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A transparent electrode is a key component of any

optoelectronic or transparent device. With increasing number

of large area applications, there is growing demand to replace

the conventional oxide based transparent conducting films with

nanomaterials, primarily to reduce the cost. This review deals

with a range of materials and processes forming new

generation transparent electrodes, while giving some insight

into the cost.
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Introduction
In a scenario, where light photons have to traverse in or out

of an active material, it is mandatory that the electrode(s)

hosting the active material is kept transparent to light

photons. Thus, optoelectronic devices such as display

screens use transparent electrodes to carry electrical sig-

nals while making the display visible [1]. In a touchscreen

on the other hand, the transparent electrode not only

keeps the display visible, but also translates touch into

electrical signals for further processing [2]. In new gener-

ation solar cells such as organic and dye sensitized cells, the

transparent electrodes while allowing light photons to fall

on the active layer, extract charge carriers generated due to

the photovoltaic effect [3,4]. There are non-optoelectronic

applications as well where transparent electrodes are re-

quired. In defogging or defrosting applications, a transpar-

ent electrode is joule heated to make the surface stand

above the dew or frost point, respectively [5]. It is becom-

ing fashionable to make conventional electronics trans-

parent with the aid of transparent electrodes leading to

transparent electronics, be it a gas sensor [6], H2 catalyst
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[7], lithium ion battery [8], flexible capacitor [9], super-

capacitor [10–11] or charge trap memory [12].

A transparent electrode typically consists of a transparent

conducting material coated on a transparent substrate

such as glass or PET. Conventionally, tin doped indium

oxide (ITO) sputtered on the substrate such as glass is

used practically in all currently existing devices. A well

prepared film of ITO exhibits excellent optoelectronic

properties, transmittance of over 90% and sheet resis-

tance (Rs) of �10 V/sq, which explains its widespread use

[1]. The demand for transparent electrodes is becoming

huge due to increasing production with newer and newer

products being added to the consumer list. Parallely, the

active user area within a product is also increasing. The

limited abundance of indium and the process cost towards

its extraction and deposition are indeed the stumble

blocks in the progress of new industrial products based

on transparent electrodes. In addition, high brittleness of

ITO films makes it implausible to adapt to futuristic

flexible electronics. The above issues have given rise

to high impetus to alternate materials and methods to

produce transparent conducting electrodes (TCE) with

clear focus on making larger area electrodes at affordable

cost [13].

The new generation materials that have emerged in the

last few years can be classified broadly into ultra thin

conducting materials and conducting networks. This

article is essentially a mini-review covering topical devel-

opments of the above topics keeping the focus on low cost

and environmentally benign TCEs for next generation

flexible and low weight optoelectronic devices.

Ultra thin conducting electrodes
Graphene

Graphene is one carbon atom thick two dimensional sheet

with sp2-hybridization exhibiting extraordinary thermal,

electrical and mechanical properties due to long range p-

conjugation [14]. Novoselov et al. obtained single-layer

graphene by mechanical exfoliation of highly oriented

pyrolytic graphite (HOPG) [15]. Further, various physical

and chemical routes have been established to fabricate

graphene [16]. First ever application proposed for single

layer graphene has been a transparent conductor as it can

transmit about 97.7% of visible light while sheet resis-

tance being reasonably low (�60 V/sq) [17]. The first

demonstration of graphene based transparent electrodes

was by Kang et al., in which reduced graphene oxide film

used as TCE was shown to exhibit 75% transmittance
www.sciencedirect.com
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with sheet resistance of 0.9 kV/sq. However, the perfor-

mance of solar cells made out of this electrode was poorer

compared to the standard ITO based devices [18].

The graphene based transparent electrodes find applica-

tions in several (flexible) lightweight optoelectronic

devices [19]. However, fabricating them over large area

is quite challenging. Iijima and coworkers have realized

30 in. graphene film by chemical vapor deposition meth-

od (CVD) [20]. Recently, Hobara and coworkers success-

fully prepared 100 m long high quality graphene using a

roll-to-roll CVD technique (see Figure 1) [21��]. As the

Cu foil was selectively annealed, there was very less heat

load to the system. Thus, the CVD process was quite

stable throughout the experiment (>16 hours). The pho-

tograph of thus formed roll of the TCE (graphene/epoxy/

PET film) is shown in Figure 1b whose sheet resistance is

reported to be 500 V/sq. The sheet resistance was

brought down to �250 V/sq by wet chemical doping of
Figure 1
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Roll-to-roll synthesis of graphene. (a) Schematic illustration of roll-to-

roll synthesis of graphene on Cu foil (Gra./Cu). Stainless steel vacuum

chamber with current-feeding electrode rollers to joule heat Cu foil. The

precursor gases (CH4 and H2) are introduced into a chamber (1000 Pa)

where Cu foil (230 mm wide, >100 m long, 36 mm thick, >99.9% pure)

is selectively joule heated to 1000 8C. The Cu foil moves with the

velocity of 0.1 m/min. (b) The photograph of a roll of graphene/epoxy/

PET film. The graphene/epoxy width is marked in the photograph. The

film was later doped with AuCl3. Optical transmittance of PET film

(blue), AuCl3/graphene/epoxy/PET (red) and planarized film, purple

color (PET/Adhesive/AuCl3/graphene/epoxy/PET) is shown in (c).

Reproduced with permission from Ref [21��].
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graphene with AuCl3 solution but of course at the cost of

transmittance (Figure 1c). Ni et al. have achieved Rs of

120 V/sq with 95% transmittance by doping graphene

with non-volatile ferroelectric polymers [22]. The reli-

ability of graphene based transparent electrodes for prac-

tical applications has been analyzed recently by Shi et al.
[23]. Although high quality graphene with roll-to-roll

CVD fabrication is a success, its large scale production

at low cost is still at large.

Organic thin films

Another promising transparent electrode material for flex-

ible and stretchable devices which can be coated as a thin

film, is poly(3,4 ethylenedioxythiophene) (PEDOT), dis-

covered by Heywang et al. [24]. Upon polymerization with

poly-(styrenesulfonate) (PSS), a polyanion, it forms an

intrinsically conducting polymer (PEDOT:PSS), highly

preferred as its work function (5–5.2 eV) is electronically

suited for optoelectronic applications. Among other organ-

ic conducting polymers such as polyaniline (PANI), poly-

pyrrole (PPY) and polythiophenes (PT), PEDOT:PSS is

more promising. However, its low intrinsic conductivity

(�10�3–10�4 S cm�1) is a matter of concern. The conduc-

tivity can be enhanced further by doping with high boiling

polar solvents termed as ‘secondary dopants’, though the

exact mechanism of the enhancement is yet to be under-

stood [25]. In the literature, dimethyl sulfoxide (DMSO),

ethylene glycol (EG), diethylene glycol, sorbitol, sulphu-

ric acid (H2SO4), zonyl, etc. have been used to improve

PEDOT:PSS conductivity [26–28]. For example, the

sheet resistance of zonyl doped PEDOT:PSS on poly(-

dimethylsiloxane) substrate was 42 V/sq with 82% trans-

mittance. Zonyl besides improving conductivity, also

enhances wettability even on hydrophobic surfaces [28].

In another report, non-ionic surfactant (Triton X-100) was

used to produce conformal coating on hydrophobic sub-

strates by reducing the surface tension of the polymer

solution. Also, it induces the formation of nanofibrils of

PEDOT which increases the mechanical stability of the

polymer and thereby, of the devices [29]. Extending the

electrode formation over large area by simple roll-to-roll

process has also been already realized and commercialized

[30]. The reduction in electrical conductivity of polymers

upon exposure to humidity, high temperature and UV-

light are vital issues inhibiting practical implementation of

conducting polymers [31].

Ultra thin metal films (UTMF)

Highly conducting noble metal films of 1–5 nm thickness

on mica were reported as early as 1970s. At such small

thicknesses, metal films tend to be optically quite trans-

parent, but are exceptionally fragile ending up with high

sheet resistances. Depositing a bimetal layer on a trans-

parent substrate such as glass is shown to improve the

mechanical stability of the TCE. For instance, a sub-nm

thick Ag layer yielded a well conducting Au overlayer

with total thickness of only 3.2 nm. Later, Pt was used as
Current Opinion in Chemical Engineering 2015, 8:60–68
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nucleating layer for better adhesion and stability [32].

Briggs and coworkers demonstrated that depositing gold

(7 nm) over pre-treated (3-mercaptopropyl(methyl)di-

methoxysilane) substrate led to less surface roughness.

Besides improving adhesion, it provides better average

transmittance (75%) and low sheet resistance of 20 V/sq

[33]. Such thin metal films possess great advantage of

being compatible with flexible devices as metals by

nature are malleable and ductile. While UTMF can be

potential substitute for ITO, corrosion and oxidation of

the metal (like Ag) in ambient atmosphere tend to dete-

riorate transmittance and conductivity. Among many

proposed permeation blocking layers, thin Ni layer is

shown to serve well as a stable, flexible barrier layer

[34]. In another report, 7 nm Cu with Al shell of

0.8 nm served as low work function window electrodes

for OPV with �65% transmittance at 550 nm with sheet

resistance of 15.7 V/sq [35]. UTMF were even sand-

wiched between metal oxide thin films to fabricate better

performing TCEs. This method of fabricating TCE is

highly cost effective since it can be extended for large

scale roll-to-roll processes as well.

Conducting networks
Unlike thin conducting electrodes in network structures,

only designated paths conduct electricity while the rest of

the regions transmit light. These can be classified into

non-template based networks and template based net-

works. Naturally in template based methods, the forma-

tion of conducting paths is guided by lithography

processes and the paths tend to remain in a plane with

seamless junctions, but suffer from diffraction effects due

to the orderliness of the patterns. In contrast, the non-

template based networks are usually formed by brute-

force and therefore, the conducting paths are usually

random in nature forming cross-bar junctions and there-

fore, the electrical conduction takes place mainly through

the perculative paths. There are many theoretical studies

to relate their behavior to bulk-like systems such as

continuous thin films. For networks with T > 90%, the

expected the bulk-like behavior does not occur. The

main reason is that below a critical density termed perco-

lation threshold, the network conductivity decreases dras-

tically with decrease in the density of the wires and

therefore, the conduction can only be described by per-

colation theory. By increasing the wire lengths or the

number of wire junctions, the conductivity is seen to

increase due to increasing conduction paths, following a

percolation scaling law [36]. Such theoretical treatments

have helped researchers to optimize conditions for nano-

wire deposition.

Non-template based networks
Metal nanowire networks

Metal nanowires prepared by simple solution processes

are deposited onto large area transparent substrates by

various coating techniques (rod, spray, drop, etc.). The
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density and length of nanowires decide the trade-off

between optical transmittance and sheet resistance. Thus,

longer nanowires even with low wire density provide well

conducting network with high transmittance [37�]. The

key merits of metal nanowires are simple solution proces-

sing, large area amenability, stability towards flexing and

highly tunable opto-electronic properties.

Among metals, Ag is highly conducting with the lowest

resistivity (1.67 nV m). Coleman and coworkers were the

first to use Ag nanowire networks as transparent electrodes

and achieved 85% transmittance with sheet resistance of

13 V/sq [36]. Many researches have attempted to mini-

mize junction resistances of nanowire networks (Figure 2)

[38–40] by decreasing the density of the junctions or by

post annealing or plasmonic welding. Flexible organic

solar cells, fabricated with Ag nanowires were highly stable

even to a bending radius of 200 mm [41]. As process costs

involved are minimal in case of solution processed Ag

nanowires, roll-to-roll processing can be easily realized.

Although resistivity of Cu (1.59 nV m) is about the same

as that of Ag, in terms of abundance and cost, it outdoes

Ag. In the last half-decade, Cu nanowires have emerged

as potential candidate for next generation TCEs for the

realization of low cost and flexible optoelectronic devices

[42]. Wiley and coworkers have developed a simple

solution route to prepare large quantity of Cu nanowires

and shown that thus fabricated TCE has transmittance

and sheet resistance of 67% and 61 V/sq, respectively

[43]. The aggregation problem of nanowires along with its

shorter lengths (10 � 3 mm) and larger diameters

(90 � 10 nm) have been the main reasons for its poor

performances. Modified processes have been reported to

synthesize longer (>20 mm) and thinner (<60 nm) Cu

nanowires and transmittance of 85% with sheet resistance

of 30 V/sq have been achieved [44,45]. However, highly

oxidizing nature of the Cu surface and its reddish orange

haze hinder its practical implications in display devices.

Alloying Ni with Cu does provide solution to above-

mentioned problems, however, with some loss in trans-

mittance due to the increase in diameter of nanowires

[46]. Ferromagnetic Ni shell is shown to assist in self-

assembling Cu nanowires with the aid of a guiding

magnetic field [47]. A more effective solution to improve

the stability towards oxidation was offered by forming

transparent oxide shell over Cu nanowires, without af-

fecting the transmittance [48]. Im et al. demonstrated that

embedding Cu nanowires in polymers provides smoother

surface with high thermal/dimensional stability and also

improved adhesion to the substrate [49]. On the other

hand, other metal nanowires such as Au has been tried out

as TCEs [50], but those are quite expensive.

Carbon nanotube networks

Carbon nanotubes (CNTs) are known to exhibit excellent

electrical, optical and mechanical properties. Synthesis
www.sciencedirect.com
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Figure 2
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Meyer rod coating method to fabricate Ag nanowire based TCE. (a) Schematic of the process and SEM image of silver nanowire network

(b). Inset in (b) is photograph of their suspensions in alcohol. (c) A OLED device fabricated using Ag nanowire TCE.

# IOP Publishing. Reproduced by permission of IOP Publishing. All rights reserved [38] Nanotechnology 2013 24:335202.
procedures yield CNTs with variety of tube number,

diameter, length and chiralities along with mixture of

amorphous or non-tubular carbon and catalyst particles.

Obtaining well-defined CNTs in large scale is the major

challenge for real applications [51]. CNT based transpar-

ent electrodes have been fabricated by dry transfer as well

as solution based methods. The dry or solvent-less meth-

od to fabricate CNT electrodes using vertically grown

MWNT was pioneered by Baughman’s group [52]. The

electrodes fabricated using solution method are more

promising for industrial scale process. Falco et al. have

fabricated SWCNT based TCE with low surface rough-

ness by a spray coating process, and achieved sheet

resistance of 160 V/sq with 84% transmittance [53].

The high sheet resistances resulting from poor electrical

contact between nanotube network were resolved by

exfoliation/doping by the superacid (60 V/sq and

90.9%) [54]. Limited environmental stability of CNT

networks has prevented its practical applications.

Template based networks
Lithography processes

In these methods, the conducting feature in the network

is produced by various printing and lithography processes.

Using a maskless direct laser writing on a film of Ag

nanoparticles, Ag grid patterns were produced which

showed high transmittance (>85%) and low sheet resis-

tance (30 V/sq) [55]. Lewis and coworkers developed a

concentrated Ag nanoparticle ink for direct writing. Thus
www.sciencedirect.com 
formed electrodes have shown optical transmittance of

�94% [56]. The overlapping ring pattern of Ag nanopar-

ticles was obtained by inkjet printing [57] for making a

TCE. Interconnected Cu mesh structure realized through

polystyrene microsphere lithography has shown excellent

robustness towards thermal, bending and abrasion tests

[58]. Grayscale xerographic lithography was adopted to

fabricate Ag TCE by spreading Ag ink over toner pat-

terned region. After thermal curing of Ag ink and removal

of the toner, thus obtained electrodes have shown 72%

transmittance [59]. Krebs and coworkers have fabricated a

promising hybrid TCE with printed silver grids on poly-

mer substrates interlaced with PEDOT:PSS and ZnO

layers, termed as flextrode [60�]. These electrodes exhibit

low sheet resistance (10 V/sq) with transmittance of

�60%. Importantly, the TCE can be processed at high

speed of 10 m/min. Another possible technique to realize

metallic patterns over rigid glass/flexible PET is nanoim-

print lithography (NIL) which makes use of a hard mold

[61]. Such lithography techniques involve multistep pro-

cesses and the instrumentation is usually expensive.

However, few attempts have been made to realize fabri-

cation using continuous roll-to-roll nanoimprint lithogra-

phy (R2RNIL) [62].

Self-forming process

Different innovative techniques have recently evolved

under this category of transparent conducting electrodes.

This involves formation of uncontrolled junctionless
Current Opinion in Chemical Engineering 2015, 8:60–68
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metal wire network in a random process. For example,

bubble template method [63], inorganic crystal growth

template [64], colloidal TiO2 crack template [65,66],

interconnected coffee rings [57] have been observed to

form itself resulting in patterns that are utilized for TCE

fabrication. However, these are limited to small areas with

limited success. Using low-cost and scalable electrospin-

ning process, ultralong polymeric fibers with nanoscale

dimension can be synthesized (see Figure 3a). By succes-

sive calcination steps, Cu fiber networks have been

obtained [67,68]. In another work, fiber networks were

electrospun and metals of choice were deposited onto

fibers depending on the application. The dissolution of

fiber material resulted in the formation of metal nano-

troughs (see Figure 3b) with excellent optoelectronic

properties and mechanical stability [69��]. Combination

of electrospun process and simple electroless deposition

technique was employed to obtain metal wire network

over large area [70].

Using inexpensive commercial dispersions to form fine

crack templates over ultra-large areas (see Figure 3c),
Figure 3
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Kulkarni and coworkers have achieved metal mesh TCEs

[71��] with excellent optoelectronic properties (�90%

transmittance with sheet resistance of �few V/sq). Large

area Cu TCE by a complete solution process was realized

(Figure 3d) which showed better stability than Cu nano-

wire based networks [72��]. Using such TCEs, ITO-free

solar cells have been demonstrated [73]. Uniformity of

metal mesh distribution is evident from IR camera images

of flexible heater fabricated on PET substrates

(Figure 3e) [71��]. Low power consuming large area

defrosting window panel was demonstrated [74] in addi-

tion to curved surface applications [75]. An unusual

transparent heater fabricated on a quartz substrate was

shown to have high thermal stability and extraordinary

thermal response [76�]. This crack template based meth-

od is quite appealing for large scale fabrication.

Figure 4a contains a plot showing schematic trends in

transmittance against sheet resistance for various families

of TCEs. Metal networks fabricated through self-forming

crackles and electrospun nanotroughs, ultralong Ag nano-

wires and graphene thin films usually show a minimal
(e)
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matic of an electrospinning process with syringe pump is shown in left

rmission from [67] Nano Lett. 2010 10:4242-4248. Copyright (2010)

its concave shape (b) Reproduced with permission from [69��]. (c)

 substrate. Top inset shows the spreading of crackle precursor using

(d) Photograph of Cu TCE/PET fabricated using electroless deposition

ustrate the stability of heater while bent to different curvatures.

www.sciencedirect.com
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Figure 4
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(a) Schematic shows the clear trade off between T and Rs for

different categories of TCEs. Lowering Rs compromises

transmittance, in general. (b) Comparison plot of materials cost

versus process cost for different categories of TCE materials.

Microscopy images were reproduced with copyright from

references mentioned in bracket. Sputtering process to deposit

ITO is a cost-expensive process. The process cost is widely

spread denoting its dependency on the quality of end-product

[77]. On the other side, ITO synthesized by sol–gel process is

cost effective [81]. The process cost is minimal for Cu nanowires

(Reprinted with permission from [45] J Am Chem Soc 2012

134:14283–14286. Copyright (2012) American Chemical Society.),

Ag nanowires (Reprinted with permission from [36] ACS Nano

2009 3:1767–1774. Copyright (2009) American Chemical Society.),

PEDOT:PSS (Reprinted with permission from [80] Chem Mater

2011 24:373–382. Copyright (2011) American Chemical Society.),

nanotroughs [69��] and self-forming processes (Reproduced by

permission of the PCCP Owner Societies [73]) whereas their

materials cost has huge variation. Upward arrows shown on

nanotroughs and self-forming processes indicate that material

cost may fluctuate with the choice of metal. Metal grid patterns

realized by NIL [64] is middling. SWNT (Reprinted with permission

from [79] Nano Lett 2006 6:2472–2477. Copyright (2006) American

Chemical Society.), MWNT [78] and graphene [20] are also

compared.
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decrease in transmittance while sheet resistances were

reduced drastically. This may be related to highly proba-

ble percolation paths with less or no junction resistance.

Cu nanowires and CNT based electrodes belong to

another category whose sheet resistances are generally

high for higher transparency regime due to sparse density

of shorter conducting paths. Organic TCE shows moder-

ate transmission with relatively high sheet resistance as

compared to metal based TCEs.

The cost of a TCE is determined mainly by the material

and process costs (Figure 4b); the cost towards the sub-

strate is relatively much less. With ITO, the material is

usually deposited by ion sputtering under tightly moni-

tored conditions. Solution methods for ITO produce

electrodes with compromised optoelectronic properties

[81]. This explains the wide range of pricing for the ITO

plates on the market. In the case of carbon nanostructures,

carbon as a source may be trivial, but the synthesis of

nanostructures, be it CNTs or graphene, is usually cost

intensive, more so if the high purity is the requirement.

Graphene and CNTs are prepared with thermal and

plasma CVD based methods that increase the fabrication

cost. The conventional lithography methods used for

fabrication TCEs are process intensive, laborious and

based on expensive materials and equipment, thus in-

creasing acquisition cost in terms of material and facility

besides the manufacturing cost. In new template based

methods, the fabrication cost is reduced due to use of

simpler equipment. The material cost can be reduced as

one need not rely on expensive metals. However, the

processing is subtractive and multiple steps are required

to obtain a TCE. The most successful TCE is based on

metal nanowires grown using solution routes which keep

the process cost at bay since the coating of nanowires can

be done by single step roll-to-roll processing thus de-

creasing the manufacturing cost. Post deposition proces-

sing with encapsulants and additive layers may also

increase the cost of nanowire based TCEs. More impor-

tantly, the cost of Ag is increasing at alarming rate. This

issue is addressed by using less expensive Cu and other

metals. Nevertheless, the metal nanowire based TCEs

are now available at competing rates as substitute for

ITO. Like in any type of TCE, ensuring large area

uniformity [82] may enhance the cost non-linearly. In

all above cases, amenability of the synthesis and deposi-

tion recipes for roll-to-roll conditions remains a determin-

ing factor for large scale production. New materials and

processes need to be developed in the near future to

overcome this trade-off between the optoelectronic prop-

erties and the cost.

Conclusions
This topical review on transparent electrodes has brought

out important examples pertaining to different classes of

new generation transparent conductors, while mentioning

salient features of currently used material, ITO. Besides
Current Opinion in Chemical Engineering 2015, 8:60–68
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graphene and ultra-thin metal films, networked structures

involving Ag nanowires, Cu nanowires, carbon nanotubes

have been dealt with. Periodic metal grids as well as

mesh-like structures derived from template based meth-

ods have also been discussed. Besides providing the

details of the optoelectronic properties, due attention

has been paid to the cost in all these examples. The

latter involving material and process components is how-

ever difficult to assess from an academic stand-point.

Nonetheless, the attempt made in Figure 4b should be

quite informative if not exact.
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