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We consider hardcore bosons in two coupled chains of one dimensional lattices at half filling with repulsive
intrachain interaction and interchain attraction. This can be mapped onto a coupled chain of spin-1/2 XXZ

model with interchain ferromagnetic coupling. We investigate various phases of hardcore bosons (and related
spin model) at zero temperature by a density matrix renormalization group method. Apart from the usual superfluid
and density wave phases, pairing of interchain bosons leads to the formation of phases like pair superfluid and
density wave of strongly bound pairs. We discuss the possible experimental realization of such correlated phases
in the context of cold dipolar gas.
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I. INTRODUCTION

After successful experimental realization of dipolar Bose-
Einstein condensation (BEC) of 52Cr [1], 164Dy [2], and
Rydberg atoms [3], the possibility of finding exotic phases like
superfluid, pair-superfluid, supersolid, pair-supersolid, charge
density wave, and phases involving quantum magnetism [4]
have increased tremendously. Usually, bosons can form super-
fluid by condensation of bosonic particles to a single ground
state, whereas fermionic superfluidity in superconductors and
in cold atoms [5,6] occurs due to the formation of pairs. For
sufficiently strong attractive interactions, bosons can also form
pairs, which leads to the formation of “pair superfluidity” of
bosons [7]. Pair superfluidity can be realized in cold atom
systems by interspecies attractive interactions [8,9], bilayer
dipolar systems [10–12], and through Feshbach resonance
[13]. Theoretically, “pair superfluidity” has also been studied
in models with correlated hopping [14].

A supersolid phase is described by simultaneous existence
of crystalline order and superfluid order in the system. Various
experimental and theoretical studies have been carried out for
finding supersolidity [15–25]. Interestingly, pair supersolid
(PSS) is defined as a phase where one finds simultaneous
existence of pair superfluidity and modulation in density,
with vanishing single-particle superfluidity [9–11,26]. Bilayer
dipolar systems provide existence of pair-superfluid (PSF) and
pair-supersolid (PSS) phases [10,11]. The possibility of pair
supersolidity in bilayer dipolar gas with polarized dipoles has
been also investigated [10], where the existence of PSF and
PSS phases are shown by solving an effective Hamiltonian of
pairs in the strong coupling limit.

Trefzger et al. have looked at polarized dipolar particles
in two decoupled 2D layers, in the presence of repulsive
interactions in the planes and attractive interactions between
the two layers. They have shown the existence of PSS and
PSF phases by solving the effective extended Bose-Hubbard
Hamiltonian in the low-energy subspace of pairs, by means of
a mean-field Gutzwiller approach and exact diagonalization
methods [10]. The PSF and PSS phases have also been
studied in a two-species Bose-Hubbard model in a two-
dimensional square lattice with on-site intraspecies repulsions
and interspecies attractions [9].

Low-dimensional quantum systems are quite unique, as
in reduced dimension, quantum fluctuations destroy the true
long range order (LRO). Instead, the low-dimensional systems
quite often show quasi-long range order (QLRO). Incidentally,
for the system to show QLRO, the equal-time correlation
functions, 〈C+(X)C(0)〉 (where X is the distance), would
decay algebraically. However, if the correlation function
decays exponentially, the system is believed to show short
range order (SRO) [27]. The transition between superfluid
to Mott insulator in one dimension at commensurate density
is a BKT type transition, and the transition point can be
determined by a Luttinger liquid parameter, K [28–33]. The
Luttinger liquid parameter can be extracted from exponent of
correlation functions. For bosonic low-dimensional systems,
there have been studies where a number of phases, namely,
superfluid, supersolid, and pair-superfluid phases, have been
reported [34–46]. In low dimension, quite a few interesting
studies in pairing phenomena have been carried out. Paired
superfluid and counterflow superfluidity in one dimension can
exist in a binary mixture of bosons with equal density [35].
Studies on phases of the dipolar bosonic gases in unconnected
neighboring one-dimensional systems have also been carried
out [34]. Parallel stack of one-dimensional hardcore bosons
in optical lattices have been studied, by using bosonization
and quantum Monte Carlo methods [45], where superfluids,
supercounterfluids (SCF), and checkerboard (CB) phases from
composite particles from different tubes are shown. In a recent
study [46] of a two-leg ladder system with attractive on-site and
repulsive interchain nearest-neighbor interactions, phases like
atomic superfluid, dimer superfluid, and dimer rung insulator
are found by imposing the on-site three-body constraint.

Motivated by recent experimental progress on dipolar gas,
we consider hardcore bosons with dipolar interactions on two
coupled one-dimensional chains at half-filling. Dipoles are
oriented in such a way that it generates a nearest-neighbor
intrachain repulsion and on-site interchain attraction. In this
system, inter-chain attraction can induce pairing between the
bosons in two chains and intrachain repulsion can break the
translational symmetry which leads to the formation of density
ordering. In this work, we mainly focus on the formation
of various phases due to the interplay between these two
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FIG. 1. (Color online) Schematic of the two chains with dipolar
bosons. There is nearest-neighbor repulsive interaction V , and
nearest-neighbor hopping parameter t , in each of the chains. Both
chains are coupled with on-site attractive interaction U , while there
is no hopping between the two chains.

orderings. The remaining part of the paper is organized as
follows. In Sec. II we describe the model and its connection
to an equivalent spin model. Various phases of this bosonic
ladder (and spin chain) with different ordering are discussed.
The results obtained from DMRG calculations are presented
in detail in Sec. III. Different phases and their transitions are
described in separate subsections. Finally, we summarize all
our results in Sec. IV.

II. MODEL

We consider hardcore bosons in two coupled chains of
one-dimensional lattices at half filling with dipolar interaction
as depicted in Fig. 1. The anisotropic part of dipolar interaction
is proportional to (1 − 3 cos2(θ )), where θ is the angle
between the dipoles. We consider that the dipoles are polarized
perpendicular to the chains (as shown in Fig. 1). Thus the
dipolar interaction is repulsive when dipoles are in the same
chain, while the dipoles of different chains which are at the
same lattice site attract each other. The effective Hamiltonian
of the system, without taking into account the interchain
hopping, can be written as

H =−t
∑

α,〈i,j〉
(b†α,ibα,j + H.c.)

+V
∑

α,〈i,j〉
n̂α,i n̂α,j − U

∑
i

n̂1,i n̂2,i , (1)

where α = 1,2 is the chain index, t is the hopping term within
the chains, V is the strength of intrachain nearest-neighbor
repulsion, and U is the strength of interchain on-site attraction.
For simplicity, we truncate the long range dipolar interaction
and consider only nearest-neighbor intrachain repulsion and
on-site interchain attraction. The physical states of a hardcore
boson are restricted by the condition b

†2
i |0〉 = 0. The number

states of a hardcore boson are equivalent to sz states of a
spin-1/2 particle by the mapping (|1〉 → |↑〉 and |0〉 → |↓〉).
The creation, annihilation operators of a hardcore boson can
be represented by the spin-1/2 operators as follows: s+

i → b
†
i ,

s−
i → bi , and sz

i → ni − 1/2. The final spin Hamiltonian
turns out to be a coupled chain of spin-1/2 XXZ model with
interchain ferromagnetic coupling,

H =−t
∑

α,〈i,j〉
(s+

α,is
−
α,j + H.c.)

+V
∑

α,〈i,j〉
sz
α,is

z
α,j − U

∑
i

sz
1,i s

z
2,i . (2)
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FIG. 2. (Color online) Two-dimensional phase diagram in the
phase space of two parameters, U and V . The phase diagram is quite
rich with phases, namely, superfluid (SF), pair-superfluid (PSF), and
density wave (DW) phases.

In the spin Hamiltonian Eq. (2), which is obtained from
the bosonic Hamiltonian [Eq. (1)], we impose the constraint∑

i s
z
α,i = 0.

In this model, we scale all the energies by the hopping
strength, t , and set t = 1 to obtain the complete phase diagram
in the U − V plane. For U = 0, the above model becomes
equivalent to two decoupled XXZ spin-1/2 chains which can
be solved exactly and studied extensively [27]. This model
undergoes a quantum phase transition to antiferromagnetic
phase above the critical coupling value, V = 2. Similarly,
hardcore bosons with nearest-neighbor repulsion exhibits a
transition from superfluid to density wave. Superfluid and
density wave phases can be characterized by following
correlation functions,

Cα(r) = 〈b†α,ibα,i+r〉, (3)

Gα(r) = 〈nα,inα,i+r〉. (4)

For spin chain, corresponding correlations functions transform
to Cα(r) = 〈s+

α,is
−
α,i+r〉 and Gα(r) = 〈sz

α,is
z
α,i+r〉. In SF phase of

bosons the correlation function Cα(r) shows power law decay
∼1/rαs , where the exponent αs can be determined from the
Luttinger parameter [27].

We have calculated relevant quantities by varying the values
of the parameters U , V and the phase diagram is shown in
Fig. 2. For low values of U and V , bosons in the two chains are
almost decoupled and form a superfluid in each of the chains.
In terms of spins, there will be quasi-long range order in the
X-Y plane [21]. In this case, the effect of fluctuation is quite
large and there is no order along the z axis. For sufficiently
large nearest-neighbor interaction, density ordering develops
in each chain which can be characterized by the density-density
correlation function (−1)rGα(r). In DW phase, superfluidity
vanishes and Cα(r) decays exponentially due to the appearance
of an energy gap. Attractive interaction between two chains
induces pairing of bosons which can be analyzed from the
correlation function of the pairs,

P (r) = 〈b†1,ib
†
2,ib2,i+rb1,i+r〉 − 〈b†1,ib1,i+r〉〈b†2,ib2,i+r〉. (5)
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For sufficiently large attractive interaction, U , and small
repulsive interaction, V , a quasi-“pair-superfluid” (PSF) state
of bound pairs is formed. In this phase the correlation function,
P (r), shows QLRO but single particle superfluidity vanishes.
In the large U and V limit, the system forms strongly bound
pairs of hardcore bosons with density ordering of the pairs
due to the strong nearest-neighbor repulsion. This insulating
density wave phase of pairs can be described by the wave
function,

|PDW 〉 =
∏

i

|0,0〉i
∏
j

|1,1〉j , (6)

where i,j represent sites of two sublattices and |n1,n2〉i is
the number state of coupled chains at site i. In terms of spin
language, spins are ordered antiferromagnetically in each of
the chains, while spins align ferromagnetically along the rung
of the ladder. This phase is similar to the “pseudogap” phase of
superconductors, where phase coherence between the strongly
bound pairs is absent.

III. RESULTS AND DISCUSSION

To solve the above spin Hamiltonian and to find various
possible quantum phases in the parameter space, we have
used density-matrix renormalization group (DMRG) [47,48]
method. We consider spin-1/2 at every site, varying the
DMRG cutoff (max = m) from 250 to 400, for consistent
results. Unless otherwise stated, most of the results below
are obtained with m = 250. We have used an open boundary
condition for both the chains. We have compared our DMRG
results, namely energy gap and energy eigenvalues, with
results from exact diagonalization, up to 28 lattice sites. We
find the energies are comparable up to five decimal places.
To characterize different phases, we have calculated spin
density, two points and four points correlation functions,
and the corresponding structure factors. For showing plots
of correlation functions and structure factor, unless stated
explicitly, we have considered each chain to be of length
L/2 = 160, which amounts to the total system size L = 320.
To determine an accurate phase boundary between different
phases and to minimize the finite size effect, we have done
finite-size scaling of correlation lengths, structure factors, and
exponents of the correlation functions of the system with size
(L) up to 384.

A. SF to DW transition

The quasisuperfluid order in terms of spin language can
be described as order in the XY plane [21]. To calculate
order along the XY plane, we have calculated transverse
spin-spin correlation function Cα(r) = 〈S+

α,0S
−
α,r〉, where

r is the distance from the middle of the chain. In Fig. 3,
we have shown the plot of the correlation function, C1(r),
at U = 0.5 and different values of V . It shows correlation
function, C1(r), decays algebraically for V = 0.4 and 1.0,
while it has short range order for V = 1.4. The structure
factor C1(k) = 1

(L/4)

∑
exp(ikr)C1(r) gives peak at k = 0 in

the superfluid phase. For characterizing order along the z axis
(density wave), we have calculated the correlation function
Gα(r) = 〈Sz

α,0S
z
α,r〉. In Fig. 4, we have shown the plot of
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FIG. 3. (Color online) Plot of correlation function C1(r), as a
function of r , at U = 0.5 and different values of V [V = 0.4 (square),
V = 1.0 (triangle), and V = 1.4 (circle)]. Inset shows scaling of L/ξ 1

L

as a function of V for U = 0.5. Coalescence of the data points of
different L shows SF-DW transition at V = 1.1 ± 0.05.

correlation function, (−1)rG1(r), at U = 0.5 and different
values of V . The system has order along the z axis for V = 1.2
and 1.4, while it has short range order for V = 0.4. Due to
the open-boundary condition in DMRG, there exists some
fluctuations in G1(r) close to the boundary. The structure
factor G1(k) = 1

(L/4)

∑
exp(ikr)G1(r) gives peak at k = π in

the density wave phase.
The transition between superfluid to gapped density wave

in one dimension is a BKT type transition. Thus the system
opens up a gap very slowly, as it makes the transition from
SF to DW [28–30]. As energy gap and correlation length are
related to each other (GL ∼ 1/ξL), superfluid to density wave
transition can be shown by finite-size scaling of the correlation
length. The correlation length is defined as [30,33,49,50]

ξα
L =

√∑
r r2Cα(r)∑
r Cα(r)

, (7)
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FIG. 4. (Color online) Plot of correlation function (−1)rG1(r), as
a function of r , at U = 0.5 and different values of V [V = 0.4 (circle),
V = 1.0 (square), V = 1.2 (triangle), and V = 1.4 (diamond)]. Inset
shows finite-size scaling of OG(L), at U = 0.5, and for different
values of V .
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where Cα(r) = 〈S+
α,0S

−
α,r〉 is obtained by using the wave

function of the system of length L. In the inset of Fig. 3, we have
plotted length dividing correlation length L/ξ 1

L versus V , for
U = 0.5. The coalescence of data occurs at V = 1.1 ± 0.05
for different system sizes (L = 192,224,256). This indicates
a transition from SF to DW at V = 1.1 ± 0.05.

Density wave order can also be characterized by
a nonzero static structure factor, OG(L) = G1(k = π ) =

1
(L/4)

∑
r (−1)rG(r) [11,38,51,52]. To obtain the thermody-

namic value of OG(L), we have done finite-size scaling for
systems with length L up to 384, by fitting the finite-size
OG(L) [38] values with a function, OG + O1/L + O2/L

2. In
the inset of Fig. 4, we have plotted OG(L) as a function of
1/L at U = 0.5 and different values of V . From inset of the
Fig. 4, its appears that the extrapolated value of OG(L) is finite
for V � 1.05. On the contrary, for lower values of V , OG(L)
decreases faster to very small values with an increase in system
size. This should have gone to zero in the thermodynamic
limit; however, due to the BKT nature of the transition, the
extraploated value of OG(L) goes to small nonzero values,
particularly near the critical region of SF-DW transition. In
fact, due to the slow nature of the transition, from extrapolation
of OG(L), it is difficult to exactly locate the phase boundary of
the SF-DW transition. However, the significance of the OG(L)
plot is that it shows how the DW wave appears in the system,
while going from a SF to DW phase. Note that, in the density
wave phase, G1(r) decays exponentially to a nonzero value
(except for some fluctuations near the boundary). Therefore,
as shown in Fig. 4, from correlation function (−1)rG1(r) and
finite-size scaling of OG, we have estimated the density wave
order in the system for V = 1.1 ± 0.08, at U = 0.5.

As mentioned above, transition between SF to DW in one
dimension is BKT type. The transition point can also be
determined by examining the critical exponent of the correla-
tion function [28,29,33]. Critical exponent can be obtained
by fitting the correlation function with algebraic decay of
C1(r) = A/r2KC [as shown in Fig. 5(c)]. At the transition point
(from SF to DW), exponent (KC) of the function C1(r) takes
the value 1/2. The thermodynamic limit of KC(L) is obtained
by extrapolating KC(L) = KC + K1/L + K2/L

2, where K1

and K2 are constants. In Fig. 5, we have shown SF to DW
transition from KC of the correlation function C1(r) at U = 0.5
and by varying V . In Fig. 5(a), we have shown extrapolation
of KC(L), obtained from a power law fit of C1(r) for different
system sizes. Extrapolation of KC(L) goes to 1/2 at V = 1.12
[inset of Fig. 5(b)]. This indicates a phase transition from SF
to DW at V = 1.12 ± 0.04 for U = 0.5. The error of ±0.04
is the error in fitting of C1(r) to the algebraic function. In
Fig. 5(c), we have shown fitting of a correlation function, with
C1(r) = A/r2KC for V = 1.0, and with chain length l = 128.
Due to the open boundary condition, fitting is not good near
the end of the chain. Also while going from a SF phase to a DW
phase, fitting error increases. For U = 0 and V = 2.0, which is
the transition point from SF to DW, we find KC = 1/2 ± 0.01,
while with increase in U near the SF-DW boundary, the error
in fitting of C1(r) also increases slowly. The transition points
obtained from scaling of the L/ξ 1

L and exponent KC(L) are
consistent with each other within the error bars indicated in
the phase diagram.
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FIG. 5. (Color online) (a) Finite-size scaling of KC(L), at U =
0.5 and different values of V . (b) Plot of the extrapolated values
of KC(L) vs V for U = 0.5, showing SF to DW transition at V =
1.12 ± 0.04. (c) Power law fitting of C1(r) for V = 1.0, on a log-log
scale.

B. SF to PSF transition

With increase in attractive interaction U along the rungs
of the ladder, hardcore bosons start making pairs along these
rungs. As a result, single particle superfluidity starts decreasing
in each of the chains. For smaller values of repulsive interaction
V , and sufficiently large values of U , the system shows
BKT type transition from single particle superfluid phase to
pair-superfluid phase [35,53]. In the PSF phase, single-particle
spectrum opens up a gap. As a result, the correlation function,
C1(r), decays exponentially in this phase. As discussed in
the case of SF to DW transition, here also we estimate the
SF to PSF transition from finite-size scaling of correlation
length ξα

L . In Fig. 6, we have plotted C1(r) vs r at V = 0.1
and different values of U . This plot shows the transition
from algebraic to exponential decay of C1(r), as the system
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FIG. 6. (Color online) Plot of correlation function C1(r), as a
function of r , at V = 0.1 and different values of U . In the inset,
scaling of L/ξ 1

L as a function of U for V = 0.1. Coalescence of
the data points of different system sizes shows SF-PSF transition at
U = 1.6 ± 0.1.
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FIG. 7. (Color online) Plot of pair-correlation functions P (r), as
a function of r , on a log-log scale, at U = 2.0 and different values of
V . The plot shows PSF to DW transition at V = 0.4 ± 0.05.

undergoes transition from SF phase to PSF phase. In the inset
of Fig. 6, we have plotted L/ξ 1

L versus U . The coalescence
of data occurs at U = 1.6 ± 0.1 for different system sizes
(L = 192,224,256). This indicates transition from SF to PSF
phase at U = 1.6 ± 0.1. We find, generically, SF to PSF
transition to be the slowest transition in the phase diagram.
The corresponding errors in finding the transition points have
been indicated in the phase diagram.

C. PSF to DW transition

To characterize pair superfluidity, we have calcu-
lated the pair-correlation function, defined as P (r) =
〈S+

1,0S
+
2,0S

−
1,rS

−
2,r〉 − 〈S+

1,0S
−
1,r〉〈S+

2,0S
−
2,r〉, where 1 and 2 stand

for chain indices of the ladder and r is the distance from
the middle site of the ladder. We find pair superfluidity in
the system for lower values of repulsive interaction V and
large enough values of attractive interaction U . With increase
in V , we find density wave in each of the chains. We also
find that, in the presence of large enough U , density wave
in each of the chains gets stabilized at much lower values of
V , and becomes strongly correlated [11]. In the PSF phase,
correlation function, P (r), decays algebraically, while, in the
density wave phase, it decays exponentially. To reduce the
finite-size effect, we have calculated P (r) by taking the total
system size L = 384 and with max value m = 400. In Fig. 7,
we have plotted the pair-correlation function, P (r), with r in
log-log scale, at U = 2, and different values of V .

We find pair-correlation function, P (r), and decay al-
gebraically up to V = 0.4 ± 0.05 for U = 2.0. For V �
0.4 ± 0.05, the pair-correlation function decays exponentially,
indicating transition from PSF to DW phase.

In Fig. 8, we have plotted correlation function, G1(r), as a
function of r , at U = 2.0 and for different values of V . This
shows how the density wave order develops in the chain with
increase in repulsive interaction, V , while going from PSF to
DW phase. In the inset of Fig. 8, we show extrapolation of
OG(L) as a function of 1/L for different values of V , and
for U = 2.0. From extrapolation of OG(L), it seems that for
V � 0.3, OG takes a finite value for U = 2. As discussed in
the SF to DW transition, from correlation function, G1(r), and
finite-size scaling of OG, we find that density wave order exists
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FIG. 8. (Color online) Plot of correlation function (−1)rG1(r), as
a function of r , at U = 2.0 and different values of V : V = 0.1 (circle),
V = 0.3 (diamond), V = 0.4 (triangle left), V = 0.5 (triangle down),
and V = 0.6 (square). Inset shows finite-size scaling of OG, at U =
2.0 and different values of V .

in each of the chains for V = 0.4 ± 0.08. As shown in Fig. 8
and the inset of Fig. 4, density wave order develops in each
of the chains faster and stabilizes at much lower values of V ,
for U = 2.0 (Fig. 8) compared to U = 0.5 (Fig. 4). We find
continuous transition from PSF phase to DW phase; we did
not find PSS phase within our error bar.

D. Dimerization

With increase in attractive interaction, U , between the
chains, bosons makes bound pairs along the rung, while, due
to repulsive interaction V , these bound pairs try to avoid each
other. As a result, in the large limit of U and V , positions of
the hardcore bosons in each of the chains become strongly
correlated. In this limit, the density waves of each of the
chains are correlated to each other. To find this correlation
in density waves of chains, we have calculated dimer-dimer
correlation D(r) = 〈Sz

1,0S
z
2,0S

z
1,rS

z
2,r〉, where 1 and 2 stand for

chain indices of the ladder and r is the distance from the middle
site of the ladder. As shown in Fig. 9, we have plotted D(r) with
distance r for V = 2.2, and different values of U . For U = 0,
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FIG. 9. (Color online) Plot of dimer-dimer correlation function
D(r), as function of r , for V = 2.2 and different values of U . Inset
shows plot of Nav as a function of U , and different values of V .
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FIG. 10. (Color online) (a) Plot of spin density 〈sz
l 〉, as function of

l, for U = 2.0 and V = 1.5. Spin density of the first chain is denoted
with a square, while the second chain is denoted with a circle. Inset
shows the schematic of dimerization of spins in two chains. (b) Plot of
density correlation g(l), as a function of l, for U = 2.0 and V = 1.5.

the two chains behave independently and, with increase in
U , we find that the correlation in density wave increases. As
already mentioned, increase in U forces bosons to make bound
pairs along the rungs. The number of boson pairs in terms of
spins can be defined as Npair = ∑

i 〈sz
1,i s

z
2,i〉/L

4 , where i is the
site index of the chain. For small values of U , since the system
has large fluctuation effects, the number of pairs is quite small.
In fact, in this limit, the system has loosely bound pairs along
the rungs, while, with increase in U , Nav increases, displaying
crossover of the system to strongly bound pairs. We also find
that repulsive interaction, V , helps to stabilize these bound
pairs. This is shown in the inset of Fig. 9, where we have
plotted Nav versus U , for different values of V .

As we have discussed, in the large U and V limit,
the system forms a density wave of strongly bound pairs
and positions of hardcore bosons in each of the chains
become strongly correlated [11,45]. In spin language, spins
align ferromagnetically along the rung of the ladder, while
antiferromagnetically along each of the chains [as shown in
the schematic of Fig. 10(a)]. To show this, in Fig. 10(a), we
have plotted spin density, 〈Sz

l 〉, of the ladder with position l, for
U = 2, and V = 1.5. For a clear view of 〈Sz

l 〉, numbering of l

index is done in a different way, which is shown in schematic

of Fig. 10(a). Spin density, 〈Sz
l 〉, along the rungs take same

value and are in the same direction, while, along the chains,
they are oriented in opposite directions. Such a configuration
with parallel spin within each rung and antiparallel spin along
each chain of the ladder structure can be represented as
|↑↑↓↓↑↑ . . .〉. In hardcore bosonic language, due to attractive
interaction, U , hardcore bosons form bound pairs along the
rungs, while, due to repulsive interaction, V , present in each
of the chains, these rung pairs try to avoid each other. As
a result, these rung pairs reside on alternate rungs and this
configuration can be represented by |110011 . . .〉. As shown in
Fig. 10(b), this configuration can also be visualized by looking
at the density correlation function, g(l) = 〈sz

0s
z
l 〉, for both the

chains (full ladder), where sz
0 is considered as the middle spin

site of the ladder. Numbering of l index for g(l), as shown
schematically in Fig. 10(a), is done differently compared to
G1(r). As shown in Fig. 10(b), periodicity of the density wave
on the ladder is twice the lattice spacing. The structure factor,
defined as G(k) = 1

L/2

∑
l exp(ik · l)〈sz

os
z
l 〉, has peaks at −π/2

and π/2.

IV. CONCLUSION

In summary, we have studied various phases of hardcore
bosons in two coupled chains, with interchain attraction and
interchain nearest-neighbor repulsion between the bosons. We
find that the ground state phase diagram has mainly three
phases: SF, PSF, and DW. We have estimated the phases
and the phase boundaries accurately through appropriate two
body and four body correlation functions and at times the
corresponding structure factors. The model discussed in this
article is a simplified description of bilayer dipolar bosons
with dipole moments perpendicular to the plane. Although we
truncated the long range dipolar interaction to nearestneighbor
repulsion, this model contains essential ingredients for the
formation of “pair superfluid” and “pair density wave” phases.
Similar to the BCS-BEC crossover of fermions, in this system,
bosons can undergo a transition from a weakly bound paired
superfluid state to density wave of strongly bound pairs.

ACKNOWLEDGMENTS

We would like to thank A. V. Mallik, Diptiman Sen, and
Subroto Mukerjee for fruitful discussions. B.P. thanks the
UGC, Govt. of India for support through a fellowship and
S.K.P. acknowledges DST, Govt. of India for financial support.

[1] T. Lahaye, T. Koch, B. Fröhlich, M. Fattori, J. Metz, A.
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