
Subscriber access provided by CORNELL UNIVERSITY LIBRARY

ACS Sustainable Chemistry & Engineering is published by the American Chemical
Society. 1155 Sixteenth Street N.W., Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Article

Enhanced Intrinsic Activity and Stability of Au-Rh
Bimetallic Nanostructures as Supportless Cathode

Electrocatalyst for Oxygen Reduction in Alkaline Fuel Cells
Narayanamoorthy Bhuvanendran, Subramanian Balaji, Sita Cordelia,
Sivakumar Pasupathi, Eswaramoorthy Muthusamy, and Il-Shik Moon

ACS Sustainable Chem. Eng., Just Accepted Manuscript • DOI: 10.1021/
acssuschemeng.6b01257 • Publication Date (Web): 12 Oct 2016

Downloaded from http://pubs.acs.org on October 16, 2016

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a free service to the research community to expedite the
dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts
appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been
fully peer reviewed, but should not be considered the official version of record. They are accessible to all
readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered
to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published
in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just
Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor
changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers
and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors
or consequences arising from the use of information contained in these “Just Accepted” manuscripts.



1 

 

Enhanced Intrinsic Activity and Stability of Au-Rh Bimetallic 1 

Nanostructures as Supportless Cathode Electrocatalyst for Oxygen 2 

Reduction in Alkaline Fuel Cells 3 

 4 

B. Narayanamoorthy
b,c
, S. Balaji

a,c
, C. Sita

c
, P. Sivakumar

c
 M. Eswaramoorthy

d
  5 

and Il-Shik Moon
a
  6 

a
Department of Chemical Engineering, Sunchon National University, # 315 Maegok Dong,  7 

Suncheon 540-742, Chonnam, South Korea. 8 

b
Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa 9 

Mahavidyalaya (SCSVMV University), Enathur, Kanchipuram - 631 561, India. 10 
c
HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, University 11 

of the Western Cape, Private BagX17, Bellville 7535, South Africa. 12 
d
Nanomaterials and Catalysis Lab, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre 13 

for Advanced Scientific Research (JNCASR), Bangalore – 560 064, India. 14 

 15 

 16 

Corresponding Author 17 

 18 

Prof. Il-Shik Moon 19 

E-mail: ismoon@sunchon.ac.kr 20 

Fax: +82 61 750 3581; Tel: +82 61 750 3581 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

Page 1 of 35

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2 

 

Abstract 32 

The electroreduction of dioxygen on supportless Au-Rh bimetallic nanostructures (Au-Rh 33 

NC) synthesized by a surfactant template-free, single step chemical reduction method occurred 34 

with high intrinsic activity in an alkaline medium. Cyclic voltammetry and linear scan 35 

voltammetry together with X-ray diffraction and high-resolution electron microscopy showed 36 

that the improved performance of the Au-Rh NC towards dioxygen reduction could be due to the 37 

synergistic electronic effects of nano-bimetallic combination and its cluster-like morphology. 38 

The electrochemically active surface area (ECSA) was estimated to be 37.2 m2 g-1 for 39 

supportless Au-Rh NC with a 3:1 atomic composition, which was higher than that reported for 40 

Ag-based nanocatalysts. The intrinsic activities (IA) of the supportless and carbon supported Au-41 

Rh (3:1) NCs were 3.25 and 3.0 mA/cm2, respectively, which were higher than those of the 42 

standard Pt/C (0.1 mA/cm2)45 Au/C catalysts for the oxygen reduction reaction (ORR). Oxygen 43 

reduction on both catalysts followed a direct four electron pathway. The accelerated durability 44 

test carried out by continuous potential cycling showed that the 3:1 ratio of Au-Rh 45 

nanostructures had excellent stability with a 20% increase in ECSA after 10000 potential cycles, 46 

highlighting their potential application for real systems. 47 

 48 

Keywords: Au-Rh; supportless electrocatalyst; durability; oxygen reduction; KOH. 49 
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Introduction 58 

 The development of highly active cathode catalysts to catalyze the kinetically sluggish 59 

oxygen reduction reaction (ORR) is indispensable for making fuel cell technology cost 60 

effective.1 Until now, Pt and Pt-based electrocatalysts were the prime choice for the ORR and 61 

have been studied extensively because of their superior electrocatalytic activity and life-time for 62 

low temperature fuel cells.2-6 In particular, for alkaline fuel cells, a number of studies have 63 

focused on finding more efficient electrocatalysts with better activity and stability to replace the 64 

expensive and less abundant Pt.6 Recently, Au and Ag-based electrocatalysts have attracted 65 

increasing attention as cathode catalyst materials for the ORR because of their higher efficiency 66 

in alkaline media.7 Pure Au is generally considered a poor catalyst towards ORR due to the weak 67 

chemisorption properties caused by the filled d-band level.8, 9 Although the use of Ag could 68 

reduce the cost of the catalysts, Au is the choice in terms of the onset potential for the ORR in 69 

alkaline medium because Au exhibits a more positive potential (i.e. lower over-potential) than 70 

Ag and is preferred for investigating the ORR.10  71 

Au has attracted considerable research attention for the development of active catalysts 72 

towards electrochemical energy conversion systems.11, 12 In recent years, many studies have 73 

examined the electrocatalytic performance of Au nanocatalysts for fuel cell reactions with 74 

particular emphasis on various nanomorphologies. Kuai et al. reported the preparation of Au 75 

icosahedra by PVP-stabilized hydrothermal synthesis at 120 °C. They reported that the Au 76 

icosahedra exhibited a lower overpotential than commercial Pt/C electrocatalyst and possessed ~ 77 

1.6 fold higher limiting reduction current than the sphere-like Au nanoparticles.13 Manivannan et 78 

al. synthesized raspberry-like Au nanostructures by electrodeposition and obtained good ORR 79 

activity with an onset potential of -0.06 V vs. Ag/AgCl and a mass activity of 31.7 mA/mg.14 Yin 80 

et al. reported the facile synthesis of surfactant-free Au clusters on graphene sheets using a freeze 81 
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drying method and observed good oxygen reduction activity with an onset potential of -0.10 V in 82 

an alkaline medium.15  83 

In general, the catalyst active sites are having an optimal adsorption of oxide species (O 84 

or OH) and thus playing an important role on catalyst surface poisoning. The surface reaction 85 

could not occur, if it is too weak, rather the strong adsorption of oxide species leads to the 86 

surface poisoning16. Based on the reported theoretical (DFT studies) and experimental 87 

investigations, it was clearly described that the activity of the monometallic nanoparticles could 88 

be further enhanced through the insertion of secondary metals which can alter the metal-metal 89 

bond distance and may increase the electronic (or) ligand effects referred to as the 90 

‘heterometallic bonding interactions’.17 To improve the electrocatalytic activity of Au, many 91 

researchers have synthesized different nano architectures by alloying Au with secondary metals, 92 

such as Pt, Pd and Ag, which could increase the catalytic activity via a synergetic effect.10, 11, 15-18 93 

Jalili et al. predicted that the presence of a second metal could alter the adsorption energy of 94 

oxygen reduction intermediates (hydroxyl ion) on the Au surface by shifting the d-band center 95 

due to lattice strain and ligand effects.18 Maye et al. demonstrated the synthesis of Au and AuPt 96 

electrocatalysts by encapsulation method using decanethiol and found higher specific mass 97 

activities of 1744 mA/cm2/mgmetal and 1147 mA/cm2/mgmetal for Au/C and AuPt/C 98 

electrocatalysts, respectively, in KOH medium.19 Several Au based electrocatalysts were 99 

employed as cathode catalysts, including Au-Pt12, Au-Pd13 and Au-Ag20 with different support 100 

materials21, 22 and nanostructures.23-25  101 

Among the platinum group metals, Rh has a good catalytic activity for a variety of 102 

heterogeneous reactions, such as hydrogenation, hydroformylation and hydrocarbonylation.26 An 103 

oxophilic nature of Rh is playing a vital role as secondary element with Pt, Pd, Ag and Au 104 

catalysts for surface regeneration of active sites during fuel cell reactions. From the detailed 105 
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literature survey we found that although Rh by itself is not catalytically active, the influence of 106 

Rh nanoparticles on the catalytic activity with Pt was employed for both oxidation of small 107 

organic molecules and enhance the stability towards ORR.27-29 Many reports have examined Rh-108 

based catalysts for fuel cell reactions of both anodic (methanol and ethanol) oxidation.29-31 and 109 

cathodic oxygen reduction.32, 33 Compared to Pt, improved catalytic activity and durability was 110 

reported for ORR due to the synergistic effects between Pt and Rh.35, 37 Therefore, the bimetallic 111 

nanostructure of Au-Rh, as an active electrocatalyst for the cathode half-cell reaction in alkaline 112 

medium, requires further investigation. In this study, supportless Au-Rh nanostructures (Au-Rh 113 

NC) were prepared by single step, green chemical reduction method using formic acid as the 114 

reducing agent without a template or surfactant. The shape, size and composition of the Au-Rh 115 

NC were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and 116 

transmission electron microscopy (TEM). The electrocatalytic activity of supportless Au-Rh NC 117 

was evaluated for a range of compositions and also compared with Vulcan carbon (VC)-118 

supported Au-Rh (Au-Rh/VC). The long-term stability of the supportless and carbon supported 119 

Au-Rh catalysts was examined by accelerated durability tests (ADT). The electrochemical and 120 

kinetics parameters are presented and discussed. 121 

 122 

Material and Methods 123 

Materials  124 

 Chloroauric acid (HAuCl4.6H2O), rhodium (III) chloride monohydrate (RhCl3.H2O) and 125 

formic acid (98 %) were obtained from Sigma-Aldrich. Vulcan carbon XC-72 was used (Cabot 126 

India Ltd) for the synthesis of carbon-supported catalysts. Nafion perfluorinated polymer resin 127 

solution (5 wt. %, Sigma-Aldrich) was used as a catalyst binder. Potassium hydroxide (Rankem), 128 
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methanol (98%, Merck) and absolute ethanol (Merck) were used as received. All solutions were 129 

prepared using Millipore (18 MΩ cm) water.  130 

Synthesis of Au-Rh nanostructures 131 

 The supportless and carbon-supported Au-Rh NCs were synthesized using a single step 132 

chemical reduction procedure. Aqueous solutions of 15.4 mg of HAuCl4.6H2O and 6 mg of 133 

RhCl3.H2O both dissolved in 20 ml water were mixed with 1 ml of formic acid (1.2 M) drop-wise 134 

with stirring. The metal composition between Au and Rh was maintained at 3:1 based on the 135 

individual atomic weight percentages (after several trials on composition optimization). The final 136 

mixture was left to stand for 72 h at room temperature. A yellow to dark brown color change was 137 

observed 1 h after adding the reducing agent, which then turned to a black precipitate. After 72 h, 138 

the sample was collected by centrifugation, and washed several times with water and methanol. 139 

The final product obtained was dried in an air oven at 60 °C for 4 h. An appropriate amount of 140 

metal precursors were taken for different elemental compositions. For the carbon-supported 141 

catalysts, the same procedure was repeated using 7.5 mg of Vulcan carbon XC-72 (VC), which 142 

was added at the initial stage of the synthesis procedure before adding the reducing agent.  143 

Physical characterization 144 

 Powder XRD (Bruker-D8) patterns were obtained using Cu-Kα radiation (λ=1.54 Å, step 145 

size: 0.02, current: 30 mA and voltage: 40 kV). The elemental composition of the catalyst was 146 

determined by an inductively coupled plasma-atomic emission spectrometer (ICP-AES, Thermo 147 

Electron IRIS INTREPID II XSP DUO) and energy-dispersive X-ray spectroscopy (EDS). Field-148 

emission SEM (FESEM, FEI (Nova-Nano SEM-600, Netherlands) images were obtained. TEM 149 

(FEI Tecnai 30G2) images were obtained at an accelerating voltage of 300 kV. 150 

 151 

 152 
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Electrochemical characterizations 153 

The catalyst-coated glassy carbon-rotating disc electrode (GC-RDE) was prepared by 154 

dispersing 0.5 mg of the catalyst in 1 ml of absolute ethanol and ultrasonicating for 3 min to 155 

obtain a homogeneous dispersion. A 7 µl sample of this prepared catalyst ink (slurry) was drop 156 

casted onto a mirror finished RDE-GC (metal loading of 17.8 µg/cm2) substrate and covered by 157 

drop casting with 5 µl of Nafion solution (0.5 wt.%). Initially, the catalyst-coated electrode was 158 

subjected to potential cycling (25 scans) in a N2 saturated 0.5 M KOH solution at a sweep rate of 159 

0.1 V/s between -0.8 to 0.6 V vs. RHE at 25 °C. The actual cyclic voltammograms (CV) were 160 

recorded under similar conditions. The polarization curves (LSV) were recorded in an O2-161 

saturated electrolyte at a scan rate of 0.01 V/s at different electrode rotation rates of 400-2400 162 

rpm. All potential values reported were referenced to the reversible hydrogen electrode (RHE). 163 

The stability of the Au-Rh electrocatalysts were examined by ADT by continuous potential 164 

cycling between -0.6 and +0.2 V in an O2-saturated electrolyte at 0.1 V/s and measuring the CV 165 

and LSV patterns at regular intervals. 166 

 167 

Results and discussion 168 

Surface morphology of the Au-Rh nanostructures 169 

From the powder XRD patterns, well-defined polycrystalline peaks were observed for 170 

both supportless and carbon-supported Au-Rh NC, as given in Fig. 1. All XRD peaks clearly 171 

showed that the Au-Rh NC consist of a face centered cubic (fcc) crystalline structure. The strong 172 

XRD peaks at 2θ values 38.9° and 39.6° for the supportless and carbon-supported Au-Rh NC, 173 

respectively, were attributed to the fcc crystalline plane of (111), which lies intermediate 174 

between the XRD peaks of the pure Au (111) at 38.1°37 and Rh (111) at 41.1°.38 This clearly 175 

shows the alloy formation between Au and Rh. In the carbon-supported Au-Rh catalyst, a broad 176 
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peak at 24.7° confirmed the presence of graphitic carbon.23 Using the Scherrer equation, the 177 

mean crystallite size, which was calculated from the full width at half maximum of the (111) 178 

crystalline plane, was found to be 11.5 nm and 3.8 nm for the Au-Rh (3:1) NC and Au-Rh 179 

(3:1)/VC, respectively. FESEM revealed the supportless Au-Rh to be an aggregate of fairly 180 

dense, tiny nanoparticles with cluster morphology (Supporting Information, Figs. S1a and S1b), 181 

possibly due to the intermetallic stabilization and cohesive action and the EDS revealed an Au-182 

Rh elemental composition of 74.2 % and 23.8 %, respectively, confirming the stoichiometric 183 

ratio of 3:1 (Supporting Information, Fig. S2). In addition to that the ICP-AES analyses were 184 

performed for Au-Rh catalyst and found to be the Au is around 72.9% and Rh is 22.1which is 185 

near to the EDX results and hence it is confirmed that the composition of Au and Rh is 3:1. Figs. 186 

2a and 2c show TEM images of the Au-Rh (3:1) NC catalyst. The cluster morphology was 187 

confirmed by the uniform distribution of dark and light spots, indicating homogeneity between 188 

Au and Rh. In contrast, carbon-supported Au-Rh (3:1) NC showed a uniform distribution of 189 

spherical nanoparticles on a carbon substrate (Figs. 2b and 2d) and the mean particle size was 190 

determined from the corresponding histograms shown in Figs. 2e and 2f. The particle sizes were 191 

10-12 nm for Au-Rh (3:1) and 3-4 nm for Au-Rh (3:1)/VC. The particle sizes obtained from 192 

XRD and TEM were almost similar. The high resolution-TEM image of supportless Au-Rh 193 

catalyst (inset of Fig. 2a) shows neat crystalline fringes with the lattice space of 0.21 nm 194 

corresponds to the (111) crystalline plane and it’s not that much defined in the Au-Rh/VC 195 

catalyst (inset of Fig. 2b) and it’s well correlated with the intensity of XRD peaks. 196 

 197 

Au-Rh composition optimization 198 

The Au-Rh atomic ratio was optimized based on the electrochemical performance of the 199 

electrocatalysts towards ORR from voltammetry studies. Fig. S3a (Supporting Information) 200 
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presents typical CVs of Au-Rh NC with different compositions recorded in a N2 purged 0.5 M 201 

KOH solution at a scan rate of 0.1 V/s at 25 °C. The electrochemically active surface area 202 

(ECSA) of Au-Rh was determined from the oxide reduction peak due to the lack of hydrogen 203 

adsorption on the Au surface, which can be calculated using the following equation.39, 40: 204 

  
( )

O

ref

Q
ECSA

Q m
=

×

 205 

where Q0 is the total charge for the oxide-reduction peak during the cathodic potential 206 

sweep (µC/cm2), m is the metal loading (µg/cm2) over the GC electrode and Qref is the charge 207 

required for the monolayer adsorption of oxygen on the Au surface (386 µC/cm2).3, 40 CV 208 

revealed a well-defined metal-oxide reduction peak only for Au-Rh (3:1) with a higher peak 209 

current density of ~7.5 mA/cm2 (Supporting Information, Fig. S3a). In addition, a higher ECSA 210 

was obtained for Au-Rh (3:1) NC (32.7 m2/g) than the other compositions investigated and also 211 

comparable to that reported for Au electrocatalysts.40, 41  212 

The ORR activity of Au-Rh NC was probed by linear scan voltammetry (LSV) under an 213 

O2 saturated 0.5 M KOH solution under hydrodynamic conditions (Supporting Information, Fig. 214 

S3b). Compared to the other catalysts, Au-Rh NCs (3:1) possessed a higher limiting current 215 

density of 4.41 mA/cm2 with an earlier onset potential (-0.08 V). A well-defined Au-O(H) 216 

reduction peak was obtained at a higher potential region for Au-Rh (3:1) NC, whereas for a 1:1 217 

composition, a broad peak was observed that almost disappeared at 1:3 composition ratio. This 218 

shows that the impact of the Au-Rh composition for ORR depends mainly on the Au content and 219 

the role of Rh might be to stabilize the cluster morphology. From the hydrodynamic polarization 220 

curves, the Koutecky-Levich (K-L) plots were constructed to calculate the number of electrons 221 

transferred (n) during the ORR.44 The ‘n’ was found to be 4.1 for Au-Rh (3:1) NC and 3.6 and 222 

2.4 for the (1:1) and (1:3) compositions, respectively. This confirms that the Au-Rh (3:1) NC 223 
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follows a direct four electron transfer mechanism, which is in contrast to that of the other two 224 

compositions. From the K-L plots, the linearity and parallelism are usually considered an 225 

indication of first-order reaction kinetics.44 Based on the results, the 3:1 composition was good 226 

and was used for further electrochemical investigations towards the ORR. Interestingly, it was 227 

also reported that a 20-30 atomic wt. % of Rh might be a better composition for the ORR43, 228 

which was well correlated with the present investigation.  229 

ORR activity on Au-Rh (3:1) 230 

Fig. 3 shows the CV data of the supportless and carbon supported Au-Rh (3:1) catalysts. 231 

Two distinct major regions were observed during the anodic sweep: (i) a broad double layer 232 

region between -0.6 and -0.2 V; (ii) an oxide layer (Au-O(H)) formation at the higher potential 233 

region (0.3 to 0.5 V). In the cathodic sweep an oxide reduction peak was clearly observed 234 

between 0.2 to -0.2 V.42 A broad and defined reduction peak was observed for the supportless 235 

Au-Rh (3:1) with a peak current density of 7.5 mA/cm2, which was comparatively higher than 236 

the reported literature values for Au-based catalysts.14, 15, 23 For Au-Rh (3:1)/VC, a less intense 237 

reduction peak with a current density of ~2.5 mA/cm2 showed poor ORR kinetics compared to 238 

Au-Rh (3:1) NCs. The calculated ECSA was found to be 32.7 m2/g for Au-Rh (3:1) catalyst 239 

which is 1.5 times higher than Au-Rh(3:1)/VC  (19.2 m2/g) and was comparable to the reported 240 

values.1 This observed higher ECSA might be due to the availability of more active catalyst sites 241 

in the supportless nanostructure. 242 

Fig. 4a shows the polarization curves of the supportless and Vulcan carbon-supported 243 

Au-Rh (3:1) catalysts recorded at 2400 rpm. From the polarization curves, three distinct regions 244 

were observed: (i) the kinetic controlled region observed between 0.5 to -0.1 V with the 245 

reduction peak of Au-oxide; (ii) the mixed kinetic and diffusion controlled region, i.e., the sloppy 246 

region from -0.1 V to -0.18 V, where the reduction current is controlled by both mass transfer 247 
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and the kinetics of the electron transfer mechanism; and (iii) the mass transfer (diffusion) 248 

controlled region was observed below -0.18 V.43 The limiting current densities were 4.41 and 249 

3.88 mA/cm2 for Au-Rh (3:1) and Au-Rh (3:1)/VC, respectively. The higher onset (-0.05 V) and 250 

half-wave potential (E1/2, -0.11 V) values were obtained for Au-Rh (3:1) NCs that were 251 

comparatively 30 mV (Onset: -0.08 V) and 60 mV (E1/2, -0.11 V) more positive than that of Au-252 

Rh (3:1)/VC. Fig. 4b presents the K-L plots and shows parallel behavior with a slope of 10.86 253 

and 13.11 for Au-Rh (3:1) NC and Au-Rh (3:1)/VC, respectively. From the K-L slopes, the ‘n’ 254 

values were 4.1 for SL Au-Rh (3:1) NCs and 3.9 for Au-Rh (3:1)/VC, suggesting that both the 255 

catalysts follow a direct 4-electron transfer mechanism. Figs. 5a & 5c show linear scan 256 

voltammograms with increasing trend of limiting current densities with respect to the electrode 257 

rotation rate confirms the influence of hydrodynamic (diffusion layer thickness) effects for both 258 

supportless and VC supported Au-Rh catalysts on RDE-GC electrode. In addition to that, the K-259 

L plots (Figs. 5b & 5d) drawn at different potentials (-0.2, -0.4, -0.6, and -0.8 V vs. SHE) clearly 260 

indicates the ORR mechanism follows direct four electron transfer mechanism and the calculated 261 

‘n’ values are in the range of 3.4 to 4.1 for supportless and 3.2 to 3.9 for VC supported Au-Rh 262 

catalyst. In order to evaluate the catalytic activity, the kinetic current density (jk) was calculated 263 

using the following equation,45  264 

d p

k

d p

j j
j

j j

×
=

−
 265 

where jp is the measured current density at -0.1 V vs. SHE and jd is the disc current density at the 266 

limiting region. For Au-Rh (3:1) NC, the observed kinetic current density (jk) was found to be 267 

1.41 mA/cm2 at -0.1 V, which is nearly 2 times higher than that of the Au-Rh (3;1)/VC catalyst 268 

(0.71 mA/cm2) and comparatively higher than the reported SnO2-Au hybrid catalysts in alkaline 269 

media.21  270 
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Using the calculated kinetic current density values (jk), the mass transfer-corrected Tafel 271 

plots were constructed and the Tafel slopes were determined at low and higher overpotential 272 

regions and presented in Fig. 6. Tafel slope values at low overpotential region were found to be 273 

57 and 69 mV/dec and at higher over potential region 119 and 114 mV/dec for supportless and 274 

carbon supported Au-Rh (3:1) catalysts, respectively. At low overpotential, the obtained Tafel 275 

slope values are close to -60 mV dec-1, which indicates that the ORR mechanism follows one 276 

electron transfer is the rate determining step and at higher overpotential the values are around -277 

120 mV dec-1 reveals that the two electron transfer is the rate determining step.46, 47 From the 278 

reported literature, two Tafel slope regions of, (i) 60 mV dec-1 corresponding to O2 electro-279 

reduction at the oxidized (Pt-OH) surface (ii) 120 mV dec-1 observed for clean Pt surface in an 280 

acidic environment. Hence, it is clearly suggesting that the surface properties of Au-Rh catalysts 281 

are quite similar to that of clean Pt and indicating the first electron transfer as the rate limiting 282 

step in reduction of oxygen.48 Fig. 7a shows the number of electrons transferred (n) per oxygen 283 

molecule during reduction process at different potential values. A higher exchange current 284 

density (i0) was obtained for Au-Rh (3:1) NCs (2.19×10-5 A/cm2) than Au-Rh (3:1)/VC (1.0×10-5 285 

A/cm2). Table 1 lists the calculated ORR kinetic parameters, such as limiting current density (jd), 286 

onset potential, half wave potential, kinetic current density (jk), Tafel slope (b), number of 287 

electrons transferred (n), mass, and specific activity values. It can be observed that kinetic 288 

current density, exchange current density and mass activity values are nearly twice for Au-Rh 289 

(3:1) compared to Au-Rh/VC. The lower Tafel slope value indicates a facile ORR kinetics for 290 

Au-Rh (3:1) and this in turn results in the direct 4-electron transfer mechanism. Fig. 7b shows 291 

the comparison of the mass activity (MA) of both the supportless and VC supported Au-Rh (3:1) 292 

catalysts with various reported alkaline ORR electrocatalysts from the literature.17, 32, 38 Using 293 

these MA values, the intrinsic activity or specific activity (SA) values were calculated and found 294 
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to be 3.25 for Au-Rh (3:1) NCs and 3.0 A/m2
Au for Au-Rh (3:1)/VC, which were comparatively 295 

higher than the reported Pt/C (MA: 58 mA/mg; SA: 0.1 mA/cm2)45  and other alkaline ORR 296 

electrocatalysts in KOH medium.20, 39  297 

 298 

Durability of Au-Rh nanostructures 299 

The durability of the electrocatalyst was evaluated by performing accelerated durability 300 

tests (ADT) i.e. by subjecting the working electrode to a specified number of continuous 301 

potential sweeps between -0.6 and 0.2 V at 0.1 V/s in N2-saturated 0.5 M KOH at 25 °C. Figs. 8a 302 

and 8b show the ADT-CVs for both the supportless and carbon supported Au-Rh catalysts under 303 

similar conditions. During the ADT, the Au-oxide reduction peak became broader for Au-Rh 304 

(3:1) NC (Fig. 8a) and sharper for the carbon supported Au-Rh (3:1) catalysts (Fig. 8b). After 305 

10000 potential cycles, the calculated ECSA increased by ~20-30 % for both catalysts, which 306 

might be due to structural reformation (active site regeneration). Figs. 8c & 8d clearly show the 307 

durability of the electrocatalysts in terms of the percentage of ECSA retained after ADT. In fact, 308 

the ECSA of the supportless catalyst was almost 15 % higher than the carbon supported catalyst 309 

after 10000 potential cycles. When the ADT was extended to the other Au-Rh compositions 1:1 310 

and 1:3, we observed approximately 20 to 50 % decrease in ECSA after 5000 potential cycles 311 

(graphs are not shown). The ADT-LSVs were recorded in the O2 saturated 0.5 M KOH solution 312 

at a scan rate of 0.01 V/s at 2400 rpm. Fig. 8e shows the LSV profiles before and after 10000 313 

potential cycles for Au-Rh (3:1) NC which retains ~89 % of its initial limiting current density at 314 

10000th cycle while Au-Rh (3:1)/VC (Fig. 8f) retains only ~83 % after 10000 potential cycles. 315 

On the other hand, looking into the half-wave potential values, an 80 mV negative shift was 316 

observed for the Au-Rh (3:1) NC, which was almost 1.5 times (180 mV) better than Au-Rh 317 

(3:1)/VC. The TEM image (Fig. 9a) shows that there is no appreciable change in particle size of 318 
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supportless Au-Rh catalyst after ADT and clearly depicted from the corresponding histogram 319 

(Fig. 9c). But, the Au-Rh/VC has increased in particles size nearly 2 nm after 10000 cycles 320 

which is resulted in decreased LSV-ORR current compared to the supportless catalyst. In 321 

addition to that the Au-Rh/VC, has increased in surface area upon continuous potential cycling 322 

thus might be expected due to the chemisorbed CO49 (Journal of The Electrochemical Society, 323 

160 (4) F381-F388 (2013)) (which eventually reduces the available and free active sites). As a 324 

result the ORR activity decreases upon cycling for supported catalysts. To summarize the 325 

supportless Au-Rh (3:1) showed a remarkable stability compared to the carbon supported 326 

catalyst and also the retained activity after ADT was comparatively higher than that reported 327 

values for other alkaline ORR electrocatalysts, such as Au@Pd/RGO (~6 % ORR current loss 328 

after 1000 potential cycles)50, Pt/C (~ 42 % ORR current loss after 1,500 potential cycles)51, and 329 

NCo-GS-0.5 (40% loss in activity after 12000 potential cycles).52  330 

 331 

Conclusion 332 

Novel supportless and vulcan carbon supported Au-Rh bimetallic nanostructures were 333 

synthesized by a green chemical reduction approach without stabilizing agents which showed an 334 

enhanced electrocatalytic performance for the ORR in alkaline medium. From physiochemical 335 

characterizations, the mean crystallite size and elemental composition were determined. TEM 336 

clearly revealed the nanostructure morphology of Au-Rh and the uniform distribution of Au-Rh 337 

nanoparticles on carbon for the Au-Rh/VC catalyst. From cyclic voltammetry studies, the ECSA 338 

was found to be 32.7 m2/g and the limiting current density was observed to be 4.41 mA/cm2 for 339 

Au-Rh (3:1) NC which were comparatively higher than the other supportless and carbon 340 

supported catalysts. The higher MA (106 mA/mg) and SA (3.25 A/m2
Au) were obtained for the 341 

Au-Rh NC and the ORR kinetic parameters were calculated and presented. The durability studies 342 
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clearly showed that both the supportless and VC supported Au-Rh (3:1) electrocatalysts possess 343 

an improved life-time in terms of ECSA and the ORR limiting current density, even after 10000 344 

potential cycles. Therefore, this study proves that the Au-Rh (3:1) nanostructures have great 345 

potential to catalyze the ORR with enhanced activity and stability for alkaline fuel cells. 346 
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Figure Captions 507 

Fig. 1 XRD patterns of the supportless and VC supported Au-Rh (3:1) catalysts. 508 

Fig. 2 TEM images of the supportless (a & c) and Vulcan carbon supported (b & d) Au-Rh (3:1) 509 

catalysts with corresponding histograms (e & f). Inset: HR-TEM of supportless Au-Rh (Fig. 2a) 510 

and Au-Rh/VC (Fig. 2b). 511 

Fig. 3 Cyclic voltammograms of the supportless and VC supported Au-Rh (3:1) in N2 saturated 512 

0.5 M KOH at a scan rate of 0.1 V/s at 25 °C. 513 

Fig. 4 (a) RDE-Linear scan voltammograms of the supportless Au-Rh (3:1) and Au-Rh (3:1)/VC 514 

in O2 saturated 0.5 M KOH at a scan rate of 0.01 V/s at 25 °C in 2400 rpm and (b) corresponding 515 

K-L plots. 516 

Figs. 5 RDE-Linear scan voltammograms at different rotation rates and K-L plots at different 517 

potentials for supportless Au-Rh (3:1) (a & b) and Au-Rh (3:1)/VC (c & d) in O2 saturated 0.5 M 518 

KOH at a scan rate of 0.01 V/s at 25 °C. 519 

Fig. 6 Mass transfer corrected Tafel plots of the supportless Au-Rh (3:1) and Au-Rh (3:1)/VC in 520 

O2 saturated 0.5 M KOH at a scan rate of 0.01 V/s at 25 °C in 2400 rpm. 521 

Fig. 7 (a) Number of electrons transferred versus applied potential for both supportless Au-Rh 522 

(3:1) and Au-Rh (3:1)/VC in O2 saturated 0.5 M KOH at a scan rate of 0.01 V/s; (b) Comparison 523 

of the mass activity of Au-Rh catalysts with different alkaline ORR electrocatalysts from various 524 

reported literatures. 525 

Fig. 8 Cyclic voltammograms of (a) supportless Au-Rh (3:1) NCs; (b) Au-Rh (3:1)/VC in N2 526 

saturated 0.5 M KOH at 25 °C after ADT potential cycling; Linear scan voltammograms of (c) 527 

supportless Au-Rh (3:1) NCs; (d) Au-Rh (3:1)/VC in O2 saturated 0.5 M KOH at 25 °C after 528 

ADT potential cycling; (e) comparison of the percentage of normalized ECSA after ADT and (f) 529 

comparison of percentage of normalized ORR limiting current after ADT potential cycling.  530 
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Fig. 9 TEM images of (a) supportless Au-Rh and (b) Au-Rh/VC catalysts after accelerated 531 

durability tests with corresponding histograms (c) and (d) respectively.  532 

 533 

534 

Page 23 of 35

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



24 

 

 535 

 Fig. 1 536 

 537 

Page 24 of 35

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25 

 

 Fig. 2 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

  548 

   549 

d c 

f e 

a b 

Page 25 of 35

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26 

 

 550 

Fig. 3 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

Page 26 of 35

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27 
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Fig. 5 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

  635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

c d 

b a 

Page 28 of 35

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



29 

 

Fig. 6 673 
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Fig. 9 773 
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Table 1 Summary of ORR kinetic parameters for supportless and carbon supported Au-Rh (3:1) catalysts at 25 °C. 

 

Catalyst 
jd 

(mA/cm
2
) 

On set 

potential 

(V) 

E1/2  

(V) 

jk 
(mA/cm

2
)  

10
3
 k    

(cm/s) 

b    

(mV/dec) 

10
5
 i0 

(A/cm
2
) 

n  
MA 

(mA/mgAu) 

IA or SA 

(A/m
2
Au) 

 Au-Rh (3:1) 4.41 0.11 -0.11 1.41 4.47 96 2.19 4.09 106 3.25 

Au-Rh(3:1)/VC 3.88 0.06 -0.12 0.71 4.25 143 1.00 3.38 58 3.00 

jd- limiting current density; E1/2- half-wave potential; jk- kinetic current density @ -0.1 V vs. SHE; k- kinetic rate constant; i0- exchange current density; n- 

number of electrons transferred; MA- mass activity @ -0.1 V vs. SHE; IA- intrinsic activity @ -0.1 V vs. SHE. 
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Oxygen Reduction Reaction on Au-Rh Nanoclusters  
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