
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 118.102.240.230

This content was downloaded on 28/10/2016 at 08:54

Please note that terms and conditions apply.

You may also be interested in:

Small molecules make big differences: molecular doping effects on electronic and optical properties

of phosphorene

Yu Jing, Qing Tang, Peng He et al.

Theoretical study of the interaction of electron donor and acceptor molecules with monolayer WS2

C J Zhou, W H Yang, Y P Wu et al.

Effect of compression on the electronic, optical and transport properties of MoS2/graphene-based

junctions

Mahdi Ghorbani-Asl, Paul D Bristowe, K Koziol et al.

Theoretical study of the NO, NO2, CO, SO2, and NH3 adsorptions on multi-diameter single-wall MoS2

nanotube

Rongfang Cao, Bo Zhou, Cuifang Jia et al.

Molecular adsorption on graphene

Lingmei Kong, Axel Enders, Talat S Rahman et al.

A first principles approach to magnetic and optical properties in single-layer graphene sandwiched

between boron nitride monolayers

Ritwika Das, Suman Chowdhury and Debnarayan Jana

Tuning the opto-electronic properties of MoS2 layer using charge transfer interactions: effect

of different donor molecules

View the table of contents for this issue, or go to the journal homepage for more

2015 Mater. Res. Express 2 085003

(http://iopscience.iop.org/2053-1591/2/8/085003)

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/article/10.1088/0957-4484/26/9/095201
http://iopscience.iop.org/article/10.1088/0957-4484/26/9/095201
http://iopscience.iop.org/article/10.1088/0022-3727/48/28/285303
http://iopscience.iop.org/article/10.1088/2053-1583/3/2/025018
http://iopscience.iop.org/article/10.1088/2053-1583/3/2/025018
http://iopscience.iop.org/article/10.1088/0022-3727/49/4/045106
http://iopscience.iop.org/article/10.1088/0022-3727/49/4/045106
http://iopscience.iop.org/article/10.1088/0953-8984/26/44/443001
http://iopscience.iop.org/article/10.1088/2053-1591/2/7/075601
http://iopscience.iop.org/article/10.1088/2053-1591/2/7/075601
http://iopscience.iop.org/2053-1591/2/8
http://iopscience.iop.org/2053-1591
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Mater. Res. Express 2 (2015) 085003 doi:10.1088/2053-1591/2/8/085003

PAPER
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Abstract
Wehave performed density functional theory calculations to study the effect of adsorption of a set of
organic electron donormolecules on single layerMoS2 tofind the optimumcondition to tune the
charge transfer, as well as tofind how it changes the electronic properties of single layerMoS2.We have
performed our calculations for three sets of organic Lewis bases.We have found that all themolecules
are physisorbed onMoS2.Our calculations show that the charge transfer from themolecules to the
MoS2 layer is highly dependent upon the inductive effect andHOMO–LUMOgap of themolecules.
Furthermore, we show that the charge transfer interaction tunes the electronic and optical property of
MoS2 to a significant amount: for example, the band-gap of the system can be changed from1.8 eV to
even a low value of 0.2 eV,making it interesting for different optoelectronic device applications.

Introduction

Recently, since the last decade, all two-dimensionalmaterials, including transitionmetal-dichalcogenites
(MoS2,WS2, VS2 etc) have become a subject of huge scientific interest because of their possible application in
nano electronics [1–9]. They are very promisingmaterials for opto-electronic applications because of their
intrinsic semiconducting nature. Thesematerials have layered structure, held byweak van derWaals forces.
Therefore, thesematerials can be easily exfoliated into 2Dnano crystals. The combination of lower dimension,
high surface area and high band-gapmake these 2Dnano crystals potential candidates for advanced device
applications.

Single layerMoS2, a widely studied transitionmetal dichalcogenite, has gained attention because of its
interesting electronic and electrical properties. It has high carriermobility [4, 5, 10, 11], and can be used as
transistors [11, 12] or energy storage devices such as anodes for Li orMg ion batteries [13–15]. Also, different
forms ofMoS2 are commercially available as solid lubricants [16, 17]. Depending upon the atomic
arrangements,monolayerMoS2 can stay in different phases, e.g. semiconducting (2H) ormetallic (1T) phases
[18]. Single layerMoS2 is very easy to fabricate from the bulk and also it is feasible to apply them in different
devices [10, 19, 20]. Previously, experiments and theories were used to show that doping of different atoms or
smallmolecules onMoS2 or using an electron beam to create both S andMo vacancies and adding impurity
atoms to the vacant sites canmodify the electronic properties of single layerMoS2 [21–26]. Also, organic
molecules (such as thiophene, benzothiophene, benzene, naphthalene, pyridine, quinolone, tetrathiofulvalene
(TTF) etc) were deposited onMoS2, either to study the charge transfer interactions of themolecules withMoS2,
or to tune the band-gap of the systems [27–29]. It was found bymost of the studies that, as single layerMoS2 is an
electron deficientmaterial at room temperature [30], it can accept electron easily from electron donor
molecules, whereas it cannot donate electrons to electron acceptormolecules [29, 31]. Based on these facts,
single layerMoS2 transistor wasmade for gas sensing purposes, as it can sense electron donor gases easily, while
electronwithdrawing gases will not show any response [32–35].

Inspired by these experimental findings, we have selected three sets of organic electron donormolecules
(Lewis bases) for our study; the first set consist of twoTTF derivatives, TTF and tetramethyl-tetrathiofulvalene
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(TMTTF), while the 2nd set consists of two aromatic diaminemoieties, namely 1,5-Napthalenediamine and 1,6-
Pyrenediamine. In the last set, there are two aliphatic diamines, viz. 1,3-propanediamine andN,N′-dimethyl-
1,2-ethanediamine. The last twomolecules have same pKa values both in gaseous andwatermedium [36].We
consider the deposition of thesemolecules on single layerMoS2 in our study. This study aims to show the
importance of different groups ofmolecules as adsorbents, as some of themhave better adsorption energy and
some of them are better as charge-transfermolecules.

Already some of these donormolecules alongwith the acceptormolecules are used as room temperature
organic ferroelectricmaterials (naphthalene and pyrene derivatives) [37], organicfield effect transistor etc (TTF
derivatives) etc [38, 39]. Thus, we believe theseMoS2–donor complexes can easily be used in device applications
as already similar systems are synthesized experimentally and have found advanced applications [29].

Although all themolecules under our study are strong electron donors, there are still some basic differences
in them.While a few of themhave some functional groups (the 1st and the 3rd group), the 2nd group has
difference in aromaticity. In this study, wefind that these factors lead to huge changes in charge transfer and as a
consequence to the electronic and the optical properties of theMoS2 layer.We have shown in this study that to
control the ban-gap of the system, different group ofmolecules can contribute in differentmanner.

Computational details

In this study, all geometry optimizations are performed using density functional theory (DFT)with exchange-
correlation functional in generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE)
form [40], alongwithGrimme’s DFT-D3dispersion correction [41], as implemented in theQUICKSTEP
module of theCP2Kpackage [42]. The norm-conservingGoedecker−Teter−Hutter pseudopotentials [43–45],
which are optimized in this software package to use them alongwith the PBE functional have been used forMo,
S, C,N andH atoms. CP2Kpackage employs a hybridGaussian and plane-wavemethod for thewave function
representation. In this present work, double-ζ valence polarized basis sets are used. Along-sidewith theNN50
smoothingmethod, a 320Ry density cutoff is used. Geometry optimizations have been performed using BFGS
method, and systems are considered to be optimized until the force on each atom is <0.0001 hartree/Bohr.We
have performedMülliken population analysis and adsorption energy calculations on the systems.We have
calculated the band-structures, density of states (DOS) plots and optical properties of the CP2Koptimized
systems usingDFTmethods as implemented in the SIESTApackage [46]. GGA in the PBE form [40] has been
used to take the exchange-correlation function into account. Double ζ polarized atomic-orbital basis sets have
been used all the atoms.Molecular dopant adsorption on graphitic systems and inorganic analogues of graphene
has beenwell studied usingGGA [10, 47, 48] and they are proved to be sufficient to reproduce the trends in
adsorption energies [49]. Norm-conserving pseudo-potentials [50] are considered for all the atoms in the fully
nonlocal Kleinman–Bylander form [51]. A reasonablemesh cut-off of 320Ry is used for the grid integration to
represent the charge density.We have sampled the Brillouin zone by 10 × 10 × 1 k-points using theMonkhorst-
Pack scheme for electronic property calculations. Periodic boundary condition and the supercell approximation
are taken in such away so that the distance between an adsorbatemolecule and its periodic image ismore than
10 Å to avoid any unintentional interactions between them.Wehave considered the 2HMoS2 supercell as it is a
thermodynamically stable phase [18]. TheMoS2 supercell is 8 × 8 in size (it contains 64Mo atoms and 128 s
atoms and one S layer, followed by oneMo and another S layer).We have kept a 15 Å vacuumalong the z axis
and found that this is sufficient to get the energy convergence and optimized configurations.We found that our
calculated band-gap ofMoS2 compares well with experimental findings [5, 10].

Results and discussions

We study here the effect of adsorption of different organic Lewis bases (electron donormolecules) on single layer
MoS2.We have found that all themolecules, that is, TTF, TMTTF, 1,5-Napthalenediamine, 1,6-Pyrenediamine,
1,3-propanediamine andN,N′-dimethyl-1,2-ethanediamine are thermodynamically stable on theMoS2 layer.
We have calculated the adsorption energies of the systems using the following formula to assess the relative
stability of the systems [47]:

E E E E ,adsorption molecule MoS MoS molecule2 2Δ = − −+

where E ,adsorptionΔ E ,molecule MoS2+ EMoS2
and Emolecule are the adsorption energy, total energy of the optimized

molecule–MoS2 system, energy of the single layerMoS2 and energy of themolecule, respectively. Infigure 1, we
have given the graphical representation of themolecules and in figure 2we have given the optimized structure of
themolecules overMoS2.
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From the optimized geometries (figure 2), it is evident that, all themolecules are almost parallel over the
MoS2 plane and there is no significant bending in any of the structures. For all themolecules, we have found the
distance between themolecule and theMoS2 layer to be⩾3 Å. Therefore, there is no possibility of formation of
chemical bond between themolecule and theMoS2 layer.

We have performed theMülliken population analysis of the systems to calculate the amount of charge
(electron) transfer from themolecule to theMoS2 plane, andwe find that for the first set ofmolecules, that is, the
TTF derivatives, the charge transfer increases to a small amountwith the introduction of 4 groups showing +I
effect (Me groups).We can attribute the charge transfer property of themolecule to itsHOMO–LUMO(H–L)
gaps also. A systemwith higherH–L gaps generally ismore stable or less reactive [52], andwe found that TTF
molecule which hasmore band-gap shows less electron donor property. Because of the increment in the charge
transfer, the interaction energy also increases from−1.44 to−1.92 eV (table 1) fromTTF toTMTTF.

For the 2nd set ofmolecules, that is, for the diamine derivatives of polyaromatic hydrocarbons, we have
found that, though both of themolecules have 2 amine groups as electron donors, the naphthalene derivative has

Figure 1. Structures of the electron donormolecules (i) TTF, (ii) TMTTF, (iii) 1,5-Napthalenediamine, (iv) 1,6-Pyrenediamine, (v)
1,3-propanediamine and (vi)N,N′-dimethyl-1,2-ethanediamine.

Figure 2.Optimized geometries of (i) TTF, (ii) TMTTF, (iii) 1,5-Napthalenediamine, (iv) 1,6-Pyrenediamine, (v) 1,3-
propanediamine and (vi)N,N′-dimethyl-1,2-ethanediamine onMoS2 single layer (Sky blue balls, yellow balls, gray balls, dark blue
balls andwhite balls areMo, S, C,N andHatoms respectively).
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higherH–L gap, thus it shows lower charge transfer value than the pyrene derivative. This is because of the π-
surface area of pyrene ismore than that of naphthalene, thus, the van derWaals interactions between the
molecule and theMoS2 surfacewill bemore in the case of pyrene. Therefore, combining these two effects, we
find the pyrene derivative to bemore stable onMoS2 layer.

Figure 3.Band-structure plots of single layerMoS2 and (i) TTF, (ii) TMTTF, (iii) 1,5-Napthalenediamine, (iv) 1,6-Pyrenediamine,
(v) 1,3-propanediamine and (vi)N,N′-dimethyl-1,2-ethanediamine complexes. The dotted line is Fermi-level (scaled to zero) and the
red lines show the non-dispersivemolecular levels. The band structures are plotted for all the cases for the Kpoints from
0.000–2.89707.

Table 1.Adsorption energies, distances and charge transfer values from themolecules to the single layerMoS2.

Molecule ΔEadsorption(eV) Distance (Å)

Charge trans-

fer (e)

Band-

gap (eV)

HOMO–LUMOgap of the

molecule (eV)

(i) TTF −1.44 3.13 0.23 0.34 −1.97

(ii) TMTTF −1.92 3.11 0.27 0.2 −1.80

(iii) 1, 5-Napthalenediamine −1.8 3.29 0.07 0.78 −2.83

(iv) 1, 6-Pyrenediamine −1.91 3.17 0.09 1.24 −2.13

(v) 1,3-propanediamine −0.7 2.95 0.06 1.62 −6.55

(vi)N,N′-dimethyl-1,2-

ethanediamine

−0.82 3.14 0.07 0.78 −6.53
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For the last set ofmolecules, the alkyl-diamines,wehave found thatN,N′-dimethyl-1,2-ethanediamine transfers
slightlymore amount of charge than 1,3-propanediamine. Surprisingly, theHOMOenergies (for propanediamine
andN,N′-ethanediamine−4.21 and−4.23 eV respectively) are almost the same for both the isolatedmolecules.
Also, the pKa values of these twomolecules are found tobe almost the same (for propanediamine andN,N′
ethanediamine pKa values are 9.83 and9.79, respectively, in gas phase) [36].We attribute the charge transfer results
to the fact thatN,N′-ethanediaminehas a lowerH–L gap value.Also, thefirstmolecule is a primary diamine and the
secondone is a secondary diamine. Therefore, the lone pairs of electrondonation capability of the secondary amine
would bemuchhigher because of the presence of+I group (Me).However, as thesemolecules donot havemuch
surface area than the others (noπ-surface), they are less stable on single layerMoS2.

Figure 4.Projected density of states (PDOS) plots of single layerMoS2 and (i) TTF, (ii) TMTTF, (iii) 1,5-Napthalenediamine, (iv) 1,6-
Pyrenediamine, (v) 1,3-propanediamine and (vi)N,N′-dimethyl-1,2-ethanediamine complexes.Wehave plotted the energies from
−2 eV to 3 eV.We have used the broadening parameter of 0.025 eV.
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Electronic properties
Weplot the band-structure and theDOS and projected density of states (pDOS) to show clearly that the
difference in charge transfer indeed affects the electronic properties ofMoS2 in a significant way (figure 3). In the
case of TMTTF,we dofind that the band gap of the system is very less, i.e. the system shifts towards nearmetallic

Figure 5.Plot for (i)HOMOand (ii) LUMOof 1,5-Napthalenediamine in top view and side view, showing non-interactingmolecular
wave-function in the composite system.

Figure 6.Optical adsorption spectra forMoS2 single layer and (i) TTF, (ii) TMTTF, (ii) naphthalenediamine and (iv)N,N′-dimethyl-
ethanediamine. TheGaussian broadening parameter used is 0.05 eV.We have plotted the energy range of 0–2 eV and the absorption
coefficient range of 0–35000 (arb. units).
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nature (table 1). For the other cases also, band-gap changes significantly. In each of the band structure plot
(figure 4), we see that there is a clear evidence of formation of non-dispersivemolecular levels. Thesemolecular
levels create flat bands near Fermi-energy.Whenwe plotted theHOMOor LUMOwave-functions of the
molecules in the complex system,we have found that they do not interact with theMoS2wave-functions
(figure 5). This indeed proves that there is no bonding interaction present between themolecule and the surface,
which leads to the formation of non-dispersivemolecular level. The presence of thesemolecular levels indeed
changes the band-gap of the systems. Depending upon the nature of themolecule, the band-gap also can be
tuned accordingly. In our study, we have used six differentmolecules andwe obtained five different values for
the band-gap, which is very important for using thismolecule in different opto-electronic devices, which needs
band-gapmodulation of the semi-conductormaterial used in it. Among all themolecules we have used for our
study, TMTTF is able to decrease the band-gap of the system to themaximum extent (0.2 eV) aswell as it leads to
maximumamount of charge transfer.

Optical absorption
Wealso have analyzed the low frequency optical conduction of the systems (using the complex part of the
dielectric constant) [47] tofind out the changes in the optical absorption spectra arising because of the charge
transfer.Wefind that for pureMoS2 layer, the optical absorption peaks arise above 1.75 eV (band gap ofMoS2
single layer is 1.81 eV) (figure 6). But, upon adsorption of some of the Lewis bases, we have observed some low
energy absorption peaks in the system (figure 6). This happens because of the presence of the non-dispersive
molecular levels in the band structure, which are optically active. But, pyrenediamine and propanediamine do
not show any significant changes in the optical absorption spectra, they exhibit the optical absorption nature of
pristineMoS2 layer. Thus, it is clear that, depending upon the nature of themolecule,molecular adsorption can
change the optical property of the system, or keep it as the same. These two different types ofmolecules can be
used in two different types of applications.

Conclusions

In this study,wehave considered three different sets of organic electrondonormolecules to showhow thedifferent
factors, like +I effect,H–L gap of themolecules, presence of aπ-surface andmolecular surface area can have an
effect in tuning the amount of charge transfer from themolecules to theMoS2 layer and as a consequence can
modify the electronic properties of the single layerMoS2.With the increment of+I effect anddecrement ofH–L
gap, charge transfer increases, which as a result changes the electronic properties of the systems.Wehave found
that all themolecule-MoS2 adsorbate systems are thermodynamically stable because theyhavenegative adsorption
energy; they becomemore stable asmolecular surface area increases.Wehave also found that themolecules are
physisorbed on theMoS2 layer because of charge transfer and vanderWaals interactions.Wehave examined the
band structure andDOSplots of the systems andhow they are affected by themolecular charge transfer
interactions, and indeed this type of interactions can tune the electronic band-gapof the systems to a huge extend
(0.2–1.8 eV).Wehave also shown that due to these interactions, for a fewmolecules the optical absorptionpeak
appears atmuch lower energy than forpureMoS2 layer.Webelieve these types of band-gap aswell as optical
absorptionpropertiesmodulatedMoS2 systems canbe very useful for device applications.
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