin

& Reid [1981]], and it is thus routinely mentioned (for instance, see Maslowe [1986]) that the

additional CS-modes, needed for purposes of completeness, arise from including generalized

function forcings in the governing equation for linearized perturbations. This is true only for

homogeneous shearing flows, and for the 2D modes in the vortex case as seen in section 2.2.1;

here, the forcings are indeed proportional to the delta function and/or its derivatives. The

Pf. interpretation needed for the stratified flow and the 3D smooth vortex CS-modes implies

that the underlying singular forcing is no longer a generalized function. This may be seen from

(2.127) wherein such a forcing is the residue that needs to be subtracted from the baroclinic

source term to remove the non-integrable singularity in the vorticity field. Loosely speaking,

the Pf. interpretation implies that the source term in (2.127) not be Riv
ur

(r−rf )2
, but instead be

Riv[
ur

(r−rf )2
− F1

δ(r−rf )

(r−rf )
1
2+ν

− F2
δ(r−rf )

(r−rf )
1
2+ν

], with the Fi’s being related to the coefficients of the

Frobenius forms in ur. In turn, this points to a forced HG equation that, for r close to rf , takes

the form

û′′r +
2k2Z(rf )Ω(rf )

[mΩ′(rf )]2
ûr

(r − rf )2
= Riv

[

F1
δ(r − rf )

(r − rf )
1
2
−ν

+ F2
δ(r − rf )

(r − rf )
1
2
+ν

]

. (2.143)

Now, the mathematical theory constructs a linear space of generalized functions, and within

this framework, the product of an infinitely differentiable function with a generalized function is

allowed, but the product of two generalized functions does not in general have an unambiguous

interpretation [Gel’fand & Shilov [1964]]; in other words, the terms proportional to δ(r − rf )

on the RHS in (2.143) are not generalized functions for non-integral 1
2 ± ν. In the Rankine

limit (Riv → 0, ν → 1
2), however, the non-generalized function forcings become vanishingly

small while the baroclinic source term on the LHS reduces to the generalized function forcing

that led to the Λ1 and Λ2 families in sections 6.3.1 and 6.3.2. The crucial difference in the

nature of the singular forcing terms between the Rankine and smooth vortex CS-modes, at least

as far as their mathematical interpretation is concerned, is often not recognized. It does not find

explicit mention in the early work on the CS-spectrum of stratified Couette flow (see Eliassen

et al. [1953]; Engevik [1971]), and there have been cases where the forcings have been erroneously

taken to be similar to those for the homogeneous case - Case (1960b), in extending his analysis

from the homogeneous case to the stratified scenario, writes down the TG equation forced with

a delta function and its derivative.

The nature of the singular forcing is also relevant from the standpoint of an initial value

problem. The singular forcing in the governing equation for linearized perturbations is the

initial impulsive forcing that recovers an isolated CS-mode for long times. A weaker forcing will

lead to a long-time algebraic decay, while a stronger forcing will lead to secular growth (even in

the absence of a resonant interaction). Physically, the presence of the singular forcing implies

that a CS-mode is associated with perturbation vorticity generated by an ’extraneous’ force

distribution; here, extraneous refers to mechanisms outside of the physics already included in

the governing equations. For instance, in homogeneous flows, the (regular) discrete modes arise

from a rearrangement of the base-state vorticity while the CS-modes require the generation of a

vortex sheet via a baroclinic force distribution proportional to a delta function. For Couette flow,
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an initial gradient-directed impulsive forcing of the form δ(y−yc)eikx generates precisely a single

CS-mode with ω = kyc. For a non-linear flow profile, such a forcing leads to an isolated CS-mode

but only for long times; since the forcing only generates the vortex-sheet contribution and not

the PV-singular contribution of a single CS-mode, the finite-time response is a polychromatic

one involving the entire CS-spectrum [Kelbert & Sazonov [1996]]. For the Rankine vortex, a

localized forcing of the form δ(r − rf )e
i(mθ+kz) must similarly lead to the corresponding (2D

or 3D)CS-mode, together with a superposition of Kelvin modes, when rf does not coincide

with any of the Kelvin-mode critical radii. For stratified shear flows, however, a delta-function

extraneous forcing is weaker than the non-generalized function forcings, associated with the Pf.

interpretation, and that appear in (2.143). Thus, one expects a non-modal response for long

times characterized by an algebraic decay (∝ t−( 1
2
±ν)), the associated exponents being precisely

those appearing in the denominators of the RHS terms in (2.143). This has been shown for

the case of Couette flow with a uniform stratification (Brown & Stewartson [1980], Booker &

Bretherton [1967]), and a similar scenario must hold for a smooth vortex in three dimensions.

Finally, regarding the singular forcings in the Rayleigh and TG equations (and their vortex

analogs) as resulting in the limit of a vanishing viscosity for the homogeneous case, and in

the limit of both vanishing viscosity and (mass or thermal) diffusivity for the stratified case,

it also follows that the homogeneous critical layer solution (Stewartson 1981) must approach a

generalized function forcing in the limit Re → ∞, but that the analogous critical layer solution in

the stratified case must not exhibit this property in the limit Re, P r−1 → ∞ (Pr is the Prandtl

number and denotes the ratio of the relevant diffusivities).

2.3.4 The modal decomposition for an arbitrary vortical initial

condition

Having examined the local structure of the 3D CS-modes, we clarify the manner in which

the modal superposition for a smooth vorticity profile, corresponding to an evolving (arbi-

trary) three-dimensional distribution of perturbation vorticity, would approach that obtained

in section 2.2.2 for the Rankine vortex. The clarification must necessarily be an indirect one

since analytical forms for the eigenmodes associated with a smooth vorticity profile do not exist.

The non-trivial aspect in the comparison between the Rankine vortex and smooth Rankine-like

profiles concerns the crucial difference in the singularities of the 3D CS-modes, and the relation

betwen the two modal superpositions may therefore be illustrated by considering the respec-

tive parallel flow analogies with the CS-modes having the same singularities as in the vortex

case. The Rankine vortex would then correspond to homogeneous Couette flow, the analyti-

cally tractable analog of a smooth vortex with vorticity that monotonically decays with radial

distance would be a Couette flow with a uniform stable stratification, and the approach to the

Rankine limit involves making the stratification vanishingly small.

The modal superpositions in the parallel flow analogies evolve an arbitrary initial distri-

bution of vorticity and density perturbations. The azimuthal vorticity (wθ) in the vortex case

corresponds to the vorticity in stratified flow (wz being the only non-zero component for the

two-dimensional perturbations considered), and the radial vorticity (wr) in the vortex case cor-
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responds to the density perturbation (ρ′) in the stratified flow problem; the remaining pertur-

bation fields being determined from solenoidal constraints. Assuming U(y) ∝ y and ρ0(y) to

characterize the unperturbed stratified flow, the correspondence, (wθ, wr) ↔ (wz, ρ
′), may be

seen from the governing equations in the respective cases, which in the inviscid non-diffusive

limit, are given by:

(

∂

∂t
+Ω(r)

∂

∂θ

)

wθ = Z
∂uθ
∂z

+ [rΩ′(r)]wr, (2.144)

(

∂

∂t
+Ω(r)

∂

∂θ

)

wr = Z
∂ur
∂z

, (2.145)

(

∂

∂t
+ U(y)

∂

∂x

)

wz = −g∂ρ
′

∂x
, (2.146)

(

∂

∂t
+ U(y)

∂

∂x

)

ρ′ = −dρ0
dy

uy. (2.147)

The wr and ρ′ perturbations are seen to arise from a balance between the convection and

induction terms (the latter being proportional to the base-state vorticity in (2.145) and to the

density gradient in (2.147)). These perturbations then act as source terms for wθ and wz,

respectively, via (2.144) and (2.146). The changes in wθ and wz couple back to (2.145) and

(2.147) via ur and uy, and the overall effect is that of buoyancy forces resisting the deformation

of the iso-pycnic lines in the same manner that the Coriolis forces resist the generation of radial

vorticity by endowing the (axial) vortex lines in the base-state with a certain stiffness. For

homogeneous Couette flow, ρ0 is a constant, and for the Rankine vortex, Z = 0 (the irrotational

exterior being the region of interest for CS-modes), so ρ′ and wr are merely advected by the

base-flow. The correspondence is not an exact one since there exists an additional source term

for wθ in the vortex case. But, the contribution form this term becomes asymptotically small in

the Rankine limit (Z → 0); if one were to neglect this contribution in (2.144), then the resulting

equation for ur would involve a Richardson number that differs from Riv in (2.128) only by

O(Z2).

We now examine the manner in which the modal superposition for stratified Couette flow

involving singular Pf. eigenfunctions, originally obtained by Engevik (1971), reduces to the sim-

pler more familiar form, involving delta functions, for homogeneous Couette flow in the limit of

a vanishingly small stratification. The equations (2.146) and (2.147), rewritten in terms of the

streamfunction ψ and ρ′, are given by

(∂t + y∂x)∇2ψ = − 1

Fr2
∂xρ

′, (2.148)

(∂t + y∂x) ρ
′ =

(

N

N0

)2

∂xψ, (2.149)

in dimensionless form with ∇2 ≡ ∂2

∂x2 + ∂2

∂y2
. The parameter Fr= U0/(N0L)

1
2 in (2.148) is a

reference Froude number with (U0/L) being a characteristic scale for the base-state velocity

gradient. The ratio N/N0 in (2.149) is a dimensionless measure of the base-state stratification

with N2 = − g
ρm

dρ0
dy being the square of the (constant) Brunt-Väisälä frequency, N0 = ( gL)

1
2 being
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a reference frequency scale, and ρm being an appropriate mean density within the Boussinesq ap-

proximation. The separation of the single parameter, the Richardson number (Ri = ( N
N0

)2Fr−2)

in the TG equation that results from combining (2.148) and (2.149), into two parameters, one in

each of (2.148) and (2.149), allows for one to discriminate between the cases where Ri vanishes

due to the absence of gravity (N/N0 finite, Fr−1 → 0, leading to a de-coupling of the velocity

and density fields), and where Ri vanishes because of a homogeneous base-state (N/N0 → 0

with Fr finite). We are interested in the latter case since this allows for density perturbations

to persist and drive a flow even in a homogeneous base-state.

For homogeneous Couette flow (N/N0 = 0), assuming a normal mode form proportional to

eik(x−yct), one obtains from (2.148) and (2.149):

(y − yc)wz = − 1

Fr2
ρ′, (2.150)

(y − yc) ρ
′ = 0, (2.151)

where wz = (D2 − k2)ψ. The above system of equations supports two families of CS-modes.

The Case vortex-sheet modes with wz ∝ δ(y − yc) were discussed in section 2.2.1, and arise

from the homogeneous solution of (2.150); they are the analog of the Λ1 family for the Rankine

vortex. The analog of the Λ2 family are density sheets with a dipole singularity (wz ∝ δ′(y−yc))
corresponding to a tangential jet riding at the critical level. Thus,

(wΛ1
z , ρ′Λ1) = (δ(y − yc), 0), (2.152)

(wΛ2
z , ρ′Λ2) = (

1

Fr2
δ′(y − yc), δ(y − yc)). (2.153)

For a bounded domain, the arbitrary-time vorticity field may then be written as the following

modal superposition:

wz(y, t) =

ˆ 1

−1
XΛ1(yc)w

Λ1
z e−ikyctdyc +

ˆ 1

−1
XΛ2(yc)w

Λ2
z e−ikyctdyc, (2.154)

with XΛ1(yc) = wz0(yc)− 1
Fr2 ρ

′
0(yc) and XΛ2(yc) = ρ′0(yc). The superposition is easily found by

first finding the Λ2-superposition needed to represent the initial perturbation density field (ρ′0),

and then finding the necessary Λ1-superposition to account for the residual vorticity field.

For stratified Couette flow, the equations in normal-mode form are

(y − yc)wz = − 1

Fr2
ρ′, (2.155)

(y − yc) ρ
′ =

N2

N2
0

ψ. (2.156)

The TG equation obtained from combining the above pair of equations has linearly independent

solutions given by f(y) =
√

ik(y − yc)J−ν [ik(y− yc)] and g(y) =
√

ik(y − yc)Jν [ik(y− yc)] with
ν =

√

1/4 − Ri as before. For y → yc, these Bessel solutions reduce to the local Frobenius forms,

obtained from (2.128), and that are valid for a general Ri-profile. For a constant-Ri Couette

flow, the spectrum is purely continuous when 0 <Ri< 1/4 [Taylor [1931],Eliassen et al. [1953]]

and from the results of Engevik (1971), the arbitrary-time streamfunction may be written as the
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following integral superposition over Pf. singular eigenfunctions:

ψ(y, t) = Pf.

ˆ y

−1
A1(yc)Ψ(1− yc, y − yc)e

−ikyctdyc + Pf.

ˆ 1

y
A2(yc)Ψ(1 + yc, yc − y)e−ikyctdyc,

(2.157)

where A1(yc) and A2(yc) are given by

− 4ikA1(yc)f(1− yc)g(1 − yc) sin πν − 2ikA2(yc)∆(yc) = B1(yc) cot πν, (2.158)

2ikA1(yc)∆(yc)− 4ikA2(yc)f(1 + yc)g(1 + yc) sinπν = B2(yc) cot πν, (2.159)

with

B1(yc) = Pf.

ˆ 1

yc

{

wz0

y − yc
− Fr−1ρ′0

(y − yc)2

}

Ψ(1− yc, y − yc)dy, (2.160)

B2(yc) = Pf.

ˆ yc

−1

{

wz0

yc − y
+

Fr−1ρ′0
(yc − y)2

}

Ψ(1 + yc, yc − y)dy, (2.161)

∆(yc) = f(1 + yc)g(1 − yc)− f(1− yc)g(1 + yc). (2.162)

In (2.157), the singular CS-modes are the one-sided eigenfunctions originally defined by Eliassen

et al. (1953), and given by

Pf.Ψ(1− yc, y − yc) = Pf. {g(1− yc)f(y − yc)− f(1− yc)g(y − yc)} if yc < y, (2.163)

Pf.Ψ(1 + yc, yc − y) = Pf. {g(1 + yc)f(yc − y)− f(1 + yc)g(yc − y)} if yc > y. (2.164)

From (2.165), the modal superposition for wz may be written in the form

wz(y, t) = Pf.

ˆ y

−1
A1(yc)

Ψ(1− yc, y − yc)

(y − yc)2
e−ikyctdyc + Pf.

ˆ 1

y
A2(yc)

Ψ(1 + yc, yc − y)

(y − yc)2
e−ikyctdyc.

(2.165)

In order to show that (2.154) arises as the limiting form of (2.165) for (N/N0) → 0, it is

convenient to first consider the following linear combinations of the one-sided eigenfunctions

defined above:

ΨΛ1 = g(1 + yc)Ψ(1− yc, y − yc)H(y − yc) + g(1 − yc)Ψ(yc + 1, yc − y)H(yc − y) (2.166)

= cΛ1
1 f(|y − yc|)−

(

cΛ1
2 + cΛ1

3

2

)

g(|y − yc|)−
(

cΛ1
2 − cΛ1

3

2

)

g(|y − yc|)sgn(y − yc) (2.167)

ΨΛ2 = f(1 + yc)Ψ(1− yc, y − yc)H(y − yc)− f(1− yc)Ψ(yc + 1, yc − y)H(yc − y) (2.168)

= −cΛ2
1 g(|y − yc|)sgn(y − yc) +

(

cΛ2
2 − cΛ2

3

2

)

f(|y − yc|) +
(

cΛ2
2 + cΛ2

3

2

)

f(|y − yc|)sgn(y − yc)

(2.169)

where cΛ1
1 = g(1 + yc)g(1 − yc), c

Λ2
1 = f(1 + yc)f(1 − yc), c

Λ1
2 = cΛ2

3 = f(1 − yc)g(1 + yc) and

cΛ1
3 = cΛ2

2 = f(1+ yc)g(1− yc). As evident from the notation, the linear combinations in (2.167)
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and (2.169) may be identified with the Λ1 and Λ2 analogs of a smooth vorticity profile; the

Frobenius forms in the vicinity of yc reduce to those defined in (2.131) and (2.132) for a smooth

vortex. As will be seen below, (2.167) and (2.169) reduce to the vortex-sheets and density-

sheets defined in (2.152) and (2.153) for N/N0 → 0. Using (2.167) and (2.169), (2.165) may be

rewritten as

wz(y, t) = −Pf.

ˆ 1

−1
{A1(yc)f(1− yc) +A2(yc)f(1 + yc)}

RiΨΛ1

(y − yc)2W (yc)
e−ikyctdyc

−Pf.

ˆ 1

−1
{A1(yc)g(1 − yc)−A2(yc)g(1 + yc)}

RiΨΛ2

(y − yc)2W (yc)
e−ikyctdyc

(2.170)

where W (yc) = f(1+ yc)g(1− yc)+ f(1− yc)g(1+ yc) with (2.160) and (2.161) now being given

by:

RiB1(yc) = Pf.

ˆ 1

−1

[

f(1− yc)

W (yc)

{

wy0
RiΨΛ1

|y − yc|
− Fr−1ρ0

RiΨΛ1

(y − yc)2

}

+

g(1 − yc)

W (yc)

{

wy0
RiΨΛ2

|y − yc|
− Fr−1ρ0

RiΨΛ2

(y − yc)2

}]

dy, (2.171)

RiB2(yc) = Pf.

ˆ 1

−1

[

f(1 + yc)

W (yc)

{

wy0
RiΨΛ1

|y − yc|
+ Fr−1ρ0

RiΨΛ1

(y − yc)2

}

+

g(1 + yc)

W (yc)

{

wy0
RiΨΛ2

|y − yc|
+ Fr−1ρ0

RiΨΛ2

(y − yc)2

}]

dy, (2.172)

in terms of ΨΛ1 and ΨΛ2 .

In the limit (N/N0) → 0, ∆(yc) ∼ −2i sinh 2kyc
π

, W (yc) ∼ 2i sinh 2k

π
, and (2.158) and

(2.159) reduce to:

B1(yc)πRi ∼ 4k

π
{A1(yc) sinh 2k(1 − yc)−A2(yc) sinh 2kyc} , (2.173)

B2(yc)πRi ∼ 4k

π
{A1(yc) sinh 2kyc +A2(yc) sinh 2k(1 + yc)} . (2.174)

Further, only the limiting forms of f and g for y close to yc, given by f(z) ∼ 2
1
2−ǫ(ikz)ǫ

Γ( 1
2
+ǫ)

and

g(z) ∼ 2−
1
2+ǫ(ikz)1−ǫ

Γ( 3
2
−ǫ)

, are needed in this limit, and from the theory of generalized functions, we

have

lim
N
N0

→0











































Ri
f(|y − yc|)
|y − yc|

(1, sgn(y − yc))

Ri
f(|y − yc|)
|y − yc|2

(1, sgn(y − yc))

Ri
g(|y − yc|)
|y − yc|

(1, sgn(y − yc))

Ri
g(|y − yc|)
|y − yc|2

(1, sgn(y − yc))

=







































2

√

2

π
(δ(y − yc), 0)

−2

√

2

π
(0, δ′(y − yc))

0

−2ik

√

2

π
(δ(y − yc), 0)

(2.175)
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This leads to the corrected expressions for the vorticity eigenfunctions in the unstratified limit:

lim
N
N0

→0
− RiΨΛ1

(y − yc)2
= k sinh 2k

(

2

π

)3/2

δ(y − yc), (2.176)

lim
N
N0

→0
− RiΨΛ2

(y − yc)2
= i sinh 2k

(

2

π

)3/2

δ′(y − yc). (2.177)

Substituting (2.175) in (2.171) and (2.172) leads to the following simplified expressions:

RiB1(yc) =
i

π

[

cosech 2k {cosh k(3 − yc)− cosh k(1 + yc)}(wy0(yc)− Fr−1ρ′(yc))−

2k cosh k(1− yc)Fr
−1ρ0(yc)

]

,

RiB2(yc) =
2i

π

[

sinh k(1 + yc)(wy0(yc)− Fr−1ρ′0(yc)) + k cosh k(1 + yc)Fr
−1ρ0(yc)

]

.(2.178)

Finally, on susbtituting the above expressions in (2.173) and (2.174), one finds

A1(yc)f(1− yc) +A2(yc)f(1 + yc) =
i

k

√

π

2
(wy0(yc)− Fr−1ρ′(yc)), (2.179)

A1(yc)g(1 − yc)−A2(yc)g(1 + yc) =

√

π

2
Fr−1ρ(yc), (2.180)

which, on substitution in (2.170) and use of (2.176) and (2.177) leads to (2.154).

Although the analysis shows the essential manner in which modal superposition for a smooth

vorticity profile approaches that of a Rankine vortex, the appeal to the stratified flow analogies

ends up ignoring the discrete spectra. Both Rankine and smooth vortices support a denumer-

able infinity of Kelvin modes (only co-grade ones in the latter case); in contrast, the spectrum

of homogeneous Couette flow is purely continuous [Case [1960]; Fadeev [1971]] and stratified

Couette flow again exhibits only a continuous spectrum when Ri < 1
4 [Taylor [1931]]. This is

not a fundamental constraint, however, and in section 2.4, we develop more elaborate stratified

flow analogies that mirror both the discrete and continuous spectra of vortical flows. The anal-

ysis above may readily be extended to these cases where the modal superpositions will include

additional summation terms over the discrete modes. Finally, in drawing the analogy between

a smooth vorticity profile and stratified Couette flow, we have neglected the effect of the curva-

ture of the velocity profile on the CS-spectrum. The additional induction term in the governing

equation does not alter the local Frobenius forms, and thence, the nature of the singular forcing

needed at the critical level.

2.4 A stratified flow analogy and the inviscid center-modes

There exists an analogy between parallel flows with stratification and rotational flows because

buoyancy forces in the former case arrest vertical motion in the same manner as Coriolis forces

arrest radial motion in the latter case. This analogy between the stiffening of the vortex lines

and isopycnic lines is a qualitative one [Yih [1980]] - as seen in section 2.3.3, the governing equa-

tions for the relevant velocity components reduce to a common form only in the vicinity of the

respective critical levels; an exact mathematical correspondence exists in two dimensions with
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the rotation and stratification axes being at right angles to each other [Broadbent [1967]]. The

physical analogy is nevertheless exploited here to construct stratified flow configurations with

dispersion curves resembling those characterizing vortex column oscillations. The stratified flow

analogs of the Rankine and smooth vorticity profiles highlight the manner in which the so-called

inviscid center-modes, present in the latter case, disappear in the Rankine limit. Center-modes

are nearly-convected modes (that is, with a vanishingly small Doppler frequency) with their

structure concentrated in the vicinity of the rotation axis, and are known to play an impor-

tant role in determining the inviscid stability characteristics of the Batchelor vortex [Heaton

[2007a];Fabre & Le Dizès [2008]]. In the absence of an axial flow component in the base-state, as

is the case for the vorticity profiles examined here, center-mode behavior is observed in the limit

of small axial wavenumbers. Each of the structured modes becomes a center-mode for k → 0, the

corresponding eigenfunction being characterized by a vanishingly small radial length scale (the

focus here is on the co-grade modes; the retrograde modes transform to inviscidly damped singu-

lar oscillations best interpreted in terms of a superposition of decaying quasi-modes) [Leibovich

et al. [1986]].

The center-mode behavior may be seen by considering the one-parameter family of smooth

vorticity profiles given by Ω(r) = Ω0 − r2p

2p!Ω2p for small r with Ω2p > 0; p = 1 corresponds

to a Lamb-Oseen profile and the limit p → ∞ to the Rankine vortex. Substitution in the HG

equation gives:

r
d

dr

[

m2r

m2+k2r2
d

dr
(rur)

]

−









m2−
4m

{

k2r2Ω0

m2
+

(

p− k2r2

m2

)

(p + 1)Ω2pr
2p

(2p)!

}

(mΩ−ω) −

4k2r2Ω2
0

{

1−r
2p(p+ 2)

(2p)!

Ω2p

Ω0
+
r4p(p+ 1)

(2p)!

(

Ω2p

Ω0

)2
}

(mΩ−ω)2













rur = 0,(2.181)

for r → 0. For the Rankine (co-grade) Kelvin modes, ω −mΩ0 ∼ O(k) for k → 0, implying a

finite group velocity in the longwave limit. On use of this limiting form in (2.181), the terms

proportional to inverse powers of the Doppler frequency are found to remain finite as k → 0 with r

fixed. This is no longer true for the flatter dispersion curves (ω−mΩ0 ∝ kx for k → 0 with x > 1;

see Fabre [2002]) characterizing smooth vorticity profiles (with p finite). The said terms now

diverge with decreasing k, and this has the effect of concentrating the (oscillatory) eigenfunction

in the vicinity of r = 0. This may be seen by using re-scaled boundary layer variables defined

by r2p = ǫ(k)s, rur(r) = U(s), whence one obtains, at leading order,

s2U ′′ + sU ′ +

[

−m2

4p2
+
p+ 1

p

s

s+ 1
+ µ(µ+ 1)

s
1
p

(s+ 1)2

]

U = 0, (2.182)

with µ(µ+1) = 4[(2p−1)!Ω0]
2. The radial extent of the boundary layer is ǫ(k) = ( k

mΩ2p
)

1
2p−1 and

determines the radial scale of the eigenmode. The case p = 1, for which ǫ(k) ∼ O(k) and (2.182)

reduces to the hypergeometric equation, was analyzed by Leibovich Brown & Patel (1983). For
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large p, the reduction in the radial length scale (∝ k
1
2p ) of the eigenfunction with decreasing

k becomes increasingly gradual, and correspondingly, the transition to a center-mode behavior

occurs at an increasingly small value of k; until, in the limit p→ ∞, there is no boundary layer,

and consequently no center-mode behavior. The latter implies that the radial length scale (β−1
n ),

characterizing a given structured mode eigenfunction (∝ Jm(βnr)) of a Rankine vortex, remains

fixed even as k goes to zero. This is seen from the analysis in section 2.2.2 which shows that

β−1
n ≈ a

jmn
, for k → 0, where Jm(jmn ) = 0; for k → ∞, it is readily shown using (2.40) that

ωn ∼ (m+2)Ω0 − Ω0(j
m+1
n )2

(ka)2
, so β−1

n ≈ a
jm+1
n

. Thus, unlike a smooth Rankine-like profile (p large

but finite) the radial length scale, β−1
n , varies only by O(1) for n fixed. A physical interpretation

of the above difference between a Rankine vortex and smooth Rankine-like profiles is given below

after developing the appropriate stratified flow analogs.

The stratified flow analog of a Rankine vortex is shown in figure 2.6. A region of plug flow of

height (h2−h1) overlies a region of uniform shear of height h1, the uniform (stable) stratification

in each region being characterized by a Brunt-Väisälä frequency: N1 and N2 for the shear and

plug flow regions, respectively. In the absence of any stratification (N1 = N2 = 0), one has a

homogeneous flow with a vorticity jump at y = h1 - the interface between the plug and shear flow

regions. This jump in vorticity leads to a single discrete mode, the so-called edge-wave with the

vorticity eigenfunction being a vortex sheet at y = h1; this corresponds to the 2D Kelvin mode

for the Rankine vortex. The shear region gives rise to a CS-spectrum with the CS-mode vorticity

eigenfunctions having a twin-vortex-sheet structure (one at the interface as for the discrete mode

and the other at the critical level) similar to the 2D Rankine CS-modes. Thus, the unstratified

piecewise linear flow reproduces the 2D Rankine spectrum. This is already known, and as

pointed out in section 2.2.1, such flows have been analyzed before (Sazonov [1989]). Further,

smoothing the kink in the base-state profile, into a region involving a rapid variation in the

velocity gradient, reproduces the 2D spectrum of a smooth Rankine-like vorticity profile. An

understanding of the center-modes, however, requires mimicking the corresponding 3D spectra.

The analog of the 3D Rankine spectrum results from introducing a stratification in the plug

region alone (N1 = 0, N2 6= 0). As a result, the plug region now supports a denumerable infinity

of internal gravity (IG) waves modified by the adjoining sheared region [Turner [1973]]. The

waves that travel faster than the fluid in the plug region correspond to the co-grade Kelvin

modes while those that travel slower correspond to the retrograde Kelvin modes some or all of

which have critical levels in the shear zone depending on U0 and the height of the shear flow

region. The additional baroclinic source implies that the vorticity associated with the sheared

IG waves is spread throughout the plug flow region and not localized in an interfacial vortex

sheet as in the absence of stratification. This is similar to the 3D Kelvin modes which, unlike

the 2D Kelvin mode, have interior vorticity in addition to the (axial) vortex sheet at the edge

of the core (the term proportional to H(a−r)) in (2.41)-(2.43)). A generic wave speed within

the range of velocities spanned by the shear zone, but not equalling those of the retrograde IG

waves, corresponds to the 3D CS-spectrum and one obtains the analogs of the Λ1 and Λ2 families

depending on the conditions imposed at the critical level; the tangential velocity eigenfunction

associated with the Λ1 CS-mode analog and the normal velocity eigenfunction associated with

the Λ2-analog undergo jumps across the critical level.
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Figure 2.6: (a)A piece-wise stratified shear flow that serves as an analog of the Rankine vortex,
(b)Dispersion curves for the stratified analog of the Rankine vortex. (kx = 1, h1 = 5, h2 =
7, U0 = 1, yc = 4, N1 = 0)

The underlying rationale for the above 3D analogy is that the variation of the Richardson

number, Ri = N(y)2/(dUdy )
2, with y for varying N̄ , N̄ being a scale for the Brunt-Väisälä

frequency profile characterizing the stratified flow configuration, must mimic the variation in

the vortex Richardson number, Riv =
2k2Z(rf )Ω(rf )
[mΩ′(rf )]2

, with r (see (2.127)) for varying k. For the

Rankine vortex, Riv = ∞ (0) for r < a (> a), and the absence of a shear in the plug flow region

implies that the choice (N1, N2) = (0, N2) above achieves the same Ri−profile for the stratified

flow model: Ri = ∞ (0) for y > h1 (< h1); see figure 2.6. The unstratified limit, Ri = 0∀ r,
corresponds to 2D perturbations. Finally, the streamwise wavenumber (kx) in the stratified flow

model is the continuous analog of the azimuthal wavenumber (m) of the vortex, and determines

the range of wave speeds corresponding to the CS-spectrum.

A straightforward calculation for the flow configuration in figure 2.6(a) shows that, with

N1 = N2 = 0, the edge-wave satisfies the following dispersion relation:

D(cd) = coth(kx(h2 − h1)) + coth kxh1 −
1

(h1 − yd)kx
= 0, (2.183)

where kx is the stream-wise wavenumber, cd the speed of the edge-wave and yd =
h1cd
U0

the

critical level. The corresponding axial vorticity eigenfunction is proportional to δ(y − h1), and

is the analog of (2.19). The generic CS-mode axial vorticity eigenfunctions, in the absence of

stratification, are given by

ikxŵz = [Dûy]
y=y+c
y=y−c

δ(y − yc) + [Dûy]
y=h+

1

y=h−

1

δ(y − h1) (2.184)
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where yc is the critical level, and

[Dûy]
y=y+c
y=y−c

=
kx sinh kxh1 sinh(kx(h2 − h1))

sinh kxyc
D(c), (2.185)

[Dûy]
y=h+

1

y=h−

1

= kx [cosh(kx(h1 − h2))− sinh(kx(h1 − h2)) {coth kxh1 − D(c)}] . (2.186)

Equation (2.184) is to be compared with (2.18). The amplitude of the vortex sheet at y = yc,

expectedly, vanishes when c = cd since D(cd) = 0 and (2.184) is then proportional to the

edge-wave vorticity eigenfunction.

With N2 6= 0, the dispersion relation for the sheared IG waves, the analog of (2.40), is given

by

D(cd, N2) =
p

kx
cot(p(h2 − h1)) + coth kxh1 −

1

(h1 − yd)kx
= 0, (2.187)

where p =

√

N2
2

(c− U0)2
− k2x is the vertical ‘wavenumber’. The dispersion curves arising from

(2.187) are plotted as a function of N2 in figure 2.6(b), and bear an obvious resemblance to

the Kelvin-mode dispersion curves in figure 2.1; note that c − U0 ∝ N2 for N2 → 0, so p−1

remains finite in this limit, and similar to the Rankine vortex, there is no center-mode behavior.

A difference, a detail as far as the center-mode-argument goes, is that the dispersion curves

in figure 2.6(b) asymptote to ω = ±∞ for N2 → ∞, while it is well known that the Doppler

frequency in the vortex case must lie in the interval [−2Ω0, 2Ω0] for any k. For a generic wave

speed (c 6= cd), with yc again being the critical level, one obtains the analog of the Rankine 3D

CS-spectrum. The analogs of the Λ1 CS-modes, with a tangential velocity discontinuity, are

given by

ikxŵz = [Dûy]
y=y+c
y=y−c

δ(y − yc) + [Dûy]
y=h+

1

y=h−

1

δ(y − h1)− (p2 + k2x) sin(p(y − h2))H(y − h1),(2.188)

where

[Dûy]
y=y+c
y=y−c

=
kx sinh kxh1 sin(p(h2 − h1))

sinh kxyc
D(c,N2,

[Dûy]
y=h+

1

y=h−

1

= [p cos(p(h1 − h2))− kx sin(p(h1 − h2)) {coth kxh1 − D(c,N2)}] ,

while the Λ2-analogs, with a normal velocity discontinuity, are given by

ikxŵz = [uy]
y=y+c
y=y−c

δ′(y − yc) + [Duy]
y=h+

1

y=h−

1

δ(y − h1)− (p2 + k2x) sin(p(y − h2))H(y − h1),(2.189)

where

[ûy]
y=y+c
y=y−c

=
sinh kxh1 sin(p(h1 − h2))

cosh kxyc
D(c,N2),

with [Dûy]
y=h+

1

y=h−

1

being the same as above. The amplitudes of the critical level singularities for

both the Λ1 and Λ2 analogs are proportional to D(c,N2), and one obtains the regular IG waves
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Figure 2.7: A smooth vortex analog

for c = cd when D(cd, N2) = 0. As mentioned earlier, the Ri−y profile of the stratified flow

model, as a function of N̄ , must correspond to the Riv−r profile of the vortex as a function of k;

the wavenumbers kx and m remaining fixed in the respective cases. For the Rankine vortex (its

stratified flow analog), the associated Riv (Ri)-profile is invariant to k (N̄) with the core (plug)

always corresponding to Ri = ∞ and the shear flow region (irrotational exterior) corresponding

to Ri = 0. On the other hand, for a smooth vortex, Riv = ∞ only on the rotation axis (r = 0),

and for any other r, Riv is finite, and will decrease with decreasing k. The finiteness of Riv for

any non-zero r implies that the stratified flow analog of a smooth vortex must also have the shear

regions being stably stratified as in figure 2.7. Now, it is known from the analytically soluble

case of stratified Couette flow, with a constant Brunt-Väisälä frequency, and in a bounded

domain (Taylor [1931],Eliassen et al. [1953]), that there exists a regular IG-wave spectrum only

for Ri > 1
4 (only shearing flows where the velocity extrema are approached with a vanishing

gradient, as for instance in a shear layer, can sustain a finite number of IG waves even as Ri→ 0;

see Banks et al. [1976], Drazin et al. [1979]. We neglect these exceptional modes). Thus, for the

stratified flow configuration in figure 2.7, the ‘plug’ region that sustains vorticity oscillations may

be identified as the region where Ri > 1
4 ; even within this plug, the constraint of a normal mode,

that is, an invariant transverse structure propagating with a fixed speed implies, that the length

scale of the oscillation must decrease continuously with increasing Ri(y). With decreasing N̄ ,

the plug region becomes progressively thinner in extent. The central ‘core’ of a smooth vortex,

capable of sustaining vorticity oscillations resembling the IG waves, may, in a similar manner, be

identified with Riv > Ri∗v; although, Ri
∗
v will not be 1

4 since, as already indicated, the analogy

is not a precise mathematical one. As shown in figure 2.7, this core region must recede towards
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Figure 2.8: Schematic of dispersion curves for the stratified shear flow problem shown in figure
2.7

the axis with decreasing k. There must then be a corresponding reduction in the radial length

scale of the oscillations along a given dispersion curve, and therefore, a transition to center-mode

behavior for k → 0. From the known (local) dispersion relation for inertial waves in rotational

flows [Greenspan [1968]], the resulting fine-scaled radial structure also implies that the group

velocity must vanish for any smooth vorticity profile for k → 0 (figure 2.8). The boundary-layer

scaling obtained above is physically equivalent to keeping Riv fixed even for k → 0, and thereby

precludes the structureless branch along which limk→0Riv → 0. For smooth profiles approaching

the Rankine vortex, the rate of recession of the oscillatory core region towards the rotation axis

becomes increasingly insensitive to a decrease in k, until in the Rankine limit, the size of the

core region (which now corresponds to Riv = ∞) becomes independent of k. From the point

of view of solvability, one may imagine replacing the actual stratified flow analog by a layered

approximation of the same. Such an approximation would seem to suffer from the familiar

disadvantage of every such kink leading to a eigenmode only one of which would correspond to

the structureless branch of the original smooth vorticity profile [Shrira & Sazonov [2001];Shrira &

Sazonov [2003]]. However, the center-modes arise due to the imposed stratification rather than

the jumps in vorticity in the piecewise linear approximation, and the eigenmodes associated

with the kinks in the base-state may easily be excluded because, in having non-trivial 2D limits,

they correspond to the dispersion curves that lack a center-mode behavior. From the known

solution for Couette flow with a uniform stratification, one expects that the eigenfunctions for

the simplified model would now involve Bessel functions The principal-finite-part interpretation

required for the CS-modes should also be clear from the discussion in section 2.3.3, and we
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Figure 2.9: Spatial variation of vortex ‘Ri’ for various k for relatively flat vortex (Lamb Oseen)
and an intense vortex
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therefore avoid a detailed solution.

2.5 Conclusions

In this chapter we have obtained the complete inviscid spectrum for a Rankine vortex (sections

2.2.1 and 2.2.2). The well-known Kelvin modes do not form a complete set by themselves.

The inclusion of the singular eigenfunctions completes the spectrum, and these eigenfunctions

allow one to represent the evolution of exterior vortical disturbances. A modal superposition,

involving both the discrete and the continuous spectra, is arrived at for describing evolution of

an arbitrary initial vorticity field (equations (2.21) and (2.79)). The completeness of the modal

approach, and thereby its equivalence to the solution of the initial value problem, is shown later

in chapter 3 where we also examine the inviscid resonances arising due to initial conditions

localized at the critical radii of the discrete modes. The analysis for the Rankine vortex is

also extended to the continuous spectrum modes of smooth vorticity profiles (sections 2.3.1

and 2.3.3). While in 2D, one may again obtain the required modal representation by solving a

Riemann-Hilbert problem, even in the absence of closed-form expressions for the eigenfunctions,

in 3D the analysis is approximate, being based on approximate forms of the eigenfunctions close

to the critical radius. An analogy with the known solution for stratified shear flows is used

to clarify the nature of the modal representation. The analogy with stratified shear flows also

allows for a physical interpretation of the inviscid center-modes (section 2.4).

In what follows, we obtain spectral representations of the Green’s function for the fluid

dynamical problems considered here. Such representations, when used in the solution of the

initial value problem, immediately yield the required modal decompositions, and are therefore

an equivalent way of characterizing the spectrum of the linear operator. To the extent that

the Green’s function denotes the response to a general impulsive forcing, the expressions below

should be of use beyond the context of hydrodynamic stability. An example in this regard is the

dynamics of an active suspension of tumbling bacteria where the probability density of bacterial

orientations behaves in a manner analogous to the vorticity field in a non-linear shear flow,

and the eigenfunctions in orientation space (the unit sphere) again consist of a delta function

and a non-local PV-integral term (Subramaniam & Nott [2011]); another example arises in the

kinetic theory of gases where Ferziger [1965] has shown that similar eigenfunctions make up

the CS-spectrum of the linearized spatially homogeneous Boltzmann operator. The spectral

representation for a self-adjoint operator (L(y)) is well-known (Friedman [1990]). When L(y) is
compact, the Green’s function for (L(y)−λ) may be written as G(y, y′;λ) =

∑∞
n=0

χn(y)χn(y
′)

(λn − λ)
with [λn, χn(y)] characterizing the discrete spectrum; for an unbounded domain, the summa-

tion above is replaced by an integral, so G(y, y′;λ) =

ˆ ∞

0

χ(y;λ′)χ(y′;λ′)

(λ′ − λ)
dλ′ (the eigenfunctions

now satisfy the less restrictive conditions of boundedness at infinity.). The Green’s functions ob-

tained below also involve an integral over the (finite) interval corresponding to the CS-spectrum,

but the eigenfunctions are now singular, needing a Cauchy-principal-value or a principal-finite-

part interpretation. Given this interpretation, the derivation proceeds along lines similar to

the textbook examples, with appropriately modified eigenfunction expansions and orthgonality
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relations, and we only present the final expressions below for three canonical cases with differ-

ent CS-spectra; discrete modes are not accounted for in these expressions since the additional

summation term, that must appear in the spectral representation, is of a standard form.

The simplest problem is homogeneous Couette flow. With U(y) ∝ y, 2D vorticity perturba-

tions obey:

(y − yc)ŵz(y; yc) = 0, (2.190)

where yc, as before, denotes the critical level and plays the role of the eigenvalue. The multi-

plication operator, L(y; yc) = (y − yc), in (2.190) is trivially self-adjoint, the direct and adjoint

eigenfunctions being given by:

ŵz(y; yc) = ŵ†
z(y; yc) = δ(y − yc) (2.191)

The self-adjoint nature of the perturbation vorticity equation for Couette flow implies that

enstrophy is a conserved quantity for 2D infinitesimal disturbances. Note, however, that the

Rayleigh equation isn’t self-adjoint, and is responsible for the non-modal behaviour of the per-

turbation energy even in Couette flow (Schmid & Henningson [2001]). The Green’s function, for

two-dimensional vortical perturbations in Couette flow, defined by

(y − λ)G̃(y, y′;λ) = δ(y − y′), (2.192)

may be written as:

G̃(y, y′;λ) =

ˆ 1

−1

δ(y − yc)δ(y
′ − yc)

(yc − λ)
dyc. (2.193)

The tilde over G denotes the frequency domain.

The self-adjointness in the vorticity formulation is lost for a mean flow with nonlinear shear.

The governing equation for vorticity perturbations may now be written as:

[(U(y) − U(yc))− U ′′(y)∇−2]ŵz(y; yc) = 0. (2.194)

with the adjoint operator being given by L(y; yc)† = (U(y) − U(yc)) − ∇−2U ′′(y). Here, ∇−2

denotes the inverse Laplacian that relates the perturbation streamfunction to ŵz(y; yc), being

defined by ∇−2f(y) ≡
ˆ 1

−1
G(y; y′)f(y′)dy′, where G(y; y′) = −sinh k(1− y>) sinh k(1 + y<)

k sinh 2k
for

the bounded domain considered here, and y<(y>) denotes the smaller (larger) of y and y′. The

direct and adjoint eigenfunctions are no longer the same, and are given by:

ŵz(y; yc) = U ′′(y)ŵ†
z(y; yc) = ǫR(yc)δ(y − yc) + PU

′′(y)ψ̂(y; yc)

U(y)− U(yc)
, (2.195)
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where

ǫR(y) = 1− P
ˆ 1

−1

U ′′(y)ψ̂(y′; y)

U(y′)− U(y)
dy′, (2.196)

ψ̂(y; yc) = −G(y; yc) +
ˆ 1

−1
U ′′(y′)ψ̂(y′; yc)

G(y; y′)− G(y; yc)
U(y′)− U(yc)

dz′. (2.197)

with the normalization

ˆ 1

−1
ŵz(y; yc)dy = 1. The orthogonality relation between the direct and

adjoint eigenfunctions is

ˆ 1

−1
ŵz(y; yc)ŵ

†
z(y; yc)dy = C(yc)δ(y − yc) (2.198)

where

C(y) =
ǫ2R(y) + ǫ2L(y)

U ′′(y)
, (2.199)

ǫL(y) = −πψ̂(y; y)U
′′(y)

U ′(y)
.

The above relation uses the Poincare-Bertrand transposition formula (Gakhov [1990]).

The vorticity eigenfunctions are now orthogonal to each other under an inner product weighted

by the inverse of the curvature, and perturbation enstrophy is no longer a conserved quantity.

This orthogonality leads to a standard result in wave-mean flow interaction theory - the con-

servation of pseudomomentum of two-dimensional disturbances for parallel shear flows (Held

[1985]). The Green’s function for 2D vortical perturbations in a non-linear parallel shearing flow

is defined by

[(U(y) − λ)− U ′′(y)∇−2]G̃(y, y′;λ) = δ(y − y′), (2.200)

the solution for which may be written as:

G̃(y, y′;λ) =

ˆ 1

−1

{

ǫR(yc)δ(y − yc) + PU
′′(y)ψ̂(y; yc)

U(y)− U(yc)

}{

ǫR(yc)δ(y
′ − yc) + PU

′′(y′)ψ̂(y′; yc)

U(y′)− U(yc)

}

U ′′(y′)C(yc)(U(yc)− λ)
dyc,

(2.201)

Finally, we consider a stratified shear flow under the Bousinessq approximation. As is evident

from the Taylor-Goldstein equation in section 2.3.3, the governing equation is in this case a

nonlinear eigenvalue problem if expressed in terms of a single variable - either the normal velocity

or the density field. The standard method leading to the spectral reprsentations above works

only for a linear eigenvalue problem, and the Taylor-Goldstein equation is therefore transformed

to a two-dimensional linear eigenvalue problem in terms of a vector flow variable consisting of

both the vorticity (ŵz) and the density (ρ̂) fields. Further, one must now have a matrix Green’s

function since an impulsive forcing in the density field can induce a velocity field and vice

versa. Towards this end, (2.155) and (2.156) are now written as the following matrix eigenvalue
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problem:

L(y)Φ(y; yc) = ycΦ(y; yc), (2.202)

where

L(y) =

[

y 1/Fr2

N2/N2
0∇−2 y

]

, (2.203)

and Φ(y; yc) is an eigenfunction matrix whose individual columns denote [ŵz(y; yc) ρ̂(y; yc)]
T,

and correspond to vector eigenfunctions of the Λ1 and Λ2 families. The dimensionless parameters

in (2.202) and (2.203) have been defined earlier in section 2.3.4. The matrix Green’s function,

G̃(y, y′;λ), satisfies:

[L(y)− λI]G̃(y, y′;λ) = δ(y − y′)I. (2.204)

We first consider the simpler case of a homogeneous base state with N = 0. In this case, the

governing stability operator reduces to

L(y) =

[

y 1/Fr2

0 y

]

, (2.205)

The corresponding adjoint operator is L(y)† = L(y)T, and thus, the direct (Φ(y; yc)) and adjoint

(Ψ(y; yc)) eigenmatrices are:

Φ(y; yc) = ΨT(y; yc) =

[

δ(y − yc) 1/Fr2δ′(y − yc)

0 δ(y − yc)

]

, (2.206)

with the Green’s function, G̃(y, y′; yc) being

G̃(y, y′;λ) =

ˆ 1

−1

Φ(y; yc)Ψ
T (y′; yc)

(yc − λ)
dyc. (2.207)

Stratification with a constant N introduces the additional self-adjoint term, N2/N2
0∇−2, so that

the relation L(y)† = L(y)T continues to hold but with L(y) now given by (2.203). Thus, even

for heterogeneous Couette flow the Green’s function is given by (2.207). However, the direct

and adjoint eigenfunction matrices are no longer transposes of each other. The former is given

by

Φ(y; yc) =

[

ŵΛ1
z (y; yc) ŵΛ2

z (y; yc)

ρ̂Λ1(y; yc) ρ̂Λ2(y; yc)

]

(2.208)

with Ψ(y, yc) defined by orthogonality relations where the integrals involved require a Pf. inter-

pretation. Invoking the relations ŵz(y; yc) =
Ri

(y − yc)2
ψ̂(y; yc) and ρ̂(y; yc) =

N2

N2
0 (y − yc)

ψ̂(y; yc),

it is sufficient to know the expressions for the streamfunction for the Λ1 and Λ2 families, and

the latter are given by (2.167)-(2.169).

The spectral representations correspond to the form of the operator in the frequency domain.
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On noting that the initial value of the Green’s function in the time domain, G(y, y′, t = 0), given

by limλ→∞[λG̃(y, y′;λ)], is either a scalar delta function or a delta function times an identity

matrix for stratified shear flow, (2.193), leads to an identity, while (2.201) and (2.207) (for finite

N) lead to interesting non-trivial representations for the delta function in terms of PV-singular

and Pf-singular eigenfunctions.



Chapter 3

Initial value problem and the

inviscid resonances

3.1 Introduction

The initial value problem (IVP) for a Rankine vortex, with an emphasis on exterior vortical

disturbances, and its equivalence to the modal representation discussed in chapter 2, will be

addressed in the present chapter. Before jumping to the formulation, it is worth noting the

relation between the modal and non-modal (IVP) perspectives within the framework of linear

hydrodynamic stability. The non-modal perspective typically focuses on the transient dynamics

characterized by an algebraic growth in the various dynamical quantities for short times. This

behavior, referred to as transient growth in the literature, is typical for shearing flows where the

governing differential operators are non-normal (in the relevant norm - energy, enstrophy, etc.),

and estimates based on the operator eigenvalues only apply in the limit of long times. This im-

plies that, even for ‘stable’ flows, there can be significant algebraic growth before eventual decay

(Schmid & Henningson [2001], Trefethen et al. [1993]). Herein, it is important to note that the

physics underlying transient growth, regardless of the particular mechanism (Orr, lift-up, etc.)

is entirely inviscid; this is in contrast to the well-known viscous instability for non-inflectional

profiles in the classical literature. In fact, despite the ‘non-modal’ terminology used, studies on

parallel shearing flows show that the transient growth phenomenon is intimately related to the

dynamics of the underlying inviscid continuous spectra. For the simplest case, inviscid Couette

flow, the original IVP analyses were in terms of Fourier modes with time-dependent wave vec-

tors (also known as Kelvin modes, see Farrell [1984]). The work of Farrell and co-workers (Farrell

[1984],Farrell [1989],Farrell & Ioannou [1993b]) has analyzed one of the mechanisms leading to

transient growth, the Orr-mechanism (Orr [1907]), in terms of the aforementioned Fourier mode.

But, an equivalent description exists in terms of a convected superposition of flow-aligned vor-

tex sheets (the CS-modes of Couette flow): the Orr mechanism involves the progressive phase-

alignment of an initially staggered superposition of singular vortex-sheet eigenfunctions. The

celebrated lift-up mechanism (Arnol’d [1972], Landahl [1980]) which is absent in two dimensions,

and is responsible for the growth of spanwise perturbations, may also be interpreted in terms

of CS-mode dynamics. As shown in chapter (6) for a general paralel flow, the lift-up effect

arises in the limit of an infinitely gradual de-phasing of a vortex-sheet eigenfunction and the

corresponding ensemble of singular Squire-jet modes (Sazonov [1996]).

In general, for problems where only the continuous spectrum governs the temporal evolution,

the dynamics may be divided into three regimes: an initial phase characterized by the afore-

mentioned algebraic growth, a terminal phase with an algebraic-decay in integral measures

such as the perturbation kinetic energy due to the eventual de-phasing of the CS-modes by

65
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differential shear (Bassom & Gilbert [1998], Farrell [1984]), and an intermediate phase with

exponential asymptotics. In this latter regime, appropriate superpositions of the CS-modes

behave as decaying discrete (quasi)-modes, a phenomenon known as Landau damping (Briggs

et al. [1970],Schecter et al. [2000],Schecter & Montgomery [2003]). Both Couette flow and the

Rankine vortex constitute important and singular limiting scenarios in that although neither ex-

hibits the aforementioned exponential asymptotics, the addition of a small curvature or a small

vorticity-gradient/vorticity does lead to quasi-modes (Balmforth et al. [2001],Shrira & Sazonov

[2001],Shrira & Sazonov [2003]). For instance the solution of the two-dimensional IVP shows

that a ‘near-Rankine’ profile exhibits an exponential decay phase with the damping rate be-

ing proportional to the (small) vorticity gradient at the critical radius (Schecter et al. [2000],Le

Dizès [2000]). The analogous scenario for three dimensions is not known, however; numerical

results, for the particular case of a Lamb-Oseen profile, indicate a denumerable infinity of quasi-

modes (Fabre [2002]). It is worth noting that for the above singular cases (Rankine vortex in

Couette flow), the existence of a neutral discrete (’free’) mode implies that the terminal algebraic

decay only applies to the CS-spectrum, and the response for long times always approaches the

discrete mode(s) (also see Smith & Montgomery [1995]).

Motivated by the presence of vortex-waves in numerical simulation of gravity wave breaking

Arendt et al. [1997] performed an analysis of the initial-value problem for core perturbations

for a Rankine vortex. The authors showed that any core perturbation can be represented as

a summation of Kelvin modes and hence, proved their completeness for vortical perturbations

inside and at the edge of the core. Physically, the restriction to such core perturbations implies

the consideration of suitably deformed vortex columns as initial conditions.The effect of the

external straining field on vortical disturbances was neglected as core dynamics was the primary

concern. Later, Criminale et al. [2001] considered the initial-value problem for a mean flow given

by a strained point vortex, but the analysis evidently excluded any vortex oscillations arising

due to a finite core. They demonstrated that an initial radial vorticity configuration will lead

to a linear growth in azimuthal vorticity due to stretching and tilting by the ambient shear.

In this chapter, we will solve the IVP for a Rankine vortex for an arbitrary initial (vortical)

condition, thereby combining the above efforts. More recently a detailed study of transient

growth in a columnar vortex subjected to three-dimensional disturbances was done indepen-

dently by Antkowiak & Brancher [2004] and Pradeep & Hussain [2006]. The two-dimensional

disturbances exhibited the usual algebraic growth arising from the Orr mechanism mentioned

above. Further, the tilting and stretching of radial vorticity in three dimensions, to form az-

imuthal vorticity by the background shear (also seen in Criminale et al. [2001]) above led to a

stronger growth which was eventually arrested by vorticity waves arising doe to the non-zero

base-state vorticity. Antkowiak & Brancher [2007] termed this latter mechanism the anti-lift-up

effect, since azimuthal streaks (radial vorticity) give birth to azimuthal rolls (azimuthal vor-

ticity) in contrast to the well-known lift-up effect present in rectilinear flows where rectilinear

rolls give way to streaks (Landahl [1980], Schmid & Henningson [2001]). The authors identified

vortex rings wrapped around the vortex column as an optimal perturbation for transient growth

thus revisiting DNS results of Melander & Hussain [1993] which highlighted an arrangement of

alternate signed vortex rings wrapped around a vortex column as a prevalent secondary struc-
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ture arising in a vortex column’s interaction with a fine-scale homogeneous, isotropic turbulent

field. A novel mechanism which was highlighted in the study of Pradeep & Hussain [2006] is

the stronger transient growth arising for initial conditions localized at the critical radii of one

or more of Kelvin modes. This resonance-aided stronger algebraic growth was identified in the

context of a full viscous (linearized) DNS. In this chapter we will explain, by way of the inviscid

Rankine initial value problem calculations, as to how these resonances and the manner in which

they couple with the anti lift-up effect mentioned above. Miyazaki & Hunt [2000], in an effort

to understand the (linearized) interaction of a columnar vortex with external (weak) turbulence

through the framework of rapid distortion theory (RDT) (Townsend [1956]) identified an initial

random velocity field that, again, wraps around the vortex column and forms vortex ring like

structures. This is consistent with the aforementioned stretch-tilt mechanism, that leads to

azimuthal vorticity linearly from an initial field with radial vorticity. The vortex response as

determined from the framework of an initial value problem, is identical to computing the linear

response in the spirit of RDT. Recently, Heaton & Peake [2007] have investigated the transient

growth for a vortex with axial flow, the Batchelor vortex, in a regime where the vortex exhibits

no exponential instability.

In this chapter we will begin by addressing the 2D initial value problem for a Rankine vortex in

section 3.2 and then discuss the evolution for localized initial conditions (narrow Gaussian pro-

files) located both at and way from the Kelvin critical radius. The modal decomposition found

in the previous chapter is shown to be equivalent to IVP. An identical sequence is followed for

the 3D problem in section 3.3.

3.2 2D Initial value problem

The inviscid evolution in 2D is governed by the following PDE for the radial velocity, ũr;

(

∂

∂t
+ imΩ

)

(

r2D2ũr + 3rDũr − (m2 − 1)ũr
)

− imrDZũr = 0, (3.1)

for a fixed m. Here, ũr ≡ ũr(r, t).

To obtain a representation in terms of the initial conditions we Laplace transform the above

equation. Using the following definitions:

f̂(s) =

ˆ ∞

0
f̃(t)e−stdt,

f̃(t) =
1

2πi

ˆ γ+i∞

γ−i∞
f̂(s)estds,

where a hat denotes the transformed quantities, one obtains:

D2ûr +
3

r
Dûr −

(m2 − 1)

r2
ûr +

2imΩ0δ(r − a)

r(s+ imΩ)
ûr = − im

r

w̃z0(r)

s+ imΩ
. (3.2)
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where w̃z0(r) = w̃z(r, 0) is the initial perturbation vorticity (axial) and we have used that

DZ = −2Ω0δ(r − a). From (3.2), we solve for ûr(r, s) both inside and outside the core:

r < a

ûr(r, s) = Arm−1 +
i

2

{

r−(m+1)

ˆ r

0
r′m+1 w̃z0(r

′)

s+ imΩ(r′)
dr′ − rm−1

ˆ r

0
r′−(m−1) w̃z0(r

′)

s+ imΩ(r′)
dr′
}

,(3.3)

r > a

ûr(r, s) = Br−(m+1) +
i

2

{

rm−1

ˆ ∞

r
r′−(m−1) w̃z0(r

′)

s+ imΩ(r′)
dr′ − r−(m+1)

ˆ ∞

r
r′m+1 w̃z0(r

′)

s+ imΩ(r′)
dr′
}

.

(3.4)

As boundary conditions we have the continuity of radial velocity perturbation, ûr, across the

vortex core and, from (3.2), the following jump in Dûr:

[Dûr]
r=a+

r=a− ≡ Dûr(r = a+)−Dûr(r = a−) = −2imΩ0ûr(r = a)

a(s+ imΩ0)
. (3.5)

Enforcing the above conditions we have:

A =
i

2am−1

[
ˆ ∞

0

( a

r′

)m−1 w̃z0(r
′)

s+ imΩ(r′)
dr′ +

iΩ0

(s+ iωd)

{

ˆ a

0

(

r′

a

)m+1 w̃z0(r
′)

s+ imΩ(r′)
dr′ +

ˆ ∞

a

( a

r′

)m−1 w̃z0(r
′)

s+ imΩ(r′)
dr′
}]

, (3.6)

B =
iam+1

2

[

ˆ ∞

a

(

r′

a

)m+1 w̃z0(r
′)

s+ imΩ(r′)
dr′ +

1

(s+ iωd)

{

(s+ imΩ0)

ˆ a

0

(

r′

a

)m+1 w̃z0(r
′)

s+ imΩ(r′)
dr′ + iΩ0

ˆ ∞

a

( a

r′

)m−1 w̃z0(r
′)

s+ imΩ(r′)
dr′
}]

,

(3.7)

where ωd = (m − 1)Ω0. Thus, one observes how the 2D Kelvin mode (the pole at s = −iωd)

naturally arises in the solution of the initial-value problem. Using the Cauchy residue theorem,

we obtain the following expression for the velocity field in the time domain:

ũr(r, t) =
i

2

ˆ ∞

0
w̃z0(r

′)

[

(

r′

r

)p(r′)m+1

e−imΩ(r′)t − Ω0

(a

r

)p(a)m+1 ( a

r′

)q1(r′)m−1 e−imΩ(r′)t − e−iωdt

mΩ(r′)− ωd

]

dr′

(3.8)

where p(x) = sgn(r − x) and q1(x) = sgn(x− a). The above expression represent the evolution

of the radial velocity perturbation when a Rankine vortex is subjected to an arbitrary initial

axial vorticity field. As was previously mentioned, (3.8) is identical the response obtained by

Smith & Montgomery [1995].

In this general form, one can clearly see contributions from both the discrete and continuous

spectra. As must be the case, introducing an initial condition with a twin vortex-sheet structure

in (3.8), a single continuous spectrum eigenmode is obtained.



3.2 2D Initial value problem 69

3.2.1 Equivalence to modal superposition

Obtaining the equivalence of the IVP with the modal superposition obtained in chapter 2 is

essential for proving the completeness of the latter. From equation (2.21) we have the following

modal representation for the time-dependent axial vorticity field:

w̃z(r, t) = wcore
z e−imΩ0t +

ˆ ∞

a+
B1(r

′)ŵCSM
z (r; r′)e−imΩ(r′)tdr′+

ˆ ∞

0
B2(r

′)ŵKelvin
z (r)e−imωdtdr′, (3.9)

where,

ŵCSM
z (r; r′) =

[

2iΩ0d

ω −mΩ0
δ(r − a)−A(r′)δ(r − r′)

]

. (3.10)

ŵKelvin
z (r) = −2iΩ0a

2

rc
δ(r − a), (3.11)

ŵcore

z (r) = w̃z0(r)H(a− r)− δ(r−a)
ˆ a

0
w̃z0(r

′)

(

r′

a

)m+1

dr′, (3.12)

A(r′) =

2iΩ0

(

a2

r′

)

(ωd − ω)

Ω0

( a

r′

)m−1
+ (ωd − ω)

(

r′

a

)m+1 . (3.13)

and, rc is the critical radius of a 2D Kelvin mode - rc = a
√

m/(m− 1). The discrete and

continuous spectrum eigenfunction amplitudes are given by,

B1(r
′) = − w̃z0(r

′)

A(r′)
, B2(r

′) = − i

2

w̃z0(r
′)rc

a2(ωd −mΩ)

( a

r′

)q1(r′)m−1
.

On substituting the expressions for B1, B2 and A(r′), (3.9) can be simplified to,

w̃z(r, t) = w̃z0(r)e
−imΩ(r)t + δ(r − a)

ˆ ∞

0
w̃z0(r

′)
( a

r′

)q1(r′)m−1
Ω0
e−imΩ(r′)t − e−iωdt

(ωd −mΩ(r′))
dr′

(3.14)

We know from combining (∇ ∧ u)z = wz and ∇.u = 0, that

w̃z(r, t) =
i

m
L (rũr(r, t)) =

i

m

(

rD2 + 3D − (m2 − 1)

r

)

ũr(r, t) (3.15)

where L = DD∗ − (m2 − 1)/r2 is the Laplacian operator in cylindrical coordinates (D∗ =

D+ 1/r). On inverting the above relation in terms of the Greens function of the Laplacian, we

have,

ũr(r, t) =
i

2

ˆ ∞

0

(

r′

r

)p(r′)m+1

w̃z(r
′, t)dr′ (3.16)

Substituting the (3.14) for the axial vorticity field gives (3.8), thus proving the equivalence of

the 2D modal superposition to the initial value problem.
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3.2.2 Excitation by a cylindrical vortex sheet and 2D inviscid

resonance

In two dimensions, (3.9) reveals two possible growth mechanisms - the Orr mechanism and

the resonant excitation of the Kelvin mode. In section 3.1 we have already discussed the Orr

mechanism for plane parallel flows. In the context of swirling flows, the physics remain identical.

The Orr mechanism requires the initial condition to have a finite spatial extent and, further that

it be azimuthally staggered in the (local) upstream direction. The equivalent of an upstream

tilt here would an outward propagating spiral initial condition. Figure 3.1 depicts the evolution

of such an initial condition via the Orr mechanism. Although the Orr mechanism is already

contained in the general expression (3.9), here onwards we will only be focussing on transversely

coherent (no tilt either upstream or downstream) initial condition in the context of resonant

excitation of the Kelvin mode.

To begin with, we choose a cylindrical vortex sheet stationed at r = r1, as an initial condition.

Thus, w̃z0 = V0δ(r − r1), r1 > a. The velocity field in (3.8) then simplifies to,

ũr(r, t) =
i

2
V0

[

(r1
r

)p(r1)m+1
e−imΩ1t − Ω0

(a

r

)p(a)m+1
(

a

r1

)m−1 e−imΩ(r1)t − e−iωdt

mΩ(r1)− ωd

]

(3.17)

where Ω1 = Ω(r1) =
Ω0a2

r21
. The above expression highlights the existence of a secular limit when

mΩ1 → ωd, the corresponding value of r1 being, of course, the critical radius of the 2D Kelvin

mode. We can write the resonant solution as:

ũr(r, t) =
i

2
V0e

−iωdt

[

(rc
r

)p(rc)m+1
+ iΩ0 t

(a

r

)p(a)m+1
(

a

rc

)m−1
]

, (3.18)

where we have used that limr1→rc

(

e−imΩ(r1)t − e−iωdt

mΩ(r1)− ωd

)

= −ite−iωdt.

Thus, the 2D IVP captures the resonant interaction between the discrete (the Kelvin mode) and

the continuous spectra. The resonance arises because of the absence of a normal mode with a

finite projection at r = rc which precludes a harmonic time dependence. A similar study of the

interaction between the discrete and continuous spectra has been carried out for a piece-wise

continuous plane shear flow profile by Sazonov [1989] and analogs of this behavior are known

in the context of plasma physics (Hirota et al. [2003]). The normalised energy spectrum, as a

function of m, due to the resonant vortex sheet initial condition is;

E(m, tmax)

E(m, 0)
= Ω2

0

(

m− 1

m

)m

t2max (3.19)

where,

E(m, t) =
1

2

ˆ ∞

0
{uru∗r + uθu

∗
θ} rdr (3.20)

In (3.19) we have included only the secularly growing contribution. Increasing azimuthal

wavenumber leads to an increas in the amplitude of the energy. For m → ∞ it attains a
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(c) t = t2

Figure 3.1: Orr mechanism for evolution of disturbances in swirling flow (the black patch
represents a ‘roller’ setting up an irrotational base-state - Ω ∝ 1/r2, anti-clockwise sense).
t0 < t1 < t2. An initial upstream tilted vorticity perturbation attains a transversely coherent
state (t0 < t < t1. Energy amplifies in this stage. For t > t1, the disturbance vorticity becomes
more ‘down-shear’ tilted, leading to a fine-scaled structure of vorticity field and hence resulting
in decay in energy.)
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limiting form (Ω0tmax)
2/e. Note that it does not make sense to talk about resonant interaction

for m = 1 in 2D in the absence of a non-trivial core structure (as is the case for the Rankine

vortex), since this is just a translational mode with its critical radius at infinity.

3.2.3 Excitation by a smooth initial condition

In section 3.2.2 we discussed the response of the Rankine vortex to a cylindrical vortex sheet in

the irrotational exterior and the response arising from it. A vortex sheet is the only structure

that will not be smeared by the (shearing) irrotational flow and this leads to an unbounded

secular growth as evident in (3.18) and (3.19). When excited by a smooth initial condition,

a resonant growth can only be observed until the shearing action of the mean flow starts to

dominate. For long times, this differential shear destroys the transverse coherence of the initial

condition. The long-time response in all cases is the Kelvin mode, and the amplitude of that

free mode varies with the location of the initial condition, peaking when this location coincides

with the Kelvin mode critical radius. To see this, we choose the following initial condition,

ω̃z(0) = V0
e−(r′−r1)2/(4ǫ)

2
√
πǫ

, (3.21)

corresponds to a narrow Gaussian distribution centered around r1, and that approaches the

delta function initial condition in the section 3.2.2 in the limit ǫ→ 0.

Asymptotic evaluation

First, we analyze the time-dependent solution asymptotically for ǫ ≪ 1. This could be done

both for a resonant initial condition (r1 = rc) or a non-resonant one (r1 6= rc).

1. Resonant Gaussian initial condition -

For the resonant case, we choose r1 in (3.21) to be the critical radius for the Kelvin mode,

so that mΩ(r1) = ωd. The asymptotic expression for the radial velocity for ǫ≪ 1 is,

ũr ∼ i

2
V0e

−iωdt

[

(rc
r

)p(rc)m+1
{

1 + ǫ
p(rc)m+ 1

r2c
(4iωdt+ p(rc)m)

}

e−b2+

am(p(a)+1)Ω0

2rp(a)m+1rm−1
c ωd

{

irc
2

√

π

ǫ
Erf (b)− (m− 1)

(

e−b2 − 1
)

}

]

, (3.22)

where b =
2ωd

rc

√
ǫt.

Here Erf(z) is the error function (Erf(z) = 2√
π

´ z
0 e

−x2
dx Abramowitz & Stegun [1965])

and sgn(z) is the signum function. Amongst the terms obtained above by asymptotic eval-

uation, the most important one is the modification of the linear resonant term, Ω0te
−iωdt,

in case of cylindrical vortex sheet to the error function term,

Υ =
Ω0

ωd

rc
2

√

π

ǫ
Erf

(

2ωdt

r1

√
ǫ

)

e−iωdt.
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(b) ǫ = 0.01

Figure 3.2: Comparison of ur evolution computed using numerical integration of (3.8) and the
asymptotic expression (3.22), valid for ǫ ≪ 1, for a resonant Gaussian forcing (V0 = 1, ǫ =
10−4(a), 10−2(b),m = 2, a = 1,Ω0 = 0.5, r = 1.5)
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Figure 3.3: Comparison of E(m, t) (3.81) evolution computed using numerical integration of
(3.8) and asymptotic evaluation (3.25) for non-resonant Gaussian forcing (V0 = 1, ǫ = 10−4,m =
2, a = 1,Ω0 = 0.5)

The error function for small values of argument, t < O
(

ǫ−1/2
)

, would behave like a linear

term, consistent with the secular growth obtained for the singular initial condition con-

sidered previously, and for large t, would saturate to 1, again consistent with the eventual

de-phasing of any initial condition with a finite radial extent. Thus for

t≪ O
(

ǫ−1/2
)

, Υ ≈ Ω0te
−iωdt (3.23)

t≫ O
(

ǫ−1/2
)

, Υ ≈ Ω0

ωd

rc
2

√

π

ǫ
e−iωdt (3.24)

Thus, for an initial Gaussian axial vorticity distribution of width ǫ1/2, the radial velocity

field must linearly amplify to O(ǫ−1/2) in a time of O
(

ǫ−1/2
)

. For later times the re-

sponse would be an oscillatory. The O
(

ǫ−1/2
)

time-scale for resonant growth for smooth

initial conditions can be explained as a destructive intereference mechanism due to the

background shear. From figure 3.2 one observes good agreement between the asymptotic

expansions and the numerical integration results for ǫ ≪ 1. The expansion starts to

deteriorate as the initial Gaussian distribution starts to widen (ǫ ∼ O(10−2)).

2. Non-resonant Gaussian initial condition -

For the non-resonant case, mΩ(r1) 6= ωd, the asymptotic expression for the radial velocity

evolution for ǫ≪ 1 and t < ǫ−1/2 is,

ũr ∼ i

2
V0

[

e−imΩ1t
(r1
r

)p(r1)m+1
{

1 + ǫ
p(r1)m+ 1

r21
(4imΩ1t+ p(r1)m)

}

e−b21−

Ω0

(a

r

)p(a)m+1
(

a

r1

)m−1 e−imΩ(r1)t − e−iωdt

mΩ(r1)− ωd

]

, (3.25)

where b1 =
2mΩ1

rc

√
ǫt.
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The non-resonant Gaussian forcing case indicates the possibility of ‘beats’ - an interac-

tion of the excited continuous spectrum mode (frequency - mΩ1) and the Kelvin mode

(frequency - ωd).

Numerical evaluation

On numerically integrating (3.8) for the initial condition (3.21) several interesting aspects get

highlighted (see figure 3.4), confirming predictions from asymptotic calculations. On choosing

the centre of the Gaussian axial vorticity distribution (r1) to coincide with rc, we note that for

ǫ≪ 1, the signature of resonance is evidently present for short times. For later times, after the

decay of the continuous spectrum contribution, the growth saturates and the oscillatory Kelvin

mode persists. Figure 3.4 (b)-(c) confirms that when the excitation location r1 is slightly offset

from the critical radius rc (r1 = rc + 0.1), the distant, but closely spaced, frequencies of the

Kelvin mode and the sharply localized CS-spectrum response lead to the ‘beats’ phenomenon

in the temporal response. For ǫ≪ 1 figure 3.4 (f) shows that the maximum amplitude attained

by radial velocity is O(ǫ−1/2) and is attained in a time O(ǫ−1/2). This scaling arises from the

width of the initial condition - O(
√
ǫ). Consider two circular waves of azimuthal wavenumber,

m, aligned initially in a radially coherent fashion separated by a distance O(
√
ǫ). Due to the

differentially rotating ambient flow, the outer wave-speed lags the inner one by O(
√
ǫ). Thus

the perfectly aligned crests and troughs of the two waves will undergo destructive interference

in time O(ǫ−1/2).

Figure 3.5 depicts the evolution of the perturbation energy (3.81), within a linear and inviscid

framework, for an initial Gaussian axial vorticity disturbance centered around rc, the critical

radius of a Kelvin mode for an equivalent Rankine vortex. Here, a comparison is made between

the response of a Rankine vortex (3.8), the asymptotic approximation for a Rankine vortex

(3.22) and the response of a smooth Rankine-like vorticity profile given by,

Z(r) =
1

2

[

1− tanh

(

r − a

d

)]

(3.26)

Here, a = 1 and d is the (small) length scale of the transition region between the core and the

irrotational exterior. d may thus be considered an estimate of the ‘steepness’ of the vortex, and

is varied from 0.01 to 0.1 in the figure. The response for the smooth vorticity profile above

is obtained from the numerical solution of (3.1). For the numerical calculation, the spatial

discretization in the radial domain is done using the Chebyshev spectral collocation method

(Trefethen [2000]) and the time integration is carried out using the MATLAB software command

ODE45, based on an explicit Runge-Kutta formula with adaptive step-sizes. Though beyond

the scope of the present study, for ‘intense’ Rankine-like vortices there exists an intermediate

exponentially damped regime and the decay rate of such regime can be obtained from the

Riemann-Hilbert problem approach for smooth vortices (section 2.3.1). We consider a one

parameter ‘intense’ vortex (Le Dizès [2000]),

Z(r) = H(a− r) + exp

(

− (r − a)2

(1− a)2

)

H(r − a) (3.27)

where 0 6 a 6 1. a = 0 describes a Gaussian vortex and a = 1 corresponds to the Rankine
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(c) Excitation by a resonant Gaussian axial vor-
ticity, ǫ = 10−2
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(e) Excitation by a non-resonant Gaussian axial
vorticity distribution, ǫ = 0.1
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Figure 3.4: Space-time plots for the 2D initial value problem for a Rankine vortex. The results
are computed for m = 2, core radius a = 1 and core angular velocity Ω0 = 1. Figures (a),(c) and
(e) depict the time evolution of radial velocity ( Reur/V0) for excitation by a cylindrical vortex
sheet stationed at r1 = rc and Gaussian axial vorticity distributions (equation 3.21, ǫ = 10−2, 0.1)
centered at rc and 1.05rc (rc is the critical radius of the 2D Kelvin mode) respectively. Figure
(b) and (d) show the time response of ur at r = 1.5 when excited by a cylindrical vortex sheet
and Gaussian axial vorticity (ǫ = 10−3) positioned at r1 = 1.05rc respectively. (f) shows ur
temporal history during resonant excitation by Gaussian distributions of various width (ǫ). The
tilde’s have been dropped from the perturbation quantities in the above plots.
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Figure 3.5: Evolution of perturbation energy for smooth vortices (d = 0.01, 0.05 and 0.1) and

Rankine vortex to Gaussian vorticity excitation (equation 3.21, m = 2, r1 = a
√

m
m−1)
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Figure 3.6: Evolution of energy for a smooth vortex (3.27) and its comparison with decay as
predicted by Riemann-Hilbert theory (2.125)

vortex. Figure 3.6 depicts the comparison for a vortex given by a = 0.82 with decay rate

predicted by (2.125).

In this section we have focused on the 2D IVP for a Rankine vortex, and have highlighted the

resonant interaction of the Kelvin mode and the continuous spectrum. Such interactions between

the discrete and continuous spectra isn’t uncommon in problems of hydrodynamic stability. For

a piecewise linear shear flow Sazonov [1989] has studied the resonant interaction between the

continuous spectrum and the discrete edge wave arising from the discontinuity in shear. Even

earlier Pedlosky [1964] examined the response of a canonical model for baroclinic instability; the

Eady model, to external disturbances through an initial value problem. The quasi-geostrophic

vorticity in this case obeys an equation identical to the axial vorticity in our problem, and the

temporal response was again governed by the discrete Eady waves and the continuous spectrum.

Although not explicitly mentioned, one can immediately deduce the possibility of resonance

between the Eady and continuous spectrum modes from the expression given in Pedlosky [1964].

Indeed Farrell [1984] when studying the initial value problem of Pedlosky [1964] showed this from

a treatment involving the modal and non-modal solutions. Though neutral modes are incapable

of extracting energy from the mean flow, the presence of non-modal solutions leads to the

projection of the energy extracted from the mean onto the neutral mode, and thus, leads to an

initial algebraic growth. Gorshkov et al. [2000] discussed the possibility of resonance for discrete

and continuous spectra and suggested that the secular growth would lead to destruction of the

vortex. Finally Lansky et al. [1997] investigated a model for vortex merger, between dissimilar

vortices by considering, a weak point vortex revolving around a strong vortex patch. As the

point vortex rotate at the critical radius of a Kelvin mode, it resonated with the corresponding

surface wave on the vortex. The point vortex is convected by both the purely azimuthal flow

and the disturbance velocity field due to the Kelvin mode. For large enough amplitudes, the

critical layers of the different Kelvin modes overlap and in the limit, the point vortex collapses

into the vortex patch. Note that the finite extent of a critical layer (with an associated cat’s
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Figure 3.7: Schematic of a vortex filament from a neighbouring vortex exciting a spectrum of
Kelvin modes of a vortex during merger (the critical radius of modes m = 2, 3 and 4 are shown
in the figure)

eye structure in this region) arises from non-linear effects and in the linearized limit, the critical

layer has a zero thickness, and one may then speak of a critical radius (as in the present case).

It was noted above, in the context of a Rankine vortex, that the algebraic growth, either

resonant or non-resonant, is eventually arrested for any initial axial vorticity distribution with a

finite radial extent. The saturation of growth arises due to differential shearing of the vorticity

perturbation by the exterior irrotational flow which leads to a loss of transverse (radial) coherence

in the perturbation vorticity field. The duration of the growth phase, due to the combination

of the Orr mechanism (relevant to an initial condition in the form of a leading spiral) and

resonant interaction, scales inversely with the width of the initial vorticity distribution. In this

section, we briefly describe a novel vorticity-screening mechanism first reported by Sheshadri

[2010], and present only for a smooth vorticity profile, that leads to a saturation of growth

even for an initial condition with a vanishingly small spatial extent (including a delta function

initial condition corresponding to a cylindrical vortex-sheet). This is in sharp contrast to the

temporal response of a Rankine vortex where, as already seen, a cylindrical vortex at the critical

radius leads to unbounded secular growth. The saturation arises because, for a smooth vorticity

profile, the duration of the growth phase for sufficiently localized initial conditions is controlled

by the base-state vorticity gradient at the critical radius rather than the (slow) differential shear

arising from the small but finite spread of the perturbation vorticity distribution. The non-

zero base-state vorticity gradient in the vicinity of the critical radius leads to the induction of

perturbation vorticity of assign opposite to the vorticity in the initial condition, and for long

times, the induced perturbation vorticity ÔscreensÕ the imposed forcing. Thus, for a smooth

Rankine-like profile, it is the mechanism operating on a shorter timescale (differential shear

versus critical layer vorticity-induction) that controls the duration of the algebraic growth, and

thence, the final amplitude of the deformed vortex column. The study of Sheshadri [2010]

was restricted to two dimensions, although one expects the vorticity-screening mechanism to

be relevant also for the three-dimensional perturbations. For a smooth Rankine-like profile,

figure (see figure 11 in Sheshadri [2010]) shows the variation of the perturbation energy with the

width of initial condition for the base-state vorticity profiles with differing values of the critical

layer vorticity gradient (DZ(rc)). In each case, the initial condition is a Gaussian vorticity
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distribution with a finite width (denoted by δ in the figure) and centered at the critical radius.

The amplitude of the perturbation energy, at saturation, continues to increase with decreasing

δ owing to a corresponding increase in the differential shear time scale. For sufficiently small

δ, however the growth characteristics start to become independent of δ owing to a transition

in the mechanism of saturation from one driven by the differential shear to the aforementioned

screening mechanism associated with the critical layer vorticity gradient. This may also be seen

from figure (figure 9 in Sheshadri [2010]) where the perturbation energy is plotted against DZ(rc)

rather than δ; the collapse of the curves, in the limit of small δ, suggests a maximum growth

envelope corresponding to a vortex-sheet initial condition. The threshold width of the initial

vorticity distribution below which there is a crossover from the differential-shear mechanism to

the one driven by critical layer vorticity gradient, scales with DZ. The width of the initial

condition, for any finite Re, cannot be smaller than O(Re−1/3), a scaling that arises from a

balance of (shearing) Re, cannot be smaller than O(Re−1/3), a scaling that arises from a balance

of (shearing) convection and viscous diffusion. Thus, the cross-over from the Ôδ-controlled

regimeÕ to the ÔDZ-controlled regimeÕ must depend on the relative magnitudes of Re−1/3

and DZ.

3.3 3D Initial value problem

To arrive at the 3D stability equations, we start from the Fourier transformed linearized Euler

equations, and the equation of continuity, given by:

Lũz = −ikp̃, (3.28)

Lũr − 2Ωũθ = −∂p̃
∂r
, (3.29)

Lũθ + Zũr = − im
r
p̃, (3.30)

∂ũr
∂r

+
ũr
r

+
imũθ
r

+ ikũz = 0, (3.31)

where L =
∂

∂t
+ imΩ, m being the azimuthal wave number as in the earlier section, and k

being the axial wave number. On Laplace transforming, and after some manipulation, one

can derive the following equations in terms of the axial velocity perturbation, ûz(r, s) with the

corresponding ûr(r, s) expression:

r < a
(

D2 +
1

r
D − m2

r2
− k2 − 4k2Ω2

0

(s+ imΩ0)2

)

ûz = F1(0) (3.32)

ûr =
2mΩ0

rk

s+ imΩ0

(s+ imΩ0)2 + 4Ω2
0

ûz −
i

k

(s+ imΩ0)
2

(s + imΩ0)2 + 4Ω2
0

dûz
dr

+ F2(0) (3.33)

r > a
(

D2 +
1

r
D − m2

r2
− k2

)

ûz = F3(0) (3.34)

ûr = − i

k

dûz
dr

+ F4(0) (3.35)
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where

F1(0) = − 2Ω0ik

(s+ imΩ0)2
w̃z0 −

1

(s+ imΩ0)

{

1

r

d

dr
(rw̃θ0 −

im

r
w̃r0

}

, (3.36)

F2(0) =
i

k

1

(s+ imΩ0)2 + 4Ω2
0

{2Ω0w̃r0 − (s+ imΩ0)w̃θ0} , (3.37)

F3(0) =
1

r

d

dr

{

2rΩw̃r0

(s+ imΩ)2
− rw̃θ0

(s+ imΩ)

}

+
imw̃r0

r(s+ imΩ)
, (3.38)

F4(0) = − i

k

w̃θ0

(s + imΩ)
+

2iΩw̃r0

k(s+ imΩ)2
, (3.39)

are the functions dependent on the initial vorticity field with w(r, t = 0) = (w̃r0, w̃θ0.w̃z0) being

the initial vorticity field.

The initial value problem for a Rankine vortex has been examined earlier by Arendt et al. [1997],

but for an initial vorticity field restricted to the region r < a; such an initial condition can be

interpreted as a suitably deformed vortex column at the initial instant. Comparing (3.32)-(3.35)

with Arendt et al. [1997], we find that (3.32) and (3.33) are the same, but (3.34) and (3.35)

differ owing to the presence of F3(0) and F4(0). As seen from (3.38) and (3.39) F3(0) and F4(0)

represent vortical disturbances outside the vortex core. Thus, with the present set of equations,

we will be able to investigate the effect of an arbitrary initial vorticity field, and in particular,

the effect of an external disturbance field on the Rankine vortex. Solving (3.32) and (3.34) we

have the following expressions for ûz:

r < a

ûz = AJm(kξr) + g(r) (3.40)

where g(r) = Ym(kξr)

ˆ r

0

πr′

2
F1(0)Jm(kξr′)dr′ − Jm(kξr)

ˆ r

0

πr′

2
F1(0)Ym(kξr′)dr′,

ξ2 = − 4Ω2
0

(s+ imΩ0)2
− 1,

r > a

ûz = BKm(kr) + h(r), (3.41)

where h(r) = Km(kr)

ˆ ∞

r
r′F3(0)Im(kr′)dr′ − Im(kr)

ˆ ∞

r
r′F3(0)Km(kr′)dr′.

In the absence of any volume sources or sinks, the radial and axial components of the disturbance

velocity field (and their transforms) should be continuous across the vortex core boundary (r =

a). From (3.40) and (3.41), the continuity of the axial velocity field gives:

AJm(kξa) + g(a) = BKm(ka) + h(a). (3.42)

Further from (3.33), (3.35), (3.40) and (3.41) the continuity of radial velocity yields:

2mΩ0

ak

s+ imΩ0

(s + imΩ0)2 + 4Ω2
0

[AJm(kξa) + g(a)]− i

k

(s+ imΩ0)
2

(s + imΩ0)2 + 4Ω2
0

[AkξJ ′
m(kξa) + g′(a)]

+F2(0)|r=a = − i

k
[BkK ′

m(ka) + h′(a)] + F4(0)|r=a. (3.43)
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Solving (3.42) and (3.43), one obtains:

A =

{h(a) − g(a)} K ′
m(ka)

kaKm(ka)
− 1

kξ2a

{

ξ2ah′(a) +
2imΩ0g(a)

s+ imΩ0
+ ag′(a)

}

+
i

ka
{F2(0)|r=a − F4(0)|r=a}

K ′
m(ka)

kaKm(ka)
+

J ′
m(kξa)

kξaJm(kξa)
+

2imΩ0

(kξa)2(s+ imΩ0)

,

(3.44)

B =

{g(a) − h(a)} J ′
m(kξa)

kξaJm(kξa)
− 1

kξ2a

{

ξ2ah′(a) +
2imΩ0g(a)

s+ imΩ0
+ ag′(a)

}

+
i

ka
{F2(0)|r=a − F4(0)|r=a}

K ′
m(ka)

kaKm(ka)
+

J ′
m(kξa)

kξaJm(kξa)
+

2imΩ0

(kξa)2(s+ imΩ0)

.

.(3.45)

Thus, the expression for axial velocity can be written as;

r < a

ûz(r, s) =

ˆ ∞

a
r′Km(kr′)F3(0)dr

′

(ka)2Km(ka)

∆

Jm(kξr)

Jm(kξa)
+















−g(a) K ′
m(ka)

kaKm(ka)
− 1

(kξa)2

(

ag′(a) +
2imΩ0

s+ imΩ0
g(a)

)

+ P

∆

Jm(kξr)

Jm(kξa)
+ g(r)















,(3.46)

r > a

ûz =

ˆ ∞

a
r′Km(kr′)F3(0)dr

′

(ka)2Km(ka)

∆

Km(kr)

Km(ka)
+

[

h(r)− h(a)
Km(kr)

Km(ka)

]

+















g(a)
J ′
m(ka)

kξaJm(kξa)
− a

g′(a)

(kξa)2
+ P

∆

Km(kr)

Km(ka)















, (3.47)

where

P =
i

ka

{

F2(0)
∣

∣

∣

r=a
− F4(0)

∣

∣

∣

r=a

}

, (3.48)

∆ =
K ′

m(ka)

kaKm(ka)
+

J ′
m(kξa)

kξaJm(kξa)
+

2imΩ0

(kξa)2(s+ imΩ0)
. (3.49)

Having obtained the expressions for the velocity components in transform space, we need to

invert the above expressions to obtain the form of velocity perturbations in temporal domain.

The terms within braces in the above equations are identical to those obtained by Arendt et al.

[1997] (with the slight modification that P as seen in (3.48), now includes F4(0) too). Thus

F4(0) = 0, they represent the evolution of a disturbance field when the vortex core alone is

perturbed. The remaining terms in (3.46) and (3.47) are new and contain information regarding

vortical perturbations outside the vortex core. To obtain the inverse, we need to understand

the number and nature of singularities in (3.46) and (3.47). The singularities, both true and
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apparent, appear as poles at s = −imΩ (poles of F3,4(0)), s = −i(m± 2)Ω0 (poles of F2(0)) and

s = sn (zeros of ∆) and as a non-isolated essential singularity s = −imΩ0 - the accumulation

point of the discrete spectrum. The results obtained in appendix D show that the contributions

to the linear response of a perturbed vortex column arise from the simple poles s = sn, corre-

sponding to the discrete spectrum, the simple pole s = −imΩ corresponding to the continuous

spectrum and s = −imΩ0 corresponding to the accumulation point of the discrete spectrum
(

coming from the singularity of F4(0)
∣

∣

∣

r=a

)

.

To obtain the Laplace inverse, we first define the following functions:

q1(s) =
1

∆

Jm(kξr)

Jm(kξa)
, (3.50)

q2(s) =
1

∆

Km(kr)

Km(ka)
. (3.51)

The inverse Laplace transform of the above functions are given as:

Q1(t) = L−1(q1(s)) =
∑

b=±1

∞
∑

n=1

Bb
ne

−iωnt Jm(kξnr)

Jm(kξna)
− (ka)2Km(ka)Im(kr)δ(t), (3.52)

Q2(t) = L−1(q2(s)) =
∑

b=±1

∞
∑

n=1

Bb
ne

−iωntKm(kr)

Km(ka)
− (ka)2Km(kr)Im(ka)δ(t), (3.53)

where

1

Bb
n

=
∂∆

∂s

∣

∣

∣

∣

s=−iωn

=
(ξ2n + 1)3/2

2ξ2nbiΩ0

[

2J ′
m(kξna)

kξnaJm(kξna)
+

{

J ′
m(kξna)

Jm(kξna)

}2

+ 1− m2

(kξna)2
+

bm(ξ2n + 2)
√

ξ2n + 1(kξna)2

]

,

with −iωn = sn and L−1(.) =
1

2πi

ˆ γ+i∞

γ−i∞
(.)estds being the inverse Laplace transform. In (3.52)

and (3.53), b = +1 corresponds to the retrograde waves and b = −1 corresponds to the cograde

waves. In the inverse Laplace transforms, apart from the obvious contribution from zeroes of

∆, the term proportional to δ(t) term arises as neither q1(s) and q2(s) do not satisfy Jordan’s

lemma (Ablowitz & Fokas [2003]).

Applying the convolution theorem to (3.46) and (3.47), and using (3.52) and (3.53) together with

the inverse Laplace transform results obtained by Arendt et al. [1997] for core perturbations,

the disturbance velocity field in temporal domain is given by:

r < a

ũz(r, t) =

ˆ t

0
[L1(t− τ) + L2(t− τ)]Q1(τ)dτ +

L−1















−g(a) K ′
m(ka)

kaKm(ka)
− 1

(kξa)2

(

ag′(a) +
2imΩ0

s+ imΩ0
g(a)

)

+
i

ka
F2(0)

∣

∣

∣

r=a

∆

Jm(kξr)

Jm(kξa)
+ g(r)















=

ˆ t

0
[L1(t− τ) + L2(t− τ)]Q1(τ)dτ +

∑

b=±1

∞
∑

n=1

bCb
ne

−iωnt Jm(kξnr)

Jm(kξna)
, (3.54)
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r > a

ũz(r, t) =

ˆ t

0
[L1(t− τ) + L2(t− τ)]Q2(τ)dτ + L−1

[

h(r)− h(a)
Km(kr)

Km(ka)

]

+

L−1















g(a)
J ′
m(ka)

kξaJm(kξa)
− a

g′(a)

(kξa)2
+

i

ka
F2(0)

∣

∣

∣

r=a

∆

Km(kr)

Km(ka)















=

ˆ t

0
[L1(t− τ) + L2(t− τ)]Q2(τ)dτ + L−1

[

h(r)− h(a)
Km(kr)

Km(ka)

]

+
∑

b=±1

∞
∑

n=1

bCb
ne

−iωntKm(kr)

Km(ka)
,

(3.55)

where,

Cb
n = b

[

g(a)J ′
m(kξna)

kξnaJm(kξna)
− a

g′(a)

(kξna)2
+

i

ka
F2(0)

∣

∣

∣

r=a,s=sn

]

Bb
n ,

L1(t) = − i

ka
L−1

{

F4(0)
∣

∣

∣

r=a

}

= − 1

k2a
[ w̃θ0(a)− 2Ω0t w̃r0(a)] e

−imΩ0t,

L2(t) = L−1















ˆ ∞

a
r′Km(kr′)F3(0)dr

′

(ka)2Km(ka)















=

ˆ ∞

a

Km(kr′)

(ka)2Km(ka)

[

imw̃r0e
−imΩ(r′)t +

d

dr′

{

(

2Ω(r′)t w̃r0 − w̃θ0

)

r′e−imΩ(r′)t
}

]

dr′.

Incorporating all the results obtained above, performing the inverse Fourier transform and ac-

counting for the azimuthal dependence, we can write the following closed-form expression for

disturbance velocity field,

r < a

uz(x, t) =

∞
∑

m=−∞

1

2π

ˆ ∞

−∞
ei(kz+mθ)

[

−Im(kr)

ˆ ∞

a
Km(kr′)A dr′ +

∑

b=±1

∞
∑

n=1

bCb
ne

−iωnt Jm(kξnr)

Jm(kξna)

− 1

k2a

∑

b=±1

∞
∑

n=1

Bb
n

Jm(kξnr)

Jm(kξna)

{

w̃θ0Z(a) +
ia

m
w̃r0

dZ
dr

∣

∣

∣

r=a

}

− (ka)2Km(ka)Im(kr)L1(t)

+
∑

b=±1

∞
∑

n=1

Bb
n

Jm(kξnr)

Jm(kξna)

ˆ ∞

a

Km(kr′)

(ka)2Km(ka)

[

imw̃r0Z − d

dr′

{(

w̃θ0Z +
ir′

m
w̃r0

dZ
dr′

)

r′
}]

dr′
]

dk,

(3.56)
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r > a

uz(x, t) =
∞
∑

m=−∞

1

2π

ˆ ∞

−∞
ei(kz+mθ)

[

−Km(kr)

ˆ r

a
Im(kr′)A dr′−

Im(kr)

ˆ ∞

r
Km(kr′)A dr′ +

∑

b=±1

∞
∑

n=1

bCb
ne

−iωntKm(kr)

Km(ka)

− 1

k2a

∑

b=±1

∞
∑

n=1

Bb
n

Km(kr)

Km(ka)

{

w̃θ0Z(a) +
ia

m
w̃r0

dZ
dr

∣

∣

∣

r=a

}

− (ka)2Im(ka)Km(kr)L1(t)

+
∑

b=±1

∞
∑

n=1

Bb
n

Km(kr)

Km(ka)

ˆ ∞

a

Km(kr′)

(ka)2Km(ka)

[

imw̃r0Z − d

dr′

{(

w̃θ0Z +
ir′

m
w̃r0

dZ
dr′

)

r′
}]

dr′
]

dk,

(3.57)

where Z =
e−iωnt − e−imΩ(r′)t

−i(ωn −mΩ(r′))
,

A =

[

imw̃r0e
−imΩ(r′)t +

d

dr′

{

(

2Ω(r′)t w̃r0 − w̃θ0

)

r′e−imΩ(r′)t
}

]

.

Equations (3.56) and (3.57) are the exact analytical expressions for the linear response of a vortex

column to any arbitrary vortical disturbances both inside and outside the vortex core. The above

expressions would also be the Greens function within the RDT framework ( Townsend [1956],

Miyazaki & Hunt [2000]), describing the linear interaction of a turbulent field with a Rankine

vortex. As a consistency check, the vorticity field corresponding to the continuous spectrum,

given by (2.62)-(2.64), when provided as an initial condition in equations (3.56) and (3.57),

leads to the velocity field for the corresponding continuous spectrum eigenmode (2.48)-(2.50).

An analogous scenario holds for the Kelvin modes.

The solution in the above form has the following salient features:

1. There exists separate contributions corresponding to the denumerable infinity of discrete

modes (the 3D Kelvin modes) and the continuous spectrum (the Λ1 and Λ2 families).

2. There exists terms terms of the form e−iωnt − e−imΩ(r′)t, which represent the interaction

between the discrete and continuous spectra. Thus, similar to the 2D case, there exists

limits, mΩ → ωn, when the vortex column must exhibit a secular growth.

3. A novel feature in three dimensions is the algebraic growth (terms involving A in (3.56)

and (3.57) proportional to t) possible due to the non-normality of the advection operator.

In (3.56) and (3.57) there exists an O(t) growth associated with an initial radial vorticity

perturbation. It arises due to a non-zero w̃r0 producing an algebraically growing w̃θ via

vortex stretching-tilting. A detailed discussion in this regard will be presented in section

3.3.3.

There are three possible mechanisms of algebraic growth in 3D - the Orr mechanism, a reso-

nant interaction between the discrete and continuous spectrum, and the algebraic growth via

vortex stretching-tilting. The latter two mechanisms have been identified above and, as already

indicated the stretching-tilting mechanism is unique to 3D. The severity of algebraic growth

in 3D depends on the presence or absence of a coupling between the resonant interaction and
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stretch-tilt induced algebraic growth. This too will be elaborated in section 3.3.3. The physics

of the Orr mechanism in 3D remains identical to that in 2D (section 3.2.2). We will be therefore

only consider (infinitely) localized initial conditions, representable in terms of delta functions

and their derivatives. Such initial conditions will not be subject to the differential shear action

that leads to the Orr mechanism of growth for an initial condition with an upstream tilt.

3.3.1 Equivalence to modal superposition

From the modal analysis in chapter 2, we have the following expression for the evolution of an

arbitrary initial vorticity in terms of the Kelvin modes and the Λ1 and Λ2 families of continuous

spectrum modes.

w(x, t) =

ˆ ∞

a+

[

XΛ1(rf )ŵ
Λ1(r; rf )+XΛ2(rf )ŵ

Λ2(r; rf )
]

ei[kz+m(θ−Ω(rf )t)]drfH(r−a)+
{

∑

b=±1

∞
∑

n=1

Cnbŵ
Kelvin
nb (r)e−iωnt −

ˆ ∞

a+

∑

b=±1

∞
∑

n=1

[

XΛ1(rf )G
Λ1
nb +XΛ2(rf )G

Λ2
nb

]

ŵKelvin
nb (r)(e−iωnt−e−imΩ(rf )t)drf

}

ei(kz+mθ), (3.58)

with

GΛi
nb =

[

gi(a)J
′
m(kξna)

kξnaJm(kξna)
− a

g′i(a)

(kξna)2
+ Pi

]

Bb
n, (3.59)

where

Pi =
1

k2a

{

2Ω0w
Λi
r (a) + i(ωn −mΩ0)w

Λi
θ (a)

(ωn −mΩ0)2 − 4Ω2
0

}

, (3.60)

gi(a) =

ˆ a

0

πr′

2

[

2Ω0ik

(ωn −mΩ0)2
wΛi
z − i

ωn −mΩ0

{

d

dr′
(rwΛi

θ )− imwΛi
r

}]

{

Ym(kξna)Jm(kξnr
′)− Jm(kξna)Ym(kξnr

′)
}

dr′, (3.61)

and i = 1, 2. ŵKelvin
nb (r) gives the vorticity eigenfunction of the Kelvin modes, and ŵΛi(r; rf ) the

(singular) vorticity eigenfunctions of the Λi family.

Using the expressions for CSM vorticity components, (wΛi
r , w

Λi
θ , wΛi

z ), from equations (2.62)-

(2.64) and (2.75)-(2.77) one could simplify GΛi
nb as:

GΛi
nb =

dΛi

i(ωn −mΩ)

M

(ka)2Km(ka)

1

4Ω2
0 − g2

Bb
n. (3.62)

Further from the expressions for XΛi and G
Λi
nb we have,

XΛ1(rf )G
Λ1
nb +XΛ2(rf )G

Λ2
nb =

1

i(ωn −mΩ)(ka)2km(ka)
[{

krfK
′
m(krf )

(

wθ0(rf )−
i

m

d

drf
(rfwr0(rf ))

)

− i

m
(krf )

2Km(krf )wr0(rf )

}

H(rf − a)−

i

m
ka2K ′

m(ka)wr0(a)δ(rf − a)
]

(3.63)
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which gives us the following expression for wr(r, t)

wr(r, t) = wr0(r)e
−imΩ(r)tH(r − a) +

∑

b=±1

∞
∑

n=1

Cnbŵ
Kelvin
r,nb (r)e−iωnt −

i

m

∑

b=±1

∞
∑

n=1

Bnbŵ
Kelvin
r,nb (r)

ˆ ∞

a+

1

(ka)2km(ka)

[{

krfK
′
m(krf )

(

imwθ0(rf ) +
d

drf
(rfwr0(rf ))

)

+

(krf )
2Km(krf )wr0(rf )

}

+ ka2K ′
m(ka)wr0(a)δ(rf − a)

]

Z drf (3.64)

where, Z =
e−iωnt − e−imΩt

−i(ωn −mΩ)

⇒ wr(r, t) = wr0(r)e
−imΩ(r)tH(r − a) +

∑

b=±1

∞
∑

n=1

Cnbŵ
Kelvin
r,nb (r)e−iωnt −

1

k2a

∑

b=±1

∞
∑

n=1

Bb
nŵ

Kelvin
r,nb (r)

{

w̃θ0Z(a) +
ia

m
w̃r0

dZ
dr

∣

∣

∣

r=a

}

+
∑

b=±1

∞
∑

n=1

Bb
nŵ

Kelvin
r,nb (r)

ˆ ∞

a+

Km(krf )

(ka2)Km(ka)
[

imwr0(rf )Z − d

drf

{

rf

(

wθ0(rf )Z +
irf
m
wr0(rf )

dZ

drf

)}]

drf (3.65)

Similarly,

wθ(r, t) = (wθ0(r)− 2Ωtwr0(r))e
−imΩ(r)tH(r − a) +

∑

b=±1

∞
∑

n=1

Cnbŵ
Kelvin
θ,nb (r)e−iωnt −

1

k2a

∑

b=±1

∞
∑

n=1

Bb
nŵ

Kelvin
θ,nb (r)

{

w̃θ0Z(a) +
ia

m
w̃θ0

dZ
dr

∣

∣

∣

r=a

}

+
∑

b=±1

∞
∑

n=1

Bb
nŵ

Kelvin
θ,nb (r)

ˆ ∞

a+

Km(krf )

(ka2)Km(ka)
[

imwr0(rf )Z − d

drf

{

rf

(

wθ0(rf )Z +
irf
m
wr0(rf )

dZ

drf

)}]

drf (3.66)

Recalling the kinematic relation,

Muz(r, t) =
1

r
[imwr(r, t) −D(rwθ(r, t))] , (3.67)

where M =
(

D2 + 1/rD −m2/r2 − k2
)

, one obtains:

Muz(r, t) =
A
r
H(r − a)− (wθ0(a)− 2Ω0twr0(a))e

−imΩ0tδ(r − a) +
∑

b=±1

∞
∑

n=1

CnbM ûKelvin
z,nb (r)e−iωnt −

1

k2a

∑

b=±1

∞
∑

n=1

Bb
nM ûKelvin

z,nb

{

w̃θ0Z(a) +
ia

m
w̃θ0

dZ
dr

∣

∣

∣

r=a

}

+
∑

b=±1

∞
∑

n=1

Bb
n M ûKelvin

z,nb (r)

ˆ ∞

a+

Km(krf )

(ka2)Km(ka)
[

imwr0(rf )Z − d

drf

{

rf

(

wθ0(rf )Z +
irf
m
wr0(rf )

dZ

drf

)}]

drf (3.68)

ûKelvin
z,nb (r) =

Jm(kξnr)

Jm(kξna)
H(a− r) +

Km(kr)

Km(ka)
H(r − a).
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On inverting the above relation we obtain the expression obtained from IVP, equation (3.56)

and (3.57), thus proving the completeness of the modal expansion.

3.3.2 Excitation by a cylindrical vortex sheet : the 3d inviscid

resonances

To begin with, we introduce a cylindrical vortex sheet stationed at r = r1 as an initial condition,

the associated vorticity field being given by, wr0 = 0, wθ0 = −kr1V0/m δ(r − r1)e
i(kz+mθ),

wz0 = V0δ(r − r1)e
i(kz+mθ) (r1 > a). The axial component of the velocity field given by (3.56)-

(3.57) simplifies to:

ũz =
kr1V0
m

ei(kz+mθ)
[

kr1
{

K ′
m(kr1)Im(kr)H(r1 − r) + I ′m(kr1)Km(kr)H(r − r1)

}

e−imΩ1t+

∑

b=±1

∞
∑

n=1

Bb
nû

Kelvin
z,nb (r)

kr1K
′
m(kr1)

(ka)2Km(ka)

e−iωnt − e−imΩ1t

i(ωn −mΩ1)

]

, (3.69)

where Ω1 = Ω(r1) =
Ω0a

2

r21
and ûKelvin

z,nb (r) =
Jm(kξnr)

Jm(kξna)
H(a− r) +

Km(kr)

Km(ka)
H(r − a).

Using equations (3.33),(3.35),(3.46) and (3.47) and performing the necessary inverse Laplace

transform we can also obtain the radial component of the velocity disturbance field given by,

ũr =
r1V0
mr

ei(kz+mθ)
[

−ikr1
{

K ′
m(kr1)I

′
m(kr)H(r1 − r) + I ′m(kr1)K

′
m(kr)H(r − r1)

}

e−imΩ1t+

∑

b=±1

∞
∑

n=1

Bb
nû

Kelvin
r,nb (r)

kr1K
′
m(kr1)

(ka)2Km(ka)

e−iωnt − e−imΩ1t

i(ωn −mΩ1)

]

, (3.70)

where

ûKelvin
r,nb (r) =

1

ξ2n

{

2imΩ0

(ωn −mΩ0)

Jm(kξnr)

Jm(kξna)
− i

kξnrJ
′
m(kξnr)

Jm(kξna)

}

H(a− r)− iK ′
m(kr)

Km(ka)
H(r − a).

The velocity field at t = 0, obtained from (3.69)-(3.70), represents the velocity field induced by

a vortex sheet, threaded by helical vortex lines. This may also be deduced from Biot-Savart law.

Incidentally, since a helical vortex filament is a Fourier summation of helical vortex sheets over

all m for a fixed pitch, one can sum (3.69) and (3.70) over all m keeping m/k fixed to obtain

the Kapteyn series representation of velocity field induced by a helical vortex filament (Hardin

[1982]).

Now we examine the secular limits, mΩ1 → ωj, j ∈ (1, n) (and b = +1) in (3.69), which lead to

resonant interactions of the continuous spectrum and the 3D discrete spectrum. Unlike the 2D

case, herein we have a denumerable infinity of discrete modes interacting with the continuous

spectrum, and therefore from the perspective of identifying the most dangerous disturbance, one

needs to identify the strongest resonant excitation and its variation with both m and k. From
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(3.69),the resonant solution can be written as,

ũz =
kr1V0
m

ei(kz+mθ)
[

kr1
{

K ′
m(kr1)Im(kr)H(r1 − r) + I ′m(kr1)Km(kr)H(r − r1)

}

e−iωjt+

∑

b=±1

∞
∑

n=1
n 6=j∪b6=1

Bb
nû

Kelvin
z,nb (r)

kr1K
′
m(kr1)

(ka)2Km(ka)

e−iωnt − e−iωjt

i(ωn − ωj)
− tB1

j û
Kelvin
z,j1 (r)

kr1K
′
m(kr1)

(ka)2Km(ka)
e−iωjt







(3.71)

ũr =
kr1V0
m

ei(kz+mθ)
[

−ikr1
{

K ′
m(kr1)I

′
m(kr)H(r1 − r) + I ′m(kr1)K

′
m(kr)H(r − r1)

}

e−iωjt+

∑

b=±1

∞
∑

n=1
n 6=j∪b6=1

Bb
nû

Kelvin
r,nb (r)

kr1K
′
m(kr1)

(ka)2Km(ka)

e−iωnt − e−iωjt

i(ωn − ωj)
− tB1

j û
Kelvin
r,j1 (r)

kr1K
′
m(kr1)

(ka)2Km(ka)
e−iωjt







(3.72)

where ωj is the frequency of the resonant Kelvin mode, and the term in the original summation,

with n = j, now appears as the O(t) secular contribution in 3.71 and 3.72. Since resonance

occurs by way of a cylindrical vortex sheet located at one of the Kelvin critical radii, one can

resonate only the retrograde Kelvin modes. Further by finding the energy as a function of time

for each of these resonant modes, one may quantify the wave-number dependence of the 3D

resonant growth rates; this is done in section 3.3.4. It is also worth noting that, due to the

absence of critical radii, there cannot be a resonant growth for axisymmetric Kelvin modes in

the linear regime.

In section 3.2.3, there was a discussion on studies related to the resonant interaction of the

continuous and discrete spectra in various plane parallel flow problems. A problem that is

relevant to the 3D inviscid resonances analyzed here is the short wavelength instability of a vortex

column in the presence of a straining flow that is popularly known as the elliptic instability.

The ambient flow allows for parametric resonances between Kelvin modes of different azimuthal

wavenumbers, and the discrete spectrum is fundamentally altered that there are now unstable

modes. But, the inviscid resonances and the resulting algebraic growth rates resulting from the

resonances between the discrete and continuous spectra would seem to only be marginally altered

by the imposed strain, and thus our analysis would continue to hold (over the time scales short

compared to that of the (weak) instability). A relevant issue then is the relative importances of

the exponential and algebraic growth responses. Fukumoto [2003] mentions that the possibility

of resonance between continuous and discrete spectrum needs to be explored. The linearized

scenario discussed here may also be modified in a non-trivial manner by non-linear effects. For

instance, although there is no resonance possible for axisymmetric modes at linear order, with

the inclusion of non-linear effects, one may have a resonance arising from a vortex ring wrapped

around a vortex column that propagates at a speed close to the group velocity of a axisymmetric

vortex wave resonance occurs. In the linear theory the ring is considered stationary, excluding

possibility of resonance.
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(a) Parallel shear flow - plane couette (b) Curvilinear shear flow - point vortex

Figure 3.8: Algebraic growth in shear flow due to stretching/tilting of vortex lines.

3.3.3 Excitation by a vortex ‘ribbon’ (with radial vorticity) :

the 3D inviscid (enhanced) resonances

In the context of the transient growth mechanisms in 3D, a reference was made to the algebraic

growth (linear in t) associated with an initial radial vorticity perturbation arising from a vortex

tilting and stretching mechanism (Pradeep & Hussain [2006]). This may be seen simply by

considering the evolution of a perturbation vorticity field in a pure straining flow (due to a point

vortex). The governing equations may be written as,

Lw̃r = 0,

Lw̃z = 0

Lw̃θ = w̃rrΩ
′,

where L =
∂

∂t
+ imΩ. (3.73)

The perturbation vorticity field at time t is given by,

w̃r(r, t) = w̃r(r, 0)e
−imΩ(r)t , (3.74)

w̃z(r, t) = w̃z(r, 0)e
−imΩ(r)t , (3.75)

w̃θ(r, t) = w̃θ(r, 0)e
−imΩ(r)t + w̃r(r, 0)rΩ

′t e−imΩ(r)t. (3.76)

Thus, although both radial and axial vorticity components get convected by the flow, an ini-

tial ωr will produce an ωθ contribution proportional to t in the presence of background strain.

The evolution can be visualized as one leading from azimuthal streaks to azimuthal rolls, and

therefore been termed as the anti-lift-up effect (Antkowiak & Brancher [2007]). The reason is,

of course, that the well-known lift-up effect, a transient growth mechanism relevant to parallel

flows, may be visualized as producing stream-wise streaks from stream-wise rolls. The popular

explanation is one in terms of momentum transport: Schmid & Henningson [2001]. This dy-
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namics is consistent with observations, in simulations, of (Melander & Hussain [1993]) vortex

turbulence interactions being characterized by vortex-ring structures wrapped around the vortex

column.

Despite the aforementioned terminology, both anti-lift-up and lift-up effects may be explained

in a consistent way based on (inviscid) vorticity dynamics. Figure 6.1 depicts the algebraic

growth resulting from vortex stretching/tilting in both parallel and curvilinear shear flows. In

the parallel shear flow case, the lift-up effect arises because the vertical shear in the mean vor-

ticity direction, due to a spanwise variation in the vertical perturbation velocity (∂ũy/∂z: a

‘roll’ initial condition) can tilt the mean vorticity (−U ′
), producing wall-normal perturbation

vorticity (ω̃y: streak). One might be led to also conclude that a stretching-tilting of ω̃y by the

mean shear (U
′
) to produce ω̃x, the parallel-flow analog of the anti-lift-up, is another possible

mechanism of algebraic growth. But such a contribution exactly cancelled by the tilting of the

base-state vorticity (−U ′
) by a spanwise variation of horizontal perturbation velocity (∂ũx/∂z:

this is responsible for ω̃y in the first place). Thus, only the ‘lift-up’ mechanism survives. For the

curvilinear shear flow induced by a point vortex, the base-state vorticity is zero everywhere in

the flow except at the origin (where perturbation shear-rates vanish), and the lift-up mechanism

is therefore absent in this case. On the other hand, the second mechanism which was absent in

parallel flow due to a precise cancellation, persists in the curvilinear case and the radial pertur-

bation vorticity, ω̃r gets stretched-tilted by mean shear to produce ω̃θ.

Now, we illustrate the stronger growth possible when the above growth mechanism for a point

vortex is coupled with the resonant interaction possible for the Rankine vortex. To see this, we

consider a localized initial condition with radial vorticity, a so-called localized vortex ‘ribbon’,

of the form:

wr0 = −ikr1V0 δ(r − r1)e
i(kz+mθ), (3.77)

wz0 = V0r
2
1/r δ

′(r − r1)e
i(kz+mθ) (r1 > a). (3.78)

The above initial conditions are generalized function limits of the smooth initial conditions

used by Pradeep & Hussain [2006] for studying the transient growth (see figure 3.9), and the

associated optimal perturbations, of a top-hat vortex. For resonance, r1 is chosen to be the
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Figure 3.9: Isosurfaces of initial perturbation vorticity wrapped around the vortex column.
Smooth versions of generalized function initial condition used (Pradeep & Hussain [2006]). (a)
wr (3.77), (b) wz (3.78)

critical radius of a Kelvin mode, ωj, and from (3.56)-(3.57) one obtains:

ũz = ikr1V0e
i(kz+mθ)

[

{(imKm(kr1)− 2Ω1t kr1K
′
m(kr1))Im(kr)H(r1 − r) + (imIm(kr1)−

2Ω1t kr1I
′
m(kr1))Km(kr)H(r1 − r)}e−iωjt +

∑

b=±1

∞
∑

n=1
n 6=j∪b6=1

Bb
nûz,nb

{

mKm(kr1)

(ka)2Km(ka)

e−iωnt − e−iωjt

(ωn − ωj)
−

2Ω1
kr1K

′
m(kr1)

(ka)2Km(ka)

e−iωnt − (1− i(ωn − ωj)t)e
−iωjt

(ωn − ωj)2

}

−B1
j ûz,j1

{imKm(kr1)− Ω1tkr1K
′
m(kr1)}

(ka)2Km(ka)
te−iωjt

]

(3.79)

ũr = ikr1V0e
i(kz+mθ)

[

−i{(imKm(kr1)− 2Ω1t kr1K
′
m(kr1))I

′
m(kr)H(r1 − r) + (imIm(kr1)−

2Ω1t kr1I
′
m(kr1))K

′
m(kr)H(r1 − r)}e−iωjt +

∑

b=±1

∞
∑

n=1
n 6=j∪b6=1

Bb
nûr,nb

{

mKm(kr1)

(ka)2Km(ka)

e−iωnt − e−iωjt

(ωn − ωj)
−

2Ω1
kr1K

′
m(kr1)

(ka)2Km(ka)

e−iωnt − (1− i(ωn − ωj)t)e
−iωjt

(ωn − ωj)2

}

−B1
j ûr,j1

{imKm(kr1)− Ω1tkr1K
′
m(kr1)}

(ka)2Km(ka)
te−iωjt

]

(3.80)

where we note that, in contrast to (3.71) and (3.72), the dominant term in (3.80) and (3.80) is

O(t2). Thus, as expected, the presence of radial vorticity transforms the linear resonant growth

in section 3.3.2 to a quadratic one. If one instead proceeds with a smooth initial conditions

with a finite spatial extent (the ones described in Pradeep & Hussain [2006]) then, akin to 2D

calculations, the resonant behavior would eventually be quenched by long time phase-mixing of

the continuous spectrum modes, and the long time response would be large amplitude discrete

mode superposition. For any finite Re, the phase-mixing leading to progressive fine-scaling of

the perturbation vorticity will be arrested at a time O(Re1/3) when transverse viscous diffusion
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becomes comparable to differential shear, and a steady spiral structure with a downstream tilt

results; this is confirmed by simulations (Pradeep & Hussain [2006]).

3.3.4 Energetics

We define,

E(m,k, t) =
1

2

ˆ ∞

0
{uru∗r + uθu

∗
θ + uzu

∗
z} rdr, (3.81)

the leading order behavior of energy for large time, for both vortex-sheet and vortex-ribbon

initial conditions, can be found from (3.71) and (3.80). For this purpose, we use the following

integrals:

ˆ r1

0
x

{

(I ′m(kx))2 +

(

1 +
m2

(kx)2

)

(Im(kx))2
}

dx =
r1Im(kr1)I

′
m(kr1)

k
(3.82)

ˆ ∞

r1

x

{

(K ′
m(kx))2 +

(

1 +
m2

(kx)2

)

(Km(kx))2
}

dx = −r1Km(kr1)K
′
m(kr1)

k
(3.83)

a) Resonance (Cylindrical vortex sheet) -

wr(x, 0) = 0; wθ(x, 0) = −kr1V0/m δ(r − r1)e
i(kz+mθ); wz(x, 0) = V0δ(r − r1)e

i(kz+mθ)

E(m,k, tmax)

E(m,k, 0)
= − H

r21I
′
m(kr1)K ′

m(kr1)
t2max +O(tmax) (3.84)

b) Vortex stretch-tilt enhanced resonance (Vortex ‘ribbon’) -

wr(x, 0) = −ikr1V0 δ(r − r1)e
i(kz+mθ); wθ(x, 0) = 0; wz(x, 0) = V0r

2
1/r δ

′(r − r1)e
i(kz+mθ)

E(m,k, tmax)

E(m,k, 0)
=

(

k

m

)2 H
Im(kr1)Km(kr1)

Ω2
1 t

4
max +O(t3max) (3.85)

where

H =

(

a|χ|
2ξjJm(βja)(ωj −mΩ0)

)2
[

C2
+{J2

m−1(βja)− Jm−2(βja)Jm(βja)}+

C2
−{J2

m+1(βja)− Jm+2(βja)Jm(βja)} − 2C+C−{J2
m(βja)− Jm−1(βja)Jm+1(βja)}

]

− a|χ|2K ′
m(ka)

kKm(ka)

(3.86)

χ = −B1
j

kr1K
′
m(kr1)

(ka)2Km(ka)
and C± = ωj − (m± 2)Ω0 (3.87)

and, within the inviscid framework as applied to a Rankine vortex, tmax is an arbitrarily chosen

time instant large enough for the strongest algebraic growth to become prominent. Figure

3.10 shows a comparison between the energy computed due to the singular forcings (including

the sub-dominant secular contributions and the non-secular contribution of the Kelvin-mode

superposition), and the corresponding leading order secular behaviors. This then gives an idea

of the tmax beyond which (3.84) and (3.85) closely approximated the growth in perturbation

energy. A finite duration of growth, and therefore growth rather than a growth-rate spectrum,
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can result from the finite spatial extent of the initial condition, a finite Re or from considering

a smooth Rankine-like profile instead (wherein the neutrally stable discrete modes are replaced

by decaying quasi-modes).

The above secular growth will be arrested via shear-induced dispersion for a smooth initial

condition (section 3.2.3) and for finite Re, viscosity. tmax would then assume the role of a cut-off

time, beyond which growth is no longer possible. For non-axisymmetric modes, shear-enhanced

diffusion is possibly the dominant mechanism - predicting a O((Re/m2)1/3) viscous cut-off time-

scale (where Re has been defined based on the local shear-rate). Figure 3.11 illustrates the

k-dependence of the normalized energy growth-rate spectrum (3.84) and (3.85) for various m.

For pure resonance (cylindrical vortex sheet initial condition) the k = 0 case, figure 3.11(a),

experiences the largest growth (Ω2
0((m− 1)/m)m being the limiting value). With the additional

coupling to a stretch-tilt mechanism (figure 3.11(b)), the surprising persistence of quartic growth

for k → 0 is on account of the limiting dipole initial condition for ωz which is equivalent to a

source localized at the resonant radius.

That inviscid dynamics associated with a Rankine vortex captures the essential physics of the

transient growth observed for vortex columns, may be seen from a qualitative comparison of the

growth-rate spectrum in figure 3.12(a) with the results of recent simulations (linearized viscous

DNS) for finite Re. Figure 3.12(a) shows that the peak growth-rate, for m = 1, occurs at k ≈ 1.2

while the predicted by the numerical simulations (Pradeep & Hussain [2010], see figure 3.12(b))

at k ≈ 1.35; a confirmation of earlier claims based on finite Re numerics that the peak owes its

orgin due to resonance of Kelvin modes. Of course, the comparison is by no means complete since

a growth-rate spectrum in figure 3.12(a) for a transversely coherent initial condition is being

compared to the maximum growth rate envelope for a simulation that includes the growth due

to the Orr mechanism for an initial condition in the form of a leading spiral. Thus, ideally, one

must include the effects of the Orr mechanism in the former case over a time period of O(Re1/3);

but, we expect this to leave the k-dependence unaltered. Although the secondary peaks in figure

3.12(a) are not observed in Pradeep & Hussain [2010], the calculation of Antkowiak & Brancher

[2004] clearly identifies them. Figure 3.13 shows this interesting mode-hopping behavior in detail

for m = 2 (present for all m); wherein with increasing k, the largest growth-rate is attained by

modes with increasing structure (termed the Bessel modes). This mode-hopping behavior has

been observed in linearized viscous calculations (Antkowiak [2005]). It is worth noting that one

expects that any resemblance between the inviscid predictions, and actual finite Re numerics,

to deteriorate with increasing k on the one hand due to the increasing importance of viscosity

for a fixed m, and one other hand because the behavior at large k is governed by increasingly

structured Bessel modes in which case the importance of viscosity is even more important.

3.3.5 Excitation by an axisymmetric vortex sheet

Departing from the asymmetric initial conditions focussed so far, in this section, we briefly

consider an axisymmetric initial condition in the form of a cylindrical vortex sheet with only

azimuthal vorticity, ωθ = V0 δ(r − r1)e
ikz, r1 again being a radial location in the irrotational
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(b) Vortex stretch-tilt enhanced resonance (ωr 6= 0)

Figure 3.10: Temporal evolution of E(m,k, t)/E(m,k, 0) computed for (a) a cylindrical vortex
sheet forcing (3.71-3.72) and comparison with the predicted leading order behavior (3.84); (b)
a vortex ‘ribbon’ forcing (3.80-3.80) and comparison with the predicted leading order behavior
(3.85)
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Figure 3.11: The normalized energy growth-rate spectrum (a = 1,Ω0 = 0.5, tmax = 1 in both
cases) for vortex-sheet resonance initial condition (a) and vortex stretch-tilt enhanced resonance
condition (b).
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calculations (initial condition is vortex stretch-tilt enhanced resonance) and its comparison to
b) the ‘Gain’ curve obtained via optimal perturbation calculations (Pradeep & Hussain [2010])
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Figure 3.13: Evidence of mode-hopping in the normalized energy growth-rate spectrum for
m = 2 (initial condition is vortex stretch-tilt enhanced resonance).

exterior. The velocity field can be shown to be,

ũz = −V0eikz
[

kr1
{

K ′
0(kr1)I0(kr)H(r1 − r) + I ′0(kr1)K0(kr)H(r − r1)

}

+

∑

b=±1

∞
∑

n=1

Bb
nû

Kelvin
z,nb (r)

kr1K
′
0(kr1)

(ka)2K0(ka)

e−iωnt − 1

iωn

]

. (3.88)

Inside the core the velocity field considerably simplifies to:

ũz = −V0eikz
∑

b=±1

∞
∑

n=1

Bb
n

J0(kξnr)

J0(kξna)

kr1K
′
0(kr1)

(ka)2K0(ka)

e−iωnt

iωn
(3.89)

The cancelling of the summation term independent of t with the first term in 3.88 is a result of

the Dini series form of the summation term given by,

I0(kr) =
∑

b=±1

∞
∑

n=1

Bb
n

J0(βnr)

J0(βna)

1

(ka)2K0(ka)

1

iωn
(3.90)

(This result is proved in Appendix G). Thus, rather surprinsingly, a steady axisymmetric vortex

sheet excites only a purely oscillatory (zero mean) Kelvin mode response inside the vortex core.

Recall from chapter 2 that for the axisymmetric case, the continuous spectrum consists of those

steady modes for which the velocity field vanishes inside the core. The constraint of a quiescent

core takes the form:
ˆ ∞

1
Ψ(r′)kr′K ′

0(kr
′)dr′ = 0 (3.91)



3.4 Conclusion 99

A canonical member of the axisymmetric continuous spectrum mode consists of two vortex

sheets located outside the core at r = a and r = b such that the ratio of their amplitudes is

−bK ′
0(kb)/(aK

′
0(ka)). Although the mechanism of resonance is absent in the axisymmetric case,

it serves as a nice basis for studying response of a vortex column to an arbitrary axisymmetric

structure, the most important of them being a vortex ring. As discussed before, since the

simulations of Melander & Hussain [1993] - vortex rings wrapped around vortex column has been

considered a persistent feature of vortex column - external turbulence interaction (Miyazaki &

Hunt [2000], Antkowiak & Brancher [2007]). Marshall [1997] peformed a numerical study of

periodic vortex ring wrapped around a vortex column. Rings of weak strength induced standing

waves in the core and as they became stronger they led to vorticity being ejected radially outward

from the column in form thin sheets which wrapped around the rings.

In appendix E it is shown that the velocity field due to a vortex ring is the integral of velocity

field of a helical vortex sheet over the entire k−space.

ũring =
Γ

2π

ˆ ∞

−∞
ũsheet dk (3.92)

Thus we the perturbation velocity field obtained for an axisymmetric vortex sheet would provide

the response of a vortex column to a vortex ring of infinitesimal thickness and of finite thickness

correspondingly.

3.4 Conclusion

In this chapter we have analyzed the Cauchy initial value problem for a Rankine vortex, both in

2D and 3D, and have shown its equivalence to the modal superposition derived in the chapter 2,

involving both the discrete and continuous spectrum modes. The equivalence proved the com-

pleteness of the modal description. The IVP approach further iterates the importance of the

continuous spectrum modes in acting as a mediator between external vortical disturbances and

the vortex column, a fact crucial in early stages of vortex - turbulent field interactions. Quali-

tative comparisons between the growth-rate spectra for vortex ‘ribbons obtained here, with the

growth-rate spectra obtained in numerical studies on more realistic vorticity profiles (e.g., the

Lamb Oseen profile) and for finite Re (∼ 104), are encouraging.

For m = 0, in absence of resonance, the algebraic growth arising from vortex stretch-tilt gets

terminated on a viscous time-scale, O(Re). To adopt a more detailed quantitative comparison

one needs to account for the variation of optimal time (viscous cut-off time) with k as observed

in numerics unlike the constant tmax assumption made here.





Chapter 4

Elastic instability of a vortex column

4.1 Introduction

Non-Newtonian/complex fluids are ubiquitous in our everyday life, challenging the classical dis-

tinction of fluids from solids. They cover a wide genre of materials, ranging from volcanic lava

to the comparatively mundane toothpaste. Although complex fluids include, a whole range of

materials with differing microstructural constituents, for instance, polymeric liquids and melts,

colloidal suspensions, micellar solutions, foams and liquid crystals, we will be restricting our

attention in this chapter to dilute polymeric solutions. The distinguishing trait of such fluids

is the presence of a microstructure, consisting of non-interacting macromolecules, that relaxes

on macroscopic time scales (ranging from milliseconds to seconds, and even longer depending

primarily on the solvent viscosity). The elasticity endowed by such relaxation has several strik-

ing consequences (many of which are well documented in textbooks; e.g. rod climbing, die swell

and tubeless siphon; Bird et al. [1987]). The aforementioned textbook examples show that the

elasticity present is often responsible for completely altering the flow from that observed for

Newtonian fluids. The the role of elasticity to either suppress or trigger instabilities (see exam-

ples below) in various flows have been of immense interest to researchers in fluid dynamics for

a long time. A primary reason for such an interest has been the implications of such instabil-

ities in the polymer and food processing industry. A little over two decades back, the seminal

efforts of Phan-Thein [1985] led to the rather surprising discovery of purely elastic instabilities

prevalent in the canonical viscometric flow geometries (e.g. - cone and plate flow that are typ-

ically used for purposes of rheological characterization). Viscoelastic instabilities next received

an impetus with the discovery of elastic instabilities in inertia-less swirling flows beyond cone

and plate geometries (Larson et al. [1990],Larson. [1992]). It has been argued that (Shaqfeh

[1996]) such elastic instabilities are driven by base-state hoop stresses, and instability sets in

above a threshold value of a dimensionless parameter known as the Deborah number (De) (De

is a dimensionless parameter that denotes the ratio of the elastic to flow time scales1). For

instance, Taylor-Couette flow of a dilute polymer solution is unstable, even at zero Re, above a

certain Dec. In contrast, viscoelastic Couette flow is known to be linearly stable (exponentially)

for all De (Renardy [1992]); instability due to hoop stresses, associated with curved streamlines,

only sets in at a non-linear order (Morozov & van Saarloos [2005]). It has been experimentally

demonstrated that the primary linear instability, followed by the sequences of secondary insta-

bilities leads to a statistically stationary disorderly flow that, on account of its resemblance to

Newtonian turbulence, has been elastic turbulence (Groisman & V.Steinberg [2000]).

1For a constitutive model with a single relaxation time, De is the only parameter once effects of shear thinning
are neglected. Actual polymer molecules, of course, possess a spectra of relaxation times, and the relevant time
scale, from the point of view of defining an instability threshold, is the longest one.
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Elasticity also plays an important role in flows where inertia is significant. A canonical exam-

ple is the phenomenon of turbulent drag reduction. The phenomenon which was first reported

way back in 1949, entails a reduction in the turbulent drag of up to 80% upon introduction of

polymers in a few parts per million by weight (ppm). Lumley (Lumley [1969],Lumley [1973])

established that the basic physics was that the familiar spectrum of length scales in Newtonian

turbulence was dramatically altered below a certain length scale, and this happens because the

time scale associated with a turbulent eddy decreases with size until at a critical eddy size, the

associated De becomes of order unity, and elastic effects (normal stresses) become important

(Tabor & de Gennes [1986] too proposed an arrest of the familiar energy cascade but they do so

based on a length rather than a time scale). Modification of the shear viscosity by the polymers

(shear-thinning) plays a secondary role in such cases. Although the above fundamental scenario

is correct, and applicable to the case of homogeneous, isotropic turbulence, in the specific context

of turbulent channel flow, an underlying feature which emerges both from numerical simulations

and experimental observations is the alteration of vortical structures in the boundary layer with

the introduction of polymers (White & Mungal [2008]). Parametrically speaking, turbulent drag

reduction, unlike the purely elastic instabilities discussed in the earlier paragraph, corresponds

to the high De, high Re regime. The problem examined in this chapter combines the aspects

of both groups of studies discussed above in that it involves the linear stability of an elastic

vortex column at large De and Re but with the ratio De/Re (known as the elasticity number)

being finite. Such an elastic vortex column may for instance, be likened to a turbulent eddy in

the aforementioned cascade scenario where the time scale is short enough for elasticity forces to

become comparable to inertial forces, while at the same time being much more important than

viscosity. As a first step, we only examine the instability of the vortex column to two-dimensional

disturbances (zero axial wavenumber). Regarding our study as belonging to the general class

of stability investigations of fast viscoelastic flows (high De, high Re), there have been other

related investigations in the past. Yarin [1997] studied the effect of polymer additives on the

dynamics of a vortex filament in an ambient shear flow. The author considered the bending

(m = 1) mode, and using a localized-induction approximation (LIA), showed that the vortex

stretching gets arrested by high longitudinal elastic stresses generated due to stretching of the

deformed filament. Azaiez & Homsy [1994] analysed the instability of a shear layer, modeled

by a hyperbolic tangent velocity profile, and found that elasticity led to stabilization; as argued

by Hinch (appendix of Azaiez & Homsy [1994]), the stabilizing action of elasticity for the long

wavelength perturbations is akin to surface tension. Haj-Hariri & Homsy [1997] studied the

role of elasticity on the stability of an unbounded linear flow with elliptical streamlines. The

study was motivated by earlier investigations of the well-known elliptical instability (Kerswell

[2002]), a short wavelength instability that occurs in flows with elliptical streamlines. The ellip-

tical instability is responsible for destabilizing a vortex column in an ambient straining field by

inducing a resonant interaction between pairs of Kelvin modes (the pair correspond to points

of intersection of the Kelvin dispersion curves for different m). Rather surprisingly, the authors

observed that the instability continued to exist even in 2D, something absent for Newtonian

fluids where a parametric resonance is only possible in three dimensions. Rallison & Hinch

[1995] identified a novel elastic instability of a submerged jet (both planar and axisymmetric).
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The hoop stresses due to elasticity plays a crucial role in that they allow for the propagation of

transverse shear waves along the otherwise unperturbed streamlines, and the instability arises

due to the resonant interaction of a wave pair. The current study is closely related to that of

Rallison & Hinch [1995], in that the vortex column instability may again be related to an un-

derlying resonance between fore- and aft- elastic (transverse) shear waves riding on streamlines

just outside the vortex core for small E. An advantage of the vortex column configuration is

that it is inertially stable, and hence, unlike the case of Rallison & Hinch [1995] where the jet

configuration is susceptible to inertial instabilities, the elastic instability in the vortex case ex-

ists in isolation. Recently, Stokes et al. [2001] have carried out experiments of confined swirling

flows on Boger fluids with inertia being dominant. The experiments were motivated towards

understanding the variation, in presence of elasticity, of the vortex-breakdown states known to

exist for swirling flows in the Newtonian context. Our findings would be of some relevance to

these experiments, though with the caveat that we are presently restricted to two dimensional

disturbances and the base-state consists of a purely azimuthal flow (vortex breakdown at least

in the inviscid context, requires an axial flow component).

We model the effects of elasticity using an Oldroyd-B constitutive equation, the implicit assump-

tion being that elastic effects are much more important when compared to changes in the shear

viscosity, and that the finite extensibility of real polymer molecules does not qualitatively alter

the shear-wave resonance mechanism. A related application of this study is in the astrophysical

context (Ogilvie & Potter [2008]). This is because the flow of polymeric fluids in the limit Re,

De → ∞ with E fixed, bears an exact analogy to magnetohydrodynamic flow in the limit of zero

magnetic diffusion. Both the polymeric orientation field R and magnetic field B obey identical

equations in the absence of relaxation processes (which are not identical: the relaxation being

diffusive for B, while being local and non-diffusive for the polymeric case). The corresponding

feedback to the flow, via the equations of motion, occurs via the polymeric stress of the form

σ ∝ RR and the Maxwell stress ∝ BB (Ogilvie & Proctor [2003]), in the respective cases.

4.2 Problem formulation

Let us begin by considering the governing equations for an Oldroyd-B fluid, one of the simplest

models that describes dilute polymer solutions as Boger fluids. From a microscopic point of

view, the Oldroyd-B constitutive equation results from modelling the dilute polymer solution as

a non-interacting suspension of infinitely extensible Hookean dumbbells (Larson [1988]). From

the conservation of momentum, a fluid of density ρ obeys the equation,

ρ
Dv

Dt
= −∇p+∇.σd (4.1)

∇.v = 0 (4.2)

where σd, the deviatoric stress, satisfies the Oldroyd-B constitutive given by:

σd + λ1
▽
σd = 2µ(E + λ2

▽
E), (4.3)
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where µ is the total viscosity, λ1 the relaxation time and λ2 the retardation time. λ2 = 0

corresponds to the upper-convected Maxwell (UCM) fluid, an appropriate model for a polymer

melt, while λ2 → λ1 denotes the Newtonian limit. ‘▽’ in (4.3) denotes the upper-convected

derivative which is expressed as:

▽
X ≡ DX

Dt
− (∇v)†.X−X.(∇v). (4.4)

The upper-convected derivative is frame-invariant derivative which describes the ‘frozen’ state

of a second order tensor field (X) in a velocity field v which is a form of the general evolution

equation,
∂X

∂t
+ LvX = 0, (4.5)

where Lv is the Lie derivative (Ogilvie & Proctor [2003]). When X is a tensor field it gives us the

upper-convected, lower-convected or Jaumann (co-rotational) derivative (any linear combination

of the upper- and lower-convected derivatives continues to be a frame-invariant derivative; al-

though, the coefficient of the Jaumann term is fixed by frame invariance). A physical way to

arrive at the form of the upper-convected derivative is by defining Aij ∝ δliδlj where δli is a

differential line-element which satisfies an equation analogous to that governing the vorticity

field in the inviscid limit (Batchelor [1967]):

Dδli
Dt

= δlk
∂vi
∂xk

. (4.6)

Thus we have (Subramanian [2011]),

DAij

Dt
∝ Dδliδlj

Dt
,

=
Dδli
Dt

δlj +
Dδlj
Dt

δli,

= δlk
∂vi
∂xk

+ δliδlk
∂vj
∂xk

,

= Akj
∂vi
∂xk

+Aik
∂vj
∂xk

,

DA

Dt
= (∇v)†.A+A.(∇v),

The assumption of δl being a material line element reflects the assumed affine dynamics of the

Hookean dumbbells at the microscopic level. Assuming δl to be oriented along the unit normal

to a material surface, or to rotate at a rate commensurate with the local vorticity vector would

lead to the lower-convected and Jaumann derivatives respectively.

Returning to the Oldroyd-B fluid, we assume a decomposition of the total stress into a solvent

and polymer contribution of the form σd = 2µ∗E+G(A− I) with A being the non-dimensional

conformation tensor (A ∝ RR), µ∗ = µλ2/λ1 (the solvent viscosity), µp = µ− µ∗ (the polymer
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viscosity) and G = µp/λ1 (the shear modulus). We can then rewrite (4.1)-(4.3) as,

ρ
Dv

Dt
= −∇p∗ + µ∗∇2v+G∇.A, (4.7)

▽
A = −1

τ
(A− I), (4.8)

∇.v = 0, (4.9)

where p∗ = p+2(1−λ2/λ1)µ/λ1 and τ = λ1. Here onwards we will be dropping the superscript

∗ and make a distinction based on context.

We wish to now study the evolution of two-dimensional disturbances in a swirling flow of an

Oldroyd-B fluid, and therefore write - v = u + u,A = A + a, where the overbar quantities

represent the unperturbed base state. Let us consider an axisymmetric swirling flow, u =

(0,Ωr, 0), with Ω ≡ Ω(r), and the base-state stresses being given as:

A =

[

1 rΩ′τ

rΩ′τ 1 + 2(rΩ′τ)2

]

(4.10)

in a cylindrical coordinate system where ′ denotes a derivative w.r.t r. The governing equation

for the perturbation velocity is,

∂u

∂t
+Ω

∂u

∂θ
+ u.∇u = −∇

(

p

ρ

)

+ ν∇2u+
G

ρ
∇.a. (4.11)

If u ≡ (ur, uθ), the governing equation for the evolution of axial vorticity, wz = (∇ ∧ u)z, can

be written as,

(

∂

∂t
+Ω

∂

∂θ

)

wz + urDZ = ν∇2wz +
G

ρ
{∇ ∧ (∇.a)}z

= ν∇2wz +
G

rρ

[

−1

r

∂2

∂r∂θ
(rN1) +

∂

∂r

(

1

r

∂

∂r
(r2arθ)

)

− 1

r

∂2

∂θ2
arθ

]

,

(4.12)

where DZ = rΩ′′ + 3Ω′ is the vorticity gradient and N1 = arr − aθθ is the first normal stress

difference. The perturbation elastic stress components obey the following equations:

(

∂

∂t
+Ω

∂

∂θ
+

1

τ

)

arr − 2

{

Arr
∂ur
∂r

+
Arθ

r

∂ur
∂θ

}

= 0, (4.13)

(

∂

∂t
+Ω

∂

∂θ
+

1

τ

)

arθ +

{

A
′
rθur −Arθ

(

∂ur
∂r

+
ur
r

)

− Aθθ

r

∂ur
∂θ

}

+

{

Arr

(

uθ
r

− ∂uθ
∂r

)

− Arθ

r

∂uθ
∂θ

}

− rΩ′arr = 0, (4.14)

(

∂

∂t
+Ω

∂

∂θ
+

1

τ

)

aθθ − 2

{

Arθ

(

∂uθ
∂r

− uθ
r

)

+
Aθθ

r

∂uθ
∂θ

}

+

(

A
′
θθ −

2Aθθ

r

)

ur − 2rΩ′arθ = 0. (4.15)
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On non-dimensionalising with a length scale a (the vortex core radius), time-scale Ω−1
0 (the

turnover time), and assuming a normal mode form, h = ĥ(r)ei(mθ−ωt), for the various perturba-

tion quantities, we have,

ΣrL (rûr) +mrDzûr =
i

Re
rL 2(rûr)−

im

Ma2e

[

mD∗N̂1 + iDD∗(rârθ) +
im2

r
ârθ

]

,(4.16)

Σ2ârr = 2i

{

ArrD +
imArθ

r

}

ûr, (4.17)

Σ2ârθ = −rArr

m
DD∗ûr −

{m

r
Aθθ + iA

′
rθ

}

ûr + iârrrΩ
′, (4.18)

Σ2âθθ = −2rArθ

m
DD∗ûr − i

{

A
′
θθ + 2AθθD

}

ûr + 2iârθrΩ
′, (4.19)

where D =
d

dr
, D∗ =

d

dr
+

1

r
, Σ = ω −mΩ and Σ2 = ω −mΩ+

i

De
and

A =

[

1 De rΩ′

De rΩ′ 1 + 2De2(rΩ′)2

]

. (4.20)

Here, we have used the relation ŵz = (i/m)L (rûr) where L = DD∗− (m2−1)/r2. Henceforth,

we will be dropping .̂ to denote perturbation quantities. The non-dimensional numbers that ap-

pear in (4.16)-(4.19) are the Deborah number - De=Ω0τ (the ratio of the elastic to the flow time

scale, the flow time scale also characterizes the time scale on which purely inertial perturbations

evolve), the Reynolds number - Re=Ω0a
2/ν (the ratio of the viscous to the inertial time scale)

and the elastic ‘Mach’ number - Mae = Ω0a/celas (celas =
√

G/ρ). Similar to its counterpart

in compressible flows, Mae gives the ratio of the speed with which disturbances are convected

by the flow to the shear wave speed (the speed of propagation of infinitesimal amplitude shear

stress fluctuations in an otherwise quiescent incompressible medium).

The above system of equations has a pair of continuous spectra which may be identified by study-

ing the resultant fourth-order system, the cylindrical analog of the viscoelastic Orr-Sommerfeld

equation for plane parallel flows.

1. Gorodtsov-Leonov Continuous Spectrum (Gorodtsov & Leonov [1967])

The first continuous spectrum is the so-called Gorodtsov-Leonov (GL) continuous spec-

trum, named after the authors who originally discovered it in the context of viscoelastic

plane Couette flow of a UCM fluid. It is defined by Σ2(rc) = 0 with Σ2 being as de-

fined as above. Although usually studied in the inertia-less limit for plane Couette flow

for an UCM fluid (µ∗ = 0), because of its analytical tractability leading to closed-form

expressions for the eigenfunctions (Gorodtsov & Leonov [1967], Graham [1998]), the GL

continuous spectrum arises essentially due to the ‘frozen’ character of the polymeric stress

field along streamline. This arises because almost all constitutive equations in polymer

rheology neglect the centre-of-mass degrees of freedom of the polymer molecules (the ba-

sic assumption underlying the continuum mechanics concept of ‘simple fluid’; Coleman &

Noll [1961]). This neglect of the spatial diffusion of the polymer molecules implies that the

polymeric stress (neglecting for the moment the perturbation flow driven by the gradient

of this stress) along one streamline develops in a manner independent of the neighboring
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ones. Note that this remains true for any De, since the latter parameter only measures the

relaxation of the configurational degrees of freedom (for Hookean dumbbells, this refer to

the end-to-end vector). This neglect is usually a good approximation on most length scales,√
DCMτ (DCM being the center-of-mass diffusivity and τ being the relaxation time),since

the “diffusion length” is usually exceedingly small (of the order of µm; Bhave et al. [1991]).

In this regard the polymeric stress field is similar to the vorticity field in the inviscid limit,

and both in principle, allow for arbitrarily large gradients across streamlines. Similar to

the vorticity field, there then exist CS-modes with singularities in the polymeric stress

fields. Similar to plane parallel flows, the Frobenius exponents characterizing the singular

point r = rc are 0, 1, 3 and 4.

2. Viscous Singular Continuous Spectrum (Wilson et al. [1999])

The second continuous spectrum arises due to the inclusion of solvent viscosity, and is given

by Σ2(rc) + iRe/Ma2e = 0; this is therefore specific to a polymer solution. Dimensionally,

ω−mΩ(rc)+i/λ2 = 0 and the spectrum gets pushed to infinity as one approaches the UCM

limit (λ2 → 0). Again, similar to the parallel flow case the viscous singular continuous

spectrum has Frobenius exponents - 0, 1, 2 and 3−2λ1/λ2. As noted by Kupferman [2005],

the last (in general fractional) Frobenius exponent indicates the existence of an algebraic

branch point and associated branch cut. The singular eigenfunctions in this case require

therefore a Pf. interpretation, akin to the ones for the 3D CSMs for a smooth vortex.

We see from the above that the viscoelastic continuous spectra persists even in the presence of

viscosity. As already mentioned, this is possible due to the ‘frozen’ stress states along streamlines

allowing for arbitrarily large cross-stream gradients. One way to remove the associated singular

stress fields, and thereby regularize the CS-eigenfunctions, would be to replace the Hookean

spring, underlying the Oldroyd-B model, with a nonlinear spring model (a FENE-P model

- finitely extensible nonlinear elastic with closure proposed by Peterlin; Larson [1999]) and

account for the nonlinearity of the relaxation in the vicinity of the critical radius, which should

ensure the finiteness of the polymer extension. Studies thus far have only examined dilute

solutions of FENE-P springs in the linearized approximations (Arora & Khomami [2005]). The

second alternative which is often used to remove the continuous spectrum is the inclusion of

stress diffusion - using either an additional diffusive term in the original Oldroyd-B equation2

of the form ∇2σ, or an explicit mechanism of mass conservation with the spatial diffusion of

polymers included. This again removes the continuous spectrum, and instead one has a diffusive

critical layer of a finite spatial extent around the critical point of O(Pe−1/3) (Pe being the

Peclet number defined based on the translational diffusivity, Dtr, of the polymer chain). For the

diffusive Oldroyd B model, the spatial extent of this critical layer is O(Pe−1/3), for strong flows.

For weak flows, the leading-order balance in the critical layer is expected to occur between the

relaxation and the diffusive terms, leading to a critical layer of thickness O((De/Pe)1/2) which is

the non-dimensional equivalent of the O(De1/2) diffusion length given earlier. Note that stress

diffusion is routinely used for numerical purposes as a regularizing term, although the diffusion

2A similar situation occurs for stratified shear flows. With the inclusion of only viscosity the modified Orr-
Sommerfeld equation continues to be singular and necessitates inclusion of mass diffusion to regularize the
critical layer (Koppel [1964], Engevik [1974])



108 Chapter 4. Elastic instability of a vortex column

coefficient necessary for regularizing is much larger than that of a real macromolecule.

4.3 Elastic Rayleigh Equation (Re→ ∞ and De→ ∞)

We now proceed to the regime of interest, Re→ ∞ and De→ ∞, but one not often explored in

problems involving laminar viscoelastic flows. As already mentioned in the introduction earlier

linear stability investigations exist in the above regime. Azaiez & Homsy [1994] studied the

role of elasticity on the linear stability of a mixing layer. Elasticity has a stabilizing effect,

and in the limit of long wavelengths, as shown by Hinch in an analysis that appears in an

appendix in the same paper, the inclusion of elasticity leads to the shear layer acting like an

elastic membrane, and thereby suppressing the inertial instability in a manner similar to surface

tension; the surface tension owes its origin to the longitudinal stress in the base-state and the

coefficient of surface tension is given as 8Gτ2u20/3δ, where G and τ are the shear modulus and

relaxation time respectively and U0 and δ the shear layer’s mean velocity and width. Rallison &

Hinch [1995] analyzed the stability of a submerged jet (both planar and axisymmetric), another

flow configuration susceptible to inertial instabilities. Once again, elasticity for the most part,

acts to stabilize the unstable modes, but the authors also covered a novel instability that owed its

origins to elasticity. This was particularly clear for an axisymmetric jet which does not exhibit a

varicose inertial instability, but it develops an instability on the inclusion of elasticity. The elastic

instability arises because a balance between inertia and elasticity supports the propagation of

shear waves. If one defines an elasticity parameter, E=De2/Ma2e = µpτ/(ρa
2), then the non-

dimensional speed of propagation of a shear wave is O(
√
E). The ambient shear allows for a

forward traveling shear wave at the interface to resonate with a backward travelling shear wave

located at an O(
√
E) distance in the interior, and this resonance leads to the instability. Note

that since the jet is submerged in a quiescent fluid; the shear rate is discontinuous across the

jet interface, leading to a jump in the elastic stress across the interface. Such a configuration,

involving a sharp transition from a quiescent stress-free region to a region that supports large

elastic stresses, occurs naturally for an intense vortex. Before going on to examine the instability,

we first consider the governing system of equations for linearized perturbations, in the more

detail, in the limit Re, De→ ∞. Considering the system (4.16)-(4.19) in the limit Re→ ∞,

De→ ∞, which is equivalent to neglecting microstructural relaxation, the result is the following

single equation for ur:

Σ
(

r2D2ur + 3rDur − (m2 − 1)ur
)

+mrDZur =

2m2E

[

2D∗
{

rΩ′

Σ

(

mrΩ′2

Σ
+ rΩ′D∗ + rΩ′′

)

ur

}

−
(

rD2 + 3D +
m2

r

)(

rΩ′2

Σ

)

ur

]

(4.21)

or equivalently,

Σ3
[

Σr
(

r2D2ur + 3rDur − (m2 − 1)ur
)

+mrDZur
]

= 2m2EΩ′
[

Σ2
{

r2Ω′D2ur + r(rΩ′′ +DZ)Dur

−(m2 − 1)Ω′ur
}

+mrΩ′Σ
{

2rΩ′Dur + 3(DZ − 2Ω′)ur
}

+ 2m2r2Ω′3ur
]

. (4.22)
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We again focus on the CS-spectrum of (4.22), the elastic equivalent of the Rayleigh equation

for swirling flows. Since the Rayleigh equation is singular at the Doppler frequency, Σ(rc) = 0,

and the earlier discussion of the viscoelastic continuous spectra shows that the GL spectrum

coincides with the Doppler frequency (Σ2 → Σ) in the limit of interest, one expects the elastic

Rayleigh equation to be singular when Σ(rc) = 0. However, and rather surprisingly, a closer

inspection reveals otherwise. The local form of (4.22), in the vicinity of rc ≡ Σ−1(ω), is given

by,

D2ur −
2

r − rc

{

1 + (r − rc)

(

1

2rc
+

5Ω′′
c

2Ω′
c

)}

Dur +
2

(r − rc)2

{

1 + (r − rc)

(

1

2rc
+

5Ω′′
c

2Ω′
c

)}

ur ≈ 0

(4.23)

The indicial equation obtained from (4.23) shows that elastic Rayleigh equation (ERE) has

Frobenius exponents of 1 and 2 at Σ(rc) = 0; the corresponding exponents for the radial dis-

placement field are 0 and 1. Although this isn’t a sufficient condition for rc to be an ordinary

point, and for the associated solutions to be regular, this turns out to be the case (the Rayleigh

equation serves as a counter-example). To verify this in a more transparent manner, and to

analyze the possible existence of additional spectra, let us investigate the equation for the radial

displacement, ξ ≡ iur/Σ, which may be written in the following much more compact form:

D
[

r3PDξ
]

= r(m2 − 1)Pξ (4.24)

where, P = Σ2 − 2m2EΩ′2

and E=De2/Ma2e, as before, measures the relative importance of elasticity and inertia; E→
0 recovers the familiar inviscid limit. It is evident from the form of (4.24) that Σ(rc) = 0

corresponds to an ordinary point. But, (4.24) now has a pair of singular points, and hence

continuous spectra, given by P (rc) = 0. In terms of ω, the singularities correspond to ω =

mΩ±mΩ′√2E. Physically the singularities correspond to fore- and aft- traveling elastic shear

waves. This may be seen by first noting that the (pre-stressed) shear wave speed in dimensional

terms is given by
√

GAθθ/ρ. We have already seen that, Aθθ ∼ 2De2rΩ′2 and
√

G/ρ ∼ Ma−1
e .

Thus the shear wave speed in non-dimensional terms in O(
√
E) which explains the association

of ω = mΩ±mΩ′√2E with fore- and aft- traveling elastic shear waves.

Let us now examine the series solutions of the above equation in the vicinity of rc (either of the

two shear waves) that satisfies P (rc) = 0. For E 6= 0, P has a simple pole and (4.24) may be

written in the following approximate form,

D2ξ +

[

1

r − rc
+

{

3

rc
+
P ′′
c

2P ′
c

}]

Dξ − (m2 − 1)

r2c
ξ = 0 (4.25)

The indicial equation obtained from (4.25) by assuming ξ ∼ (r−rc)α gives a repeated Frobenius

index, α = 0. Thus one solution must be a constant at leading order, while the other solution
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would be logarithmically singular. The two solutions may be shown to be given by,

ξ1 = 1 +
m2 − 1

4r2c
(r − rc)

2 + . . . (4.26)

ξ2 =

{

1 +
m2 − 1

4r2c
(r − rc)

2

}

log(r − rc)−
{

3

rc
+
P ′′
c

2P ′
c

}

(r − rc) + . . . (4.27)

Since ω−mΩ(rc) 6= 0 for the viscoelastic case, the singularities of ur are the same as those of ξ.

One can easily construct a modified version of Howard’s semi-circle theorem (Howard [1962])

for swirling flows from (4.24), and this leads to the following inequality:

(

ωr −
m(Ωmax +Ωmin)

2

)2

+ ω2
i ≤ m2

(

Ωmax − Ωmin

2

)2

− 2m2E
(

Ω′2)
min

(4.28)

Thus, the role of elasticity is to shrink the Newtonian (inviscid) semi-circle of instability, implying

a relative stabilization. It is, of course, possible to construct elastic equivalents of the Rayleigh

and Fjortoft theorems for the elastic case, but such results are not particularly useful due to the

presence of the eigenvalue in the resulting expressions. The analog of (4.24) has been used by

Rallison & Hinch [1995] in their study of the effects of elasticity on inertial instabilities in jets.

Before proceeding any further, we would like to draw attention to an interesting analogy of

viscoelastic flows studied in the above limit (Re→ ∞, De→ ∞) to magnetohydrodyamic (MHD)

flows in the limit of Rem → ∞ (Ogilvie & Proctor [2003]); here, Rem is the magnetic Reynolds

number and is defined as Rem = µ∗/(ρλm)Re. The governing equations for a magnetofluid

of density ρ, viscosity µ∗, magnetic diffusivity λm and free-space permeability µ0 (Ogilvie &

Proctor [2003]), are given by:

ρ
Dv

Dt
= −∇p∗m + µ∗∇2v +∇.M (4.29)

▽
M =

λm
µ0

(B∇2B+ (∇2B)B) (4.30)

∇.v = 0 (4.31)

∇.B = 0 (4.32)

where, p∗m = p + B2/(2µ0) and M = BB
µ0

, the Maxwell stress tensor without the isotropic part

(which has been absorbed in the modified pressure, p∗m). Comparing the above set of equations

for vanishing magnetic diffusion, Rem → ∞, (which corresponds to λm → 0 in 4.30), with the

infinitely slow relaxation limit, De→ ∞, of (4.7-4.9) highlights the analogy between the two

systems. Note that the analogy is an exact one only in the absence of relaxation processes. The

relaxation mechanisms are different in the two cases, being diffusive in the MHD case, and being

local but non-diffusive in the polymeric case.

In a perfectly conducting fluid, the magnetic field is in a ‘frozen’ state (Alfvén’s theorem; David-

son [2001])) and the corresponding Maxwell stress tensor behaves identically to the polymeric

stress tensor in the limit of the molecular relaxation becoming infinitely slow. The system of

equations, (4.29)-(4.32), governing the motion of a perfectly conducting fluid supports waves.

For instance, if one, imagines a disturbance acting to ‘bend’ the magnetic field lines (see figure
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(a) (b) (c)

Figure 4.1: Shear waves in a viscoelastic fluid. (a) streamlines in an unperturbed fluid, (b) per-
turbed streamlines experience restoring mechanism of polymeric stress and (c) propagating shear
waves (adapted from generation of Alfvén waves in magnetofluid via Lorentz force (Davidson
[2001])

4.1), the curvature leads to a Lorentz force acting to straighten out the field lines; this restoring

action coupled with inertia leads to waves known as Alfvén waves. The viscoelastic analog of the

Alfvén waves are the transverse shear waves discussed earlier. In both cases, one could visualise

the deformation of streamlines, and the subsequent propagation of waves, as being similar to

‘plucking’ a tensioned string. To illustrate this analogy mathematically, we consider the linear

evolution of disturbances both in quiescent and shearing flows. First, we will concentrate on the

plane parallel flow geometry.

In the quiescent case, the disturbance vorticity field, w, obeys the following linearized equations

in the respective cases:

MHD, (Rem → ∞)
∂2w

∂t2
=

1

ρµ0
(B.∇)2w + ν∇2

(

∂w

∂t

)

(4.33)

Viscoelastic, (De → ∞)
∂2w

∂t2
=
G

ρ
∇2w + ν∇2

(

∂w

∂t

)

(4.34)

where B is an imposed uniform magnetic field. Thus, vorticity perturbations in the elastic and

MHD flows evolve via damped Alfvén/shear waves, the damping being due to the fluid viscosity

in both cases.

Next we consider the evolution of two dimensional inviscid disturbances in the shearing flow

(U(y)) of an elastic fluid; the difference now being that the base-state elastic stress is no longer

isotropic (given by GI), but rather is given, at leading order, by GAxxx̂x̂ with Axx ∼ 2(τU ′)2.

Thus, the shear waves now correspond to a pre-stressed medium and therefore propagate at a

faster rate (c =
√

GAxx/ρ >
√

G/ρ). In the MHD context, B(y), will also be assumed to be

non-uniform. The linear stability equations in terms of the normal displacement, ζ, for plane
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parallel flows are given by:

MHD, (λm, ν → 0)

d

dy

[

{(U − c)2 − 2EU ′2}dζ
dy

]

= k2{(U − c)2 − 2EU ′2}ζ (4.35)

Viscoelastic, (τ−1, ν → 0)

d

dy

[

{(U − c)2 −A2}dζ
dy

]

= k2{(U − c)2 −A2}ζ (4.36)

where k is the streamwise wavenumber and A = B(y)/
√
ρµ0 is the Alfvén wave speed and

determined by the imposed magnetic field, B(y). Despite its similarity with the MHD problem,

it is worth noting that the viscoelastic case doesn’t have the luxury of the shear wave speed being

independently assigned; it is determined from the velocity-gradient profile once the base-state

shearing flow is chosen.

It is evident that the above analogy would continue to exist even for swirling flows. Acheson

[1973] gives the governing differential equation for 3D disturbances imposed on a swirling flow

of a radially stratified (density) perfectly conducting magnetofluid with an imposed magnetic

field, B = (0, Bθ(r), Bz(r)). If one considers the two dimensional homogeneous limit, we have

the radial displacement ξ being governed by the following equation:

D
[

r3PmDξ
]

= r(m2 − 1)Pmξ, (4.37)

with Pm = Σ2 −m2Ω2
B,

where the Alfvén wave speed is given by, A(r) ≡ rΩB = Bθ(r)/
√
ρµ0, and Σ is as defined in

(4.24). The analogy is evident on comparing (4.24) and (4.37) although it is worth reiterating

that the difference is that the Alfvén wave speed can be imposed independent of the base-state

rotation rate via the magnetic field.

The purpose of the above exercise was to emphasize the analogy between two apparently dis-

parate systems - the flow of a perfectly conducting magnetofluid and the shearing flow of a

viscoelastic fluid in the absence of any relaxation. Although the analogy has been appreciated

recently, a lot can nevertheless be achieved by adapting existing insights from one system to the

other. One such instance has been in the study of the viscoelastic analogue of the celebrated

magnetorotational instability (MRI) underlying the stability of accretion disks (Ogilvie & Pot-

ter [2008], Balbus & Hawley [1991]). The immense difficulty in performing experiments relevant

to the MRI in the laboratory could be alleviated by studying the viscoelastic analog involving

dilute polymer solutions in the relevant regime (Boldyrev et al. [2009]).

In chapter 2 we discussed at length the 2D continuous spectrum eigenfunctions for a Rankine

vortex. On introduction of elasticity, with the approximation Re→ ∞ and De→ ∞, the continu-

ous spectrum eigenfunctions will undergo modification; most importantly due to the shear wave

singularities P (rc) = 0. For E≪ 1, the eigenfunction is expected to remain largely similar to

that of the inviscid one ((2.7)-(2.9)) but for the region P (r) ≪ 1, centered about ω−mΩ(r′) = 0,

where elasticity is going to be dominant. Since ω − mΩ(r′) = 0 is no longer a singularity of
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(4.24), we introduce a boundary layer variable

η =
r − r′√

2E
(4.38)

and denote the boundary layer displacement and velocity as ξ(r) = ξ̃(η) and ur(r) = ũr(η)

respectively. (4.24) can then be written in the following reduced form as,

d

dη

[

(η2 − 1)
dξ̃

dη

]

= 0 (4.39)

⇒ ũr(η) = η

{

A1 +A2 log

∣

∣

∣

∣

η − 1

η + 1

∣

∣

∣

∣

}

(4.40)

The boundary condition imposed on the above solution is ũr(η → ∞) = ur(r → r′+) = ũr(η →
−∞) = ur(r → r′−). Thus, for |r − r′| ≪

√
E the continuous spectrum eigenfunction structure

is given as,

ũr(η) =
ur(r

′)

2
η log

∣

∣

∣

∣

η + 1

η − 1

∣

∣

∣

∣

(4.41)

whereas for |r−r′| >
√
E, (2.7)-(2.9) would provide the leading order description of the eigenfunc-

tion. It should be noted that η = ±1 corresponds to the location of the shear wave singularities,

P (rc) = 0. This form of the eigenfunction will be revisited during the asymptotic analysis for

the unstable mode in sections 4.6 and 4.7.

Though (4.41) accurately describes the leading order boundary layer structure, it lacks in identi-

fying the elastic analog of the Kelvin mode and the continuous spectrum mode for E=0. As was

already seen in chapter 2, the Kelvin mode and the continuous spectrum mode are distinguished

by virtue of tangential velocity discontinuity or equivalently a jump in Dur. The boundary layer

structure (4.41) leads to dũr/dη → 0 as η → ±∞. To identify the free and forced mode we need

to find ũr(η) to a higher order where [dũr(η)]
+∞
−∞ is non-zero. Thus we have,

ũr(η) =
ur(r

′)

2
η log

∣

∣

∣

∣

η + 1

η − 1

∣

∣

∣

∣

+
√
Eη

[

A3 +

{

A4 +
η

2
√
2

ur(r
′)Ω′′(r′)

Ω′(r′)

}

log

∣

∣

∣

∣

η + 1

η − 1

∣

∣

∣

∣

−

ur(r
′)√
2

{(

3

r′
+

Ω′′(r′)

Ω′(r′)

)

log(η2 − 1) +
Ω′′(r′)

Ω′(r′)

1

η2 − 1

}]

+O(E) (4.42)

For a Rankine vortex Ω′′(r′)/Ω′(r′) = −3/r′ and thus 4.42 can be written as,

ũr(η) =
ur(r

′)

2
η log

∣

∣

∣

∣

η + 1

η − 1

∣

∣

∣

∣

+
√
Eη

[

A3 +

{

A4 −
3ur(r

′)η

2
√
2r′

}

log

∣

∣

∣

∣

η + 1

η − 1

∣

∣

∣

∣

+
3ur(r

′)√
2r′(η2 − 1)

]

+O(E)

(4.43)

Now [dũr(η)]
+∞
−∞ 6= 0 and a choice of A+

3 and A−
3 leads to determine if there exists a forcing

and thus a way for identifying the elastic analogs for Kelvin mode and the continuous spectrum

modes. The above result serves as a starting point in showing how the choice of the continuous

spectrum modes appear at a higher order in E and a detailed study needs to be carried out in

the future for better understanding of continuous spectrum modes in elastic swirling flows.
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4.4 Shear Wave Resonance Instability of a Vortex

Having examined the 2D viscoelastic CS-spectrum, we now study the instability of an elastic vor-

tex column t two-dimensional (non-axisymmetric) disturbances both via a numerical approach,

and using a matched asymptotic expansion technique. The unstable discrete mode in this case

is found to coalesce with the continuous spectrum in the limit of a vanishingly small elasticity

number. For purposes of simplicity, the analysis will be restricted to the case of a Rankine

column with the angular velocity profile being given by, Ω(r) = H(1− r) +

(

1

r

)2

H(r − 1);

Ω′(r) = −2
1

r3
H(r − 1). From the discussion in chapters 2 and 3, we know that a Rankine vor-

tex is neutrally stable in the inviscid limit, and has both discrete and continuous spectra. For

two dimensional disturbances the discrete spectrum is constituted of a single mode, the Kelvin

mode, for every m. In section 4.2, we have already examined the modified continuous spectrum,

associated with the ERE, and the elastic generalization of the Kelvin mode. Herein, we identify

an unstable discrete mode that is purely elastic in origin.

Consider the ERE for the Rankine vortex configuration. Since the Rankine vortex offers a spa-

tial separation of the vortical and straining regions, one may study the ERE in these regions

separately; as noted above, the numerical investigation includes more general vorticity profiles,

and serves to reinforce the usefulness of the analysis which is restricted to the Rankine vortex.

1. r < 1

Solid body rotation is unaffected by elasticity and the solution for r < 1 is identical to

the inviscid solution. In the interest of obtaining a normalized radial displacement, choose

ur = Σ0r
m−1 where Σ0 = ω−m. Thus ξ = rm−1 and

dξ

dr

∣

∣

∣

r=1−
= m− 1. Knowledge of the

radial displacement field within the core allows the numerical integration to be restricted

to the irrotational exterior with the appropriate boundary condition at the edge of the

core.

2. r > 1

By continuity of ξ across the vorticity interface (r = 1), we have ξ
∣

∣

∣

r=1+
= ξ
∣

∣

∣

r=1
= 1.

Integrating (4.24) across r = 1, one obtains:

[

r3P
dξ

dr

]r=1+

r=1−
= 0 (4.44)

⇒
{

Σ2
0 − 8E(mΩ0)

2
} dξ

dr

∣

∣

∣

r=1+
− Σ2

0

dξ

dr

∣

∣

∣

r=1−
= 0 (4.45)

⇒ dξ

dr

∣

∣

∣

r=1+
=

(m− 1) (ω −m)2

(ω −m)2 − 8m2E
(4.46)

The radial displacement field in the exterior is governed by (4.24), which in expanded form, is

given by:

D
[

r3
{

(ω −mΩ)2 − 2m2EΩ′2}Dξ
]

= r(m2 − 1)
{

(ω −mΩ)2 − 2m2EΩ′2} ξ (4.47)
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with the boundary conditions:

ξ
∣

∣

∣

r=1
= 1, (4.48)

dξ

dr

∣

∣

∣

r=1+
=

(m− 1) (ω −m)2

(ω −m)2 − 8m2E
, (4.49)

ξ → 0, as r → ∞. (4.50)

The terms in (ω−mΩ)2−2m2EΩ′2 in (4.47) represent the interplay of inertia and elasticity. The

regions in the flow domain where (ω−mΩ) ∼ ±m
√
2EΩ′, are the ones affected by elastic stresses.

In the far-field, r ≫ 13, clearly, elasticity is sub-dominant. Elasticity is, however, expected to

make its presence felt in the straining region adjacent to the core (r ≈ 1). For r ≈ 1, a balance

of the two terms above implies (ω−m) ∼ ±m
√
8E. Assuming, for the moment, a neutral mode

one may obtain an estimate for the critical radius from this balance, which would be the region

where elastic stresses associated within the mode would be localized. Linearizing the angular

velocity about the critical radius, we find, rc ∼ 1 +O(
√
E), where elasticity becomes important

at leading order. As already indicated, the physical mechanism of the instability involves a

backward-traveling shear wave at the edge of the vortex core (r ∼ 1) resonating with a forward

traveling shear wave at r = 1+O(
√
E) for E ≪ 1. This suggests the introduction of a re-scaling

corresponding to a boundary layer of thickness O(
√
E). Rallison & Hinch [1995] first noted this

re-scaling for the elastic instability in a submerged jet. Although things appear quite consistent,

there is a hidden length-scale implicit in the boundary conditions that cannot be accounted by

the
√
E re-scaling. This hidden length scale is the radial distance of the backward-traveling

shear wave from the edge of the core; as will be seen later, this does not scale as
√
E, but instead

is transcendentally small.

Before proceeding with the details of the asymptotic analysis, we first examine the unstable

mode numerically which also allows one an access to a wider range of E values. The breakdown

of the numerics for small E serves as a natural motivation for the analysis that follows.

4.5 Numerical Calculations

The numerical issues in the limit of large Re and De, for the parallel flow analog of the vortex case

considered here, are described in Miller [2005]. The exponentially small length scale mentioned

above leads to the eigenvalue’s transcendental dependence on the small parameter indicates

that numerical evaluation needs to be done very carefully for E ≪ 1. Besides the presence of

exponential asymptotics, the numerics is rendered more difficult by the fact that the marginal

mode is now a singular neutral mode. This is quite unlike the classical inviscid problem where

the marginal mode is a regular neutral mode. To ensure that we have indeed identified a true

unstable mode and to distinguish it from the spurious ones, we study the problem numerically

using three techniques.

The first method involves performing a standard spectral calculation, for the linear eigenvalue

3In taking De→ ∞ we have ignored the isotropic part of the elastic stresses which become important in the
far-field, and allow for the (radial) propagation of shear waves out to ‘infinity’. This effect is therefore neglected
in ERE.
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Figure 4.2: Collapse of ‘ballooning’ of spectrum with increasing N for a smooth vortex (a = 0.95,
3.27). The converged unstable mode is encircled.

problem given by (4.16)-(4.19) (in the limit Re,De→ ∞), based on a Chebyshev collocation

(Trefethen [2000]). Aided by our knowledge of the continuous spectrum, we anticipate difficulties

in the spectral technique. The spectral method obtains there entire eigenspectrum including the

singular continuous spectra. Since the CSMs aren’t C∞, there is a ‘ballooning’ of the neutral

spectrum for any finite number of collocation points; which, however, slowly collapses onto the

real axis with increasing N (Figure 4.2) (Graham [1998]). This complicates the identification of

the unstable mode, particularly in the limit of small E, as it remains engulfed in this ‘balloon’ for

small values of N . One way of identifying the unstable mode relies on increasing N to sufficiently

high values such that, the spurious imaginary part of the continuous spectrum vanishes, as the

balloon collapses onto the real axis, while the true unstable mode converges to a location at a

finite distance away from the real axis (see figure 4.2).

The second method involves a direct solution of the nonlinear eigenvalue problem (4.24) for ξ.

The nonlinear eigenvalue problem is solved using a compound matrix method (Bridges & Morris

[1984]), typically used to study spatial stability problems in the context of the Orr-Sommerfled

equation. The essential idea involves writing the original non-linear eigenvalue problem as a

higher dimensional linear one. Thus, (4.24) could be written as,

[

−C1 −C2
1 0

][

ξa

ξb

]

= ω

[

C0 0

0 1

][

ξa

ξb

]

, (4.51)

where ξa = ωξ, ξb = ξ

C0 = D(r3D)− r(m2 − 1)

C1 = −2mD(r3ΩD) + r(m2 − 1)2mΩ

C2 = D(r3m2(Ω2 − 2EΩ′2)D)− r(m2 − 1)m2(Ω2 − 2EΩ′2)
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Figure 4.3: ‘Error’ for various values of ωi,r

and we proceed on to solve this equivalent higher dimensional linear eigenvalue problem.

The final method is a regular shooting method for the boundary value problem (4.24). This is

done using the inbuilt BVP4C command in MATLAB. The trouble with the shooting method is,

however, the extreme sensitivity to the initial guess for the eigenvalue, and this again happens

due to the unstable mode lying in close proximity to the continuous spectrum. In the context of

the submerged elastic jet instability with a governing equation of similar mathematical charac-

ter, Miller [2005] suggests a ‘carpet-bombing’ technique to get a reasonably accurate guess for

the value of eigenvalue. One of the boundary conditions is allowed to be an unknown and we

call its difference from the true boundary condition as the ‘error’. A complex ω grid is chosen

and for every value of ω the unknown boundary condition and hence the ‘error’ is found. Figure

4.3 shows identification of the guess value for ω using the minimum of the absolute value of the

‘error’ .

All the three methods above yield mutually consistent results. The results from here on will be

those computed using the third method which involves solving a boundary value problem with

an initial guess obtained via a ‘carpet-bombing’ approach. Figure 4.4 shows the dependence of

the wave-speed and growth-rate of the unstable mode on E for different values of m. Figure

4.4(b) highlights the dependence of the growth rate on the re-scaled azimuthal wave-number

m
√
E, and there is expected collapse in the range where m

√
E ∼ O(1) and m is sufficiently

large. Figure 4.4(c) shows the transition of the wave-speed to the 1−
√
8E asymptote for small

E, and figure 4.4(d) shows the comparison of increasingly refined asymptotic estimates for real

par of the eigenvalue (predicted in section 4.7.4) with the numerical result. Since we do not yet

have an expression for the growth-rate for the entire problem, figure 4.5 only shows the match of

the numerically calculated growth-rate with (4.67), the expression obtained from the LHS prob-

lem (section 4.6). Note that the rather precipitous drop in growth rate for small E that owes

its origin to the transcendental scaling. The eigenfunctions for both radial displacement and

velocity can be seen in figure 4.6 and the twin peaks corresponding to the shear wave locations

are clearly visible, and are reminiscent of the singularities at these locations for the CS-modes

in the vicinity of the unstable mode (for the unstable mode there are no longer singularities,
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Figure 4.6: Radial displacement and velocity eigenfunctions for E=0.017, m=2.
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Figure 4.7: Wave-speed and growth-rate comparisons for a smooth (4.52) and Rankine vortex
(a = 1,m = 2 and d = 10−3).

rather sharply peaked structures).

The numerical results so far have focussed on the Rankine vortex - a profile which has a discon-

tinuity in the base-state angular velocity gradient, and therefore, in the hoop stress (Aθθ) profile.

It could be argued that this discontinuity is the reason for the instability and a smoothened base-

state vorticity profile will not support such exponentially growing modes. However, from our

shear wave resonance argument, this seems unlikely. Indeed, from our knowledge of instabilities

emanating via the resonant coupling of waves riding on sharp interfaces (for instance, the KH

instability may be regarded as the resonance of Rossby waves riding on vorticity interface), a

mere smoothening does not lead to a disappearance of the instability. For a smooth profile,

one expects the transition width, the region over which the flow transitions from a rigid-body

rotation to an irrotational straining one, to decide the fate of the instability. In particular, one

expects the instability to persist for a smooth Rankine-like profile. Towards this end, we have

examined the stability of a ‘tanh’ vorticity profile with the base-state vorticity being given by:

Z(r) =
Z0

2

[

1− tanh

(

r − a

d

)]

(4.52)

Figure 4.7 shows the close comparison of growth-rate and wave-speed for a ‘tanh’ vortex with

that of Rankine vortex, demonstrating the persistence of the elastic instability even for smooth

vortices. As already mentioned the numerical approach in this case exploits the fact that elastic-

ity plays no role in the region of solid body rotation, and one only needs to solve the governing

equation in the irrotational exterior with appropriate boundary conditions at r = 1. For a

smooth vortex the integration needs to be carried out over the entire domain. It would be of

interest, in future, to conduct a more detailed investigation to determine the dependence of the

instability characteristics on the width of the transition zone by considering a one-parameter

family of vorticity profiles with the limiting member as the Rankine and the Lamb-Oseen profiles.



4.6 Asymptotics - LHS problem 121

4.6 Asymptotics - LHS problem

To begin with, we need to understand why the re-scaling by
√
E does not work for the entire

range of E. To do so, let us consider the irrotational region in the immediate neighbourhood of

the core, r − 1 ≪ 1, in terms of re-scaled boundary layer coordinate, x → r = 1 +
√
Ex. We

choose ω = m(1−a1
√
E) where a1 is an O(1) constant. Using this transformation, and the local

forms of Ω and Ω′ in the boundary layer (4.47), at leading order, takes the form,

d

dx

[

{

(a1 − 2x)2 − 8
} dξ

dx

]

= 0 (4.53)

The RHS of (4.47) has been discarded since it is asymptotically small for m ∼ O(1). (4.53) has

solutions of the form,

ξ = c1 + c2 log

[

2x− a1 −
√
8

2x− a1 +
√
8

]

(4.54)

with the boundary conditions,

ξ
∣

∣

∣

x=0
= 1 (4.55)

dξ

dx

∣

∣

∣

x=0
=

√
E
(m− 1) (ω −m)2

(ω −m)2 − 8m2E
=

√
E
(m− 1) a21
a21 − 8

(4.56)

ξ → 0, as x→ ∞ (4.57)

Since ξ, at leading order, should decay in the far-field (4.57), we have c1 = 0. Applying the

gradient boundary condition, (4.56), we have c2 = (m − 1)a21
√
E/(8

√
2)). Next, considering

(4.55), one obtains

ξ
∣

∣

∣

x=0
=

(m− 1)a21
√
E

8
√
2

log

[

a1 +
√
8

a1 −
√
8

]

= 1 (4.58)

Since a1 ∼ O(1) the above relation can only be satisfied if,

a1 =
√
8 + 2

√
8 e

− 1
m−1

√

2
Ea2, (4.59)

where a2 is an O(1) constant. Although we have seemingly added an exponentially small quantity

to the expected O(1) estimate, this addition is crucial in the normal displacement boundary

condition. With the transcendentally small addition, the normal displacement gradient, given

by (4.56), is found to be exponentially large quantity. This obviously contradicts the algebraic

scaling assumed in (4.56)4, and helps highlight the difficulty in performing an asymptotic analysis

in the limit of small E; in particular, the requirement of exponential asymptotics (Boyd [1999]).

Physically, the location x = a1+
√
8 and x = a1−

√
8 correspond, in re-scaled form, to the fore-

and aft-moving shear wave singularities. Since a1 −
√
8 ∼ e

− 1
m−1

√

2
E , the implication is that the

aft-travelling shear wave is separated from the edge of the core only by a transcendentally small

4The contradiction that arises is not an artifact of the order in which we choose to satisfy the boundary conditions.
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Figure 4.8: From Rallison & Hinch [1995] - “The growth rate σ = αci as a function of the rescaled
wavenumber α(8E)1/2 for the varicose mode of an axisymmetric jet. The different curves are
from the top for E = 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.15 and 0.2.”. The lack of collapse
for small α(8E)1/2 must be noted, an indication for smaller-than-algebraic scaling.

amount. The mathematical character of the stability equations are identical for the vortex and

parallel flow cases, and as evident in figure 4.8 for small rescaled wavenumber (α(8E)1/2 ≪ 1,

α being the streetwise wavenumber), this is exactly the problem that plagues the analysis of

purely elastic instability in a submerged jet (Rallison & Hinch [1995]).

To confirm the the requirement of exponential asymptotics, let us first consider an exactly soluble

problem - the LHS of (4.47),

D
[

r3
{

(ω −mΩ)2 − 2m2EΩ′2}Dξ
]

= 0 (4.60)

with boundary conditions (4.48)-(4.50). We refer to this as the LHS problem. The simplification

will give us the leading-order behavior of the eigenvalue as the RHS enters in the asymptotics at

a higher order. The solution of (4.60) which satisfies the boundary conditions (4.48) and (4.50)

is,

ξ =

ˆ ∞

r

dr′

r′3P (r′)
ˆ ∞

1

dr′

r′3P (r′)

, (4.61)

where, as defined before, P (r) = (ω − mΩ(r))2 − 2m2EΩ′(r)2. On applying the boundary

condition (4.49), we have the following dispersion relation:

D(ω,m; E) ≡ 1 + (m− 1)(ω −m)2
ˆ ∞

1

dr′

r′3P (r′)
= 0 (4.62)

Before proceeding with a detailed analysis of the dispersion relation, we use a Nyquist method

(Balmforth [1998]) to establish the presence of an unstable mode. Imagine a contour C in the
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Figure 4.9: Diagnosis of the unstable elastic mode via the Nyquist method. m = 2, E=0.1

complex ω-plane (see figure 4.9a) mapped to the contour C′ (see figure 4.9b) in the complex

D plane via the mapping D(ω). From the elastic version of Howard’s semi-circle theorem for

swirling flows, the contour C is chosen to be a suitably large semi-circle with the diameter an

infinitesimal distance above the ωr-axis. This ensures that an unstable mode, if it exists, would

be contained inside C. The choice of contour also avoids the branch-cut on the real-axis. The

Nyquist method, which uses the idea of the winding number of an analytic function, states that

the number of times C′ loops the origin in the D plane equals the number of zeros of D(ω,m; E).

The existence of one or more such loops, as in figure 4.9b implies the presence of exponentially

growing modes. Having confirmed that the LHS problem indeed allows for an unstable solution,

we proceed to analyze the dispersion relation (4.62) in the limit of small E to obtain the scaling

for the growth rate. (4.62), written out more explicitly after evaluation of the integral in closed

form, takes the form

D(ω,m; E) ≡ 1 +
(m− 1)f2

(η1 − η2)(η2 − η3)(η3 − η1)
{η1(η2 − η3) log(1− η1) + η2(η3 − η1) log(1− η2)+

η3(η1 − η2) log(1− η3)} = 0, (4.63)

where f = m/ω−1 and η1,2,3 are the roots of the cubic equation - η(η−1−f)2−8(1+f)2E = 0.

We make the a priori assumption of f ≪ 1 but do not specify its smallness relative to E. This

seems a reasonable assumption since we have already noted that the balance between elastic

and inertial terms in P occurs when ω −m ∼ O(
√
E). Knowing the exact expressions of η1,2,3,
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we expand them for small values of E and f :

η1 = 1 + 2
√
2E− 4E + 10

√
2E3/2 − 64E2 + f

(

1 +
√
2E− 5

√
2E3/2 + 64E2 + . . .

)

+f2

(

−
√
E

2
√
2
+

15E3/2

2
√
2

− 64E2 + . . .

)

+ . . . , (4.64)

η2 = 8E + 128E2 − 128fE2 + 128f2E2 + . . . , (4.65)

η3 = 1− 2
√
2E− 4E− 10

√
2E3/2 − 64E2 + f

(

1−
√
2E + 5

√
2E3/2 + 64E2 + . . .

)

+f2

( √
E

2
√
2
− 15E3/2

2
√
2

− 64E2 + . . .

)

+ . . . (4.66)

and thus obtain asymptotic expression for f . The asymptotic expression for the eigenvalue ω is

found to be,

ω

m
∼ 1−

√
E

[√
8 + e

− 1
m−1

(√

2
E
−6

)

{

2
√
8− 16

√
E + 4

√
8E− 128E3/2 log(32E)− 64(3 + 4iπ)E3/2

}

]

(4.67)

Expectedly, f ∼ O(
√
E) ≪ 1. The above expression highlights the transcendentally small nature

of the growth rate (∝ e
− 1

m−1

√

2
E ); specifically the dependence of the growth rate on E is given

by, ωi ∼ O(E2e
− 1

m−1

√

2
E ) in the limit E ≪ 1. There will, of course be corrections to (4.67)

from the neglected RHS terms, but the analysis in the next section shows that this correction

is expected to only change the numerical pre-factor, but not the E scaling.

4.7 Complete asymptotics

The difficulty of dealing with a transcendentally small dependence on the small parameter could

be bypassed by considering the case where m
√
E ∼ O(1). The collapse of the curves in this

parameter range, for various values of m (with m2 ≫ 1), was already noted in figure 4.4(b).

The RHS of (4.47) then needs to be retained at leading order, and (4.53) takes the form:

d

dx

[

{

(a1 − 2x)2 − 8
} dξ

dx

]

=
{

(a1 − 2x)2 − 8
}

ξ (4.68)

in the elastic boundary layer, where we have assumed that m2 − 1 ≈ m2, since m ∼ O(E−1/2)

and therefore, m ≫ 1 for E ≪ 1. The above equation is a self-adjoint form of the confluent

Heun equation (a spheroidal wave equation). Heun differential equations denote the class of

ODEs with four regular singular points, one of them at infinity5 (Ince [1956]). In the limit

where one of the three singular points in the finite complex domain tends to infinity one obtains

the confluent Heun equation with two regular singular points, and an irregular one at infinity
6. The Frobenius exponents at the regular singular points have already been analyzed before;

5The more familiar hypergeometric class considers differential equations with three regular singular points.
6In the plane parallel flow context, Renardy [2008] has also noted the Heun form when studying stability of an
axisymmetric jet with elasticity and inertia are dominant.
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Figure 4.10: Boundary layer structure for radial displacement

these correspond, in the unscaled form, to P (rc) = 0 (4.25); and physically, denote the shear-

wave singularities. As noted by Rallison & Hinch [1995], recognizing (4.68) as a confluent Heun

equation isn’t particularly helpful from the perspective of obtaining closed form analytic solutions

for m
√
E ∼ O(1). In order to obtain some analytical insight into this problem, we therefore

examine the limit E ≪ 1 for m ∼ O(1) in this section. The transcendentally small growth rate

expected in this limit necessitates a multiple boundary layer analysis. The asymptotic structure

includes an inner boundary layer with r− 1 ∼ O(g
√
E) matching onto the boundary conditions

at r = 1, the expected outer boundary layer with r − 1 ∼ O(
√
E), which in turn matches onto

the outer region where r− 1 ∼ O(1). The introduction of the inner boundary layer implies that

the outer O(
√
E) boundary layer is no longer constrained to satisfy the boundary conditions at

r = 1. This helps avoid the contradiction that arose in the naive approach.

The analytical approach follows the general principle of classical hydrodynamic stability in

looking for an unstable mode in the vicinity of a neutral one (Lin [1961]). Although, in contrast

to traditional theory, the neutral mode in this case is a singular one, and has a character already

seen in the section on the 2D viscoelastic CS-spectrum. The approach adopted is thus generally

applicable, and would therefore also be of use in the astrophysical analog of the problem. Figure

4.10 shows the different boundary layer regions in a numerically evaluated radial displacement

eigenfunction. Based on the LHS problem, we assume the following expansion for the eigenvalue

for the complete problem (including the RHS term):

ω

m
= 1−

√
E
[√

8 + g
{

c0 + c1
√
E + c2E + c30E

3/2 log(32E) + c31E
3/2 + . . .

}]

(4.69)

As will be seen, the fact that g ∼ e
− 1

m−1

√

2
E actually emerges from the detailed analysis below.
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4.7.1 Far field- r − 1 ∼ O(1)

To begin with, we study the solution in the region where r− 1 ∼ O(1). The radial displacement

in this region is denoted by ξF (r). Expanding P for small E, one obtains,

P

m2
= S0 + S1

√
E + S2E + . . . (4.70)

where,

S0 =

(

1− 1

r2

)2

S1 = −2
√
8

(

1− 1

r2

)

S2 = 8

(

1− 1

r6

)

This points to the following expansion of the eigenfunction,

ξF (r) = E ξF0 (r) + E3/2 ξF1 (r) + E2 ξF2 (r) + . . . (4.71)

where the O(E) scaling of the leading order term is anticipated from the matching considerations

between the different regions. As indicated in figure 4.10, the radial displacement is O(1) only

within the inner boundary layer, and is O(
√
E) and O(E) in the outer boundary layer, and outer

regions respectively. Plugging the above expansion in (4.47), we collect terms of the same order

and find the outer solution consistent with the far-field decay condition (4.50)

O(E)

Equation -
d

dr

[

r3S0
dξF0
dr

]

= 0 with ξF0 → 0 for r → ∞,

⇒ ξF0 (r) =
B0

rm−1(r2 − 1)
.

O(E3/2)

d

dr

[

r3
{

S0
dξF1
dr

+ S1
dξF0
dr

}]

= 0 with ξF1 → 0 for r → ∞,

⇒ ξF1 (r) =
2
√
2B0

rm−1(r2 − 1)2
+

B1

rm−1(r2 − 1)
.

The far-field solution, to O(E3/2), is,

ξF (r) = E
B0

rm−1(r2 − 1)
+ E3/2

{

2
√
2B0

rm−1(r2 − 1)2
+

B1

rm−1(r2 − 1)

}

+O(E2). (4.72)

4.7.2 Outer boundary layer - O(
√
E)

Having found the structure of the solution for r − 1 ∼ O(1), we now consider the O(
√
E)

boundary layer. Let us introduce a boundary layer coordinate (x) - r = 1 +
√
Ex and denote
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the boundary layer displacement as ξ(r) = ξo(x). In terms of the re-scaled coordinates, we have,

d

dz

[

Qdξ
o

dz

]

=
2EQ(m2 − 1)

(1 +
√
2E(z + a1/

√
8))2

ξo, (4.73)

where z =
2x− a1√

8
. Further, Q =

(1 +
√
2E(z + a1/

√
8))3P

m2E
is expanded as,

Q = Q0 +Q1

√
E +Q2E + . . . , (4.74)

where,

Q0 = 8(z2 − 1),

Q1 = −12a1(z
2 − 1)− 3

√
2(a21 − 8)z,

Q2 = 4(z2 − 1)2 + 3(a21 − 88)(z2 − 1)− 2
√
2a1(a

2
1 − 24)− (a1 +

√
8)2

16
(9a21 − 4

√
2a1 − 184).

This points to the following expansion of the eigenfunction,

ξo(z) =
√
E ξo0(z) + E ξo1(z) + E3/2 ξo2(z) + . . . (4.75)

Plugging the above expansion in (4.73), we collect terms of the same order. Note that neither

the boundary conditions at r = 1, nor the far-field decay, are applicable to the outer boundary

layer solution, and the unknown constants in the solutions below are entirely determined from

the subsequent matching procedure.

O(
√
E)

d

dz

[

Q0
dξo0
dz

]

= 0,

⇒ ξo0(z) = G10 + G11 log

(

z − 1

z + 1

)

.

O(E)

d

dz

[

Q0
dξo1
dz

+Q1
dξo0
dz

]

= 0,

⇒ ξo1(z) = G20 +

(

G21 +
3a1
2

G11

)

log

(

z − 1

z + 1

)

− G113
√
2(a21 − 8)

8(z2 − 1)
.

O(E3/2)

d

dz

[

Q0
dξo2
dz

+Q1
dξo1
dz

+Q2
dξo0
dz

]

= 2(m2 − 1)Q0ξ
o
0,

⇒ ξo2(z) = G30+

(

G31 −
17

2
G11

)

log

(

z − 1

z + 1

)

+
G11

{

32(a1 −
√
8)− 7a1(a

2
1 − 8)− 64(a1 +

√
2(z − 1))

}

4
√
2(z2 − 1)

−

G213(a
2
1 − 8)

4
√
2(z2 − 1)

+
(m2 − 1)

3

[

G10

{

z2 − 2 log(z2 − 1)
}

+G11

{

−4z+log(z−1)(z2+log(256)−4 log(z+

1))− 8L2

(1− z

2

)}]

,

where L2(z) = −
ˆ z

0

log(1− t)

t
dt is the dilogarithm function. As indicated above, G10,G11, . . .
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are constants determined via matching with the inner boundary layer and far-field. The O(E3/2)

solution includes the first contribution from the RHS terms in (4.47). The outer boundary layer

solution to O(E3/2), is therefore given by:

ξo(z) =
√
E

{

G10 + G11 log

(

z − 1

z + 1

)}

+ E

{

G20 +

(

G21 +
3a1
2

G11

)

log

(

z − 1

z + 1

)

− G113
√
2(a21 − 8)

8(z2 − 1)

}

+

E3/2

[

G30 +

(

G31 −
17

2
G11

)

log

(

z − 1

z + 1

)

+
G11

{

32(a1 −
√
8)− 7a1(a

2
1 − 8)− 64(a1 +

√
2(z − 1))

}

4
√
2(z2 − 1)

−G213(a
2
1 − 8)

4
√
2(z2 − 1)

+
(m2 − 1)

3

[

G10

{

z2 − 2 log(z2 − 1)
}

+ G11

{

−4z + log(z − 1)

(z2 + log(256) − 4 log(z + 1))− 8L2

(1− z

2

)}]

]

+O(E2 log(32E)) (4.76)

Bearing in mind the matching to be done with the inner boundary layer (z < 1), the multivalued-

ness of the logarithm needs to addressed. Invoking Lin’s ‘indentation rule’, we regard the

(singular) neutral mode as being the limit of an unstable mode, so that one obtains

log(z − 1) = log |z − 1| z < 1,

= log |z − 1|+ iπ z > 1. (4.77)

Note that the existence of such a phase change across the critical radius has been proven in the

framework of classical viscous theory (Drazin & Reid [1981]). It is quite likely that the effects of

viscosity in the vicinity of critical layer again results in the same phase change as in the present

case. However, the phase change is likely to be modified if the critical layer is governed by

physics of a different kind.

4.7.3 Inner boundary layer - O(g
√
E)

Finally, we introduce an inner boundary layer in the irrotational region in the immediate neigh-

bourhood of the vortex edge with, r − 1 ∼ O(g
√
E) with g ≪ 1 for E≪ 1. Defining a boundary

layer coordinate by r = 1 + g
√
E y and denoting the inner boundary layer displacement as

ξ(r) = ξi(y), we have from (4.47)-(4.49):

d

dy

[

Rdξi

dy

]

=
g2ER(m2 − 1)

(1 + g
√
Ey)2

ξi, (4.78)
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with R = (1 + g
√
Ey)3P/(m2gE) is expanded as:

R = R0 +R1

√
E +R2E +R30E

3/2 log(32E) +R31E
3/2 + . . . , (4.79)

where,

R0 = 4
√
2(c0 − 2y),

R1 = 4
√
2(c1 + 6

√
2y),

R2 = 4
√
2c2,

R30 = 4
√
2c30,

R31 = 4
√
2c31,

In anticipation of the transcendental smallness, we assume gE−α → 0 as E → 0, ∀α > 0.

The boundary conditions (4.48) and (4.49) now take the form:

ξi(y = 0) = 1 (4.80)

dξi

dy

(

y = 0
)

= (m− 1)
√
E

{√
2

c0
−

√
2c1

√
E

c20
+

√
2
(

c21 − c0c2
)

E

c30
−

√
2
(

c31 − 2c0c1c2 + c20c31
)

E3/2

c40
−

√
2c30E

3/2 log(32E)

c20
+ . . .

}

(4.81)

Guided by the above expansions the boundary layer variable, ξi(y), is expanded in the following

manner:

ξi(y) = ξi0(y) +
√
E ξi1(y) + E ξi2(y) + E3/2 ξi3(y) + E2 log(32E) ξi40(y) + E2 ξi41(y) + . . . (4.82)

where we note that the radial displacement is now O(1). Plugging the above expansion in (4.78)

and using the boundary conditions (4.80) and (4.81), we can collect terms and systematically

find the inner boundary layer solution.

O(1)

d

dy

[

R0
dξi0
dy

]

= 0, with ξi0(y = 0) = 1 and
dξi0
dy

(y = 0) = 0,

⇒ ξi0(y) = 1.

O(
√
E)

d

dy

[

R0
dξi1
dy

]

= 0, with ξi1(y = 0) = 0 and
dξi1
dy

(y = 0) =

√
2(m− 1)

c0
,

⇒ ξi1(y) = −(m− 1)√
2

log

(

c0 − 2y

c0

)

.
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O(E)

d

dy

[

R0
dξi2
dy

+R1
dξi1
dy

]

= 0, with ξi2 = 0 and
dξi2
dy

= −
√
2(m− 1)c1

c20
,

⇒ ξi2(y) = −3(m− 1) log

(

c0 − 2y

c0

)

− (m− 1)

2
(
√
2c1 + 6c0)

{

1

c0 − 2y
− 1

c0

}

.

O(E3/2)

d

dy

[

R0
dξi3
dy

+R1
dξi2
dy

+R2
dξi1
dy

]

= 0, with ξi3 = 0 and
dξi3
dy

=

√
2(m− 1)(c1 − c0c2)

c30
,

⇒ ξi3(y) = −9
√
2(m − 1) log

(

c0 − 2y

c0

)

− (m− 1)√
2

(c2 + 6
√
2c1 + 36c0)

{

1

c0 − 2y
− 1

c0

}

+

(m− 1)

2
√
2

(c1 + 3
√

(2)c0)
2

{

1

(c0 − 2y)2
− 1

c20

}

.

O(E2 log(32E))

d

dy

[

R0
dξi2
dy

+R1
dξi1
dy

+R2
dξi0
dy

]

= 0, with ξi40 = 0 and
dξi40
dy

= −
√
2(m− 1)c30

c20
,

⇒ ξi40(y) = −(m− 1)√
2

c30

{

1

c0 − 2y
− 1

c0

}

.

O(E2)

Equation -
d

dy

[

R0
dξi41
dy

+R1
dξi3
dy

+R2
dξi2
dy

+R31
dξi1
dy

]

= 0, with ξi41 = 0 and

dξi41
dy

= −
√
2(m− 1)(c31 − 2c0c1c2 + c20c3)

c40
,

⇒ ξi41(y) = −54(m−1) log

(

c0 − 2y

c0

)

− (m− 1)√
2

{c3+6
√
2c2+54(c1+3

√
2c0)}

{

1

c0 − 2y
− 1

c0

}

+

(m− 1)

2
√
2

{2c2(c1+3
√
2c0)+9

√
2(c1+3

√

(2)c0)
2}
{

1

(c0 − 2y)2
− 1

c20

}

−(m− 1)

3
√
2

(c1+3
√

(2)c0)
3

{

1

(c0 − 2y)3
− 1

c30

}

Thus we have the inner boundary layer solution, to O(E2), as:

ξi(y) = 1−
√
E
(m− 1)√

2
log

(

c0 − 2y

c0

)

− E

[

3(m− 1) log

(

c0 − 2y

c0

)

+
(m− 1)

2
(
√
2c1 + 6c0)

{

1

c0 − 2y
− 1

c0

}]

− E3/2

[

9
√
2(m− 1) log

(

c0 − 2y

c0

)

+
(m− 1)√

2
(c2 + 6

√
2c1 + 36c0)

{

1

c0 − 2y
− 1

c0

}

− (m− 1)

2
√
2

(c1 + 3
√

(2)c0)
2

{

1

(c0 − 2y)2
− 1

c20

}]

− E2 log(32E)
(m− 1)√

2
c30

{

1

c0 − 2y
− 1

c0

}

− E2

[

54(m− 1) log

(

c0 − 2y

c0

)

+
(m− 1)√

2
{c3 + 6

√
2c2 + 54(c1 + 3

√
2c0)}

{

1

c0 − 2y
− 1

c0

}

− (m− 1)

2
√
2

{2c2(c1 + 3
√
2c0) + 9

√
2(c1 + 3

√

(2)c0)
2}
{

1

(c0 − 2y)2
− 1

c20

}

+

(m− 1)

3
√
2

(c1 + 3
√

(2)c0)
3

{

1

(c0 − 2y)3
− 1

c30

}]

+O(E5/2 log(32E)) (4.83)

The above solution satisfies both the boundary conditions at y = 0, and further, needs to be

matched to the solution in the outer boundary layer, which would then provide us with the
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values of c0, c1, . . . required for obtaining the eigenvalue. Based on our LHS analysis we expect

c0 to be real, and thus, the multivalued-ness of the logarithm in (4.83) needs to be addressed.

This would be essential in the matching region where we would consider y ≫ 1. Invoking the

‘indentation rule’ once again, we have:

log(c0 − 2y) = log |c0 − 2y| y <
c0
2

= log |c0 − 2y| − iπ y >
c0
2

(4.84)

Note that no information regarding the RHS (which is transcendentally small) has been used so

far, and the above solution would therefore be identical to what one would obtain by constructing

a similar inner boundary layer for the LHS problem.

4.7.4 Matching

With the inner, outer boundary layer and far-field solutions all obtained we proceed to derive

the necessary constants via matching each of the solutions.

Far-field

First we expand the far-field solution for small values of r− 1 and write it in terms of the outer

boundary layer coordinate, x = (r − 1)/
√
E,

r − 1 ≪ 1

ξF ∼
{B0

2x
+O

(

1

x2

)}√
E +

{

1

4
(1− 2m)B0 +

B1 −
√
2B0m

2x
+O

(

1

x2

)

}

E +

{B0(2m
2 − 1)

8
x+

1

8
(2B1(1− 2m) +

√
2B0(2m(m+ 1)− 1)) +O

(

1

x

)}

E3/2 + . . . (4.85)

Outer boundary layer

The outer boundary layer solution needs to be expanded both for large values of x, for matching

with the far-field, and for small values, for matching with the inner boundary layer.

x≫ 1

ξo ∼
{

G10 −
2
√
2G11

x
+O

(

1

x2

)

}

√
E +

{

G20 −
2(6G11 +

√
2G21)

x
+O

(

1

x2

)

}

E +

{G10(m
2 − 1)x2

6
+

(2G10 + 3G11 − 2m2(G10 + 3G11))x

3
√
2

+
(

G11 + G30+

m2 − 1

9

(

2G11(2π
2 + 9 + 6(log 2)2) + G10(3 + log 64)

)

)

+

√
2

9x

(

9G11 − 18G31+

2(m2 − 1)(6G10 + G11(log 64− 25))
)

+O

(

1

x2

)}

E3/2 + . . . (4.86)
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gc0 ≪ x≪ 1

ξo ∼
{

G10 + G11(log
√
8 + iπ − log x)

}√
E +

{

G20 + (3
√
2G11 + G21)(log

√
8 + iπ − log x)

}

E +

{

9G11 + G30 −
(17G11 − 2G31)

2
(log

√
8 + iπ − log x)− G11(m

2 − 1)

18
(8π2 − 3(8 + 20(log 2)2 + log 8)

−6iπ(1 + log 1024) + 6(1 + 4iπ + log 16) log x)− G10(m
2 − 1)

3
(1− log 2− 2iπ − 2 log x)

}

E3/2 + . . .

(4.87)

Inner boundary layer

The inner boundary layer solution is expanded for large values of y and written in terms of the

outer boundary layer coordinate, x = gy,

y >> 1

ξi ∼ 1− (m− 1)

√

E

2

(

log
∣

∣

∣

2

c0

∣

∣

∣
− log g − iπ + log x

)

+ (m− 1)E
{

3 +
c1√
2c0

− 3
(

log
∣

∣

∣

2

c0

∣

∣

∣
− log g−

iπ + log x
)}

+
(m− 1)E3/2

4

[12c1
c0

−
√
2

(

c1
c0

)2

+ 2
√
2
{

27 +
c2
c0

− 18
(

log
∣

∣

∣

2

c0

∣

∣

∣
− log g − iπ+

log x
)}]

+ (m− 1)54 log gE2 + . . . (4.88)

On matching we obtain the following value of constants,

g = e
− 1

(m−1)

√

2
E

c0 = 2
√
8e

6
m−1 , c1 = 16(m− 2)e

6
m−1 , c2 =

8
√
2

9
e

6
m−1

{

2(m2 − 1)(π2 + 12) + 9(11m − 10)
}

G10 = 0, G11 =
m− 1√

2
, G20 = (m− 1)(2m − 1), G21 = 0,

G30 =
2
√
2(m− 1)

9

{

9(2m − 1)− (m2 − 1)(π2 + 3(log 2)2)
}

,

G31 =
m− 1√

2

{

53

2
− m2 − 1

3
(1 + 4iπ + log 16)

}

We thus have the following asymptotic expression for the eigenvalue,

ω

m
= 1−

√
E
[√

8 + e
− 1

(m−1)

(√

2
E
−6

)

{

2
√
8 + 16(m − 2)

√
E +

8
√
2

9

{

2(m2 − 1)(π2 + 12)+

9(11m − 10)
}

E + . . .
}]

(4.89)

The above expression gives us the modification of the LHS expression, (4.67). To the order

analysed, is O(E3/2), (4.89) is purely real and doesn’t have information about the growth-rate.

The scaling of the growth rate, in the limit of small E, for the full problem must then be the

same as that of the LHS problem (O(E2)); although the numerical pre-factor will not be the

same. Since the numerics breaks down below a certain E (E≈ 0.015 for m = 2), the analysis of

the LHS problem, in particular, shows that the instability exists down to E = 0, and that there

is no elastic threshold for instability.
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4.8 Conclusions

In this chapter we identified a novel elastic instability for the Rankine vortex in a dilute polymer

solution. The instability arises due to the resonance of elastic shear waves aided by the back-

ground shear in the irrotational exterior. The regime analyzed involves a leading order balance

between inertia and elasticity and is governed by the elastic equivalent of the Rayleigh equation

for swirling flows; momentum diffusion and relaxation of polymeric stresses for the disturbance

is completely ignored. We proceed to numerically solve the elastic Rayleigh equation, and have

also carried out a (multiple) boundary layer analysis in the limit of small E. The analysis helps

extend the numerical results down to E=0, and the partial solution (the LHS problem) shows

the absence of an elasticity threshold for instability; that is, the Rankine vortex appears to

be unstable for any finite E. In the context of plane-parallel flows (e.g. - a submerged jet), it

was believed that this purely elastic instability happened due to a discontinuity in base state

shear, and would therefore be absent for smooth counterparts of such flows (Miller [2005]). In

the present study in cylindrical geometry we have found that the instability persists even for

smooth vorticity profiles - at least the ‘intense’ Rankine-like profiles. The study was entirely

focussed on two dimensional disturbances and we anticipate more exciting physics to emerge

when 3D effects are included.





Chapter 5

Optimal disturbances in stratified

shear flow

The material in this chapter is done under the supervision of Prof. Rama Govindarajan.

5.1 Introduction

The interaction of stable stratification and mean shear plays a crucial role in problems of both

engineering and geophysical interests (Turner [1973]). Classical inviscid stability theory states

that a parallel mean velocity profile is stable to exponential disturbances if the Richardson num-

ber (Ri) is greater than 1/4 everywhere in the flow (Miles [1961]). Experiments and numerical

simulations often belie this criterion (Farrell & Ioannou [1993a]). It is well known that alge-

braically growing disturbances can lead to transient amplification in shear flows, large enough

for it to possibly undergo transition (Schmid & Henningson [2001]). The complexity of strati-

fied shear flows stems from its ability to combine this transient amplification with propagating

internal gravity waves (IGWs).

In this chapter we study the evolution of disturbances in a linearly density-stratified Couette

flow. The initial value problem is solved asymptotically and the scope of algebraic growth is

identified by subjecting the flow to localized buoyancy perturbations. An interesting analogy

is noted between the three-dimensional lift-up effect in unstratified flows with two-dimensional

algebraic instability present in the stratified case, normal vorticity being substituted by vorticity

component along the mean vorticity. Next an optimal perturbation calculation is performed and

dependence on stratification is studied. We also consider both temperature stratification in air

and density stratification in water with relevance to heat and mass diffusion in atmosphere and

ocean respectively. Another interesting feature which is also explored is the evolution of optimal

energy ratio of potential energy to kinetic energy.

5.2 Problem formulation

We consider the stability of stratified fluid under the Bousinessq approximation (Spiegel &

Veronis [1960]). The mean state is composed of a shear flow, U(z), present in an ambient density

field, ρ(z). For non-dimensionalization we choose representative scales U0, L0 for velocity and

length respectively. On linearization about the mean, the stability equations describing the

135
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Figure 5.1: Flow Schematic

evolution of a three-dimensional velocity-density perturbation field could be written down as,

[(

∂

∂t
+ U

∂

∂x

)

∇2 − U
′′ ∂

∂x

]

w = −Ri0∇2
Hρ+

1

Re
∇4w (5.1)

(

∂

∂t
+ U

∂

∂x

)

η = −U ′∂w

∂y
+

1

Re
∇2η (5.2)

(

∂

∂t
+ U

∂

∂x

)

ρ =
N2

N2
0

w +
1

Re Pr
∇2ρ (5.3)

where w and η are the z-component of the velocity and vorticity perturbations respectively and

ρ is the density perturbation. ∇2
H = ∂2

∂x2 + ∂2

∂y2
is the horizontal laplacian. N2 = −gρ′/ρ0 is

the Brunt-Väisälä frequency (ρ0 is chosen as the mean value of background density) and N0 =
√

g/L0 is a reference value of this frequency. Ri0 = (N0L0/U0)
2 = Fr−2 is a reference Richardson

number (or inverse squared Froude number) whereas Ri = (NL0/U0)
2 is the Richardson which

captures the local variation of density. Viscous and diffusive effects are represented by the

Reynolds number, Re= U0L0/ν and Prandtl number, Pr= ν/κ. ν is the kinematic viscosity of

the fluid and κ its thermal/mass diffusivity.

Assumption of normal mode form f(x, y, z, t) = f̂(z)eikx(x−ct)+ikyy for the inviscid, non-diffusive

version of the system (5.1)-(5.3) gives us the celebrated Taylor-Goldstein-Haurwitz equation

(Drazin & Reid [1981]),

(U − c)
[

(U − c)(D2 − k2)− U
′′]
ŵ +Ri ŵ = 0 (5.4)

On incorporating viscous and diffusive dynamics we get,

[

(D2 − k2)− ikxRePr(U − c)
]

[

(D2 − k2)2 − ikxRe
{

(U − c)(D2 − k2)− U
′′}]

ŵ =

k2xPrRe
2Ri ŵ (5.5)
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D = d/dz, k =
√

k2x + k2y .

Classical linear stability entails us solving the above equations for given boundary conditions

as an eigenvalue problem. It is a well known fact that the Taylor-Goldstein-Haurwitz equation

(5.4) is a singular equation similar to its homogenous counterpart - the Rayleigh equation. In

addition (5.5) too is singular in the Pr→ ∞ limit even after inclusion of viscosity (finite Re).

The singular nature of the equation isn’t surprising as the Pr→ ∞ requires us dealing with

Dρ/Dt = 0 i.e. density is conserved along streamlines and allowed to maintain arbitrarily

cross-stream gradients. This singularity isn’t as severe as its inviscid extension (Re,Pr → ∞),

in sense that all physically relevant quantities (velocity, vorticity) are regular at the location of

singularity (Engevik [1974], Koppel [1964]).

5.3 Inviscid algebraic instabilities

(5.1)-(5.3) reveal an analogy between 3d stability of homogeneous shear flow and 2d stability

of stratified shear flow. Without loss of generality let us consider uniform shear flow (U = z).

Let us consider normal mode of the form ei(kxx+kyy). Here onwards the hat decoration will be

dropped and the context will elucidate whether we are dealing with f or f̂ . For 3d inviscid

stability of homogeneous uniform shear flow the relevant equations are

(

∂

∂t
+ ikxU

)

∇2w = 0 (5.6)

(

∂

∂t
+ ikxU

)

η = −ikyU ′
w (5.7)

For 2d stability of stratified uniform shear flow in absence of diffusive and viscous effects we

have,

(

∂

∂t
+ ikxU

)

ρ =
N2

N2
0

w (5.8)

(

∂

∂t
+ ikxU

)

ξ = −ikxRi0ρ (5.9)

where in 2d ∂ξ
∂x = ∇2w, ξ being the y component of perturbation vorticity (aligned along mean

state vorticity).

(5.6)-(5.7) represent the classical Orr-Sommerfeld/Squire system which contains the celebrated

algebraic instability - ‘lift-up’ (Ellingsen & Palm [1975], Landahl [1980]).

η = η0(z)e
−ikxzt − ikyU

′
ˆ t

0
w(z, t′)e−ikxz(t−t′)dt′ (5.10)

where η0 is the initial normal vorticity. For streamwise independent perturbations (kx = 0),

w(z, t) = w(z, 0) and thus the normal vorticity increases linearly with time. For kx 6= 0 the

initial transient exhibits a linear growth before saturating. For the stratified case let us consider

the toy problem where the background stratification is ignored but buoyancy perturbations are

accounted for (N2 = 0, N2
0 6= 0 ⇒ Ri0 6= 0). It would probably not be unwise to draw parallels

between buoyancy perturbations being advected by the flow and subsequently forcing the ξ, the
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y component of perturbation vorticity, in the latter problem, with ∇2w (proportional to the

wave-vector aligned vorticity component) being advected by the flow and subsequently forcing

the evolution of normal vorticity, η, via w in the former. From (5.8)-(5.9) we have,

ξ = ξ0(z)e
−ikxzt − ikxρ0(z)Ri0 te

−ikxzt (5.11)

where ξ0 is the initial y component of perturbation vorticity. This algebraic growth of ξ doesn’t

automatically imply algebraically growing perturbation energetics. The velocity fields, being

integral and thus smoothening operations on the vorticity field, exhibit decaying long time

asymptotics for smooth initial conditions of the form (w ∼ t−1 for ρ0 6= 0) consistent with the

findings of Brown & Stewartson [1980] who studied this toy problem for the purpose of clarifying

long time asymptotics of disturbances in stratified shear flow. The physics of this density

initiated growth is different from that of ‘lift-up’. The latter happens due to vertical transport

of stream-wise momentum guided by mean flow momentum gradient (U
′ 6= 0). The former

happens due to the density field evolving uninhibited by the structure of the normal velocity

field, w, but possessing the ability to force the normal velocity perturbations via buoyancy

forcing. When N2 6= 0, w encounters resistance from the mean density gradient, thus reducing

the ‘resonant’ buoyancy forcing of itself. This growth could be viewed as impulsive excitation

of the system (a mass source forcing at t = 0) and the linear growth would happen even in a

stratified system with no background flow. This can be seen from the short time expansion of

the Green’s function for disturbances in stratified medium (Voisin [1991]).

An idealized initial condition like a density sheet, ρ0 ∝ δ(z − z0) (z0 is a location in the flow

domain), would be uninfluenced by the de-phasing process of background shear and thus allow for

an algebraically growing velocity field and hence perturbation energy. This statement be easily

checked by imposing a density sheet initial condition proxy in the form of a sharply localized

density perturbation. If the initial condition has an extent of O(
√
δ) then destructive interference

of the initial condition would happen over a time-scale of O(δ−1/2), a period during which the

linear growth would be observed and energy would attain a maximum value proportional to

O(δ−1). A suitable density sheet proxy is a Gaussian density perturbation distribution, as one

can appropriately approach a delta function as δ → 0. Thus the solution of (5.11) with the

initial condition

ξ0(z) = 0, ρ0(z) =
C

2
√
πδ
e−(z−z0)2/4δ (5.12)

can be written down as,

w = k2xRi0 Ct
ˆ 1

−1
ρ0(z

′)G0(z, z′)e−ikxz′tdz′ (5.13)

where, G0(z, z′) = −sinh kx(1− z) sinh kx(1 + z′)H(z − z′) + sinh kx(1 + z) sinh kx(1− z′)H(z′ − z)

kx sinh kx

⇒ w = −kxRi0 C
sinh kx(1− z)G0

1 + sinh kx(1 + z)G0
2

4 sinh kx
t e−ikxz0t (5.14)
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Figure 5.2: Duration of linear growth of velocity field for initial conditions given by equation
5.12 for different width of the initial condition

where

G0
1 = e−k2x(i+t)2δ+kx(1+z0)

(

Erf

[

1 + z0 − 2ikxδ(i + t)

2
√
δ

]

+ Erf

[

z − z0 + 2ikxδ(i+ t)

2
√
δ

])

−

e−k2x(i−t)2δ−kx(1+z0)

(

Erf

[

1 + z0 + 2ikxδ(i − t)

2
√
δ

]

+ Erf

[

z − z0 − 2ikxδ(i− t)

2
√
δ

])

G0
2 = e−k2x(i−t)2δ+kx(1−z0)

(

Erf

[

1− z0 − 2ikxδ(i − t)

2
√
δ

]

− Erf

[

z − z0 − 2ikxδ(i− t)

2
√
δ

])

−

e−k2x(i+t)2δ−kx(1−z0)

(

Erf

[

1− z0 + 2ikxδ(i + t)

2
√
δ

]

− Erf

[

z − z0 + 2ikxδ(i+ t)

2
√
δ

])

For δ << 1 and t < 1/
√
δ, the solution would have the following asymptotic form,

w ∼ −kxRi0 C
sinh kx(1− z) sinh kx(1 + z0)H(z − z0) + sinh kx(1 + z) sinh kx(1− z0)H(z0 − z)

sinh kx
t e−ikxz0t

(5.15)

identical to the response due to a density sheet. On the contrary for δ << 1 and t >> 1/
√
δ,

the decay is O(t−1) in confirmation with Brown & Stewartson [1980].

On solving (5.8)-(5.9) for N2 = 0 and initial conditions given by (5.12) we plot the duration

of growth and maximum energy attained as a function of δ in figures 5.2-5.6. The numerical

solutions confirm the argued scaling. We have shown this previously with Rahul Bale (Bale

[2009]).

Having explained the dynamics using a toy model the immediate question that arises is - how

far would this feature persist with background stratification? Would a intensely localized initial

condition produce an algebraic growth for short times if N2 6= 0? If yes, would the growth be
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Figure 5.3: Maximum energy attained for initial conditions given by (5.12) for different width
of the initial condition

linear, sub-linear or super-linear? The last scenario seems unlikely based on the inhibitive effect

of background stratification but answers to the above questions demand a thorough analysis.

On Laplace-transforming (5.8)-(5.9) and solving for w provides with the following expression,

w =
1

2πi

ˆ γ+i∞

γ−i∞

ˆ 1

−1

[

iξ0(z
′)

(s+ ikxz′)
+

kxRiρ0(z
′)

(s+ ikxz′)2

]

G(z, z′; s)dz′ds (5.16)

where

G(z, z′; s) =
√

(s+ ikxz)(s + ikxz′)
{Kn(Λ>)In(Λz′)− In(Λ>)Kn(Λz′)} {Kn(Λ<)In(Λz)− In(Λ<)Kn(Λz)}

Kn(Λ1)In(Λ−1)− In(Λ1)Kn(Λ−1)

n =

√

1

4
− Ri, Λz = −i(s+ ikxz), Λz′ = −i(s+ ikxz

′), Λ1 = −i(s+ ikx), Λ−1 = −i(s− ikx)

Λ> = Λ1H(z − z′) + Λ−1H(z′ − z), Λ< = Λ−1H(z − z′) + Λ1H(z′ − z) (5.17)

γ in the above Bromwich integral is chosen so as to encompass all the singularities of the solution

in the transform space. Though a closed-form solution to the above inversion is not known,

approximate forms of it have been obtained while working in various limits. A large number of

studies have focussed on calibrating the long time asymptotics and as mentioned before, Brown

& Stewartson [1980] put a lid to several such attempts (some erroneous). Here we will try

extending our finding of algebraic instability by focusing on short time transients. Figure 5.5

depicts the singularities to be dealt with while performing the inverse Laplace transform. The

Green’s function, G(z, z′; s) has simple poles at s = sn corresponding to internal gravity waves

modified by shear (present only for Ri> 1/4, figure 5.4) and algebraic branch-cuts at s = −ikxz
and s = −ikxz′ (a mobile one). An observation of the form of the initial condition which

convolves with the Green’s function would convince that s = −ikxz′ is the more severe initial
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Figure 5.4: Sheared Internal Gravity Waves (uniform shear)

condition and would be primarily responsible for depicting initial transients. In the vicinity of

s = −ikxz′ we could approximate the Green’s function as,

G(z, z′; s) ∼ (s + ikxz
′)−n+ 1

2 g(z, z′) (5.18)

where, g(z, z′) = − i
nΓ(n)

21−n

√

ikx(z − z′)In(Λ>) {Kn(Λ<)In(kx(z − z′))− In(Λ<)Kn(kx(z − z′))}
Kn(Λ1)In(Λ−1)− In(Λ1)Kn(Λ−1)

Now for a density sheet initial condition ρz = C δ(z − z0) the velocity field from (5.16) can be

written down after performing the inverse Laplace transform as,

w(z, t) =
kxRi C g(z, z0)

Γ(32 + n)
e−ikz0tt

1
2
+n (5.19)

Thus in presence of background stratification, the perturbation velocity field grows sub-linearly

in response to a density sheet initial condition (Ri→0 recovers the linear growth).

Similar to the toy model, here too a smooth initial condition will exhibit t1/2+n growth initially

before settling into the familiar t−3/2+n asymptotic decay (Booker & Bretherton [1967]). Figure

5.6 shows that numerical evaluation1 of (5.8) and (5.9) for a localized density initial condition

and a comparison to the predicted behavior of kinetic energy, E ∼ t2n+1.

The study with the toy model and the transient analysis for the entire problem revealed several

interesting features but we need to explore the algebraic instabilities in stratified shear systems

beyond the restrictive initial conditions we have considered so far. A common approach for such

global analysis is the optimal perturbation methodology.
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Figure 5.5: Bromwich contour with the singularities - branch cuts at s = −iαz,−iαz and poles
at s = sn (location of sheared gravity waves, absent for Ri<1/4)

5.4 Optimal Perturbation Analysis

The objective functional to be optimized (maximized in the present problem) is the total energy

normalized by its initial value.

Gmax =
E(kx, ky; t)

E(kx, ky; 0)
(5.20)

where

E(kx, ky; t) =
1

2k2

ˆ 1

−1
(−w∗.∇w + η∗.η +Rik2ρ∗ρ)dz (5.21)

The optimal perturbation approach involves scanning over the space of all initial conditions and

finding the one which provides us with the maximum energy amplification. This can be done

using two popular techniques - the singular value decomposition (SVD) technique (Schmid &

Henningson [2001]) and the power iteration technique (Corbett & Bottaro [2000]). Both involve

solving the following equation,

∂q

∂t
= Aq (5.22)

1For the numerical calculation, the spatial discretization is done using the Chebyshev spectral collocation method
(Trefethen [2000]) and the time integration is carried out using the MATLAB software command ODE45, based
on an explicit Runge-Kutta formula with adaptive step-sizes.
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Figure 5.6: Kinetic energy evolution for initial conditions given by (5.12) (width - δ = 1e −
3, 1e− 4) and its comparison with asymptotic estimate (Ri=0.1, kx = 1)), when N 6= 0.

q = [w η ρ]T ,with the given boundary conditions. Where, A = M−1L

M =







D2 − k2 0 0

0 1 0

0 0 1






(5.23)

L =











LOS 0 k2Ri0

−ikyU ′
LSQ1 0

N2

N2
0

0 LSQ2











(5.24)

LOS = −ikxU(D2 − k2) + ikxU
′′
+

1

Re
(D2 − k2)2 (5.25)

LSQ1 = −ikxU +
1

Re
(D2 − k2) (5.26)

LSQ2 = −ikxU +
1

Re Pr
(D2 − k2) (5.27)

The power iteration technique has been made more rigorous and versatile by developing it from

the perspective of Lagrangian formulation (Guégan [2007]). It is a generalized method to find

optimal perturbations, and is applicable even for non-linear problems (scenario where SVD and

eigenfunction expansion based techniques do not work). For linear systems the power iteration

technique is particularly useful when one deals with unbounded systems. Unbounded shear flows

have viscous continuous spectrum and SVD, which involved expanding over a finite basis of

eigenfunctions, may underestimate the energy amplification by not appropriately capturing the

contribution from the viscous continuous spectrum (Guégan et al. [2006]). For bounded systems

(the present case being one) SVD is more suited than power iteration due to computational

efficiency. Though we have performed calculations using both techniques - results presented
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have been done using a SVD analysis. In the present chapter we will restrict the detailed

parameter space that is accessible we will fix Re=500.

5.4.1 2D optimal perturbations

Figure 5.7 shows the variation of Gmax, the optimal streamwise wavenumber (kx,opt) and the

optimal time (Topt) with stratification (Ri). The dominant mechanism of energy amplification

in 2D is the Orr mechanism and it involves titling of wave fronts by background shear and the

Reynolds stress aiding in energy transfer from the mean flow to the perturbations. Stratification

resists vertical motion and that translates to the inhibition of energy amplification by the Orr

mechanism. This is easily seen for Pr=1 (figure 5.7(a)). But interestingly when the density

field remains frozen and only gets stirred by the diffusive velocity field (Pr=700,7000) then for

an initial range of Ri, the stratified cases exhibit more amplification than the unstratified case,

see Figure 5.7(b), confirming that this amplification results from momentum diffusion in the

absence of mass diffusion. Both kx,opt, Topt (figures 5.7(c)-(d)) show a clear demarcation of

dynamics at Ri≈ 0.25. For a uniformly stratified Couette flow, according to inviscid theory,

Ri= 0.25 indicates the onset of sheared IGWs. At any Ri greater than this value, the dynamics

is going to be largely influenced by IGWs. This is clearly observed in figure 5.7(d) where the Topt

perfectly scales with Ri−0.5, and is thus just a measure of the inverse of N , the Brunt-Väisälä

frequency. We may thus ask whether this is true algebraic growth.

Since we deal with a global quantity like Gmax, an important feature in the context of stratified

shear flows which is often overlooked in the optimal perturbation calculations is the ‘energy

partitioning’ i.e. the ratio PE/KE (PE is the potential energy and KE the kinetic energy).

In figure 5.8 the temporal evolution of the total energy and its two components is shown for

optimal initial condition excitations for various values of Ri and Pr. For weak stratification,

the momentum forcing describes the total energy evolution almost till optimal time beyond

which the buoyancy component sustains it. For strong stratification, IGWs set in and the

energy evolution is described both via momentum and buoyancy forcing. The maximum energy

amplification occurs during the maximum of PE. One can guess, with increasing stratification,

the initial forcing will transition from a purely momentum one to increasingly more buoyant

one (figure 5.9(a)). But at the optimal instant this ratio saturates with increasing stratification

(figure 5.9(b)).

5.4.2 3D optimal perturbations

In 3D the dominant transient growth mechanism is the ‘lift-up’ effect. As already discussed

this involves redistribution of momentum by fluid parcel traveling vertically. Stratification once

again reduces transient amplification as seen in figure 5.10(a). Comparing with 2D results it

initially appears surprising that kx, ky and Topt, none of them exhibits a transition at Ri=0.25.

This becomes clear when one realizes that ‘lift-up’ effect dictates kx,opt → 0 as Ri→ 0. Thus for

small Ri, with vanishing streamwise dependence, the vertical velocity and buoyancy equation
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can be reduced from (5.22)-(5.24) as,

∂

∂t
(D2 − k2y)w = k2yRi0ρ (5.28)

∂

∂t
ρ =

N2

N2
0

w (5.29)

⇒ ∂2

∂t2
(D2 − k2y)w = k2yRiw (5.30)

The above system supports IGWs for any non-zero Ri; by considering kx = 0 the role of shear

has been removed. This is confirmed from the optimal perturbation calculations - Topt scales

with the buoyancy time scale (∼ Ri−0.5) (figure 5.10(d)) and the amplification which depends

on the optimal time as T 2
opt, scales as O( Ri−1 )(figure 5.10(a)).

An interesting quantity to study via optimal perturbation calculation is the obliqueness of the

optimal initial condition. The obliqueness is measured as θ = tan−1(ky,opt/kx,opt). In the

unstratified case, the initial condition is almost streamwise independent (kx,opt =35/Re for

Couette flow). With increasing stratification the initial condition becomes increasingly oblique

(5.11).

Unlike 2D, in 3D the optimal forcing is momentum dominated as can be seen from the PE/KE

ratio at the initial instant and also the optimal time (figure 5.12).

5.5 Conclusions

Evolution of non-modal disturbances in stratified shear flows is studied in the present chapter.

First an analogy with unstratified ‘lift-up’ effect is drawn for 2D stratified shear flow. Algebraic

growth occurs in 2D stratified shear flows for localized buoyancy forcing and comparisons are

made with numerical solutions.

Next the focus is shifted to optimal perturbation calculations. Both 2D and 3D optimal pertur-

bations in stratified shear flows are studied. The focus is on how various optimal quantities, ,

vary with stratification (Ri). Stratification suppresses the transient amplification in both 2D and

3D because of its resistance to any vertical motion, crucial for both Orr mechanism and ‘lift-up’

effect. There occurs an exception in 2D when the mass diffusion is neglected and stratified cases

could lead to larger amplification than the unstratified case.
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Figure 5.7: Dependence of optimal Gmax, kx,opt and Topt on stratification (Ri) for various values
of Pr. (b) is a zoomed in version of (a) highlighting the larger values for Pr=7000 over that of
Pr=700
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Figure 5.9: Variation of ‘energy partitioning’ (PE/KE) on stratification (Ri) at the initial instant
(a) and optimal time (b)
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Figure 5.10: Dependence of optimal Gmax, kx,opt, ky,opt and Topt on stratification (Ri) for various
values of Pr.
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Figure 5.12: Variation of ‘energy partitioning’ (PE/KE) on stratification (Ri) at the initial
instant (a) and optimal time (b)



Chapter 6

Normal mode interpretation of

‘lift-up’ effect

6.1 Introduction

The non-modal behavior of infinitesimal disturbances in shear flows is attributed mathemati-

cally to the non-normal nature of the underlying linear stability operator (Schmid & Henningson

[2001]). The two dominant physical mechanisms for non-modal behavior, leading to short-time

algebraic growth, are the Orr mechanism and the lift-up effect. A Reynolds-stress-based argu-

ment, that allows for a transfer of energy between the mean flow and an imposed perturbation, is

usually offered as an explanation for the Orr mechanism (for instance, see Farrell [1987];Pradeep

& Hussain [2006]). For the lift-up effect, which comes into play only in the presence of an added

spanwise variation of an imposed perturbation, the common explanation is based on the redis-

tribution of mean-flow momentum in the transverse direction; for instance, one finds a mention

of this basic mechanism in Benney & Lin [1960]. The mechanism may be best understood for

purely spanwise disturbances in which case the wall normal disturbance velocity is time inde-

pendent, and transports (‘lifts up’) the mean momentum, riding on its gradient, to produce a

streamwise disturbance velocity that grows linearly in time (Schmid & Henningson [2001]).

Albeit more cumbersome, a perturbation-vorticity-based stretching/tilting mechanism may

also used to explain the phenomenon and lends more insight. This complementary vortex-tilting

based explanation, for a single spanwise-directed Fourier mode, is illustrated in figure 6.1. In

this picture, the lift-up effect arises because the vertical shear in the mean vorticity direction,

due to the spanwise variation in the vertical perturbation velocity (∂ûy/∂z: representative of a

‘roll’ initial condition), tilts the mean vorticity (−U ′
), producing a linearly growing wall-normal

perturbation vorticity (ŵy: representative of the vorticity field of a growing streak); note that

a general roll initial condition (as opposed to the single Fourier mode in figure 6.1) would have

an associated ∂ûz/∂z, and would therefore also stretch the base-state vorticity at linear order.

Now, there is an additional linearly growing streamwise perturbation vorticity field (ŵx) gener-

ated due to ŵy being tilted by the mean shear (U
′
), but this is exactly cancelled by the tilting

of the base-state vorticity (−U ′
) due to the spanwise variation of the streamwise perturbation

velocity (∂ûx/∂z induced by ŵy). As a result, only the growing streak survives. Such a can-

cellation, however, occurs only for plane parallel flows where the base-state velocity gradient

and vorticity are given by +U
′
and −U ′

, respectively. This is no longer the case for curvilin-

ear (vortical) flows, and the latter vortex stretching-tilting mechanism noted above persists in

these cases (chapter 3). This latter mechanism for algebraic growth has been referred as the

‘anti lift-up’ effect in the context of axisymmetric vortices (Antkowiak & Brancher [2004]). In

fact, the traditional lift-up effect is vanishingly small in regions of negligible base-state vorticity,
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Figure 6.1: Algebraic growth in shear flow associated with a spanwise ‘roll’ Fourier mode into a
‘streak’ Fourier mode.

being identically zero for the limiting case of an irrotational flow induced by a point vortex.

Finally, we note that although Ellingsen & Palm [1975] and Landahl [1980] are often credited

as being the first to offer an explanation for the ‘lift-up’ effect based on a solution of the initial

value problem, the possibility of algebraic growth of general disturbances in shear flows, due

to the presence of a Jordan block structure in the linear stability operator, can be found even

earlier in Arnol’d [1972].

Both the algebraic growth mechanisms discussed above are essentially of an inviscid origin

with viscosity only leading to an eventual decay of the perturbation kinetic energy on a time scale

that, in convective units, is proportional to the Reynolds number (Schmid & Henningson [2001]).

Thus, there must exist an alternate interpretation of the algebraic growth, in plane parallel

shearing flows, in terms of the known dynamics of the inviscid continuous spectra associated

with the Rayleigh operator (Case [1960];Sazonov [1996]; chapter 2). Such an interpretation is

most easily seen for the Orr mechanism in two dimensions. While the original IVP analyses

describing the Orr mechanism in Couette flow (for instance, see Farrell [1987]) were in terms of

Kelvin modes (Fourier modes with a time-dependent wave vector that is turned by the ambient

linear flow), an equivalent description may be given in terms of a convected superposition of

CS-modes; for two-dimensional perturbations, these modes are flow aligned vortex sheets (Case

[1960]). In the Kelvin mode interpretation, the temporal dynamics of the kinetic energy may be

divided into growth and decay phases corresponding to the (planar) wavefronts of the Fourier

mode having upstream and downstream inclinations, respectively. The shearing flow turns the

wavefronts from the former to the latter orientation, and the instant of maximum kinetic energy

corresponds to vertical or gradient-aligned wavefronts. In the equivalent CS-mode interpretation,

as shown in figure 6.2, one considers the action of a shearing flow on an ensemble of vortex-sheet

CS-modes staggered in the upstream direction. The greater the degree of upstream staggering,

the smaller is the degree of coherence (in phase) in the gradient direction, and the smaller is the
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Figure 6.2: Schematic illustrating Orr mechanism via tilting of an upstream oriented initial con-
dition by background shear. The top array of figures represent the perturbation streamfunction
at its initial instant and its subsequent evolution. The bottom array represents the temporal
evolution of kinetic energy with superimposed on it stacks of Case vortex sheets, an eigenmode,
used to represent the flow at various instants of its evolution.
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initial kinetic energy. The differential convection due to shear brings the vortex sheets into phase-

alignment, and the instant of maximum coherence in the transverse direction corresponds to the

maximum kinetic energy. Further convection by shear causes the vortex sheets to progressively

de-cohere, leading to a decrease in the kinetic energy for later times. Although not necessary,

the superposition of phase-aligned vortex sheet may be such as to reproduce a single Kelvin

mode, in which case the two interpretations are coincident. Further, the kinetic energy decays

as O(t−2) for long times in the inviscid limit, and this may be seen by noting that the motion for

long times is primarily along the horizontal, and the kinetic energy therefore scales as O[ky(t)]
2ψ

with ψ being the stream function and ky(t) being the (time-dependent) inverse length scale in

the gradient direction. Since the vorticity field does not decay in the inviscid case, we have

k2y(t)ψ ∼ O(1) with ky ∼ O(t) for long times.

To the best of our knowledge, there exists no modal explanation for the inviscid lift-up effect

along the above lines; in particular, a modal representation of the growth that arises due to

a purely spanwise perturbation when there can be no contribution due to the Orr mechanism,

and more generally, for any three-dimensional perturbation when the growth is no longer solely

due to the Orr mechanism. A modal explanation for the lift-up effect is attributed to the non-

normality of the operator and the resulting non-orthogonality of the discrete viscous modes. In

the present work we attempt to offer an explanation for the lift-up effect based on the inviscid

eigenmodes, and argue that this is preferrable to the existing explanation (Schmid & Henningson

[2001]) for large Reynolds number (Re) since the individual viscous modes do not have sensible

limits for Re → ∞. This chapter is organized as follows. In section 6.2 the problem is formulated

for a base-state corresponding to an arbitrary plane-parallel shear flow. Herein, the choice of

a wave-vector aligned coordinate system, instead of the usual flow-aligned one, allows one to

simplify the normal mode analysis. Next, in section 6.3, based on the existing knowledge of

the 3D CS-modes for Couette flow (Sazonov [1996]) and the 2D CS-modes for non-linear shear

flows (Balmforth & Morrison [1995a]), the two families of CS-eigenfunctions, for a non-linear

shear flow, are obtained. This then leads the required modal superposition for an arbitrary

initial condition that then exhibits the possibility of algebraic instability in the form of the

‘lift-up’ effect. Since exponentially unstable modes are not responsible for the ‘lift-up’ effect,

the analysis above is initially developed for a non-inflectional smooth velocity profile in which

case the spectrum is absolutely continuous (which automatically excludes any discrete modes;

see Lin [1955];Fadeev [1971]); later, the superposition is generalized to accommodate inflectional

velocity profiles by allowing for additional discrete modes. The inviscid modal interpretation of

the ‘lift-up’ effect given here is complementary to the existing interpretation via non-orthogonal

viscous discrete modes, although the relation between the two is non-trivial. Thus, section 6.5 is

devoted to a discussion of the connection between an inviscid eigenmode and the discrete viscous

modes, for large but finite Re , in the context of the analytically soluble problem of Couette flow.

Section 6.6 concludes by summarizing the main findings of this communication.
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Figure 6.3: Shear flow in the flow aligned and wave-vector aligned coordinate systems

6.2 Problem formulation

Let us consider a 3D Fourier mode imposed on a shear flow, with the base-state velocity profile

U(z), in a wave-vector-aligned coordinate system (x′, y′, z) instead of the usual flow-aligned

coordinate system (x, y, z) with x, y and z in the latter case corresponding, respectively, to the

flow, gradient and vorticity directions of the base-state. Since the flow and vorticity directions

are homogeneous, the wave-vector, k ≡ (kx, ky), lies in the flow-vorticity plane, and the Fourier

mode has the general form F (z)ei[(kxx+kyy)+ct]. The aforementioned coordinate systems are

related by a rotation about the z-axis as shown in figure 6.3. If φ be the angle made by k with

the flow direction, the relevant relations between the coordinates are given by:

kx = k cosφ, ky = k sinφ, kx′ = k =
√

k2x + k2y , (6.1)

ux′ = ux cosφ+ uy sinφ, uy′ = uy cosφ− ux sinφ, u′z = uz. (6.2)

The linearized equations of motion for the perturbation velocity components, and the differ-

ent components of the perturbation vorticity field, in the flow-aligned and wave-vector-aligned

coordinate systems, are summarized in table 6.1, where D is used to denote d/dz.

Table 6.1: Relevant equations in the flow-aligned and wave-vector-aligned coordinate systems

Momentum Equation

Flow aligned Wave-vector aligned

ikx(U − c)ux + uzU
′
= −ikxp ikx(U − c)ux′ + uzU

′
cosφ = −ikp

ikx(U − c)uy = −ikyp ikx(U − c)uy′ − uzU
′
sinφ = 0

ikx(U − c)uz = −Dp ikx(U − c)uz = −Dp
ikxux + ikyuy +Duz = 0 ikux′ +Duz = 0

Vorticity Components

Flow aligned Wave-vector aligned
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wz = ikxuy − ikyux wz = ikuy′

wx = ikyuz −Duy wx′ = −Duy′
wy = Dux − ikxuz wy′ = Dux′ − ikuz

(D2 − k2)uz = ikywx − ikxwy (D2 − k2)uz = −ikwy′

In wave-vector-aligned coordinates, one can write down a system of equations for the normal

velocity (uz) and vorticity fields (wz = ikxu
′
y) equivalent to the Rayleigh-Squire system known for

the flow aligned coordinate system (the structure of the finite Re analog of the Rayleigh-Squire

system, the Orr-Sommerfeld-Squire system, is discussed in detail in Schmid & Henningson [2001]

):

ik(U − c)wy′ = −U ′′
uz, (6.3)

ikkx(U − c)uy′ = U
′
kyuz, (6.4)

where we note from table 6.1 that wy′ is related to the normal velocity perturbation as −ikwy′ =

(D2 − k2)uz. The Rayleigh equation for wy′ , the component of vorticity normal to k, remains

identical to that for two-dimensional perturbations with k along the flow axis. The system

(6.3)-(6.4) supports two families of CS-modes, and for a non-inflectional velocity profile which

supports a purely continuous spectrum, it will be shown by construction that these two families

constitute a complete set of (singular) eigenfunctions capable of representing an arbitrary initial

vorticity distribution. One of the families arises from the homogeneous solution of the Rayleigh

equation, with the resulting normal velocity field forcing the Squire equation; these are the

Rayleigh or, as we shall term them, the Λ1 modes. The second family is a homogeneous solution

of (6.4), the Squire equation, and therefore has a velocity field restricted to the flow-vorticity

plane. These Squire modes will be termed the Λ2 modes in what follows. The latter nomenclature

is motivated by our identification of these families with the structure of the two independent

CS-mode families known for the case of a Rankine vortex (chapter 2); although, there is an

additional discrete spectrum in the vortex case. In general, there are differences in detail with

regard to the structure of vorticity (and velocity) field associated with the Λ1 and Λ2 families for

the parallel flow and vortex cases, but there arises an exact analogy in the two-dimensional limit

between Couette flow and the Rankine vortex. As already mentioned, for the parallel flow case,

this limit corresponds to the wave vector being in the flow-gradient plane, and for the vortex

case, the limit corresponds to the absence of any modulation in the imposed perturbation along

the axis of rotation.

For the inviscid limit considered here, the shear flow is considered to be bounded between

z = −1 and z = +1, and this may be done without any loss in generality since the structure

of the inviscid continuous spectrum remains qualitatively unaltered regardless of whether the

domain is bounded or unbounded. There is a certain loss of generality for the viscous case,

that is, when Re is large but still finite. On one hand, introducing an unbounded (semi-infinite)

domain for velocity profiles, that approach a uniform flow at infinity, leads to the appearance of

a viscous continuous spectrum for the Orr-Sommerfeld equation which consists of eigenfunctions
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that oscillate finitely rather than decay at infinity; this was originally found in the context of the

Blasius profile and is a general feature of Blasius-like profiles in a semi-infinite domain (Mack

[1976];Murdock & Stewartson [1977]). In contrast, for velocity profiles that asymptote to a finite

shear at infinity, for instance, unbounded Couette flow, the existence of viscous eigenfunctions

is crucially reliant on the presence of boundaries, and there is indeed no discrete spectrum in

these cases in the absence of boundaries. The crucial role of boundaries in the latter case leads

to a non-trivial relation between the inviscid CS-modes for a given flow, analyzed in sections

6.3.1 and 6.3.2, and the viscous modes for large but finite Re for the same flow. In particular,

each CS-mode may be sensibly interpreted only as the limiting form of a viscous wavepacket

for Re → ∞; the individual viscous eigenmodes do not approach sensible limiting forms in the

inviscid limit. This relationship is examined in some detail in section 6.5. Now, we proceed with

the construction of the singular eigenfunctions, associated with the Λ1 and Λ2 families, in the

inviscid limit.

6.3 The CS-spectrum of the linearized Euler equations

6.3.1 The Λ1 family - Inclined Case vortex sheets

From (6.3), the solution for wy′,k (the subscript k has been added to denote that the quantities

considered are for a single Fourier mode) is seen to contain two contributions - a localized vortex

sheet component corresponding to the homogeneous solution and a non-local PV-singular com-

ponent. This is identical to the structure of the 2D CS-modes originally identified by Case [1959]

in the context of perturbations to the electron velocity distribution as governed by the Vlasov

equation, and discussed in more detail and in the specific context of inviscid hydrodynamic

stability by Balmforth & Morrison [1995a]. Thus, a Λ1 CS-mode is characterized by:

wy′,k = −C1δ(z − zc) + P i

k

U
′′
uz,k

(U − c)
, (6.5)

uy′,k = P kyU
′
uz,k

ikkx(U − c)
. (6.6)

Here, U(zc) = c with zc denoting the critical level where the fluid in the base-state travels

at the same speed as the perturbation. We note that, unlike the 2D CS-modes, there is now

an additional component of velocity perpendicular to k, that is, along the y′ direction. This

component is PV-singular and arises from (6.4) due to the tilting of the base-state vorticity field

by the normal component of the perturbation velocity field. The Λ1 mode has thus PV-singular

velocity and vorticity fields in contrast to 2D perturbations wherein the velocity profile only

has a discontinuity in slope across the critical level. Since the PV-singularity in the velocity

field arises from vortex-tilting and not from a base-state vorticity gradient, it persists even for

Couette flow as first shown by Sazonov (1996). For the case of Couette flow, the PV-singular

term in the vorticity field vanishes, however, and the vorticity eigenmode is exactly a vortex

sheet; thus, (6.5) represent the generalization of the Case vortex-sheets, originally found by

Case (1960) for 2D perturbations, to the case of an inclined wavevector. The above is also unlike
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the 3D CS-modes for vortical flows wherein, as illustrated for the case of a Rankine vortex,

the PV-singular contribution is absent in the velocity field due to the irrotational nature of the

base-state (chapter 2). Since uz,k = (D2 − k2)−1(−ikwy′,k), we have the following expression for

the normal component of the perturbation velocity associated with wy′,k in (6.5):

uz,k(z; zc) = −ikC1G(z; zc) + P
ˆ 1

−1

G(z; z′)U ′′
(z′)uz,k(z; z

′)

U(z′)− U(zc)
dz′, (6.7)

where

G(z; zc) = −sinh k(1− z>) sinh k(1 + z<)

k sinh 2k
, (6.8)

is the Greens function of the one-dimensional Laplacian for the bounded domain, z ǫ [−1, 1],

under consideration, with z<(z>) denoting the smaller (larger) of z and zc. It is the explicit

form for the Greens function that is sensitive to the domain being bounded or unbounded; the

general character of the perturbation vorticity and velocity fields characterizing the Λ1 CS-modes

remains unaltered, however. Finally, on normalizing the total y′-vorticity component associated

with a given Λ1 mode:

ˆ 1

−1
wy′,k(z

′; zc)dz
′ = Σ1, (6.9)

one may characterize each Λ1 CS-mode by the following expressions for the vorticity and velocity

fields:

wΛ1
y′,k(z; zc) =

{

Σ1 −
i

k
P
ˆ 1

−1

U
′′
(z′)uΛ1

z,k(z
′; zc)

U(z′)− U(zc)
dz′
}

δ(z − zc) + P i

k

U
′′
uΛ1
z,k(z; zc)

U(z) − U(zc)
, (6.10)

uΛ1
z,k(z; zc) = −ikΣ1G(z; zc) +

ˆ 1

−1
U

′′
(z′)uΛ1

z,k(z
′; zc)

G(z; z′)− G(z; zc)
U(z′)− U(zc)

dz′, (6.11)

uΛ1
y′,k(z; zc) = P

kyU
′
uΛ1
z,k(z; zc)

ikkx(U − c)
. (6.12)

Note that normalization based on Σ1 above assumes the total vorticity associated with the

eigenmode to be non-zero. This may not alway be the case. As seen in chapter 2, for the

Rankine vortex, that there exist Λ1-modes in with zero net vorticity, one expects a similar

situation for parallel flows with kinked velocity profiles (for instance, see Sazonov [1989]); in the

analysis here, we will neglect these instances, regarding them as exceptional.

6.3.2 The Λ2 family - Squire jets

The Λ2 CS-modes are homogeneous solutions of the Squire equation with uy′,k being the only

non-zero velocity component. The Squire operator in (6.4) is just the multiplication operator,

and uy′,k must therefore be a delta function; hence, the alternate name of a ’Squire jet’. Note

that since wy′,k = uz,k = 0, the Rayleigh equation is trivially satisfied in these cases. Thus, we
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have a Λ2 CS-mode being characterized by the following velocity and vorticity fields:

uΛ2
y′,k(z; zc) = Σ2δ(z − zc), (6.13)

wΛ2
z,k(z; zc) = ikΣ2δ(z − zc), (6.14)

wΛ2
x,k(z; zc) = −Σ2δ

′(z − zc). (6.15)

The normalization Σ2 =
´ 1
−1 u

Λ2
y′,k(z

′; zc)dz′ may be interpreted as the volume flux per (half) wavelength

associated with each mode. As shown originally by Case (1960) for Couette flow, and later by

Balmforth and Morrison (1995) for a general non-linear shearing flow, an arbitrary vortical per-

turbation in two dimensions (that is, with the perturbation velocity field restricted to the xz

plane) may be expressed as a superposition of the Λ1 CS-modes alone. Thus, the Λ2-modes come

into play only for a perturbation that includes a spanwise variation. Although written down in

the above explicit form for the first time by Sazonov (1996) for the specific case of Couette flow,

the infinitesimally localized perturbation velocity field implies that the evolution only depends

on the local velocity gradient at the critical level, and therefore, (6.13)-(6.15) remain solutions

of the linearized equations of motion for an arbitrary non-linear velocity profile.

As is usually the case for CS-modes, quantities such as perturbation kinetic energy asso-

ciated with individual modes are not well defined since they involve products of generalized

functions (Gel’fand & Shilov [1964], Vanneste [1996]). There are no difficulties, however, if one

considers the evolution of sufficiently smooth initial conditions, since in these cases, one would

always deal with a packet of CS-modes instead of an individual one. With the Λ1 and Λ2

families defined as above, in the next section, we proceed with the formulation of the modal

superposition, and thence, a modal description of the lift-up effect.

6.4 The modal representation of a vortical initial condition

6.4.1 A general initial condition

The determination of the arbitrary time evolution of a general initial velocity field û(x, 0) may

be reduced to the problem of the evolution of a single Fourier mode in the wave-vector aligned

coordinate system in the following manner. We have,

û(x, t) =

ˆ ∞

−∞
dkxdkyuk(z, t)e

i(kxx+kyy)

=

ˆ ∞

−∞
dkxdky {ux,k(z, t)x̂+ uy,k(z, t)ŷ + uz,k(z, t)ẑ} ei(kxx+kyy),

in terms of the Fourier modes in the space-fixed coordinate system. In terms of the velocity

components in the wave-vector-aligned coordinate system, one obtains:

û(x, t) =

ˆ ∞

−∞
dkxdky

[{

i

k
Duz,k(z, t) cos φ− uy′,k(z, t) sin φ

}

x̂+

{

uy′,k(z, t) cos φ+
i

k
Duz,k(z, t) sin φ

}

ŷ+ uz,k(z, t)ẑ

]

ei(kxx+kyy) (6.16)
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It is clear from (6.16) that a description of uz,k(z, t) and uy′,k(z, t) for a given k, in terms of a

superposition over the singular eigenfunctions of the aforementioned Λ1 and Λ2 families, would

lead to the required modal representation for an arbitrary û(x, t) via a Fourier integral. Hence,

we now examine the evolution of a single Fourier mode that, at the initial instant, has a vertical

structure given by (wy′,k(z, 0), uy′ ,k(z, 0)) ≡ (Q1(z),Q2(z)). This choice of perturbation fields is

motivated by the structure of the Λ2 family; specifically, the fact that the Λ2-eigenmodes have

wy′,k = 0 which, as shown below, allows one to arrive at the modal superposition in a simple

sequential manner. The continuity equation, and the kinematic relation between stream func-

tion between vorticity, may be used to obtain the remaining disturbance velocity fields in terms

of the two given perturbation fields. The choice of perturbation fields above is in contrast to

the usual choice of the wall-normal velocity (uz,k) and the wall-normal vorticity fields (wz,k) (for

instance, see Schmid & Henningson [2001]). However, the two choices may be readily related:

uz,k(z, 0) is related to wy′,k(z, 0) via the Poisson equation, so i/k(D2 − k2)uz,k = Q1; and

wz,k(z, 0) = ikQ2(z) (see table 6.1).

To construct the ensemble of the Λi-modes (i = 1, 2) that reproduce the above initial condi-

tion, for a fixed k, we exploit the fact that the Λ2 family is devoid of wy′ . As a result, one may

construct the required modal superposition by first determining the superposition of Λ1-modes

required to represent wy′,k(z, 0) ≡ Q1(z), the mathematical statement of this superposition

being given by

Q1(z) =

ˆ 1

−1
AΛ1(z′)wΛ1

y′,k(z; z
′)dz′, (6.17)

where AΛ1(z′) is the unknown amplitude distribution that needs to be determined. Provided

one knows AΛ1 , the vorticity field wy′,k, at an arbitrary time instant, follows immediately on

convecting each of the Λ1-mode with the base-state velocity at its critical level. Thus,

wy′,k(z, t) =

ˆ 1

−1
AΛ1(z′)wΛ1

y′ (z; z
′)e−ikxU(z′)tdz′, (6.18)

with an analogous equation for uz,k(z, t). Using (6.5) with zc = z′ for wΛ1
y′ (z; z

′) in (6.18), one

obtains the following Cauchy integral equation (Gakhov [1990]) to be solved for AΛ1(z):

Q1(z)=A
Λ1(z)

{

Σ1−
i

k
P
ˆ 1

−1

U
′′
(z′)uΛ1

z (z; z′)

U(z′)− U(z)
dz′
}

− i

k
U

′′
(z)P
ˆ 1

−1

AΛ1(z′)uΛ1
z (z; z′)

U(z′)− U(z)
dz′, (6.19)

where the kernel has a PV-singularity. The solution of an analogous integral equation in plasma

physics, that arose from the Vlasov equation governing, was originally accomplished by Case

[1959] in terms of the solution of a Riemann-Hilbert problem in the complex plane (Gakhov

[1990]); solutions of similar integral equations arising in the context of both parallel shearing

flows (Balmforth & Morrison [1995a]) and vortical flows (appendix B) have also been obtained.

We refer the reader to these references for details of the solution procedure, and write down the
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final expression for AΛ1(z) directly:

AΛ1(z) =
1

ǫ2R + ǫ2L

[

ǫRQ1 −
ǫLU

′

uz(z; z)
P
ˆ 1

−1

uΛ1
z (z; z′)Q1(z

′)

U(z′)− U(z)
dz′
]

, (6.20)

where

ǫR = Σ1 −
i

k
P
ˆ 1

−1

U
′′
(z′)uΛ1

z (z; z′)

U(z′)− U(z)
dz′, (6.21)

ǫL = − iπ
k

U
′′
(z)uΛ1

z (z; z)

U
′
(z)

. (6.22)

It is important to note that, although the solution via the Riemann-Hilbert problem achieves

the formal inversion, thereby expressing the amplitude distribution of the CS-modes in terms

of the initial vorticity distribution, the explicit analytical forms for the actual eigenmodes will,

for a general velocity profile, require a numerical solution. As shown by Balmforth and Morri-

son (1995), in the context of 2D perturbations, this may be accomplished by writing the velocity

components uz and ux′ in terms of a scalar streamfunction (since uy′ denotes a uniform flow

orthogonal to k) which satisfies a regular Fredholm integral equation (rather than the singular

Cauchy integral equation above). For Couette flow, of course, the perturbation velocity fields

are available in closed form.

Since each of the Λ1-modes has an associated uy′,k(z) (6.12), the Λ1-superposition needed to

reproduce an initial wy′,k(z, 0) would also generate a uy′ contribution given by
´ 1
−1A

Λ1(z′)uΛ1
y′ (z; z

′)dz′

at the initial instant. Thus, the superposition of the Λ2-modes needs to reproduce the difference

between the initial uy′(z, 0) ≡ Q2(z) and that corresponding to the Λ1-superposition above.

One may write:

Q2(z) =

ˆ 1

−1
AΛ1(z′)uΛ1

y′,k(z; z
′)dz′ +

ˆ 1

−1
AΛ2(z′)uΛ2

y′,k(z; z
′)dz′,

=
U

′
(z)ky
ikkx

P
ˆ 1

−1

AΛ1(z′)uΛ1
z (z; z′)

U(z)− U(z′)
dz′ +AΛ2(z), (6.23)

where we have used the expression for uΛ1
y′,k from (6.12), and the fact that uΛ2

y′,k is just a delta

function. Thus,

AΛ2(z) =
1

Σ2

[

Q2(z)−
U

′
(z)ky
ikkx

P
ˆ 1

−1

AΛ1(z′)uΛ1
z (z; z′)

U(z)− U(z′)
dz′
]

, (6.24)

where AΛ1 is known from (6.20). Combining (6.23) and (6.24), and accounting for the convection

of the Λ2-modes with the base-state velocities at the individual critical levels, we have the

following expression for the arbitrary time evolution of uy′,k(z, t):

uy′,k(z, t) = Q2(z)e
−ikxU(z)t+

U
′
(z)ky
k

ˆ 1

−1
AΛ1(z′)uΛ1

z (z; z′)
e−ikxU(z′)t−e−ikxU(z)t

ikx(U(z)−U (z′))
dz′ (6.25)

Equation (6.18) with wΛ1
y′,k replaced by uΛ1

z,k, together with (6.25), yield the modal superposition
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for a single k. Now, one may use (6.16)

uz,k(z, t) =

ˆ 1

−1
AΛ1(z′)uΛ1

z (z; z′)e−ikxU(z′)tdz′, (6.26)

where as already mentioned (ux,k(z, 0), uy,k(z, 0), uz,k(z, 0)) = uk(z, 0) represents the initial con-

dition’s Fourier transform and uΛ1
z (z; z′) and AΛ1(z) are given by (6.11) and (6.20) respectively

with Q1 = i/k(D2 − k2)uz,k(z, 0) (without loss of generality assume Σ1 = 1). This provides the

expression for arbitrary time evolution of the perturbation velocity field,

û(x, t) =

ˆ ∞

−∞
dkxdkye

i(kxx+kyy)
[{

x̂ik−1 cosφD + ŷik−1 sinφD + ẑ
}

uz,k(z, t)+

{−x̂ sinφ+ ŷ cosφ}uy′,k(z, t)
]

(6.27)

=

ˆ ∞

−∞
dkxdkye

i(kxx+kyy)

[

{

x̂ik−1 cosφD + ŷik−1 sinφD + ẑ
}

ˆ 1

−1
AΛ1(z′)uΛ1

z (z; z′)e−ikxU(z′)tdz′+

{−x̂ sinφ+ ŷ cosφ}
{

(uy,k(z, 0) cos φ− ux,k(z, 0) sin φ) e
−ikxU(z)t+

U
′
(z)ky
k

ˆ 1

−1
AΛ1(z′)uΛ1

z (z; z′)
e−ikxU(z′)t − e−ikxU(z)t

ikx(U(z)− U(z′))
dz′
}]

(6.28)

6.4.2 Transient growth for a ‘Roll’ initial condition

Considering the superposition for a fixed k, we note that, for a vanishingly small streamwise

wavenumber, (6.25) reduces to:

uy′(z, t) = uy′(z, 0) + U
′
(z)

[

t uz(z, 0) −
ikxt

2

2

ˆ 1

−1
AΛ1(z′)uΛ1

z (z; z′)
{

U(z′) + U(z)
}

dz′ +O(k2xt
3)

]

,

= uy′(z, 0)+U
′
(z)t

[

uz(z, 0)−
ikxt

2

{

uz(z, 0)U (z)+

ˆ 1

−1
AΛ1(z′)uΛ1

z (z; z′)U(z′)dz′
}

+O(kxt)
2

]

,

(6.29)

where

uz(z, 0) =

ˆ 1

−1
AΛ1(z′)uΛ1

z (z; z′)dz′.

Thus, the relevant (dimensionless) small parameter in (6.29) is kxŪct, Ūc being a characteristic

velocity scale, and not kx alone. The expression (6.29) evidently depicts an algebraic instabil-

ity over a time-scale t ≪ O(kxŪc)
−1. For times of O(kxŪc)

−1, all terms in the above series

expansion become comparable and the resulting mutual cancellation leads to a saturation of

the initial algebraic growth. Physically, this is indicative of differential convection leading to

decoherence (phase-mixing) for long-times. For kx = 0, that is, a perfectly spanwise-aligned

initial condition, the role of shear in phase-mixing becomes redundant and the algebraic growth
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persists for all times, with

uy′(z, t) = ux(z, t) = ux(z, 0) + U
′
(z)t uz(z, 0), (6.30)

where we have used that the y′-axis now coincides with the flow direction for a spanwise per-

turbation. Thus, the algebraic instability for three-dimensional disturbances in shear flows is

contained in the modal superposition of the Λi eigenfunctions.

In order to obtain a clearer picture of the instablity, we consider the manner in which the

modal superposition in (6.25) reproduces a given a ‘roll’ initial condition with the velocity field

restricted to the (x′, z′) plane. We further simplify the physical picture by restricting ourselves

to Couette flow with U
′′
(z) = 0, in which case the wy′-component of a Λ1 mode reduces to a

delta function; there is no real loss of generality, since as is evident from (6.30), it is the velocity

gradient and not the vorticity gradient that is responsible for the algebraic instability. The two-

dimensional nature of the roll implies that the only non-zero vorticity component in the initial

condition is wy′(z, 0). This initial field may readily be formed by a stack of Λ1 modes with the

amplitude of a particular mode being proportional to the value of wy′(z, 0) at its critical level,

the location of the wy′-vortex sheet (note that, except, for 2D perturbations, the vorticity field

associated with a Λ1-mode remains three-dimensional, and the term vortex-sheet here refers only

to the delta function in wy′). Each of the Λ1-modes, however, also has a PV-singular uy′ field

not present in the initial condition. Thus, the uy′ field generated by the Λ1-superposition must

be precisely cancelled out by an appropriate superposition of Squire jets. Since the jet refers

to a delta-function uy′ field, the amplitude of each Squire jet must equal the magnitude but

be opposite in sign to the local uy′ induced by the Λ1-superposition. The precise cancellation

in uy′ can only happen at t = 0, and for subsequent times, the differential convection of the

CS-modes and the resulting incomplete cancellation will lead to a growing uy′ (streak). Figure

?? illustrates the above picture for the simplistic case where the initial roll is the velocity field

in the (x′, z′) plane associated with a single Λ1 mode. For any finite kx, eventual de-coherence

in the vertical direction will terminate this growth. But, as the initial condition approaches a

spanwise alignment, the phase-mixing becomes infinitely slow. Thus, the ‘lift-up’ effect, in a

modal approach, may be interpreted as the result of the differential convection of a flow-aligned

superposition of the Λ1 vortex sheets and the and the corresponding ensemble of Squire jets.

Finally, we note that that (6.30) is valid even for non-linear velocity profiles with a non-trivial

base-state vorticity gradient. Thus, the argument above holds in these cases too, except that the

details of the superposition become complicated; for instance, the amplitude AΛ1(z), instead of

obeying a trivial relation, Q1 (AΛ1(z′)Σ1 = Q1), as for a plane Couette flow, is now determined

by an integral equation instead (see (6.20)).

6.4.3 Inclusion of discrete modes

The expressions (6.26-6.25) for evolution of a general initial condition via Λ1 and Λ2 families

can be modified for inflectional velocity profiles, to accommodate discrete modes using the

formulation of Case [1959]. The discrete modes, uzn(z; cn), with eigenvalues cn are solution of
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the equation

(D2 − k2)uzn − U
′′

(U − cn)
uzn = 0 (6.31)

satisfying the dispersion relation

1− i

k

ˆ 1

−1

U
′′
(z′)uzn(z; cn)

U(z′)− cn
dz′ = 0 (6.32)

ǫ2R + ǫ2L which previously had no zeros in the complex plane for non-inflectional velocity profiles

(6.20)-(6.22); for an inflectional velocity profile leads to the above dispersion relation.

In (6.26)-(6.25) the expressions for uz,k(z, t) and uy′,k(z, t) are now modified as,

uz,k(z, t) =
∑

n

anuzn(z; cn)e
−ikxcnt +

ˆ 1

−1
AΛ1(z′)uΛ1

z (z; z′)e−ikxU(z′)tdz′, (6.33)

uy′,k(z, t) = (uy,k(z, 0) cos φ− ux,k(z, 0) sin φ) e
−ikxU(z)t +

U
′
(z)ky
k

ˆ 1

−1
AΛ1(z′)uΛ1

z (z; z′)
e−ikxU(z′)t − e−ikxU(z)t

ikx(U(z)− U(z′))
dz′ +

U
′
(z)ky
k

∑

n

anuzn(z; cn)
e−ikxcnt − e−ikxU(z)t

ikx(U (z)− cn)
, (6.34)

where AΛ1(z) is now modified as

AΛ1(z) =
1

ǫ2R + ǫ2L

[

ǫRR1 −
ǫLU

′

uz(z; z)
P
ˆ 1

−1

uΛ1
z (z; z′)R1(z

′)

U(z′)− U(z)
dz′
]

(6.35)

R1 =
i

k
(D2 − k2)

{

uz,k(z, 0) −
∑

n

anuzn(z; cn)

}

(6.36)

an =

ˆ 1

−1

Q1(z)uzn(z; cn)

(U(z)− cn)
dz

i

k

ˆ 1

−1

{

uzn(z; cn)

(U (z)− cn)

}2

U
′′
(z)dz

(6.37)

ǫR and ǫL is given by the expressions (6.21)-(6.22) and Q1 = i/k(D2 − k2)uz,k(z, 0).

6.5 Representation of an inviscid eigenmode in terms of viscous

discrete modes

The earlier sections have led to the identification of the ‘lift-up’ effect in terms of a modal

superposition of the inviscid singular eigenfunctions. In the viscous case, the lift-up effect,

and transient growth in general, is typically attributed to the non-orthogonality of underlying
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(discrete) eigenfunctions for large Re of the system of equations,

[{

∂

∂t
+ U

∂

∂x

}

∇2 − U
′′ ∂

∂x
− 1

Re
∇4

]

uz = 0 (6.38)

[

∂

∂t
+ U

∂

∂x
− 1

Re
∇2

]

wz = −U ′∂uz
∂y

(6.39)

Written in normal mode form, the solution of 6.38 and the associated solution of 6.39 are termed

as the Orr-Sommerfeld eigenmodes while the unforced solutions of 6.39 (uz = 0) constitute

the Squire eigenmodes (Schmid & Henningson [2001]). Interestingly, a modal superposition

argument also appears on page 106-107 in Schmid & Henningson [2001]. For instance, we quote

a brief passage from this description ’. Unlike the inviscid problem, the explicit form of the

viscous eigenmodes involved in such a superposition is, of course, not known in general owing

to the intractability of the Orr-Sommerfeld equation. But, it is nevertheless worthwhile delving

into the relation between the inviscid modal superposition described here, and the large Re-limit

of the viscous modal superposition detailed in Schmid & Henningson [2001]. As will be seen

below, the relation is not trivial owing to fundamental differences between the inviscid spectrum

and the large-Re viscous spectrum.

Though the solutions of (6.38) and (6.39) are known for few elementary velocity profiles, U(z),

the spectral analysis gets easily unwieldy and an effort to address the connection between inviscid

and viscous spectra almost always goes unanswered. Thus the evolution of an initial condition

via inviscid singular eigenfunctions and that as a superposition of viscous discrete modes with

inclusion of diffusion needs to be analyzed via a model problem. The model problem adopted

here is the advection-diffusion equation,

∂φ̃

∂t
+ U(z)

∂φ̃

∂x
= ν∇2φ̃ (6.40)

If ∇2 is interpreted as a three dimensional Laplacian then (6.40) is the Squire equation (ho-

mogeneous part of 6.39), where φ̃ = wz. Though analytically tractable for some nonlinear

shear flows, we would consider U(z) = γ̇z. With the linear shear flow assumptions, (6.40) also

mimics the Orr-Sommerfeld equation (6.38) with φ̃ = ∇2uz = ∂ywx − ∂xwy. As the spectral

properties of (6.40) remain qualitatively unaltered with the introduction of three dimensionality,

we would restrict our attention to 2D and consider monochromatic disturbances of the form,

φ̃(x, z, t) = φ(z, t)eikxx. Thus (6.40) reduces to,

∂φ

∂t
+ ikxγ̇zφ = ν

(

∂2φ

∂z2
− k2xφ

)

(6.41)

Considering k−1
x to be a characteristic length scale and thus a Reynolds number defined as

Re= γ̇(νk2)−1, the non-dimensional equation is,

∂φ

∂t
+ izφ =

1

Re

(

∂2φ

∂z2
− φ

)

(6.42)

We have chosen to denote the dimensional and non-dimensional quantities by the same variable,

leaving it to the context to distinguish the two.
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Let us consider an initial condition of a vortex sheet, φ(z, 0) = δ(z− z1). In absence of diffusion

(Re= ∞), a vortex sheet is an eigenmode; a member of the singular continuous spectrum. Thus

the imposed vortex sheet evolves unaltered with the fluid local velocity at z = z1, φ̃(z, t) =

δ(z − z1)e
i(x−z1t). With the inclusion of diffusion, the vortex sheet is unable to preserve itself

and its evolution is given by the Green’s function, G, of the advection-diffusion operator

∂G
∂t

+ izG − 1

Re

(

∂2G
∂z2

− G
)

= δ(z − z1)δ(t) (6.43)

⇒ G(z, t) =
√

Re

4πt
exp

[

− it(z + z1)

2
− t

Re

(

t2

12
+ 1

)

− (z − z1)
2Re

4t

]

(6.44)

The above Green’s function has been found for an infinite domain (|z| <∞). For a bounded/semi-

infinite domain the Green’s function can be easily modified by method of images (Kevorkian

[2000]). In the limit of Re→ ∞, G reduces to a convected vortex sheet δ(z− z1)e
−iz1t; the invis-

cid eigenmode. In an unbounded geometry infinitesimal perturbations in a linear shear flow can

also be expanded in terms of convected Fourier modes, plane-wave solutions (Monin & Yaglom

[1997]),

G(z, t) = 1

2π

ˆ ∞

−∞
exp

[

i{−zt+ kz(z − z1)} −
1

Re

{

(

1 + k2z
)

t− kzt
2 +

t3

3

}]

dkz

(6.45)

Once again it can be seen from the above expression that the convected Fourier modes reduce

to the inviscid eigenmode for Re→ ∞. Now the final connection that needs to be made is in

terms of the viscous spectrum of (6.42). Assuming φ(z, t) = Φ(z)e−icnt the relevant eigenvalue

equation is,

d2Φ

dz2
= {iRe(z − cn) + 1}Φ (6.46)

The above differential equation has solutions in terms of Airy functions (Ai(z) and Bi(z)) and

for a semi-infinite domain with boundary conditions Φ(0) = 0 and Φ → 0 as z → ∞, only Ai(z)

needs to be considered 1. For the geometry considered the viscous eigenvalues are given by,

cn = − ain

(iRe)1/3
+

1

iRe
(6.47)

where ain is the n-th zero of the Airy function, Ai(z). For large n the asymptotic form of the

eigenvalue is,

cn ∼
[

{

3π(4n − 1)

8

}2 1

iRe

]1/3

+
1

iRe
(6.48)

Figure 6.4 depicts the spectrum for Re=100 with the comparison between the numerically

evaluated eigenvalues (6.47) and its asymptotic approximations (6.48). As the asymptotic ex-

1For nonlinear shear flows, where analytical solutions cannot be found, spectral properties can be studied for
Re≫ 1 using a WKB approach.
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Figure 6.4: Viscous spectrum for semi-infinite Couette flow (0 6 z < ∞) for Re=100. ‘∗’ -
(6.47), ‘�’ - (6.48).

pression indicates, with increasing Re the spectrum emerges as a ray at an angle of π/6 with

the real axis. One would recall that for a bounded Couette flow (|z| < 1), the spectrum forms a

Y-shaped ‘spectral tie’ (Reddy et al. [1993]). With increasing Re the viscous spectrum becomes

invariant in shape (one can always find an eigenvalue in a particular region of the ray if we

fix n2 ∼ O(Re)) and does not approach the real line - the inviscid continuous spectrum - in a

continuous fashion. On tracking an individual mode with Re≫ 1, it is observed that the mode

migrates towards the origin, thus confirming a known fact that there is no direct correspondence

between an individual viscous mode and an inviscid continuous spectra mode. Instead a connec-

tion needs to be made between a (infinite) collection of viscous discrete modes and an inviscid

continuous spectrum mode 2.

Realizing the non self-adjoint nature of (6.46) and using the properties of the orthogonality

relations with the adjoint solutions we have,

δ(z − z1) =

∞
∑

n=1

(iRe)1/3Ai

[

(iRe)1/3
{

z − cn +
1

iRe

}]

Ai

[

(iRe)1/3
{

z1 − cn +
1

iRe

}]

Ai′
[

(iRe)1/3
{

−cn +
1

iRe

}]2

(6.49)

The above relation represents an inviscid eigenmode, a vortex sheet, as a linear superposition of

the viscous discrete modes. Thus the Green’s function can now be represented via the viscous

2The converse connection between a superposition of inviscid continuous spectrum modes and a viscous discrete
mode has been studied in the context of exponentially damped linear response of dissipation-less systems -
Landau poles/quasi-modes (Balmforth [1998], Ng & Bhattacharjee [2004]).
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discrete spectrum as,

G(z, t) =
∞
∑

n=1

(iRe)1/3Ai

[

(iRe)1/3
{

z − cn +
1

iRe

}]

Ai

[

(iRe)1/3
{

z1 − cn +
1

iRe

}]

Ai′
[

(iRe)1/3
{

−cn +
1

iRe

}]2 e−icnt

(6.50)

Between the Green’s function given in (6.50) and (6.44), only the former is constrained to vanish

at z = 0 but the difference between the two is exponentially small for Re≫ 1.

Using this model problem it is shown how the evolution of a inviscid eigenmode in presence of

diffusion can be understood via a superposition of viscous discrete modes.

6.6 Conclusion

In this chapter we have shown the modal interpretation of the ‘lift-up’ effect. This involved

identifying the two inviscid continuous spectra for a plane parallel shear flow in section 6.3 - the

wave-vector aligned version of Case vortex sheets (6.3.1) and the purely 3D Squire jets (6.3.2).

After representing an arbitrary initial condition via an eigenfunction expansion of these two

families, it was shown how a ‘roll’ initial condition leads to algebraic instability. The formulation

was then expanded to include discrete modes (6.4.3). Finally in section 6.5 a connection was

made between an inviscid continuous spectrum mode with that of a collection of viscous discrete

modes, for the simple case of semi-infinite Couette flow. This was done to show how the existing

modal interpretation of the ‘lift-up’ effect in terms of non-orthogonal viscous discrete modes

is in harmony with the explanation presented in this note in terms of the inviscid continuous

spectra.



Chapter 7

Conclusion and Future Work

This thesis has focussed on the study of the singular eigenfunctions in various problems of hydro-

dynamic stability with special attention to those involving rotation, stratification and elasticity.

Detailed conclusions have already been provided at the end of individual chapters. Herein, a

summary is provided with a few topics that will be studied in the future.

The complete inviscid spectrum for a Rankine vortex was obtained in chapter 2. It is well

known that a Rankine vortex has a discrete spectrum. These regular modes by themselves are

eponymously known as the Kelvin modes, and do not form a complete set. The analysis obtained

the relevant continuous spectra consisting of singular eigenfunctions that were necessary to form

a complete set. A modal superposition, involving both the discrete and the continuous spectra,

is arrived at for describing evolution of an arbitrary initial vorticity field. The analysis of the

continuous spectrum modes is then extended to vortices with smooth vorticity profiles. While

in 2D, the modal superposition may be written down as the solution of a Riemann-Hilbert prob-

lem, in 3D an approximate analysis is performed by borrowing analogies from stratified shear

flows. In particular, it is shown that the 3D continuous spectrum modes of a smooth vortex, like

those of a stratified shear flow, require a ‘finite-part’ interpretation (Lighthill [1958], Gel’fand

& Shilov [1964]).

The Cauchy initial value problem for a Rankine vortex was analyzed in chapter 3, both in

2D and 3D. The completeness of the modal approach is shown by proving the equivalence of the

modal superposition result obtained in chapter 2 to the solution of the initial value problem.

The IVP approach reiterates the importance of the continuous spectrum in acting as a mediator

between external vortical disturbances and the vortex column, a fact crucial in early stages of

vortex - turbulent field interactions. The growth-rate spectra for both vortex sheet and vortex

‘ribbon’ (initial conditions, at the resonant locations) were obtained. The comparison of these

spectra with those obtained in numerical studies on more realistic vorticity profiles (e.g., the

Lamb Oseen profile), and for finite Re (∼ 104), are encouraging, and clearly emphasize the

importance of resonant interaction, in the short-term algebraic growth phase.

The singular eigenfunctions studied in chapters 2 and 3 were for neutrally-stable inviscid

columnar vortices and were responsible for algebraic instabilities in these systems. In chapter 4

a novel elastic instability (exponential) in a Rankine vortex was identified, a situation relevant

to vortices in dilute polymer solutions. Here, the unstable discrete mode emerges from a sin-

gular neutral continuous spectrum mode. The instability arises due to the resonance of elastic

shear waves aided by the background shear in the irrotational exterior. The analyzed regime

involves a balance between inertia and elasticity, with the viscous effects being asymptotically

169
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small and is governed by the elastic equivalent of the Rayleigh equation for swirling flows; both

momentum diffusion and the relaxation of polymeric stresses for the disturbance are ignored.

The elastic Rayleigh equation was solved numerically and via the method of matched asymptotic

expansions in the limit of small E. The analysis helps extend the numerical results down to E=0;

the partial solution (the so-called LHS problem) shows the absence of an elasticity threshold

for instability. The numerical study also confirmed that the instability persists even for smooth

vorticity profiles - the ‘intense’ ones.

After mentioning the various possibilities of algebraic growths in flows with continuous spec-

trum, in chapter 5 an optimal perturbation calculation was performed for stratified shear flows.

The optimal calculations confirmed the common belied that stratification due to its strong dis-

like for any vertical mention, suppresses transient growth in shear flows. But if one considers the

density field to be non-diffusive and only be stirred by a viscous velocity field, then weak strati-

fication could result in enhanced transient growth in comparison to the unstratified case. It was

also shown that once the onset of internal gravity waves occur, the optimal time is determined

directly by the Brunt-Väisälä frequency of the background flow. The optimal partitioning of

energy in kinetic and potential energy in the initial condition and also its optimal obliqueness

in 3D was studied.

Several intriguing questions and future directions have emerged from the present study. Some

of them are -

1. An interesting extension of the present analysis would be to examine the continuous spec-

trum for a vortex ring. A vortex ring unlike a vortex column is non-isochronous (the

angular velocity is not constant).The analysis of the 2D CS-modes of a vortex column

are the axisymmetric continuous spectrum modes of the ring. Further, due to the non-

isochronous property of a vortex ring the core eigenmodes are no longer degenerate as

in the case of a column,and these modes have been examined by (Kopiev & Chernyshev

[1997]). However, the axisymmetric CS-modes with vorticity outside the core, and in-

side irrotational fluid envelope, are yet to be examined. The entire 3D core continuous

spectrum is still unresolved. Interestingly for certain members of the Fraenkel-Norbury

family there exists an irrotational region of fluid around the toroidal vortex ring, called

the vortex envelope, which propagates with the ring (Batchelor [1967]). There would also

exist another family of continuous spectrum eignemodes which are toroidal vortex sheets

concentric with the vortex ring, an extension of the singular eigenmodes for the vortex

column investigated in the present work.

2. The 2D quasi-mode of a smooth vortex has been examined in detail before and we have

revisited some of these results in this thesis in the context of the modal representation.

A study has been undertaken to systematically map the 3D quasi-modes of vortices with

Rankine-like vorticity profiles (‘intense’ vortices); in particular, the dependence of their

decay rates on both the vorticity and vorticity gradient( jump) in the base state. In

parallel,the quasi-modes associated with the stratified shear flow analog of the Rankine

vortex will be studied.
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3. The growth-rate spectrum calculations, in the context of the IVP of a Rankine vortex,

have been done for initial conditions of zero width (analytically), and for transversely co-

herent initial conditions of a finite width (numerically). For a more consistent comparison

with numerical simulations of realistic vortices, one needs to also account for resonance

and vortex stretching-tilting processes for an upshear-tilted initial condition. This will

help establish the relative importance of resonance, vortex stretching-tilting and the Orr

mechanism in the algebraic growth phase.

4. Even for finite De and Re, the viscoelastic stability equations are singular and have contin-

uous spectra. Although stress diffusion is often proposed as a means to make the spectrum

purely discrete, and thus avoid the discomfort of dealing with singular eigenfunctions, a

second possibility is related to a nonlinear spring model for the polymer molecule (for in-

stance, a FENE-P model). A nonlinear critical layer analysis, where the complete FENE-P

model is considered in the critical layer, needs to be undertaken,and one needs to study

the effect of the finite extensibility within the critical layer on modal growth rates.

5. Recent experiments on the swirling flow of elastic liquids also motivate the study of the

the 3D perturbations of a vortex column in presence of both inertia and elasticity. A first

step in this regard would be the study of axisymmetric oscillations/instabilities of a vortex

column.





Appendix A

Vessel Modes

In the modal analysis treatments we obtained the Kelvin modes from the generalized continuous

spectrum modes by setting the amplitude of the second vortex sheet to 0. The reader might

have noticed there exists, both in 2D and 3D, cases where the amplitude of second vortex sheet

becomes infinite. A closer analysis would reveal that the perturbation velocity field inside the

second vortex sheet becomes infinitely stronger than the exterior field. This special class of

modes we label as vessel modes, as they have a confining effect on the perturbation velocity

field.

2D Vessel Modes

For 2D continuous spectrum modes we have from equation 2.16 the amplitude of second vortex

sheet as,

A(rf ) =

2m

[

1−m

(

1− 1
r2f

)]

[

(m−1)rmf −mrm−2
f + 1

rmf

]

For m = 1, independent of rf , the amplitude A(rf ) becomes infinite. The constants c1, c2

and d, needed to determine the interior velocity field (inside the second vortex sheet), are all

proportional to A(rf ). Hence the perturbation velocity field disappears, for r > rf , for all

continuous spectrum modes. In 2D m = 1 Kelvin mode corresponds to a linear translation of

the vortex core. Let us assume the perturbation velocity field, |ũ| = ǫ|Umean|, where Umean is

the velocity field of the base state rankine vortex. If one considers the velocity field inside the

vortex core (assume the angular velocity and radius of the vortex core both to be unity),

|Umean + ǫũ| =
√

r2 − 2ǫrd sin(θ − ωt) + (ǫd)2 (A.1)

Though ǫ≪ 1 is the premise of linear stability theory, we plot the total velocity field at several

instants of time for ǫ = 1 to provide an exaggerated view of the dynamics. One can observe

from figure A.1 that the velocity field is identical to that of a offset rankine vortex placed inside

a cylindrical container. The centre of the vortex (zero velocity) goes around clockwise in a

circle with the centre of the unperturbed rankine vortex as its centre. Thus the second vortex

sheet for m = 1 continuous spectrum modes acts like a rigid wall. It ensures disappearance of

perturbation velocity field outside the second vortex sheet and clockwise rotation of the vortex

core.
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(c) t = 5
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Figure A.1: Time evolution of mean (solid-body rotation) and perturbation velocity field inside
the vortex core for a m = 1 continuous spectrum mode. The cylindrical vortex sheet is placed
at rf = 1.5. The mean and perturbation are assumed to be of the same order (ǫ = 1).
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3D Vessel Modes

For 3D continuous spectrum modes we have from equation 2.59 the amplitude of second vortex

sheet as,

A1(rf ) =
M

k{K ′
m(krf )N − I ′m(krf )M}

where,

M = g2βaJ ′
m(βa)Km(ka) + 2mgΩ0Jm(βa)Km(ka) + (4Ω2

0 − g2)Jm(βa)kaK ′
m(ka)

N = g2βaJ ′
m(βa)Im(ka) + 2mgΩ0Jm(βa)Im(ka) + (4Ω2

0 − g2)Jm(βa)kaI ′m(ka)

As discussed before the zeroes ofM corresponds to the Kelvin modes. The question here is what

does the singularities of A1(rf ) or equivalently zeroes of K ′
m(krf )N − I ′m(krf )M correspond to?

Based on the analysis for 2D vessel modes one could guess that these correspond to the 3D modes

of vibration of a rankine vortex inside a container. This indeed can be proved immediately.

Similar to the unbounded case, for rankine vortex inside a container of radius rf , the velocity

field can be written as,

r < a

ûz = dJm(βr) (A.2)

ûr = − i

kr

gd

g2 − 4Ω2
0

{

2mΩ0Jm(βr) + gβrJ ′
m(βr)

}

(A.3)

rf > r > a

ûz = c1Km(kr) + c2Im(kr) (A.4)

ûr = −i{c1K ′
m(kr) + c2I

′
m(kr)} (A.5)

Without loss of generality, we choose d = 1/Jm(βa). Enforcing continuity of ûz across the core,

r = a and ûr(rf ) = 0 at the cylinder wall one obtains,

c1 =
I ′M (krf )

Km(ka)I ′m(krf )− Im(ka)K ′
m(krf )

(A.6)

c2 = − K ′
M (krf )

Km(ka)I ′m(krf )− Im(ka)K ′
m(krf )

(A.7)

Enforcing continuity of radial velocity across the vortex core (equations A.3, A.5-A.7),

K ′
m(krf )N − I ′m(krf )M = 0 (A.8)

The above equation gives the dispersion relation for three-dimensional vibrations of a vortex

column confined inside a cylinder of radius rf . Like the unbounded problem the bounded

problem too has denumerably infinite number of discrete modes. From figure A.2 one observes

that the continuous spectrum mode frequency ωNK = mΩ(rf ) corresponding to the second

vortex sheet location rf , intersects the discrete modes of a rankine vortex inside a cylinder of

radius rf at discrete locations in k-space. Thus for each continuous spectrum mode (rf ), for

every m, there exist denumerably infinite values of k such that the perturbation velocity field
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Figure A.2: Schematic of dispersion curves for rankine vortex for m = 1. The continuous
lines represent dispersion curves for unbounded rankine vortex whereas the dash-dot lines are
dispersion curves for rankine vortex confined in a container of radius rf

for r > rf is identically zero and the interior velocity field is that of a confined rankine vortex.

Similarly for every ordered pair (m,k) there exists a denumerably infinite number of continuous

spectrum modes whose frequency and velocity field matches with that of a confined rankine

vortex.



Appendix B

Riemann-Hilbert problem for a

smooth vortex

To obtain the CS-mode amplitude distribution, Π(rf ), corresponding to an initial condition of

the form wz0(r)e
imθ, we will follow the framework developed by Balmforth & Morrison [1995a]

for parallel shear flows. The integral equation that needs to be solved (see (2.118) in section

2.3.1) is given by

wz0(r)e
imθ =

ˆ ∞

0
Π(rf )ŵ

CSM
z (r; rf )e

imθdrf , (B.1)

and, on using (2.115) for ŵCSM
z (r; rf ), (B.1) takes the form

wz0(r) =

[

1 + P
ˆ ∞

0

1

r′
DZ(r′)ψ̂CSM(r′; r)

Ω(r′)− Ω(r)
dr′
]

Π(r)−DZ(r)

r
P
ˆ ∞

0

ψ̂CSM(r; rf )

Ω(r)− Ω(rf )
Π(r′)dr′. (B.2)

Equation (B.2) is formulated as a Riemann-Hilbert problem by defining the following two sec-

tionally analytic functions:

Φ =
1

2πi
P
ˆ ∞

0

1

r′
DZ(r′)ψ̂CSM(r′; r)

Ω(r′)− Ω(r)
dr′, (B.3)

Ψ =
1

2πi
P
ˆ ∞

0

Π(r′)ψ̂CSM(r′; r)

Ω(r′)− Ω(r)
dr′, (B.4)

where r is now regarded as a complex variable, and Φ and Ψ are analytic except when r ǫ [0,∞).

From the Sokhotski-Plemelj formulae [Gakhov [1990]], one has the following expressions for the

limiting values of these functions for r approaching the positive real axis through complex-valued

sequenes with positive (+) and negative (−) imaginary parts:

Φ± = ±1

2

DZ(r)ψ̂CSM(r; r)

rΩ′(r)
+

1

2πi
P
ˆ ∞

0

1

r′
DZ(r′)ψ̂CSM(r′; r)

Ω(r′)− Ω(r)
dr′, (B.5)

Ψ± = ±1

2

Π(rf )ψ̂
CSM(r; r)

Ω′(r)
+

1

2πi
P
ˆ ∞

0

Π(r′)ψ̂CSM(r′; r)

Ω(r′)− Ω(r)
dr′. (B.6)

Using (B.5) and (B.6), (B.2) may be written as,

ψ̂CSM(r; r)wz0(r)

Ω′(r)
= ǫ+Ψ+ − ǫ−Ψ−, (B.7)

where ǫ+ = 1+2πiΦ+ and ǫ− = 1+2πiΦ−. Further, if one defines another sectionally analytic

function:

Q =
1

2πi

ˆ ∞

0

wz0(r
′)ψ̂CSM(r′; r)

Ω(r′)− Ω(r)
dr′ (B.8)
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with the limiting values

Q± = ±1

2

ψ̂CSM(r; r)wz0(r)

Ω′(r)
+

1

2πi
P
ˆ ∞

0

wz0(r
′)ψ̂CSM(r′; r)

Ω(r′)− Ω(r)
dr′, (B.9)

then (B.7) takes the form

Q+ −Q− = ǫ+Ψ+ − ǫ−Ψ−, (B.10)

⇒ Q+ − ǫ+Ψ+ = Q− − ǫ−Ψ−. (B.11)

It is clear that the functionQ−ǫΨ is analytic even for r ǫ (0,∞). In the absence of regular discrete

modes, as is the case for a monotonically decreasing base-state vorticity profile, this function is,

in fact, analytic on the entire complex plane. In accordance with Liouville’s theorem, it must

therefore be a constant. Moreoever, since Q − ǫΨ → 0 for |r| → ∞, we have Q = ǫΨ = 0, or

Ψ = Q
ǫ . One may now write

Π(r) =
Ω′(r)

ψ̂CSM(r; r)
(Ψ+ −Ψ−),

=
Ω′(r)

ψ̂CSM(r; r)

[

Q+

ǫ+
− Q−

ǫ−

]

,

=
Ω′(r)

ǫ+ǫ−ψ̂CSM(r; r)

[

(

ǫ+ + ǫ−

2

)

ψ̂CSM(r; r)wz0(r)

Ω′(r)
−
(

ǫ+ − ǫ−

2πi

)

P
ˆ ∞

0

wz0(r
′)ψ̂CSM(r′; r)

Ω(r′)− Ω(r)
dr′
]

,

⇒ Π(r) =
1

ǫ2R + ǫ2L

{

ǫRwz0(r)−
ǫL
π
P Ω′(r)

ψ̂CSM(r; r)

ˆ ∞

0

wz0(r
′)ψ̂CSM(r; r′)

Ω(r′)− Ω(r)
dr′
}

. (B.12)

where ǫR = (ǫ+ + ǫ−)/2 and ǫL = (ǫ+ − ǫ−)/2i.



Appendix C

Constants for smooth vortex

eigenfunctions

R1 = ik2ScA0

[

m

k2rc
ǫ sgn(r − rc) +

Zc

mΩ′
c

sgn(r − rc)

]

(C.1)

R2 = ik2ScB0

[

m

k2rc
(1 − ǫ) sgnr − rc) +

Zc

mΩ′
c

sgn(r − rc)

]

(C.2)

R3 = ik2ScA0

[

mǫ

k2rc

(

1− α1

rc

)

+
m

k2r2c
+

(

m

k2rc
+

Zc

mΩ′
c

)

α1 +
2Z ′

cΩ
′
c − ZcΩ

′′
c

2mΩ′
c

]

+

S′
c

Sc
R1 sgn(r − rc) (C.3)

R4 = ik2ScB0

[

m(1− ǫ)

k2rc

(

β1 −
1

rc

)

+
m

k2r2c
+

(

m

k2rc
+

Zc

mΩ′
c

)

β1 +
2Z ′

cΩ
′
c − ZcΩ

′′
c

2mΩ′
c

]

+

S′
c

Sc
R2 sgn(r − rc) (C.4)

R5 = iScA0
m

rc
sgn(r − rc)

{

ǫ

(

α2 −
α1

rc
+

1

r2c

)

+ 2

(

α2 −
1

r2c

)}

+

S′
c

Sc

(

R3 sgn(r − rc)−
S′
c

Sc
R1

)

+
R1S

′′
c

2Sc
(C.5)

Q1 =
i

k

[

ǫA0 sgn(r − rc) +
im

rc
R1

]

(C.6)

Q2 =
i

k

[

(1− ǫ)B0 sgn(r − rc) +
im

rc
R2

]

(C.7)

Q3 =
i

k

[

(1 + ǫ)α1A0 +
1

r2c
{rc(A0 + imR3)− imR1 sgn(r − rc)}

]

(C.8)

Q4 =
i

k

[

(2− ǫ)β1B0 +
1

r2c
{rc(B0 + imR4)− imR2 sgn(r − rc)}

]

(C.9)

Q5 =
i

k

[

(2 + ǫ)α2A0 +
1

r3c

{

r2c

{

A0α1 sgn(r − rc) + im

(

R5 +
R1S

′′
c

2Sc

)}

−rc sgn(r − rc) {A0 + imR3}+ 2imR1}] (C.10)

where,

Sc =
r2c

m2 + (krc)2
, S′

c =
2m2rc

(m2 + (krc)2)2
, S′′

c =
2m2(m2 − 3(krc)

2)

(m2 + (krc)2)3
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Appendix D

Analysis of singularities present in

the 3D initial value problem

Equations 3.46 and 3.47 have several singularities but not all of them contribute to the solution

in temporal domain after one performs the inverse Laplace transform. For the inverse Laplace

transform one can adopt a contour as shown in figure D.1. The singularity s = sn are zeros of

∆ =
K ′

m(ka)

kaKm(ka)
+

J ′
m(kξa)

kξaJm(kξa)
+

2imΩ0

(kξa)2(s+ imΩ0)

They are simple poles and constitute the discrete spectrum of vibrations of a vortex column, the

3D Kelvin modes. F3(0) has a pole at s = −imΩ. The pole is of order 2 in presence of radial

vorticity initial conditions. It comprises the continuous spectrum modes. To have a careful look

at the singularities s = −imΩ0,−i(m± 2)Ω0 equations 3.46 and 3.47 are rewritten as

r < a

ûz =

ˆ ∞

a
r′Km(kr′)F3(0)dr

′

(ka)2Km(ka)
−

ˆ a

0
r′Jm(kξr′)F1(0)dr

′

(kξa)2Jm(kξa)
+ P

∆

Jm(kξr)

Jm(kξa)
+

[

g(r)− g(a)
Jm(kξr)

Jm(kξa)

]

r > a

ûz =

ˆ ∞

a
r′Km(kr′)F3(0)dr

′

(ka)2Km(ka)
−

ˆ a

0
r′Jm(kξr′)F1(0)dr

′

(kξa)2Jm(kξa)
+ P

∆

Km(kr)

Km(ka)
+

[

h(r)− h(a)
Km(kr)

Km(ka)

]

As s → −i(m ± 2)Ω0, ξ → 0. Instead of performing the inverse transform in entirety we

can explore the analyticity of the expressions above as ξ → 0 by investigsting the necessary

asymptotic forms. For ξ ≪ 1,

Jm(kξr′)

(kξa)2Jm(kξa)
∼ O

(

1

ξ2

)

, ∆ ∼ O

(

1

ξ2

)

, P ≈ F2(0)|r=a ∼ O

(

1

ξ2

)

Thus the velocity field expression outside the vortex core is analytic at s→ −i(m± 2)Ω0. Since

the velocity field inside and outside the core cannot have different modal contributions the same

can be said about the interior velocity field. To prove this one needs to consider the behaviour

of g(r) as ξ → 0. Though Ym(kξr) present in g(r) is singular as ξ → 0 the relevant product

Jm(kξr′)Ym(kξr) is analytic for all m 6= 0. For m = 0, Y0(kξr) has a logarithmic singularity but

the combined term,

J0(kξr
′)Y0(kξr)− Y0(kξr

′)J0(kξr)
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Figure D.1: Contour of integration depicting the singularities present in equations 3.46 and 3.47.

has a cancelling of the individual branch-cut contribution and thus is analytic as ξ → 0.

The singularity s = −imΩ0 appears both as an essential singularity and a simple pole. Its

importance stems from the fact that it serves as the accumulation point of the Kelvin modes.

The latter form of the singularity owes its origin to accounting for vorticity perturbation in the

exterior (the one present in P via F4(0)
∣

∣

∣

r=a
). It is quite straightforward that the simple pole at

s = −imΩ0 does have a contribution. To simplify matters let us focus on the exterior flow field

and if we overlook the essential singularity we need to perform the following inverse transform,

L−1 i

ka

F4(0)
∣

∣

∣

r=a

∆

Km(kr)

Km(ka)
(D.1)

Unlike poles and branch cuts, it is clearly not obvious whether the essential singularity will have

a contribution to the inverse Laplace transform or not.

To consider the effect of essential singularity, s = −imΩ0, let us consider the interior velocity

field,

ũz = L−1f(s)

=
1

2πi

(
‰

Γǫ2

+

‰

Γǫ3

+

‰

Γǫ4

)

f(s)estds

where, f(s) =

ˆ ∞

a
r′Km(kr′)F3(0)dr

′

(ka)2Km(ka)
−

ˆ a

0
r′Jm(kξr′)F1(0)dr

′

(kξa)2Jm(kξa)
+ P

∆

Jm(kξr)

Jm(kξa)
+

[

g(r)− g(a)
Jm(kξr)

Jm(kξa)

]
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The integrals over the contour Γǫ2 and Γǫ4 provides the contribution due to the discrete and

the continuous spectrum respectively (refer figure D.1). To investigate the contribution of the

essential singularity we need to evaluate the integral over the contour Γǫ3. On performing the

following change of variables, is = mΩ0 + ǫeiφ,

‰

Γǫ3

f(s)estds = H1 +H2

H1 = ǫ

ˆ 2π

0

ˆ ∞

a
r′Km(kr′)F3(0)dr

′

(ka)2Km(ka)
−

ˆ a

0
r′Jm(kξr′)F1(0)dr

′

(kξa)2Jm(kξa)
+ P

∆

Jm(kξr)

Jm(kξa)
e−i(mΩ0+ǫeiφ)t+iφdφ

H2 = ǫ

ˆ 2π

0

[

g(r)− g(a)
Jm(kξr)

Jm(kξa)

]

e−i(mΩ0+ǫeiφ)t+iφdφ

where, ξ2 = −1 +
4Ω2

0

ǫ2
e−2iφ

we let ǫ → 0 through a sequence which does not tread the zeros of ∆, s = sn. As ǫ → 0

(the radial ‘wave-number’ ξ → ±∞), F2(0), F3(0) and F4(0) remain bounded where as F1(0) ∼
ξ2ikω̃z(0)/(2Ω0). Consider a bessel function, Jm(z). The principal asymptotic form of Jm(z)

as |z| → ∞ varies from an oscillatory decay
√

2/(πz) cos(z −mπ/2 − π/4) to an exponential

growth (when z is purely imaginary). Since the exponent of exponential growth is independent

of the order of bessel function, the ratio of two bessel functions of different order but same

argument, Jm(z) and Jn(z), remains bounded for |z| ≫ 1. For the limit under consideration

J ′
m(z) ∼ Jm−1(z) and hence ∆ ∼ K ′

m(ka)/(kaKm(ka)). Thus,

lim
ǫ→0

H1 =
kaKm(ka)

K ′
m(ka)









ˆ ∞

a

r′Km(kr′)F3(0)G1dr
′

(ka)2Km(ka)
−

ˆ a

0
r′G2ikω̃z(0)dr

′

2Ω0(ka)2
+ PG1









e−imΩ0t

where, G1 = lim
ǫ→0

ǫ

ˆ 2π

0

Jm

(

2Ω0kr

ǫ
e−iφ

)

Jm

(

2Ω0ka

ǫ
e−iφ

)eiφdφ ∼ lim
ǫ→0

ǫ

ˆ 2π

0

√

a

r

cos

(

2Ω0kr

ǫ
e−iφ − mπ

2
− π

4

)

cos

(

2Ω0ka

ǫ
e−iφ − mπ

2
− π

4

)eiφdφ

G2 = lim
ǫ→0

ǫ

ˆ 2π

0

Jm

(

2Ω0kr

ǫ
e−iφ

)

Jm

(

2Ω0kr
′

ǫ
e−iφ

)

(

Jm

(

2Ω0ka

ǫ
e−iφ

))2 eiφdφ

∼ lim
ǫ→0

ǫ

ˆ 2π

0

a√
rr′

cos

(

2Ω0kr

ǫ
e−iφ − mπ

2
− π

4

)

cos

(

2Ω0kr
′

ǫ
e−iφ − mπ

2
− π

4

)

cos2
(

2Ω0ka

ǫ
e−iφ − mπ

2
− π

4

) eiφdφ

Thus both G1 and G2 approach 0 as ǫ → 0. Since P (F4(0)
∣

∣

∣

r=a
to be precise) has a pole at

s = −imΩ0, PG1 doesn’t vanish as ǫ → 0. An easier way to find its contribution would be to

find the inverse of ∆−1Jm(kξr)/Jm(kξa), which would involve only the discrete Kelvin modes,

the inverse of −i/(ka)F4(0)
∣

∣

∣

r=a
and then perform the convolution (equations 3.54-3.55). The

argument for lack of contribution of the essential singularity in H2 proceeds in identical manner
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and requires us dealing again with integrals G1 and G2.



Appendix E

Velocity field due to a periodic

cylindrical vortex sheet and its

relation to that of a vortex ring

The velocity field induced by a cylindrical vortex sheet can be computed using Biot-Savart law.

Moreover we will also show how the expression can be used to compute the velocity field due

to a vortex ring. Consider a periodic cylindrical vortex sheet threaded by azimuthal vortex

lines, ωθ = V0e
ikzδ(r− r1). By Biot-Savart law the expression for induced velocity field at point

(x′, 0, z′)is,

u =
1

4π

ˆ

ω ∧ r′

r′3
dV

=
1

4π

ˆ

∂Ω
V0e

ikz θ̂ ∧ r′

r′3
dS

Here, ∂Ω is the surface of the vortex sheet and r′ = (x′ − r1 cos θ) x̂− r1 sin θ ŷ + (z′ − z) ẑ. If

one defines η = z′ − z then expression for velocity field could be rewritten as,

u =
V0r1e

ikz′

π

ˆ π

0

ˆ ∞

0

(r1 − x′ cos θ) cos kηẑ − iη sin kη cos θx̂

(r21 + x′2 + η2 − 2r1x′ cos θ)3/2
dη dθ (E.1)

Using the following representation of modified Bessel function of second kind (Abramowitz &

Stegun [1965])

Kν(xw) =
Γ(ν + 1

2)(2w)
ν

√
πxν

ˆ ∞

0

cos xt

(t2 + w2)ν+
1
2

dt

we can compute the inner η integral,

u =
V0r1e

ikz′

π

ˆ π

0

[

(r1 − x′ cos θ)
|k|
d
K1(|k|d)ẑ − i cos θ kK0(|k|d)x̂

]

dθ (E.2)

The k = 0 special limit (same-signed vortex lines) gives us a constant axial flow inside the sheet

and quiescent fluid outside. This is the fluid-dynamical analogoue to the magnetic field induced

by an infinite solenoid (Batchelor [1967]). To compute the velocity field for any arbitrary k, we

need to use Graf’s generalisation of Neumann’s addition theorem for Bessel functions (Watson
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[1927]),

Kν(ζ) cos νψ =

∞
∑

m=−∞
Kν+m(A)Im(a) cosmθ for, |ae±iθ| < |A|

where, ζ =
√

A2 + a2 − 2Aa cos θ and tanψ =
a sin θ

A− a cos θ

Expanding the integrand in equation E.2 in the above series one can immediately obtain the

expression for velocity field,

r < a

u = V0r1e
ikz[|k|K1(|k|r1)I0(|k|r)ẑ − ikK1(|k|r1)I1(|k|r)r̂] (E.3)

r > a

u = V0r1e
ikz[−|k|K0(|k|r)I1(|k|r1)ẑ − ikK1(|k|r)I1(|k|r1)r̂] (E.4)

We have replaced z′ by z and since the velocity field is axisymmetric we have replaced x′ by r.

The vorticity field for a vortex ring is given as,

ωθ,ring = Γδ(r − r1)δ(z) =
Γ

2π

ˆ ∞

−∞
δ(r − r1)e

ikzdk =
Γ

2π

ˆ ∞

−∞
ωθ,sheet dk (E.5)

ωθ,sheet = δ(r− r1)eikz is the vorticity field of a periodic cylindrical vortex sheet of unit strength

(V0 = 1). Since ωθ,ring has a linear functional dependence on ωθ,sheet we have,

uring =
Γ

2π

ˆ ∞

−∞
usheet dk (E.6)

Using equations E.3 and E.4 (for V0 = 1) in equation E.6 we obtain the following form of axial

velocity field (the velocity-field is two-dimensional),

uring,z =
Γr1
π

ˆ ∞

0
k cos kz K1(kr1)I0(kr)dk r < a

= −Γr1
π

ˆ ∞

0
k cos kz K0(kr)I1(kr1)dk r > a

If we define,

Πin =

ˆ ∞

0
k cos kz K0(kr1)I0(kr)dk

Πout =

ˆ ∞

0
k cos kz K0(kr)I0(kr1)dk

then,

uring,z = −Γr1
π

∂Πin

∂a
r < a

= −Γr1
π

∂Πout

∂a
r > a
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Kirchhoff in 1853 obtained the following relation for integrals of Bessel functions (Watson [1927]),

Πin =

ˆ ∞

0
cos kz K0(kr1)I0(kr)dk =

ˆ π/2

0

dθ
√

z2 + (r + r1)2 − 4r1r sin
2 θ

= Πout = Π (E.7)

which provides us with the following relation,

uring,z = −Γr1
π

∂Π

∂a
everywhere (E.8)

Since,

Π =

ˆ π/2

0

dθ
√

z2 + (r + r1)2 − 4r1r sin
2 θ

=
p

2
√
rr1

K(p) where, p = 2

√

rr1
z2 + (r + r1)2

(E.9)

K(p)1 is the complete elliptic integral of first kind. Combining equations E.8 and E.9 we have,

uring,z =
Γp

4πr1

√

r1
r

[

K(p)− 2− p2

2(1− p2)
E(p) +

r1
2r

p2

1− p2
E(p)

]

(E.10)

The expression thus obtained is the exact expression for velocity field induced due to a vortex

ring. The radial component of velocity is,

uring,r =
Γp

4πr1

z

r1

(r1
r

)3/2
[

−K(p) +
2− p2

2(1− p2)
E(p)

]

(E.11)

1Here, the definition of complete elliptic integral is the one adopted in Whittaker & Watson [1927]

K(x) =

ˆ π/2

0

dφ
√

1− x2sin2φ
, E(x) =

ˆ π/2

0

√

1− x2sin2φ dφ





Appendix F

Oscillations of a Hollow Vortex

The stability of a hollow vortex column or a cylindrical vortex sheet, has been of interest to fluid

dynamicists for a long time. The earliest work on the linearized dynamics of a hollow vortex

can be traced to Lord Kelvin’s seminal 1880 paper (Kelvin [1880]). He studied oscillations of a

‘coreless’ vortex that might serve as a model for a gaseous core surrounded by irrotational fluid.

Waves on a coreless vortex are cylindrical analogues of surface gravity waves with centrifugal

force rather than gravity providing the necessary restoring action. Such vortices were funda-

mental to Kelvin’s theory of vortex atoms. In a letter to Professor G. F. FitzGerald (Kelvin

[1889]) he wrote,

“I have quite confirmed one thing I was going to write to you (in continuation with my letter

of October 26), viz. that rotational vortex cores must be absolutely discarded, and we must

have nothing but irrotational revolution and vacuous cores. So not to speak of my little piece of

coreless vortex work (‘Vibrations of a Columnar Vortex,’ Proc. R.S.E., March 1,1880), Hicks’

Paper, ‘On the Steady Motion and small vibrations of a Hollow Vortex,’ Transactions Roy.

Society, 1884), will be the beginning of the Vortex Theory of ether and matter, if it is ever to

be a theory.”

‘Coreless’ vortices, as the name suggests ignores the core inertia and thus are not particularly

useful in the geophysical context. Rather vortices with quiescent or almost irrotational cores

(but inertial) are more suited as models for geophysical coherent structures. The eigenmodes

of a cylindrical vortex sheet with a quiescent core was analyzed by Rotunno [1978]. Besides

correcting inconsistency in previous literature, the author also mentions that multiple vortex

phenomena in tornadoes could arise due to instability of cylindrical vortex sheet. Stability cal-

culations for more realistic profiles of a vortex with a vorticity deficit in the core have also been

studied in the context of tornadoes (Gall [1983]) and tropical cyclones (Kossin et al. [2000]). In

the context of plasma physics Smith & Rosenbluth [1990] studied such an inflectional electron

density (vorticity equivalent) profile and noted that, for m = 1, the vortex exhibits an algebraic

instability with the streamfunction growing as O(
√
t).

In order to characterize the temporal response of a hollow vortex column, and to analyze the

possibility of inviscid resonances as for the Rankine case considered in the text, we revisit the

results obtained by Rotunno [1978]. The author found that a cylindrical vortex sheet, of radius

a and the exterior fluid slipping past the quiescent core with an angular velocity Ω0, supports

two waves for every m and k having the following complex frequencies:

ω3D = mΩ0kaI
′
m(ka)Km(ka)± iΩ0ka

√

I ′m(ka)K ′
m(ka){1 −m2Km(ka)Im(ka)}

The modes m = 1 and 2 exhibit purely oscillatory behaviour for all wavenumbers. While

∀m ≥ 3, there exists a critical wave-number kc, which demarcates the unstable solutions from
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the oscillatory ones. An estimate for kc can be written as, kc ∼ m
2a

√
m2 − 4. In the limit k → 0,

the dispersion relation simplifies to

ω2D =
mΩ0

2
± i

Ω0

2

√

m(m− 2) (F.1)

In 2D, m = 1 has a pure translation mode (ω2D) similar to that of a vortex column and another

wave that rotates with the angular velocity of the sheet, Ω0, and also rides on it (critical radius is

at a). Thus in the linear framework it is an infinitesimal strengthening of the vortex sheet. These

waves do not propagate energy and thus their three-dimensional counterparts have vanishing

group velocity in the limit k → 0. It is evident from (F.1) that there is a degeneracy for m = 2

implying an O(t) algebraic growth for all time if the excitation is by a vortex sheet located at

an arbitrary location. If the perturbation sheet is stationed at
√
2a, the critical radius, then the

resonance mechanism would generate a O(t2) growth of the radial velocity field.

Due to similarity with the analysis for a vortex column, we omit the detailed expression for

3D perturbation velocity for an arbitrary initial vorticity forcing. Instead a canonical excita-

tion is chosen, that of an arbitrarily stationed cylindrical vortex sheet, ωθ = −kr1V0/m δ(r −
r1)e

i(kz+mθ), ωz = V0δ(r− r1)ei(kz+mθ) (r1 > a). The axial velocity perturbations will thus obey

the following evolution equations,

r < a

ũz = C

{ −α1(ω1)e
−iω1t

(ω1 − ω2)(ω1 − imΩ1)
+

α1(ω2)e
−iω2t

(ω1 − ω2)(ω2 − imΩ1)
+

−α1(−imΩ1)e
−imΩ1t

(ω1 − imΩ1)(ω2 − imΩ1)

}

Im(kr)

Im(ka)

(F.2)

r1 > r > a

ũz = C

{ −α2(ω1)e
−iω1t

(ω1 − ω2)(ω1 − imΩ1)
+

α2(ω2)e
−iω2t

(ω1 − ω2)(ω2 − imΩ1)
+

−α2(−imΩ1)e
−imΩ1t

(ω1 − imΩ1)(ω2 − imΩ1)

}

Km(kr)

Km(ka)
+

C Im(ka)

{

Im(kr)

Im(ka)
− Km(kr)

Km(ka)

}

e−imΩ1t (F.3)

r > r1

ũz = C

{ −α2(ω1)e
−iω1t

(ω1 − ω2)(ω1 − imΩ1)
+

α2(ω2)e
−iω2t

(ω1 − ω2)(ω2 − imΩ1)
+

−α2(−imΩ1)e
−imΩ1t

(ω1 − imΩ1)(ω2 − imΩ1)

}

Km(kr)

Km(ka)
+

C

{

I ′m(kr1)

K ′
m(kr1)

Km(ka)− Im(ka)

}

Km(kr)

Km(ka)
e−imΩ1t (F.4)

where, α1(ω) = −ω(ω−mΩ0)Im(ka), α2(ω) = −ω2Im(ka)+Ω2
0kaI

′
m(ka) and C =

V0
m

(kr1)
2K ′

m(kr1).

Thus besides the well-studied exponentially unstable modes for axial wavenumbers k < kc and

m ≥ 3, there could also be algebraic growth for a hollow vortex. Similar to a vortex column, a

ω̃r intial distribution would also lead to a O(t2) growth in velocity perturbations for a hollow

vortex.



Appendix G

Dini expansion of I0(kr)

For the axisymmetric case the dispersion relation reduces to,

J ′
0(βn)

βnJ0(βn)
+

K ′
0(k)

kK0(k)
= 0

⇒ βnJ
′
1(βn)

J1(βn)
− kK ′

1(k)

K1(k)
= 0

The latter form will enable us to borrow results of Dini expansion of a function in (0, 1) (Watson

[1927]). If

f(r) =

∞
∑

n=1

bnJ1(βnr) where, bn =

2β2n

ˆ 1

0
xf(x)J1(βnx)dx

(β2n − 1)J2
1 (βn) + β2nJ

′2
1 (βn)

f(r) + rf ′(r) =

∞
∑

n=1

bnβnrJ0(βnr)

On choosing f(r) = I1(kr),

I0(kr) =

∞
∑

n=1

bnξnJ0(βnr) = 2

∞
∑

n=1

B(−1)
n

1

k2K0(k)

J0(βnr)

J0(βn)

1

iωn

⇒ I0(kr) =
∑

b±1

∞
∑

n=1

Bb
n

1

k2K0(k)

J0(βnr)

J0(βn)

1

iωn
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