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Abstract
We study the properties of the eigenvalues of real random matrices and their
products. It is known that when the matrix elements are Gaussian-distributed
independent random variables, the fraction of real eigenvalues tends to unity
as the number of matrices in the product increases. Here we present numerical
evidence that this phenomenon is robust with respect to the probability dis-
tribution of matrix elements, and is therefore a general property that merits
detailed investigation. Since the elements of the product matrix are no longer
distributed as those of the single matrix nor they remain independent random
variables, we study the role of these two factors in detail. We study numeri-
cally the properties of the Hadamard (or Schur) product of matrices and also
the product of matrices whose entries are independent but have the same
marginal distribution as that of normal products of matrices, and find that
under repeated multiplication, the probability of all eigenvalues to be real
increases in both cases, but saturates to a constant below unity showing that
the correlations amongst the matrix elements are responsible for the approach
to one. To investigate the role of the non-normal nature of the probability
distributions, we present a thorough analytical treatment of the 2 × 2 single
matrix for several standard distributions. Within the class of smooth dis-
tributions with zero mean and finite variance, our results indicate that the
Gaussian distribution has the maximum probability of real eigenvalues, but the
Cauchy distribution characterized by infinite variance is found to have a larger

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 48 (2015) 385204 (26pp) doi:10.1088/1751-8113/48/38/385204

5 Author to whom any correspondence should be addressed.

1751-8113/15/385204+26$33.00 © 2015 IOP Publishing Ltd Printed in the UK 1

mailto:hamee007@umn.edu
mailto:jain@jncasr.ac.in
mailto:arul@physics.iitm.ac.in
http://dx.doi.org/10.1088/1751-8113/48/38/385204
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8113/48/38/385204&domain=pdf&date_stamp=2015-09-01
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8113/48/38/385204&domain=pdf&date_stamp=2015-09-01


probability of real eigenvalues than the normal. We also find that for the two-
dimensional single matrices, the probability of real eigenvalues lies in the
range 5 8, 7 8[ ].

Keywords: random matrix, Hadamard product, matrix product

1. Introduction

The problem of the number of real roots of algebraic equations has a long history, but
continues to attract attention, from the early works of Littlewood and Offord [1] to more
recent developments [2, 3] (see the latter article for more related history and references). Mark
Kac, in a seminal paper, proved that the expected number of real zeros of polynomials (of
order N) whose coefficients are chosen from a normal distribution of zero mean is Nln2~

p
[4]. Others substantially extended these results and showed universality in that this is the
leading order behavior, irrespective of the underlying distribution as long as they are zero-
centered and have a finite variance [5]. Logan and Shepp [6] studied the same when the
coefficients are Cauchy distributed (and hence have infinite variance, and undefined average)
the leading behavior goes as c Nln , with c 0.7413» which is larger than 2 0.6366p » , and
hence there are more real zeros in the Cauchy case than when the variance is finite. Thus, the
number of real roots of a random polynomial are generally quite small.

More recently, several works have explored the fraction of real eigenvalues for n n´
matrices drawn from the real Ginibre ensemble. This ensemble consists of matrices whose
elements are independently drawn from a normal distribution such as N 0, 1( ). For such
matrices, it has been shown analytically that the expected number of real eigenvalues En and
the probability that all eigenvalues are real Pn n, are given by [7–9]

E

n
Plim

2
, 2 . 1

n

n
n n

n n
,

1 4 ( )( )
p

= =
¥

- -

Thus the probability that all eigenvalues are real tends to zero as the matrix dimension
increases, although the expected number of them increases algebraically.

Products of random matrices have also been studied, at least, since the classic work of
Furstenberg and Kesten [10] (see, [11, 12] for a discussion of subsequent work and some
applications). The study of the spectra and singular values of the products of random matrices
is currently a very active area of research [13, 14], and recent progress has been reviewed in
[15]. When studying a problem related to the measure of ‘optimally entangled’ states of two
qubits [16], the problem of the number of real eigenvalues of a product of matrices came up.
It was shown in [17] that the probability of all eigenvalues being real for the product of two,
2 × 2 matrices from the real Ginibre ensemble is 4p . Somewhat surprisingly then there is a
lesser probability that all eigenvalues are real for a single matrix (1 2 , from equation (1))
than for a product of two. This observation motivated numerical explorations in [17] which
showed that this probability tends to 1 as the number of matrices in the product increases.
Numerical results showing that this is true for higher dimensions was also discussed therein.
This result has been proven analytically by Forrester [18], who calculated Pn n, explicitly in
terms of Meijer G-functions for square matrices, and generalized by Ipsen [19] to rectangular
matrices.

Most of the previous works on the properties of the eigenvalues have studied Gaussian
matrices with independent, identically distributed (i.i.d.) entries. Exceptionally, Edelman et al
[7] presented some numerical results indicating universality for the expected value En of real
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eigenvalues of n n´ real matrices. However, to the best of our knowledge, there is no study
exploring such extensions to the products of matrices. Thus, two conditions are relaxed: first,
non-Gaussian i.i.d. elements are taken as entries of the matrices, and second, we consider
products of such independent matrices. In this case, the entries of the product matrix are
naturally correlated in a complex manner and their distribution is, in general, anyway non-
Gaussian.

Motivations for studying products of random matrices are well known in physics, and
range from the study of localization in random media where transfer matrices are multiplied to
dynamical systems where products of local stability matrices determine the Lyapunov
exponents [12]. Applications for counting number of real eigenvalues of random matrices,
especially of products, is of more recent provenance. The real eigenvalues of a class of
random matrices indicate topologically protected level crossings at the Fermi energy in the
bound states of a Josephson junction [20]. While the relevant object is a single matrix and not
a product, it is conceivable that this provides a context for further investigation. In the context
of entanglement of two qubits [17], the real eigenvalues of products of two matrices were
relevant in finding the measure of optimally entangled states [16]. Different distributions of
matrix elements would result in different sampling of states on the Hilbert space. Finally, it is
worth pointing out that the fact that real eigenvalues dominate the spectrum of products of
matrices implies that generic orbits of dynamical systems are not of the complex unstable
variety. Complex instability can occur in Hamiltonian systems with more than two degrees of
freedom [21], when exponential instability is combined with rotational action in phase space.
However, as a consequence of discussions in this paper, it seems unlikely that they would
generically arise for long orbits, as they depend on eigenvalues of products of Jacobian
matrices being complex.

To begin with, we ask: How do non-normal distributions affect the probability of real
eigenvalues of a single matrix? In fact, a major part of this paper is concerned simply with
2 2´ matrices and various families of the distributions of matrix elements, and the prob-
ability that the eigenvalues are real is calculated exactly in many cases in section 2. In
particular, we find the lower and upper bounds on the probability that both eigenvalues are
real. In the family of symmetrized gamma distributions, the range of probabilities is shown to
be 5 8, 7 8[ ]. The upper bound is associated with the case when the matrix elements have a
large weight at the origin and the lower bound in the opposite case when the maximum is
away from the origin. In fact, these same bounds are obtained in a class of truncated dis-
tributions thus indicating that the probability of real eigenvalues depends crucially on whether
the distributions are concentrated near the origin or away from it. The lower bound of 5 8 is
shown to be a tight one by proving this in general. The upper bound of 7 8 still remains
specific to these distributions, however we do believe that this is widely applicable as well.

We also find that the other features of the distributions of the matrix elements that play a
significant role in determining the probability of real eigenvalues are the degree of smooth-
ness and the existence of finite moments. It is noteworthy that these (apart from zero mean)
are also the crucial features for universality in the case of random polynomials [2]. Given that
the distributions are smooth and have finite moments, we tentatively propose that the normal
distribution is the one with the maximum probability of finding real eigenvalues. If true, this
provides a further unique characterization of the normal.

Besides the bounds, we also observe a hierarchy for the fraction of real eigenvalues for
matrices constructed from these distributions. Specifically, for some commonly occurring
distributions, we find that the eigenvalues are more real when the matrix elements are chosen
from Cauchy distribution than Laplace, Gaussian or uniform distributions, which are arranged
in the increasing order of the decay. However, we must mention that such hierarchy patterns
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are not simply determined by the tail behavior of the distribution, and the trends appear to be
more complex as explained in the following section.

In section 3, we numerically study the properties of the eigenvalues of the matrix
obtained after taking product of several matrices, and find that the increase in the probability
to one holds for several other distributions. In particular, we explore the zero-centered uni-
form distribution, the symmetric exponential (Laplace) distribution and Cauchy distribution,
as simple representative ones. The hierarchy mentioned above is seen to hold even after the
multiplication of independent random matrices. The expected number of real eigenvalues is
also studied which tends to the matrix dimension exponentially fast (with the number of
matrices in the product), although the rate of approach is distribution-dependent.

It is unclear as to why the eigenvalues tend to become real when multiplying random
structureless matrices. In an attempt at seeing how much this has to do with the act of
multiplication, we study numerically the probability of real eigenvalues in the case of
Hadamard (or Schur) products where the elements are simply the products of the corre-
sponding elements of the multiplying matrices. Of course, in this case, the matrix elements
remain uncorrelated. We find numerically that the probability of real eigenvalues increases
with the number of matrices in the product, but tends to saturate at a value smaller than 1.
Numerical evidence that this approach is a power law is also provided. This then highlights
that the correlations built up in the process of (usual) matrix multiplication are responsible for
the phenomenon that the fraction of real eigenvalues tends to one.

2. Real eigenvalues of a single 2 × 2 matrix

Let Pn k
K
,

( ) denote the probability that a product of K n n´ random matrices has k real
eigenvalues. In this section, we study the simplest case, viz, the probability P2,2

1( ) that all the
eigenvalues of a 2 × 2 matrix are real. We assume that the matrix elements are i.i.d. random
variables chosen from the distribution p(x) with support on the interval u u,[ ]- , where u is
finite for bounded distributions and infinity for unbounded ones, and that the distribution p(x)
is symmetric about the origin as a result of which the mean of the probability distribution is
guaranteed to be zero. We first give analytical results for the probability P2,2

1( ), which we study
for many probability distributions, and then present some numerical results for the more
general quantity Pn k

K
,

( ) in the following section.
Consider a 2 × 2 matrix with i.i.d. elements defined as

v x
y w .⎡⎣ ⎤⎦

As the discriminant tr 4 det2 - must be non-negative for real eigenvalues, the probability that
all eigenvalues are real is

P v w xy p v p w p x p y v w x y4 d d d d . 2
u

u

u

u

u

u

u

u

2,2
1 2( ) ( ) ( ) ( ) ( ) ( )( ) ò ò ò ò= Q - +

- - - -
⎡⎣ ⎤⎦

Let the probability distribution of z v w= - be q(z) with u z u2 2 - . Observe then that
the probability of real eigenvalues can be written as

P x y z q z p x p y z xy
1

2
4 d d d 4 . 3

u

u u

2,2
1

0

0 0

2
2( ) ( ) ( ) ( )( ) ò ò ò= + Q +

-
⎡⎣ ⎤⎦

Here the even symmetry of the distributions is used, and also that when the signs of both x
and y are the same, the constraint imposed by the Heaviside function is trivially satisfied. In
the above equation, the distribution q(z) is given by the convolution
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q z p v p w z v w v w p v p v z vd d d .

4

u

u

u

u
( ) ( ) ( ) ( ( )) ( ) ( )

( )

ò òd= - - = -
- -

We note that this is indeed the usual convolution with z z - due to the symmetry of p(x). If
z u u2 , 2[ ]Î - the above expression for q(z) is valid, else it is zero.

Equation (3) shows that the probability of both eigenvalues being real is at least one half
for any probability distribution. The integral in equation (3) can be simplified if we use the
convolution as

P x y z q z p x p y

x y z q z p x p y

1

2
4 d d d

1 4 d d d . 5

u u

xy

u

u u xy

2,2
1

0 0 2

2

0 0 0

2

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ò ò ò

ò ò ò

= +

= -

The last equality follows from the fact that the convolution is itself a symmetric normalized

distribution as q z zd 1( )ò =
-¥

¥
. Thus the evaluation of the probability of real eigenvalues

reduces to evaluating the triple integral above.
It is also useful to write the distribution q(z) as

q z k p k p k p x x
1

2
d e , e d . 6kz

u

u
kxi 2 i( ) ˜ ( ) ˜ ( ) ( ) ( )ò òp

= =
-¥

¥

-

-

Here p k˜ ( ) is the characteristic function (or Fourier transform) of the probability distribution p
(x). Next consider the integral defined as

I x y z q z p x p y z xyd d d . 7
u

u u0

0 0

2
2( ) ( ) ( ) ( ) ( )ò ò òa a= Q +

-
⎡⎣ ⎤⎦

The value of interest is I(4). Towards this end, differentiating I ( )a with respect to (w.r.t.) α,
and performing the integral over the resulting delta function leads to

I
x y

xy

xy

p
p x p yd d d

2 2
e , 8

u u
xy

0 0

2
i

˜ ( )
( ) ( ) ( )ò ò òa

w
a

w

p
¶
¶

= w a

-¥

¥

where p̃( )w is given by equation (6). Noting that the above equation is valid only for
0, 4( )a Î , we integrate the last expression w.r.t. α from 0 to 4, and use I 0 1 8( ) = to get I

(4) and finally the probability that both the eigenvalues are real as

P x y p
xy

p x p y1
4

d d d
sin 2

. 9
u u

2,2
1

0 0 0

2 ( )
˜ ( ) ( ) ( ) ( )( ) ò ò òp

w w
w

w
= -

¥

Below we will apply the result in either equations (5) or (9) to various choices of distribution
p(x). Before turning to explicit calculations, we note that the unbounded distributions have the
following scale invariance property. Consider a division of the random matrix elements by a

nonzero constant b. If x x b¢ = , then x p xd 1
u

u
( )ò ¢ ¢ ¢ =

- ¢

¢

, where p x bp x( ) ( )¢ ¢ = and

u u b¢ = . From equation (2), it is seen that the probability P2,2
1( ) is not affected by this scaling

for unbounded functions, but for bounded ones, the limits should be redefined. While the
above is an elementary analysis, we are not aware of it being discussed before.

Under conditions of smoothness (in the sense that all the derivatives exist at least in
intervals) and symmetry of p(x), it is interesting to enquire about the maximum value or upper
bounds of P2,2

1( ), for instance. For the lower bound, we have already stated that the probability
of all real eigenvalues is at least one half. A tighter lower bound is however 5 8, a proof of
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which was suggested to us by an anonymous referee which we discuss now. The probability
of eigenvalues being real is

v w xy v w xy xy

v w xy xy

4 0
1

2
4 0 0

1

2
4 0 0 , 10

2 2

2

( ) ( )

( ) ( )

 



- + > = - + > >

+ - + > <

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

where the factors of 1 2 arise as probability that xy 0> or otherwise. However the first
conditional probability is 1, and therefore

v w xy v w xy xy4 0
1

2

1

2
4 0 0 ,

11

2 2( ) ( )

( )

 - + > = + - - > >⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

v w vw xy xy vw

v w vw xy xy vw

1

2

1

4
4 4 0 0, 0

1

4
4 4 0 0, 0 , 12

2

2

( )

( ) ( )





= + + - - > > >

+ + - - > > <

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

v w vw xy xy vw

v w vw xy xy vw vw xy

1

2

1

4
4 4 0 0, 0

1

8
4 4 0 0, 0,

1

8
, 13

2

2

( )

( ) ( )





= + + - - > > >

+ + - - > > < < +

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

5

8
. 14( )

Here, in the second equality, further conditions on the sign of vw are used with equal
probabilities for either occurrence (from the symmetry and independence of the distributions).
In the third equality, a further certainty is carved out by using the possibility that when
vw xy 0∣ ∣ > > (occurence probability being 1 2), the discriminant is certainly positive.
However our attempts at a similar approach for the upper bound were not successful.

Although one can obtain some insight into the bounds, for what kind of distributions
these bounds actually occur is discussed below.

2.1. Bounded distributions

2.1.1. Symmetric beta distribution. Consider the symmetric beta distribution with zero mean
defined as

p x x x
2

2 1 1
1 , , 1 15, ( ) ( )

( ) ( )
( ∣ ∣) ∣ ∣ ( )m n

m n
m n=

G + +
G + G +

- > -m n
m n

with support on the interval 1, 1[ ]- . This is a two-parameter symmetric family which can be
nonsmooth at x = 0. For 0m n= = , the above distribution reduces to a uniform distribution,
while 1, 0m n= = and 0, 1m n= = correspond to tent-shaped or V-shaped distribution
respectively.

Case: 0m =
For the uniform distribution, the convolution q z z2 4( ) ( ∣ ∣)= - on 2, 2[ ]- and zero

elsewhere. Using equation (5), we find that
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P x y z q z0
1

2
d d d

49

72
0.680556. 16

xy
2,2

1

0

1

0

1

4

2
( ) ( ) ( )( ) ò ò òn = = + = =

Thus the uniform distribution results in a smaller fraction of real eigenvalues when compared
to the normal distribution [7], but not by very much.

When 0m = and ν is nonzero and positive, the distribution p x x x10, ( ) ∣ ∣ ( ∣ ∣)~ Q -n
n is

zero at the origin. As ν tends to infinity, the weight of the distribution gets increasingly
concentrated at ±1 and as table 1 shows, the probability of real eigenvalues decreases. The
distribution is smooth when k2n = is an even integer. In this case, an analytical expression is
possible for arbitrary k, and given by equation (A2) of appendix A. Numerical analysis of
equation (A2) for large ν strongly suggests that

P 0,
5

8
, 1. 172,2

1 1( )( ) ( )( ) n n n= + - 

An insight into the above result can be gained by the following heuristic arguments: If we
consider the limiting distribution as the Bernoulli ensemble with only two choices of entries
±1 with equal probabilities, we get only 16 matrices in the ensemble of which 12 have real
eigenvalues. Thus it would seem that the ratio should have converged to 12 16 3 4= .
However, there are four cases where both the eigenvalues are exactly zero. If we believe that
in the case of continuous distributions these are modified into cases with real and complex
eigenvalues and equally, we get six cases of complex values and the fraction is consistent
with 5 8 for real eigenvalues. Another related heuristic argument, closer to the continuous
distributions under consideration, starts with the distribution

p x x x
1

2
1 1 , 18( ) ( ( ) ( )) ( )d d= + + -

and applies equation (9) with p cos˜ ( ) ( )w w= , leading to

P 1
2 sin cos

d
5

8
.2,2

1

0

3
( ) òp

w w
w

w= - =
¥

A proof of the assertion in equation (17) by analyzing the double sums in equation (A2)
seems rather difficult to obtain, but it is possible to tackle the gamma distribution given by

Table 1. Probability that both eigenvalues are real for a 2 × 2 matrix with matrix
elements chosen independently from the distribution in equation (15), with 0m = . As ν
approaches 1- , the probability seems to limit to 7 8, while for n  ¥, it tends to 5 8
(see text for details).

Distribution p x x0, ( ) ∣ ∣~n
n Probability P2,2

1( )

4095 4096n = - 0.874959
7 8n = - 0.849868
1 2n = - 0.759836

0n = 0.680556
1n = 0.63709
3 2n = 0.632888
2n = 0.631023
3n = 0.62928
4n = 0.628361
200n = 0.625078
400n = 0.625039
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equation (24), for which also the probability p(x) is zero at the origin and increases
algebraically away from it, and show that indeed the limit probability is 5 8, see
section 2.2.2. Thus the lower bound derived above is a tight one.

We now turn to the case when 1 0n- < < where the probability distribution p0,n piles
up at the origin. As shown in table 1, the probability of real eigenvalues increases as ν

decreases towards 1- . It is obvious that if the matrix elements are chosen from a Dirac-delta
distribution centered about zero, both the eigenvalues are definitely real. But whether the
probability limits to something less than one as ν approaches 1- is of natural interest. As
shown in appendix A, we find that

P 0,
7

8
1 , 1. 192,2

1 ( ) ( ) ( )( ) n n n= - +  -

Thus it is interesting that the distribution x∣ ∣~ n restricted to an interval spans a range of
behaviors for the probability of real eigenvalues. As the matrix elements probability gets
increasingly piled up at the ends (±1), the probability of real eigenvalues decreases and tends
to 5 8, while in the opposite case when the elements are piled up around origin, the
probability approaches the maximum value of 7 8.

Case: 0n =
For 0n = , the probability distribution p 0 0, ( ) ¹m n and we find that with increasing μ, the

probability that the eigenvalues are real increases, refer table 2. Partial analytical results are
possible. For example, for the case when 1, 0m n= = (‘tent’ distribution), the convolution
is

q z
z z

z z z

1

6
2 1 2,

1

6
4 6 3 0 1.

20

3

2 3( )
( )

( ∣ ∣) ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
( )

 

 
=

-

- +

⎧
⎨
⎪⎪

⎩
⎪⎪

The resulting integral in equation (5) can now be done using hyperbolic coordinates. This
results in

P 1, 0
16143

22400

23 ln 2

1008
0.704854. 212,2

1 ( ) ( )( ) m n= = = - »

It is reasonable to expect that as μ increases (and 0n = ), the probability increases to that
when the elements are distributed according to the Laplace distribution xexp( ∣ ∣)~ - which is
obtained as m  ¥. We will deal with the Laplace distribution below, but state here that the
probability of real eigenvalues in this case is 11 15 0.733» . However, for negative μ where
the matrix elements have a tendency to be close to ±1, from the discussion in the last

Table 2. Probability that both eigenvalues are real for a 2 × 2 matrix with matrix
elements chosen independently from the distribution in equation (15) with 0n = . The
probability lies in the interval [5 8, 11 15] for 1,( )m Î - ¥ .

Distribution p x x1,0 ( ) ( ∣ ∣)~ -m
m Probability P2,2

1( )

1 2m = - 0.654534
1 2m = 0.695759
3 4m = 0.70085
1m = 0.704854
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subsection, we expect the probability to approach 5 8 as 1m  - . Thus for the distribution
p x,0 ( )m , the probability of real eigenvalues lies in the range 5 8, 11 15[ ].

2.1.2. A smooth family. Consider another class of smooth zero mean distributions bounded
on the interval 1, 1[ ]- defined as

p x x
1

1 , 1. 22

3
2 2

( ) ( )( )
( )

( )
h

p h
h=

G +

G +
- > -h

h

Of course, for 0h > , the distribution is continuous but not smooth at ±1, but this does not
seem crucial. When 0h = , p x( )h is uniform on the said interval, and as h  ¥ the
distribution approaches the normal distribution with the variance scaling as1 h. As discussed
above, the probability of real eigenvalues is independent of the variance and therefore, we
expect that the large η value for this probability will coincide with the known result for the
normal distribution, namely,1 2 0.707»  [7] (also, see section 2.2.1). The probability of
real eigenvalues is calculated for some values of integer η in appendix B, and we find that the
probability indeed approaches 1 2 with increasing η.

When η is negative, the distribution p(x) diverges at x 1=  , and from the discussion in
the preceding subsection, we expect the probability of having real eigenvalues to approach
5 8 as 1h  - . The case of 1 2h = - is that of the arcsine distribution. The convolution
with itself can be found and is a complete Elliptic integral. However, even if further analytic
results seem to be hard, this enables a more accurate numerical estimate of the probability of
real eigenvalues which is 0.662» . Further decreasing η makes the numerical evaluation
unstable, but results indicate a monotonic decrease in the probability.

2.2. Distributions with infinite support

2.2.1. Gaussian. The case of normal or Gaussian distribution is the most studied and there
are general results [7, 17, 18]. We consider a zero centered, unit variance Gaussian
distribution for the matrix elements given by

p x x
e

2
; , . 23

x 22

( ) ( ) ( )
p

= Î -¥ ¥
-

The probability of both eigenvalues being real has already been shown, using equation (9), to
be exactly equal to 1 2 in [17], and alternative derivations naturally exist, see the works of
Edelman [7] and Forrester [18]. However to place it in the context of this paper, we rederive
the probability of real eigenvalues in this case in appendix C.

It is well known that the normal or Gaussian distribution is singled out in numerous
ways, for example, as one that maximizes entropy for a given mean and variance, or as the
limit of sums of random variables. In the context of the present work, it seems plausible that
the normal distribution is once again to be singled out as the distribution of matrix elements
that maximizes the probability of finding real eigenvalues among the class of smooth,
symmetric, and finite moments distributions. To test this further, we have looked at
distributions p(x) such as xexp 4( )~ - , x rxexp 2 4( )~ - - (r 0> ) etc and verified in all these
cases that the probability of real eigenvalues is indeed less than 1 2 . We advance this
proposition tentatively based on evidence gathered so far, and from results to be presented
below.
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2.2.2. Gamma distribution. We next consider the symmetrized gamma distribution defined as

p x x
1

2
e , 0. 24x1( )

( )
∣ ∣ ( )∣ ∣

g
g=

G
>g

g- -

Where the scale for the exponential decay has been set to one. The special case of Laplace
distribution for which 1g = and the general case using the convolution route are discussed in
appendix D. The convolution itself is given by

q z z z K z
1

4 2
e

1

2
, 25z 2 1

1
2

1
2 1

2
( )

( )
∣ ∣

( )
∣ ∣ (∣ ∣) ( )∣ ∣

g p g
=

G
+

G
g

g
g

g
- -

+
-

-

where K z( )n is the modified Bessel function of the second kind [22]. The results obtained by
analyzing the resulting integrals are shown in table 3, and we find that with increasing γ, as
the weight of the distribution at the origin decreases, the probability P2,2

1( ) also decreases.
The behavior of the probability of real eigenvalues as γ approaches zero can be

understood as follows. As γ approaches zero from the positive side, the distribution and both
the terms in the convolution q(z) diverge at the origin as z1 ∣ ∣. The latter can be seen as
K z K z z2 e z

1 2 1 2( ) ( ) p= =-
- , and z zlim 2 1 2z 0 ( ) ( )G G = , as follows from the

duplication formula for the gamma function [23]. Since we expect that the divergence at the
origin is all that matters, the probability for real eigenvalues will converge to the case of the
bounded distribution x∣ ∣n already studied above, and therefore the probability for real
eigenvalues increases to 7 8 as γ → 0.

For increasing 1g > , the distribution itself is peaked away from the origin and has two
symmetric maxima at g~ . The probability P2,2

1 ( )( ) g now decreases from the 1g = value and
monotonically seems to approach 5 8, the lower limit for the bounded x∣ ∣n distributions as ν
increased. Indeed the piling up of the probability of the matrix elements at two symmetric
‘walls’ makes this plausible. To analyze this further, we restrict attention to integer values of γ
and give an exact evaluation in terms of finite sums as

P A A
1

2
, 262,2

1
1 2( ) ( ) ( ) ( )( ) g g g= + +

where A1 and A2 are given by equation (D8) and originate from the first and second terms of
the convolution q(z) in equation (25) respectively. To find the limiting value for the
probability of real eigenvalues for large γ, we note that like the distribution p x( )g , the first
term in the convolution q(z) is also peaked around z 2g~  , but the second term peaks at

Table 3. Probability that both eigenvalues are real for a 2 × 2 matrix with matrix
elements chosen independently from the symmetric gamma distribution in
equation (24). The probability lies in the interval 5 8, 7 8[ ] for 0,( )g Î ¥ , with the
lower bound corresponding to g = ¥ and upper to 0g = .

Distribution symmetric gamma Probability P2,2
1( )

1 4g = 0.824051
1 2g = 0.784155
1g = 0.733333
2g = 0.68325
3g = 0.660393
10g = 0.633238
100g = 0.627494

J. Phys. A: Math. Theor. 48 (2015) 385204 S Hameed et al

10



z = 0 so that the two terms in the convolution have practically disjoint supports. As a
consequence, for large γ, the dominant contribution to the probability in equation (26) comes
from A1 ( )g which represents the overlap between the distribution and the convolution, and
A2 ( )g can be neglected. As discussed in appendix D, on analyzing the sum A1 ( )g , we get

P
5

8

1

16 2
, 1. 272,2

1 1( )( ) ( )( ) g
pg

g g= + + - 

In summary, for the symmetrized gamma distributions, the probability of real eigenvalues
also seems to be in the range 5 8, 7 8[ ]. The distribution having a nonanalyticity at the origin
leads to larger probability for real eigenvalues compared to the normal distribution and it
seems comparable to the bounded power law distributions x∣ ∣n studied above except in the
rates of convergence.

2.2.3. Power law distributions. A qualitatively different process is interesting to consider, and
as in the case of random polynomials [6], it will be interesting to study what happens when
the underlying probability distributions have diverging moments. The Cauchy distribution
which is the simplest and best studied of these and occurs in many contexts, is given by

p x
x

1

1
28

2( )( ) ( )
p

=
+

for x ,( )Î -¥ ¥ . Again the possible parameter in the distribution is rendered inoperative
via scaling. Using p e˜ ( )w = w- and performing a change of variables x u2= in (9), the
integral w.r.t. u can be calculated. Then computing the integral w.r.t. ω using series expansion
yields

P
y

y1
4 1

1
tan

1

1
d

3

4
. 29

y

2,2
1

2 0 2
1

2
( )( ) òp

= -
+ +

=
¥

-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

Although the integral is written as if it is carried out, it is in fact a numerical evaluation which
is almost certainly correct. Evaluations using the convolution path lead to interesting
alternative integral forms of 3 4, but none of them (including the above) seem to be either in
standard tables or calculable using symbolic mathematical packages.

In general, one may consider the distribution p x x a1 1 , 1a
a2( ) ( ) ~ + which

possesses finite (and nonzero) moments up to order a2 2- only. Numerical evaluation of
equation (5) gives 0.707 6005 and 0.694 185 for a = 2 and 3 respectively, both of which are
smaller than the result obtained above for the Cauchy distribution which is the slowest
decaying power law distribution with finite mean. We also note that compared to the Gaussian
case, the eigenvalues are less likely be real for the power law-distributed matrix elements with
a 2> , and therefore the probability P2,2

1( ) is not merely determined by the decay behavior of
the distribution of the matrix elements. Other distributions such as

x a1 1 , 1 2a( ∣ ∣ )+ < < which is slower than Cauchy distribution but not smooth, or
power laws corrections that vanish or diverge at the origin to the fat-tailed distributions have
not been investigated.

To summarize, the case of a single 2 × 2 matrix with elements drawn from various i.i.d.
distributions have revealed an interesting phenomenology. It may seem like the weight of the
distributions near the origin matters and if the values are clustered around zero, the probability
of real eigenvalues increases. This statement must however be qualified: the normal
distribution with however a small variance always have only 1 2 probability of having real
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eigenvalues. Thus the differentiability of the underlying distributions play an important role.
In the extreme case of delta distributions, we may have 100% eigenvalues real. But given that
the distributions be smooth to all orders, the normal distribution seems to be singled out as the
one with the largest probability of real eigenvalues. Also, the probability of real eigenvalues
seems to be in the range 5 8, 7 8[ ] for the classes of distributions considered here. For the
case of the Cauchy distribution which is smooth but has diverging variance, the probability is
large at 3 4 for real eigenvalues. Thus this rather simple problem of the probability of real
eigenvalues of random real 2 × 2 matrices seems to possess a multitude of interesting features
that warrants further study and clarification.

3. Real eigenvalues of product of matrices

We now turn to the properties of an n n´ matrix obtained after taking a product of K square
matrices, and study how the probability that some or all of the eigenvalues are real behaves
for K 1> . It is of interest to see if the results for single 2 × 2 matrix described in the last
section carry over to the product of matrices. Thus there is a two-fold generalization: (1)
products of matrices are considered, and (2) their dimensionality can be more than two.

3.1. Asymptotic value and maintenance of hierarchy

We numerically studied the probability Pn k
K
,

( ) that k eigenvalues are real for a product of K
n n´ random matrices. As the products of random matrices can have, in general, a positive
Lyapunov exponent [10], numerical procedures for all cases of products ‘renormalizes’ the
matrices for each product by dividing the Frobenius norm. This however does not alter the
quantities of interest here. For most of the discussion, the matrix elements are assumed to be i.
i.d. random variables distributed according to one of the following symmetric probability
distributions: uniform, Gaussian, Laplace and Cauchy. Note that all of these distributions are
finite at the origin, but have different tail behavior. The data were averaged over 105–106

independent realizations of the random matrices. For the 2 × 2 matrix, there can be either zero
or two real eigenvalues, but for higher dimensional matrix with n = 8 that we consider here,

Figure 1. Comparison of probability that all eigenvalues are real for a product of K
random matrices with different symmetric distributions and the dimensionality n = 2
(main) and 8 (inset). The plot is based on 105 independent realizations.
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the probability of real eigenvalues is nonzero for k 0, 2, 4, 6= and 8 only. Numerical results
for the probability of all real eigenvalues for n = 2 and 8 are presented in figure 1 for various
probability distributions as a function of the number of matrices in the product. We find that
the probability of all eigenvalues being real increases to unity with K monotonically for most
distributions (see, however, the case of Gamma distribution defined by (24) with 10g = ).
This effect has been previously observed by one of the authors [17] for Gaussian-distributed
matrix elements. Here we find that this result is quite general in that the eigenvalues tend to
become real with increasing K when matrix elements are distributed according to non-normal
distributions as well.

The second important point illustrated by figure 1 is that the same hierarchy as observed
for the K = 1 case continues to hold for K 1> . Explicitly, the probability of all eigenvalues
being real for the uniform distribution is the smallest followed by the Gaussian distribution,
the Laplace distribution and finally the Cauchy distribution. Thus the slowly decaying dis-
tributions appear to have larger probability of having all real eigenvalues. This feature is seen
to be valid for higher dimensions as well (results not presented). Thus the hierarchy apparent
even with a single 2 × 2 matrix continues to hold for larger dimensional matrices as well as
the product of the random matrices. Furthermore, figure 2 shows that the ordering of the
probability of real eigenvalues according to their tail behavior is not special to the probability
of all real eigenvalues, but holds when k n¹ as well. Note, however, while the probability of
all real eigenvalues increases monotonically towards unity, the probability of k n< real
eigenvalues decays to zero, as the number of matrices in the product increases (see, the inset
of figure 2).

The increase in the probability of all real eigenvalues is reflected in the average number
of real eigenvalues as well which is given by E kPn

K
k

n
n k
K

0 ,
( ) ( )å= = . Since, as discussed above,

the probability Pn k
K

n k, ,
( ) d as K increases, the average En

K( ) approaches the dimension of the
matrix. Numerical results in figure 3 for 8 × 8 matrices strongly suggest an exponential
approach of the expected number of real eigenvalues to the dimension of the matrix. The data

Figure 2. Probability that four eigenvalues are real for a product of K 8 × 8 random
matrices whose elements are chosen from uniform, Gaussian, Laplace and Cauchy
distributions, each with zero mean, based on 106 realizations. The inset shows the
probability that k eigenvalues are real for a product of K 8 × 8 zero mean, Laplace-
distributed random matrices.
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also points to the continuance of the hierarchy even for the average number of real eigen-
values indicating a more microscopic adoption of the hierarchy to all Pn k

K
,

( ).

3.2. Effect of correlations between matrix elements

3.2.1. Hadamard product. We now consider the Hadamard (or Schur) product wherein the
elements of the product are simply the products of the corresponding elements. Thus if ◦ is
used to denote the Hadamard product of two matrices A and B, then A B A Bij ij ij( ◦ ) = . The
Hadamard product of two positive semidefinite matrices is also positive semidefinite, unlike
the usual product, and is one of the reasons it is important [24]. However the reason why we
choose to study Hadamard products is that although the matrix elements of the product matrix
are products of random numbers, there is no correlation amongst the matrix elements. Thus
one can hope to disentangle two possible mechanisms that may be responsible for the
phenomenon that all the eigenvalues of a random product matrix tend to be real: the act of
simple multiplication which is presumably causing the matrix elements to have large weight
near the origin and the various addition of such products that are leading to correlations
between the matrix elements.

To this end, we consider the eigenvalue properties of a Hadamard product of K random
n × n matrices with elements distributed according to uniform, Laplace, Gaussian and
Cauchy distributions, each with zero mean. Figure 4 shows the case of Hadamard products of
2 × 2 matrices, and we observe that the hierarchy effect is maintained at any K (although
there are more fluctuations in this case as compared to that of the ordinary matrix product).
But, importantly, we find that the probability does not approach unity with increasing K.

We can get some insight into this result by calculating the distribution of the matrix
elements of the Hadamard product matrix for some distributions, and appealing to the results
for the 2 × 2 matrices obtained earlier in section 2. Let us first consider the case of Hadamard
product of matrices with elements drawn from the bounded distribution p x0, ( )n defined in
equation (15). Let z x x x...K K1 2= represent a random variable formed by the product of K i.i.
d. random variables. As discussed in appendix E, the distribution of the product for this case

Figure 3. Expected number of real eigenvalues for a product of K random 8 × 8
matrices with elements chosen from uniform, Gaussian, Laplace and Cauchy
distributions, each with zero mean. The plot is based on 106 realizations.
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is given by

p z x x x
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For 0n , the above distribution diverges at the origin while for positive ν, it vanishes at
z 0∣ ∣ = and 1 and is a nonmonotonic function of z∣ ∣. Thus, except for the uniform case, the
behavior of the distribution p zK K( ) is similar to that of p0,n near the origin. Using the above
result, it is possible to numerically evaluate the integral in (5) to obtain P K

2,2
( ) for various values

of ν and K. For example, for 0n = , we find the probability of real eigenvalues to be
0.738 779, 0.767 331, 0.782 558, 0.792 032, 0.798 561, 0.803 376 for K 2, 3, 4, 5, 6, 7=
respectively.

For larger K, numerical integration does not converge; however, as shown in figure 4 for
some representative values of ν, the data obtained from direct sampling indicates the approach
to a probability less than 7 8. For the case of uniform distribution, the probability seems to
saturate around 0.84. But for negative and positive ν, the probability of real eigenvalues
approaches a value higher and lower than 0.84 respectively. This pattern is consistent with the
results in section 2 where the probability of real eigenvalues decreased with increasing ν.

We next consider unbounded distributions, and start with the case of Hadamard product
of matrices with Gaussian distributed elements with zero mean and unit variance for which
[18, 25]

Figure 4.Comparison of probability that all eigenvalues are real for Hadamard products
of K 2 × 2 random matrices for some symmetric distributions based on 105

realizations. For the beta distribution with 3n = , the x-axis is scaled up by a factor 5
since the convergence to the asymptotic value occurs for very large K. The inset shows
the power law approach of the probability of all real eigenvalues to the asymptotic
value which is less than unity, for the Gaussian case. The plot is based on 105

realizations for the beta distribution, and 106 for the rest.
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which diverges logarithmically at the origin since K z zln 10 ( ) ( ) as z approaches zero. For
this distribution, the integral in equation (5) can be numerically evaluated by using the fact
that its convolution is given by a Laplace distribution (shown in section 3.2.2) yielding
P 0.7571642,2

2( ) = , which is consistent with the value obtained in figure 4 by direct sampling.
For K 2> , the probability distributions are given by the Meijer-G functions [18, 25] making
it difficult to handle this using equation (5). We therefore give the results obtained via
numerical sampling in figure 4 which again indicates an approach towards 0.84. In the case of
Hadamard product of two matrices with Laplace-distributed elements with zero mean given
by (24) with 1g = , we have [25]
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where the last step in equation (32) has been done by a series of two transformations,
x x z1 1 2∣ ∣ followed by x ex

1 1 . Numerical evaluation of equation (5) using this yields
P 0.7738492,2

2( ) = , and the results obtained from direct sampling show a convergence towards
a value close to 0.84. For the Cauchy-distributed matrix elements, the distribution of the
product of two random variables is known to be [26]

p z
z

z

ln

1
, 332 2

2
2

2
2
2( )( ) ( )

p
=

-

which diverges at the origin logarithmically.
Thus, as figure 4 shows, the probability of all real eigenvalues monotonically increases

with K and saturates to a value in the range 0.82–0.84. Note that these numbers are less than
7 8 which, from our analysis in the previous section, is expected of distributions that diverge
as a power law, x∣ ∣n with 1n  - , at the origin. From the above calculations for K = 2, it is
clear that the uniform distribution and the three unbounded distributions discussed above have
Hadamard product elements distributed according to a probability distribution that diverges as

xln 1( ∣ ∣) at the origin. In fact, the elements of the Hadamard product of uniform distribution
as well as Cauchy distributed random matrices have probability distributions that diverge as

xln 1 K 1( ∣ ∣) - at arbitrary K [26]. It is reasonable to expect that the Gaussian and Laplace cases
also diverge in a similar manner. For these cases, as the divergence at the origin is somewhat
‘slower’ than a power law, it seems reasonable that the probability of eigenvalues being real is
a shade smaller than that of single 2 × 2 matrices whose elements are distributed according to
the power law discussed above.

Assuming that the probability of Hadamard products saturate to the same value for these
four distributions in the K  ¥ limit, and taking this to be 0.846» (in the case of n = 2),
our numerical results show a power law approach to the constant:

P P
C

K
, 34K

2,2 2,2 ( )( ) ( )= -
q

¥
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where C is a positive constant and the exponent 0.675, 0.649, 0.654, 0.621q » for uniform,
Gaussian, Laplace and Cauchy distribution respectively (see the inset of figure 4). Thus, here
the probability of real eigenvalues approaches the asymptotic value as a power law in
comparison to the ordinary matrix product case, where this approach is seen to be
exponentially fast [17]. The exponential behavior is also seen in the expected values of real
eigenvalues as in figure 3. We also looked at the fraction of expected number of real
eigenvalues for higher dimensional matrices (n 2, 3, 4= ) when each matrix in the Hadamard
product has Gaussian-distributed elements with zero mean, and find that the fraction of real
eigenvalues increases and saturates to a value less than one, unlike that observed for the case
of usual matrix products. We also find that the asymptotic value of this fraction decreases
with an increase in the dimensionality of the matrices.

The convergence of the probability that all eigenvalues are real as K  ¥ for the
Hadamard product can also be understood using the central limit theorem applied to the
logarithm of the absolute value of the product random variable. The elements of the
Hadamard product matrix would then admit a symmetrized log-normal probability
distribution of the form [27]
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for large K, with the parameters μ and σ being the mean and standard deviation of xlog ∣ ∣.
Numerically, we find that the probability that all eigenvalues are real for a matrix with
elements distributed according to equation (35) indeed converges to a value around 0.84 at
large K, as for the Hadamard product.

3.2.2. Usual matrix product. We now return to the properties of the matrix obtained after
multiplying K matrices, and ask why the asymptotic probability of real eigenvalues saturates
to unity unlike that for the Hadamard product. We can think of two possible reasons: one, the
(usual) product matrix elements have probability distributions that are significantly different
from the Hadamard case. The other possibility is that the correlations between the matrix
elements in the case of usual products lead to an increase in probability of all eigenvalues real
to unity as opposed to the Hadamard case where this is not true. It is not obvious whether the
difference in the probability distribution or the correlations between the matrix elements is
responsible for a higher P K

2,2
( ).

To gain some insight into this intriguing question, we looked at the matrices with i.i.d.
random variables as elements, each distributed according to the probability distribution of the
product matrix elements at various K. Such matrices can be easily generated by taking
independent samples of usual product matrices at each K and forming new matrices by
picking the corresponding matrix elements from the independent product matrix samples.
These new matrices would then have elements with probability distributions corresponding to
that of elements of a usual product matrix at product length K, but the matrix elements would
now be independent, having been selected from independent product matrix samples.
Figure 5 shows a comparison between P K

2,2
( ) for the Hadamard product and usual product and

P2,2
1( ) for matrices with probability distribution of elements corresponding to that of usual

product at product length K, but without any correlations between the elements. It is clear that
the difference in probability distribution of matrix elements between the Hadamard and the
usual product has an effect of lowering P K

2,2
( ) for the usual product case to a value below that of
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the Hadamard product case. However, the presence of correlations between the matrix
elements of the usual product matrix is seen to have an effect of a substantial increase in P K

2,2
( ),

finally leading to an asymptotic value of one.
The effect of correlations can be seen analytically for the case of Gaussian-distributed

matrices when K = 2. We have seen that the distribution of the product of two Gaussian-
distributed random variables with zero mean and unit variance is given by equation (31) and
the probability of real eigenvalues is 0.757164. The distribution of the matrix elements
obtained on taking the usual matrix product corresponds to that of the sum of two random
variables, each distributed according to the distribution of the product of two random
variables. The characteristic function of equation (31) is given by
p k k k1 , 1, 12 1 2˜ ( ) ( ) [ ]= + Î -- (due to equation (11.4.14) of [23]). It is easily seen
that this p k˜ ( ) is the square root of the characteristic function of Laplace distribution. Hence,
the product matrix elements have a Laplace distribution, for which we know from
equation (D2) that P2,2

1( ) would have been 11 15 0.7333= , had the elements been
independent. But, the correlations between the matrix elements raise this probability to

4 0.7854p = [17, 18] for the usual product, hence presenting a strong evidence that the
correlations between the matrix elements are in fact leading to P 1K

2,2
( )  observed for usual

products.
We also measured the correlations between the matrix elements to see how correlations

increase with increasing K for 2 × 2 matrices with Gaussian-distributed matrix elements.
More precisely, we consider

C
x x x x

K
i, 1, , 4, 36i

i i
K

1 1
1

( )=
-

= ¼
⎛
⎝⎜

⎞
⎠⎟

where xi are the matrix elements obtained after taking the product of K matrices. For K = 1,
obviously Ci i,1d= . But with increasing K, all the four Ciʼs seem to be of same order i.e. the
variance of the new distribution and the correlations are similar. In particular, we find that for

Figure 5. Comparison of P K
2,2
( ) for Hadamard products and usual products with

correlated elements and P2,2
1( ) for matrices with i.i.d elements distributed according to

probability distribution of product of K independent matrices, for 2 × 2 zero mean,
Gaussian-distributed random matrices. The plot is based on 106 realizations for the
Hadamard product, and 105 for the rest.
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K = 2, the correlations C 1.417, 0.047, 0.031, 0.057i = for i 1, 2, 3, 4= respectively, but
these numbers increase to 1.885, 1.446, 1.349, 1.462 and 1.905, 1.500, 1.475, 1.667 for
K = 12 and 20 respectively. These data suggest that similar to the probability P K

2,2
( ), the

correlations also tend to saturate with increasing K.

4. Discussion

How does the probability of real eigenvalues for a 2 × 2 random matrix depend on the
probability distribution of the matrix? It is quite surprising that such an apparently elementary
question presents many novel challenges, and throws up some surprises. Here we find that the
probability of real eigenvalues depends on several detailed features of the probability dis-
tribution, some of which we have identified here as the finiteness and smoothness at the
origin, existence of maxima away from origin and the finiteness of the moments. We have
shown that eigenvalues are most likely to be real for distributions limiting to p x x1( ) ∣ ∣~
which is the most divergent distribution at the origin (with zero mean) and occur with a
probability 7 8 0.875= . That the large weight at the origin correspond to high probability is
perhaps not surprising since when the matrix elements are distributed according to x( )d , this
probability is unity. However, interestingly, here we find the maximum probability to be less
than one. The origin of this naturally rests in the smoothness of the probability distributions
considered. We also mention that the values are not universal; for example, the probability
turns out to be different for the beta distribution p x0,2 ( ) and for gamma distributed matrix
elements with 3g = , although both have the same behavior near x = 0.

Our results suggest that the probability that all eigenvalues are real is larger for dis-
tributions with large weight at the origin and that decay slowly. More concretely, there exists
a hierarchy between the probability values of the different distributions, which is Cauchy
(0.750) > Laplace (0.733) > Gaussian (0.707) > uniform (0.6805). Moreover, for class of
distributions that decay in the same manner, the distributions with higher weight close to zero
have a higher probability of real eigenvalues. For example, although the probability p2,2

1( ) for
distribution equation (24) for 2g is larger than the uniform distribution as it decays slower
than the bounded distribution, this probability for n = 3 is found to be smaller than that for the
uniform case. Thus the ‘reality’ is determined by both the tail and near-zero behavior of the
probability distribution from which the matrix elements have been chosen. For the broad class
of smooth distributions we have considered, we did not find the probability of real eigen-
values to lie outside the range 5 8, 7 8[ ], which appear to be natural boundaries for suffi-
ciently smooth distributions.

Numerical results discussed above also shows that this remains valid even after taking a
product of random matrices. It is quite surprising that the curves for probabilities of the
different distributions do not cross each other. An intuitive explanation of this is yet to be
figured out. We also measured the distribution of the matrix elements of the product matrix,
and find that it decays slower (but faster than any power law) as the number K in the product
increases. This observation is consistent with the result for single matrices (with finite
moments), namely, that faster the distribution decays, smaller is the probability that all
eigenvalues are real. However this is only part of the explanation as the probability pN N

K
,

( )

always stays below unity when correlations between matrix elements are ignored, and in order
to approach unity, correlations are found to be crucial. It maybe stated that despite extensive
and exact results obtained so far there is not much understanding about why the eigenvalues
tend to become real under the usual matrix product, and more work in this direction is clearly
desired.
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Appendix A. Detailed derivations for symmetric beta distribution

When 0m = and k2n = is a positive integer, the convolution can be written in the form of a
finite series:

q z z
k k

r
z

z

k r
2

2 1

2

2 1 1

2 1
.

A1

r

k
k r

k r2

0

2
2

2 1(
( ) ( ∣ ∣) ( ∣ ∣)

∣ ∣ )

( )

å= Q -
+

-
- -

+ +=

-
+ +

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Integrations can be done using the hyperbolic variables as the combination xy appears
exclusively. To outline the method used, hyperbolic coordinates (v w, ), where x vew= and
y ve w= - are useful. Thus the variable w does not appear in the transformed expression. The
range of v is 0, 1[ ], while for a given v, the range of w is v vln , ln[ ]- . The integration over w
is easily carried out first, and noting that the Jacobian of the transformation is v2 , leads finally
to:

P k k
k

r k r

k r k r

k r

l k r l k r l

0, 2 1 2 1
2 2

2 1

1

2 1 6 3

2 1 2

2 1 6 3
.
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k k r

r
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2,2
1 4

0

2 2 1

2
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2

( ) ( )

( )
( )( )
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( )( )

( )
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´
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+
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⎤
⎦
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As special cases:

P P0, 2
8905

14112
0.631023, 0, 4

45332489

72144072
0.628361.

A3

2,2
1

2,2
1( ) ( )

( )

( ) ( )m n m n= = = = = = = »

The case of odd integer ν is also accessible, however we only state the result when 1n = . The
convolution is now piecewise continuous on z 1∣ ∣ < and z1 2∣ ∣< < , and the probability of
real eigenvalues is

P 0, 1
3653

5760

ln 2

240
0.63709. A42,2

1 ( ) ( )( ) m n= = = + »

To understand the behavior of the probability of real eigenvalues for negative ν, it is
convenient to write the convolution for the distribution p x0, ( )n defined by equation (15) as

q z p x p z x x

x z x z x x

d

1

2
1 d . A5

2

1

1

( ) ( ) ( )

∣ ∣ ∣ ∣ ( ∣ ∣) ( )

ò

ò
n

= -

=
+

- Q - -n n

-¥

+¥

-

+
⎜ ⎟⎛
⎝

⎞
⎠

Note that x 1∣ ∣  and z x 1∣ ∣ - implies that z 2∣ ∣  . From the symmetry q z q z( ) ( )= - it
suffices to consider z0 2  . Using the hyperbolic coordinates, x vew= and y ve w= - , we
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get

P v vv w zq z

v v z x x z x z x v

1 1 2 d d d

1 1 ln d 1 d d . A6

v

v v

v

2,2
1 2

0

1
2
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2

4
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1
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Except when ν is an even integer, some care must be taken as q(z) is piecewise continuous in
the two intervals 0, 1[ ] and 1, 2[ ]. For 1 2n = - , we have

P 0, 1 2
1

48
41 2 ln 2 0.759836. A72,2

1 ( ) ( ) ( )( ) m n p= = - = - - »

To find the probability as 1n  - , consider the two inner integrals over z and x in
equation (A6). On considering various cases arising due to the Heaviside theta function and
performing the integral over z first, we get

P J J0,
3

4

1

2
2
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where

J v v v v v v v v1 d ln 1 2 d ln 2 1 ,
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and

J v v v x x v x
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It is clear that when 1n  - , the second term on the right hand side of both J1 and J2 is zero.
The first integral in J1 contributes 1 4- when the integral is carried out by expanding the
integrand around v = 0. However, the dominant contribution to the first integral in J2 comes
when both x and v are small. Then it is useful to split the integral over v from 0 to1 4 and1 4
to 1 2 and it turns out that the former integral with x lying in the range 0 to v2 contributes

1 16- to J2. Using these results and setting 1n = - in the second term in equation (A8), we
finally obtain the desired result, viz, P 0, 1 7 82,2

1 ( )( ) m n=  - = .

Appendix B. Detailed derivations for smooth bounded distributions

For the case 1h = (parabolic distribution), the convolution is still calculable as:

q z z z z z
3

160
2 4 6 2 . B13 2( )( ) ( ∣ ∣) ∣ ∣ ( ∣ ∣) ( )= - + + Q -

The integrals in equation (5) are then elementary and are easily done with mathematical
packages, and yield the probability
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P 1
489341

705600
0.69351. B22,2

1 ( ) ( )( ) h = = =

The case for 2h = leads to longer expressions, but with Mathematica, it is easy to evaluate
the convolution and the resultant probability as

q z z z z z z z
5

14

1

16
2 16 40 36 10 2 , B3

2
5 2 3 4( )( ) ( ∣ ∣) ∣ ∣ ∣ ∣ ( ∣ ∣) ( )= - + + + + Q -

and

P 2
180521487191

258564354048
0.698168. B42,2

1 ( ) ( )( ) h = = »

Similar analysis yields the probability for 5, 10, 20, 50h = as 0.702 769, 0.704 785,
0.705 906, 0.706 616 respectively. A monotonic convergence of the probability to 1 2 as η
increases is then a reasonable indication from these calculations.

Appendix C. Detailed derivations for Gaussian distribution

For the Gaussian distribution (23), the convolution with itself is also a Gaussian distribution
but with variance of 2 rather than 1: q z e 2z 42( ) ( )p= - . Application of equation (5), along
with the usage of hyperbolic coordinates results in

P z x y1
1

e e d d d , C1x y
xy

z
2,2

1
3 2 0

2

0

2
42 2 2( ) ( )( ) ò òp

= -
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v v w z1
1

2 d e d e d . C2v w
v

z
3 2 0

cosh 2

0

2
42 2 ( )ò ò òp

= -
¥

-¥

¥
- -

The integral over v becomes elementary when the burden of a finite range of integration is
shifted from the z variable to the variable v2. That is, the v integral is done first following
writing the z integral as z ve 2z 42 ( )Q - +- over the interval 0,[ )¥ . The probability of real
eigenvalues simplifies to

P
w

w w
1

2

2

d

cosh 2 cosh

1

2
. C32,2

1

0
( )( ) òp

= - =
¥

This follows as the integral can be evaluated as 2 1 2( )p - either with packages such as
Mathematica, or with the use of the residue theorem. This is applied to a rectangular contour
with base on the interval L L,[ ]- , and the top on the interval with

w w L LIm i and Re ,( ) ( ) [ ]p= Î - . This region encloses three poles of order
1 at i 4, i 2 and i3 4p p p . In the limit of large L, the contour integral is twice what is
required.

If we follow the path of the characteristic function, we have p e .
2˜ ( )w = w- Computing the

integral in equation (9) yields:
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A numerical approximation to equation (C4) using Mathematica yields a value which is
exactly equal to1 2 . Also, using the properties of gamma functions, it is possible to modify
this series to obtain
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which has already been shown to be exactly equal to 1 2 in [17].

Appendix D. Detailed derivations for gamma distribution

For 1g = , we have the so-called Laplace distribution p x 1 2 e x( ) ( )= - for which p 0( )g is
nonzero. Using the linear transformation formula (15.3.3) of [23] and the definition of the
Gauss hypergeometric function F a b c z, ; ;2 1( ) in equation (9), after some algebra, we obtain

P 1 1
1

2
d 1 D12,2

1

0

2 7 2( )( ) ( )( ) òg w w= = - +
¥ -

11

15
0.733333. D2( )= »

For integer γ, similar steps can be used to find an analytical expression for P2,2
1( ).

The convolution is given by

q z x z x x
1

4
e e d . D3x x z

2
1 1( )
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=
G

- g g

-¥
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Note that the general symmetry q z q z( ) ( )= - holds, and we can therefore restrict attention to
z 0 . Thus the convolution is itself the sum of a gamma distribution and a Bessel
distribution [28]. If the distribution was not symmetrized, that is the distribution were the
usual gamma distribution on 0,[ )¥ , only a term proportional to the first will be in the
convolution. The second term represents the convolution of the distributions on the opposite
sides of the maxima. Now to evaluate the probability of real eigenvalues of a 2 × 2 matrix
with entries from the symmetric gamma distribution, we use the first equality in equation (5),
and obtain

P x y xy z q z
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1
d d e d . D4x y
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2,2

1
2 0 0

1
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G
g
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¥

Once again, using the hyperbolic coordinates, x v y ve 2, e 2w w= = - and performing the
integral over w results in

P v v K v z q z
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We first consider the parameter regime 1g < . Apart from 1g = the other ‘easy’ case is
1 2g = where we find

P 1 2
1

2

5

8
0.784155. D62,2

1 ( ) ( )( ) g
p

= = + »

In fact, evaluation of such integrals with packages like Mathematica, even in this case, return
unevaluated hypergeometric functions. However, in this case, one can simplify the integrals
directly (hypergeometric functions encountered do not seem to have known identities, at least
to our knowledge). For instance, in the evaluation with the Bessel distribution part of the
convolution, one needs
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which is obtained by using the integral representation of the Bessel function of zeroth order
and simplifying. The integral with the first term of q(z) is more easily evaluated to 1 2( )p .
Thus the probability is 1 2 1 2 1 8( )p+ + as stated above. Numerical evaluation of these
integrals is also tricky as γ decreases toward zero.

For 1g > , the distribution P A A1 22,2
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The sums above maybe written in terms of hypergeometric functions, but they do not appear
to be simple expressions. To state some other exact values for the probability of real
eigenvalues:
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The sum A1 ( )g for large γ can be approximated by
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1

2
1 2! !+ » -⎜ ⎟⎛

⎝
⎞
⎠ for large x. Employing the

Stirling’s approximation s s s e2 s! ( )p» in the above equation, and replacing the sum by
an integral, we obtain
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where

g x x x x xln 1 ln 1 1 ln 2. D121( )( ) ( ) ( ) ( )= + + + - +-

On evaluating the integral in equation (D11) by saddle point method, we obtain
A 1 8 erf 21 ( ) ( ) ( )g g= which, for large γ, gives 1 8. An analysis similar to above also
shows the leading order correction in A1 ( )g to be 16 2 1( )pg - , and A2 ( )g to be exponentially
small in γ.

Appendix E. Distribution of the product for the probability distribution equation
(15)

For the distribution p x0, ( )n defined by equation (15), the distribution of the product is given
by
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where the last equation follows on noting that one half of the 2K cases corresponding to the
sign of the set xi{ } contribute equally to positive zK. On carrying out the integral over xK, we
have
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The above result can be obtained by either transforming the problem of the distribution of
product to that of sum by writing x yln i i= , or directly using Mellin transforms [26].
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