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We analyze the dynamics of model supercooled liquids in a temperature regime where predictions
of mode coupling theory (MCT) are known to be valid qualitatively. In this regime, the Adam-Gibbs
(AG) relation, based on an activation picture of dynamics, also describes the dynamics satisfactorily,
and we explore the mutual consistency and interrelation of these descriptions. Although entropy and
dynamics are related via phenomenological theories, the connection between MCT and entropy has not
been argued for. In this work, we explore this connection and provide a microscopic derivation of the
phenomenological Rosenfeld theory. At low temperatures, the overlap between the MCT power law
regime and AG relation implies that the AG relation predicts an avoided divergence at Tc, the origin
of which can be related to the vanishing of pair configurational entropy, which we find occurring at
the same temperature. We also show that the residual multiparticle entropy plays an important role in
describing the relaxation time. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934986]

I. INTRODUCTION

In the study of liquid state physics, the structure of the
liquid, which is often described primarily by the two body
radial distribution function (rdf), has always played a central
role. The structure cannot only describe the thermodynamic
properties of the liquid like the energy and pressure, under
certain theoretical framework like the mode coupling theory
the structure can also determine the dynamics.1,2 In a series
of papers, Berthier and Tarjus have described the behaviour
of two systems with different interaction potentials, namely,
the Lennard-Jones (LJ) and the Weeks-Chandler-Andersen
(WCA) potentials. Although at the same temperature and
density, the structures of these systems are very close, the dy-
namics display significant differences at low temperatures.3–6

These studies questioned the role of structure in determining
the dynamics. Coslovich has shown that although the two
body radial distribution function of these two systems are
quite similar, the triplet correlations are significantly different.7

He has also shown that the LJ system has more pronounced
local ordering.8 In supercooled liquids, these locally preferred
structures are known to form correlated domains which have
been argued to give rise to the slow dynamics.9 An estimation
of this length scale of the domains and its connection to the
relaxation time scale is a topic of ongoing research.10,11 One
such study by Hocky et al. has shown that the point-to-set
correlation length of the LJ system is larger compared to that of
the WCA system and this difference in correlation length can
account for the difference in dynamics of the two systems.12

From these studies, one may conclude that the difference

a)M. K. Nandi and A. Banerjee contributed equally to this work.
b)Electronic mail: mb.sarika@ncl.res.in

in dynamics primarily comes from many body correlations.
However, in one of our recent study, it has been shown that
two body correlation information is good enough to capture the
difference in the dynamics between the two systems. The study
also reveals that the temperature at which an approximation
to the configurational entropy using pair correlation alone
goes to zero, is similar to the mode coupling theory (MCT)
transition temperature, Tc.13 As mentioned before, MCT is
a microscopic theory where the structural inputs determine
the dynamics. Although entropy and dynamics are related
via phenomenological Rosenfeld14 and Adam-Gibbs (AG)15

relations at high and low temperatures, respectively, MCT
does not have any apparent connection to entropy. Thus,
it is of great interest to try to understand the origin of
the coincidence of the MCT divergence temperature and
the temperature where pair configurational entropy goes to
zero.

At normal liquid temperatures, a semi-quantitative corre-
lation between the dynamics (transport properties) and ther-
modynamics (excess entropy), proposed by Rosenfeld,14,16 has
been extensively studied in recent times, where the relaxation
time τ can be written as

τ(T) = C exp [−KSex] . (1)

Here, C and K are constants. Since the pair entropy S2,
which is obtained only from the pair correlation function,
accounts for 80%–90% of the excess entropy,13,17 many
simulation studies have replaced Sex by S2 and have shown
that even with S2, the transport coefficients follow Rosenfeld
scaling.6,18–21

Bagchi and coworkers used Zwanzig’s rugged ener-
gy landscape model of diffusion22 and by connecting the

0021-9606/2015/143(17)/174504/11/$30.00 143, 174504-1 © 2015 AIP Publishing LLC
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ruggedness to the excess entropy have provided a derivation
of Rosenfeld relation.23 Samanta et al.24 have shown that
under certain approximations the diffusion coefficient as
obtained from MCT follows Rosenfeld scaling. Das and
coworkers have performed microscopic MCT calculations
which show that the diffusion values thus obtained can be
fitted to Rosenfeld scaling.25 Some of these studies have
reported that the scaling parameter is not unique; hence, the
whole temperature region cannot be fitted to a single straight
line.25,26

Although Rosenfeld scaling holds at high temperatures, it
is known to breakdown at low temperatures even with multiple
scaling parameters. At low temperatures, the correlation
between the transport coefficients and entropy is usually
described by the well known Adam-Gibbs relation,15

τ(T) = τo exp
(

A
T Sc

)
, (2)

where Sc is the configurational entropy of the system. For a
wide range of systems, the AG relation is found to hold13,27,28

below a moderately high temperature referred to as the onset
temperature of slow dynamics.

In this paper, we explore the connection between dy-
namics, characterization of structure as contained in the pair
and higher order correlations, and entropy, and relations
between them as described by the MCT and the AG
relation, using computer simulations of two model liquids
and analytical results that seek to relate descriptions of
dynamics in terms of structure, and entropy. Our present
study shows that the AG theory, which is based on activation
dynamics can completely describe the MCT power law
behaviour in the region where the latter is found to be valid.
An earlier study which observed a similar overlap region29

argued that the observation supports the hypothesis that a
direct relation exists between the number of basins and their
connectivity.30,31

There has also been a recent study32 where the config-
urational entropy is evaluated by considering the effective
potential between the coupled replicas of two model liquids,
and the observed shrinking of the domain of validity of
the AG relation is claimed to be a parallel observation
based on experimental data,33,34 which appears not to be a
related observation upon closer inspection. Experimentally,
the configurational entropy is estimated through the excess
entropy over the crystal, and in Ref. 34 it was shown that
the ratio of the configurational heat capacity to the excess
heat capacity increases with a decrease of the fragility. In
turn, it was shown in Ref. 33 that less fragile liquids show
a closer conformity with the Adam-Gibbs relation at high
temperatures. Thus, the conclusion that could be derived from
the experimental studies is that a proper subtraction of the
vibrational component of the entropy would lead to better
agreement with the Adam-Gibbs relation. This is indeed what
is achieved in the procedure we employ here, and a large
number of simulation studies29,35–44 using procedures similar
to ours show impressive ranges of temperatures over which
the Adam-Gibbs relation is valid. Thus, the implications of
the results32 remain to be properly understood. Further, the
observation in Ref. 33 was that the linear dependence of the

T Sc, required to obtain the Vogel-Fulcher-Tammann (VFT)
temperature dependence via the Adam-Gibbs relation, was
valid over the range of temperatures studied, but the relaxation
times showed deviations from the VFT form. For the systems
studied in the present work, the linear temperature dependence
of T Sc is observed in the temperature range studied, and
the relaxation times are found as well to obey the VFT
temperature dependence. But we also find a temperature
window of overlap where both the Adam-Gibbs and VFT form,
as well as the power law dependence predicted by MCT, appear
valid. In order to understand this observation, we explore the
connection between MCT and entropy and discuss different
predictions of MCT in the light of entropy.

Although MCT makes predictions about dynamics in
both Rosenfeld and AG temperature regimes, no connection
between MCT and entropy has been argued for, except
for one study,24 as mentioned earlier. We show that, under
some assumptions, the memory function in the MCT equa-
tion for structural relaxation is related to the pair excess
entropy, thus providing a microscopic derivation of the
phenomenological Rosenfeld expression for the structural
relaxation time, τ. Our study also can explain the origin
of the temperature dependence of the Rosenfeld param-
eter. Earlier studies have shown that the relaxation time
as obtained from simulation is smaller and have lower
activation energy when compared to that predicted by MCT
using the structural information from the simulations.4,45

Our analysis of the memory function can explain this
behaviour.

As mentioned above, the AG relation is valid for a wide
temperature range which includes the range in which the MCT
power law prediction holds. Thus, in the MCT regime, the
relaxation time follows both the AG and MCT behaviours.
Our study reveals that the origin of the avoided divergence-like
behaviour (as given by MCT power law) in the AG relation is
related to the vanishing of the pair configurational entropy.
For all the systems studied here, the pair configurational
entropy is found to vanish close to the MCT transition
temperature Tc. Although we find an empirical evidence of
the coincidence of these two temperatures, in the present
study, we have not been able to establish a causal relationship
between them. We also show that the pair configurational
entropy via the AG relation, although predicts the correct
MCT transition temperature, by itself cannot predict the MCT
power law behaviour. The RMPE plays an important role in
providing the correct temperature dependence of relaxation
times. We also find a connection between the AG coefficient
(A), pair thermodynamic fragility (KT2) and MCT critical
exponent (γ). We show that although both “A” and KT2 are
dependent on density, their ratio which is related to γ is
density-independent.

The paper is organized as follows: The simulation details
are given in Sec. II. In Sec. III, we describe the methods
used for evaluating the various quantities of interest and
provide other necessary background. In Sec. IV, we report
some observations that motivate our analytical results which
are described in Sec. V. In Sec. VI, we present additional
numerical results and their analysis. Sec. VII contains a
discussion of presented results and conclusions.
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II. SIMULATION DETAILS

We have simulated the Kob-Andersen model which is a binary mixture (80:20) of LJ particles and the corresponding WCA
version.46,47 The interatomic pair potential, Uαβ(r) between species α and β, where α, β = A,B, is described by a shifted and
truncated LJ potential, as given by

Uαβ(r) =



U (LJ )
αβ (r;σαβ, ϵαβ) −U (LJ )

αβ (r (c)αβ;σαβ, ϵαβ), r ≤ r (c)αβ

0, r > r (c)αβ

, (3)

where U (LJ )
αβ (r;σαβ, ϵαβ) = 4ϵαβ[(σαβ/r)12 − (σαβ/r)6] and

r (c)αβ = 2.5σαβ for the LJ systems and r (c)αβ is equal to the posi-
tion of the minimum of U (LJ )

αβ for the WCA systems. Length,
temperature, and time are given in units of σAA, kBT/ϵ AA, and
τ =
√(mAσ

2
AA/ϵ AA), respectively. Here, we have simulated

Kob Andersen Model with the interaction parameters σAA

= 1.0, σAB = 0.8, σBB = 0.88, ϵ AA = 1, ϵ AB = 1.5, ϵBB

= 0.5, mA = mB = 1.0.
The molecular dynamics (MD) simulations have been

carried out using the LAMMPS package.48 We have performed
MD simulations in the canonical ensemble (NVT) using Nosé-
Hoover thermostat with integration time step 0.005τ. The
time constants for Nosé-Hoover thermostat are taken to be
100 time steps. The sample is kept in a cubic box with peri-
odic boundary condition. System size is N = 500, NA = 400
(N = total number of particles, NA = number of particles
of type A) and we have studied a broad range of density ρ
from 1.2 to 1.6. For all state points, three to five independent
samples with run lengths >100τ (τ is the α-relaxation time) are
analysed.

III. DEFINITIONS AND BACKGROUND

A. Relaxation time

We have calculated the relaxation times from the decay
of the overlap function q(t), using q(t = τ,T)/N = 1/e. The
overlap function is defined as

⟨q(t)⟩ ≡


dr ρ(r, t0)ρ(r, t + t0)


=

 N
i=1

N
j=1

δ(r j(t0) − ri(t + t0))


=

 N
i=1

δ(ri(t0) − ri(t + t0))


+


i


j,i

δ(ri(t0) − r j(t + t0))

. (4)

The overlap function is a two-point time correlation function of
local density ρ(r, t). It has been used in many recent studies of
slow relaxation.27 In this work, we consider only the self-part
of the total overlap function (i.e. neglect the i , j terms in the
double summation) as the dependence of the relaxation time on
temperature or density is similar both for self- and full overlap
function.

So, the self-part of the overlap function can be written as

⟨q(t)⟩ ≈
 N
i=1

δ(ri(t0) − ri(t + t0))

. (5)

The δ function is approximated by a window function
ω(x) which defines the condition of overlap between two par-
ticle positions separated by a time interval t,

⟨q(t)⟩ ≈
 N
i=1

ω(| ri(t0) − ri(t + t0) |)


ω(x) = 1, x ≤ a implying overlap

= 0,otherwise. (6)

The time dependent overlap function thus depends on the
choice of the cutoff parameter a, which we choose to be 0.3.
This parameter is chosen such that particle positions separated
due to small amplitude vibrational motion are treated as the
same, or that a2 is comparable to the value of the MSD in the
plateau between the ballistic and diffusive regimes.

Relaxation times have been obtained from the decay of
the self-intermediate scattering function φs(k, t) using the defi-
nition φs(k, t = τ,T) = 1/e at k ≃ 2π/rmax, where rmax is the
first maximum of the radial distribution function. The self-
intermediate scattering function is calculated from the simu-
lated trajectory as

φs(k, t) = 1
N

 N
i=1

exp (−ik.(ri(t) − ri(0)))

. (7)

Since the relaxation times obtained from q(t) and φs(k, t)
behave very similarly, for the low temperature calculation
which requires longer time averaging, to save computational
time we have used the time scale obtained from q(t).

B. Static structure factor

The partial structure factors Sαβ(k), needed as input for
the MCT calculations, can be defined as

Sαβ(k) = 1
NαNβ

Nα
i=1

Nβ
j=1

exp (−ik.(rαi − rβj )). (8)

C. Mode coupling theory

Many properties of glass forming liquids can be explained
by the well known MCT. This microscopic theory can give
a qualitative description of dynamical properties (such as
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temperature dependence of relaxation time) if the static struc-
ture of the liquid is known and many experiments and simula-
tion results have shown that MCT predictions hold good in the
temperature regime of initial slow down of the dynamics.2 The
equation for the intermediate scattering function for the binary
mixture is given by

S̈(k, t) + ΓṠ(k, t) +Ω2(k)S(k, t)
+Ω2(k)


dt ′M(t − t ′)Ṡ(k, t ′) = 0, (9)

where Ω2(k) = k2kBT
m

S−1(k) and S(k, t) is the matrix of inter-
mediate scattering functions Sαβ(k, t) and the memory function
M can be written as

(Ω2(k)M(k, t))αβ =
1

2ρ√xαxβ


ll′mm′


dq

(2π)3
Vαlm(q,k − q)Vβl′m′(q,k − q)
× Smm′(| k − q |)Sll′(q)
φmm′(| k − q |, t)φll′(q, t), (10)

where φαβ(k, t) = Sαβ(k, t)
Sαβ(k,0) , k − q = p, and Vαlm(q,p)

= [k̂.qδαmCαl(q) + k̂.pδαlCαm(p)]; here, C(q) is defined as
S−1(q) = 1 − C(q). The static structure factor is obtained from
computer simulation using Eq. (8).

Solving Eq. (9) we have calculated the relaxation times,
ταβ from φαβ(q, t) at 1/e and the average relaxation time is
obtained from the following equation:

τMCT =

αβ

xαxβταβ. (11)

D. Configurational entropy

Configurational entropy (Sc per particle) is a measure of
the number of distinct local energy minima. It is calculated49 by
subtracting the vibrational component from the total entropy
of the system: Sc(T) = Stotal(T) − Svib(T).27,36 The total entropy
for the binary mixture is obtained via thermodynamic integra-
tion from the ideal gas limit. Vibrational entropy for the binary
mixture is calculated by making a harmonic approximation to
the potential energy about a given local minimum.

E. Pair configurational entropy

To get an estimate of the configurational entropy as pre-
dicted by the pair correlation we rewrite Sc in terms of the pair
contribution to configurational entropy Sc2,13

Sc = Sid + Sex − Svib

= Sid + S2 + ∆S − Svib = Sc2 + ∆S. (12)

Sex can be expanded in an infinite series, Sex = S2 + S3 + . . .
= S2 + ∆S using Kirkwood’s factorization50 of the N-particle
distribution function.51–53 Sn is the “n” body contribution to the
entropy. Thus, the pair excess entropy is S2 and the higher order
contributions to excess entropy is given by the residual multi-
particle entropy (RMPE), ∆S = Sex − S2.54 The pair configura-
tional entropy is written as Sc2 = Sid + S2 − Svib. An expansion
of Svib in terms of two and many body would be interesting
but to the best of our knowledge, this has not been attempted

before. Thus, we have used total Svib. The pair entropy S2 for
a binary system can be written in terms of the partial radial
distribution functions,

S2

kB
= −2πρ


α,β

xαxβ

 ∞

0
{gαβ(r) ln gαβ(r)

− [gαβ(r) − 1]}r2dr, (13)

where gαβ(r) is the atom-atom pair correlation between atoms
of type α and β, N is the total number of particles, xα is the
mole fraction of component α in the mixture, and kB is the
Boltzmann constant.

IV. OBSERVATIONS

As the liquid is supercooled, the Rosenfeld scaling, ob-
served to be valid at normal temperatures, is known to break
down.26 However, in this regime, the Adam-Gibbs relation
is found to hold.15,27 The Adam Gibbs relation explains the
behaviour of dynamical property like relaxation time using
configurational entropy which is a thermodynamical property.
So this relation connects thermodynamics and dynamics for
low temperature liquids. In the Adam-Gibbs relation, it is
not the excess entropy but the configurational entropy which
dictates the dynamics.

Although microscopic MCT shows a divergence of the
relaxation time, τ, at a much higher temperature55 than the
glass transition temperature, the power law behaviour of τ
as predicted by MCT is found to be valid in a range of low
temperatures. Similar to the earlier studies,4,45 the power law
behaviour of simulated τ is well described by an algebraic
divergence given by

τ ∼ (T − Tc)−γ ∼ ( T
Tc
− 1)−γ. (14)

For all the densities we study, as shown in Fig. 1, in
a certain region of temperature, (10−1 ≤ ( T

Tc
− 1) ≤ 100), the

relaxation time, τ, for both LJ and WCA systems follow the
MCT power law behaviour. On the other hand, the Adam
Gibbs relation is also valid for all the systems in the region

FIG. 1. The power law behaviour of relaxation times of numerical simu-
lation, τ, as predicted by MCT (Eq. (14)) appears as a straight line for a
certain region (10−1 ≤ ( T

Tc
−1) ≤ 100) for both the systems at all densities.

The critical exponent γ is obtained from the slope of the linear fit. For clarity,
data at different densities are vertically shifted.
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FIG. 2. 1
TSc

plotted against ( T
Tc
−1) and as predicted by Eq. (15) the plots

are linear in the region 10−1 ≤ ( T
Tc
−1) ≤ 100 validating our claim that MCT

power law regime overlaps with AG regime.

(0 . ( T
Tc
− 1) ≤ 100).56 Thus, we find that the temperature

range, where the MCT like behaviour is predicted, completely
overlaps with the range where the Adam-Gibbs relation is
found to be valid. As mentioned in the Introduction, this
overlap regime has earlier been reported for other systems.29

As in this temperature regime, τα can be described both by
MCT power law behaviour and by the AG relation we can write

A
T Sc
∝ −γ ln( T

Tc
− 1). (15)

In Fig. 2, we show that 1
TSc

is linear when plotted against
ln( T

Tc
− 1) in the region 10−1 ≤ ( T

Tc
− 1) ≤ 100 validating the

statement that MCT like divergence region overlaps with AG
region.

Since the configurational entropy has a finite value at
the MCT transition temperature, Tc, the AG relation is not
expected to predict a divergent relaxation time at this tempera-
ture. In order to investigate the origin of this avoided transition,
we consider the separation of the configurational entropy into
pair and many body parts as described earlier (Sec. III E).13

We find that the temperature dependence of (Sc2) is given by
(Fig. 3)

T Sc2 = KT2( T
TK2
− 1), (16)

FIG. 3. The temperature dependence of pair configurational entropy (Sc2) to
determine Kauzmann temperature TK2. TK2 values are given in Table I.

TABLE I. Tc
6 and TK2 values are tabulated below. For all the systems

studied here, the Kauzmann temperatures for Sc2 are quite similar to the MCT
transition temperatures.

ρ = 1.2 ρ = 1.4 ρ = 1.6

Tc TK2 Tc TK2 Tc TK2

LJ 0.435 0.445 0.93 0.929 1.76 1.757
WCA 0.28 0.268 0.81 0.788 1.69 1.696

where KT2 is the pair thermodynamic fragility and Sc2 vanishes
at the Kauzmann temperature TK2.13 TK2 is obtained from the
linear fit of T Sc2 vs T plot at Sc2 = 0. As reported earlier, we
find that for all the systems studied in this work, the Kauzmann
temperature for Sc2 is very close in value to the MCT transition
temperature (Table I).

Thus, although Sc is finite at the estimated MCT Tc, Sc2
vanishes at TK2 which coincides with Tc.

V. ANALYTICAL RESULTS

Our study shows that the AG theory, which is based on
activation dynamics can completely describe the mode coupl-
ing theory power law behavior in the region where the latter is
found to be valid (Fig. 2). However, the microscopic picture for
mode coupling theory and the Adam Gibbs relation is different.
Either from the heuristic arguments of Adam and Gibbs, or
from the Random First Order Transition (RFOT) derivation,
the AG relation is obtained from an activation picture of the
dynamics, whereas the MCT does not correspond to activated
dynamics. This leads to the question of the role of entropy in
MCT which will be the focus of this section.

A. Entropy and MCT

In the k → 0 limit, the memory function for a monatomic
system,M(k, t) can be written as

M(k, t) = S(k)
8π2ρk

 ∞

0
dq × q2(S(q) − 1)2 × φ2(q, t). (17)

In the schematic MCT, the φ(q, t) is usually decoupled from q
and the rest of the memory function is integrated over the first
peak of the S(q). The coupling constant λ is then considered
to be proportional to this integrated value. This decoupling is
possible as the dominant contribution in the memory function
comes from the first peak of S(q).57,58 Here, we consider a
similar decoupling; however, we do not restrict ourself to first
peak of S(q). Thus, we write Eq. (17) as

M(k, t) = S(k)
4ρk(2π)3

 ∞

0
dq(S(q) − 1)2


× φ2(k, t). (18)

By writing S(q) in terms of g(r), we can rewrite Eq. (18) as

M(k, t) = S(k)
2k
× 2πρ


drr2(g(r) − 1)2


φ2(k, t). (19)

In Eq. (9), we replaceM(k, t) by its approximate form given in
Eq. (19). Considering over damped limit and also by omitting
the explicit “k” dependence of φ(t), Eq. (9) can be written in
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schematic form as

φ̇(t) +Ω2φ(t) +Ω2λ

 t

0
dt ′φ2(t ′)φ̇(t − t ′) = 0, (20)

where now we can identify the coupling parameter λ as

λ =
S(k)
2k
× 2πρ


drr2(g(r) − 1)2 = − S(k)

2k
S2approx

kB
. (21)

Here, we call S2approx as the approximate pair entropy. Note that
similar analysis can be extended to a binary system and S2approx

can be written as
S2approx

kB
= −2πρ


α,β

xαxβ

 ∞

0
drr2[gαβ(r) − 1]2. (22)

The choice of calling it entropy will become clear in the
next analysis. Note that although we do the derivation for a
single component system the numerical calculations are all
done for binary mixtures.

Our numerical analysis shows that for all the systems
studied here, S2approx vs S2 is indeed linear (Fig. 4) with a slope
= 2.5.

To understand this proportionality, we expand the loga-
rithmic term of Eq. (13) for gαβ(r) > 0,

S2

kB
= −2πρ


α,β

 ∞

0
drr2[gαβ(r) − 1]2 1

(gαβ(r) + 1) + H,

(23)

where in “H” we put the higher order contributions. The Fig. 5
shows that the primary contribution comes from the first term
of Eq. (23).

In the above equation, we note that r2[gαβ(r) − 1]2 varies
strongly compared to 1/(gαβ(r) + 1). In the latter, if we con-
sider gαβ(r) ≈ 1 we can write

S2approx

kB
= −2πρ


α,β

 ∞

0
drr2[gαβ(r) − 1]2 ∼ 2

S2

kB
− 2H.

(24)

Thus, analytically we can predict the value of the slope
to be 2. But this is a limiting case. For the systems studied
here, near the peaks, gαβ(r) has values greater than 1. Hence
the value of the slope is expected to be greater than 2 which
supports the numerical observation.

FIG. 4. S2approx is plotted against S2 and it shows a linear behaviour with a
slope ≈ 2.5.

FIG. 5. The function ( S2
kB
−H ) of Eq. (23) and S2/kB is plotted as a function

of temperature. The plot shows that the primary contribution comes from the
first term of the expansion.

Thus, the coupling constant λ can be related to the pair
entropy,

λ = − S(k)
2k
×

S2approx

kB
= −ms

S(k)
2k

(S2/kB − H), (25)

where ms is the slope obtained from S2approx vs S2 plot.
The MCT relaxation time from schematic model58 is given

by

τ ∼ (1 − λ

4
)−γ. (26)

Note that the power law behaviour of relaxation time τ (as
given by Eq. (26)) changes to exponential dependence of τ un-
der generalized MCT formalism,59 when the coupling param-
eter is considered to be the same for all higher order terms and
frequency Ω ∼ 1. With these conditions τ can be written as

τ =
1
Ω2λ

(exp(λ) − 1) ∼ exp(λ)
λ

∼ C ′ exp(K ′S2). (27)

The second equality is written by replacing λ from Eq. (25).
Where C ′ and K ′ are not constants, they rather have a temper-
ature dependence.

Earlier study of diffusion24 and our present microscopic
derivation of the Rosenfeld relation for relaxation time τ show
that similar to Rosenfeld prediction, the MCT also predicts it
to be a universal scaling law for all transport coefficients.

VI. NUMERICAL RESULTS

A. Rosenfeld scaling and MCT

In this section, we analyze the MCT results in the light of
Rosenfeld relation. We find that the relaxation time as obtained
from microscopic MCT, τMCT when plotted against λ does not
follow the power law ((1 − λ

4 )−γ) or exp(λ) dependence in the
whole temperature regime. Note that only very close to the
transition temperature, the power law behaviour is expected
to be valid.45 However, surprisingly we find that ln(λτMCT)
vs λ follows a linear behaviour (Fig. 6(a)), where the τMCT

has been calculated only at the two body level, whereas the
exponential dependence comes when higher order correlations
are considered.
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FIG. 6. (a) The plot of ln(λτMCT) vs λ shows a linear regime for wide temperature range. (b) The relaxation times obtained from microscopic MCT, τMCT
are plotted against S2. The dashed lines illustrate the two different Rosenfeld regimes. (c) Plot of λ vs. S2 also shows two different linear regimes. For clarity
ln(λτMCT) and ln(τMCT) are shifted by 1.0 and 2.0 and for λ it is −0.2 and −0.48 for the systems of ρ = 1.4 and ρ = 1.6, respectively. The breaks in the slope
for both the plots are illustrated by vertical dashed-dotted lines. We show that for a fixed density the breaks for both τMCT and λ are at the same S2 value.

Usually it is found21,25 that both τMCT and τ (relaxation
time obtained from simulation) when plotted against S2 do not
show a single straight line. For τMCT, the Rosenfeld break
happens at high temperature compared to simulation data
and these can be attributed to the well known difference
in microscopic MCT transition temperature and Tc.45,55 In
Fig. 6(b), we plot the τMCT calculated from Eq. (11) against
S2 and similar to earlier studies it shows two linear regimes.
The origin of this break or the temperature dependence of
the Rosenfeld parameters “C ′” and “K ′” is not known in the
literature.

Our analysis of Eq. (25) shows that the Rosenfeld
parameters are related to the static structure factor S(k). Thus,
the temperature dependence of S(k) leads to the temperature
dependence of Rosenfeld parameters “C ′” and “K ′.” However,
since S(k) changes continuously with temperature, it should
lead to a similar temperature dependence of “C ′” and K ′.
When we plot λ against S2 we find that continuously changing
values for “C ′” and “K ′” are not needed to describe the
observed behaviour but two distinct values suffice (Fig. 6(b)).
We see that there is a break in the slope and it happens
at the same S2 value where τ against S2 shows a break in
slope.

Next, we show that the value of S2approx and its tempera-
ture dependence as compared to Sex can explain (i) the larger
values of τMCT as compared to τ45 and (ii) the higher values of
activation energy as predicted by MCT.4 Note that, in an earlier

study, the activation energy E0, for the simulated system was
calculated from the time scale of self-intermediate scattering
function, whereas for the MCT part, it was calculated from
the time scale of intermediate scattering function.4 We have
followed a similar prescription. Esim

0 and EMCT
0 , as shown in

Table II, are obtained by fitting τ and τMCT to Arrhenius expres-
sion,

τ ∼ τ0 exp
E0

T
. (28)

Fig. 7 shows that at all densities for both the systems
S2approx are smaller than Sex and has a much stronger tempera-
ture dependence. Using Rosenfeld Expression, we can
write

TABLE II. E0 values are tabulated for different systems. We show that the E0
values are higher for MCT as well as for approximate calculation compared
to that of simulation results. Note that in an earlier study the activation
energy E0 for the simulated system was calculated from φs(q, t), whereas
for the MCT part, it was calculated from φ(q, t).4 We have followed a similar
prescription.

ρ = 1.2 ρ = 1.4 ρ = 1.6

LJ WCA LJ WCA LJ WCA

Esim
0 2.509 1.901 5.997 5.694 12.499 11.749

EMCT
0 5.002 3.993 11.565 10.775 21.748 21.082

E
approx
0 6.224 5.705 16.535 15.831 37.159 36.564
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FIG. 7. Sex and S2approx are plotted as a function of temperature for LJ and WCA systems at densities 1.2, 1.4, and 1.6. For all the systems S2approx has stronger
temperature dependence and has smaller value than Sex. In inset we plot τ2approx as obtained from Eq. (30). It shows that τ2approx has higher value and a larger
slope leading to higher activation energy as compared to τ. Activation energies are tabulated in Table II.

τ(T) = C exp(−KSex). (29)

Now if we replace Sex by S2approx, keeping C and K same, we
get

τ2approx = C exp(−KS2approx). (30)

The C and K are obtained from linear fits of logarithm of
simulated relaxation time against excess entropy. Since
S2approx ≪ Sex, the study shows that τ2approx ≫ τ. The study
also shows that similar to that predicted by microscopic MCT
(Eq. (9)), the E0 values for τ2approx are higher, which are given
in Table II.

Although the results obtained from τ2approx shows the cor-
rect trend, it cannot match the parameters as obtained from
τMCT. We note that the τ2approx is a prediction obtained from
schematic MCT, which is known to overestimate the coupling

constant λ. However, this analysis not only explains the behav-
iour of MCT at high temperature, it also throws some light in
the origin of its breakdown at low temperature. Usually the
breakdown of MCT at low temperature has been attributed to
the neglect of higher order correlation functions.59,60 This pres-
ent analysis predicts that the stronger temperature dependence
of the vertex might be partially responsible for the breakdown
of MCT even at low temperature.

B. The Adam Gibbs relation and MCT

We have shown that the relaxation time, τ, over a
temperature regime (10−1 ≤ ( T

Tc
− 1) ≤ 100) follows both the

AG relation and MCT power law behaviour. We also find
that the avoided divergence observed in the configurational
entropy plot (Fig. 2) arises from the vanishing of the pair
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configurational entropy (Sc2). For all the systems studied here,
we find TK2 ≃ Tc (Table I). Note that although we find a
strong empirical evidence for the coincidence of these two
temperatures, we have not established a causal relationship
between the vanishing of Sc2 and MCT crossover. However,
the AG theory, which describes activated motion, depends on
the full Sc which has contributions both from pair and higher
order correlations. Since activation is a many body effect, one
may speculate that the pair contribution even in AG describes
non-activated dynamics. Thus, it is plausible that similar to
MCT Tc, the temperature at which Sc2 goes to zero also
marks a transition from non-activated to activated dynamics.
Using the information given in Table I we can rewrite Eq. (16)
as

T Sc2 = KT2( T
TK2
− 1) ≃ KT2( T

Tc
− 1). (31)

We note that although TK2 ≃ Tc and the MCT frame-
work which predicts the power law behaviour is developed
at the two body level, the AG relation with Sc2 alone cannot
predict the MCT power law behaviour. The RMPE plays an
important role in predicting it. We also show that there is
indeed a relation between MCT critical exponent γ, Adam
Gibbs coefficient A, and the pair thermodynamic fragility
KT2.

As shown earlier in Eq. (12), configurational entropy can
be written in terms of pair configurational entropy and RMPE.
Thus, we can write

A
T Sc
=

A
T Sc2 + T∆S

=
A

KT2

1
[( T

Tc
− 1) + T∆S

KT2
] , (32)

where we have used Eqs. (12) and (31) to write the first and
second equalities, respectively.

We find that althoughT∆S is system dependent (Fig. 8(a)),
except for WCA system at ρ = 1.2, the function T∆S

KT2
shows a

master plot when plotted against ( T
Tc
− 1) (Fig. 8(b)). Note that

although the value of T∆S
KT2

is small, it is not negligible.
The master plot of T∆S

KT2
can be fitted to a straight line,

T∆S
KT2
= 0.26 − 0.35( T

Tc
− 1). Next, we show that a function

1
( T
Tc
−1)+ f (T ) , when plotted against ln( T

Tc
− 1) shows linearity

in the whole regime of (10−1 ≤ ( T
Tc
− 1) ≤ 100) only when

f (T) is non-negligible positive quantity (Fig. 8(c)). Note that in
Fig. 8(c), when f (T) = 0 (which implies ∆S = 0 in Eq. (32)),
the function diverges strongly. This shows that the AG relation
at two body level cannot predict the MCT power law behaviour.

The analysis further shows that to obtain a correct estima-
tion of the MCT power law exponent γ (slope of the plot), f (T)
needs to obey the following temperature dependence, f (T)
= T∆S

KT2
= 0.26 − 0.35( T

Tc
− 1). The two functions T∆S

KT2
and

FIG. 8. (a) T∆S values are plotted as a function of ( T
Tc
−1) and they show a strong system dependence. (b) T∆S

KT2
vs ( T

Tc
−1) showing a master plot for all the

systems except for WCA system at ρ = 1.2. Dotted line is guide to eye. (c) (( T
Tc
−1)+ f (T ))−1 plotted against ( T

Tc
−1) by varying f (T ). Only for non-negligible

positive values of f (T ), linearity is found in the regime 0.1 to 1.0 of ( T
Tc
−1). To obtain a correct estimation of the MCT power law exponent γ (slope of the

plot), f(T) needs to be temperature dependent (green dashed line). (d) [ 1
( T
Tc
−1)+ T∆S

KT2

] vs ( T
Tc
−1) shows a master plot for all the systems except for WCA system

at ρ = 1.2. “m” is the slope of the linear plot which is tabulated in Table III.
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TABLE III. The slope of the linear plot of [ 1
( T
Tc
−1)+ T∆S

KT2

] vs ( T
Tc
−1) in the

region (10−1 ≤ ( T
Tc
−1) ≤ 100) (Fig. 8(a)).

ρ m(LJ) m(WCA)
1.2 0.987 0.749
1.4 1.038 0.888
1.6 1.004 1.000

( T
Tc
− 1) contributing to the denominator in Eq. (32) show

opposite trends, the former increases whereas the latter de-
creases with temperature. Therefore, a crossover between these
two functions is observed in this regime. Around MCT transi-
tion temperature, T∆S

KT2
≫ ( T

Tc
− 1) and both the configurational

entropy and the relaxation time are determined primarily by
many body contributions.

From Fig. 8(d) we find in the temperature regime (10−1

≤ ( T
Tc
− 1) ≤ 100) Eq. (32) can be re-written as

A
T Sc
=

A
KT2

1
[( T

Tc
− 1) + T∆S

KT2
] ∼ −

mA
KT2

ln( T
Tc
− 1), (33)

where “m” is the slope obtained from Fig. 8(d) and given in
Table III. Since τ is found to follow AG relation we can write

τ ∼ exp( A
T Sc

) ∼ ( T
Tc
− 1) mA

KT2 . (34)

Comparing Eqs. (14) and (34) we can write

mA
KT2
∼ γ, (35)

where m ≃ 1 for all the systems except for the WCA system
at ρ = 1.2. Thus, we show that the MCT scaling parameter,
γ is related to the AG parameter, A and the pair thermody-
namic fragility of Sc2, KT2. We have tabulated the γ values in
Table IV, which shows the above relation holds. The devia-
tion of slope value (“m”) from unity for WCA system at ρ
= 1.2 may have some connection to its breakdown of density-
temperature scaling which needs to be investigated in future.

The MCT critical exponent (γ) is known to be density-
temperature independent2. Interestingly, we also find that
although both AG coefficient (A) and pair thermodynamic
fragility (KT2) are strongly dependent on density and temper-
ature (Table V), however their ratio, which is predicted here to
be related to γ (Eq. (35)), is density-temperature independent
(Table IV).

Note that there is an ambiguity in obtaining the MCT Tc

and γ value. The fitted (empirical) mode-coupling temperature
can be shifted quite a bit at the cost of changing the power
law exponents. Whereas in the present calculation the Tk2 and

TABLE IV. mA/KT2 and γ for LJ and WCA system. As predicted by
Eq. (35) mA/KT2 values are similar to γ values obtained from free fitting
(Fig. 1) for most of the systems.

ρ = 1.2 ρ = 1.4 ρ = 1.6

mA/KT2 γ mA/KT2 γ mA/KT2 γ

LJ 2.32 2.23 2.38 2.39 2.35 2.30
WCA 2.93 2.24 2.86 2.29 2.58 2.30

TABLE V. The Adam Gibbs coefficient “A,” as obtained from the linear fit of
τ vs 1/TSc plot, and pair thermodynamic fragility KT2, as obtained from the
linear fit of TSc2 vs T /Tk2 plot for both the systems at different densities are
tabulated below. The data show that both are strongly dependent on density.

ρ A(LJ ) A(WCA) KT2(LJ ) KT2(WCA)
1.2 1.87 1.89 0.795 0.483
1.4 3.57 4.37 1.555 1.358
1.6 6.96 7.57 2.971 2.936

γ are obtained independently from two different fits. The Tk2
is obtained from a linear fit (as shown in Fig. 3). Once Tk2
is obtained, we can obtain the γ value by plotting 1/T Sc vs
ln( T

Tk2
− 1), where the slope of the linear regime is related to γ

(Eq. (15)). Thus, there is less ambiguity in obtaining Tk2 and γ
from entropy. Hence, we can consider Tk2 as a less ambiguous
quantity than Tc.

VII. CONCLUSION

In this work, we show that in a certain region (10−1

≤ ( T
Tc
− 1) ≤ 100) the relaxation time follows both the AG

relation and MCT power law behaviour. We also find that the
MCT divergence temperatures coincide with the temperatures
where pair configurational entropy goes to zero for all the sys-
tems studied here. AG relation is based on activated dynamics,
whereas MCT is mean field theory which at the two body level
does not address any activated dynamics. Also the microscopic
MCT does not have any apparent connection to entropy. Thus,
to understand the above mentioned observations, we explore
the connection between mode coupling theory and entropy and
discuss different predictions of MCT in the light of entropy.

We show that the MCT vertex for the structural relaxation
time under certain approximations can be related to the pair
excess entropy. Higher order MCT calculations in the sche-
matic MCT framework can relate the relaxation time to the
exponential of this vertex. Thus, the MCT can provide a micro-
scopic derivation of the phenomenological Rosenfeld theory.
Our analysis shows that the Rosenfeld parameters are related
to the static structure factor S(k). The temperature dependence
of S(k) leads to the temperature dependence of Rosenfeld
parameters “C” and “K ,” thus explaining the earlier observa-
tion of the non-uniqueness of the Rosenfeld exponent.25,26 The
analysis of the vertex reveals that quantity which contributes
to the vertex, S2approx has a much lower value and stronger
temperature dependence as compared to the excess entropy,
Sex. If we assume the Rosenfeld scaling to be valid and replace
Sex by S2approx, the predicted relaxation time shows similar
characteristics as the MCT relaxation time. Thus, the study
reveals that the larger value of τMCT and its higher activation
energy as compared to the simulation results, is related to the
value and temperature dependence of the vertex. This analysis
further reveals that the breakdown of MCT at low temperature
might be partially related to the strong temperature dependence
of the vertex.

As mentioned earlier, the AG theory, which is based on
activation dynamics, can completely describe the MCT power
law behavior in the region where the latter is found to be valid.
Since the configurational entropy has a finite value at the MCT
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transition temperature, Tc, the AG relation is not expected
to predict any avoided transition in this regime. Our study
reveals that although Sc is finite, Sc2 vanishes at TK2 (where TK2
= Tc), thus being responsible for the divergence like behavior.
However, a causal relationship between the MCT crossover
and vanishing of the pair configurational entropy is an open
question to be addressed in the future. We also show that
although the pair configurational entropy predicts the correct
MCT transition temperature, it cannot, by itself, predict the
MCT power law behaviour. The RMPE plays an important role
in providing the correct temperature dependence of relaxation
time. We also obtain a connection between the AG coefficient
(A), pair thermodynamic fragility (KT2), and MCT critical
exponent (γ). The study shows that although first two quan-
tities are dependent on density and temperature, their ratio,
which is related to γ, is density-temperature independent.

Note that although the absolute value of∆S is in the similar
range both at high and low temperature regimes, in the high
temperature regime it plays a minor role in determining the
dynamics, whereas its role at low temperature becomes central
as we approach the avoided transition. This small positive
value of ∆S playing an important role in predicting the MCT
power law behaviour is similar to the prediction of unified
theory.61 In the unified theory, it was shown that in a certain
temperature regime many body activated dynamics plays a
hidden but central role in predicting the MCT-like behaviour
of the total relaxation time. Although apparently the MCT
does not depend on the properties of landscape, the saddles in
the landscape have been found to disappear at Tc.62–65 Here,
we show that Sc2 also vanishes at Tc. Thus, there may be a
connection between pair configurational entropy and saddles.
It will be also interesting to understand the independent role
of pair configurational entropy and RMPE in the landscape
picture. These are also the important open questions to be
addressed in the future work.
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