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Abstract. With the objective of understanding the usefulness of thermostats in the study of dynamic
critical phenomena in fluids, we present results for transport properties in a binary Lennard-Jones fluid
that exhibits liquid-liquid phase transition. Various collective transport properties, calculated from the
molecular dynamics (MD) simulations in canonical ensemble, with different thermostats, are compared
with those obtained from MD simulations in microcanonical ensemble. It is observed that the Nosé-Hoover
and dissipative particle dynamics thermostats are useful for the calculations of mutual diffusivity and shear
viscosity. The Nosé-Hoover thermostat, however, as opposed to the latter, appears inadequate for the study
of bulk viscosity.

1 Introduction

In the vicinity of a critical point [1], various static [1–3]
and dynamic [3–11] quantities exhibit power-law singular-
ities. Computer simulations played a crucial role in the
understanding of static critical phenomena [12]. In dy-
namics, on the other hand, simulations are recent, partic-
ularly for fluid criticality. In this case, in addition to the
finite-size effects, critical slowing down poses enormous
difficulty. Note that the slowest relaxation time, τmax , di-
verges at the criticality as [3, 12]

τmax ∼ Lz, (1)

where L is the linear dimension of the system and z is
a dynamic critical exponent. While in the static critical
phenomena, the problem of critical slowing down can be
significantly reduced via a smart choice of ensemble (with
smaller value of z), in dynamics this is not possible. The
liberty in statics stems from the robust universality of
static critical phenomena.

For the computational study of critical dynamics in
fluids, using microscopic models, one typically carries out
molecular dynamics (MD) [13–15] simulations. Usually
one considers the microcanonical ensemble (constant N ,
V , E, which are, respectively, the total number of parti-
cles, confining volume and energy) where requirements of
hydrodynamics are satisfied. However, as seen in eq. (1),
close to the critical point, overwhelmingly long simula-
tion runs are required to avoid finite-size effects even at
a moderate level. In such a situation, control of temper-
ature (T ) in the NV E ensemble becomes problematic. A

a e-mail: das@jncasr.ac.in

representative case for temperature drift in microcanon-
ical runs has been shown in fig. 1. Drift of such magni-
tude is acceptable in the normal region of the parameter
space, i.e., far away from any phase transition. However,
close to the critical point, where one focuses on quanti-
fying singular behavior, this becomes problematic. This
calls for the study of fluid critical dynamics in canoni-
cal (NV T ) ensemble where, instead of E, T is kept con-
stant.

Various thermostats [13,14] are used to maintain tem-
perature in MD simulations in NV T ensemble, e.g. An-
dersen thermostat (AT), Langevin thermostat (LT), Nosé-
Hoover thermostat (NHT), dissipative particle dynamics
thermostat (DPDT), etc. Even though most of the ther-
mostats are useful in controlling the temperature of the
system, only a few are appropriate for the calculation of
transport properties in fluids. Crucial tests of a thermo-
stat, in terms of providing the correct value of a transport
quantity as well as in keeping the temperature constant, lie
in nontrivial phenomena like phase transition dynamics.
In a recent work [16], we have demonstrated the usefulness
of the NHT for the calculation of shear viscosity. In this
paper we address this issue in a more general context.

In AT [13], the temperature is controlled via the ran-
dom assignments of velocities to a fraction of particles ac-
cording to the Maxwell distribution, mimicking collisions
of the particles with a heat bath. Due to this Monte Carlo-
like stochastic nature, AT is not useful for the calculation
of transport properties in fluids. With increasing collision
frequency, the transport coefficients deviate further and
further from the desired value. This stochastic character
is also true for LT.
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Fig. 1. Drift of temperature is demonstrated for a typical
molecular dynamics run in microcanonical ensemble. The cu-
bic simulation box has a linear dimension L = 14 and number
of particles 2744. The initial temperature is set to 1.44, very
close to the critical value.

For MD in NV E ensemble, one solves Newton’s equa-
tions of motion involving the inter-particle force. Like AT,
in the NV T ensemble, depending upon the thermostat,
additional rules are imposed. In the case of LT, an addi-
tional drag force proportional to the velocity is introduced,
in addition to a random force, both coming from the back-
ground solvent particles. There, for the i-th particle, one
solves the equation [17]

d2�ri

dt2
= −�∇Ui − γ

d�ri

dt
+ �Wi, (2)

where �ri is the position of the particle, Ui is the inter-
particle potential, t is the time, γ the drag coefficient and
�Wi is a temperature-dependent Gaussian noise with mean
zero. The noise correlation between two times t and t′

follows the fluctuation-dissipation relation

〈WiμWjν〉 = 2kBTγδijδ(t − t′)δμν . (3)

In eq. (3), μ and ν correspond to the Cartesian axes of
space coordinates and kB is the Boltzmann constant. In
case of non-Gaussian noise, one needs to appropriately
adjust the numerical factor in eq. (3). In this work we
have used uniform random numbers between −1 and 1,
thus the prefactor 2 is replaced by 6.

Due to their inability to conserve the local momentum,
AT and LT are used only for the equilibration purpose.
Nevertheless, for the sake of completeness, we will present
some results using these thermostats as well. There exist
a number of thermostats, e.g. NHT, DPDT, etc., that are
believed to be good for the calculation of transport prop-
erties in fluids. The understanding of the usefulness of
these thermostats, however, to the best of our knowledge,
is essentially restricted to the single-particle dynamics.

In DPDT [18–20], the dissipative force in eq. (2) is
given by γωD(rij)(�vij · �eij)�eij where �rij and �vij are, re-
spectively, the relative position and velocity between i

and j particles with �eij = �rij/rij ; rij = |�rij | = r. Here,
ωD is a weight function connected to the random force as√

2γkBTωDωij�eij , where ωij are random numbers with
ωij = ωji. For the choice of ωD, there is no fixed pre-
scribed rule. In this work we use [21] ωD = (1 − r)2 for
r ≤ 1 and 0 otherwise. From the property of the ran-
dom force and the expression of the dissipative force, it
is understandable that DPDT will preserve local momen-
tum, thus hydrodynamics. However, this thermostat has
issues related to keeping the temperature constant. For
the choice of the weight function mentioned above and
γ = 0.1, we obtained a reasonable temperature control in
this work. Note that for LT we used γ = 1.

In NHT, an additional degree of freedom Ξ is intro-
duced and one solves the equations [13]

mi�̇ri = �pi, (4)

�̇pi = −δUi

δ�ri
− Ξ�pi, (5)

Ξ̇ =

(
N∑

i=1

p2
i /mi − 3N/β

) /

Q, (6)

where β = 1/kBT , Ξ is a time-dependent drag, �pi is the
momentum and Q is the coupling strength between the
system and the thermostat. Essentially, in this case, the
simulation is done in microcanonical ensemble [13,18] with
a modified Hamiltonian that provides averages equivalent
to those of a canonical ensemble with the original Hamil-
tonian. The original energy function, that is constant in
microcanonical ensemble, fluctuates in this method, as in
the canonical ensemble. The constant of motion here is re-
lated to the Helmholtz free energy. Unless otherwise men-
tioned, for all our presented results the value of Q was set
to unity.

As is clear by now, in this paper we provide results
for the utility of NHT and DPDT with respect to the
study of dynamic critical phenomena. Despite its prob-
lems related to local momentum conservation, NHT still
remained popular for the study of transport using NV T
ensemble. Of course, every hydrodynamic-preserving ther-
mostat has some disadvantages, e.g., DPDT suffers from
the temperature control problem.

The rest of the paper is organized as follows. In sect. 2,
we introduce the model. The results are presented in
sect. 3. Finally, the paper is concluded in sect. 4 with
a summary and discussion.

2 Model and phase behavior

In our binary (A + B) mixture model [22–24], particles
interact via the Lennard-Jones (LJ) pair potential

u(r) = 4ε
αβ

[(σ

r

)12

−
(σ

r

)6
]

, (7)

where σ is the particle diameter and εαβ [α, β = A,B] is
the interaction strength. For the sake of computational
convenience, we have introduced a cut-off and shifting of
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Table 1. Values of critical temperatures for different system
sizes.

L 8 10 12 14 16 ∞
T L

c 1.461 1.447 1.440 1.436 1.433 Tc � 1.421

the potential to zero at rc = 2.5σ. This, however, intro-
duces a discontinuity in the force at rc, which was removed
by adding a term [14] (r − r

c
)(du/dr)r=rc

. We work with
a symmetric model by setting ε

AA
= ε

BB
= 2ε

AB
= ε

which produces liquid-liquid phase separation. The over-
all density of particles was set to unity. This avoids over-
lap between liquid-liquid and vapor-liquid phase separa-
tions.

The phase diagram for this model was studied [22–24]
via a semi grandcanonical Monte Carlo (MC) [12, 13]
method. In this scheme, in addition to the standard
particle displacement moves, one tries identity switches
A → B → A which are accepted or rejected according to
the standard Metropolis criterion. For the identity moves
it is necessary to include in the Boltzmann factor [13]
the chemical potential difference between the two species.
This difference, however, is zero along coexistence and for
50 : 50 composition above the critical temperature Tc, due
to the symmetry of the model. In this ensemble, from the
fluctuation of concentration xα (= Nα/N, Nα being the
number of particles of species α), one obtains a probability
distribution P (xα). Below the critical temperature, P (xα)
should have a two-peak structure, the locations of the
peaks providing the points along the coexistence. At the
critical temperature, the form of the distribution crosses
over from the double peak to a single peak one. But, this
critical temperature is system-size-dependent that we will
denote as TL

c , which, in the limit L → ∞, will converge
to the thermodynamic critical temperature, Tc. In table 1
we list the values of TL

c for a few system sizes [24,25].
As already mentioned, transport properties are studied

via MD simulations in NV E as well as NV T ensembles,
for the latter various temperature controlling methods,
discussed in the previous section, were used. Details on
the calculation of transport properties will be provided in
the next section.

All our simulations were performed in three space di-
mensions with cubic boxes of linear size L (in units of
σ) and periodic boundary conditions in all directions.
The equations of motion in MD were solved by apply-
ing Verlet velocity algorithm with integration time step
Δt = 0.005t0, the LJ time unit t0 to be defined soon. Be-
fore starting the production runs, the configurations were
equilibrated via MC simulations and, in the case of MD
in NV E ensemble, further thermalization runs were per-
formed via MD with AT. Except for self-diffusivity, results
are presented after averaging over a very large number
of independent initial configurations, ranging between 80
and 640. In case of self-diffusivity, this number is 5. For col-
lective properties, as the terminology suggests, such high
numbers become necessary due to lack of averaging in-
volving the individual particles.

3 Results

Using MD, at various temperatures (fixing the composi-
tion to the critical value) we present results for the self-
diffusivity (D), Onsager coefficient (L ), shear viscosity
(η) and bulk viscosity (ζ). These quantities were calcu-
lated (in dimensionless units) from the Green-Kubo (GK)
relations [26] as (note that, because of the symmetry of
the model D = DA = DB , Dα being the self-diffusivity of
species α)

D(t) =
(

t0
3σ2

)∫ t

0

dt′
〈
�vi,α(t′)�vi,α(0)

〉
, (8)

L (t) =
(

t0ε

3k
B
NTσ2

) ∫ t

0

dt′
〈
�J

AB
(t′) �J

AB
(0)

〉
, (9)

η(t) =
(

t3
0
ε

σV Tm2

)∫ t

0

dt′
〈
Pμν(t′)Pμν(0)

〉
, (10)

and

Y (t) =
(

t3
0
ε

σV Tm2

)∫ t

0

dt′
〈
P ′

μμ(t′)P ′
μμ(0)

〉
, (11)

where t0 is the LJ time unit (=
√

mσ2/ε ) and m is the
particle mass (same for all particles in our model). In
eq. (9), �JAB is a concentration current defined as

�JAB
(t) = x

B

N
A∑

i=1

�v
i,A

(t) − x
A

N
B∑

i=1

�v
i,B

(t), (12)

�v
i,α

being the velocity of the i-th particle of species α. In
eq. (10), Pμν are the off-diagonal elements of the pressure
tensor given as [26]

Pμν(t) =
N∑

i=1

[

mviμviν +
1
2

∑

j(�=i)

(μi − μj)Fν(|�ri − �rj |)
]

,

(13)
�F being the force between particles i and j; μi is a Carte-
sian coordinate for the position of particle i. In eq. (11),
Y = ζ + 4

3η and P ′
μμ = Pμμ − P , P being the pressure.

These quantities can also be calculated from the cor-
responding mean squared displacements (MSD) following
the Einstein relations, e.g. the self-diffusivity D, the On-
sager coefficient L and the shear viscosity η are calculated
as [26]

D(t) =
(

t0
6tσ2

)〈∣∣�ri,α(t) − �ri,α(0)
∣∣2〉, (14)

L (t) =
(

t0N
2
Aε

6k
B
tNTσ2

)
〈∣∣�R

A
(t) − �R

A
(0)

∣∣2〉, (15)

and

η(t) =
(

t3
0
ε

2k
B
tV σTm2

)〈∣∣Qxy (t) − Qxy (0)
∣
∣2〉. (16)
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Fig. 2. (a) Plot of time-dependent self-diffusivity obtained
using various ensembles. (b) Plot of D [D(∞)] vs. T , for NV E,
NHT and DPDT. All results are obtained after averaging over
5 independent initial configurations.

In eq. (15), �Rα is the centre of mass (CM) coordinate of
species α and in eq. (16), the generalized displacement
Qxy has the expression

Q
xy

(t) =
N∑

i=1

x
i
(t)viy(t). (17)

In the rest of the paper, we set m, ε, σ, t0 and kB to unity.
For self-diffusivity, Onsager coefficient and shear viscos-
ity, we present results from the MSD relations whereas
the results for bulk viscosity were obtained using the GK
relation.

We start by showing a comparison of the time-depend-
ent self-diffusivity, calculated from the Einstein relation,
in fig. 2(a), obtained from NV E and NV T ensembles,
at T = 2.5. For NV T ensemble we have included results
from AT, LT, NHT and DPDT as temperature controller.
As expected, AT and LT do not provide results consistent
with the NV E one. However, the results from NHT and
DPDT are very much in agreement with the latter. The
final values of the transport quantities, here and in other

Fig. 3. Plot of Onsager coefficient as a function of time, from
MD calculations in NV E and NV T ensembles. For NV T en-
semble, as indicated, four different thermostats were used. In
all the cases, values of T and L were set to 2.5 and 10, respec-
tively.

places, are obtained from the flat portions of these time-
dependent plots. In fig. 2(b) we show a comparison of D
calculated from NV E, NHT and DPDT, as a function of
temperature, along the critical (50 : 50) composition line.
All are in good agreement (the observed differences are
not systematic). This is expected and demonstrated ear-
lier [13]. However, the cases of collective properties (except
for shear viscosity, via NHT, in a recent work [16]) are
missing in the literature which we address below.

In fig. 3 we show a comparison similar to fig. 2(a) but
for the time-dependent Onsager coefficient. For NHT, even
though we have presented the result using only Q = 1, we
have performed the calculations with values of Q up to
100 and observed that the results are not very sensitive
to the choice of this parameter. This fact will be demon-
strated later, for all the transport quantities, by present-
ing representative results using the optimum value [27] of
Q (≈ 6NkBT/ω2

0 , ω0 being a characteristic vibrational
frequency whose value is approximately 10 for typical LJ
fluid). Again, very good agreement is observed for results
from NV E, NHT and DPDT. In the following we focus
on the critical behavior of this quantity.

Note that L is expected to diverge at criticality with
the correlation length ξ as [3]

L

T
∼ ξxλ , (18)

with xλ 
 0.9. To verify the consistency of our simulation
results with this number for the critical exponent, we take
the route of finite-size scaling analysis [28]. Noting that at
criticality ξ scales with L, for results obtained at TL

c ,

L

T
∼ Lxλ . (19)

It was observed in previous NV E MD simulations of this
model [22, 23] that L has a strong background contribu-
tion Lb. The value of Lb was estimated to be 
 0.0033,
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Fig. 4. A finite-size scaling plot of Onsager coefficient [L =
L (∞)], after subtracting the background contribution, using
data at T L

c . Results from both NV E and NV T ensembles are
shown. For NV T ensemble, we have included data from NHT
and DPDT. The continuous line corresponds to the theoretical
prediction for critical divergence.

a reasonably large number, given that for small system
sizes this number can be comparable to the total value.
We will thus deal with the critical part ΔL (= L − Lb)
only. So, when calculated at TL

c , a plot of ΔL /T vs. L will
be consistent with a power-law with exponent 0.9. This is
demonstrated in fig. 4. Note that we have shown results
from NHT, DPDT, as well as from NV E ensemble. All
of them are in good agreement. This essentially demon-
strates that NHT and DPDT are good devices for the
calculation of mutual diffusivity (DAB) even for quanti-
tative understanding of critical dynamics. Here note that
DAB = L /χ, where χ is the concentration susceptibil-
ity that can be conveniently calculated from concentra-
tion fluctuation in MC simulations outlined above. Sightly
poorer agreement of the DPDT data with the expected
theoretical behavior, compared to NHT ones, is due to
the temperature control problem that this method suffers
from, in the long run.

Having demonstrated the usefulness of NHT and
DPDT in the calculation of the diffusion constants, we
turn our attention to viscosities. In fig. 5 we show the time-
dependent shear viscosity, using the Einstein relation, for
NV E, NHT and DPDT. Two different temperatures are
included, viz., T = 2.5 and T = 1.447. Here we do not
show the results obtained using AT and LT which, as we
have already understood and as is known, are not appro-
priate for the study of transport properties in fluids. For
both NHT and DPDT, satisfactory agreement is achieved
with the NV E calculation. In our recent work [16], agree-
ment between the NHT and NV E was established. There
our estimations of the corresponding critical exponent via
these two methods agreed nicely with each other. How-
ever, in that work, DPDT was not applied. Having demon-
strated the expected usefulness of DPDT, for this purpose,
we move to the case of bulk viscosity. For bulk viscosity

Fig. 5. Plot of shear viscosity as a function of time for two
different temperatures, viz., T = 2.5 and T = 1.447, the latter
being the value of T L

c for L = 10, the system size for which
the results are presented. We have shown results from NV E,
NHT and DPDT calculations.

we avoid demonstrating the critical divergence, by keep-
ing the difficulty in estimation of this quantity in mind.
One of the primary difficulties lies in the estimation of P
that needs to be subtracted from the diagonal elements
of the pressure tensor. Even a slight error in this quantity
can lead to a misleading number in the final value. This,
however, in our calculations was appropriately taken care
of. Here note again that, for all the collective transport
properties discussed in this work, the critical divergences
were estimated from calculations via MD in NV E ensem-
bles and the results are in good agreement with existing
theoretical predictions. Due to the above-mentioned diffi-
culty and diverging relaxation time, it becomes inevitable
to choose temperatures reasonably far away from the crit-
ical value, for the bulk viscosity.

Even though so far it appears that the NHT is a good
tool to study dynamic critical phenomena, in fact bet-
ter than the DPDT, from the temperature control point
of view, we have encountered problem in obtaining the
correct value of bulk viscosity with this thermostat, at
least for this value of the coupling constant. In fig. 6
we show time-dependent bulk viscosity. Good agreement
(within 10%) is obtained between NV E and DPDT for
two different temperatures. However, note that, possibly
due to temperature fluctuation/drift, the agreement be-
tween NV E and DPDT is not good if data from later
parts of the runs are considered for the calculation. This
is despite the fact that for this particular calculation we
have used γ = 0.001. The choice of a smaller value of γ
has a connection with adopting smaller integration time
steps. From a previous simulation [19], it was reported
that temperature destabilizes with the increase of Δt. As
already mentioned, unlike other quantities, for ζ, the error
in the calculation of P brings additional problem, which
enhances further if there is a strong temperature fluctu-
ation or a drift. A further comparison of time-dependent
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Fig. 6. Comparison of time-dependent bulk viscosity for calcu-
lations from NV E and DPDT, at two different temperatures.
The inset shows a comparison between NV E and NHT for this
quantity, only at T = 2.5.

bulk viscosity is shown in the inset of fig. 6, using data
from NV E and NHT calculations. Clearly, NHT provides
a misleading value. In fact there is disagreement between
the two calculations starting from the very early time.

4 Conclusion

In this paper we presented comparative results for trans-
port properties in a binary fluid mixture obtained from
molecular dynamics [13] calculations in microcanonical
and canonical ensembles. The focus is on the collective
properties. Even at criticality the Nosé-Hoover thermo-
stat (NHT) and dissipative particle dynamics thermostat
(DPDT) provide results for diffusivities and shear viscos-
ity that are in excellent agreement with the calculations
in a microcanonical ensemble. However, while the DPDT
appears to work well for bulk viscosity also, the NHT fails
for this purpose.

The importance of the paper lies in the following fact.
Very close to the critical point, for big enough systems,
one needs extended simulation runs for the calculation
of transport properties. In that case, for runs in micro-
canonical ensemble, it becomes difficult to avoid drift in
temperature. Thus, the calculation of the transports in
canonical ensemble may be of help. The NHT still being
a very commonly used thermostat for the study of dy-
namics in the canonical ensemble, despite the criticisms
about it, one needs to check its validity in situations as
nontrivial as critical dynamics. It will be interesting to
find out why the calculation for bulk viscosity via NHT is
unreliable, despite the latter being a good one for other
transport properties. One may argue, given that we have
presented results only for Q = 1, if the value of Q is ap-
propriately chosen, the NHT results for bulk viscosity may

Fig. 7. (a) A comparative plot of D(t) and L (t), obtained
using NHT, for two values of Q. Results correspond to L = 10,
T = T L

c . Data for L has been multiplied by 3. (b) Same as (a),
but for η(t) (main frame) and Y (t) (inset). For bulk viscosity
we have included data from NVE ensemble as well.

match the numbers obtained from microcanonical simula-
tions. In fig. 7, we demonstrate, as stated earlier, that
improvements do not occur even when an optimum value
of Q is chosen. In this figure, we present results for all
the transport properties, vs. time, calculated at TL

c for
L = 10, using Q = 1 and 87, the latter number being ap-
proximately the optimum value for this quantity. Within
statistical fluctuations, the results from both the values of
Q are in nice agreement with each other, for all the quan-
tities. For bulk viscosity, we have included a plot from cal-
culations in NV E ensemble as well. This was done due to
the following fact. While for all the other quantities, either
in this paper or elsewhere [16], we have explored compar-
ison between NHT and NV E results in close vicinity of
the critical point, the same is missing for bulk viscosity.
In fig. 6, the temperatures were chosen to be significantly
higher than Tc, keeping the inferior temperature control-
ling ability of DPDT and other technical difficulties in the
calculation of bulk viscosity in mind.
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A criticism about NHT is that [18, 29, 30], if there is
an external force, there is a problem with momentum con-
servation. Recently, such a problem is being taken care
of [18, 29, 30] by introducing a further soft pair potential
and relative velocities. Despite some deficiencies, even the
basic NHT appears to provide a reasonable description of
dynamics for a number of quantities, as seen here. Even for
nonequilibrium dynamics we have observed [31] recently
that this thermostat produces expected results.

On the other hand, despite its better ability to preserve
hydrodynamics, DPDT does not appear to be very suit-
able for studies of dynamic critical phenomena because of
the temperature control problem. In this context, a recent
work by Gross and Varnik [32] should be discussed. For
studying dynamic critical phenomena, these authors pro-
posed a mesoscopic approach, based on the lattice Boltz-
mann method. In addition to accounting for hydrody-
namic transport, this approach keeps the temperature in-
herently constant.
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