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Abstract

We have performed density functional theory calculations to study the effect of adsorption of a set of
organic electron donor molecules on single layer Mo$, to find the optimum condition to tune the
charge transfer, as well as to find how it changes the electronic properties of single layer MoS,. We have
performed our calculations for three sets of organic Lewis bases. We have found that all the molecules
are physisorbed on MoS,. Our calculations show that the charge transfer from the molecules to the
Mo§, layer is highly dependent upon the inductive effect and HOMO-LUMO gap of the molecules.
Furthermore, we show that the charge transfer interaction tunes the electronic and optical property of
MoS; to a significant amount: for example, the band-gap of the system can be changed from 1.8 eV to
even alow value of 0.2 eV, making it interesting for different optoelectronic device applications.

Introduction

Recently, since the last decade, all two-dimensional materials, including transition metal-dichalcogenites
(MoS,, WS,, VS, etc) have become a subject of huge scientific interest because of their possible application in
nano electronics [ 1-9]. They are very promising materials for opto-electronic applications because of their
intrinsic semiconducting nature. These materials have layered structure, held by weak van der Waals forces.
Therefore, these materials can be easily exfoliated into 2D nano crystals. The combination of lower dimension,
high surface area and high band-gap make these 2D nano crystals potential candidates for advanced device
applications.

Single layer MoS,, a widely studied transition metal dichalcogenite, has gained attention because of its
interesting electronic and electrical properties. It has high carrier mobility [4, 5, 10, 11], and can be used as
transistors [11, 12] or energy storage devices such as anodes for Li or Mg ion batteries [ 13—15]. Also, different
forms of MoS, are commercially available as solid lubricants [ 16, 17]. Depending upon the atomic
arrangements, monolayer MoS, can stay in different phases, e.g. semiconducting (2H) or metallic (1T) phases
[18]. Single layer MoS, is very easy to fabricate from the bulk and also it is feasible to apply them in different
devices [10, 19, 20]. Previously, experiments and theories were used to show that doping of different atoms or
small molecules on MoS; or using an electron beam to create both S and M,, vacancies and adding impurity
atoms to the vacant sites can modify the electronic properties of single layer MoS, [21-26]. Also, organic
molecules (such as thiophene, benzothiophene, benzene, naphthalene, pyridine, quinolone, tetrathiofulvalene
(TTF) etc) were deposited on MoS,, either to study the charge transfer interactions of the molecules with MoS,,
or to tune the band-gap of the systems [27-29]. It was found by most of the studies that, as single layer MoS, is an
electron deficient material at room temperature [30], it can accept electron easily from electron donor
molecules, whereas it cannot donate electrons to electron acceptor molecules [29, 31]. Based on these facts,
single layer MoS, transistor was made for gas sensing purposes, as it can sense electron donor gases easily, while
electron withdrawing gases will not show any response [32-35].

Inspired by these experimental findings, we have selected three sets of organic electron donor molecules
(Lewis bases) for our study; the first set consist of two TTF derivatives, TTF and tetramethyl-tetrathiofulvalene

©2015IOP Publishing Ltd
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(TMTTEF), while the 2nd set consists of two aromatic diamine moieties, namely 1,5-Napthalenediamine and 1,6-
Pyrenediamine. In the last set, there are two aliphatic diamines, viz. 1,3-propanediamine and N,N’-dimethyl-
1,2-ethanediamine. The last two molecules have same pKa values both in gaseous and water medium [36]. We
consider the deposition of these molecules on single layer MoS, in our study. This study aims to show the
importance of different groups of molecules as adsorbents, as some of them have better adsorption energy and
some of them are better as charge-transfer molecules.

Already some of these donor molecules along with the acceptor molecules are used as room temperature
organic ferroelectric materials (naphthalene and pyrene derivatives) [37], organic field effect transistor etc (TTF
derivatives) etc [38, 39]. Thus, we believe these MoS,—donor complexes can easily be used in device applications
as already similar systems are synthesized experimentally and have found advanced applications [29].

Although all the molecules under our study are strong electron donors, there are still some basic differences
in them. While a few of them have some functional groups (the 1st and the 3rd group), the 2nd group has
difference in aromaticity. In this study, we find that these factors lead to huge changes in charge transfer and as a
consequence to the electronic and the optical properties of the MoS, layer. We have shown in this study that to
control the ban-gap of the system, different group of molecules can contribute in different manner.

Computational details

In this study, all geometry optimizations are performed using density functional theory (DFT) with exchange-
correlation functional in generalized gradient approximation (GGA) in the Perdew—Burke—Ernzerhof (PBE)
form [40], along with Grimme’s DFT-D3 dispersion correction [41], as implemented in the QUICKSTEP
module of the CP2K package [42]. The norm-conserving Goedecker—Teter—Hutter pseudopotentials [43—45],
which are optimized in this software package to use them along with the PBE functional have been used for Mo,
S, C, N and H atoms. CP2K package employs a hybrid Gaussian and plane-wave method for the wave function
representation. In this present work, double-{ valence polarized basis sets are used. Along-side with the NN50
smoothing method, a 320 Ry density cutoff is used. Geometry optimizations have been performed using BEFGS
method, and systems are considered to be optimized until the force on each atom is <0.0001 hartree/Bohr. We
have performed Miilliken population analysis and adsorption energy calculations on the systems. We have
calculated the band-structures, density of states (DOS) plots and optical properties of the CP2K optimized
systems using DFT methods as implemented in the SIESTA package [46]. GGA in the PBE form [40] has been
used to take the exchange-correlation function into account. Double { polarized atomic-orbital basis sets have
been used all the atoms. Molecular dopant adsorption on graphitic systems and inorganic analogues of graphene
has been well studied using GGA [10, 47, 48] and they are proved to be sufficient to reproduce the trends in
adsorption energies [49]. Norm-conserving pseudo-potentials [50] are considered for all the atoms in the fully
nonlocal Kleinman—Bylander form [51]. A reasonable mesh cut-off of 320Ry is used for the grid integration to
represent the charge density. We have sampled the Brillouin zone by 10 x 10 x 1 k-points using the Monkhorst-
Pack scheme for electronic property calculations. Periodic boundary condition and the supercell approximation
are taken in such a way so that the distance between an adsorbate molecule and its periodic image is more than
10 A to avoid any unintentional interactions between them. We have considered the 2H MoS, supercell as it is a
thermodynamically stable phase [18]. The MoS, supercell is 8 X 8 in size (it contains 64 Mo atoms and 128 s
atoms and one S layer, followed by one Mo and another S layer). We have kepta 15 A vacuum along the z axis
and found that this is sufficient to get the energy convergence and optimized configurations. We found that our
calculated band-gap of MoS, compares well with experimental findings [5, 10].

Results and discussions

We study here the effect of adsorption of different organic Lewis bases (electron donor molecules) on single layer
MoS,. We have found that all the molecules, that is, TTF, TMTTF, 1,5-Napthalenediamine, 1,6-Pyrenediamine,
1,3-propanediamine and N,N’-dimethyl-1,2-ethanediamine are thermodynamically stable on the MoS, layer.
We have calculated the adsorption energies of the systems using the following formula to assess the relative
stability of the systems [47]:

AEadsorption = Emolecule+M052 - EMOSz = Emolecules

where AE,dsorption> Emolecule+MoSy» EMos, ad Emglecule are the adsorption energy, total energy of the optimized
molecule-MoS; system, energy of the single layer MoS, and energy of the molecule, respectively. In figure 1, we
have given the graphical representation of the molecules and in figure 2 we have given the optimized structure of
the molecules over MoS,.
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Figure 1. Structures of the electron donor molecules (i) TTF, (ii) TMTTF, (iii) 1,5-Napthalenediamine, (iv) 1,6-Pyrenediamine, (v)
1,3-propanediamine and (vi) N,N’-dimethyl-1,2-ethanediamine.

Figure 2. Optimized geometries of (i) TTF, (ii) TMTTF, (iii) 1,5-Napthalenediamine, (iv) 1,6-Pyrenediamine, (v) 1,3-
propanediamine and (vi) N,N’-dimethyl-1,2-ethanediamine on MoS, single layer (Sky blue balls, yellow balls, gray balls, dark blue
balls and white balls are Mo, S, C, N and H atoms respectively).

From the optimized geometries (figure 2), it is evident that, all the molecules are almost parallel over the
MoS; plane and there is no significant bending in any of the structures. For all the molecules, we have found the
distance between the molecule and the MoS, layer to be >3 A. Therefore, there is no possibility of formation of
chemical bond between the molecule and the MoS, layer.

We have performed the Miilliken population analysis of the systems to calculate the amount of charge
(electron) transfer from the molecule to the MoS; plane, and we find that for the first set of molecules, that is, the
TTF derivatives, the charge transfer increases to a small amount with the introduction of 4 groups showing +1
effect (Me groups). We can attribute the charge transfer property of the molecule to its HOMO-LUMO (H-L)
gaps also. A system with higher H-L gaps generally is more stable or less reactive [52], and we found that TTF
molecule which has more band-gap shows less electron donor property. Because of the increment in the charge
transfer, the interaction energy also increases from —1.44 to —1.92 eV (table 1) from TTF to TMTTE.

For the 2nd set of molecules, that is, for the diamine derivatives of polyaromatic hydrocarbons, we have
found that, though both of the molecules have 2 amine groups as electron donors, the naphthalene derivative has

3
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Figure 3. Band-structure plots of single layer MoS, and (i) TTF, (ii) TMTTF, (iii) 1,5-Napthalenediamine, (iv) 1,6-Pyrenediamine,
(v) 1,3-propanediamine and (vi) N,N’-dimethyl-1,2-ethanediamine complexes. The dotted line is Fermi-level (scaled to zero) and the
red lines show the non-dispersive molecular levels. The band structures are plotted for all the cases for the K points from

MK

Table 1. Adsorption energies, distances and charge transfer values from the molecules to the single layer MoS,.

Charge trans- Band- HOMO-LUMO gap of the
Molecule AE,gsorption(¢V)  Distance (A) fer (e) gap (eV) molecule (eV)
(i) TTF —1.44 3.13 0.23 0.34 -1.97
(i) TMTTE -1.92 3.11 0.27 0.2 -1.80
(iii) 1, 5-Napthalenediamine -1.8 3.29 0.07 0.78 -2.83
(iv) 1, 6-Pyrenediamine -1.91 3.17 0.09 1.24 -2.13
(v) 1,3-propanediamine -0.7 2.95 0.06 1.62 —6.55
(vi) N,N'-dimethyl-1,2- —0.82 3.14 0.07 0.78 —6.53
ethanediamine

higher H-L gap, thus it shows lower charge transfer value than the pyrene derivative. This is because of the 7-
surface area of pyrene is more than that of naphthalene, thus, the van der Waals interactions between the

molecule and the Mo$, surface will be more in the case of pyrene. Therefore, combining these two effects, we
find the pyrene derivative to be more stable on MoS, layer.
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Figure 4. Projected density of states (PDOS) plots of single layer MoS, and (i) TTF, (ii) TMTTF, (iii) 1,5-Napthalenediamine, (iv) 1,6-
Pyrenediamine, (v) 1,3-propanediamine and (vi) N,N’-dimethyl-1,2-ethanediamine complexes. We have plotted the energies from
—2 eV to 3 eV. We have used the broadening parameter of 0.025 eV.

For the last set of molecules, the alkyl-diamines, we have found that N,N'-dimethyl-1,2-ethanediamine transfers
slightly more amount of charge than 1,3-propanediamine. Surprisingly, the HOMO energies (for propanediamine
and N, N'-ethanediamine —4.21 and —4.23 eV respectively) are almost the same for both the isolated molecules.
Also, the pKa values of these two molecules are found to be almost the same (for propanediamine and N, N’
ethanediamine pKa values are 9.83 and 9.79, respectively, in gas phase) [36]. We attribute the charge transfer results
to the fact that N, N’'-ethanediamine has alower H-L gap value. Also, the first molecule is a primary diamine and the
second one is a secondary diamine. Therefore, the lone pairs of electron donation capability of the secondary amine
would be much higher because of the presence of +1 group (Me).However, as these molecules do not have much

surface area than the others (no z-surface), they are less stable on single layer MoS,.
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Figure 5. Plot for (i) HOMO and (ii) LUMO of 1,5-Napthalenediamine in top view and side view, showing non-interacting molecular
wave-function in the composite system.
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Figure 6. Optical adsorption spectra for MoS, single layer and (i) TTF, (ii) TMTTF, (ii) naphthalenediamine and (iv) N, N'-dimethyl-
ethanediamine. The Gaussian broadening parameter used is 0.05 eV. We have plotted the energy range of 02 eV and the absorption
coefficient range of 0-35000 (arb. units).

Electronic properties

We plot the band-structure and the DOS and projected density of states (pDOS) to show clearly that the
difference in charge transfer indeed affects the electronic properties of MoS, in a significant way (figure 3). In the
case of TMTTF, we do find that the band gap of the system is very less, i.e. the system shifts towards near metallic
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nature (table 1). For the other cases also, band-gap changes significantly. In each of the band structure plot
(figure 4), we see that there is a clear evidence of formation of non-dispersive molecular levels. These molecular
levels create flat bands near Fermi-energy. When we plotted the HOMO or LUMO wave-functions of the
molecules in the complex system, we have found that they do not interact with the MoS, wave-functions

(figure 5). This indeed proves that there is no bonding interaction present between the molecule and the surface,
which leads to the formation of non-dispersive molecular level. The presence of these molecular levels indeed
changes the band-gap of the systems. Depending upon the nature of the molecule, the band-gap also can be
tuned accordingly. In our study, we have used six different molecules and we obtained five different values for
the band-gap, which is very important for using this molecule in different opto-electronic devices, which needs
band-gap modulation of the semi-conductor material used in it. Among all the molecules we have used for our
study, TMTTF is able to decrease the band-gap of the system to the maximum extent (0.2 eV) as well as it leads to
maximum amount of charge transfer.

Optical absorption

We also have analyzed the low frequency optical conduction of the systems (using the complex part of the
dielectric constant) [47] to find out the changes in the optical absorption spectra arising because of the charge
transfer. We find that for pure MoS, layer, the optical absorption peaks arise above 1.75 eV (band gap of MoS,
single layeris 1.81 eV) (figure 6). But, upon adsorption of some of the Lewis bases, we have observed some low
energy absorption peaks in the system (figure 6). This happens because of the presence of the non-dispersive
molecular levels in the band structure, which are optically active. But, pyrenediamine and propanediamine do
not show any significant changes in the optical absorption spectra, they exhibit the optical absorption nature of
pristine MoS, layer. Thus, it is clear that, depending upon the nature of the molecule, molecular adsorption can
change the optical property of the system, or keep it as the same. These two different types of molecules can be
used in two different types of applications.

Conclusions

In this study, we have considered three different sets of organic electron donor molecules to show how the different
factors, like +1 effect, H-L gap of the molecules, presence of a z-surface and molecular surface area can have an
effect in tuning the amount of charge transfer from the molecules to the MoS, layer and as a consequence can
modify the electronic properties of the single layer MoS,. With the increment of +1 effect and decrement of H-L
gap, charge transfer increases, which as a result changes the electronic properties of the systems. We have found
that all the molecule-MoS, adsorbate systems are thermodynamically stable because they have negative adsorption
energy; they become more stable as molecular surface area increases. We have also found that the molecules are
physisorbed on the MoS; layer because of charge transfer and van der Waals interactions. We have examined the
band structure and DOS plots of the systems and how they are affected by the molecular charge transfer
interactions, and indeed this type of interactions can tune the electronic band-gap of the systems to a huge extend
(0.2-1.8 eV). We have also shown that due to these interactions, for a few molecules the optical absorption peak
appears at much lower energy than for pure Mo§, layer. We believe these types of band-gap as well as optical
absorption properties modulated MoS, systems can be very useful for device applications.
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