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Dimensionality dependence of aging in Kinetics of diffusive phase separation:
Behavior of order-parameter autocorrelation
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Behavior of two-time autocorrelation during the phase separation in solid binary mixtures is studied via
numerical solutions of the Cahn-Hilliard equation as well as Monte Carlo simulations of the Ising model.
Results are analyzed via state-of-the-art methods, including the finite-size scaling technique. Full forms of the
autocorrelation in space dimensions 2 and 3 are obtained empirically. The long-time behavior is found to be
power law, with exponents unexpectedly higher than the ones for the ferromagnetic ordering. Both Cahn-Hilliard

and Ising models provide consistent results.

DOI: 10.1103/PhysRevE.92.022124

I. INTRODUCTION

Understanding of aging phenomena in out-of-equilibrium
systems, except for special situations like steady state, is of
fundamental importance [1]. There have been serious activities
on this issue concerning living [2,3] as well as nonliving
matters, especially in problems related to domain growth
[1,4-14] and glassy dynamics [15-19]. Among other quan-
tities, aging phenomena is studied via the two-time autocorre-
lation function [4],

Ct,tw) = (YF DY 1) — (WED(WFE 1), (D

where v is a space (7) and time-dependent order parameter,
t,, is the waiting time or age of the system, ¢ (>f,) is the
observation time, and the angular brackets represent statistical
averaging over space and initial configurations.

In phase-ordering systems [20], though time translation
invariance is broken, C(¢,t,) is expected to exhibit scaling
with respect to 7 /t,,. Important examples are ordering of spins
in a ferromagnet, kinetics of phase separation in a binary
(A + B) mixture, etc., having been quenched to a temperature
(T) below the critical value (7,), from a homogeneous config-
uration. Though full forms are unknown even for very simple
models, asymptotically (¢/t, — oo) C(t,t,) is expected to
obey power-law scaling behavior as [4,6]

Clt,ty) ~x"x =L/L,. (2)

InEq. (2), £ and £,, are the average sizes of domains, formed by
spins or particles of similar type, at times ¢ and t,,, respectively.
Typically ¢ and ¢ are related to each other via power laws.

For nonconserved order-parameter dynamics, e.g., ordering
in aferromagnet, such scaling has been observed and the values
of the exponent A have been accurately estimated [6,14] in
different space dimensions d. There the exponents follow the
bounds

d/2< < d, 3)

predicted by Fisher and Huse (FH) [4]. In kinetics of phase
separation in solid mixtures, for which the order parameter is
a conserved quantity, the state of understanding is far from
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satisfactory, due to various difficulties. There, values of A
remain unknown, except for lower bounds discussed below.
Yeung et al. [7] put a more general lower bound on A as

(B+d)

>
where B is the exponent for small wave-vector power-law
enhancement of equal-time structure factor, which, depending
upon the dynamics, becomes important for #,, >> 1, as stated
below. In nonconserved dynamics, 8 = 0 and so the FH lower
bound is recovered. For conserved order parameter dynamics,
on the other hand, 8 =4 in both d = 2 and 3 at late time.
Thus, the FH upper bound is violated. Simulations of the Cahn-
Hilliard (CH) equation [20],

GO
ar

by Yeung et al. [7], observed A > 3 in d = 2, consistent with
their bound. From these simulations, the authors, however,
did not accurately quantify A; scaling of C(z,t,,) with respect
to t/t, was not demonstrated; focus was rather on the
sensitivity of the aging dynamics to the correlations in the
initial configurations. Situation is far worse in d = 3, with
respect to the CH equation as well as the Ising model [1,20],

A= “4)

—V2[Y(F,0) + VY, — v FED), (5)

H=-J) 888 ==%1;J>0. (6)
(i)

In this paper, we study both CH equation and the Ising
model, used for understanding diffusive phase separation as
in solid mixtures, in d = 2 (on regular square lattice) and
d = 3 (on simple cubic lattice), via extensive simulations, to
quantify the decay of C(¢,t,). We observe scaling of C(¢,1,,)
with respect to x, which tends to a power law for large x. Via
computations of the instantaneous exponent [21-23],

dIn[C(t,1,)]
dInx

and application of the finite-size scaling technique [24,25], we
find that . ~ 3.6 ind = 2 and >~ 7.5 in d = 3. Though these
numbers respect the bounds of Yeung et al. [7], the high value
ind = 3 is surprising. Furthermore, a general form for the full
scaling functions has been obtained empirically.

The rest of the paper is organized as follows. We describe
the methodology in Sec. II. Results are presented in Sec. III.

i =

)
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Finally, Sec. IV concludes the paper with a brief summary and
discussion.

II. METHODS

We numerically solve the CH equations on a regular lattice,
via Euler discretization method. With the Ising model, phase-
separation kinetics in a solid binary mixture is studied via
the Kawasaki exchange Monte Carlo (MC) [25] simulations,
to be referred to as KIM. An up-spin (S; = +1), for this
problem, may correspond to an A particle and a down-spin
(=1) to a B particle. In this MC scheme, one randomly
chooses a pair of nearest-neighbor spins and tries their position
exchange. The moves are accepted according to standard
Metropolis algorithm [25]. Due to the coarse-grained nature
of the CH equation, as opposed to the atomistic Ising model,
one can explore large effective length in simulations. The
order parameter in CH equation corresponds to a coarse-
graining [26] of the Ising spins, typically over the equilibrium
correlation length &. Then, a positive value of ¢ means
an A-rich region and for a B-rich region, ¥ will have a
negative number. For the calculation of C(¢,t,,), we have used
hardened configurations with numbers +1 and —1, for the
order parameter, for both the models. In the CH equation, a
noise term is intentionally omitted to investigate if there is any
strong effect of the latter, since in the KIM it is automatically
included. However, within the accuracy of the simulations,
we do not observe any significant difference between the CH
model and the KIM results.

The average domain length, £, was measured from the first
moment of domain-size distribution, P(£4,t), as [23]

= /KdP(Ed,t)dZd, ®)

where ¢, is the distance between two successive domain
boundaries in any direction. Throughout the paper, all lengths
are presented in units of the lattice constant a. In MC
simulations, time is counted in units of Monte Carlo steps
(MCS), each MCS consisting of L4 trial moves, where L is
the linear dimension of a periodic square or cubic system.
In CH equation, ¢ is expressed in dimensionless units [27].
All results, for both the models, are presented after averaging
over at least 50 initial realizations, for quenches from random
configurations, mimicking 7 = oo, to T = 0.67. Such value,
instead of 0, of T was chosen to avoid metastability that is
often encountered in conserved dynamics at low T'.

III. RESULTS

In Fig. 1(a), we present the plots of C(z,t,), versus x, for
different values of t,,, from the solutions of CH model in
d = 2. As seen, one needs large enough value of #,, to observe
appropriate scaling behavior (collapse of data), compared to
ordering in ferromagnets [14]. In the case of Ising ferromagnet
ind = 2, the scaling is observed from ¢ ~ 10 MCS. It appears
that late occurrence of scaling in conserved dynamics is due
to slow domain growth. Our observation from Ising model
suggests, scaling is achieved from ¢,, >~ 10 lattice constants,
irrespective of conservation of the order parameter. Between
the two data sets with largest values of t,,, the deviation from
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FIG. 1. (a) Autocorrelation function, C(¢,t,), from the d =2
Cahn-Hilliard (CH) model, are plotted vs. x (=£/¢,,), for different
values of #,,. The solid line there corresponds to a power-law decay
with exponent 3. (b) Same as (a) but for the d = 3 CH model. The
solid line there has a power-law decay exponent 3.5. The system sizes
used are L = 256 (d = 2) and 200 (d = 3).

each other, for large x, is due to the finite-size effects. Similar
plots for the d =3 CH model are presented in Fig. 1(b).
Here we have chosen 1, values from the scaling regime only.
Compared to d = 2, scaling in d = 3 starts earlier because of
the fact that the domain growth amplitude is larger in the latter
dimension. Again, deviation from the master curve, starting at
different values of x for different 7,,, are primarily related to
the finite-size effects. In both Figs. 1(a) and 1(b), the system
sizes are kept fixed, only the values of ¢,, are varied. A similar
observation, with respect to the above-mentioned deviation for
different choices of t,,, can be made, when, for same value of
ty, data are presented for different system sizes.

In the scaling parts, both in Figs. 1(a) and 1(b), continuous
bending is observable, in these log-log plots. Thus, power laws,
if they exist, carry corrections. The solid lines in these figures
are power-law decays with exponents 3 and 3.5, respectively,
corresponding to the bounds of Yeung et al. [7]. For large x,
simulation data in d = 2 appear reasonably consistent with the
bound. The asymptotic exponent, in d = 3, on the other hand,
appear much higher than 3.5.
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FIG. 2. Instantaneous exponents A; are plotted vs. 1/x. Results
are shown only from the solutions of the CH equations, in both d = 2
and 3. The solid lines are guides to the eye. The d = 2 data are for
t, = 5 x 10% with L = 400. In d = 3 the numbers are 10* and 200.

With the expectation that power laws indeed exist asymp-
totically, in Fig. 2 we present plots of instantaneous expo-
nents [6,14,21-23] A;, for both d = 2 and 3, versus 1/x. In
addition to providing A, from the extrapolations to x = oo,
such exercise may be useful for obtaining crucial information
on the full forms of C(¢,t,,). Ford = 2, the data are obtained for
ty =5 x 103, and for d = 3, the data correspond to ,, = 10°.
In both cases, the results appear reasonably linear [6,14]. The
solid lines there are extrapolations to x = oo, accepting the
linear trends. These indicate A >~ 3.60 in d = 2 and ~7.80 in
d = 3. Again, while the value in d = 2 is consistent and close
to the bound of Yeung et al. [7], the observation of surprisingly
high number in d = 3 is certainly interesting. We intend to
obtain more accurate values via appropriate finite-size scaling
analyses [24,25]. This is considering the fact that the choice of
the regions in Fig. 2, for performing least-square fitting, is not
unambiguous due to finite-size effects and strong statistical
fluctuations at large x. Also, for very small x (data excluded),
there is rapid decay of C(t,t,,) related to the fast equilibration
of domain magnetization m (being very close to unity at
the chosen value of T for d = 2 Ising model). Here note
that this latter contribution decays from (1 — m?) to 0. At
this temperature (noting that critical phenomena is typically
observed within 10% of T, we are significantly below the
critical regime), thus, the time scale of this equilibration
is short and so the analysis gets affected only very close
tox = 1.

Since the corrections to the asymptotic decay laws are seen
to be strong for finite x, areasonable idea about the full forms of
the decays is essential for accurate finite-size scaling analyses.
Those, however, are nonexistent in the literature. Here we
obtain the forms empirically. Assuming power-law behavior
of the data sets in Fig. 2, we write

A=A — —, &)
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FIG. 3. (a) Finite-size scaling plot of C(¢,t,) from d =2 CH
model. The scaling function Y is plotted vs. y, using data from
different system sizes and f,, values. The optimum collapse of data,
the presented one, was obtained for A = 3.47. (b) Same as (a), but
the CH model in d = 3. Here the value of A is 7.30.

A, and y being constants. This, via Eq. (7), provides

Ac\
C([»tw) = C() eEXp\——— )X (10)
yxr
Cy being a constant. For finite-size scaling analysis, one needs
to introduce a scaling function:

()”
Y(y)=C@t.rp)exp| — |x* y=L/L (11
1224

The variable y gets separated from x because of the fact
that y = % and x contains ¢, in the denominator. For
appropriate choices of A., y, and A, one should obtain a master
curve for Y, when data from different system sizes are used.
If the above-mentioned factorization between x and y truly
holds, we should obtain collapse of data for different values
of t,, as well. We will demonstrate that this indeed is true. The
behavior of Y should be flat in the finite-size unaffected region
and a deviation from it will mark the onset of finite-size effects.

By examining the data in Fig. 2 [also see Fig. 4(b) for KIM],
we fix y to 1. In Fig. 3(a), we show a finite-size scaling plot
for data from the d = 2 CH model, using different values of
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FIG. 4. (a) Same as Fig. 1(a) but for the d =2 Ising model.
(b) Same as Fig. 2 but for the Ising model. The oscillatory behavior
of large x data in d = 2 is statistical fluctuation. In d = 2 the results
are from L = 512, and in d = 3 we have used L = 100.

L and t,. The presented results correspond to best collapse,
obtained for A. = 2.25 and A = 3.47. The value of ¢, used
for different L is 10*. For L = 200 we have used two different
t, values, viz., 10* and 5 x 10°. A similar exercise for the
d = 3 CH data is presented in Fig. 3(b). In this case we have
fixed ¢, and varied only L. Again, the data collapse looks
quite reasonable and was obtained for A, = 5.1 and A = 7.30.
The value of t,, in this case, was set to 10°. The reason
behind choosing smaller value of ¢, ind = 3, thanind = 2,1is
computational difficulty. It is extremely difficult to accumulate
data for further decades in time, starting from very high value
of t,,, particularly in d = 3. Nevertheless, this chosen value of
t,, falls within the scaling regime. As already mentioned, for
similar temperatures, amplitude of growth is larger in d = 3
and the scaling of C(¢,t,,) is related more closely to the value
of £,,.

We now move to present results from KIM. In Fig. 4(a)
we show the autocorrelations from different values of ¢, in
d = 2, for L = 512. Scaling is poor for t, below 10* MCS
and so those results are excluded. Despite strong statistical
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FIG. 5. (a) C(z,t,)exp(A./x) is plotted vs. x, for d = 2, on log-
log scale. Results from both KIM (L = 512) and CH model (L =
1024) are included. The solid line represents a power-law decay with
A = 3.6. The inset shows the same result vs. 7/1,,, only for the CH
model. The solid line there has a power-law decay with exponent 1.2.
(b) Same as (a) but from d = 3 and only for CH model. The decay
exponents for the solid lines are mentioned on the figure. In all the
plots we have used the values of A, as obtained from the finite-size
scaling analyses of CH model data.

fluctuations, it is recognizable that the decay of C(¢,1,,) in the
latter part is on the higher side of the bound of Yeung et al. [7],
represented by the solid line.

In Fig. 4(b) we show the instantaneous exponents for the
Ising model in d = 2 and 3, versus 1/x. In each dimension,
we have included two values of #,, from the scaling regime.
While results for different #,,s, in a particular dimension, are
consistent with each other, finite-size effects appear earlier
for larger value of ¢,, as expected. Thus, for extrapolations
to x = oo, data sets with smaller #,, are used. This exercise
provides A >~ 3.60 and ~7.30 in d = 2 and 3, respectively.
These values are in agreement with the ones obtained for the
CH model via various methods of analysis.

In Fig. 5(a) we show plots of C(¢,t,)exp(A./x), from
d = 2, on log-log scale, versus x (=£{/{,). The results from
KIM and CH models are consistent with each other and obey
power law with A = 3.6, represented by the solid line. For
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the CH model, the value of L here is much larger than the
previous figures. This value of L was used with the objective of
confirming the finite-size scaling conclusions (from relatively
smaller systems) via brute force method. Given that the scaling
starts for large t,,, range of x is significant. As shown in the
inset, the CH model results span several decades in ¢ /t,,. In this
connection we mention that the longest run lengths (associated
with largest systems) for the CH model are ¢ = 2 x 10° and
2 x 10° in d =2 and 3, respectively; for the Ising model
these numbers are 5 x 107 and 4 x 10°. To the best of our
knowledge, the quoted numbers are orders of magnitude
larger than any previous simulations that used conventional
simulation methods for this purpose. Since the objective here
has been to access long time scales so that the scaling behavior
can be proved, it was necessary to work with slightly smaller
systems. Figure 5 verifies that the conclusions drawn from the
finite-size scaling analyses, involving smaller systems, indeed
are appropriate. The exponents for the power-law decays in the
main frame and the inset are consistent with each other, given
that & = 1/3. Analogous results from d = 3 CH model are
shown in the Fig. 5(b). In both Figs. 5(a) and 5(b), we have used
the earliest available values of ¢,, for which scaling is observed.
This helps exploring reasonably large range for x, without
encountering finite-size effects, i.e., £ being significantly
smaller than L. In Fig. 5(a), e.g., data for more than two
decades in t/t,, (for both the models) correspond to L /¢ > 5.
This picture holds for more than a decade in ¢/¢,, in Fig. 5(b).
We note here, recently it was convincingly demonstrated [23]
that finite-size effects in conserved order-parameter dynamics
appear only when ¢ is as large as 3/4 of the equilibrium
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limit. Thus, results presented in Fig. 5 are free from finite-size
effects.

IV. CONCLUSION

We have studied aging dynamics for the phase separation
in solid binary mixtures via Cahn-Hilliard and Ising models.
Results for the two-time autocorrelation, C(t,t,,), are presented
from simulations in both d =2 and 3. Decays of C(z,t,)
appear power law in large x limit. The exponents for these
power laws were obtained via various different analyses, in-
cluding finite-size scaling. For the finite-size scaling analysis,
full forms of the autocorrelations were essential, which we ob-
tained empirically. All these methods provide consistent values
of the decay exponent A for different models. These are A ~ 3.6
ind =2and A >~ 7.5 in d = 3, within 5% error. To construct
a dimension-dependent expression for A, involving d and B,
from this kind of analyses, one needs to study the phenomena in
more dimensions. In this context, in d = 1 one should exercise
the caution that 8 (= 2) has a different value [28].
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