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Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in
sheared hard-particle packings close to, but below, the random-close packing threshold. We show
that under shear, and independent of volume fraction, the free volumes develop features similar
to close-packed systems — particles self-organize in a manner as to mimick the isotropically
jammed state. We compare athermally sheared packings with thermalized packings and show
that thermalization leads to an erasure of these structural features. The temporal evolution in
particular the opening-up and the closing of free-volume patches is associated with the single-
particle dynamics, showing a crossover from ballistic to diffusive behavior. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4932338]

I. INTRODUCTION

The transition from a flowing liquid to a jammed solid
state has been a subject of research in a wide range of
systems, including granular matter, colloidal suspensions, and
diverse types of glass formers, and in the context of gelation.
A particular context, in which the geometry associated with
such a transition is important, has been that of the jamming
to unjamming transition in athermal particle packings, often
modeled using sphere packings, with or without the presence
of external driving. The relationship between the jamming
phenomenology and thermal systems, either the rheology of
driven thermal systems or to the glass transition in undriven
systems, is intensely investigated currently.1–3

Disordered assemblies of spheres undergo a jamming
transition at a packing fraction of ∼0.64, at which the
pressure for hard sphere packings diverges. At this random
close packing (RCP) density, individual hard spheres are
entirely constrained by their neighbours and have no space
to move around. The network of such spheres in contact
(“backbone”) spans the system and may thus support external
load.

The geometrical properties of sphere packings and their
influence on the mechanical response is a complex problem
with many different facets. One key observable is the
connectivity of the network which is isostatic at RCP.4–6

Wyart8 discussed the consequences of opening of contacts,
as well as the distribution of gaps, i.e., distances between non-
contacting particles. Atkinson et al.9 have studied the structure
of rattlers, the particles that are not constrained by enough
contacts. Schröder-Turk et al.10 have observed a signature of
RCP in the shape of Voronoi cells of the particles.

Packings at RCP also have special mechanical properties.
The bulk modulus, for example, is finite for soft-sphere pack-
ings at RCP, while it generically vanishes for spring networks

of equivalent connectivity11,12 Apparently, the particles in a
packing can organize in order to resist compressive forces, in
a way that is not possible for spring networks.

In the vicinity of random close packing, spheres have
finite free space to move, and free space vanishes approaching
RCP. For thermal systems, this implies slow dynamics
approaching RCP. At the same time, dynamics in sheared
systems at zero temperature speeds up by approaching RCP.
Indeed, particles in shear flow are found to move ever faster,
the less space they have.13 It is an interesting but essentially
unsolved question how such non-trivial dynamics arises and
couples to other properties of the system, in particular to the
singular behavior of the correlation length or the rheological
coefficients.14–18 Here, we are interested in the analysis of
the free space available for particle movement, and how
that may be affected by externally imposed deformation,
and in turn how such changes in geometry influence particle
flow.

The divergence of pressure in a hard particle system
is a consequence of the vanishing of free space. Pressure
is the ratio of free surface to free volume,7 the latter
vanishes at jamming. In the fluid phase, the free volume
distribution is peaked around the mean free volume, and
at jamming, the distribution can be expected to have a
delta function peak at zero free volume for the backbone
spheres. Indeed close to jamming, for isotropic, thermalized
ensembles of configurations at any given density, the free
volume distribution19 has a strong peak around the mean free
volume. A surprising observation, however, is that there is
a power law tail in the free volume distribution in addition,
which appears to be a signature of being close to the jamming
point. In the present work, we address the question of how
the free volume distributions of sphere packings close to the
jamming point get modified under shear deformation, both
in the athermal and thermal cases, and what we may deduce

0021-9606/2015/143(14)/144502/5/$30.00 143, 144502-1 © 2015 AIP Publishing LLC

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  118.102.239.46 On: Tue, 14 Jun

2016 09:38:11

http://dx.doi.org/10.1063/1.4932338
http://dx.doi.org/10.1063/1.4932338
http://dx.doi.org/10.1063/1.4932338
http://dx.doi.org/10.1063/1.4932338
http://dx.doi.org/10.1063/1.4932338
http://dx.doi.org/10.1063/1.4932338
http://dx.doi.org/10.1063/1.4932338
http://dx.doi.org/10.1063/1.4932338
http://dx.doi.org/10.1063/1.4932338
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4932338&domain=pdf&date_stamp=2015-10-09


144502-2 Maiti et al. J. Chem. Phys. 143, 144502 (2015)

regarding the organization of spheres in response to external
shear.

II. SIMULATION DETAILS

We study two-dimensional (2D) and three-dimensional
(3D) systems of N soft frictionless spheres. To avoid
crystallization, we use two different particle sizes: N

2 spheres
have diameter d and N

2 have diameter 1.4d. The particle
density is quantified via the fraction of volume (area in 2D,
although we use “volume” in the 2D case as well, when no
confusion is caused) φ that is occupied by the particles.

Particles interact via elastic repulsive forces. Two particles
repel each other with a harmonic potential energy,

Eel = ϵ(1 − ri j
di j

)2, ri j < di j, (1)

where ri j is the distance between the two particles. The cutoff
di j = (di + d j) is set by the diameters of the two interacting
spheres. Beyond this cutoff, the particles do not interact.

To implement the shear, a quasistatic simulation protocol
is used.24,25 Quasistatic simulations consists of successively
applying small steps of shear (at constant volume) followed
by a minimization of the total potential energy. The shear
is implemented with Lee-Edwards boundary conditions.
After each change in boundary conditions, the particles
are moved affinely to define the starting configuration for
the minimization, which is performed using the conjugate
gradient technique. In the quasistatic limit (small-strain rates,
γ̇ → 0), the average overlap δ = ⟨1 − ri j

di j
⟩ vanishes and the

particles effectively behave as hard-spheres (equivalent to
ϵ → ∞). In recent work,18,23 it was shown that the statistics of
particle velocities obtained from the quasi-static simulations
is identical with the small-strain rate (Newtonian fluid) limit
of fully dynamic molecular dynamics simulations. Thus, our
quasistatic results should be considered representative for
the Newtonian flow-regime of dense suspensions close to
jamming.

The jamming density under shear is at φc = 0.647
(φc = 0.842 in 2D). We probe densities below this limit in
the range φ = 0.61 − 0.64 (φ = 0.825 . . . 0.840 in 2d). In this

range of densities, cooperative effects set in and the correlation
length increases roughly by a factor of ten.13

III. RESULTS

Motivated by recent results on the free volume distribution
in isotropically jammed packings,19 we ask how steady shear
affects these distributions. The free volume of a given particle
is the volume (area in 2D) that is available for the motion of
the particle, with all other particles fixed in their position. A
finite free volume means that the particle can move around
without moving its neighbors. If the free volume is zero, then
the particle is locally jammed by its neighbors and cannot
move. As such, our definition of free volume is different from
Voronoi-type analyses. While the Voronoi volume is a measure
of the local density, our free volume is a measure for the
possibility to move around. The free volume vanishes at the
jamming transition, while the Voronoi volume evidently does
not. The free volume of a sphere is computed by considering
the void or empty space available for the insertion of a sphere
centre given the location of all the other spheres. The volume
of the cavity (connected subset of the void space) in which the
actual position of the given sphere resides is its free volume,
over which it can freely translate with all other spheres fixed
in position. The technical details of such a computation are
described in Refs. 20–22.

Starting with a jammed configuration at φc, we decom-
press the configuration to the target density at φ < φc by
reducing the diameters of all particles, di → αdi, where α
is the scaling factor for the particle diameters. In this way, all
particles acquire a certain amount of free volume v f (or free
surface s f in the two dimensional case) with a probability
distribution, P(v f ), that is highly peaked at v f ∼ αd (see
Fig. 1(b) for the 2d system, blue line/downward triangles).
In this figure, we also highlight the distribution of free volume
for the nearly jammed configuration (before decompression),
which is a power-law (black open circles).19

The “decompressed” configuration serves as starting point
to our shear simulation. Fig. 1(a) indicates the evolution of the
probability distribution as a function of the elapsed strain.
After only small amounts of strain, all particles retain their

(a) (b) (c)

FIG. 1. Probability distribution of free volumes: (a) φ = 0.825 for decompressed (unsheared) configurations and for different elapsed strains until steady state
is reached (2d). (b) Different volume fractions in steady state shear and compared with the distribution for nearly jammed configurations (2d). (c) Steady state
shear at one φ, now for the 3D system.
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FIG. 2. Average free volume as a function of volume fraction. Comparison
of configurations under shear and decompressed states. Two different system
sizes are compared to exclude finite-size effects.

finite free volume, but as straining goes on, the number of
those particles reduce and a peak at zero free volume starts
developing (not shown in the figure). At the same time, a
broad tail develops. In the steady-state, thus, the form of
the distribution is rather different than in the decompressed
configuration. Instead of a narrow, peaked distribution, we
obtain a strong peak at zero free volume with a broad power
law tail.

Fig. 1(b) illustrates that, close to jamming, the power-
law tail is independent of density φ, which is also identical
in the exponent to the isotropically jammed state. The
same phenomenon is observed also for the three-dimensional
system, as shown in Fig. 1(c), illustrating that the outcome
is not dependent on dimensionality. An extended discussion
of related results in three dimensions over a wide range
of densities may be found in Ref. 26. Apparently, during
shear particles self-organize in such a way as to mimick the
isotropically jammed state — even though the system is not
jammed and flows as a Newtonian liquid.

It is worthwhile comparing the situation of steady shear
with that of cyclic shear. Experiments performed at low densi-
ties27,28 as well as simulations29 have shown that after sufficient
shear cycles, and for small enough strain amplitude, the system
self-organizes into an absorbing state, where particles do not

collide anymore. Their trajectories during a shear cycle are
strictly reversible (coined point-reversible in Ref. 29). At
larger strain amplitudes, Ref. 29 reports the occurrence of
“loop-reversible” states, where particles still return to their
starting point but their trajectory during the strain cycle is quite
complex. The occurrence of the point-reversible state indicates
that particles generate free volume around themselves in
such a way that during their shear-induced oscillations, no
interactions with other particles occur. The transition to loop-
reversible states then represents an upper limit as to how much
free volume can be generated. Under steady-shear the organi-
zation apparently is opposite, and free volume is not generated
but destroyed (Fig. 2). The average free volume under shear
is roughly two orders of magnitude smaller compared to the
decompressed configuration at the same density.

Another illustrative comparison is with thermal systems.
Recall that the system we study is inherently athermal.
Particles only move because they are driven by shear. To
generate a thermalized system at the same density, we again
use the decompressed state as starting configuration, but now
run short Metropolis Monte-Carlo simulations. For the Monte-
Carlo move, particles are chosen randomly and moved such
that about 50% of the trial moves are accepted. Note, that
we are dealing with states deep within the glassy phase. Full
thermalization is therefore never possible. The resulting free
volume distribution is presented in Fig. 3 and compared to the
sheared state.

It is clear that thermalization acts rather differently than
shearing and does not produce a power-law tail in the free
volume distribution (in agreement with Ref. 19). This is
interesting also from the point of view of shear-induced
effective temperatures,30–33 which rely on the assumption that
driving by shear is in some sense equivalent to thermal driving
but at an “effective” temperature. At least for the observable
under consideration — the free-volume distribution — this
equivalence does not seem to hold here.

Another difference between the sheared and thermal
systems is the distribution of the total free volume among the
particles. In the thermal system (and also under cyclic shear),
the free volume is distributed basically among all particles.
In the sheared system, only a certain fraction of particles
have a non-zero free volume. In the density range we studied,
we find a fraction of 6%–11% of such finite free volume
particles. The majority of particles belong to a backbone of
locally jammed particles with zero free volume. The full free-

FIG. 3. Comparison of free-volume
distributions from jammed, sheared,
and thermalized configurations (left:
2D, right: 3D).
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FIG. 4. Pair correlation function g (r ) for jammed packing, as well as sheared
and thermalized configurations (color code as in Fig. 3). Sheared configura-
tions display the same characteristic power-law slope as the jammed con-
figuration. Thermalization destroys this power-law. Inset shows that sheared
configurations have a split-second peak as seen in jammed configurations,
whereas for thermalized configurations, the sharp features are smeared out.

volume distribution therefore consists of a power-law tail for
particles with finite free volume plus a delta-function peak
for the backbone particles. As the density is increased, more
and more finite free volume particles are incorporated into
the backbone, such that at φc, the backbone becomes globally
jammed and the system solidifies.

A structural self-organization via shear flow is also visible
in the pair-correlation function. The power law singularity as
well as the splitting of the second peak is commonly taken as
the signature of the jammed state. Fig. 4 shows that sheared
configurations exhibit a similar power-law singularity with the
same exponent as in the jammed state, whereas thermalization
destroys the divergence. Also, the splitting of the second peak
in steady-shear is as sharp as in the jammed state but it is
smeared out under thermalization. We have also computed
the radial distribution function only for the finite free volume
particles and find it to be similar as for particles with zero
free volume. This is consistent with the findings of Atkinson
et al.9 who report a certain amount of spatial correlations in
the rattlers.

Solidification is known to occur when the backbone is
exactly isostatic. We can extract the approach to isostaticity
also from the free volumes. To this end, we shrink the particles
(in the steady-state shear configurations) by a very small
factor f . This generates a finite free volume v = O( f d) for the
backbone particles. The average number of facets of these free
volume patches then defines the connectivity of the backbone.

Fig. 5 shows that the backbone network is hypostatic
(as expected in the fluid regime below jamming) and thus
not mechanically stable. Isostaticity is approached as ziso − z
∼ (φc − φ)x, with an exponent x close to one. Being hypostatic,
there are a number of zero frequency modes along which
particles can move without cost in energy. This motion is, for
example, visible as a short-time ballistic regime in the mean-
square displacement.13 Similarly, this motion is reflected in the
temporal evolution of the free volume of the finite free volume

FIG. 5. Effective connectivity in the backbone of zero-free volume particles
— measured via the number of facets of the free volume after tiny amount of
decompression.

particles. The locations of such particles represent holes in the
network of backbone particles and how these holes close or
open-up reflects how particles move in the network.

We calculate the strain needed to close a hole. This
represents a measure for the “life-time” of finite free volume
for a particle that resides in this hole. The probability distri-
bution of strains to close the holes is displayed in Fig. 6. The
striking feature is its power-law tail, which is a consequence
of the broad distribution of hole sizes. Holes can close after
arbitrarily small strains. On large strain-scales, the tail is cut off
at strains γc that decrease with increasing the volume-fraction
towards φc. In fact, the cutoff γc is comparable in magnitude
to the strain γmsd, at which the mean-squared displacement
has a crossover from ballistic to diffusive behavior (extracted
from Fig. 1 in Ref. 13). The strains γmsd for three different φ
are indicated in Fig. 6 by arrows. This connects the evolution
of free-volume patches — holes in the network of backbone
particles — with the single-particle dynamics. The cross-over
to diffusion signals the onset of the decorrelation of the floppy,

FIG. 6. The distribution of strain values needed for closing a hole. The
arrows signify the strain γmsd, at which the particle dynamics (as measured by
the mean-square displacement, msd) crosses over from ballistic to diffusive
(taken from Ref. 13).
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zero-energy modes, and this decorrelation is associated by the
opening and closing of these holes.

IV. CONCLUSION

In conclusion, we have shown that unjammed athermal
hard-particle systems under shear self-organize such that
structural properties resemble those of jammed packings. In
particular, we have reported the probability distribution of
free-volumes as well as the pair-correlation function.

The free-volume distribution in (nearly) jammed packings
has previously been shown to display a power-law tail.19 We
show here that this tail is also present in sheared systems
in a finite interval of densities below the jamming threshold.
By way of contrast, thermalized configurations in this density
range generically show a peaked and rather narrow distribution
of free volumes.

Apparently, shearing and thermalization act rather differ-
ently what regards these local structural properties. Shearing
drives the system “towards” the jamming point, while ther-
malization drives the system away from it.

The average free volume in the sheared configurations is
roughly two orders of magnitude smaller than in the thermal-
ized configurations. Moreover free volume is heterogeneously
distributed among only a few finite free volume particles,
with the majority of particles belonging to a locally jammed
backbone with zero free volume.

Our results raise the question about the relevance of finite
free volume particles for the flow properties close to jamming.
Indeed, a power-law in the free-volume distribution means
that there are particles with arbitrarily small amounts of extra
space. As a consequence, they can easily be integrated into the
backbone after only infinitesimal amounts of strain.
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