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ABSTRACT: Molecular Dynamics (MD) plays a fundamen-
tal role in characterizing protein disordered states that are
emerging as crucial actors in many biological processes. Here
we assess the accuracy of three current force-fields in modeling
disordered peptides by combining enhanced-sampling MD
simulations with NMR data. These force-fields generate
significantly different conformational ensembles, and AM-
BER03w [Best and Mittal J. Phys. Chem. B 2010, 114, 14916−
14923] provides the best agreement with experiments, which
is further improved by adding the ILDN corrections [Lindorff-
Larsen et al. Proteins 2010, 78, 1950−1958].

1. INTRODUCTION

Molecular dynamics (MD) simulations are currently a valuable
tool for studying complex biomolecular systems as they provide
an atomistic description of their structure and dynamics.
Unfortunately, MD predictive capabilities are limited by two
factors: the accuracy of the molecular mechanics force-fields
and the complexity of biomolecular free-energy landscapes,
which often make exhaustive sampling by means of standard
MD a daunting task. The use of specialized hardware1 and
distributed computing platforms2 as well as the development of
advanced sampling algorithms3 have significantly alleviated this
time scale limitation. As a consequence of these developments,
the community is increasingly focusing on the creation of more
accurate force-fields, as demonstrated by the large number of
works aimed at comparing the quality of different force-
fields,4−12 and the number of corrections recently pro-
posed.13−17

MD simulations currently play a key role in investigating
disordered states of proteins, whose biological importance is
increasingly recognized. Indeed, intrinsically disordered pro-
teins (IDPs), which do not adopt a well-defined three-
dimensional structure under physiological conditions, represent
a significant fraction of any proteome and they are important
actors in essential biological processes such as signaling and
regulation.18,19 Furthermore, the conformational flexibility of
specific protein fragments is often crucial in mediating allosteric
signal propagation20−22 and protein−protein interactions in
structured proteins.23,24 The highly dynamic and conforma-
tionally heterogeneous nature of protein disordered states

creates significant difficulties to most of the experimental
structural biology techniques. NMR spectroscopy is probably
the most comprehensive approach for studying these states and
several NMR observables, such as chemical shifts, scalar
couplings (3J-couplings), and residual dipolar couplings
(RDCs), provide precious information about the average
conformational properties of disordered proteins, both at the
local and global level. However, the translation of this
experimental data into ensembles of detailed structures
invariantly relies on computational protocols25,26 that are
often based on MD simulations.27,28 The reliability of force-
fields in reproducing the correct conformational distributions of
disordered proteins is thus an essential ingredient to improve
our understanding of many relevant biological processes.
Here we tested the accuracy of current force-fields in

modeling a set of disordered peptides that were previously
characterized by NMR spectroscopy.29 In order to guarantee an
exhaustive exploration of their conformational landscapes, we
adopted an advanced simulation protocol based on metady-
namics (MetaD).30,31 The resulting structural ensembles were
validated by calculating several NMR observables (3JHNHA-
couplings, CA and N chemical shifts, and N−H RDCs) and
comparing them with experimental data.
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2. RESULTS AND DISCUSSION

As model systems of protein disordered states, we chose
unstructured peptides of sequence EGAAXAASS, which have
been extensively investigated by Grzesiek and co-workers29 by
means of NMR spectroscopy. Here we focused on 5 sequences,
with X corresponding to G, W, I, D, and V (PepG, PepW, PepI,
PepD, and PepV, respectively). This set, although limited,
allowed us to sample the conformational preferences induced
by amino acids of diverse hydrophobicity and size. We
considered three state-of-the-art force-fields optimized for
biomolecular simulations: AMBER99SB*-ILDN13,14 (A99),
CHARMM22*11 (C22), and AMBER03w32 (A03). These

force-fields were used in combination with an explicit solvent
description based on appropriate water models: TIP3P,33

TIPS3P (or mTIP3P),34 and TIP4P/200535 for A99, C22, and
A03, respectively. Notably, A99 and C22 were recently ranked
as the most accurate force-fields on the basis of MD simulations
beyond the microsecond time scale,9 and A03 was shown to
provide an improved description of unfolded states in
combination with the TIP4P/2005 water model.32 Additionally,
we tested the effect of the ILDN side-chain dihedral
corrections,13 originally developed for AMBER99SB,36 on
modeling PepI and PepD with A03. Average properties of the
conformational ensemble generated by this hybrid force-field

Figure 1. Rg (Panel A) and secondary structure (Panel B) distributions calculated on the conformational ensemble generated by A99 (green), A03
(blue), C22 (red), and A03-ILDN (pink), for each of the 5 peptides. The vertical black lines indicate the errors calculated with the approach in ref
62.
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(A03-ILDN) were obtained a posteriori by reweighting the
simulations carried out with A03, see the Supporting
Information (SI).
Efficient sampling of the configurational landscapes was

achieved by using PT-WTE, which combines the Parallel
Tempering (PT)37 and Well-Tempered Ensemble (WTE)38

approaches. With PT-WTE, sampling is enhanced by enlarging
the fluctuations of the potential energy with a time-dependent
bias potential,39 thus reducing the number of replicas needed
by PT to span a given temperature range in explicit-solvent
simulations. Previous applications demonstrated the efficiency
of this protocol to accelerate sampling of standard MD.22,40,41

In order to characterize the conformational ensembles
generated by each combination of peptide and force-field, we
reported the distributions of the radius of gyration (Rg) and
secondary structure content42 (Figure 1). This analysis
suggested that some structural features were observed for all
the peptides independently of the force-field. Indeed, the broad
distributions of Rg (Figure 1A) indicated that the peptides were
significantly flexible, and they could adopt both extended and
compact conformations. Moreover, these conformations were
mostly disordered, as suggested by a strong preference of coil
and turn structures, a small helical population, and a negligible
β-sheet content (Figure 1B). However, the shapes of the
distributions in Figure 1A revealed that the conformational
ensembles generated by the various force-fields presented
notable differences. In particular, A99 favored more compact
conformations with respect to A03 and C22 for all peptides, as
confirmed by the average values of Rg (Table 1). These

compact ensembles were characterized by a higher average
number of backbone−backbone hydrogen bonds (H-bonds)
(Table 1) leading to a larger content of turns and helices
(Figure 1B). This result is in agreement with the force-field
dependence of the unfolded state of other proteins.9

The differences between A03 and C22 were more subtle.
A03 generated in three cases out of five the most extended

ensembles (Figure 1A), which were characterized by a higher
percentage of coil structure (Figure 1B) and consequently a
smaller number of H-bonds (Table 1). In the case of PepI, our
structural measures were similar for A03 and C22, while C22
generated a more extended ensemble in the case of PepD. This
scenario was not altered by introducing the ILDN corrections
to A03. Indeed, a slight increase of Rg and a decrease of the
average number of H-bonds were observed for PepI, while
PepD was substantially unaffected (Table 1). A similar trend
among force-fields was observed using other structural
measures (Figures S1 and S2).
Our structural analysis highlighted substantial differences in

the conformational ensembles generated by each force-field.
However, to determine which force-field generates the more
accurate conformational ensemble, we calculated several NMR
observables from our simulations and compared them with
available experimental data.29 In particular, we focused here on
the 3JHNHA-couplings, the CA and N chemical shifts, and the
N−H RDCs.
The 3JHNHA-couplings are related to the ϕ backbone dihedral

angle, and thus they are assumed to correlate with the
secondary structure population. We used the Karplus
equation43 with the “ubiquitin” set of parameters44,45 (Ubq)
to compute the 3JHNHA-couplings from our simulations, and
their Root-Mean Square Deviation (RMSD) from the
measured couplings was used to quantify the agreement with
experiments. In Figure 2A we reported the RMSDs calculated
for each peptide and force-field combination along with the
average deviations associated with each force-field. Raw data is
in Table 2. It is reassuring that the RMSDs calculated with
these last generation force-fields are smaller than the typical
error of previous, less-optimized force-fields,12,46 although they
are still greater than the reported accuracy of the Ubq set of
parameters. The poorest average agreement with experimental
couplings was found in the case of C22, while A03 provided the
best estimates of this observable. This agreement was further
improved, in particular for PepD, by introducing the ILDN
corrections to A03 (Figure S4). The observed trend was robust
with respect to the choice of parameters in the Karplus
equation (Figure S3).
Chemical shifts are another popular tool to characterize

disordered proteins. Furthermore, chemical shifts measured on
different nuclei are sensitive to different structural properties
and thus may provide independent information about the
conformational ensemble. In order to make contact with
experiments, we calculated the CA and N chemical shifts from
our simulations using Shiftx2,47 which was shown to outper-
form other predictors on a benchmark set of 61 proteins
(http://www.shiftx2.ca/performance.html). Similarly to what is
done for the 3JHNHA-couplings, we reported in Figure 2B the
RMSDs from experimental data for each peptide and force-field
combination along with the average deviations associated with
each force-field. Raw data is in Table 2. We observed an
excellent agreement between calculated and experimental CA
chemical shifts, which was very weakly dependent on the force-
field. However, this observable did not provide reliable
information about the relative accuracy of the force-fields,
since the average RMSDs were lower than the method accuracy
in almost all cases. On the contrary, the deviations between
calculated and experimental N chemical shifts were greater than
the predictor accuracy, thus making the differences among
force-fields significative. In particular, the more expanded
ensembles generated by C22, A03, and A03-ILDN resulted in a

Table 1. Average of the Structural Measures (Rg, H-Bonds,
and Secondary Structure Content) on the Conformational
Ensembles Generated by the Different Force-Fields for Each
of the 5 Peptides Studied

secondary structure

peptides force-fields
Rg
(Å)

H-
bonds helix β-sheet turn coil

PepG A99 5.2 2.1 0.06 0.02 0.41 0.50
A03 6.4 1.3 0.01 <0.01 0.22 0.76
C22 5.9 1.4 0.03 0.01 0.34 0.61

PepW A99 6.2 1.8 0.05 <0.01 0.26 0.69
A03 6.8 1.6 0.02 <0.01 0.15 0.83
C22 6.5 1.4 0.04 <0.01 0.21 0.75

PepI A99 5.9 1.9 0.09 <0.01 0.30 0.60
A03 6.7 1.5 0.05 <0.01 0.14 0.80
C22 6.7 1.2 0.01 <0.01 0.20 0.78
A03-ILDN 6.9 1.4 0.06 <0.01 0.11 0.83

PepD A99 5.3 2.5 0.17 <0.01 0.37 0.46
A03 5.8 2.0 0.13 <0.01 0.28 0.58
C22 6.1 1.5 0.08 <0.01 0.27 0.64
A03-ILDN 5.8 2.1 0.16 <0.01 0.28 0.55

PepV A99 6.0 1.7 0.05 <0.01 0.29 0.65
A03 7.1 1.2 0.01 <0.01 0.13 0.86
C22 6.6 1.2 0.02 <0.01 0.22 0.75
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better agreement with experimental data than the compact
ensembles obtained with A99. Notably, the ILDN corrections
to A03 lead to a consistent improvement in the agreement of
the PepI N chemical shifts. This was not unexpected, because
these chemical shifts can be influenced by the conformational
dynamics of the side-chain χ angles,48,49 which are greatly
affected by the ILDN corrections. These corrections influenced
not only the Ile or Asp chemical shifts but also the neighboring
residue (Figure S5). A lack of an analogous improvement in
PepD might be attributed to the smaller effect of the ILDN
corrections on the rotameric distribution of Asp side chain.13 A
similar trend of relative accuracies among force-fields was

observed with other predictors, although their smaller
accuracies limited the statistical significance of the results
(Figures S6 and S7).
Recently, RDCs have been widely exploited to characterize

the conformational ensembles of IDPs.50 At variance with the
3J-couplings and chemical shifts, which are sensitive to the local
physicochemical environment, RDCs provide long-range
informations as they depend on the relative orientation of the
system with respect to an alignment medium. RDCs were
calculated from our simulations using PALES51 and the steric
module to determine the alignment tensor (SI). The agreement
between simulations and experimental data was quantified by
the Pearson’s Correlation Coefficient (PCC) for each system
and force-field studied (Table 2). On average, the agreement
was extremely limited, except for the case of PepG modeled
with C22 (PCC > 0.80). A poor correlation between calculated
and experimental RDCs was not totally unexpected as similar
results were obtained in previous studies of other unstructured
systems.52,53 These discrepancies might be due to the nature of
this NMR observable, which it is expected to be dramatically
sensitive to the alignment tensor determined by the overall
conformation of the system. Thus, in the case of extremely
flexible systems that sample several comparably populated
states, small inaccuracies of the force-field and of the predictor
are likely to result in large deviations of the calculated RDCs
from experiments. For these reasons, we did not include this
observable in our analysis of the force-fields.

3. CONCLUSION

Here we assessed the accuracy of current force-fields in
simulating model systems characterized by the lack of a well-
defined stable structure. This class of proteins plays a crucial
role in many essential biological processes, and MD simulations
can be instrumental in characterizing their structural properties,
provided that sampling of the conformational landscape is
exhaustive and force-fields are accurate. We overcame the
sampling problem by using the PT-WTE algorithm, which
combines the advantages of MetaD and PT. The three force-
fields examined here generated conformational ensembles with
significantly different structural properties. The comparison of
these ensembles with NMR data, in particular 3J-couplings and
chemical shifts, revealed that A03 provides on average a more
accurate description of these disordered systems. This

Figure 2. RMSD between simulated and experimental data for the 3JHNHA-couplings (Panel A) and CA and N chemical shifts (Panel B). Bars
indicate the average RMSD on the 5 peptides studied for each of the force-fields tested: A99 (green), A03 (blue), C22 (red), and A03-ILDN (pink).
Symbols indicate the RMSD of a given peptide: PepG (square), PepW (triangle), PepI (star), PepD (diamond), and PepV (circle). The horizontal
black lines indicate the typical predictor errors.

Table 2. Agreement between Experimental and Calculated
NMR Observables for Each Peptide and Force-Field
Studieda

chemical shifts
(ppm)

peptides force-fields

3JHNHA-couplings
(Hz) CA N RDCs

PepG A99 1.07 0.24 1.36 0.45
A03 0.51 0.14 0.83 0.37
C22 1.12 0.23 1.08 0.89

PepW A99 0.87 0.19 1.30 0.22
A03 0.50 0.21 0.95 0.45
C22 1.07 0.17 1.18 0.67

PepI A99 0.62 0.38 2.47 0.13
A03 0.47 0.16 2.18 0.10
C22 0.98 0.13 1.63 0.20

A03-ILDN 0.42 0.17 1.47 0.16
PepD A99 0.61 0.42 1.52 0.11

A03 0.49 0.59 1.34 0.27
C22 0.94 0.35 1.07 0.06

A03-ILDN 0.36 0.52 1.36 0.04
PepV A99 0.73 0.18 2.32 0.01

A03 0.45 0.33 1.41 0.30
C22 0.98 0.13 1.65 0.11

method error
(RMSD)

0.39 0.38 1.23

aDeviations are quantified by RMSD for 3JHNHA-couplings and
chemical shifts (the lower the better) and by the Pearson Coefficient
for RDCs (the higher the better). The typical error of the predictor is
reported at the bottom of the table.
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description can be further improved by incorporating the side-
chains ILDN corrections originally developed for the
AMBER99SB force-field. The quality of the agreement with
experimental data could not be interpreted in terms of simple
structural properties of the simulated ensembles, such as
compactness and secondary structure content, and it most
likely depended on a more subtle balance between inter- and
intramolecular force-fields contributions.

4. COMPUTATIONAL METHODS

All simulations were carried out with Gromacs 4.5.654 and
PLUMED 1.3.55 Peptides were solvated in a dodecahedron
periodic box with using about 1600 water molecules (Table
T1). After equilibration (SI), all systems were simulated using
the PT-WTE protocol with 8 replicas, which were properly
distributed56 in the range of 273−650 K. The WTE bias was
constructed by depositing one Gaussian of width equal to 47.77
kcal/mol and initial height equal to 0.59 kcal/mol every
picosecond. To ensure a sufficient overlap between energy
distributions of neighboring replicas, we set the biasfactor equal
to 40. Using this setup, we performed 200 ns of PT-WTE
simulation per replica (20 ns further equilibration +180 ns
production run) for a total of 1.6 μs for each system.
Convergence was assessed by calculating the number of
clusters found as a function of simulation time (Figure S8)
and the Ramachandran plot distributions for each residue in the
first and second half of all simulations (Figures S9−S13).
The equilibrium distributions of conformational variables can

be obtained from the biased WTE simulation by means of an
appropriate reweighting schemes.57 However, the perturbation
induced by the WTE bias on the solute conformational
distribution was negligible (Tables T7 and T8), as previously
noted for other solvated systems.58 All the NMR observables
(3J-couplings, Chemical Shifts, and RDCs) were calculated
from our simulations as ensemble averages. As routinely done
in the case of disordered proteins, we assumed that (i) all the
peptide conformers sampled by MD equally contribute to the
ensemble average and (ii) these contributions are best
estimated from the structure of individual conformers using
the predictors described in the Results and Discussion section.
It must be noted that most 3J-couplings and Chemical Shifts
predictors are empirically parametrized for folded proteins of
known average structure and thus implicitly absorb a certain
degree of motional averaging due to native-ensemble
fluctuations.59 However, we observed no significant differences
when using J-couplings predictors that circumvent this issue by
taking advantage of quantum calculation60 or MD simulations61

(Figure S3).
Statistical errors relative to structural measures and NMR

observables were estimated using block-averaging62 (Tables
T9−T12).
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