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Abstract. We study the dynamics of ordering in ferromagnets via Monte Carlo simulations of the Ising
model, employing the Glauber spin-flip mechanism, in space dimensions d = 2 and 3, on square and simple
cubic lattices. Results for the persistence probability and the domain growth are discussed for quenches
to various temperatures (Tf ) below the critical one (Tc), from different initial temperatures Ti ≥ Tc. In
long time limit, for Ti > Tc, the persistence probability exhibits power-law decay with exponents θ � 0.22
and � 0.18 in d = 2 and 3, respectively. For finite Ti, the early time behavior is a different power-law
whose life-time diverges and exponent decreases as Ti → Tc. The two steps are connected via power-law
as a function of domain length and the crossover to the second step occurs when this characteristic length
exceeds the equilibrium correlation length at T = Ti. Ti = Tc is expected to provide a new universality
class for which we obtain θ ≡ θc � 0.035 in d = 2 and �0.105 in d = 3. The time dependence of the
average domain size �, however, is observed to be rather insensitive to the choice of Ti.

1 Introduction

When a homogeneous system is quenched below the
critical point, the system becomes unstable to fluctua-
tions and approaches towards the new equilibrium via
the formation and growth of particle rich and particle
poor domains [1–4]. In such nonequilibrium evolutions,
over several decades, aspects that received significant at-
tention are the domain pattern [3,5–9], rate of domain
growth [5,10–15], persistence [16–25] and aging [26–31].
Average size, �, of domains typically grows with time (t)
as [5]

� ∼ tα. (1)

The value of the exponent α for nonconserved order-
parameter dynamics [5,12], e.g., during ordering in a uni-
axial ferromagnet, is 1/2, in space dimension d = 2. In
addition to the interesting structures exhibited by the do-
mains of like spins (or atomic magnets) in a ferromag-
net, the unaffected or persistent spins also form beautiful
fractal patterns [16–19,21,22]. Typically, fraction of such
spins, henceforth will be referred to as the persistent prob-
ability, P , decays as

P ∼ t−θ, (2)

with [20,21] θ having a value �0.22 for the Ising model in
space dimension d = 2 and �0.18 in d = 3.

The values of the exponents mentioned above are un-
derstood to be true for the perfectly random initial con-
figurations, mimicking the paramagnetic phase at temper-
ature T = ∞. Another relevant situation is to quench a
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system from finite initial temperature (Ti) with a large
equilibrium correlation length ξ. However, this problem
has received only occasional attention [32–35], though ex-
perimentally very relevant. In this context, the behavior of
the two-time equal point correlation function, relevant in
the aging phenomena, was studied [33,34] for Ti = Tc,
the critical temperature. It was pointed out that such
quenches would form a new universality class and was
shown that the decay of the above correlation was sig-
nificantly slower for Ti = Tc than Ti = ∞. In view of that,
a slower decay of P is also expected [35]. On the other
hand, the behavior of P and � are expected to be discon-
nected [36]. Nevertheless, the rate of growth of � may be
different for Ti = Tc and Ti = ∞, at least during the tran-
sient period. In this paper, we address the Ti dependence
for persistence and domain growth in a ferromagnet, via
Monte Carlo (MC) simulations [37] of nearest neighbor
Ising model [37]

H = −J
∑

〈ij〉
SiSj ; Si = ±1, J > 0, (3)

in d = 2 and d = 3, on square and simple cubic lattices,
respectively.

Starting from a high value, as Ti approaches Tc [37]
(�2.27J/kB in d = 2 or 4.51J/kB in d = 3, kB be-
ing the Boltzmann constant), a two-step decay in P be-
comes prominent, except for Ti = Tc. For the latter initial
temperature, power-law behavior with exponents much
smaller than the ones observed for quenches from Ti = ∞
lives forever. In addition to identifying these facts, a pri-
mary objective of the paper is to accurately quantify these
decays and find out the influence of dimensionality. For the
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domain growth, on the other hand, we do not observe a
modification to the time dependence with the variation
of Ti, almost from the very beginning.

The rest of the paper is organized as follows. In Sec-
tion 2 we briefly describe the methods. Results from both
the dimensions are presented in Section 3. Section 4 con-
cludes the paper with a summary and outlook.

2 Methods

The nonconserved order-parameter dynamics in the MC
simulations have been incorporated via the Glauber spin-
flip mechanism [38]. In this method, a randomly chosen
spin is tried for a change in sign which is accepted accord-
ing to the standard Metropolis algorithm [37]. We apply
periodic boundary conditions in all directions. Time is ex-
pressed in units of MC steps (MCS), each MCS consisting
of Ld trials, L being the linear dimension of a square or
cubic box. We have computed � from the domain size dis-
tribution, Pd(�d, t), as [15]

�(t) =
∫
�dPd(ld, t)d�d, (4)

where �d is calculated as the distance between two suc-
cessive interfaces along any direction. All lengths are ex-
pressed in units of the lattice constant a. We present the
results after averaging over multiple initial configurations.
This number ranges from 20 (for L = 1024) to 200 (for
L = 400) in d = 2 and from 10 (for L = 256) to 50 (for
L = 64) in d = 3. The initial configurations for Ti close
to Tc were carefully prepared via very long runs. At Tc,
for d = 2, depending upon the system size, length of such
runs varied between 5 × 106 to 108 MCS.

3 Results

In this section we present the MC results and their anal-
yses, first from d = 2 (Sect. 3.1), followed by d = 3
(Sect. 3.2).

3.1 d = 2

Growth of the domains have been demonstrated in the
upper frames of Figure 1 for the system size L = 512 in
d = 2. There we show snapshots from two different times
during the evolution of the Glauber Ising model. In the
lower frames of the figure, we show pictures marking only
the persistent spins. Beautiful patterns are visible. These
results correspond to a quench from Ti = ∞ to the final
temperature Tf = 0.

Plots of P , for Ti = ∞ and few different values of Tf ,
vs. t, are shown in Figure 2. The data for Tf = 0 and
0.25Tc are consistent with each other and follow power-
law, the exponent being θ � 0.22. The flat behavior at the
end is due to the finite-size effects. This value of θ is consis-
tent with the previous observations [20,21]. However, for

Fig. 1. Upper panels show snapshots during the evolution of
the Glauber Ising model with Ti = ∞, Tf = 0 and L = 512.
The black regions represent domains of up spins. The lower
panels show the unaffected spins, marked in black, correspond-
ing to the evolution snapshots above them. These results cor-
respond to d = 2.

Fig. 2. Plots of persistence probability P vs. time, on a log-
log scale, for quenches from Ti = ∞, with L = 512, in d = 2.
Four different values of Tf are included. The solid line there
has a power-law decay with exponent 0.22.

higher values of Tf , as also previously observed [18,19],
the decay is not of power-law type. This is thought to
be due to thermal fluctuation. When this fluctuation is
taken care of, via the method described below, we observe
θ � 0.22 for all the values of Tf included in Figure 2, in
agreement with reference [20]. In zero temperature situ-
ation spin-flips are related to the motion of the domain
boundaries, leading to the growth of �. At nonzero tem-
perature, on the other hand, thermal noise causes flips in
the bulk of the domains as well. Following Derrida [19],
counting of these bulk spins was discarded by simulating
an ordered configuration. In this method, flips common
between the original (coarsening) system and the ordered
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Fig. 3. (a) Log-log plots of P vs. t, for quenches from dif-
ferent values of Ti (�Tc), to Tf = 0. Continuous lines there
correspond to power-law decays with exponents 0.22 and 0.04.
(b) Instantaneous exponents θi are plotted vs. 1/�, for the
quenches in (a), excluding Ti = Tc case. Here we have included
only the late time behavior. The dashed lines in this figure are
guides to the eyes. All results are from simulations in d = 2.

system were identified as part of bulk dynamics and thus
were subtracted from the total number of flips, to stay
only with the effects of boundary motion.

It is thought that persistence and domain growth are
not strongly connected to each other. Interestingly, differ-
ent behavior in Figure 2 for Tf > 0.25Tc and Tf < 0.25Tc
is strongly reflected in the domain growth also. Essentially
a faster early time growth is observed for Tf � 0.25Tc.
This we will briefly discuss later.

In Figure 3a we show P vs. t plots, on a log-log scale,
for quenches to Tf = 0, from a few different values of Ti,
all for the same system size L = 512. It appears that, in
the long time limit, for Ti > Tc, the decay is power-law,
with the same exponent θ � 0.22. Crossover to this expo-
nent gets delayed as Ti approaches Tc. In the pre-crossover
regime, another power-law decay, with smaller exponent,
to be represented by θI, becomes prominent with the de-
crease of Ti. Such a slower decay becomes ever-lived for
Ti = Tc. The exponent for the latter case will be denoted
by θc [= θI(Ti = Tc)].

In Figure 3b, we present the instantaneous exponent,
θi, calculated as [14,15]

θi = −d lnP
d ln t

, (5)

vs. 1/�, with the objective of accurate quantification of the
second step of the decays for Ti close to, but greater than,
Tc. For the abscissa variable we have adopted 1/�, instead
of 1/t, to visualize the long time limit better. This is due to
the fact that when plotted vs. 1/t, overall abscissa range
increases which makes appreciation of an extrapolation
difficult for the data sets corresponding to lower Ti. Within
statistical error, for all the presented temperatures, it ap-
pears that the values of θ are consistent with that for the
quench from Ti = ∞ to Tf = 0. From this exercise we
conclude θ = 0.225± 0.005.

Next we move to identify the exponent for Ti = Tc and
Tf = 0. In Figure 3a, it appears that the Ti = Tc data are
reasonably consistent with θc = 0.04. Nevertheless, before
the final finite-size effects appear (showing flat nature at
very late time), there is a faster decay, albeit for a brief
period. This can well be due to the fact that for a finite
system, ξ is not infinite at T = Tc, effectively implying
that the initial configurations are prepared away from Tc.
Thus, in this problem, finite-size effects have two sources.
One coming from the finiteness of the equilibrium corre-
lation length, other being faced when the nonequilibrium
domain size is close to the system size. Thus, a quantifica-
tion of the exponent θc via finite-size scaling [39] becomes
a challenging task. However, we appropriately take care
of the shortcoming below, in various different ways which
provide results consistent with each other.

In Figure 4a we show the instantaneous exponents θi,
vs. 1/�, with the objective of quantifying the first step
of the decays, for two values of Ti, close enough to Tc.
As demonstrated, from the flat regions we identify the
exponent θI, which exhibits Ti dependence. These num-
bers are plotted in the inset of this figure as a function of
ε = Ti−Tc. The continuous line there is a fit to the form

θI(Ti) = θc +Aεx, (6)

providing θc = 0.034, A = 0.15 and x = 0.54. Recall that
θc is the only decay exponent for Ti = Tc.

To verify the above value of θc further, in Figure 4b
we present an exercise with different system sizes. In the
main frame of this figure, we present P vs. t data, for
Ti = Tc, from two different values of L. It is seen that
with the increase of the system size, there is a tendency
of the data to settle down to a power-law for a longer pe-
riod of time, following a marginally faster decay at very
early time. In the upper inset of this figure we show θi vs.
1/� for three different system sizes with Ti = Tc. The early
time behavior appears linear, extrapolation of which leads
to θc � 0.029. However, if the data in the main frame is
closely examined, as already mentioned above, this part
corresponds to the preasymptotic behavior, thus, should
be discarded from the analysis. Actual exponents should
be extracted from the flat regions of the plots. In these
plots of θi vs. 1/�, the flat portions appear very short. But
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Fig. 4. (a) Instantaneous exponents θi are plotted vs. 1/� for
two of the quenches in Figure 3a. Here we have focussed on the
first step of the decays, exponents for which are obtained from
the flat regions, marked by the horizontal solid lines. These
values of θI are plotted vs. ε = Ti − Tc, in the inset of the
figure. The continuous line there is a power-law fit (see text).
(b) Plots of P vs. t, for two different system sizes, with Ti = Tc

and Tf = 0. The upper inset shows θi vs. 1/� for three different
values of L, with Ti = Tc. The dashed line in this inset is
a linear extrapolation using data in the small � region. The
L-dependent exponents, θc(L), obtained from flat regions of
the plots (see the horizontal solid lines) are plotted vs. 1/L in
the lower inset. The solid line there is a linear fit. All results
correspond to d = 2.

the actual time (or length) range over which the flat be-
havior, before deviating due to finite-size effects, extends,
is reasonably long, say, a few hundred MCS for the largest
system size. The numbers obtained from these flat parts,
as discussed, differs due to the finite-size effects and thus,
should be extrapolated to L = ∞ appropriately. These
L-dependent values, θc(L), are plotted in the lower inset
as a function of 1/L. A very reasonable linear fit (see the
solid line) is obtained, providing θc = θc(L = ∞) = 0.035.
On the other hand, a nonlinear fit (by adding a quadratic
term) provides θc = 0.037. From all these exercises we
conclude that θc = 0.035 ± 0.005. This picture remains
true for quenches from Tc to nonzero values of Tf as well,
if thermal fluctuation effects are appropriately taken care
of. On this issue of thermal fluctuation, here, as well as for

Fig. 5. Average domain sizes, �(t), are plotted vs. t, for
quenches to Tf = 0 from Ti = ∞ and Tc, in d = 2. The solid
line represents t1/2 behavior. Corresponding instantaneous ex-
ponents, vs. 1/t, are shown in the inset. All these results are
for L = 512. For αi, long time limit data, suffering from strong
finite-size effects, have been discarded.

Ti = ∞, our conclusions are based on studies with small
system sizes. The above quoted value is extremely close to
the conclusion from a recent study [35] of the same model
on triangular lattice. This implies, the lattice structure
plays insignificant role.

The decay of the previously mentioned two-time cor-
relation is also of power-law type. For quenches from
Ti = Tc, the value of the exponent for this quantity in
d = 2 gets reduced by a factor �10, compared to Ti = ∞.
In the present case the reduction factor is �6.3. While
there may be connection between the two phenomena,
but a search for matching between the two factors may
not be justified. As we will see, this reduction factor is
much smaller in d = 3, which is consistent with the corre-
sponding prediction for aging dynamics [34].

It is certainly relevant to ask, if, like the decay of the
persistence probability and the two-time correlation [33],
the growth of the average domain size also exhibits initial
temperature dependence. While it is expected [32–34,36]
that the long time behavior will be similar, there may
be difference at the transient level. For this quantity we
make direct examination only for the cases Ti = ∞ and
Ti = Tc, for quenches to Tf = 0. Conclusion drawn from
these cases will be indirectly shown to be true for other
Ti values later.

In Figure 5 we present the � vs. t plots for these two
cases, using a log-log scale. Both the data sets appear to
grow slower than t1/2, even if marginally. This can well
be due to the presence of significantly big initial length
�0, which we examine below. While from this figure it is
difficult to identify any difference in the growth exponent
between the two cases, there certainly exists visible differ-
ence in the finite-size effects, noting that L = 512 in both
the cases.

To learn better about the exponents, in the inset of
Figure 5 we present the instantaneous exponents [14,15]

αi =
d ln �
d ln t

, (7)
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with the variation of t. Here, while calculating αi, we have
subtracted �0 which are �2 and �6.65, respectively, for
Ti = ∞ and Tc. This subtraction is meaningful, consid-
ering the fact that the pure scaling with respect to time
is contained in � − �0. Calculation of αi, without such
subtraction, provided early time exponents much smaller
than the theoretical expectation for the conserved dynam-
ics [14]. This has previously been understood to be due
to the curvature dependent correction in small domain
size limit. Such confusion has recently been corrected [15].
Note that, there may be a delay time for a system to be-
come unstable following a quench. Thus, for an even more
appropriate understanding of a time dependent exponent,
the value of �0 need not be treated as the length at t = 0,
rather as the (fluctuating) length at which the system falls
unstable. Via finite-size scaling analysis, this was demon-
strated in a recent work [15]. Here, however, we do not
undertake such a task.

For the analysis related to the inset of Figure 5, the
value of �0, as mentioned above, was taken to be that of �
at t = 0. Thus, �0 may be identified as ξ at T = Ti. Ques-
tion, however, may be raised that the value of �0 should
then match the system size L for Ti = Tc, since ξ is of the
order of L at Tc. Note here that, at criticality fluctuations
exist at all length scales, giving rise to clusters of all possi-
ble sizes, the average, �0 here, being much smaller than L.
These estimates, even though obtained as first moments of
the cluster size distributions, are also related to the decay
of the two-point correlation functions. The latter function,
at the critical point, has power-law decay. The exponential
part, that contains information on ξ, is unity at criticality
due to diverging value of ξ. Our calculation of �0 cannot
thus be directly related to ξ, particularly close to Tc.

First important observation from the inset of Figure 5
is that the value of αi approaches 1/2 from the upper
side. This fact remains true for Tf � 0.25Tc, as previously
mentioned. This is in contrast with the corresponding be-
havior for the conserved order parameter dynamics with
Tf very close to zero [40]. In the latter case, the early time
dynamics provides a growth exponent much smaller than
the expected asymptotic value 1/3. Second, after t � 5,
both the data sets practically follow each other, implying
no difference in the growth of � almost from the beginning!

From the length (or time) dependence of αi, one can
write

αi = α+ f(1/�), (8)

to obtain ∫
d�

αl
[
1 + 1

αf(1/�)
] = ln t. (9)

If f(1/�) can be quantified accurately from the simulation
data, a full time dependence of � is obtainable. E.g., if
f(1/�) is a power law, Aβ/�β, Aβ being a constant, by
taking αlβ > Aβ , one finds

ln
�1/α

t
∼ 1
α2β�β

. (10)

Assuming that a correction disappears fast, such that � �
tα, we obtain

� ∼ tα exp
(
− C

αβtαβ

)
, (11)

C being a constant. Such full forms are useful for a finite-
size scaling analysis to accurately quantify the exponent
α. It appears that even for a power-law behavior of f(1/�),
the asymptotic behavior in the growth law can be reached
exponentially fast. Of course, from least square fitting ex-
ercise of the � vs. t data also one can aim to obtain the
early time corrections. However, this method is more arbi-
trary. Often derivatives help guessing the functional forms
better. This full form with the exponential correction fac-
tor provided a good fitting to the simulation data from
which we obtain α within less than 2% deviation from the
expected number 0.5.

Before moving on to presenting results in d = 3, we dis-
cuss the issue of persistence again. The essential feature
in the initial configurations prepared at different tempera-
tures is the variation in the equilibrium correlation length
ξ. The basic question, prior to the study, one asks, how
does the value of ξ affect the decay of persistence prob-
ability? For each value of ξ, do we have a unique expo-
nent describing the full decay? The answer, as we have
observed, is certainly not in affirmative. Essentially, the
decay exponent for Ti = ∞ is recovered for all ξ (<∞) in
the long time limit. Only the crossover to this asymptotic
behavior gets delayed with the increase of ξ. It is then
relevant to ask if this crossover occurs when � crosses ξ,
an expectation naturally occurs from renormalization or
coarse-graining point of view. Of course a confirmation on
this expectation can be obtained from scaling plots (see
below) of P (t) by invoking the critical singularity of ξ.
However, without detailed knowledge about the finite-size
effects of P and ξ, we take an alternative route, by ap-
propriately estimating the crossover length �c, from the
available simulation data.

In the main frame of Figure 6a we show plots of persis-
tence from different values of Ti, for quenches to Tf = 0.
Here the time axis is scaled by appropriate factors (pro-
portional to cross over time tc) to obtain collapse of data
in the asymptotic regime. Quality of collapse, on top of
the Ti = ∞ data set, again confirms that θ � 0.225
in the t → ∞ limit for all Ti (> Tc). From the square
roots of these Ti dependent scaling factors, one can ob-
tain �c (within a proportionality factor) which is expected
to scale as

�c ∼ ξ ∼ ε−ν. (12)

Note that for the Ising model ν = 1 in d = 2 and �0.63
in d = 3. Considering that the Ti = ∞ data have been
used as the reference case, it will be appropriate to fit the
data set for �c to the form �c − 1 = Acε

−ν, since (for the
current method of estimation) �c → 1 for Ti = ∞. Unless
we are very close to Tc such additional term cannot be
neglected. In the inset of Figure 6a we have plotted �c− 1
as a function of ε, on a log-log scale. The data set (cir-
cles) appear consistent with ν = 1. When �c is extracted
from tc, a more careful exercise requires incorporation of �0
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Fig. 6. (a) Scaling plot of persistence probability versus t/tc

where the crossover time (to the asymptotic behavior) tc has
been used as an adjustable parameter to obtain optimum data
collapse. Inset: plots of �c − 1 vs. ε. The circles correspond
to estimates of �c from tc, the squares are directly obtained
from the scaling plots of P vs. �/�c. The solid line has d = 2
Ising critical divergence of correlation length. All results were
obtained using L = 512 in d = 2. (b) Plots of P (t)(�/�c)

2θ, θ
being set to 0.225 (see Fig. 3b), vs. the scaled variable �/�c,
for several values of Ti, using linear scale. Inset: same as the
main frame but on a log-log scale and only for Ti = 2.35.
The continuous line there is a fit to equation (13) (see text for
details).

and growth amplitude for each Ti. To avoid this problem,
we have also obtained �c directly from the scaling plots
of persistence data vs. �/�c (see this exercise in Fig. 6b).
These values of �c are represented by squares. Both data
sets appear nicely consistent with each other. Least square
fittings of these data sets provide ν � 0.95.

As mentioned above, in Figure 6b we show scaling plots
of the persistence probability as a function of �/�c, for
three values of Ti. There, in the ordinate, P (t) has been
multiplied by (�/�c)2θ, the factor 2 in the exponent coming
from the expectation that α = 1/2 for all values of Ti. For
θ, we use 0.225, the value we obtained from the analysis
in Figure 3b. The regions of the data sets that suffer from
finite-size effects have been carefully discarded. The nice

collapse of the data and flat behavior in the long time
limit reconfirm the following facts: α = 1/2 for all values
of Ti and, for � > �c ∼ ξ, in all cases, P (t) decays as t−θ.

It will be interesting to extract the crossover behavior
from the transient (first step) to the asymptotic (second
step) decay. For this purpose, in the inset of Figure 6b
we have plotted the Ti = 2.35 data set on a log-log scale,
for better visibility of the early time regime. In critical
phenomena, in the finite-size scaling analysis of simula-
tion results [41,42], there have been long standing interest
in obtaining such crossover functions involving thermody-
namic and finite-size limit behaviors. There typically one
aims to identify if these two limits are bridged by a power-
law or by an exponential function. Along the same line we
write

P (t)x2θ = A

(
x

g(x) + x

)φ
; x = �/�c. (13)

For an exponential convergence to the asymptotic behav-
ior we write

g(x) =
B0

1 +B1 exp(B2x)
, (14)

and for a power-law one

g(x) =
C0

1 + C1xψ
. (15)

In the limit x → 0, P (t)x2θ ∼ xφ, for both the forms of
g(x). This limiting behavior was set by considering the
fact that for � < ξ, there exist a power-law decay in P (t)
with an exponent θI, different from θ. For Ti = 2.35, this
value is θI = 0.073 (see Fig. 4a). In that case φ � 0.304,
taking θ = 0.225. The constant A in equation (13) sets
the value of the plateau in the plots of Figure 6b, since for
x→ ∞, P (t)x2θ → A. It appears that fit to the power-law
form of g(x) looks better and is best for the integral value
ψ = 2. Other best fit parameters are A = 1.52, C0 = 3.52
and C1 = 0.033. The correctness in the value of A can
straightway be checked from the figure. The continuous
line in the inset of Figure 6b represents the corresponding
full function of equation (13). It will be interesting to see if
such empirical full form can be confirmed via first principle
analytical calculations.

3.2 d = 3

In this subsection we explore d = 3. The important
facts being discussed in the previous subsection, here we
straightway present the results. Noting that nothing re-
markable happened for domain growth in the lower dimen-
sion, we do not present any direct results for this aspect.
However, remarks will be made from indirect analysis.

In Figure 7 we show the P vs. t plots for quenches from
Ti = ∞ and Ti = Tc, keeping Tf = 0 in both the cases.
For each value of Ti, results from two different system sizes
are presented. The data for Ti = ∞ are consistent with
θ = 0.18, reported previously [20]. Thus, here we aim to
accurately quantify the value of θc only.
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Fig. 7. Plot of P vs. t, for quenches from Ti = ∞ and Ti = Tc,
to Tf = 0. In each of the cases, results from two different system
sizes are included. The solid lines have power-law decays with
exponents 0.1 and 0.18, as indicated on the figure. All results
correspond to d = 3.

Fig. 8. Instantaneous exponents θi are plotted vs. 1/�, for
quenches from Ti = Tc to Tf = 0 in d = 3. Results from
different values of L are included. The horizontal solid lines are
related to the estimation of L-dependent θc. Inset: system size
dependent θc are plotted as a function of 1/L. The continuous
line there is a linear fitting (see text for details).

Even though, for Ti = Tc, data from both the system
sizes in Figure 7 look consistent with each other, finite-
size effects are detectable from a closer look. In the main
frame of Figure 8 we plot θi versus 1/� for a few different
values of L. Like in d = 2, from the flat regions we identify
system size dependent θc, a plot of which is shown in the
inset of this figure. Again, the θc(L) vs. 1/L data exhibits
a reasonable linear trend and an extrapolation to L = ∞
provides θc = θc(L = ∞) � 0.106.

Similar to d = 2, for Tc < Ti < ∞, two step decays
exist in d = 3 as well. In the main frame of Figure 9a
we have demonstrated the estimation of θI corresponding
to the first step, for two representative values of Ti. In
the inset of Figure 9a we have plotted these exponents

Fig. 9. (a) Estimation of θI corresponding to the first step of
decay is demonstrated in d = 3. Inset: exponent θI is plotted as
a function of ε, in d = 3. The continuous line is a non-linear fit-
ting. Further details are provided in the text. Presented results
are for L = 256. (b) Scaling plot of P vs. �/�c, in d = 3, for
L = 128. The solid line has a power-law decay with exponent
0.54. Inset: plot of �c − 1, in d = 3, vs. ε. The solid line there
has d = 3 Ising critical divergence of ξ. We have presented
results for L = 128 (circles) as well as L = 256 (squares).

as a function of ε. A fit of this data set to the form in
equation (6) provides θI(Ti = Tc) = θc = 0.103, A = 0.074
and x = 0.47. Note the similarity in the values of x in
d = 2 and 3. This value of θc is in good agreement with
the one obtained from Figure 8. In d = 3, we quote θc =
0.105±0.005. Thus, the effect of growing correlation length
in the initial configurations certainly appears weaker in
this space dimension. Even though, in both d = 2 and 3,
fits to the power-law form in equation (6) appear good,
due to the similarity of the values in different dimensions,
x cannot be connected to any of the other exponents, ν
and α, used in this paper, in a simple way. In this work,
thus, we treat this exercise only as a reasonably accurate
numerical analysis whose validity is justified by the fact
that the derivatives of the corresponding simulation data
sets, with respect to ε, in both dimensions, provide linear
looks on double-log plots.
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Fig. 10. P (t)(�/�c)
3θ , with θ = 0.18, are plotted vs. �/�c,

for quenches from three values of Ti to Tf = 0, in d = 3,
using linear scale. Inset: Log-log plot of P (t)(�/�c)

3θ vs. �/�c

for Ti = 4.6. The continuous line is a fit to the function in
equation (13). Further details are provided in the text.

In Figure 9b we show scaling plots of P vs. �/�c, using
data from different values of Ti, with L = 128. Collapse of
data is again good. The late time behavior is power-law
and is consistent with a decay exponent 0.54. Considering
that θ � 0.18 in d = 3, this implies α = 1/3 in d = 3. The
nice collapse of data sets in Figure 9b, for all values of Ti,
implies the initial configuration independence of this ex-
ponent. As stated in reference [43], deviation of α, in this
dimension, from 1/2, is not yet understood. To avoid this
fact, as well as to get rid of the influence of Ti dependent
�0 and growth amplitude, we have obtained �c from these
plots only and no attempts have been made to extract it
from scaling plots vs. t/tc.

In the inset of Figure 9b we plot �c − 1 as a func-
tion of ε, on a log-log scale, for two different system sizes.
The divergence of the length scale is consistent with a
power law exponent 0.63 which is the critical exponent for
ξ in d = 3. The deviation from this exponent at smaller
values of ε is due to finite-size effects. It is clearly seen
that for the bigger system (L = 256) the effects are much
less pronounced. Note that in d = 3 it is extremely time
consuming to deal with bigger systems, including initial
configuration preparation at Ti = Tc. To save time for
the preparation of initial configuration, in this dimension
we have used a combination of Wolff algorithm [44] and
Glauber kinetics. In both d = 2 and 3, behavior of �c, as
a function of ε, have been analyzed for Ti values deviating
by maximum of 10% from Tc.

An exercise similar to Figure 6b is shown in Figure 10,
for d = 3. In this case the exponent on the ordinate is
3θ, instead of 2θ. This is due to a different value of α in
the present dimension. Here also we see nice collapse for
all the three sets of data we have presented. In the inset
we do the exercise related to the crossover function, using
Ti = 4.6 data set. Here the value of φ was set to 0.17,
in accordance with the first step of the decay. Again a
power-law form of g(x) with the integral value of ψ = 2

provides best fit, with other parameters being A = 1.76,
C0 = 12.46 and C1 = 0.055. Corresponding full function
is represented by the continuous line in the inset.

In both d = 2 and 3, expectation from coarse-graining
point of view that when � exceeds the value of ξ(Ti), P (t)
decays with the exponent θ, has been confirmed. In the
present case, the value of ξ at Tf is zero. It remains to be
seen how ξ(Tf ), for Tf �= 0, interferes with the crossover.
Even though we have studied cases where both ξ(Ti) and
ξ(Tf ) are nonzero, this particular aspect requires more
careful study.

4 Conclusions

In conclusion, we have studied phase ordering dynamics in
Ising ferromagnets for various combinations of initial (Ti)
and final (Tf ) temperatures in d = 2 and 3. In this work,
the primary focus has been on the persistence probability,
P , and its connection with the growth of average domain
size, �, as well as with the equilibrium initial correlation
length ξ.

Our general observation has been that, irrespective of
the value of Ti, the decay of P becomes faster with the
increase of Tf , after a certain critical number for the latter.
This is understood to be due to spins affected by thermal
fluctuations. When this effect is taken care of [19], the long
time decay appears to be power law with exponent [20,21]
consistent with the one for quench to Tf = 0.

As Ti approaches Tc, two-step power-law decay be-
comes prominent, the second part having exponent θ �
0.225 in d = 2 and �0.18 in d = 3, same as Ti = ∞ and
Tf = 0 case. For Ti = Tc, thought to provide a new uni-
versality class, the first part of the two-step process lives
for ever. The corresponding values of the exponent have
been identified to be θc � 0.035 in d = 2 and θc � 0.105 in
d = 3. Thus the decay of persistence probability is strongly
connected with the initial correlation length. It has been
shown that the crossover length to the second step of decay
diverges as the equilibrium correlation length in both the
dimensions. This leads to the question of difference in the
fractal dimensions in the pre- and post-crossover regimes.
Our preliminary study in this respect confirms the expec-
tation that, for finite Ti, in the post-crossover regime only
the fractal dimension is same as the Ti = ∞ case. We
have also estimated the crossover function between the
two steps. It appears, a convergence to the asymptotic
decay occurs in a power-law manner, as a function of �/ξ.

We have not observed any initial configuration depen-
dence of the growth of the average domain size. This is
consistent with a previous study [36] but more explic-
itly demonstrated here. Essentially, even the transients are
only weakly affected due to change in initial temperature.
However, stronger finite-size effects are detected for lower
values of Ti. For domain growth, a striking observation
is that the early time exponent is much higher than the
asymptotic value, despite Tf being zero. This is at vari-
ance with the conserved order parameter dynamics. These
are all interesting new results, requiring appropriate the-
oretical attention.
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In future we will focus on persistence for the con-
served order parameter dynamics. For the conserved dy-
namics, initial temperature dependence of aging and do-
main growth are also important open problems.
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