Multiferroic and magnetoelectric properties of core-shell CoFe₂O₄ @ BaTiO₃ [nanocomposites](http://dx.doi.org/10.1063/1.3478231)

Kalyan Raidongia,¹ Angshuman Nag,^{1,2} A. Sundaresan,¹ and C. N. R. Rao^{1,2[,a](#page-0-0))} 1 *Chemistry and Physics of Materials Unit, International Centre for Materials Science, CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India*

2 *Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India*

(Received 14 June 2010; accepted 17 July 2010; published online 9 August 2010)

Core-shell CoFe₂O₄ @ BaTiO₃ nanoparticles and nanotubes have been prepared using a combination of solution processing and high temperature calcination. Both the core-shell nanostructures exhibit magnetic and dielectric hysteresis at room temperature and magnetoelectric effect. The dielectric constant of both the nanocomposites decreases upon application of magnetic field. The core-shell nanoparticles exhibit 1.7% change in magnetocapacitance around 134 K at 1 T, while the core-shell nanotubes show a remarkable 4.5% change in magnetocapacitance around 310 K at 2 T. © *2010 American Institute of Physics*. doi[:10.1063/1.3478231](http://dx.doi.org/10.1063/1.3478231)

Zheng $et \ al.$ ^{[1](#page-2-0)} measured properties of nanofilms of $CoFe₂O₄$ @ BaTiO₃, where nanopillars of $CoFe₂O₄$ were embedded in a $BaTiO₃$ matrix and found a small change in magnetization at the ferroelectric transition temperature of BaTiO₃. Composites of $CoFe₂O₄$ with BaTiO₃ are reported to exhibit magnetoelectric effect by Doung *et al.*[2](#page-2-1) and Wie *et al.*, [3](#page-2-2) who suggest mechanical coupling between magnetostrictive and piezoelectric phases through magnetostrition to be responsible for the magnetoelectric effect. These workers did not, however, measured the magnetocapacitance as a function of applied magnetic field in these materials. Nanocomposites of CoFe_2O_4 with Pb(Zr,Ti)O_3 show a very small magnetocapacitance $(< 0.1\%$ at 1 T) at room temperature.⁴ We considered it purposeful to investigate magnetic and dielectric properties of different types of core-shell nanostructures between CoFe_2O_4 and BaTiO_3 to explore the occurrence of magnetoelectric effect in these composites. For this purpose, we have prepared $\text{CoFe}_2\text{O}_4 \otimes \text{BaTiO}_3$ core-shell nanoparticles as well as core-shell nanotubes.

 CoFe_2O_4 nanoparticles (~12 nm diameter) were prepared by the hydrothermal treatment of a slurry obtained by reducing 15 mL aqueous mixture of $Co(NO₃)₂ \cdot 6H₂O$ (0.058 g), Fe $(NO₃)₃ \cdot 9H₂O$ (0.16 g), and polyvinylpyrrolidone (0.2 g) with sodium borohydride (0.9 g dissolved in 5 mL of millipore water) at 120 °C for 12 h.⁵ We then prepared a precursor solution of $BaTiO₃$ containing a mixture of 30 ml aqueous solution of 0.029 g of BaCO₃ and 0.1 g of citric acid with 30 ml ethanolic solution of 1 g of citric acid and 0.048 mL titanium isopropoxide. CoFe_2O_4 (0.1 g) nanoparticles were dispersed in 60 ml of the BaTiO₃ precursor solution under vigorous sonication. After prolong sonication, the mixture was dried at 60 °C under stirring and subsequently calcined at 780 °C for 5 h to obtain $\text{CoFe}_2\text{O}_4 \otimes \text{BaTiO}_3$ coreshell nanoparticles. The diameter of these core-shell nanoparticles was between 40 and 60 nm, with the ferrite particles at the core see the transmission electron microscopy (TEM) image in Fig. $1(a)$ $1(a)$] with an average thickness of BaTiO₃ shell being \sim 18 nm.

 $CoFe₂O₄$ nanotubes with an outer diameter of ~ 80 nm [see the TEM image in the inset of Fig. $1(b)$ $1(b)$] were obtained by using polycarbonate membrane templates with a pore diameter of 220 nm. The templates were soaked overnight in a 20 mL ethylene glycol solution containing 0.047 g of $CoCl₂.6H₂O$ and 0.109 g of FeCl₃.6H₂O followed by drying at 120 \degree C and calcination at 530 \degree C for 3 h. These nanotubes were added into 10 mL of the BaTiO₃ precursor solution, sonicated for five minutes and dried at 60 °C. The dried mixture was subsequently calcined at 780 °C for 5 h to obtain $CoFe₂O₄ @ BaTiO₃ core-shell nanotubes. A TEM image$ of $CoFe₂O₄ @ BaTiO₃ core-shell nanotubes with a diameter$ of around [1](#page-0-1)00 nm is shown in Fig. $1(b)$. X-ray diffraction and selected area electron diffraction patterns of the coreshell nanostructures showed them to be mixtures of cubic $CoFe₂O₄$ and tetragonal BaTiO₃. The particle size of BaTiO₃ here was considerably small $(\sim 15$ nm). Raman spectra confirmed the presence [o](#page-2-5)f tetragonal BaTiO₃ with bands at 308 , 520, and 718 cm^{-1} .

 $CoFe₂O₄$ nanoparticles showed a large divergence between field cooled (FC) and zero field cooling (ZFC) magnetization data (obtained using PPMS from Quantum design, USA) in the $10-390$ K range at 100 Oe, the divergence in-

FIG. 1. TEM images of $\text{CoFe}_2\text{O}_4 \otimes \text{BaTiO}_3$ core-shell (a) nanoparticles and (b) nanotubes. TEM image of a core-shell nanoparticle is shown in the inset of Fig. $1(a)$ $1(a)$. Inset in Fig. $1(b)$ shows TEM image of a CoFe₂O₄ nanotube.

0003-6951/2010/97(6)/062904/3/\$30.00

/062904/3/\$30.00 © 2010 American Institute of Physics **97**, 062904-1

Downloaded 11 Jan 2011 to 203.90.91.225. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

a)Electronic mail: cnrrao@jncasr.ac.in.

FIG. 2. (a) Temperature dependence of the magnetization of $\text{CoFe}_2\text{O}_4 \otimes \text{BaTiO}_3$ core-shell nanoparticles under FC and ZFC conditions. Inset shows the magnetic hysteresis at 300 K. (b) Temperature dependence of dielectric constant of $CoFe₂O₄ @ BaTiO₃ core-shell nanotubes. Inset$ shows derivative of the dielectric constant to demonstrate the transition at 396 K.

creasing with decreasing temperature[.5](#page-2-4)[,7](#page-2-6) A similar behavior was found with the CoFe_2O_4 nanotubes. Both the CoFe_2O_4 nanoparticles and nanotubes exhibit magnetic hysteresis at 300 K. The saturation magnetization (M_s) , remanent magnetization (M_r) , and coercive field (H_c) were 60 emu/g, 12 emu/g, and 166 Oe, respectively, in the case of $CoFe₂O₄$ nanoparticles, values which are smaller than the bulk values as expected.⁸ The M_s , M_r , and H_c values of CoFe₂O₄ nanotubes (outer diameter ~ 80 nm) were 75 emu/g, 28 emu/g, and 901 Oe, respectively.

 $CoFe₂O₄ @ BaTiO₃ core-shell nanoparticles at 100 Oe$ reveal divergence between the FC and ZFC magnetization data [Fig. $2(a)$ $2(a)$] just as the CoFe₂O₄ nanoparticles. The ZFC plot also shows a shoulder around 140 K similar to the feature reported in the literature.⁷ The core-shell nanoparticles also show magnetic hysteresis at 300 K see inset of Fig. $2(a)$ $2(a)$], the M_s and M_r values being 13 and 2.4 emu/g these values are lower than those of pure CoFe_2O_4 nanoparticles (the M_s and M_r values of the core-shell nanoparticles calculated on the basis of the weight of CoFe_2O_4 alone are 20 emu/g and 4 emu/g, respectively). The coercive field, however, increases to 264 Oe in the core-shell particles, probably because the magnetization become harder in the presence of nonmagnetic shell.⁹

Temperature-dependence of the dielectric constant of $CoFe₂O₄ @ BaTiO₃ core-shell nanoparticles was measured at$ different frequencies (1 kHZ to 1 MHZ) using precision impedance analyzer (Agilent 4294A). The dielectric constant

FIG. 3. Temperature variation in dielectric constant of $\text{CoFe}_2\text{O}_4 \otimes \text{BaTiO}_3$ core-shell (a) nanoparticles and (b) nanotubes at different magnetic fields. Insets in Figs. $3(a)$ $3(a)$ and $3(b)$ show the magnetocapacitance as a function of magnetic field at 134 K and 310 K for the core-shell nanoparticles and nanotubes, respectively.

increases with increasing temperature with a clear hump at \sim 390 K corresp[ondin](#page-1-0)g to the ferroelectric T_c of bulk BaTiO₃ [see Fig. $2(b)$ for typical dielectric behavior]. The dielectric constant increases with decreasing frequency but the T_c does not change significantly with frequency. BaTiO₃ nanoparticles (diameter \sim 20 nm) as well as $CoFe₂O₄ @ BaTiO₃ core-shell nanoparticles do not exhibit$ good dielectric hysteresis loops showing saturation. The instability of the ferroelectric phase depends on factors such as smaller grain size, defect chemistry, incorporation of $CoFe₂O₄$, presence of hydroxyl groups, aggregation of particles, porosity level, and residual stresses and it is difficult to separate one effect from another.^{10[,11](#page-2-10)} From the available data, we find that the coercive polarization (P_c) and remnant polarization (P_r) to be 51 kV/cm and 0.13 μ C/cm², respectively, for $BaTiO₃$ nanoparticles, the corresponding values for core-shell nanoparticles being 13 kV/cm and 0.02 μ C/cm², respectively. Figure [3](#page-1-1)(a) shows the temperature dependence of the dielectric constant in the temperature range of 45–315 K in the absence and presence of 1 T magnetic field. Both the curves show a transition around 170 K which corresponds to the rhombohedral-orthorhombic phase transition (T_{ro}) of BaTiO₃.^{[12](#page-2-11)} A decrease in the dielectric constant is observed below T_{ro} on application of the magnetic field, showing the presence of magnetoelectric effect in the core-shell structure. The inset of Fig. $3(a)$ $3(a)$ shows the magnetocapacitance of the sample as a function of magnetic field at

Downloaded 11 Jan 2011 to 203.90.91.225. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

134 K. The magnetocapacitance decreases with increasing magnetic field till 0.5 T accounting for \sim 1.7% change but is independent of frequency.

We have studied properties of $CoFe₂O₄ @ BaTiO₃ core$ shell nanotubes as well, since the nanotubes exhibit large M_s and M_r compared to the nanoparticles, at the same time providing large interfacial area between $CoFe₂O₄$ and $BaTiO₃$ nanostructures. Magnetization data of the $CoFe₂O₄ @ BaTiO₃ core-shell nanotubes also reveal diver$ gence between FC and ZFC plots similar to the core-shell nanoparticles. We observe magnetic hysteresis at 300 K with M_s and M_r values of 28 and 12 emu/g, respectively, (the M_s and M_r values corresponding to the weight percent contribution of $CoFe₂O₄$ core alone are 40 emu/g and 16 emu/g, respectively). The decrease in magnetization of CoFe_2O_4 in the core-shell structures could be due to [m](#page-2-0)agnetostriction^{1[,4](#page-2-3)} as well as lattice mismatch with $BaTiO₃$.¹ Similar reduction in magnetic moment has been observed in the case of $CoFe₂O₄$ dispersed in a PbTiO₃ matrix due to the dissolution of Ti in the interface.^{13[,14](#page-2-13)} The H_c of the core-shell nanotubes is 912 Oe, comparable to that of pure CoFe_2O_4 nanotubes.

Temperature variation in the dielectric constant of the core-shell nanotubes shows a transition at 396 K corresponding to tetragonal to cubic phase transition¹² of BaTiO₃ [see Fig. [2](#page-1-0)(b)]. The P_c and P_r values obtained from the dielectric hysteresis of the core-shell nanotubes are 185 kV/cm and 0.24 μ C/cm², respectively, values larger than those of the nanoparticles. Figure $3(b)$ $3(b)$ shows the temperature variation in the dielectric constant at low temperatures on application of a magnetic field. The dielectric constant decreases with increase in magnetic field above 270 K, close to the orthorhombic to tetragonal phase transition temperature. The magnetocapacitance of core-shell nanotubes at 310 K is shown as a function of magnetic field in the inset of Fig. $3(b)$ $3(b)$ $3(b)$. The magnetocapacitance decreases monotonically with increasing magnetic field till 2.1 T, exhibiting a substantial change of 4.5%. The 4.5% change in magnetocapcitance for coreshell nanotubes found here is a significant improvement over that of the core-shell nanoparticles $(1.7%)$ and is the highest value reported so far in the $\text{CoFe}_2\text{O}_4 - \text{BaTiO}_3$ system. Furthermore, magnetocapacitance is independent of the frequency of measurement. The maximum magnetocapacitance is observed at different structural transition temperatures of $BaTiO₃$ for the nanoparticles and nanotubes. This may be because the magnetic moment is high in the different temperature regimes in the case of nanoparticles and nanotubes, the temperature being low (134 K) in the case of former. Furthermore, the smaller size of the $BaTiO₃$ nanoparticles on the CoFe₂O₄ nanotubes may wipe out the 170 K transition.

In conclusion, core-shell $CoFe₂O₄ @ BaTiO₃ nanopar$ ticles and nanotubes exhibit magnetic hysteresis at room temperature and show magnetoelectric effect. The results obtained with core-shell nanotubes are noteworthy since we observe a 4.7% change in magnetocapacitance at 310 K. The larger change in magnetocapacitance of the core-shell nanotubes may arise from the larger saturation magnetization and remanent magnetization of the nanotubes.

K.R. acknowledges CSIR, India, for a fellowship and A.N. acknowledges IISc for a centenary postdoctoral fellowship.

- ¹H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, [Science](http://dx.doi.org/10.1126/science.1094207) **303**, 661 $^{(2004)}_{2}$
- G. V. Duong and R. Groessinger, [J. Magn. Magn. Mater.](http://dx.doi.org/10.1016/j.jmmm.2007.03.142) **316**, e624 $^{(2007)}_{\text{3}1 \text{Ni}}$
- ³J. Nie, G. Xu, Y. Yang, and C. Cheng, [Mater. Chem. Phys.](http://dx.doi.org/10.1016/j.matchemphys.2008.12.011) 115, 400 $^{(2009)}_{\text{4x~Go}}$
- X Gao, B. J. Rodriguez, L. Liu, B. Birajdar, D. Pantel, M. Ziese, M. Alexe, and D. Hesse, $\angle ACS$ Nano 4, 1099 (2010).
- ²Z. Gu, X. Xiang, G. Fan, and F. Li, J. Phys. Chem. C **47**, 18459 (2008).
⁶ R. Cutto, B. K. Gallagher, and J. Twut. Chem. Mater. 5, 1730 (1003).
- P. K. Dutta, P. K. Gallagher, and J. Twut, [Chem. Mater.](http://dx.doi.org/10.1021/cm00036a011) **5**, 1739 (1993).
⁷7 Wang X Liu M Ly P. Chai X Liu X Zhou and L Mang L Phys
- ${}^{7}Z$. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, X. Zhou, and J. Meng, [J. Phys.](http://dx.doi.org/10.1021/jp802614v) **[Chem. C](http://dx.doi.org/10.1021/jp802614v) 112,** 15171 (2008).
- M. Grigorova, H. J. Blythe, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, L. M. Martinez, J. S. Munoz, and M. Mikhov, [J. Magn. Magn.](http://dx.doi.org/10.1016/S0304-8853(97)01031-7) **[Mater.](http://dx.doi.org/10.1016/S0304-8853(97)01031-7) 183**, 163 (1998).
- H. F. Zhang, S. W. Or, and H. L. W. Chan, [Mater. Res. Bull.](http://dx.doi.org/10.1016/j.materresbull.2008.12.007) **44**, 1339 (2009) .
- ¹⁰U. A. Joshi, S. Yoon, S. Baik, and J. S. Lee, [J. Phys. Chem. B](http://dx.doi.org/10.1021/jp0600110) **110**, 12249 $(2006).$
- ¹¹E. K. Akdogan, M. R. Leonard, and A. Safari, in *Handbook of Low and High Dielectric Constant Materials and Their Applications*, edited by H. S. Nalwa (Academic, New York, 1999), Vol. 2, p. 61.
- S. Nalwa (Academic, New York, 1999), Vol. 2, p. 61.
¹²C. Kittel, *Introduction to Solid State Physics*, 7th ed. (Wiley, New York,
- 1995).
¹³J. Li, I. Levin, J. Slutsker, V. Provenzano, P. K. Schenck, R. Ramesh, J. Ouyang, and A. L. Roytburd, [Appl. Phys. Lett.](http://dx.doi.org/10.1063/1.2031939) 87, 072909 (2005).
- Ouyang, and A. L. Roytburd, Appl. Phys. Lett. **87**, 072909 (2005).¹⁴P. Nathwani and V. S. Darshane, [J. Phys. C](http://dx.doi.org/10.1088/0022-3719/21/17/010) **21**, 3191 (1988).