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H I G H L I G H T S

� Equilibrium fitness is studied in a model with back mutations.
� Model takes care of linkage effects.
� Recombination is found to be important in adapting microbial populations.
� Mild effect of recombination is observed in codon usage bias.
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a b s t r a c t

We study the stationary state of a population evolving under the action of random genetic drift, selection
and recombination in which both deleterious and reverse beneficial mutations can occur. We find that
the equilibrium fraction of deleterious mutations decreases as the population size is increased. We
calculate exactly the steady state frequency in a nonrecombining population when population size is
infinite and for a neutral finite population, and obtain bounds on the fraction of deleterious mutations.
We also find that for small and very large populations, the number of deleterious mutations depends
weakly on recombination, but for moderately large populations, recombination alleviates the effect of
deleterious mutations. An analytical argument shows that recombination decreases disadvantageous
mutations appreciably when beneficial mutations are rare as is the case in adapting microbial
populations, whereas it has a moderate effect on codon bias where the mutation rates between the
preferred and unpreferred codons are comparable.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of population genetic studies assume one-way
mutation – in some situations, beneficial mutations are neglected as
they occur rarely (Muller, 1964; Felsenstein, 1974; Haigh, 1978; Gordo
and Charlesworth, 2000) while in adaptation studies, deleterious
mutations are ignored as they are unlikely to fix under strong
selection conditions (Gerrish and Lenski, 1998; Rouzine et al., 2008;
Seetharaman and Jain, 2014). The assumption of one-way mutation
has an important effect on the nature of the state at large times. If the
population size is infinite, a time-independent stationary state can be
reached due to a balance between mutation and selection even if the
mutational forces are unidirectional (Haigh, 1978). However in a
finite population, when mutations are completely neglected or only
unidirectional mutations are allowed, a population evolving under
the influence of other evolutionary forces either does not reach an

equilibrium state (Haigh, 1978), or achieves a trivial one inwhich one
of the variants gets fixed at large times (Ewens, 2004). It is when
both beneficial and deleterious mutations are taken into account, a
finite population reaches a nontrivial stationary state (Wright, 1931).

An example of such a steady state is seen in the context of
synonymous codons that represent the same amino acid but do
not occur in equal frequencies (Hershberg and Petrov, 2008;
Plotkin and Kudla, 2011). In a gene coding for a two-fold degen-
erate amino acid, while selection favors the preferred codon,
reversible mutations between preferred and unpreferred codons
and random genetic drift maintain the unpreferred one (Li, 1987;
Bulmer, 1991). Assuming that the sites in the sequence evolve
independently, analytical results for the equilibrium frequency of
unpreferred codons have been obtained (Li, 1987; Bulmer, 1991;
McVean and Charlesworth, 1999). However as the evolutionary
dynamics at a genetic locus are affected by other loci (Hill and
Robertson, 1966), a proper theory of codon usage bias must
account for the Hill–Robertson interference between sequence
loci (Comeron et al., 1999; McVean and Charlesworth, 2000;
Charlesworth et al., 2009; Kaiser and Charlesworth, 2009).
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Reverse and compensatory mutations have also been proposed
as a possible mechanism to stop the degeneration of asexual popula-
tions (Lande, 1998; Whitlock, 2000; Goyal et al., 2012). In a finite
nonrecombining population, if beneficial mutations are completely
ignored, deleterious mutations accumulate irreversibly due to
stochastic fluctuations by a process known as Muller's ratchet
(Muller, 1964; Howe and Denver, 2008). But when rare beneficial
mutations are taken into account, the population reaches an
equilibrium (Estes and Lynch, 2003; Silander et al., 2007; Howe
and Denver, 2008). Recently Goyal et al. (2012) calculated the
amount of beneficial mutations required to achieve a stationary
state. But these authors assumed the mutation rates to be indepen-
dent of the fitness, contrary to experimental evidence (Silander et
al., 2007). Moreover their solution for the equilibrium frequency can
become negative in some parameter range.

In this article, we are interested in understanding the stationary
state of a multilocus model, which is described in detail in the
following section. We consider a class of non-epistatic fitness land-
scapes where the fitness depends only on the number of deleterious
mutations in a sequence (fitness class). As in previous works (Li, 1987;
Comeron et al., 1999; McVean and Charlesworth, 2000), we assume
that the beneficial mutations are back mutations, the probability of
whose occurrence depends on the fitness class. More precisely, if the
mutation probability per site is small, the total probability of a
beneficial (deleterious) mutation increases (decreases) linearly with
the fitness class. We consider the evolution of both infinitely large and
finite populations, and to analyse the effect of linkage amongst the
loci, we allow recombination to occur. We are primarily interested in
the population size dependence of the average number of disadvanta-
geous mutations at equilibrium. We obtain analytical results when the
sites are completely linked, and compare themwith the known results
for a freely recombining population. For intermediate recombination
rates, we obtain numerical results.

We find that the number of deleterious mutations decreases in
a reverse sigmoidal fashion, as the population size is increased.
For small populations, the fraction of disadvantageous mutations
is seen to be roughly independent of population size and recom-
bination rate. An understanding of this behaviour is obtained from
an exact solution and numerical simulations for a neutral finite
population. For very large populations that can be described by a
deterministic model, we find the stationary state exactly which is
also unaffected by recombination. However for moderately large
populations, recombination is found to alleviate the effect of
deleterious mutations (Hill and Robertson, 1966; Felsenstein,
1974; Barton and Charlesworth, 1998; Charlesworth et al., 2009),
and the extent to which it does so depends on the beneficial
mutation rate relative to the deleterious one. We find that when
beneficial mutations are rare, the equilibrium frequency of dis-
advantageous mutations decreases logarithmically with popula-
tion size when the loci are completely linked, but exponentially
fast when linkage is absent. On the other hand, when disadvanta-
geous mutations are rare, the deleterious mutation fraction drops
exponentially fast, irrespective of the recombination rate. Thus we
expect that the linkage has a weak effect on codon bias where the
rates at which mutations between preferred and unpreferred
codons occur are of the same order (Zeng, 2010; Schrider et al.,
2013). But in adapting microbial populations where beneficial
mutations are rare (Sniegowski and Gerrish, 2010), recombination
may be expected to reduce the frequency of disadvantageous
mutations significantly.

2. Models

We consider a haploid population of size N in which each
individual carries a biallelic (either zero or one) sequence of finite

length L, where zero represents the wild type allele and one
denotes the deleterious mutation. The population is evolved in
computer simulations using a Wright–Fisher process in which
recombination followed by mutation and selection occurs in
discrete, non-overlapping generations. To create an offspring,
two parent individuals are chosen at random with replacement.
With probability rr1=2, a single crossover event occurs in the
parent sequences at one of the L�1 equally likely break points to
form two recombinant sequences, while with probability 1�r,
the parent sequences are copied to the offspring sequences. In
either case, one of the offspring is chosen with probability half to
undergo mutations and selection, and the other one is discarded.
In the offspring sequence, a deleterious mutation occurs at a locus
with a wild type allele with probability μ and a reverse beneficial
mutation on mutant allele with probability ν. The resulting
sequence is allowed to survive with a probability equal to its
fitness, where the fitness of a sequence with j deleterious muta-
tions is assumed to be a nonepistatic, and given by wðjÞ ¼ ð1�sÞj,
0rso1. This process is repeated until N individuals in the next
generation are obtained.

We have been able to implement the procedure described
above for sequences of length up to 500 and population sizes of
the order 103. For larger populations with long nonrecombining
sequence, the computational difficulties were overcome by track-
ing only the number of deleterious mutations (fitness class)
carried by the individual since the fitness of a sequence depends
only on the number of deleterious mutations in the sequence.
Here a parent chosen at random produces a clone of itself, and the
offspring may undergo mutations with a probability that depends
on its fitness class. In a sequence with j deleterious mutations, as a
deleterious (beneficial) mutation can happen at any one of the L� j
(j) sites, the rate of deleterious and beneficial mutations is given by
ðL� jÞμ and jν respectively. To find the number of beneficial (b) and
deleterious (d) mutations acquired by the offspring, random
variables were drawn from Poisson distribution with mean jν
and ðL� jÞμ respectively. The total number of deleterious mutations
in the offspring is then given by j0 ¼ jþd�b. If j0 turns out to be
greater than L or less than zero, the offspring individual is
produced with j0 ¼ j mutations. As before, the offspring is allowed
to survive with probability wðj0Þ, and the process is repeated until
N individuals in the next generation are obtained.

All the numerical results presented here are obtained with
an initial condition in which none of the individuals carry
deleterious mutations. In each stochastic run, the Wright-Fisher
process was implemented for about 104 generations and it was
ensured that the stationary state is reached. In the equilibrium
state of each run, we measured the number of deleterious
mutations present in the population and averaged them over
another 104 generations. The data were also averaged over 100
independent stochastic runs. Although all the simulation results
presented here are obtained using the Wright–Fisher process, we
will also use a continuous time Moran model for some analytical
calculations which is described in a later section. If the population
is infinitely large, the dynamics and equilibrium state of the
population fraction can be described by a deterministic equation,
which we discuss next.

3. Results

3.1. Infinite population

3.1.1. Nonrecombining population
For small selection coefficient and mutation rates, the popula-

tion fraction Xðj; tÞ in the jth fitness class at time t evolves in
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continuous time according to

∂Xðj; tÞ
∂t

¼ �ðsjþwðtÞÞXðj; tÞ�½ðL� jÞμþ jν�Xðj; tÞ

þðL� jþ1ÞμXðj�1; tÞþðjþ1ÞνXðjþ1; tÞ; 0r jrL ð1Þ

where wðtÞ ¼ PL
k ¼ 0 ln wðkÞ Xðk; tÞ � �s

PL
k ¼ 0 k Xðk; tÞ is the

average Malthusian fitness and Xð�1; tÞ ¼ XðLþ1; tÞ ¼ 0 at all
times. In the above equation, the first term on the right hand side
(RHS) represents the contribution to the change in Xðj; tÞ due to
reproduction and the second term gives the loss in the population
fraction due to mutations. The last two terms are the gain terms
due to deleterious and beneficial mutations respectively. The
dynamics and the steady state solution of the deterministic model
defined by (1) can be found exactly. Below we discuss the
stationary state and refer the reader to Appendix A for the time-
dependent solution.

In the steady state, the left hand side (LHS) of (1) equals zero
and the population fraction carrying j deleterious mutations is of
the following product form (Woodcock and Higgs, 1996):

XðjÞ ¼
L

j

 !
xjð1�xÞL� j ð2Þ

On using the above ansatz in (1) for j¼0 and L, we find that the
average fitness w ¼ Lðν ~x�μÞwhere ~x ¼ x=ð1�xÞ is a solution of the
following quadratic equation:

ν ~x2þðsþν�μÞ ~x�μ¼ 0 ð3Þ

Plugging the ansatz (2) in the bulk equations corresponding to
j¼ 1;…; L�1 and rearranging the terms, we get

jðμ�s�νþμ ~x�1�ν ~xÞ�wþLðν ~x�μÞ ¼ 0 ð4Þ

which, by virtue of the results obtained above, shows that the
ansatz (2) is consistent with the bulk equations. Since the
population fraction must be positive, the allowed solution of (3)
gives the fraction x to be

x¼ 2μ

μþνþsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþν�μÞ2þ4μν

q ð5Þ

Furthermore, as the RHS of (2) is a binomial distribution, the
average fraction of deleterious mutations defined as q¼ j=L¼
∑L

j ¼ 0jXðjÞ=L equals x.
To get some insight in the solution obtained above, we first

consider some special cases by setting one of the parameters equal
to zero.

(i) In the absence of selection (s¼0), we get

XðjÞ ¼
L

j

 !
μ

μþν

� �j ν
μþν

� �L� j

ð6Þ

q¼ μ
μþν

ð7Þ

(ii) When the reverse mutation probability ν equals zero, the
fraction x¼ μ=s;μos and therefore

XðjÞ ¼
L

j

 !
μ
s

� �j
1�μ

s

� �L� j
; μos ð8Þ

while for μ4s, the fraction XðjÞ ¼ δj;L, thus signaling the well
known error threshold transition (Wiehe, 1997). On the other
hand, if the probability μ is zero, we have the trivial solution
that the fitness class with zero deleterious mutations has
frequency one, for all ν.

When all the three parameters are nonzero and the sequence
length is large, the following cases may be considered (Feller, 2000):

1. If μ;ν; s are kept fixed but the sequence length is increased, we
find that the population fraction of deleterious mutations is a
Gaussian centred about the average number Lx.

2. If the deleterious mutation rate per genome Ud ¼ Lμ is held
fixed while μ-0; L-1, the fraction x� μ=ðsþνÞ approaches
zero for finite ν and s. In this limit, the population fraction is a
Poisson distribution given by (Pfaffelhuber et al., 2012):

XðjÞ ¼ e� Ud
sþ ν

1
j!

Ud

sþν

� �j

ð9Þ

3. However when both μ;ν-0 and L-1 such that the product
Ud ¼ Lμ;Ub ¼ Lν remains finite, taking ν-0 in (9), we imme-
diately find that the population fraction is independent of the
beneficial mutation rate. To understand this rather surprising
result, we first note that when beneficial mutations are
completely absent, due to (8), the mean number of deleterious
mutations is of order unity i.e. it does not increase with L.
However when beneficial mutations are present, the average
number of advantageous mutations that can occur is � jν
which approaches zero as ν-0, and thus the population
remains unaffected by beneficial mutations.

3.1.2. Recombining population
So far, we discussed the stationary state of the deterministic

model when recombination is absent. But in an infinitely large
population, if epistasis is absent (as is the case here), the linkage
disequilibrium (LD) stays at its initial value (Eshel and Feldman,
1970). Since we start with an initially monomorphic population
with zero LD, the results obtained above are expected to hold in a
recombining population as well. In fact, when the sequence loci
are completely unlinked (r¼1/2) (Bulmer, 1991) has shown that
the average fraction of deleterious mutations is given by (5).

3.2. Finite population without selection

3.2.1. Nonrecombining population
We consider a neutral Moran process for an asexual population

of finite size with a mutation scheme which is more general than
that described in MODELS. In this model, a parent is randomly
chosen with replacement to replicate. If the offspring has j
mutations relative to the wildtype, the number of mutations
increases (decreases) by one with probability μj (νj) and remains
unchanged with probability 1�μj�νj. It is obvious that
μL ¼ ν0 ¼ 0. An individual in the parent population is then ran-
domly chosen to die and is replaced by the possibly mutated
offspring. As explained in the Appendix B, the average number nðjÞ
of individuals carrying jmutations evolves according to (33). In the
stationary state, we obtain

nðjÞ
N

¼ 1

1þ∑L
k ¼ 1 ∏

k�1

i ¼ 0

μi

νiþ1

∏
j�1

i ¼ 0

μi

νiþ1
ð10Þ

which is independent of the population size.
For the model with back mutations, as explained in MODELS,

the probability μj ¼ ðL� jÞμ and νj ¼ jν. Using this in the above
equation, we find that the average population fraction carrying j
mutations is given by the deterministic solution (6) and the
average fraction q¼ j=L by (7), where j ¼N�1∑L

j ¼ 0jnðjÞ. These
results are verified in numerical simulations of the Wright–Fisher
process and are shown in Fig. 1.
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3.2.2. Recombining population
When the recombination probability is equal to half, as the

sequence loci evolve independently, the results from single locus
theory are expected to hold. In this case, the frequency of
mutations is given exactly by (Wright, 1931; Durrett, 2008):

j1 ¼
μ

μþν
ð11Þ

Thus the average number of mutations in the two limiting cases,
namely for a nonrecombining population (r¼0) and a freely
recombining one (r¼1/2), is same. Furthermore, the results of
our numerical simulations displayed in the inset of Fig. 1 for
0rrr1=2 show that the average fraction q is independent of the
recombination probability.

3.3. Finite population under selection

3.3.1. Effect of sequence length
Our numerical simulations show that, unlike in the determi-

nistic case, the fraction of deleterious mutations initially varies
with the sequence length and approaches a constant value for long
enough sequences. Motivated by the discussion for the determi-
nistic model, we consider the three cases when the sequence
length is large.

1. The limit in which μ;ν; s are kept fixed but the sequence length
is increased has been studied in previous works to gauge the
effect of Hill–Robertson interference on the fraction of deleter-
ious mutations (Comeron et al., 1999; Kaiser and Charlesworth,
2009) and to understand the effect of nonrecombining regions
of different lengths in the genome of various species (Comeron
et al., 1999; Campos et al., 2012). Here for a given Ns, the
average fraction of deleterious mutations is found to increase
with increasing sequence length, but saturates to a finite
constant smaller than unity for long sequences. Our simulation
data (not shown) is also consistent with this observation.

2. When Ud and ν are kept finite and sequence length is increased,
our simulations show that for long enough sequences, the
average number of deleterious mutations j is a constant, as in
the deterministic model.

3. In the rest of the article, we will consider the biologically
relevant limit in which the genome mutation rates Ub and Ud

remain finite, as the number of loci in the sequence is increased
(Drake et al., 1998). We find that unlike in the deterministic
case, here the average fraction of deleterious mutations is finite
and sensitive to the beneficial mutation rate. Fig. S1 shows that
the fraction q decreases to a constant value, as the sequence
length is increased. The data shown in the other figures of this
article refers to this large-L limit.

3.3.2. Nonrecombining population
The neutral Moran model described in the last section can be

straightforwardly generalised to include selection, but we find that
the evolution equation for the average number distribution nðjÞ
does not close in the presence of selection i.e. it involves quantities
that cannot be expressed in terms of nðjÞ. Therefore to understand
the population size dependence of the average frequency q of
deleterious mutations, we use the results obtained in the last two
sections, and employ an analytical argument which is
described below.

Small and very large populations: Figs. 2 and 3 show that the
fraction of disadvantageous mutations decreases monotonically
with the population size N. When the selection is weak ðNs{1Þ,
the fraction q is expected to be close to the neutral value (7), in
agreement with the data in Figs. 2 and 3. For very large popula-
tions, the deterministic solution (5) is expected to hold, and Fig. 3
clearly shows that this expectation is borne out by numerical
simulations.

Moderately large populations: We now discuss a rate matching
argument that allows us to find the minimum number jm of
deleterious mutations in the population. The basic idea is that if
beneficial mutations are neglected, due to stochastic fluctuations,
all the individuals in the least-loaded fitness class jm will acquire
deleterious mutations and it will get lost from the population at a
degeneration rate r�jm (Muller, 1964; Haigh, 1978). However due to
beneficial back mutations, this process can be reversed and the
population in the fitness class jm will be regenerated at a rate rþjm .
In the stationary state, on equating these two rates, the least-
loaded fitness class jm can be found (Goyal et al., 2012). The
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variation of these rates with the fitness class is shown in the inset
of Fig. 4, and we observe that with increasing number of
deleterious mutations, the degeneration rate decreases while the
regeneration rate increases. This is a direct consequence of the fact
that for the fitness-dependent mutation scheme considered here
(refer MODELS), the total deleterious mutation rate ðL� jÞμ
decreases with increasing j, but the beneficial mutation rate jν
decreases with decreasing j.

In the absence of beneficial mutations, as shown in Appendix C,
the average number of individuals in the least-loaded fitness class
J is given by nJ ¼NXð0Þ

J ðJÞ ¼Nð1�μ=sÞL� J which grows exponen-
tially with J. As a result, an initially fast-clicking ratchet with
nJs{1 crosses over to a slow-clicking ratchet with nJsc1, when
nJs is of order unity (Haigh, 1978; Jain, 2008). Using a diffusion
theory for the slow ratchet (Stephan et al., 1993; Gordo and

Charlesworth, 2000; Jain, 2008), we find that when nJ41, the
degeneration rate is given by

r�J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NXð0Þ

J ðJÞc3 s3
π

s
e� csNXð0Þ

J ðJÞ ð12Þ

where

Xð0Þ
J ðJÞ � e�ðUd=sÞð1� J=LÞ ð13Þ

and c is a number of order unity (Neher and Shraiman, 2012;
Metzger and Eule, 2013). When deleterious mutations are absent,
a maladapted population adapts at a rate that depends on the
number NUb of beneficial mutants produced per generation. For
NUb{1, the beneficial mutants arise one at a time and go to
fixation sequentially, while they interfere with each other for
NUbc1 (Gerrish and Lenski, 1998). The regeneration rate in these
two parameter regimes is given by (Park et al., 2010; Goyal et al.,
2012):

rþJ �
2 sNUbðJ=LÞ; NUb{1

s ln N
ln2 Ub

f ðJÞ
L ; NUbc1

8<
: ð14Þ

where our numerical simulations for large populations indicate
that f(J) is of the form δ1

ffiffi
J

p
þδ2J. The above equation shows that

the rate rþJ depends weakly on N, and increases linearly with J for
large J.

(i) Rare beneficial mutations ðUb{UdÞ: An expression for jm can
be obtained by matching the rates (12) and (14). But as the
degeneration rate decays fast with N whereas regeneration rate
depends weakly on population size, we may treat the rate rþjm as a

constant in N. This simplification implies that r�jm � e� csNXð0Þ
jm
ðjmÞ � 1

which immediately leads to

jm
L
� � s

Ud
lnðNsÞ ð15Þ

Our analytical result (15) is compared with the results of numer-
ical simulations in Fig. 4 and for a wide range of population sizes,
we see a good agreement. Fig. S2 shows that the average popula-
tion fraction is distributed over a narrow range of fitness classes
(Li, 1987), and therefore we may expect j to behave in a manner
similar to jm. Indeed as shown in Fig. 2, the average fraction of
disadvantageous mutations also decreases logarithmically with
population size, albeit with a prefactor smaller than s=Ud.

(ii) Frequent beneficial mutations ðUbcUdÞ: When UbcUd, the
average frequency of deleterious mutations lies between the
neutral value μ=ν (refer (7)) and the deterministic value μ=ðsþνÞ
(refer (5)), and thus q{1 for a wide range of population sizes. This
implies that jm=L is also small compared to unity. Using this in (13),
and that the degeneration rate rþjm is linear in jm, we have

jm
L
� e� csNe� Ud=s ð16Þ

which decreases exponentially fast with population size and is
consistent with our numerical observations shown in the inset of
Fig. 4. Same behaviour is observed for the average fraction of
deleterious mutations j=L, refer Fig. 3.

3.3.3. Recombining population
Having discussed the case of complete linkage (r¼0), we now

turn to the limit of completely unlinked loci (r¼1/2) where single
locus theory applies. When selection is present, a diffusion theory
calculation (Wright, 1931) gives the frequency of deleterious
mutations for a haploid population to be (Kimura et al., 1963)

j1 ¼
μ

μþν
1F1ð2Nμþ1;2NðμþνÞþ1; �2NsÞ

1F1ð2Nμ;2NðμþνÞ; �2NsÞ ð17Þ
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where 1F1ða; b; zÞ is the confluent hypergeometric function. For
s¼0, the above expression reduces to (11). When Ns is small, we
have

j1 ¼ 1þν
μ
e2Ns

� ��1

ð18Þ

which may be obtained either from (17) (Li, 1987; Bulmer, 1991;
Kondrashov, 1995; Lande, 1998) or a rate matching argument
(Bulmer, 1991; Lande, 1998). When Ns is large, (17) approaches
μ/s (Kimura et al., 1963) as one would also expect from the
deterministic solution (5). Thus as Figs. 2 and 3 show, the fraction
q decreases exponentially fast in a reverse sigmoidal fashion, as
the population size N is increased when there is no linkage
between loci.

As in the two extreme cases of complete linkage and no
linkage, for 0oro1=2, we discern three distinct regimes in the
behaviour of the fraction q of disadvantageous mutations. Our
numerical data in Figs. 2 and 3 shows that the fraction q is roughly
constant in population size and recombination rate when the
population is small or very large. But for moderately large
population, q decreases with increasing population size and the
general effect of recombination is to decrease the equilibrium
frequency of the deleterious mutations.

4. Discussion

In this article, we examined the stationary state of a model in
which both beneficial and deleterious mutations can occur. The
multilocus model studied here differs from that in previous works
(Gordo and Charlesworth, 2001; Goyal et al., 2012) where these
mutation rates are assumed to be independent of the fitness. Here
we considered a biologically realistic situation of forward and
backward mutations where the rates depend linearly on the
logarithmic fitness. In the general scenario where compensatory
mutations can occur, nonlinear relationship between the mutation
rates and logarithmic fitness has been experimentally observed
(Silander et al., 2007). Here we are mainly concerned with the
variation of the average number j of deleterious mutations with
the population size.

4.1. Exact bounds on the number of deleterious mutations

For an infinitely large and nonrecombining population, exact
results for the population frequency have been obtained for special
choice of parameters (Woodcock and Higgs, 1996; Maia et al.,
2003; Etheridge et al., 2009; Pfaffelhuber et al., 2012), and here
these results were generalised to obtain exact stationary state and
dynamics. Since we consider non-epistatic fitnesses, the stationary
state solution does not depend on the recombination rate (Eshel
and Feldman, 1970). Moreover as the deterministic limit corre-
sponds to very strong selection which is not favourable for
disadvantageous mutations, this analysis provides a lower bound
on the average number j of deleterious mutations.

The upper bound on j can be found by considering the neutral
limit for a finite population. For completely linked loci, we
calculated the average frequency of mutations (relative to the
wildtype) exactly, and found it to be independent of the popula-
tion size. Although the latter result is known from previous studies
on one locus models (Durrett, 2008), to our knowledge, such a
result has not been obtained using a multilocus model. Using
numerical simulations and the known results for freely recombin-
ing population (Wright, 1931; Durrett, 2008), we found that the
number j is independent of the recombination rate in the neutral
limit as well. This happens because in the absence of selection, as
random genetic drift creates positive and negative linkage

disequilibrium (LD) with equal probability, the average LD
vanishes (Hill and Robertson, 1968; Hadany and Comeron, 2008)
and therefore the average number j is not affected by recombina-
tion. It should however be noted that the higher moments of the
number of mutations may depend on both the recombination rate
and population size (Hill and Robertson, 1968).

4.2. Effect of drift, selection and recombination

To get an insight into the problem when both selection and
population size are finite and recombination is absent, we used a
rate matching argument which states that stationarity is achieved
when the rate at which the least-loaded fitness class is lost due to
deleterious mutations equals the rate at which it is regenerated by
beneficial mutations (Goyal et al., 2012). A similar argument has
been used previously by Bulmer (1991), but in a single locus
setting, to arrive at the equilibrium fraction of deleterious muta-
tions given in (18). In recent years, some analytical understanding
of the rate at which an asexual population declines in fitness
(Stephan et al., 1993; Gordo and Charlesworth, 2000; Jain, 2008;
Etheridge et al., 2009; Waxman and Loewe, 2010; Neher and
Shraiman, 2012; Metzger and Eule, 2013) and adapts (Gerrish and
Lenski, 1998; Wilke, 2004; Rouzine et al., 2008; Desai and Fisher,
2007; Park et al., 2010) has become available in multilocus models.
Using these results and the rate balancing argument described
above, we found analytical expressions for the minimum number
of deleterious mutations that a finite asexual population under
selection carries in the stationary state.

For a nonrecombining population, our main result is that the
average fraction q of deleterious mutations decreases from the
neutral value (7) towards the deterministic fraction (5), as popula-
tion size is increased. If beneficial mutations are rare ðUb{UdÞ, as
is the case in adapting microbial populations (Sniegowski and
Gerrish, 2010), q changes logarithmically with population size. In
an adaptation experiment on bacteriophage, it was observed that
when the population size is increased by a factor ten, the loga-
rithmic fitness increased mildly (Silander et al., 2007), which is
consistent with the weak N-dependence seen here. Experimental
data (Zeng, 2010; Schrider et al., 2013) on Drosophila shows that
the mutation rate from preferred to unpreferred codon is twice as
much as that for the reverse mutations. In such a case where
Ub �Ud, as the inset of Fig. 3 indicates, q decreases faster than the
logarithm of population size, but we do not have an analytical
form for it. However in the extreme case when UbcUd, we find
that the fraction q decreases exponentially fast with the popula-
tion size. Similar qualitative behaviour, namely, the decrease in j
with increasing population size is seen when recombination is
nonzero, refer Figs. 2 and 3. When the population size is kept fixed
and the selection coefficient is increased, the average fraction of
deleterious mutations decreases as one would intuitively expect
(data not shown). Although the rate balancing argument used here
explains the population size dependence of the fraction of dele-
terious mutations, we have not been able to obtain a complete
analytical understanding of its variation with selection coefficient
since the s-dependence of the function c in the degeneration rate
in (12) is not known. We also performed numerical simulations
keeping the product Ns constant (¼10), and find that j is not a
function of Ns unlike the one locus theory prediction (17). For
s¼0.005, we obtained j ¼ 13:7 which increased to 28.8 on halving
s which suggests that it depends more strongly on s than N which
is consistent with (15).

For a given Ns, we find that the recombination reduces the
frequency of the deleterious mutations (also see Barton, 2010).
As discussed above, in a finite population, due to random genetic
drift, both positive and negative LD are created. If LD is positive,
the population consists of individuals with extreme fitnesses on

S. John, K. Jain / Journal of Theoretical Biology 365 (2015) 238–246 243



which selection can act efficiently and thus removes the LD. On
the other hand, when LD is negative, as most of the individuals
are likely to have similar fitnesses, selection is ineffective in
removing LD. Thus in the presence of selection, the average LD
in a nonrecombining population is negative (Felsenstein, 1974;
Hadany and Comeron, 2008). But once recombination is intro-
duced, it will create individuals with extreme fitnesses thereby
helping selection to weed out the deleterious mutations, and thus
decreasing j. The effect is large for intermediate values of Ns since
this regime corresponds to both selection and drift having a strong
effect. From the results in the neutral and deterministic limit, we
expect that the difference in the number of deleterious mutations
carried by a nonrecombining and recombining population is nearly
zero when s{1=N (weak selection) and sc1=N (strong selection).
Thus, as shown in the inset of Fig. 2, the maximum advantage of
recombination occurs at an intermediate value of selection coeffi-
cient as has also been observed in other studies (Gordo and
Campos, 2008).

Although recombination reduces the number of deleterious
mutations, the extent to which it does so depends on how
common the beneficial mutations are compared to the deleterious
ones. In an adapting asexual population where beneficial muta-
tions occur rarely (Sniegowski and Gerrish, 2010), even slight
recombination reduces j considerably indicating the advantage of
recombination during adaptation (Barton and Charlesworth, 1998;
Hadany and Comeron, 2008). On the other hand, in the codon bias
problemwhere back mutation rates are comparable to the forward
ones (Zeng, 2010; Schrider et al., 2013), the fraction of unpreferred
codons is given by (18) if the loci are assumed to be completely
unlinked, but as the inset of Fig. 3 shows, linkage increases the
unpreferred codon frequency moderately (Comeron et al., 1999;
McVean and Charlesworth, 2000; Charlesworth et al., 2009).

4.3. Effect of background selection – an application

Background selection is a type of Hill–Robertson effect
(Charlesworth, 2012) and is known to increase the rate at which
the Muller's ratchet clicks (Gordo and Charlesworth, 2001; Kaiser
and Charlesworth, 2010). In a finite, nonrecombining population
with an infinitely long sequence in which both deleterious and
beneficial mutations occur at L background selection sites, and
deleterious mutations accumulate at rest of the sites (Kaiser and
Charlesworth, 2010), we find that the ratchet clicking time is
considerably reduced from the situation when there are no back-
ground selection sites (see Fig. S3). If the background selection
sites (BGS) remain at equilibrium in the presence of other linked
loci also, they affect the evolutionary dynamics at other sites, and
their effect can be quantified by a reduction in the effective
population size to the number of individuals carrying the mini-
mum number of deleterious mutations at BGS (Charlesworth,
2012; Gordo and Charlesworth, 2001). Since the minimum num-
ber of deleterious mutations in the BGS is jm, we require the
population fraction in the class jm. For large populations with
Nsc1 where the deterministic theory is expected to hold, using
(9) and (13), we obtain

Ne ¼Ne�ðUd=sÞð1� jm=LÞ ð19Þ
where jm is a function of population size N. The ratchet time with
background selection for a population of size N is found to be well
approximated by the ratchet time without it for a population of
size Ne as shown in Fig. S3. From the results for jm when Ub{Ud,
we expect Ne in (19) to increase linearly with N for small and large
populations. But for the intermediate range of population sizes,
using (15) in (19) above, we find the effective population size to be
independent of N. These predictions were tested numerically and
as shown in Fig. S3, the effective population size and the ratchet

time remain roughly constant when the actual population size is
varied over three orders of magnitude .

5. Conclusions

We close this article by listing some open questions. Here we
investigated the effect of linkage using numerical simulations, but
an analytical expression for the average j as a function of
recombination probability is desirable. We also considered the
specific case of forward and backward mutations, and an extension
of these results to the more general case of compensatory muta-
tions would be interesting.
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Appendix A. Deterministic dynamics and stationary state

Eq. (1) is nonlinear in the population fraction due to the first
term on the RHS. This nonlinearity can be eliminated by a change
of variables from Xðj; tÞ to an unnormalised population variable
Zðj; tÞ which is defined as (Jain and Krug, 2007; Jain and
Seetharaman, 2011)

Zðj; tÞ ¼ Xðj; tÞe
R t

0
dt0wðt0 Þ ð20Þ

Then the unnormalised population fraction obeys the following
linear differential equation:

∂ZðjÞ
∂t

¼ �sjZðj; tÞ�½ðL� jÞμþ jν�Zðj; tÞ
þðL� jþ1ÞμZðj�1; tÞþðjþ1ÞνZðjþ1; tÞ ð21Þ

with boundary conditions:

Zð�1; tÞ ¼ ZðLþ1; tÞ ¼ 0 ð22Þ
at all times. The RHS of (21) is a three-term recursion relation (in j)
with variable coefficients, which is usually not easy to solve.

Inspired by the results of Woodcock and Higgs (1996), we
assume that the population fraction Zðj; tÞ is of the following form:

Zðj; tÞ ¼
L

j

 !
xj1ðtÞxL� j

2 ðtÞ ð23Þ

where x1; x2 are calculated below. The normalised fraction Xðj; tÞ is
then given by (Jain and Krug, 2007; Jain and Seetharaman, 2011)

Xðj; tÞ ¼ Zðj; tÞ
∑L

j0 ¼ 0Zðj
0; tÞ ð24Þ

¼
L

j

 !
xjðtÞð1�xðtÞÞL� j ð25Þ

where x¼ x1=ðx1þx2Þ lies between zero and one. It should be
noted that the above form for the population fraction of a fitness
class implies that each locus in the sequence contributes indepen-
dently to the population fraction of a sequence.

Using the ansatz (23) in the boundary conditions (22), we find
that x1; x2 obey linear, coupled differential equations which can be
expressed as

∂
∂t

x1
x2

 !
¼

�ν�s μ
ν �μ

 !
x1
x2

 !
ð26Þ
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On using the ansatz (23) in the bulk equation (21) for which
0o joL, we get

j
x1

∂x1
∂t

þðνþsÞx1�μx2
� �

þL� j
x2

∂x2
∂t

�νx1þμx2
� �

¼ 0 ð27Þ

However due to (26), the coefficient of j and L� j equals zero for
any 0o joL. Thus the ansatz (23) is consistent with the bulk
equations, and the problem reduces to solving the matrix equation
(26). By going to the diagonal basis, we obtain

x1ðtÞ
x2ðtÞ

 !
¼

2μ

ν�μþ sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ� s�νÞ2 þ4μν

p 2μ

ν�μþ s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ� s�νÞ2 þ4μν

p

1 1

0
@

1
A eλþ t ~x1ð0Þ

eλ� t ~x2ð0Þ

 !

ð28Þ
where the column vectors in the matrix above are the eigenvectors
of the matrix on the RHS of (26) corresponding to the eigenvalues
λ7 , which are given by

λ7 ¼
�ν�μ�s7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ�s�νÞ2þ4μν

q
2

ð29Þ

and ~x1ð0Þ; ~x2ð0Þ can be found using the initial condition Xðj;0Þ.
In the steady state, the population fraction is obtained by

taking the limit t-1 in the expressions of x1ðtÞ; x2ðtÞ obtained
above. Using the fact that the eigenvalue λ� in (29) is negative, we
find that the steady state fraction x is given by (5).

Appendix B. Moran model for neutral, nonrecombining
population

For the Moran process defined in the main text, the probability
distribution PðnðiÞ; tÞ of the number of individuals in the fitness
class i evolves according to the following equation:

∂PðnðiÞ; tÞ
∂t

¼ ∑
ja i

∑
N�nðiÞ

nðjÞ ¼ 1
PðnðiÞþ1;nðjÞ�1; tÞRðnðiÞþ1-nðiÞ;nðjÞ�1-nðjÞÞ

"

� ∑
N�nðiÞ

nðjÞ ¼ 0
PðnðiÞ;nðjÞ; tÞRðnðiÞ-nðiÞ�1;nðjÞ-nðjÞþ1Þ

þ ∑
N�nðiÞ

nðjÞ ¼ 1
PðnðiÞ�1;nðjÞþ1; tÞRðnðiÞ�1-nðiÞ;nðjÞþ1-nðjÞÞ

� ∑
N�nðiÞ

nðjÞ ¼ 0
PðnðiÞ;nðjÞ; tÞRðnðiÞ-nðiÞþ1;nðjÞ-nðjÞ�1Þ

#
ð30Þ

where R is the rate at which a birth-and-death event occurs, and
PðnðiÞ;nðjÞ; tÞ is the joint distribution of the number of individuals
in the ith and jth fitness class. Using the above equation, it can be
seen that the average number of individuals in the fitness class i
given by nði; tÞ ¼∑N

nðiÞ ¼ 1nðiÞPðnðiÞ; tÞ changes as

∂nði; tÞ
∂t

¼ ∑
ja i

∑
nðiÞ;nðjÞ

½RðnðiÞ-nðiÞþ1;nðjÞ-nðjÞ�1ÞPðnðiÞ;nðjÞ; tÞ

�RðnðiÞ-nðiÞ�1;nðjÞ-nðjÞþ1ÞPðnðiÞ;nðjÞ; tÞ� ð31Þ
We next find the rates at which the birth-and-death process

occurs. For class i; j¼ 0;…; L and ia j, we have

RðnðiÞ-nðiÞþ1;nðjÞ-nðjÞ�1Þ

¼ ð1�μi�νiÞ
nðiÞ
N

nðjÞ
N

þμi�1
nði�1Þ

N
nðjÞ
N

þνiþ1
nðiþ1Þ

N
nðjÞ
N

ð32Þ

with nð�1Þ ¼ nðLþ1Þ ¼ 0. In the above equation, the first term on
the RHS gives the probability of the event that a birth occurs in the
ith class, the offspring does not mutate and a death occurs in the
jth class, while the second and third term give the probability that

a birth occurs in a class neighboring the ith class, the offspring
acquires a mutation and a death occurs in the jth class. On using
the above equation in (31), after some simple algebra, we get

∂nði; tÞ
∂t

¼ μi�1nði�1; tÞþνiþ1nðiþ1; tÞ�ðμiþνiÞnði; tÞ; 0r irL

ð33Þ
which can be easily solved in the stationary state to give (10).

Appendix C. Deterministic solution in the absence of beneficial
mutations

Consider an infinitely large, nonrecombining population when
only deleterious mutations are allowed. Let J be the least-loaded
fitness class so that the frequency Xð0Þ

J ðk; tÞ ¼ 0; ko J at all times.
Then the evolution equation (1) reduces to

∂Xð0Þ
J ðj; tÞ
∂t

¼ �ðsjþwJðtÞÞXð0Þ
J ðj; tÞ�ðL� jÞμXð0Þ

J ðj; tÞ

þðL� jþ1ÞμXð0Þ
J ðj�1; tÞ; Jr jrL ð34Þ

where the average fitness wJðtÞ ¼ �s∑L
k ¼ JkX

ð0Þ
J ðk; tÞ. In the sta-

tionary state, the equation for j¼ J gives

wJ ¼ �ðL� JÞμ�sJ ð35Þ
On iterating the two-term recursion relation for Xð0Þ

J ðjÞ, we obtain

Xð0Þ
J ðjÞ ¼

L� J
j� J

 !
μ
s

� �j� J
1�μ

s

� �L� j
; μos ð36Þ

For J¼0, (8) is recovered.

Appendix D. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2014.10.023.
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