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Preface 

This thesis presents the design, synthesis and properties of helical supramolecular 

polymers of π-conjugated chromophores for their chiroptical functionalities.  

The thesis is majorly divided into six Chapters. 

Chapter 1 introduces the field of asymmetric non-covalent synthesis of supramolecular polymers 

through chiral auxiliary approach. The major emphasis is given to various design strategies 

employed for the guest induced helicity in self-assembly of π-conjugated chromophores. An 

overview of the important developments in this field along with its potential chiroptical 

functionality based applications is presented. 

Chapter 2 presents the molecular design strategy wherein various diimide based π-conjugated 

molecules are functionalized with dipicolylethylenediamine–zinc complex (DPA) as the positively 

charged molecular recognition unit, which upon interaction with negatively charged chiral 

adenosine phosphates (chiral auxiliary) induces helicity into their assembly. DPA functionalization 

is central to the design of this thesis and here we established its importance. DPA functionalized 

naphthalenediimide (NDPA) and perylenebisimide (PDPA) derivatives were synthesized, which 

showed adenosine phosphate recognition induced assembly. We show that adenosine triphosphate 

(ATP) induces right-handed assembly, whereas binding to adenosine mono and di phosphate 

(AMP/ADP) show left-handedness. We have also shown a novel strategy for the dynamic helix 

reversal in supramolecular assemblies, based on competitive binding of the guest molecules.  

Having shown the opposite handedness in assembly of NDPA on binding with ATP when 

compared with ADP/AMP, Chapter 3 explores the possibility of utilizing this dynamic helical 

assembly for monitoring real time reaction kinetics. Here we present a unique supramolecular 

system which show differential signaling along with stimuli dependent fast stereomutations upon 

ATP-ADP/AMP interconversion. This has been capitalized to probe the reaction kinetics of 

enzymatic hydrolysis of bound ATPs. Detailed chiroptical analysis has provided mechanistic 

insights into the enzymatic hydrolysis and various intermediate steps. This in situ method could 

probe the concentration fluctuation of Adenosine phosphates which dictate the energy economy of 

various living organisms. Thus a unique “all-in-one” dynamic helical assembly to monitor the real 

time reaction processes via its stimuli-responsive chiroptical signaling is conceptualized.   

Chapter 4 is divided into two parts. I
st
 part deals with the self-assembly of DPA functionalized 
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coronenebisimide (ZnCPA) leading to construction of self-assembled multivalent scaffold for 

phosphate recognition. 2
nd

 part demonstrates a chaperoning effect in stabilizing the kinetically 

trapped state, leading to imprinted chiral memory in ZnCPA assemblies. ZnCPA molecules self-

assemble in presence of water, whereas binding to ADP induces helical bias into their organization. 

Interestingly, we show that by using a negatively charged protein we can competitively replace 

ADP through multivalent interactions. Through chiroptical probing, kinetics of helical memory was 

investigated and an intra-stack racemization mechanism was established. Control over the strength 

of memory could be easily achieved just by changing the solvent medium.  

Chapter 5 presents a biomimetic design for allosteric control over supramolecular helicity of 

molecular assemblies. We have functionalized perylenebisimide with molecular recognition unit 

(PDPA) which respond to biologically relevant chiral guests like ATP thereby inducing chirality 

into achiral assembly in a highly allosteric fashion. Allosteric effect could be achieved by using 

helically dormant ATP bound chromophoric assembly, which shows turn on helicity in a 

cooperative manner either by further addition of chiral ATP or other diphosphates like 

pyrophosphate (PPi), ADP leading to homotropic and heterotropic allosteric regulation, 

respectively. Thus, the present system can be a unique artificial analogue of various allosterically 

regulated events in biological systems. 

Chapter 6 deals with the functional properties of such molecular recognition driven self-assembly. 

It is further divided into two parts. 1
st
 part reports the guest induced chirality for circularly 

polarized luminescence (CPL) in various fluorophores. DPA functionalized molecules, on binding 

to adenosine phosphates not only show ground state helicity as seen from circular dichroism signal, 

but they retain supramolecular chirality in the excited state as well. Interestingly, upon removal of 

chiral information, they are seen to retain CPL in a so called chiral memory in the excited state. To 

our knowledge, this is the only report of guest induced CPL induction and its chiral memory in  

conjugated systems. 2
nd

 part describes a novel supramolecular clipping design for influencing the 

photo-physical properties of functional molecular assemblies, by the pre-organization (clipping) of 

chromophores. Chromophores like naphthalenediimide and dialkoxynaphthalene were 

functionalized with DPA units, which upon clipping with adenosine phosphates allows ground state 

pre-organization of chromophores, leading to formation of pre-associated excimer. Interestingly, 

mixing of these two chromophores form charge transfer complex only in presence of adenosine 

phosphates, establishing the crucial role of molecular clippers in controlling the supramolecular 

interactions. 
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monomeric units. Chiral polymers like polyacetylenes, polyisocyanates, polysilanes, 

polyisocyanides etc. (Figure 1.1a) were extensively utilized to show chiral amplification 

following “sergeant and soldiers” and “majority rule” principles.3 Molecular chirality in such 

systems is usually expressed in their organization into either a left- or right-handed helix.4 

Apart from the conventional helical polymers, another class of chiral macromolecules can be 

constructed by non-covalent self-assembly of small molecules leading to “helical 

supramolecular polymers”.4e-j, These are also synthesized by the chiral monomeric units like 

chiral derivatives of benzene-1,3,5-tricarboxamides (BTA), oligo(p-phenylenevinylenes) 

(OPV), porphyrins, 3,4,9,10-perylenetetracarboxylic diimides etc. (Figure 1.1b), which self-

assemble to form helical aggregates. Asymmetric preferences in these systems also provide 

insights into the probable mechanism of homochirality in nature. 

     Synthetic polymers composed of chiral monomeric unit self-assemble into helix, 

whose handedness is mainly governed by the configuration of the chiral centre in the 

monomers. Moreover, it has been shown in polymers (covalent and supramolecular), that the 

simplest chiral perturbation created by isotopic substitution of hydrogen with deuterium in their 

monomers can amplify their homochiral helical organization.5 However, one of the major 

limitation of such systems is their inability to switch its handedness, which can only be 

achieved by synthesizing the monomers of opposite chirality (which is synthetically 

challenging). Therefore, another novel design for creating helical bias into the assembly of 

achiral molecule is by “chiral auxiliary” approach.6 Chiral auxiliaries are optically active and 

enantiomerically pure guest molecules, which upon non-covalent interaction with the achiral 

molecules induces a helical bias into the assembly of host molecules. With this design, the 

assembly of opposite handedness can be easily constructed just by changing the chirality of the 

guest molecules, thereby circumventing the challenge of separately synthesizing the two 

enantiomers of host molecules.  

For most applications, helical polymers are functionalized with chromophores, which 

provide a chiroptical probe to monitor their chiral self-assembly. The helical organization of 

chromophores are mainly characterized by circular dichroism (CD), based on the “exciton 

chirality method”.7 When two identical chromophores (i and j, Figure 1.2a) interact to 

constitute a chiral organization, their electronic transition dipoles couple with each other. This 

results in splitting of the excited state energy levels into a lower and higher energy states.8 As a 

consequence, the absorption signal splits into two component spectra, one blue shifted (β-

transition) and the other one red shifted (α-transition), but with the same sign (Figure 1.2b). The 

resultant two absorption signal usually appear as a single absorption band, however strongly 

coupled dipoles with high energy difference between the α and β energy levels does create two 

well separated absorption bands. Interestingly, the CD signal corresponding to α- and β-
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 This chapter had two main parts. First one dealt with induction of chirality upon 

interaction with chiral guest. This was further categorized based on the type of chiral guest 

utilized. Second part presented a discussion on the synthesis of metastable helical assemblies. 

With examples from a variety of chromophores, a rational design for the construction of 

kinetically inert assemblies is presented. In all such cases, the functional aspect of these helix 

for various application is also outlined. 

 Recent demonstration of chirotechnological applications from these helical polymers 

promise a great future in the subject. Moreover, taking advantage of the homochiral nature of 

most biological stimuli, a biomimetic approach can be useful in understanding various cellular 

processes, probing biochemical reactions and for biosensing. Another area which remains 

unexplored is the induction of chirality into the electronic excited state, leading to guest 

induced circularly polarized luminescence (CPL) and their excited state helical memory. This 

thesis is directed towards venturing into some of these basic problems and open ways for 

interesting line of research and applications.    
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Chapter-2 

Molecular Recognition Driven Helical Assembly with                   

Tunable Handedness 

Abstract 

Helical assemblies like DNA, proteins etc. are very much central to the efficient functioning of 

biological systems. In this regard, design of biomimetic helical systems can be useful in 

understanding the mechanism of such assembly process. Moreover, complete control over their 

handedness is desirable for various enantioselective chirotechnological applications. Here we 

present rylene diimide derived (bola)amphiphiles functionalized with dipicolylethylenediamine 

(DPA) motif which show molecular recognition induced self-assembly. Binding to chiral 

adenosine phosphates leads to helical organization in otherwise achiral chromophores, 

through chiral guest (auxiliary) induced helicity. Moreover, their handedness could be 

controlled just by appropriate choice of chiral auxiliaries (adenosine phosphates). 

 The design of DPA functionalization could be generalized in both 1,4,5,8-

naphthalenetetracarboxylic diimide (NDI) as well as 3,4,9,10-perylenetetracarboxylic diimide 

(PBI), both of which show adenosine phosphate induced assembly with tunable chirality. 

Competitive replacement of chiral guest through multivalent interactions shows dynamic helix 

reversal of these assemblies. Thus, we present an unprecedented stepwise switching of helicity 

from racemic to M-helix to P-helix before converting them to racemic stacks again.  

 

 

Publications based on this work a) Chem. Commun., 2012, 48, 10948; b) Manuscripts under 

preparation. 

Left-helix 

right-helix 

racemic 

racemic molecular recognition 



Chapter-2 

 

~ 36 ~ 
 

2.1 Introduction 

Dynamic helical polymers and supramolecular one-dimensional (1-D) assemblies with 

tunable handedness, by the specific molecular recognition of chiral guests (auxiliaries), have 

attracted immense attention as model systems to understand the concepts of chiral 

amplification.
1,2

 Such systems are useful as a biomimetic design for understanding the 

mechanism of assembly in biological helical polymers like DNA, proteins. Moreover, the 

molecular recognition properties along with the dynamic nature of these helical systems would 

be very attractive for the design of stimuli responsive and chirotechnological materials. 

Although, the supramolecular helical stacks constructed from the assembly of chiral monomers 

have been well investigated,
2
 the molecular recognition driven 1-D assembly of achiral 

monomers and the resultant induction of chirality from the guests to the achiral/racemic 

assemblies is seldom reported. In this respect, chiral induction,
3
 (preferential) chiral solvation

4
 

and chiral memory,
5
 well known concepts in their macromolecular counterparts, have been 

recently demonstrated in 1-D supramolecular systems using the principles of host-guest 

chemistry. However, detailed mechanistic insights and the design of guest responsive, dynamic 

helical 1-D assemblies remains challenging. 

One major advantage of chiral guest induced helical organization of achiral molecules 

over the traditional helical assembly of chiral monomers is their easy tunability of handedness. 

Using different enantiomeric form of chiral auxiliaries, the handedness of the host assembly can 

be easily reversed.
6
 This avoids the synthetic challenge involved in making the two chiral forms 

of monomers, which is necessary in conventional helical (supramoleular) polymers. Moreover, 

due to the dynamic nature of these non-covalent macromolecules, they can be envisaged to 

switch their handedness in response to the external stimuli. Control over helix handedness is 

very crucial for many enantioselective applications, which has been achieved through response 

to external stimuli like pH, temperature, solvent composition.
7
 But a rational design to this 

effect in having complete control over their handedness is not yet reported. 

In this chapter, we describe the adenosine phosphates induced one-dimensional (1-D) 

self-assembly and the resultant supramolecular chirality of naphthalenediimide (NDPA-Amph, 

NDPA) and perylenebisimide (PDPA) based (bola)amphiphiles. Detailed spectroscopic 

probing provided mechanistic insights into the dynamic molecular recognition, chiral induction 

process and stability of the assemblies. The binding of multivalent chiral phosphates resulted in 

high supramolecular chiral order, as evident from the excitonic, bisignated circular dichroism 

signals, in the resulting NDI and PBI assemblies.
8
 Although self-assembly of NDI derivatives 

have been extensively studied,
8
 this is their first report of guest induced chiral self-assembly. 

These molecules show phosphate selective preferential helicity, i.e. AMP/ADP binding induced 



  Helical Assembly with Tunable Handedness 

~ 37 ~ 
 

left-handed assembly (M-helix), whereas interaction with ATP resulted in right-handed P-helix. 

Detailed molecular mechanics/molecular dynamics (MM/MD) simulations were performed to 

understand the origin of such unusual guest dependent handedness. Comparison of potential 

energy profile confirmed the role of van der Waal and hydrogen bonding interactions being 

responsible for stabilization of one form over the other.   

We further present the dynamic reversal of the helical handedness of NDI and PBI 

stacks through competitive replacement of bound AMP/ADP by ATP. This simple method for 

dynamic switching of handedness was utilized to bring in a stepwise change in helicity from 

racemic to M-helix to P-helix before converting them to racemic stacks again, with an 

unprecedented control. 

2.2 Design Strategy 

 

Scheme 2.1. Pictorial representation of DPA functionalized chromophores. 

  The molecular recognition driven 1-D helical self-assembly of chromophores often 

employed non-directional electrostatic interactions for guest binding.
9
 However, we envisioned 

that chromophore functionalization with specific guest binding groups would give a better 

control over the resulting self-assembly.
10

 On the other hand, use of biologically benign guest 

molecules, such as adenosine phosphates, would not only facilitate an efficient self-assembly 

through additional hydrophobic and π-π  interactions between the base units, but also act as a 

chiral handle for imparting chirality to the resulting assemblies. Extensive studies on molecular 

phosphate sensors suggest that dipicolylethylenediamine-Zinc complex (Zn-DPA) motif can 

specifically bind to various adenosine phosphates with high association constants (Scheme 

2.1).
11

 Moreover, functionalization with the chromophores would provide a spectroscopic 

readout to various transformations. Hence we have designed NDI and PBI based amphiphiles 

substituted with Zn-DPA motifs (Scheme 2.2), in order to promote guest induced self-assembly 

and chiral induction through specific binding interactions. NDPA and PDPA were synthesized 

following the literature procedure
11 

whereas NDPA-Amph was synthesized by a statistical 

reaction of 1,4,5,8-naphthalenetetracarboxylic dianhydride with dodecylamine and N,N-Bis(2-

pyridylmethyl)ethane-1,2-diamine followed by zinc metallation (Scheme 2.3). All compounds 

were characterized by 
1
H / 

13
C NMR, HRMS (See Section 2.9 for details). 
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Scheme 2.2. Molecular structures of NDPA, NDPA-Amph and PDPA. 

2.3 Guest Induced Helical Self-Assembly of NDPA  

 

Figure 2.1. Changes in a) absorption, b) emission and c) CD spectra of NDPA upon titration 

with ADP. d) Schematic representation of ADP binding induced left-handed helical assembly of 

NDPA (c = 5 x 10
-5

 M, 10 mM aq. HEPES buffer). 
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  The UV/vis absorption studies of NDPA (5 x 10
-5

 M, 10 mM aq. HEPES buffer) 

showed characteristic features of molecularly dissolved NDI chromophores such as sharp 

absorption bands (max = 381 and 361 nm). However, titration of NDPA with increasing molar 

ratios of ADP (0-2 eq.), resulted in broadening of absorption spectra, along with reversal of 

relative intensity of vibronic bands at 361 nm and 381 nm and decrease in fluorescence 

intensity characteristic of NDI chromophoric self-assembly (Figure 2.1 a, b).
12

 Corresponding 

Circular Dichroism (CD) spectra showed the gradual evolution of strong Cotton effects, 

through an isodichroic point at the zero-crossing (370 nm), indicating that ADP binding induces 

a preferred helical handedness to the resulting assemblies of achiral NDIs (Figure 2.1c). 

Binding of ADP resulted in negative bisignated CD spectrum, with negative and positive 

maxima at 395 and 360 nm respectively, characteristic of excitonically coupled chromophores, 

arranged in left-handed organization.
13

 This system presents one among the best excitonically 

coupled NDI chromophoric assembly known in literature,
8
 as they often showed weak 

bisignated CD signals either due to their low self-association or lack of aromatic interactions in 

the self-assembly. 

 

Figure 2.2. a) Job plot and b) plot of CD intensity (394 nm) of NDPA upon titration with ADP 

(c = 5 x 10
-5

 M, 10 mM aq. HEPES). Temperature dependent c) CD and d) absorption spectra 

of NDPA upon addition of 1 eq. ADP. e) TEM micrographs of NDPA-ADP (1 eq.) solution on 

copper grid (samples were post stained with 1 wt % aq. uranylacetate solution  before 

measurements) and f) shows corresponding dynamic light scattering data (c = 5 x 10
-5

 M, 10 

mM aq. HEPES buffer). Inset in f) shows the schematic of resulting helix (M)-NDPA-ADP. 

  The titration curve obtained by monitoring the CD intensity at 395 nm showed 

saturation at 1 eq. of ADP, suggesting a 1:1 stoichiometry in the co-assembly (Figure 2.2b).
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This is further evident from the Job plot, where the CD intensity probed at 395 nm showed 

maxima at 0.5 mole fraction of NDI (Figure 2.2a).  This suggests that the divalent ADP 

molecules bind to two Zn-DPA moieties of adjacent NDIs in the assembly, thereby clipping the 

chromophores together (see Chapter 4.1 for details of phosphate induced clipping), in line with 

the literature (inset, Figure 2.2b).
11

  

  To probe into the strength of these ADP binding induced assemblies, temperature 

dependent CD and absorption spectra were recorded. CD signal at 95 °C shows decrease in 

intensity but do not disappear completely, whereas absorption spectra show a slight blue shift 

(1 nm) in band maxima (Figure 2.2 c, d). These data clearly confirm high thermal stability of 

these helical assemblies, and the decrease in CD signal could be due to weakening of ADP 

binding (and not their detachment). Furthermore, slow cooling of the various NDPA-ADP co-

assemblies from 95 °C to 15 °C, did not show any significant change in the intensity of CD 

signal, indicating that room temperature binding of the chiral guest to NDI indeed leads to the 

most stable assemblies.  TEM micrographs show the formation of 1-D short nanofibers of 4 nm 

width, which match closely with the dimension of NDPA with ADP bound on both side (Figure 

2.2e). Formation of self-assembled nanostructures in solution was also confirmed with DLS 

measurements, which show an average hydrodynamic radius of 500 nm (Figure 2.2f).   

 

Figure 2.3. Evolution of CD signals upon binding of a) AMP and b) ATP to NDPA. d) and f) 

show corresponding plot of CD intensity maxima with varying eq. of AMP and ATP 

respectively, (c = 5 x 10
-5

 M, 10 mM aq. HEPES buffer). c) Comparative CD spectra of NDPA 

upon binding to various adenosine phosphates and f) the schematic illustration of 

corresponding helical assemblies obtained. 
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  NDPA showed similar assembly behaviour on titration with monovalent AMP with 

negative bisignated CD signal (Figure 2.3 a, d). However, binding of ATP induces opposite 

handedness to NDI assemblies as evident from the positive bisignated CD signal, with positive 

and negative maxima at 390 and 359 nm, respectively (Figure 2.3 b, c, e). The mirror image 

cotton effects of NDPA assemblies obtained with the AMP/ADP when compared with  ATP 

clearly suggests the induction of chirality with opposite handedness (explanation to the opposite 

handedness is provided using MD simulations in Section 2.5).  CD signal upon titration with 

ATP also shows an initial lag phase, indicating cooperative induction of helicity (Figure 2.3e). 

2.4 Helicity Induction in NDPA-Amph Assembly 

 

Figure 2.4. Absorption changes of NDPA-Amph upon a) increasing the percentage of aq. 

HEPES buffer in THF and b) binding of molar eq. of ADP at varying solvent compositions (c = 

7 x 10
-5

 M). 

  In order to understand the role of guest-induced chiral assembly, we further studied the 

effect of phosphate binding on NDPA-Amph derivative, in its monomeric as well as in the 

assembled states. The amphiphilic nature of the NDPA-Amph ensures that they can be self-

assembled in THF/water mixture, even in the absence of guest binding. Solvent dependent 

absorption studies (c = 7 x 10
-5

 M) showed that upto 70% aq. HEPES buffer in THF, it exist in 

the monomeric state (Figure 2.4a). However in 90% aq. HEPES buffer, the molecule self-

assembles, as evident from the broadening of absorption bands with reversal of relative 

intensity ratio of the absorption maxima at 359 nm and 379 nm.  

  NDPA-Amph in monomeric and aggregated state showed very different behaviour on 

binding to phosphates. Monomeric NDPA-amph (70% aq. HEPES in THF), self-assembles in 

a similar way as that of NDPA with various phosphates (Figure 2.5a).
14

 For example, co-

assembly with ADP resulted in negative bisignated CD signal with positive and negative 

maxima at 357 and 391 nm, respectively (Figure 2.5b). Similarly, helicity induction was 

observed on binding to AMP and ATP giving negative and positive bisignated CD signals, 
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respectively (vide infra). Remarkably, when ADP was added to the pre-assembled NDI 

amphiphiles (90% aq. HEPES/THF), chiral induction was not observed, neither at room 

temperature nor upon cooling the mixture from higher temperatures (Figure 2.6a). As the 

amphiphilic chromophoric assemblies are known to be less dynamic,
15

 it is evident that at 

higher composition of water, the pre-assembled NDPA-Amph molecules are not dynamic 

enough to reorganize into helical stacks upon guest binding (Figure 2.6b). Hence it can be 

concluded that, in the present system, guest induced molecular organization is crucial for the 

induction of supramolecular chirality. This was further supported by the ADP binding induced 

changes in absorption spectra at these solvent compositions. At 70% aq. HEPES buffer, ADP 

binding induces further aggregation, whereas at 90% aq. HEPES buffer no change in the 

spectra was observed (Figure 2.4b).  

 

Figure 2.5. Variation in a) absorption, b) CD spectra of NDPA-Amph upon ADP titration, 

70% aq. HEPES buffer in THF, c = 7 x 10
-5

 M. 

 

Figure 2.6. a) CD signal of 0.5 eq. ADP bound NDPA-Amph in various solvent compositions 

and the conclusions drawn on chirality induction process are depicted schematically in b), (c = 

7 x 10
-5

 M).   

  Transmission Electron Microscopy (TEM) imaging of NDPA-Amph (70% water in 

THF, 7 x 10
-5

 M) assemblies with 0.5 equiv. of ADP, stained with uranyl acetate showed the 

formation of 1-D nanofibers with a uniform diameter of 8 nm (Figure 2.7). Based on the energy 
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minimized molecular dimensions of ADP bound NDPA-Amph (~ 4 nm), we confirm that the 

fibers are formed by the π-stacking and solvophobic interactions of the NDI bilayers with non-

interdigitated alkyl chains as the hydrophobic interior (inset, Figure 2.7b). 

 

Figure 2.7. a) and b) TEM images of a 7 x 10
-5

 M solution of NDPA-Amph/0.5 eq. ADP (70% 

water in THF). Inset of b shows schematic of the molecular organization leading to helical 

stack. 

2.4.1 Competitive Guest Binding 

 

Figure 2.8. a) Evolution of CD signal with increasing eq. of AMP addition to NDPA-Amph 

and b) mirror image CD spectra of NDI-Amph upon binding with various adenosine 

phosphates, indicating left-handed assembly with AMP/ADP and right-handed with ATP  (c = 7 

x 10
-5

 M, 70% aq. HEPES buffer in THF). 

  Another advantage of these multivalent guests is their strength of interactions, which 

can be easily modulated based on the number of available binding sites. Thus, ATP with three 

phosphate groups should have higher association with Zn-DPA when compared to AMP/ADP, 

which is a mono/divalent phosphate. Thus, we envisaged that based on the strength of binding, 

ATP should be able to competitively replace the bound AMP or ADP from the NDI stack. 

Moreover, we observe the induction of opposite chirality in NDI assemblies by different 
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shows positive bisignated spectra (Figure 2.8). This motivated us to attempt the dynamic helix 
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reversal through competitive binding of multivalent guests. When a solution of NDPA-Amph 

(c = 7 x 10
-5

 M, 70% aq. HEPES in THF) with 0.5 eq. ADP was titrated with increasing 

amounts of ATP, a gradual reversal of helicity was observed without any indications of chiral 

amplification. Interestingly, addition of 0.5 eq. ATP to NDPA-Amph/ADP assemblies resulted 

in a positive bisignated CD signal, which exactly matches with that of NDPA-Amph/ATP 

stacks alone (Figure 2.9). This clearly suggests the competitive replacement of ADP by ATP 

from the assemblies, as expected and an instantaneous reversal of its helical handedness (the 

kinetics of these transformations were in < 5 sec and thus could not be probed).
16

 We believe 

that the dynamic helix reversal proceeds through an intra-stack mechanism, as the other 

reversal pathway, through equilibrium between monomers and the assemblies is unlikely due to 

high stability of the assemblies. 

 

Figure 2.9. a) CD spectra and b) the schematic of the dynamic helix reversal of NDPA-

Amph/ADP assembly upon competitive guest binding experiments with ATP (c = 7 x 10
-5

 M, 

70% aq. HEPES buffer in THF). 

2.5 Molecular Dynamics Simulation Study* 

* This work was done in collaboration with Prof. David Beljonne and Dr. Mathieu Surin from University of Mons 

and the summary of the results are presented in this section. 

To understand the origin of opposite handedness in NDPA assembly on AMP and ADP 

binding on one hand, and ATP binding on the other hand, detailed molecular 

mechanics/molecular dynamics (MM/MD) simulations were performed on stacks of NDPA 

molecules linked to either AMP, ADP or ATP, in right-handed and left-handed structures. 

With AMP, the comparison of potential energy profiles on 20 ns MD runs show that the 

left-handed M-helices, i.e. (M)-NDPA-AMP, are 1.5 to 2.4 kcal/mol.molecule more stable than 

their right-handed P-helices, (P)-NDPA-AMP. The main contribution of such energy 

differences between two helices originates from non-bonding (mostly van der Waals) 

interactions. The global minima and local ordering was better in the left-handed helix compared 

to its right-handed analogue, as suggested by a smaller average distance between successive 
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NDPA (4.0 Å versus 4.4 Å), more - contacts per molecule        versus    , smaller 

deviations in average distances and rotational strengths between successive NDPA, and stacking 

defects in P-helix compared to M-helix (Figure 2.10c, shaded region). This is attributed to the 

orientation of the ribose moieties, which is related to their chirality. In the M-helix, the ribose 

moieties are close to the NDPA cores whereas in the P-helix, they are oriented at the periphery 

of the stack. With this proximity in the M-Helix, the hydroxyl groups of the ribose moieties 

form hydrogen bonding with the oxygen atoms of NDPA. These interactions can take place 

between molecules n and n+2 or n+3, thus contributing to long-range ordering of the assembly. 

Up to two such hydrogen-bonds per molecule occur in the M-helix; they are three times less 

numerous in the P-helix. The simulated CD spectrum of (M)-NDPA-AMP (Figure 2.10b) shows 

a negative bisignated signal with zero crossing around 380 nm, and positive and negative 

maxima located at 367 nm and 395 nm, respectively, in good agreement with experimental 

spectra (Figure 2.10a).  

 

Figure 2.10. a) Experimental CD spectra of NDPA upon binding to various adenosine 

phosphates. Opposite bisignated Cotton effects of NDPA with various adenosine phosphates 

indicates their reverse helical handedness (c = 5 x 10
-5

 M, aq. HEPES). b) Average trace of 

simulated CD spectra on several simulated conformations extracted from MD runs. c) Inner 

structure of left-handed (M)-NDPA-AMP and right-handed (P)-NDPA-AMP assemblies, 

obtained at the end of MD. The shaded region highlights the stacking defects of P-helix. The Zn 

atoms are depicted in balls, with different colors depending on which side of the NDPA they are 

located, to show the chirality of the assembly. NDPA are depicted in thick sticks and H-bonds 

are shown in dashed light blue lines. The arrows guide the eye to show the chirality, the arrow 

pointing towards the back of the view. 
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With ADP, similar observations to AMP were made, both in terms of energy and 

morphology. The M helices are slightly more stable than P helices (by 0.5 kcal/mol.molecule). 

The rotation angle between successive NDPA-ADP is around 58° ± 10°, similar to what is 

found for NDPA-AMP (57° ± 11°), i e     around     NDPA/turn for both systems. The stacking 

distance of NDPA is slightly reduced from 4.0 Å to 3.8 Å, from AMP to ADP, likely due to the 

extra constraint imposed by ADP on adjacent molecules, which form dimers. The simulated CD 

spectrum for M-NDPA-ADP (Figure 2.10b) shows a negative bisignated signal with zero 

crossing around 380 nm, similar to that with AMP.  

 

Figure 2.11. Inner structure of right-handed (P)-NDPA-ATP assemblies, obtained at the end of 

MD. The Zn atoms are depicted in balls. a) a portion of the assembly ; b) and c) lateral views of 

two trimers (extracted in the middle of the assembly), with the Zn atoms depicted in different 

colors depending on which side of the NDPA they are located. NDPA are depicted in thick 

sticks, and A stands for adenine. d) Top view, with an arrow to guide the eye to show the 

chirality; e) schematic representation of a top view of two stacked trimers, showing ATP 

forming a “1-3-2” motif in red, and the angles between successive naphthalenediimide along 

the stack. 

ATP offers more binding possibilities than AMP or ADP, thus the number of probable 

structures of assemblies is more. However, two families of assemblies emerged from the 

simulations, depending on the binding motif: “ -2- ” or “ -3-2”  This numbering refers to as 

both the stacking order and binding motif. The molecules are numbered along the stacking 

direction: “X-Y-Z” motif means that the NDPA molecules form trimers, where molecule X is 

linked to molecule Y, and molecule Y is linked to molecule Z (Figure 2.11 for the 1-3-2 motif).  
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The most stable structures are obtained for assemblies with “ -3-2” binding motif  The 

striking characteristic of these assemblies is that the organization of the adenosine phosphate 

complexes is not helical. While the naphthalenediimide cores do form an helical assembly (pitch 

of 6 naphthalenediimides per turn), the Zn-triphosphate complexes form two columns on both 

sides of the central helix (Figure 2.11 a, b, d). As the pitch of the naphthalenediimide helix is 

similar for all the adenosine phosphate (6 molecules with ATP, versus ~6.3 with AMP/ADP), as 

well as the average rotation angle between neighbouring molecules (60° versus 57-58°, 

respectively), the peculiar arrangement of the complexes is to be explained by symmetry. With 

AMP, the angle between the adenosine phosphate complexes is the same as the angle between 

the naphthalenediimides, and thus the complexes also form an helix. With NDPA-ATP, because 

each  complex with ATP involves three naphthalenediimides, the angle between the complexes 

(trimers) is three times the angle between the naphthalenediimides, i.e. about 180°. As a result, 

the pitch of the assembly of adenosine phosphate complexes is of only two complexes, 

effectively corresponding to six NDPA molecules, the trimers being  translational images from 

each other along the stacking direction. We then investigated in more details a representative 

“ -3-2” right-handed assembly. Although the average angle between naphthalenediimides is of 

60°, a more detailed analysis reveals that there are three population distributions: the angle 

between molecules 1 and 2, 1-2 is 81° ± 4°. Similarly, 2-3 is 44° ± 4° and 3- ’ = 54° ± 4°,  ’ 

refering to a molecule belonging to a neighbouring trimer (Figure 2.11). The first two angles 

deviate from the angle found in the NDPA-AMP arrangement (~57°) mainly due to the 

constraints imposed by ATP. The third one, however, measured between molecules belonging 

to adjacent trimers, i.e. molecules more free to rotate with respect to each other, is not much 

affected. This result indicates weak steric hindrance between trimers, which are able to stack 

while conserving the natural angle between single NDPA molecules. The sum of the three 

angles is 179°, corresponding well to the symmetry condition necessary for having adenosine 

phosphate complexes forming columns instead of helices.  

Experimentally, for NDPA-ATP, P-helices are more stable than the M-helices, which is 

opposite to the situation with AMP and ADP. As the organization within the 

naphthalenediimide stacks are rather similar in the three systems, the change of helicity has to 

be found in the adenosine phosphate complexes. Their organization is indeed very different in 

AMP or ADP systems on the one side and ATP systems on the other side. With AMP and ADP, 

the adenosine moieties are able to be close enough to the naphthalenediimide cores to form H-

bonds, principally via the hydroxyl groups. These interactions, however, no longer exist in the 

ATP systems as the adenosine moieties are pointing away (Figure 2.10c and Figure 2.11). The 

simulated CD spectra using the right-handed “ -3-2” NDPA-ATP assembly shows a bisignated 

signal with zero crossing at 383 nm, and positive and negative maxima located at 398 nm and 
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370 nm, respectively (Figure 2.10b). The comparison of simulated CD spectra based on average 

traces of MD snapshots on the (M)-NDPA-AMP and (P)-NDPA-ATP show almost mirror-

image bisignated signals, in fair agreement with the experimental spectra (Figure 2.10a). 

2.6 Guest Induced Chirality in PDPA Assembly 

 

Figure 2.12. Solvent dependent a) absorption and b) emission spectra (λex=470 nm) of PDPA 

with varying percentages of MeCN in aq. HEPES buffer (c = 2 x 10
-5

 M). 

  Having established the role of Zn-DPA towards phosphate recognition driven dynamic 

helical assembly with tunable handedness in NDI derivatives (NDPA and NDPA-Amph), we 

envisaged a broader scope of this design in controlling the supramolecular chiral organization 

of a variety of chromophores. Thus, perylenebisimide (PBI) functionalized with Zn-DPA 

complex (PDPA) was synthesised as a higher rylenediimide analogue of NDI. This compound 

was completely soluble in MeCN due to the presence of hydrophilic Zn
2+

 group and self-

assembled in aq. HEPES buffer, due to hydrophobic and aromatic-aromatic interactions. 

UV/Vis absorption spectrum of PDPA in MeCN (c = 2 x 10
-5

 M) shows sharp vibronic 

features, characteristic of monomeric PBI chromophores.
2b,c

 On increasing percentage of aq. 

HEPES buffer in MeCN, broadening of absorption band along with change of relative 

absorbance peak ratio were observed, confirming interchromophoric interactions leading to 

aggregation (Figure 2.12). Fluorescence spectra show quenching of monomeric emission upon 

increasing composition of aq. HEPES buffer, a clear proof of H-type (H1) cofacial assembly in 

PBI (detailed self-assembly investigation of PDPA will be discussed in Chapter 5).   

  Self-assembled PDPA stacks (90% aq. HEPES buffer in MeCN, c = 2 x 10
-5

 M) were 

constructed to study adenosine phosphate induced assembly and chirality induction. Binding of 

adenosine monophosphates (AMP) to PDPA stacks i.e. PDPA-AMP (90% aq. HEPES in 

MeCN, 2 x 10
-5

 M) led to complete quenching of monomeric emission band at 549 nm and 590 

nm along with redshift of the absorption band indicating further ordering of stacks in H1 state 

(Figure 2.13 a, b). Interestingly, the circular dichroism (CD) signal show a negative bisignated 
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cotton effect with negative and positive maxima at 557 nm, 496 nm respectively (Figure 2.13c), 

as expected of an excitonically coupled M-helix type chiral organization of PBI derivatives i.e. 

(M)-PDPA-AMP. Thus, binding of homochiral AMP to PDPA stacks results in guest induced 

chirality into their assembly. Moreover, such a strong induced CD signal also reflects the 

efficient phosphate recognition by PDPA stacks, in agreement with our design. Although, 

helicity induction upon phosphate binding to the aggregated state of PDPA is in contrast to the 

previous observations in NDPA-Amph (Section 2.4, Figure 2.6a), it could be due to further 

ordering of PDPA assembly upon interaction with phosphates as seen from the spectroscopic 

signatures in Figure 2.13.   

 

Figure 2.13. Variation in the a) absorption spectra, b) emission spectra (λex = 470 nm) and c) 

CD signal of PDPA upon titration with adenosine monophosphate (AMP) (90% aq. HEPES in 

MeCN, c = 2 x 10
-5

 M). 

 Similar to the observations in NDPA, addition of adenosine triphosphate (ATP) to 

PDPA stacks i.e. PDPA-ATP (90% aq. HEPES in MeCN, 2 x 10
-5

 M) induced a positive 

bisignated CD signal i.e. positive at 518 nm followed by negative at 480 nm (Figure 2.14a). 

This is a clear signature of P-helix type organization i.e. (P)-PDPA-ATP, which is reverse in 

handedness compared to left-handed helical assembly obtained on AMP binding i.e. (M)-

PDPA-AMP, as described in Figure 2.13. Thus, we clearly establish the general approach of 

Zn-DPA functionalized chromophores for induction of opposite helicity based on the type of 

chiral phosphate.  

 Interestingly, the induction of P-helix by ATP binding to PDPA stacks could be 

uniquely characterized by its spectroscopic signatures. For e.g., absorption spectra show a red 

shift of the band maxima from 499 nm to 514 nm and 535 nm to 564 nm upon interaction with 

ATP. Fluorescence spectra show gradual decrease of monomeric emission along with evolution 

of a new red shifted band at 665 nm in PDPA-ATP. Excitation spectra collected at the 665 nm 

emission showed a blue shifted band compared to monomeric absorption, confirming the 

formation of a new H2-type fluorescent aggregate (Figure 2.14d). Thus, we see that the PDPA-
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ATP leads to supramolecular reorganization where the resultant aggregates are very different 

from that of PDPA-AMP as seen from the opposite CD signal, new emission band and the red 

shifted absorption.
17

 

 

Figure 2.14. Variation in the a) CD signal, b) absorption spectra and c) emission spectra (λex = 

470 nm) of PDPA upon titration with ATP, whereas d) shows the difference in the excitation 

spectra collected with and without ATP (90% aq. HEPES in MeCN, c = 2 x 10
-5

 M). 

2.7 Dynamic Helix Reversal  

 Having shown the induction of opposite helicity in PDPA stacks bound with either 

AMP or ATP, we envisaged that based on the strength of binding, ATP should be able to 

competitively replace the bound AMP from the stack leading to inversion of helix from (M)-

PDPA-AMP to (P)-PDPA-ATP. Towards this goal, ATP was added in a stepwise manner to a 

solution of (M)-PDPA-AMP, while monitoring the CD spectra. We notice that the CD spectra 

inverts gradually from a negative bisignated signal to a positive bisignated signal, passing 

through an isodichroic point at zero crossing of 418 nm (Figure 2.15b). The final signal 

obtained after AMP replacement by ATP was same in intensity as compared to the PDPA-

ATP, confirming complete substitution.  
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Figure 2.15. a) CD spectra of (M)-PDPA-AMP and (P)-PDPA-ATP showing their mirror 

image relation. Variation in b) CD signal, c) absorption spectra and d) emission spectra upon 

addition of ATP to (M)-PDPA-AMP solution (90% aq. HEPES in MeCN, c = 2 x 10
-5

 M). e) 

Schematic representation of dynamic helix reversal through competitive replacement of AMP 

by ATP. 

 Further confirmation of PDPA-ATP formation also comes from the absorption and 

emission changes. Addition of ATP to PDPA-AMP led to a bathochromic shift in absorption 

maxima, whereas emission spectra show evolution of a new emission band at higher 

wavelength (665 nm) along with further quenching of monomeric emission (Figure 2.15 c, d). 

The final spectra after AMP replacement closely resembled the PDPA-ATP signal, clearly 

proving quantitative replacement. Moreover, these changes were almost instantaneous, where 

the addition of an aliquot of ATP to (M)-PDPA-AMP led to sudden jump in the CD signal 

(vide infra). Such an observation also confirms the highly dynamic nature of these helical 

assemblies. 

 Results thus far have shown a very simple approach for the dynamic reversal of 

supramolecular helicity. Such a rational approach to switching of helicity in a step wise manner 

can also be employed in gaining a complete control over their helical states i.e. racemic form or 

either of the left of right-handed enantiomeric helix. In this regard, we utilized an inorganic 

phosphate, PPi [(P2O7)
4-

] which is a divalent phosphate, but is known to show very strong 

interactions with Zn-DPA due to high charge density. Being achiral in nature, we speculated 
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that it can be used for conversion of homochiral stacks to racemic form.  

 

Figure 2.16. Variation in CD signal upon addition of achiral PPi to a) (M)-PDPA-AMP and b) 

(P)-PDPA-ATP (90% aq. HEPES in MeCN, c = 2 x 10
-5

 M). Schematic in c) shows the 

transition from helical to racemic assembly by competitive replacement of AMP and ATP by 

PPi.  

 When increasing amount of PPi was added to (M)-PDPA-AMP, we notice that the 

negative bisignated CD signal gradually decreases, with complete loss upon addition of 0.6 eq. 

of PPi (Figure 2.16a). Such an observation can be attributed to competitive removal of AMP by 

achiral PPi, thereby converting PDPA-AMP to PDPA-PPi stacks. As PPi do not have a chiral 

centre, their binding to PDPA stacks can only create racemic helices,
18

 leading to conversion 

from (M)-PDPA-AMP to (rac)-PDPA-PPi. Similar experiments were also performed by 

addition of PPi to PDPA-ATP. As expected, we notice a continuous decrease in positive 

bisignated CD signal (Figure 2.16b). This again confirms the transformation from (P)-PDPA-

ATP to (rac)-PDPA-PPi. We observe that the amount of PPi required to replace ATP is much 

higher compared to the case with AMP removal. This can be easily justified due to stronger 

association of ATP to PDPA stacks in comparison to the AMP. With these experiments, we 

have shown that apart from switching of helicity from a left-handed to right-handed assembly, 

we can dynamically convert them into their racemic form, providing next level of control over 

their helical states.  
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Figure 2.17. Variation in CD signal upon sequential addition of a) AMP to (rac)-PDPA-Pi 

followed by b) ATP and subsequently c) PPi (90% aq. HEPES in MeCN, c = 2 x 10
-5

 M). d) 

shows the plot of CD maxima near 500 nm upon tandem addition of various phosphates, 

whereas the schematic represents the respective processes.   

 With this unique system, we have shown control over various single step transitions 

like inversion of helicity, racemic to homochiral and vice-versa. The next challenge in this 

regard was to perform them in a sequential manner in one pot. This can be achieved by tandem 

addition of different phosphates, in order to complete one helix cycle from racemic to left 

followed by right-handed helix before converting them back to racemic again. Thus, we started 

with a solution of PDPA prebound with inorganic Pi [(PO4)
3-

], an achiral guest which provides 

a racemic assembly (rac)-PDPA-Pi. To this solution AMP was added continuously, which can 

replace Pi, thereby converting them into a homochiral left-handed assembly (Figure 2.17a). 

This could be easily monitored by the evolution of negative bisignated CD signal, confirming 

the formation of (M)-PDPA-AMP. Subsequently, this solution was subjected to increasing 

amounts of ATP. As expected, we see a reversal of CD signal from negative to positive 

bisignated CD signal passing through an isodichroic point with zero crossing at 423 nm (Figure 

2.17b). This clearly indicates transition between two states, i.e. from left-handed (M)-PDPA-

AMP to right-handed (P)-PDPA-ATP. Next step in this sequential process was the addition of 
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achiral PPi to the above obtained (P)-PDPA-ATP solution. CD spectra shows continuous 

decrease in signal intensity, which finally resulted in CD silent state at higher eq. of PPi (Figure 

2.17c). This evidently confirm the transformation from ATP bound right-handed helix to (rac)-

PDPA-PPi. A better picture of the whole process could be obtained by the plot of maximum 

CD intensity (~ 495 nm) against sequential addition of various phosphates. Thus, CD silent 

feature of (rac)-PDPA-Pi, show increase in signal upon AMP addition, followed by its reversal 

in presence of ATP, before further decrease to zero CD signal in presence of PPi (Figure 

2.17d). Thus, we have shown a sequential change of helical states from racemic to left-handed, 

followed by right-handed before converting them back to racemic PDPA stacks (Figure 2.17d), 

covering one complete helix cycle. 

 

Figure 2.18. Plot of CD signal with time showing sharp jumps in CD intensity monitored at 

495 nm, upon sequential addition of Pi (black arrow) followed by AMP (blue arrow), ATP 

(blue arrow) and finally PPi (green arrow) confirming very fast response to change of binding 

phosphates (90% aq. HEPES in MeCN, c = 2 x 10
-5

 M). 

 To prove the highly dynamic nature of these assemblies leading to fast switchability of 

the helical states, time dependent variation in CD intensity was monitored upon tandem 

addition of various phosphates. Addition of AMP to (rac)-PDPA-Pi show sharp jump in the 

CD signal with each aliquot of AMP (Figure 2.18). This steep rise in signal with a step wise 

change upon AMP binding indicates instantaneous transition from racemic state to (M)-PDPA-

AMP. Similar observation was also made on ATP addition to the above solution leading to 

dynamic helix reversal. However, upon addition of PPi to ATP, we notice that these changes 

are not instantaneous but has a finite kinetics. This could be due to strong association of ATP to 

0 1000 2000 3000
-30

-15

0

15

30

 
Time (sec)

 C
D

 (
m

d
eg

 @
 4

95
n

m
)

(rac)-PDPA-Pi (M)-PDPA-AMP (P)-PDPA-ATP (rac)-PDPA-PPi 

Pi AMP ATP PPi 



  Helical Assembly with Tunable Handedness 

~ 55 ~ 
 

PDPA stacks, such that PPi takes a finite amount of time to replace them, leading to (rac)-

PDPA-PPi.
19

 

 

Figure 2.19. Variation in absorption spectra upon sequential addition of a) AMP to (rac)-

PDPA-Pi followed by b) ATP and subsequently c) PPi (90% aq. HEPES in MeCN, c = 2 x 10
-5

 

M). d) is a pictorial representation of transformation over one complete helix cycle. 

 Further confirmation of these phosphate replacements comes from the plot of change in 

absorption spectra at various stage of helix transitions. In the first step of Pi replacement by 

AMP, we notice a red shift in the absorption spectra due to stronger aggregation behaviour of 

PDPA-AMP (Figure 2.19a). Upon further addition of ATP, a significant red shift in the 

absorption maxima was observed, which has been shown to be characteristic of PDPA-ATP 

(Figure 2.14b, Figure 2.19b). Interestingly, addition of PPi to the above solution led to a blue 

shift in the absorption spectra as expected after removal of ATP from PDPA stacks, leading to 

the formation of PDPA-PPi. Thus, both optical and chiroptical readout unambiguously confirm 

to the step wise dynamic replacement of phosphates leading to one complete helix cycle from 

racemic to left-handed helix followed by right-handed helix before converting them back to 

racemic as shown in Figure 2.19d. 
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2.8 Conclusions 

 In summary, we have showed a novel supramolecular design, based on 

dipicolylethylenediamine functionality, for the adenosine phosphate recognition driven one-

dimensional helical assembly of achiral chromophores. These stacks show preferential helix 

formation based on the nature of bound adenosine phosphate. Binding of AMP/ADP resulted in 

left-handed helical assembly, whereas ATP induced right-handed organization. Detailed 

molecular dynamic (MD) simulations have clearly indicated the crucial role of van der Waals’ 

forces and hydrogen bonding interactions in stabilizing the preferred handedness. The broader 

scope of this approach was established by demonstrating it in both NDI and PBI derivatives. 

We have also shown a novel strategy for the dynamic helical reversal of supramolecular 

assemblies, based on competitive replacement of the guest molecules due to multivalent 

interactions. This strategy was effectively utilized in establishing a complete control over the 

helical states of assembly by completing one helix cycle. This rational design for unprecedented 

control over the helix handedness along with its dynamic and versatile stimuli response holds 

great promise as material for enantioselective and other chirotechological applications.      

2.9 Experimental Section 

General Methods:  

Transmission Electron Microscopy (TEM): TEM measurements were performed on a JEOL, 

JEM 3010 operated at 300 kV. Samples were prepared by placing a drop of the solution on 

carbon coated copper grids followed by drying at room temperature. The images were recorded 

with an operating voltage 300 kV. In order to get a better contrast sample was stained with 

uranyl acetate (1 wt % in water) before the measurements. For TEM, water was used instead of 

aq. HEPES solution to avoid masking of nanostructures due to HEPES deposition upon drying. 

Optical Measurements: Electronic absorption spectra were recorded on a Perkin Elmer 

Lambda 900 UV-Vis-NIR Spectrometer and emission spectra were recorded on Perkin Elmer 

LS 55 Luminescence Spectrometer. UV-Vis and emission spectra were recorded in 10 mm path 

length cuvettes. Circular Dichroism measurements were performed on a Jasco J-815 

spectrometer where the sensitivity, time constant and scan rate were chosen appropriately. 

Corresponding temperature dependent measurements were performed with a CDF – 426S/15 

Peltier-type temperature controller with a temperature range of 263-383 K and adjustable 

temperature slope. 
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NMR Measurements: NMR spectra were obtained with a Bruker AVANCE 400 (400  MHz) 

Fourier transform NMR spectrometer with chemical shifts reported in parts per million (ppm) 

with respect to residual solvent peak. 

Dynamic light scattering (DLS) Experiments: The measurements were carried out using a 

NanoZS (Malvern UK) employing a 532 nm laser at a back scattering angle of 173
o
. The 

samples were measured in a 10 mm glass cuvette. 

Sample Preparation: All samples for spectroscopic measurements in NDI derivatives were 

prepared by injecting the stock solution of NDPA-Amph or NDPA into required volume of 

solvent (aq. HEPES buffer and THF, wherever applicable). For PDPA, all samples for 

spectroscopic measurements were prepared by injecting the stock solution of PDPA (solvent 

MeCN) into required volume of solvent (aq. HEPES buffer in MeCN, wherever applicable). 

Required amount of phosphates were injected into these solutions and were mixed by manual 

shaking before measurements. 

Phosphates stock solutions were prepared in 10
-2

 M concentration by dissolving the required 

amount of compound in HEPES buffer solution. 

Materials: N,N-Bis(2-pyridylmethyl)ethane-1,2-diamine was synthesized based on reported 

procedure.
11

 All other chemicals were purchased from the commercial sources and were used as 

such. Spectroscopic grade solvents were used for all optical measurements. 

Legends in graphs represent molar eq. with respect to NDI or PBI. 

Molecular Modelling Simulations (methodology):  

Stacks of NDPA linked to either AMP, ADP, or ATP were modeled with the Materials 

Studio 6.0 modeling package (Accelrys), by molecular mechanics (MM) and molecular 

dynamics (MD) methods using an adapted version of Dreiding as a force field.
20 

To 

maintain full complexation in NDPA during MD, a bond between the sp
3
 nitrogen atom 

and the zinc atom had to be built. The Dreiding force field was accordingly adapted, 

increasing the (N_3-Zn) equilibrium distance from 2.022 Å to 2.585 Å, and replacing 

the *-Zn-* angle bending term by new angle bending terms, Cl-Zn-Cl, Cl-Zn-N_R, 

O_3-Zn-O_3, O_3-Zn-N_R, and N_R-Zn-N_R, with the same constants as those for *-

Zn-*. These adaptations and the validation of the new force field were based on a 

NDPA structure optimized from DFT calculations at the B3LYP/6-31G* level, using 

the LANL2DZ effective core potential and associated basis set to describe the zinc ion. 
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For ATP-based systems, due to a number of binding possibilities with different 

orders of binding, i e  “ -2- ” or “ -3-2”, isolated trimers were built and optimized, 

before stacking them into supramolecular assemblies of 33 molecules (11 trimers). For 

AMP- and ADP-based systems, supramolecular assemblies of 32 molecules were 

directly built. The initial distance between NDPA planes in the stacks is about 3.8 Å 

and the angle between the molecular axis of neighbouring molecules is set to a value 

typically between 30° and 60° to avoid steric crowding of the side groups. These 

assemblies were optimized by MM, and submitted to a 100 ps relaxation Molecular 

Dynamics with the NDPA cores frozen, to relax most of the steric constraints in the 

periphery of the assembly, while avoiding disorganizing the stack. Then, a production 

MD is performed without any constraint during 20 ns. 

The MM energy minimizations were performed with a conjugate gradient 

algorithm and a convergence criterion of 0.001 kcal/mol.Å. The long-range interaction 

cutoff distance was set to 14 Å with a spline width of 3 Å. The charges on the atoms 

were assigned from the PCFF force field,
21 

and tested as previously reported on other 

types of structures.
22

 The MD simulations were performed in the canonical (N,V,T) 

ensemble. The Nosé thermal bath coupling
23

 was used to maintain the temperature at 

300 K, with a coupling constant of 0.05. The Verlet velocity algorithm was used to 

integrate the equations of motion with a 1 fs time step.  

The calculation of the excitonic CD spectra involves two steps. First, the lowest 

30 excited states of the 32 NDPA molecules extracted from the MD trajectories above 

are computed at the Intermediate Neglect of Differential Overlap/Singles-Configuration 

Interaction (INDO/SCI) level (using an active space of 30 occupied and 30 empty 

molecular orbitals). Then, an excitonic Hamiltonian encompassing a total of 32x30 

basis functions (30 localized excitations per molecule) is built on the basis of 

INDO/SCI
24

 excitation energies and exciton couplings. The latter are calculated as 

Coulomb interactions between transition densities, thus going beyond the usual point 

dipole model.
25

 Diagonalization of this Hamiltonian yields a set of 960 exciton states  

with energies ħ and wavefunctions |>,, for which the oscillator strength f and the 

rotational strength R are computed as:
26
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where c is the speed of light, µi,n the transition dipole moment from the ground state 

|g> to the excited state |i> of molecule n along the stack,  .).,(ˆ
,,

chgniµµ
nini

  the 

corresponding dipole operator, |G> the ground state of the helical stack (product state 

of all |g>),  and 
ni

ni nic
,

, ,
  the exciton state wavefunctions expanded in terms 

of the 


nic ,  eigenvectors. The absorption/CD response at input frequency  is calculated 

on the basis of the oscillator/rotational strengths as: 

 


  ,)()( GfAbn  

 


  ,)()( GRCD  

where G(-) is a Gaussian function centered around  with variance = 0.1 eV. 

The brackets denote a configurational average over the positional and energetic 

disorder as explored during the MD simulations. Here, a total of 8 supramolecular 

helical structures, each consisting of 32 (for NDPA-AMP/ADP assemblies) or 33 (for 

NDPA-ATP assemblies) molecules, were used. This approach was found to yield CD 

spectra that are stable with respect to configurational averaging. 

Synthesis:  

NDPA and PDPA were synthesized and characterized according to the literature procedure.
11

 

Synthesis of NDPA-Amph was peformed according to Scheme 2.3. Procedures are given 

below.    

Synthesis of 1: 1,4,5,8-Naphthalenetetracarboxylic dianhydride (1 g, 3.73 mmol) was added to 

N,N-Bis(2-pyridylmethyl)ethane-1,2-diamine (1.08 g, 4.47 mmol) and dodecylamine (0.82 g, 

4.47 mmol) in 20 ml DMF and the reaction mixture was stirred at 120 
°
C overnight. DMF was 

evaporated under vacuum and residue was extracted with chloroform and water. Organic layer 

was dried over anhydrous Na2SO4, and solvent was evaporated. Compound was purified by 

column chromatography to give 110 mg of desired product 1 (Yield = 5%). Low yield was 

mainly due to a) statistical three possible products, b) presence of basic pyridine group in the 

compound which tend to stick to silica gel during column chromatography. 
1
H NMR (400MHz, 
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CDCl3  : δ   77  d, 2H, J = 7   Hz ,    7  d, 2H, J = 7   Hz ,       m, 2H , 7  0  m, 4H , 7 00 

(m, 2H), 4.40 (t, 2H, J = 6.2 Hz), 4.20 (m, 2H), 3.90(s, 4H), 2.95 (t, 2H, J = 6.2 Hz), 1.25 (m, 

20H), 0.87 (t, 3H, J =7 Hz); 
13

C NMR  δC (100 MHz, CDCl3): 163.00, 162.76, 159.55, 149.05, 

136.24, 131.07, 130.99, 126.84, 126.79, 126.76, 123.00, 121.98, 60.42, 51.42, 41.20, 38.63, 

32.05, 29.78, 29.76, 29.73, 29.67, 29.48, 29.25, 27.25, 22.82, 14.25; MS (ESI): m/z calcd for 

C40H45N5O4 : 659.84 [M
+
], found: 659.0. 

 

Scheme 2.3. Synthetic scheme for NDPA-Amph and NDPA based amphiphiles. 

Synthesis of NDPA-Amph 

50 mg (0.07 mmol) of 1 was taken in CHCl3 (3 ml) and was added drop wise to a solution of 

Zn(NO3)2.6H2O (42 mg, 0.1 mmol) in methanol (1 ml). The reaction mixture was then stirred 

for 30 minutes at room temperature and then the solvent was evaporated. The residue obtained 

was dissolved in CHCl3 and filtered to remove the unreacted Zn(NO3)2.6H2O. Filtrate was 

concentrated under reduced pressure to get 50 mg of the desired product NDPA-Amph as 

white solid (Yield = 78.5%). 
1
H NMR (400MHz, CDCl3) : δ    2  d, 2H, J = 4 9 Hz ,   70  d, 

2H, J = 7.6 Hz), 8.62 (d, 2H, J = 7.6 Hz), 8.04 (dt, 2H, J = 7.7, 1.6 Hz), 7.58 (m, 4H), 4.70 (m, 

2H, J = 15 Hz), 4.50 (m, 2H), 4.40 (m, 2H), 4.16 (t, 2H, J = 7.6 Hz), 2.82 (t, 2H, J = 7.6 Hz), 

1.24-1.72 (m, 20H), 0.86 (t, 3H, J = 6.8 Hz); 
13

C NMR δC (100 MHz, CDCl3): 162.70, 162.66, 

153.9, 149.07, 140.95, 131.31, 130.99, 127.23, 126.74, 126.72, 125.95, 125.59, 124.43, 56.42, 
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47.68, 41.22, 33.52, 32.04, 29.75, 29.74, 29.71, 29.64, 29.46, 29.43, 28.18, 27.21, 22.81, 14.24; 

HRMS (ESI): m/z: calcd for M-Zn(NO3)2 i.e. C40H45N5O4 : 659.8134, found : 660.3562. 
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Chapter-3 

Dynamic Helical Supramolecular Polymer with Stimuli Responsive 

Handedness: In situ probing of Enzymatic ATP Hydrolysis 

Abstract 

Design of artificial systems which can respond to fluctuations in concentration of adenosine 

phosphates are essential in understanding the energy economy of biological systems. Helical 

assemblies of chromophores, which dynamically respond to such changes, can provide real-

time chiroptical readout of various chemical transformations. Towards this concept, we present 

a supramolecular helix of achiral chromophores, which shows chiral adenosine phosphate 

responsive tunable handedness along with dynamic reversal of helicity. This system, composing 

of naphthalenediimide chromophores with phosphate recognition unit, shows opposite 

handedness on binding with ATP compared to ADP/AMP. Such differential signalling along 

with stimuli dependent fast stereomutations has been capitalized to probe the reaction kinetics 

of enzymatic ATP hydrolysis. Detailed chiroptical analysis provide mechanistic insights into 

the enzymatic hydrolysis and various intermediate steps. Thus a unique “all-in-one” dynamic 

helical assembly to monitor the real time reaction processes via its stimuli-responsive 

chiroptical signalling is conceptualized. 

 

 

 

 

 

Manuscript based on this work is under submission. 
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3.1 Introduction 

 Helically organized polymeric
1
 and supramolecular

2
 assemblies have been the subject 

of considerable interest as biomimetic systems to understand and appreciate asymmetric 

preferences like homochirality in nature. Typical designs of helical assemblies consist of 

optically active monomers, which bias the handedness during the (supramolecular) 

polymerization process.
3
 In this respect, helicity induction in racemic/achiral assemblies, 

constructed from “achiral” monomers, through non-covalent interactions with the chiral guest 

molecules is an alternative, synthetic strategy. Various types of forces like hydrogen bonding,
4
 

acid-base/electrostatic interactions,
5
 preferential chiral solvation etc.

6
 have been employed for 

this purpose. Such a strategy also allows easy tunability of handedness just by changing the 

chirality of the guest molecules, thereby avoiding many synthetic challenges.  

 The host-guest design for helical assemblies provides new opportunities to investigate 

mechanistic details of supramolecular chirality along with many practical chirotechnological 

applications. For example, this design has been used for the asymmetric synthesis of metastable 

homochiral systems (chiral memory) from kinetically stable assemblies, by the post-synthetic 

removal of chiral guest molecules (auxiliaries).
7
 In particular, this approach has helped to 

understand the mechanistic pathways of racemisation and various off-nucleation processes of 

supramolecular polymers.
8
 Recently, Yashima et al have utilized the memory of helical 

polymers for the construction of chiral stationary phase for chromatographic separation of 

enantiomers.
7g

 Interestingly, the order of eluting enantiomers could be easily controlled by 

dynamically switching the chirality of the stationary phase upon interactions with the guest of 

opposite chirality. On the other hand, dynamic helical assemblies, with stimuli responsive 

chiroptical and conformational responses have been utilized as enantioselective sensors and 

actuators.
9
 These properties find applications in determining the absolute chirality of drug 

molecules/natural products, enantiomeric purity of samples etc.  Another advantage, which can 

be envisaged of dynamic helical assembly, is their real-time chiroptical readout in response to 

various processes and stimuli influencing the assembly.
10

 Due of the non-covalent nature of 

these interactions, they are expected to show fast response to such changes. Here we show a 

novel concept of using a stimuli-responsive, dynamic helical assembly for the real time probing 

of an enzymatic reaction. 

 Adenosine phosphates are biologically relevant chiral molecules which define the 

energy economy of most living systems.
11

 They exist in various forms like ATP, ADP, AMP 

and their interconversion phenomena is directly related to various processes occurring in the 

living cell. Many assays used for monitoring these adenosine phosphates are either specific to 
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one of these phosphates or they follow aliquot method instead of monitoring in situ.
12

 

Although, molecular recognition based fluorescence probing has been reported to monitor their 

real-time dynamics, they usually monitor the disappearance kinetics of one of these forms.
10, 13

 

However, probing various forms of these phosphates demand better design of systems. In order 

to probe the interconversion of adenosine phosphates (AMP/ADP/ATP), specific signalling is 

required which can distinguish various phosphates. Hence, dynamic helical system which can 

differentially respond to these chiral phosphates provide a viable alternative.  

 

Scheme 3.1. Enzyme responsive helical handedness of NDPA-ATP / ADP / AMP / Pi 

supramolecular polymer: a) Molecular structure of NDPA along with the pictorial 

representation of adenosine phosphates induced helical supramolecular organization with 

preferred handedness. b) Schematic illustration of the dynamic helix reversals upon enzyme 

(CIAP) action on the NDPA bound ATP molecules and their respective chiroptical readout as 

probe to monitor real-time reaction kinetics. 

 In this work, we present a supramolecular helical assembly that responds to various 

adenosine phosphates with a differential chiroptical signalling. This system was constructed by 

the self-assembly of naphthalenediimide chromophores, end functionalized with zinc 

coordinated dipicolylethylenediamine receptor motifs (NDPA).
14

 These chromophores show 

induction of opposite handedness on binding to AMP and ADP when compared to ATP 

(Scheme 3.1a, Figure 3.1b).
15

 Very fast response to the change of binding guests as well as lack 

of any chiral amplification makes the chosen NDPA assembly most suited to study the real-

time in situ conversion kinetics of adenosine phosphates from one form to another. This was 

further proven conceptually by the enzymatic hydrolysis of ATP. The utilization of 
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supramolecular handedness as a probe, not only to monitor enzymatic ATP decay but also to 

follow its course of stepwise conversion to ADP, AMP and finally to phosphates is 

unprecedented and provides useful insight into the hydrolytic pathway (Scheme 3.1). Moreover, 

this also provides an “all in one” method to study the individual hydrolysis kinetics of all forms 

of adenosine phosphates. Additionally, this strategy provides a unique way to control the 

stereomutation rates of helical assemblies by changing the concentrations of external stimuli (in 

the present case an enzyme). 

3.2 Results and Discussion 

 In the previous chapter, we described the one-dimensional (1-D) supramolecular 

polymerization of NDPA in water by the molecular recognition of various adenosine 

phosphates (Chapter 2, Section 2.2).
15

 The absorption spectrum of NDPA alone (5 x 10
-5

 M) in 

aqueous HEPES buffer (10 mM HEPES solution in water) shows sharp absorption bands (max 

= 381 nm and 361 nm), characteristic of NDI chromophores devoid of intermolecular 

interactions and are indicative of monomeric nature of these chromophores (Figure 3.1a). 

Binding of anionic adenosine phosphates to cationic NDPA resulted in the stacking of NDI 

chromophores via synergistic hydrophobic and π-π interactions, characterized by the 

broadening of absorption band, along with the intensity reversal of vibronic bands at 360 nm 

and 380 nm. Chiroptical probing of these co-assembled stacks with circular dichroism (CD) 

spectroscopy showed strong bisignated Cotton effects and are indicative of a helical bias in the 

supramolecular organization of achiral NDIs induced by homochiral adenosine phosphates. The 

mode of binding probed through CD Job plot and titrations showed that AMP, ADP and ATP 

bind through one, two and three point of attachment respectively (Chapter 2, Section 2.2).
15

 

Also, comparative absorption spectra show that the interchromophoric interactions can be 

modulated depending upon the bound guest. ATP shows the strongest interactions followed by 

ADP and weakest by AMP, as evident from their change in intensity ratio (I0-0/I0-1) of two lower 

energy vibrational transitions in the absorption spectra (Figure 3.1a). Interestingly, AMP and 

ADP imparted M-helicity to the NDPA stacks, as evident from the negative bisignated CD 

signal (negative and positive maxima at 395 and 360 nm, respectively), whereas ATP induced 

P-helicity with positive bisignated CD signal (positive and negative maxima at 390 and 359 

nm, respectively) (Figure 3.1b), as discussed in the previous chapter (Section 2.3). 
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Figure 3.1. Adenosine phosphates induced helical assembly of NDPA: a) Absorption spectra 

(normalized at 360 nm) and b) CD spectra of NDPA assemblies with 1 eq. of various bound 

adenosine phosphates. Normalized absorption spectra shows that binding of ATP or ADP leads 

to strong interchromophoric interactions among NDPA, AMP binding leads to weaker 

aggregates as evident from the ratio of absorbance at 0-0 and 0-1 transitions i.e. I(0-0)/I(0-1) 

value for AMP = 1.07, ADP = 0.95, ATP = 0.91. All samples were measured at 5 x 10
-5

 M 

solution of NDPA in aq. HEPES buffer. 

 The multivalent nature of certain chiral phosphate auxiliaries (ATP / ADP) offers an 

efficient strategy to modulate the handedness of NDPA stacks through competitive replacement 

of phosphates, provided that the assembly is dynamic. Addition of 1 eq. of ATP to a solution of 

AMP or ADP bound helical assembly, (M)-NDPA-AMP or (M)-NDPA-ADP, (c = 5 x 10
-5

 M 

in aq. HEPES buffer with 1 eq. of AMP or ADP), resulted in an inversion of CD signal 

(Chapter 2). This indicates the formation of (P)-NDPA-ATP stacks, by the competitive 

replacement of AMP or ADP by ATP, thereby reversal of helical handedness. We envisaged 

that the unique differential signalling of Cotton effect via stereomutation in the NDPA helix 

upon binding to different nucleotides could be explored to probe their conversion from ATP to 

ADP or AMP and vice versa. However, in order to probe the interconversion kinetics of the 

bound phosphate molecules, the helical assembly must meet few requirements i.e. 1) The 

stereomutation process in response to variation in phosphate concentration should not be the 

rate-determining step. In other words a rapid, dynamic helix reversal of the stacks is essential 

and 2) there should not be any chiral amplification so that the absolute CD intensity of the 

assembly, at any given point of time, directly signals the concentration of bound phosphates. 
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 3.2.1 Dynamic Helix Reversal 

 

Figure 3.2. Dynamic Helix Reversal: a) Pictorial representation of helicity reversal in NDPA 

assembly via competitive binding of multivalent adenosine phosphates. b)-d) Stepwise dynamic 

helix reversal experiments performed by sequential addition of ATP to (M)-NDPA-AMP and 

(M)-NDPA-ADP assemblies (5 x 10
-5

 M NDPA in aq. HEPES with 1 eq. of respective 

phosphates). b) Green and red traces show the sharp jumps in CD signal intensity of (M)-

NDPA-ADP and (M)-NDPA-AMP, respectively, monitored at 394 nm, upon sequential 

addition of ATP, represented by the blue arrows. These sharp rise in CD intensities are 

characteristic of fast helicity reversal and the formation of (P)-NDPA-ATP stacks, which is 

further evident from the corresponding CD spectral changes shown in c and d. Horizontal 

nature of red trace (t = 10 → 20 min) suggests that prolonged waiting time does not affect the 

intensity. Blue trace in b) shows the CD intensity of (P)-NDPA-ATP upon sequential addition 

of AMP at time intervals as indicated by the red arrows. The retention of handedness suggests 

the inability of AMP/ADP to replace the pre-bound ATP molecules. 

 The dynamic nature of the helix reversal in NDPA assemblies was investigated using 

competitive guest binding. Thus, CD intensity of (M)-NDPA-AMP and (M)-NDPA-ADP 

stacks (5 x 10
-5

 M in aq. HEPES) upon addition of small amounts of ATP at regular intervals 

were monitored at 390 nm, as a function of time. Interestingly, both AMP and ADP bound 

stacks displayed sharp jumps in CD intensity with each successive addition of ATP (Figure 
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3.2b, red and green traces). For (M)-NDPA-ADP stacks, the signal reversal occurs through 

multiple stepwise rise of intensity with each subsequent addition of ATP. Furthermore, the 

reversal of negative bisignated CD signal to positive bisignated signal is characteristic of 

stereomutation and indicates the formation of (P)-NDPA-ATP stacks, by the competitive 

replacement of ADP with ATP (Figure 3.2c). Similar behaviour was observed for (M)-NDPA-

AMP assemblies, where again quantum rise in the signal was observed (Figure 3.2b red trace 

and 3.2d) with each subsequent addition of ATP. Such instantaneous changes in Cotton effects 

provide strong evidence for fast switching of helicity in these dynamic supramolecular 

polymers.  

 

Figure 3.3. Competitive binding between AMP and ATP: a) CD and b) absorption spectra of 

(P)-NDPA-ATP (5 x 10
-5

 M) with different eq. of AMP. Lack of any significant change in the 

signal confirms inability of AMP to replace ATP competitively. Schematic on the right side 

depicts the same process. 

 

Figure 3.4. ATP based competitive replacement: Changes in the absorption spectra of a) (M)-

NDPA-ADP and b) (M)-NDPA-AMP on competitive replacement with multivalent ATP (5 x 10
-

5
 M in aq. HEPES buffer). 
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replaced by AMP or ADP (blue trace Figure 3.2b, Figure 3.3). At this stage, we note that the 

two processes, i.e. replacement of (i) AMP by ATP and (ii) ADP by ATP show similar CD 

signal changes and thus cannot be differentiated chiroptically. However, these transformations 

could be easily probed via the changes in their absorption spectra, as the strength of 

intermolecular interactions varies with different phosphates. A closer look at the absorption 

spectra shows that removal of ADP by ATP in Figure 3.4a do not show any significant change 

in absorption spectra. But a clear decrease in the absorbance along with 2 nm red shift of 

absorption peak at 380 nm was observed when AMP was substituted by ATP as seen in Figure 

3.4b. This high band intensity at 380 nm, characteristic of weak NDI aggregates, are expected 

from AMP with one coordinating site, which lack the ability to clip chromophores for better 

stabilization. Whereas ADP and ATP with two and three point of attachments can clip to 

stabilize the chromophoric aggregates, thus justifying the observed variation in absorption 

spectra (Figure 3.1a). 

3.2.2 Chiral Amplification 

 

Figure 3.5. „Majority rules‟ like experiment performed using a mixture of a) ADP-ATP and b) 

AMP-ATP. The linear relationship (grey line) of the CD intensity rules out any chiral 

amplification in the stacks. The total concentration of phosphates was chosen in such a way 

that all the binding sites are occupied and CD intensity was monitored at the CD maxima of 

390 nm (positive) and 394 nm (negative). Zero CD intensity do not appear at 0.5 mole fraction 

of ATP due to non-racemic nature of the (M)-NDPA-AMP and (P)-NDPA-ATP helices, which 

is also reflected in their unequal maximum CD intensity (Figure 3.1b).  

 In order to evaluate the chiral amplification, “Majority Rules” like experiments 

performed with mixture of adenosine phosphates, AMP/ATP or ADP/ATP. Adenosine 

phosphates were taken in appropriate eq. such that all the DPA sites are bound to phosphates. 

Plot of resultant CD intensity against the mole fraction of guest molecules show a linear 

relation (Figure 3.5), demonstrating the absence of chiral amplification effects in phosphate 
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bound NDPA stacks. Thus, the present dynamic chiral assembly is endowed with two unique 

properties, i.e. fast helical response to replacement of binding phosphates and lack of any chiral 

amplification, enabling the system with an unprecedented ability to probe real time hydrolysis 

kinetics of adenosine phosphates.  

3.3 Enzymatic ATP Hydrolysis 

 

Figure 3.6. Stepwise enzymatic ATP hydrolysis and subsequent dynamic helix reversals: CD 

kinetic analyses of CIAP triggered stereomutation processes of (P)-NDPA-ATP (c = 5 x 10
-5

 

M) self-assembly. a) Schematic illustration of enzymatic action on (P)-NDPA-ATP 

supramolecular helix (State 1), which first undergoes helix inversion to form (M)-NDPA-

ADP/AMP stacks (State 2) followed by racemisation to form Pi stabilized racemic assemblies, 

(rac)-NDPA-Pi (State 3). b-d) show the spectral changes during the transformation from 

(1)→(2) and e-g) describes transition from (2)→(3). b) and e) show time dependent changes in 

the CD intensity at 390 nm, with increasing concentration of CIAP at 35 °C. Time dependent 

CD spectral changes, upon addition of 0.84 U/ml of CIAP at 20 °C are shown in c) (1)→(2) 

and f) (2)→(3), whereas g) shows corresponding absorption changes (normalized) from 

(1)→(3). d) Time dependent changes in the CD intensity (390 nm) of (P)-NDPA-ATP with 0.28 

U/ml of CIAP at varying temperature.
16

 In b) kinetics was not probed for prolonged time to see 

transition from 2→3.  
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 Next, we probed the dynamic helicity changes of the NDPA stacks, upon in situ 

hydrolysis of the bound chiral phosphate molecules. Since enzymatic cleavage is one of the 

simplest known methods of phosphate hydrolysis inside the living cells, Calf Intestinal Alkaline 

Phosphatase (CIAP) was the chosen enzyme, which is known to dissociate all three forms of 

adenosine phosphates to adenosine and phosphates.
17

 Thus, CIAP (0.21 U/ml) was added to 

(P)-NDPA-ATP helical stacks and CD signal was monitored at 390 nm as a function of time. 

Interestingly, the CD signal gradually decreases with time, indicating the decrease in ATP 

concentration on enzymatic hydrolysis with CIAP. Remarkably, the net CD intensity reverses 

from positive to negative, where the final signal resembles that of either ADP or AMP bound 

NDPA assemblies (Figure 3.6b, 1→2). The formation of (M)-NDPA-ADP/AMP stacks is 

further obvious from the time dependent CD spectra of (P)-NDPA-ATP assembly with CIAP 

(0.84 U/ml) monitored at 20 
o
C, which showed a gradual inversion of positive to negative 

bisignated signal passing through an isodichroic point at 368 nm, suggesting complete reversal 

of helicity (Figure 3.6c). This inversion of CD signals with time, clearly indicates the dynamic 

reversal of helical handedness of NDPA stacks as a result of conversion of ATP to ADP/AMP 

through enzymatic hydrolysis.  

 

Figure 3.7. Kinetic analysis of the (1)→(2) stereomutation process of (P)-NDPA-ATP 

assembly: a) Time dependent CD intensity at 390 nm monitored at different temperature (c = 5 

x 10
-5

 M, 1 eq. ATP, with 0.28 U / ml CIAP) and corresponding fits (solid lines) using 1
st
 order 

kinetic model and b) the resultant Arrhenius plot. Table in c) shows the increase in rate 

constant with temperature, which almost doubles with every 10 K rise. These data corresponds 

to the Figure 3.6d. All CD signals were normalized between zero and one for ease of fitting into 

kinetic model. 

 Furthermore, kinetics of this process was probed with varying concentration of enzyme, 

which exhibited faster helix-reversals on increasing concentration of enzyme (Figure 3.6b). 

This unambiguously proves that the rate of helix-reversal directly reflects the progress of 

enzymatic hydrolysis reaction. From a supramolecular perspective, this enzymatic hydrolysis 

also provides an unprecedented strategy to modulate the stereomutation kinetics of dynamic, 
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helical supramolecular polymers. Rate of stereomutation could also be controlled by 

temperature variation as seen in Figure 3.6d. Time dependent CD intensity of (P)-NDPA-ATP 

stacks with 0.28 U/ml of CIAP indicated faster helicity reversal at higher temperatures 

following a first order kinetics (Figure 3.7c). We notice that the final CD signal obtained after 

stereomutation (1→2) in Figure 3.6d decreases upon increasing temperature. To understand this 

process we studied the temperature dependent CD intensity changes in absence of enzyme. It is 

evident that as the temperature increases, the CD signal vanishes along with blue shift in 

absorption spectra (382 nm to 380 nm, Figure 3.8 a, b). Upon cooling, the signal red shifts 

again to 382 nm along with recovery of CD signal. The vibronic features of the absorption 

spectra at high temperature do not resemble that of a monomeric NDPA. These observations 

indicate that the decrease in CD signal with increasing temperature at both (1) and (2) state of 

(P)-NDPA-ATP (Figure 3.6d) is due to weaker ATP binding at elevated temperatures (and not 

their detachment as monomeric absorption features were not observed in Figure 3.8b). 

 

Figure 3.8. Temperature dependent helical assembly without enzyme: Temperature dependent 

changes in a) CD and b) absorption spectra of (P)-NDPA-ATP assembly upon heating and 

cooling (5 x 10
-5

 M in aq. HEPES buffer). c) Temperature dependent variation in CD intensity 

at 390 nm during one complete cycle of heating and cooling. These measurements were 

performed in absence of enzyme.  

 At higher enzyme concentrations (≥ 0.56 U / ml), (P)-NDPA-ATP showed an 

interesting phenomenon that apart from the inversion of CD signal in the initial stages, the CD 

intensity goes to zero at later times and saturates (Figure 3.6e, 1→2→3). This clearly suggests 

two-step process, where ATP is first converted to ADP/AMP leading to reversal of helicity 

followed by further hydrolysis to adenosine and achiral phosphates, thereby loss of chiral 

information. Increasing CIAP concentration revealed faster kinetics for both these processes, 

characteristic of enzyme controlled reaction pathways. The transition from 2→3 was not 

probed in Figure 3.6b, as it would take a very long time due to slow kinetics at lower enzyme 

concentrations. 
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 The disappearance of CD signal at 3 suggests either disassembly of the NDPA stacks in 

the absence of any bound adenosine phosphates or the formation of racemic stacks stabilized by 

achiral phosphate Pi[(PO4)
3-

] produced on hydrolysis. Absorption spectra obtained after 

complete hydrolysis is significantly different from that of NDPA alone without phosphates, 

indicating that it is not monomeric. We observe that after stereomutation, the absorption 

maxima show 2 nm blue shift (386 nm to 384 nm) along with change in the ratio of band 

intensity indicating weakening of aggregates (Figure 3.6g). Moreover, addition of CIAP to 

NDPA do not show any change in the absorption as well as CD signal (Figure 3.9), confirming 

that the CIAP do not have any specific interactions with NDPA. However, titration with Pi i.e. 

(PO4)
3-

 show strong interaction with NDPA leading to NDI aggregation, as seen from the 

changes in vibronic features of the absorption spectra (Figure 3.10a). As expected, upon 

complete hydrolysis of ATP by CIAP, 3 eq. of Pi would be released, which can bind to the 

NDPA resulting in racemic assembly due to achiral nature of Pi. The absorption spectrum after 

complete stereomutation resemble that of Pi bound NDPA, thereby ruling out the possibility of 

NDPA deaggregation (Figure 3.10b). Hence, in the absence of any interactions from CIAP, 

the final state corresponds to Pi bound racemic assemblies i.e. (rac)-NDPA-Pi. Such two-step 

transitions were not evident at low enzyme concentrations (Figure 3.6b) as the 2→3 process 

would take very long time to complete under those conditions. Results thus far have 

demonstrated that the dynamic helix reversal of the present system can be successfully utilized 

to probe the enzyme controlled hydrolysis of ATP and provide useful insights into its stepwise 

course of action. 

 

Figure 3.9. Enzyme interaction with NDPA. a) Absorption and b) CD spectral variations on 

addition of CIAP to NDPA. All measurements were done with 5 x 10
-5

 M solution in aq. HEPES 

buffer. Schematic on right side depicts the influence of CIAP on state of NDPA assembly.  
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Figure 3.10. Pi binding of NDPA: a) Absorption spectra of NDPA upon binding with Pi i.e. 

(PO4)
3-

. Changes in the ratio of band intensity suggest significant interchromophoric 

interactions in NDPA on binding to Pi. b) Changes in the absorption spectra upon enzymatic 

hydrolysis of ATP with CIAP and its comparison with Pi bound NDPA. Schematic in c) depicts 

the respective processes. All experiments were at 5 x 10
-5

 M NDPA in aq. HEPES buffer. 

3.4 Enzymatic ADP/AMP Hydrolysis 

 To gain further insights into various intermediate steps involved in the ATP hydrolysis, 

similar enzymatic hydrolysis reactions with pure (M)-NDPA-ADP and (M)-NDPA-AMP 

assemblies were also performed. As expected, the time dependent CD signals monitored at 394 

nm (35 °C) gradually goes to zero, suggesting the direct formation of (rac)-NDPA-Pi 

assemblies (Figure 3.11). Absorption spectra obtained after complete hydrolysis were distinct 

from that of NDPA alone without phosphates, as seen from their I(0-0)/I(0-1) value indicating that 

it is not monomeric (Figure 3.12 a, b). In addition, the spectra after stereomutation matches 

well with the Pi bound NDPA stacks confirming that NDPA is indeed aggregated due to Pi 

binding. 
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Figure 3.11. Kinetic analysis of NDPA bound AMP and ADP hydrolysis: Time dependent CD 

spectra showing the racemization process of a) (M)-NDPA-AMP (c = 5 x 10
-5

 M) with CIAP 

(0.42 U/ml), d) (M)-NDPA-ADP (c = 5 x 10
-5

 M) with CIAP (0.84 U/ml) at 35 °C. Schematic 

shows the pictorial representation of the enzymatic AMP/ADP hydrolysis. b) and e) show the 

corresponding CD intensity monitored at 394 nm probing the racemisation  process of (M)-

NDPA-AMP and (M)-NDPA-ADP respectively, with varying concentrations of CIAP  at 35 °C. 

c) and f) show changes in absorption spectra corresponding to hydrolysis of AMP/ADP 

prebound to NDPA with CIAP (0.70 U/ml, 35 
o
C).  

 The plot of AMP and ADP hydrolysis were fitted into 1
st
 order reaction kinetics model 

(Figure 3.12 d, e). These plots revealed a faster racemisation rate for the (M)-NDPA-AMP than 

that of (M)-NDPA-ADP. For example, at 35 °C and with 0.42 U/ml of CIAP, the racemisation 

rate constant of (M)-NDPA-AMP (kamp= 0.129 min
-1

), was six times higher than that of (M)-

NDPA-ADP (kadp= 0.021 min
-1

), suggesting faster hydrolysis of AMP than ADP (Figure 3.12f). 

Such differences in the rate of hydrolysis is also evident from the comparative plot of time 

dependent CD intensity decay in (M)-NDPA-AMP and (M)-NDPA-ADP with  0.84 U/ml of 

CIAP at 35 
o
C (Figure 3.13b). Experiments conducted at various concentrations of enzyme 

show a linear increase in rate constant upon addition of higher amounts of enzyme (Figure 

3.13a). This confirms that the decay profile is indeed governed by enzymatic hydrolysis of 

adenosine phosphates. 
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Figure 3.12. Changes in the absorption spectra upon enzymatic hydrolysis of a) (M)-NDPA-

AMP and b) (M)-NDPA-ADP with CIAP (0.7 U/ml, 35 
o
C) and its comparison with completely 

racemized state (rac)-NDPA-Pi obtained by action of CIAP as well as the Pi bound NDPA. 

Time dependent CD signal change with varying CIAP concentration to d) (M)-NDPA-AMP, e) 

(M)-NDPA-ADP at 35 °C and their respective 1
st
 order kinetic fit (solid red line). d) 

Correspond to kinetic decay data of Figures 3.11b and b) for Figures 3.11e. f) Table shows the 

comparative rate constant of bound AMP and ADP hydrolysis at various CIAP concentrations. 

All CD signals were normalized between zero and one for ease of fitting into kinetic model. The 

empty data points in f) is due to their extreme kinetics of the processes like hydrolysis of bound 

AMP at high CIAP concentration will be too fast to probe reliably . 

  

Figure 3.13. a) Plot of hydrolysis rate constants of NDPA bound AMP and ADP (kamp and kadp) 

against varying concentration of CIAP at 35 °C as per Figure 3.12f. We see that at a given 

CIAP concentration, kamp is higher than kadp confirming that ADP hydrolysis is much slower 

than AMP. b) Time dependent variation in CD signal of (M)-NDPA-AMP and (M)-NDPA-ADP 

(c=5 x 10
-5

 M) with CIAP (0.84 U/ml) at 35 
o
C monitored at 390 nm. 
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 Revisiting the conversion from (1)→(2) (Figure 3.6e), as hydrolysis of ADP is much 

slower than that of AMP, the negative signal at (2), which is obtained after stereomutation, 

must be governed mainly by the presence of (M)-NDPA-ADP assemblies. Careful analysis of 

the absorption spectral changes show that the transformation from 1→2 (when the CD signal 

reverses in Fig. 3.6c) do not show any change in absorption spectra (Figure 3.14a). This was 

expected from the ATP → ADP transition, which do not affect the absorption spectra (Figure 

3.4a). Whereas, the later process from 2→3 (when the CD signal goes to zero in Figure 3.6f), 

we notice changes in the vibronic features of NDPA absorbance (I(0-0)/I(0-1) value, Figure 3.14b) 

as expected of the transition from ADP → AMP → Pi (Figure 3.4b). Above results clearly 

indicate that (1)→(2) transformation is governed by ATP→ADP, whereas (2)→(3) is 

ADP→AMP→Pi. The single isodichroic point in the time-dependent CD spectra during 

stereomutation and their first order kinetics (Figure 3.6 c, d) further supported that the process 

is majorly governed by the conversion between two distinct assemblies, (P)-NDPA-ATP and 

(M)-NDPA-ADP.  

 

Figure 3.14. Absorption changes in (P)-NDPA-ATP during stepwise hydrolysis of ATP:  

Variation in absorption spectra of (P)-NDPA-ATP solution upon stepwise hydrolysis of ATP 

during a) 1→2 and b) 2→3. These absorption changes correspond to Figure 3.6 c, f (c = 5 x 

10
-5 

M, 35 °C with CIAP (0.7 U/ml)). 

 Results thus far have shown that dynamic helix reversals in the NDPA supramolecular 

helical system can be used to probe the mechanistic pathways of enzymatic ATP hydrolysis and 

possible pathway is via ATP to ADP to AMP before converting to adenosine and phosphates. 

Furthermore, 
31

P NMR measurements and phosphate (Pi) assay experiments corroborated the 

conclusions drawn from CD kinetic analysis. Time dependent NMR changes upon enzymatic 

ATP hydrolysis shows that the peak at -23.1 ppm (characteristic of ATP, marked with red star) 

vanishes soon after addition of CIAP, whereas the other two peaks at -11.2 ppm, -10.2 ppm 

(characteristic of ADP, marked with blue triangle) remain intact initially (Figure 3.15). This 

indicates a fast conversion from ATP to ADP. On further passage of time, ADP peak also 
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vanishes to give only AMP signal followed by conversion to Pi and adenosine. Thus we notice 

that enzymatic ATP hydrolysis without NDPA also follows the same pathway (ATP→ADP→ 

AMP) and confirms our finding by circular dichroism in presence of NDPA. Time dependent 

variation in concentration of Pi [(PO4)
3-

] was also monitored upon action of enzyme on (M)-

NDPA-AMP and (M)-NDPA-ADP. Probing the concentration of Pi released upon hydrolysis 

can give an indirect measure of the rate of hydrolysis. This was performed using a well known 

Pi assay (Chen’s method).
12b

 We see that ADP hydrolysis is indeed much slower when 

compared with AMP (Figure 3.16a), in line with the conclusions drawn previously by 

monitoring CD signal (Figure 3.13). Both measurements were done with CIAP (0.84 U/ml) and 

NDPA (c = 5 x 10
-5 

M) at 35 °C. Unlike the helix reversal measurements for kinetic analysis, 

Chen’s assay is not an in situ measurement due to highly acidic conditions required for metal 

complex formation, so aliquots at regular intervals were analyzed. In addition, this method can 

only probe the net Pi released and cannot distinguish the stepwise hydrolysis of ATP via 

ADP/AMP to Pi.  

 

Figure 3.15 .
 31

P NMR signature of enzymatic process. Time dependent changes in the 
31

P 

NMR spectra of ATP in presence of CIAP and its comparison with ATP without CIAP 

indicating stepwise enzymatic hydrolysis of ATP. 

 To understand if enzyme selectively hydrolyses the unbound or bound phosphates, CD 

kinetic measurements of (P)-NDPA-ATP in presence of other phosphates (one eq. of ATP 

followed by addition of 1 eq. of either AMP or ADP) were performed.  As expected, due to 

competitive binding, ATP should be bound to NDPA to form (P)-NDPA-ATP stacks, whereas 

AMP or ADP must be free in solution. Absence of initial lag phase and gradual decrease in 

signal from time t=0 suggests that CIAP has no preferential action to unbound phosphates 

compared to bound ones (Figure 3.16b). If enzymatic action were to be preferential to unbound 

phosphates, we should have obtained constant CD signal initially till all unbound phosphates 

are consumed and only then signal should have started to decrease.  
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Figure 3.16.
 
a) Inorganic method for Pi estimation: Pi assay results using Chen‟s method to 

determine the amount of Pi released on enzymatic hydrolysis. The graph shows comparative 

hydrolysis kinetics of NDPA bound AMP and ADP clearly confirming that AMP hydrolysis is 

much faster compared to ADP. b) Mechanistic insight on enzymatic action: Time dependent 

variation in CD signal of 5 x 10
-5

 M NDPA (aq. HEPES buffer) on competitive replacement of 

AMP and ADP by 1 eq. of ATP (CIAP = 0.70 U/ml) at 35 
o
C monitored at 390 nm. 

3.5 Conclusions  

 To conclude, we have presented a unique dynamic, helical assembly which shows 

adenosine phosphate binding induced supramolecular chirality with tunable handedness. MD 

simulations suggest weak van der Waals forces being responsible for preferential helicity with 

various phosphates. Furthermore, we show a fast and dynamic switching of helicity through 

competitive replacement of AMP/ADP by multivalent ATP guest molecules. This stimuli-

responsive helical system with instantaneous reversal of handedness has been utilized for in situ 

monitoring the kinetics of enzymatic hydrolysis of adenosine phosphates. Detailed kinetic 

analyses provided insights into various aspects of this hydrolysis process like number of steps 

involved in the course of reaction and the rate limiting step of the reaction. A clear 

understanding of the kinetics involved in various processes makes the present system unique 

for probing phosphates interconversion kinetics. In addition, this system presents an interesting 

example, where the rate of stereomutation can be modulated by an external stimulus such as 

enzyme. Such a dynamic system, with positively charged surface and responsiveness to 

biological energy currency can be used for probing in vivo hydrolysis and their concentration 

fluctuation inside the living cells. 
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3.6 Experimental Section 

General Methods: 

Optical Measurements: Electronic absorption spectra were recorded on a Perkin Elmer 

Lambda 900 UV-Vis-NIR Spectrometer and emission spectra were recorded on Perkin Elmer 

Ls 55 Luminescence Spectrometer. UV-Vis spectra were recorded in 10 mm path length 

cuvettes. Circular Dichroism measurements were performed on a Jasco J-815 spectrometer 

where the sensitivity, time constant and scan rate were chosen appropriately. Corresponding 

temperature dependent measurements were performed with a CDF – 426S/15 Peltier-type 

temperature controller with a temperature range of 263-383 K and adjustable temperature slope. 

NMR Measurements: NMR spectra were obtained with a Bruker AVANCE 400 (400 MHz 

w.r.t. 
1
H nuclei) Fourier transform NMR spectrometer with chemical shifts reported in parts per 

million (ppm). 

Sample Preparation: All samples for spectroscopic measurements were prepared by injecting 

the 5 x 10 
-5

 M stock solution of NDPA into required volume of aq. HEPES buffer. Required 

amount of phosphates were injected into it and the solution was mixed by manual stirring 

before measurements. Commercially available CIAP was 2.8 units per mg and stock solution of 

CIAP was prepared by dissolving 1 mg of CIAP in 80 µl of aq. HEPES buffer. Each enzyme 

kinetics measurement were performed by adding appropriate amount of CIAP stock solution 

into the phosphate bound helical stacks at a given temperature and all measurements were 

initiated immediately. Stepwise dynamic helix reversal measurements in Figure 2a were 

performed by injecting aliquots of corresponding phosphates at regular interval to phosphate 

prebound helical stack. 

“(P)-NDPA-ATP” term used in main text refers to 5 x 10
-5

M solution of NDPA (in 10 mM aq. 

HEPES buffer) with 1 eq. of ATP. Similarly for ADP, AMP and Pi [(PO4)
3-

] bound helical 

stacks were denoted as “(M)-NDPA-ADP”, “(M)-NDPA-AMP” and “(rac)-NDPA-Pi” 

respectively. 

All CIAP based hydrolysis kinetics of AMP/ADP/ATP were studied with 1 eq. of respective 

adenosine phosphates for the ease of comparison. 

Phosphate’s assay by Chen’s method: Chen’s reagent was prepared by adding 1:1:1:2 

solution of 10% ascorbic acid (w/v), 2.5% ammonium molybdate (w/v), 6N H2SO4 and water 

respectively. A 5 x 10
-5

 M solution of NDPA prebound with the appropriate phosphates were 

treated with suitable amount of CIAP at 35 °C. At regular time interval 250 µl aliquot of the 

above solution was added to 1 ml of Chen’s reagent with proper mixing. All such solutions 
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were incubated for 30 minutes at 35 °C and then absorbance was recorded at 820 nm. This 

absorbance corresponds to the reduced form of phosphomolybdate complex (formed by Pi 

released during hydrolysis reaction). 

Materials: CIAP (2.8 units/mg) was purchased from Sisco Research Laboratory Pvt. Ltd. 

India. All other chemicals were purchased from the commercial sources and were used as such. 

Spectroscopic grade solvents were used for all optical measurements. 

Synthesis: NDPA was synthesized following the reported procedure and was characterized 

accordingly.
14 
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Chapter-4.1 

Dynamic Multivalent Scaffold for Phosphate Recognition by Self-

assembly of Coronene bisimide Based Bolaamphiphile  

Abstract 

Multivalent interaction, a ubiquitous phenomenon in most biological systems, is key to highly 

selective and sensitive analyte recognition. In this chapter, we demonstrate a biomimetic 

supramolecular approach for the construction of functional multivalent scaffold. Coronene 

bisimide (CBI) functionalized with dipicolylethylenediamine (DPA) based molecular 

recognition unit, self-assemble to form a cationic supramolecular polymer. These polyvalent 

aggregates show adenosine phosphate recognition based turn on fluorescence, as compared to 

their monomeric analogue displaying less efficient turn off emission response. Insights into the 

self-assembly process and mode of phosphate interaction were provided through detailed 

spectroscopic, microscopic and mass spectrometry analysis. Highly dynamic nature of these 

scaffolds was established through competitive binding of multivalent guest. Finally, in vivo 

studies revealed the presence of these aggregated chromophores inside living cells, with their 

potential in probing phosphate rich regions.     
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4.1.1 Introduction 

Functional π-conjugated systems with molecular recognition unit have been well-

studied as efficient molecular chemosensors with highly sensitive optical signalling.
1
 However, 

most biological systems utilize an evolved approach of multivalent interactions between 

receptor and analyte molecules, for specific and efficient stimuli response.
2
 Hence integration 

of these molecular receptors into self-assembled multivalent scaffolds with multiple binding 

sites has been recently employed as a synthetic mimic of multi-functional biomacromolecules 

for efficient molecular recognition.
3
 These artificial systems often exhibit cooperative analyte 

binding leading to enhanced signalling.
4
 Another desirable property from such multivalent 

systems is their signal amplification. This concept was successfully demonstrated in conjugated 

polymers, where exciton generated over large number of chromophores can be channelled into 

the trap state created upon analyte recognition.
5
 Such a strategy has also been utilized in 

chromophoric self-assembled networks for highly sensitive detection of analytes.
6
 Among 

multivalent scaffolds, supramolecular systems finds preference compared to their 

macromolecular analogues due to their highly dynamic nature and analyte responsive adaptable 

molecular organization. Recently, supramolecular polymerization of discotic molecules 

decorated with molecular recognition unit were investigated for the construction of polyvalent 

scaffold towards bacterial detection and biomolecules/cell clustering.
7
 However, a biomimetic 

design of multivalent self-assembled systems for molecular recognition driven enhanced 

response to biological stimuli remains challenging. 

In this chapter, we present a dynamic multivalent scaffold constructed via 

supramolecular polymerization of a novel coronene bisimide (CBI) derivative (ZnCPA) end 

functionalized with dipicolylethylenediamine–zinc complex (Zn-DPA). Zn-DPA is known for 

its specific binding to various phosphates and has been demonstrated in various molecular and 

supramolecular phosphate sensors.
8
 This cationic scaffold shows efficient binding to adenosine 

phosphate, a biologically relevant stimulus, with clear binding preferences based on multivalent 

interactions with the analytes. The strength of phosphate binding and their ability to clip 

chromophores together was established through detailed spectroscopic and mass spectrometric 

analysis. Interestingly, polyvalent ZnCPA scaffold show ‘turn on’ fluorescence response to 

phosphate recognition with better sensitivity in contrast to its molecular analogue, which results 

in turn-off emission. Moreover, interaction with ATP led to chiral guest induced helical 

organization into otherwise achiral ZnCPA assembly. We also show the highly dynamic nature 

of this self-assembled scaffold and its efficient cellular uptake for potential in vivo phosphate 

sensing inside live cells.  
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4.1.2 Multivalent Scaffold Synthesis  

 

Figure 4.1.1. Molecular structure of ZnCPA bolaamphiphile and its schematic representation. 

Variation in a) absorption spectra, b) Emission spectra (λex = 350 nm) of ZnCPA with varying 

percentage of MeCN in aq. HEPES buffer, c) is the zoomed in portion of b) at lower percentage 

of MeCN showing the evolution of aggregate band (c = 1 x 10
-5

 M). Inset b: fluorescence color 

change corresponding to i) 100% MeCN solution, ii) 10% MeCN in aq. HEPES buffer under 

365 nm UV illumination. c) Excitation spectra of ZnCPA collected at monomer band (512 nm) 

and aggregate band (590 nm) (30% MeCN in aq. HEPES buffer, c = 1 x 10
-5

 M).  

ZnCPA was synthesized by the condensation reaction of 3,4,9,10-coronene 

tetracarboxylic dianhydride
9
 with N,N-bis(2-pyridylmethyl)ethane-1,2-diamine followed by 

zinc metallation (Figure 4.1.1). From their molecular design, Zn-DPA group provides the 

phosphate specific recognition unit,
8
 whereas the CBI based aromatic core would assist in self-

assembly leading to supramolecular multivalent scaffold for their application in enhanced 

signalling. This bolaamphiphilic molecule is completely soluble in solvents like MeCN/DMF 

and self-assembles in presence of water due to hydrophobic and aromatic-aromatic interactions. 

Absorption spectra of ZnCPA (1 x 10
-5

 M) show broadening of bands along with red shift (486 

nm to 504 nm) upon increasing percentages of aq. HEPES in MeCN (Figure 4.1.1a). The 
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emission spectra show quenching of monomeric emission at 493 nm and 525 nm along with 

appearance of a new red shifted band at 584 nm at higher percentage of aq. HEPES (Figure 

4.1.1 b, c). These spectroscopic features clearly indicate J-type molecular organization of CBI 

chromophores in the self-assembled scaffold,
10

 which was further supported by excitation 

spectra collected at 512 nm and 590 nm (Figure 4.1.1d). Red shift in the excitation spectra at 

590 nm compared to 512 nm indicates their origin from aggregated and monomeric species 

respectively. 

 

Figure 4.1.2. a) TEM image (20% MeCN in water, 5 x 10
-5

 M), b) DLS and c) zeta potential 

measurement (90% aq. HEPES in MeCN, 5 x 10
-5

 M) of self-assembled ZnCPA scaffold. Inset 

c) schematic depiction of the cationic multivalent scaffold formed by self-assembly. 

The self-assembled scaffolds were constructed in MeCN–aq. HEPES buffer solvent 

mixture. TEM micrographs of ZnCPA scaffold show the formation of nanotapes of ~12nm 

width (Figure 4.1.2a). Dynamic light scattering data show hydrodynamic size distribution of 

100-250 nm, confirming the formation of nanostructures in solution (Figure 4.1.2b). Zeta 

potential measurements further suggest the presence of cationic Zn-DPA groups on the surface 

of these nanostructures, in agreement with the bolaamphiphilic design and thus providing a 

supramolecular analogue of well studied cationic polymers for molecular recognition (Figure 

4.1.2c). 

 

Figure 4.1.3. Variation in a) absorption and b) emission spectra of ZnCPA scaffold upon ATP 

titration (90% aq. HEPES in MeCN, c = 1 x 10
-5

 M). Inset b): Photographs showing the 

emission changes with i) no ATP and ii) 1 eq. ATP under 365 nm UV illumination. 
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Self-assembled ZnCPA scaffolds were further used for adenosine phosphate based 

anion responsive studies. Binding of ATP to ZnCPA scaffold (1 x 10
-5

 M, 90% aq. HEPES in 

MeCN) showed a bathochromic shift in absorption spectra from 503 nm to 513 nm along with 

increase in scattering at higher wavelengths, indicating strengthening of aggregation upon ATP 

binding (Figure 4.1.3a). ATP binding to the scaffold is further evident from the enhancement of 

emission intensity (Figure 4.1.3b) due to the prevention of photoelectron transfer (PET) upon 

phosphate binding.
11

  A plot of emission enhancement ratio (I/Io) show nearly 4 times 

fluorescence increase upon binding with ATP (Figure 4.1.4a). Similarly, binding of ADP, AMP 

and PPi [(P2O7)
4-

] also showed enhanced emission (Figure 4.1.4, Figure 4.1.5). Comparison 

among various adenosine phosphates show that ATP and ADP binding leads to saturation of 

emission at lower eq. of phosphates, whereas AMP takes more than 5 eq. for the same (Figure 

4.1.4a). These suggest highly efficient binding of multivalent guests like ADP / ATP with 

multiple binding sites, whereas a weak binding for AMP with single binding site. Moreover, we 

notice that AMP binding to ZnCPA scaffold could reach highest enhancement ratio (I/Io) of 

8.9, whereas ADP and ATP show only 4 times rise.  

 

Figure 4.1.4. Plot of a) fluorescence enhancement ratio (I/Io) and b) shifts in the absorption 

maxima of ZnCPA scaffold as a function of increasing eq. of various adenosine phosphates 

(90% aq. HEPES buffer in MeCN, c = 1 x 10
-5

 M, λex = 350 nm). 

To explain these observations, we need to consider two competing forces, i.e. 

phosphate binding induced a) enhanced emission by preventing PET and b) aggregation 

induced quenching of emission. Multidentate guests like ATP and ADP can clip to these 

multivalent ZnCPA scaffold strongly through three and two point of attachment respectively, 

leading to efficient stacking of chromophores.
8
 However, AMP with single binding site exhibits 

weakest association, which cannot facilitate clipping of chromophores (vide infra). Extent of 

shift in absorption maxima at around 503 nm (λmax) does reflects the strength of aggregation. 

Thus, a plot of red shift in absorption maxima upon binding of ATP to ZnCPA scaffold show 

largest red shift (10 nm) and decreases to 7 nm with ADP, whereas AMP shows barely 2 nm 

shift, implying weakest association (Figure 4.1.4b). This is expected as ATP with 3 point of 
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binding is expected to have strongest association through multivalent interactions followed by 

ADP and least for AMP, which interacts with only one binding site. Thus, due to inefficient 

interactions, higher AMP eq. are required to saturate all binding site leading to fluorescence 

saturation, whereas the weaker interchromophoric interactions of ZnCPA scaffold prevents 

fluorescence quenching caused by aggregation leading to such a signalling behaviour. 

 

Figure 4.1.5. Changes in emission spectra of ZnCPA scaffold upon increasing eq. of a) AMP, 

b) ADP and c) PPi. Corresponding absorption spectral changes upon varying eq. of d) AMP e) 

ADP and f) PPi are shown (90% aq. HEPES buffer in MeCN, c = 1 x 10
-5

 M). Inset shows the 

schematic illustration of the difference in binding modes of various phosphates. 

4.1.3 Supramolecular Clipping of Chromophores 

 

Figure 4.1.6. a) High resolution ESI-MS spectra of ZnCPA whereas b) is the simulated 

isotopic pattern of the same. The experimental results in a) is in close agreement with the 

expected pattern shown in b). Schematic represent the corresponding species. 
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Figure 4.1.7. a) High resolution ESI-MS spectra of ZnCPA with 1 eq. PPi showing both singly 

and doubly charged species,  whereas b) is the zoomed in portion of a) showing the isotopic 

pattern of doubly charged species. c) is the simulated isotopic pattern of the expected PPi 

clipped species, which is in close agreement with the experimental data in b). d) High 

resolution ESI-MS spectra of ZnCPA with 1 eq. ADP showing isotopic pattern of doubly 

charged species. The m/z = 1441.1923 (+2) corresponds to [2ZnCPA + 2ADP - 8ClO4]
+2

/2 

whereas the expected value is m/z = 1441.1888 (+2). Schematic in the inset represent the 

corresponding clipped product. 

To further probe into the clipping mode of phosphate binding, high resolution 

electrospray ionization mass spectrometry (HR-ESI-MS) was performed in positive ion mode. 

ZnCPA alone shows a singly charged species at m/z = 1313.01, which corresponds to 

[ZnCPA-ClO4]
+1 

ion (Figure 4.1.6).  Upon addition of stoichiometric amount of PPi, 1313.01 

peak vanishes with the emergence of a new doubly charged species at m/z = 1191.09 (Figure 

4.1.7 a, b). This exactly matches the expected m/z value of [2ZnCPA + 2PPi – 8ClO4]
+2

 

confirming the formation of PPi clipped ZnCPA dimer. Moreover, the obtained isotopic pattern 

fairly matches with the simulated data (Figure 4.1.7 b, c). Similar results were also obtained 

upon clipping with ADP, thereby suggesting highly stable complexation under ESI-MS 

conditions (Figure 4.1.7d). On the other hand, dimer masses could not be obtained upon 
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binding to monovalent guests like AMP, due to their inability to clip the chromophores. 

Moreover, higher order aggregates could not be observed most likely due to their instability 

under mass spectrometer conditions. 

 

Figure 4.1.8. Temperature dependent emission spectra of ZnCPA scaffold with a) 1 eq., b) 5 

eq., c) 10 eq. AMP and d) 1 eq. ADP (30% MeCN in aq. HEPES buffer, c = 1 x 10
-5

 M, λex = 

350 nm). On the right side is the corresponding schematic demonstrating the phenomenon. 

Further proof for the phosphate clipping in solution state comes from the temperature 

dependent spectroscopic changes. Emission spectra of ZnCPA were recorded in a partially 

aggregated state i.e. at 30% MeCN in aq. HEPES buffer (c = 1 x 10
-5

 M, λex = 350 nm), which 

showed peaks at 510 nm and 570 nm, corresponding to monomeric and aggregated species 

respectively (Figure 4.1.8a). On binding to AMP and ADP, the monomer band vanishes with 

enhancement in aggregate emission at 570 nm, indicating guest binding induced aggregation. 

When both the solutions were heated to 85 °C, the ZnCPA-AMP solution show a blue shift in 

the aggregate emission band (570 nm to 550 nm) along with the emergence of monomeric 

emission at 510 nm. This is a clear proof of weakening of aggregate leading to emergence of 

monomer emission. To rule out the possibility of AMP cleaving out of scaffold at higher 

temperature, one can see that the luminescence intensity of ZnCPA-AMP solution is higher 

than the one without AMP at 85 °C (Figure 4.1.8a). This suggest that even if partial 

deaggregation has occurred, AMP is still bound to the monomeric state leading to enhanced 

emission by preventing PET. Experiments were also done with higher eq. of AMP (5 eq., 10 
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eq.) so as to make sure all ZnCPA sites are occupied (Figure 4.1.8 b, c). In all cases, we indeed 

see the monomeric features at higher temperatures, in line with the above explanation. 

 

Figure 4.1.9. Temperature dependent variation in a) emission spectra, b) absorption spectra of 

ZnCPA with 1 eq. of ATP (30% MeCN in aq. HEPES, c = 1 x 10
-5

 M, λex = 350 nm). 

Interestingly, heating the ZnCPA-ADP solution also showed blue shift in aggregate 

emission band (578 nm to 570 nm) with 1.8 times enhancement in aggregate fluorescence, in 

agreement with weakening of the self-assembled scaffold through decreased π-π interactions, 

thus decreasing aggregation induced quenching. But, unlike the AMP case, there was no 

evolution of monomer emission, where on heating even if π-π interaction is affected, phosphate 

binding continues to clip the chromophores together (Figure 4.1.8d). Here again ADP remains 

bound to ZnCPA even at 85 °C, as evident from the fact that monomeric emission band do not 

come up. ZnCPA-ATP also behaved in a fashion similar to ZnCPA-ADP, which falls in line 

with our hypothesis (Figure 4.1.9). Even the absorption spectra at 85 °C show blue shift in peak 

maxima from 510 nm to 503 nm, confirming the lower strength of interchromophoric 

interactions. Thus, we confirm multivalent phosphate induced clipping of ZnCPA molecules, 

which keeps them together even at higher temperature. 

To gain insight into the molecular organization of these phosphate bound ZnCPA 

scaffold, TEM analysis was done. The tape like nanostructure of ZnCPA scaffolds show 

transformation into 1-D nanofibers upon interaction with ATP. Three or four of these fibers 

tend to bundle up where the width of individual fibers were ~5 nm, which closely matches the 

molecular dimension of ZnCPA with ATP attached on both sides (Figure 4.1.10a). Due to 

highly fluorescent nature of these aggregates, they could also be visualized through confocal 

fluorescent microscopy as shown in Figure 4.1.10b. We observe highly fluorescent yellow 

emissive fibrillar morphology and the emission spectra taken at these nanostructures which 

match well with the solution state measurements (Figure 4.1.10c). 
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Figure 4.1.10. a) TEM micrograph of 1-D nanofibers of ZnCPA-ATP  (0.66 eq. ATP, 5 x 10
-5

 

M solution, 80% water in MeCN). b) Confocal image of ZnCPA-ADP scaffold (1 eq. ADP, 5 x 

10
-5

 M, 30% MeCN in aq. HEPES), white arrow indicates the spot where fluorescence 

spectrum was recorded which is shown in c). d) CD signal of ZnCPA-ATP assembly (2 x 10
-5

 

M, 70% aq. HEPES in MeCN). Schematic in inset d) depicts the molecular organization 

leading to P-helical assembly. 

Interestingly, these adenosine phosphate attached scaffolds showed preferred helical 

handedness, suggesting the expression of supramolecular chirality due to the chiral nature of 

bound phosphates. This is evident from their chiroptical properties investigated through circular 

dichroism (CD) spectroscopy. ZnCPA scaffold with no chiral centres was CD silent indicating 

absence of preferred helicity into their supramolecular ordering. However, interaction with 

ATP resulted in a positive bisignated CD signal with their positive and negative maxima at 367 

nm and 336 nm respectively, with zero crossing at 355 nm (Figure 4.1.10d). This once again 

demonstrates the efficient interaction of adenosine phosphates to the ZnCPA scaffold, resulting 

in excitonic coupling of chromophores. Further details on the chirality induction process will be 

discussed in the following chapter (Chapter 4.2). 

4.1.4 Self-assembled Scaffold Based Recognition 

 To establish the role of self-assembly for enhanced phosphate recognition, guest 

induced emission changes were recorded at various degree of aggregation. Extent of 
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aggregation could be easily controlled by changing the solvent from 100% MeCN (monomeric 

state) to increasing composition of aq. HEPES buffer, leading to better aggregation. Binding of 

ADP to ZnCPA monomers (99.9% MeCN) shows nearly 50% decrease in the monomer 

emission (493 nm, Figure 4.1.11a). In a partially aggregated state (70% MeCN in aq. HEPES 

buffer), ADP binding greatly diminishes monomer band and a red shifted aggregate band 

appears at 545 nm. These data supports the fact that phosphate binding decreases emission due 

to enhanced aggregation, as aggregation quenches the emission of the chromophores. However, 

in a completely aggregated state (10% MeCN in aq. HEPES buffer), we see significant 

enhancement (> 4 times) in emission on binding with 1 eq. of ADP (Figure 4.1.11 b). Thus, we 

confirm the crucial role of self-assembled ZnCPA scaffold in efficient response to guest 

binding. Moreover, aggregated state show fluorescence turn on behavior, which is more 

desirable compared to monomeric species exhibiting fluorescence quenching on phosphate 

binding. 

 

Figure 4.1.11. Emission changes obtained on binding of one eq. of ADP to ZnCPA at a) 99.9% 

to 70%, b) 30% to 10% MeCN in aq. HEPES buffer (c=1 x 10
-5

 M, λex=350 nm).  

 Another interesting property which can be envisaged from these self-assembled 

scaffolds is its dynamic nature. This could be confirmed by competitive replacement study. 

Addition of ADP to highly emissive solution of ZnCPA-AMP (10eq.), shows quenching of 

fluorescence along with red shift of band maxima (573 nm to 585 nm) almost instantaneously 

(Figure 4.1.12). The resultant emission spectra closely resemble the ZnCPA-ADP state, 

confirming dynamic exchange of bound guest molecules. Similar observations were also made 

with AMP replacement by ATP (Figure 4.1.12). Thus, we confirm the highly dynamic as well 

as multivalent nature of these self-assembled scaffolds, which allows preferencial binding of 

ATP/ADP over AMP. 
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Figure 4.1.12. Variation in Fluorescence spectra upon competitive binding of a) ATP over 

AMP and b) ADP over AMP to ZnCPA scaffold (10% MeCN in aq. HEPES buffer, c = 1 x 10
-5

 

M, λex = 350 nm). Below is the schematic representing the competitive binding process. 

 Having proven the role of supramolecular self-assembled scaffold in enhanced 

signalling of adenosine phosphate and its dynamic multivalent preferences, in vivo studies were 

performed to prove their potential for practical applications. U-87 HeLa cells were incubated 

with ZnCPA scaffold for 24 hrs [50 M ZnCPA, 2% DMSO in aq. DMEM (Dulbecco’s 

Modified Eagle’s Medium)]. Confocal fluorescence microscopic imaging shows emission in 

two distinct wavelength range i.e. green and yellow (Figure 4.1.13). The green emission is 

expected to be coming from the monomeric ZnCPA species as seen in Figure 4.1.1b. The 

origin of yellow emission can be traced back to aggregation of ZnCPA, thus confirming the 

presence of aggregates inside cell as well. Also the high intensity yellow emission could also be 

due to binding of various phosphates inside the cell. As proven before, due to multivalent 

interactions with ATP and its high concentration inside cells, the yellow emission might 

originate from ATP binding. Thus the present system can be useful in tracking the ATP rich 

regions in cells as well as their concentration fluctuation, which can be investigated in future. 

 

Figure 4.1.13. Confocal images of U-87 HeLa cells stained with ZnCPA scaffold (50 M 

ZnCPA, 2% DMSO in aq. DMEM) collected at a) green emission and b) yellow emission, 

whereas c) shows the merged image of both emission. 
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4.1.5 Conclusions 

In conclusion, we have shown a novel design for the construction of dynamic 

multivalent scaffold by self-assembly of dipicolylethylenediamine substituted coronene 

bisimide. These functional supramolecular polymers respond to biological stimuli like 

adenosine phosphate with turn on of aggregate emission. Detailed optical, microscopic and 

mass spectrometry measurements proved the clipping mode of phosphate binding leading to 

formation of fluorescent nanofibers. Phosphate recognition based turn on fluorescence was 

utilized to prove the crucial role of self-assembly and multivalent interactions in efficient 

signalling. These dynamic polycationic scaffolds with cellular uptake holds great potential for 

in vivo and in vitro phosphate recognition. 

4.1.6 Experimental Section 

General Methods: 

Transmission Electron Microscopy (TEM): TEM measurements were performed on a JEOL, 

JEM 3010 operated at 300 kV. Samples were prepared by placing a drop of the solution on 

carbon coated copper grids followed by drying at room temperature. The images were recorded 

with an operating voltage 300 kV. For better contrast sample was stained with uranyl acetate (1 

wt % in water) before the measurements. 

Optical Measurements: Electronic absorption spectra were recorded on a Perkin Elmer 

Lambda 900 UV-Vis-NIR Spectrometer and emission spectra were recorded on Perkin Elmer 

Ls 55 Luminescence Spectrometer. UV-Vis and emission spectra were recorded in 10 mm path 

length cuvette. Circular Dichroism measurements were performed on a Jasco J-815 

spectrometer where the sensitivity, time constant and scan rate were chosen appropriately.  

NMR Measurements: NMR spectra were obtained with a Bruker AVANCE 400 (400  MHz) 

Fourier transform NMR spectrometer with chemical shifts reported in parts per million (ppm) 

with respect to TMS.  

Confocal Microscopy Imaging: Confocal Fluorescence Microscopy imaging was done at 

room temperature using a Zeiss LSM 510 META laser scanning confocal microscope with a 

laser excitation of λex = 488 nm. 

High-Resolution Mass-Spectrometry (HR-MS): HRMS measurements were performed with 

Agilent Technologies Q-TOF-LCMS system, 6538 instrument. Measurements were done in ESI 

mode (positive mode). 
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Materials: All chemicals / solvents were purchased from the commercial sources and were 

used as such. Spectroscopic grade solvents were used for all optical measurements. 

Synthesis of ZnCPA was peformed according to Scheme 4.1.1. Procedures are given below. 

 

 

Scheme 4.1.1. Chemical pathway for the synthesis of CPA and ZnCPA along with their 

schematic representation.  

Synthesis of CPA: 

  182 mg (0.41 mmoles) of 3,4,9,10-coronene tetracarboxylic dianhydride and 250 mg 

(1.03 mmoles) of N,N-Bis(2-pyridylmethyl)ethane-1,2-diamine were heated with 300 mg of 

imidazole at 110 °C along with stirring. The pasty mixture stopped stirring in 30 min. and 5 ml 

of DMF was added to continue stirring the mixture overnight at 110 
o
C. The reaction mixture 

turned its colour from brownish red to bright yellow to dark yellow. Reaction mixture was 

cooled to room temperature and water was added for precipitation. Yellow solid was filtered 

and washed with water followed by MeOH (excess) to remove imidazole and DMF. Compound 

was dissolved in CHCl3 and filtered to remove insoluble impurities. The obtained solid was 

dried under vacuum overnight at 80 °C. Product weighed 206 mg i.e. 57% yield. 
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(400 MHz; CDCl3): 9.57 (d, J=8Hz, 4H, ArH), 8.65 (d, J=8Hz, 4H, ArH), 8.38 (d, J=4Hz, 4H, 

ArH), 7.35 (d, J=8Hz, 4H, ArH), 7.13 (m, 4H, ArH), 6.87 (m, 4H, ArH), 4.20 (t, J=6Hz, 4H, 

NCH2), 3.98 (s, 8H, ArCH2), 3.14 (t, J=6Hz, 4H, NCH2CH2): 
13

C NMR  δC (100 MHz, CDCl3): 

169.5, 159.5, 149.0, 136.3, 124.0, 123.2, 122.4, 121.9, 128.7, 60.4 (all 
13

C peaks could not be 

resolved due to weak signal as a result of interchromophoric interactions). HRMS (ESI): m/z: 

calcd for C56H41N8O4: 889.3215 [M+H]
+
, found : 889.3206. 

Synthesis of ZnCPA:  

50 mg of CPA was dissolved in 25 ml of CHCl3. To the stirring solution of CPA, 1ml solution 

42 mg of Zn(ClO4)2.6H20 in MeCN was added and the whole solution was stirred for 2 hrs. A 

red color precipitate was obtained which was filtered and washed with CHCl3. The red solid 

was dissolved in minimum amount of MeCN and it was precipitated from CHCl3. The solid 

was filtered and dried in vacuum at 80 °C. 63 mg of compound was obtained (yield= 68%). 
1
H 

NMR δH (400 MHz; CD3CN): 9.55 (br, 2H), 8.74 (br, 8H), 8.12 (br, 4H), 7.68 (br, 8H), 4.61 (d, 

J=16Hz, 4H), 4.29 (d, J=16Hz, 4H), 4.14 (br, 4H), 3.28 (br, 4H). 
1
H NMR peaks were much 

broader for the coronene signals when compared to those of pyridine of DPA due to strong 

aggregation tendency at high concentration. 
13

C NMR could not be measured successfully for 

the same reason. HRMS (ESI): m/z: calcd for C56H40N8O20Cl3Zn2: 1313.0205 [M-ClO4]
+
, 

found: 1313.0108. 
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Chapter-4.2 

Molecular Chaperone Stabilized Metastable Helical Assemblies of 

Achiral Coronenebisimide Derivative 

Abstract 

Phosphate recognition driven non-covalent synthesis of helical supramolecular polymers by 

self-assembly of achiral coronenebisimide functionalized with dipicolylethylenediamine unit is 

presented. Adenosine diphosphate (ADP) induced  a left-handed helical assembly whose 

handedness could be retained even after removal of chiral auxiliary. Use of an enzyme enabled 

the removal of ADP and subsequent stabilization of helical conformation in a metastable state 

(helical memory). A molecular chaperone approach was employed for the stabilization of 

imprinted helicity in an otherwise highly dynamic assembly. Detailed kinetic analysis provides 

insight into the stereomutation process. Moreover, the stability of the the metastable state could 

be easily controlled by changing the solvent composition. Thus, we illustrate a unique 

biomimetic approach for the construction and stabilization of chiral metastable state.   

 

 

 

 

 

 

 

 

Manuscript based on this work is under preparation. 
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4.2.1 Introduction 

Asymmetric organization of chromophores, by transfer of molecular chirality into 

supramolecular level has provided new insights into understanding and applications of non-

covalent helical assemblies.
1,2

 In this regard, induction of chirality into assembly of achiral 

molecules, upon interaction with chiral guest via non-covalent forces like hydrogen bonding,
3
 

chiral solvation,
4
 acid-base/electrostatic interactions

5
 etc. has been considered as an intelligent 

design. These stimuli responsive dynamic helical assemblies have been utilized for various 

chiroptical applications like enantioselective sensors, real-time monitoring of chemical reaction 

etc.
6
  Another application of such chiral auxiliary approach is for the construction of helical 

metastable state, by removal of chiral guest molecules while preserving the helical organization 

in a so called “chiral memory”. Such systems have been greatly utilized for understanding the 

stereomutation kinetics of helical polymer and probing into various pathway complexities in 

supramolecular polymers.
7
 These phenomena, well understood in polymeric materials, finds 

greater challenge in supramolecular systems due to kinetic instability of these non-covalent 

homochiral architectures.
8
 The challenge today is to design a non-invasive means of removing 

chiral information and stabilization of helical organization in their metastable state. These have 

been mainly achieved by substituting the chiral guests with their achiral analogue to stabilize 

the kinetic state.
9
 In this context, use of biological macromolecules as a molecular chaperone, 

for stabilization of helical organization, provides an elegant design for imprinted helical 

memory in dynamic systems.   

Molecular chaperones are a group of proteins which assist in assembly/disassembly of 

biological macromolecules via non-covalent interactions.
10

 They are very essential in 

stabilizing the non-native and active conformation of biopolymers, which is central to their 

activity. For e.g. heat shock protein based chaperone stabilizes and protects the conformation of 

active protein from cellular stress and other stimuli like temperature. In this chapter, we report a 

biomimetic design of helical metastable state in dynamic assembly, by use of an enzyme as a 

molecular chaperone for its dual action, i.e. a) removal of chiral auxiliary and b) stabilization of 

homochiral metastable state. Coronene bisimide (CBI) functionalized with 

dipicolylethylenediamine motif (ZnCPA) self-assembles in water (aq. HEPES buffer), whereas 

binding to adenosine diphosphate (ADP) induces helical organization into their one 

dimensional (1-D) nanostructures. Spectroscopic and microscopic studies provided mechanistic 

insight into the unprecedented guest induced helicity in achiral CBI. Addition of enzyme 

(CIAP) competitively bind to the stacks by replacing ADP, thereby stabilizing kinetically 

trapped helical memory. Also, from a supramolecular perspective, we show that the stability of 

metastable state could be controlled just by varying solvent medium.  
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Scheme 4.2.1. Chemical structure of ZnCPA and the schematic representation of molecular 

chaperone design for imprinted helical memory. 

As per the molecular design, our studies in Chapter-2 have successfully demonstrated 

DPA functionalized diimides for specific guest recognition induced tunable chirality.
11

 

Substituting with a larger aromatic core like coronene was envisaged to bring more strength and 

kinetic stability to these supramolecular assemblies due to enhanced π- π and hydrophobic 

interactions.  Reports on removal of chiral guests often require either substitution with their 

achiral/racemic analogue or their reaction with other chemicals,
12

 which can hamper the soft 

nanostructures. We present the use of bio macromolecule as a chaperone, to bring about 

removal of chiral guests like ADP along with stabilization of helical nanostructures, through 

competitive binding at physiological conditions. Through detailed investigation, formation of a 

kinetic trap state and the existence of local minima in the energy landscape is well illustrated. 

4.2.2 Induced Circular Dichroism 

The target molecule ZnCPA was synthesized as described in previous chapter (Section 

4.1.6). This bolaamphiphilic molecule was completely soluble in non aqueous polar solvents 

like MeCN, DMF and self-assembled in water through hydrophobic and aromatic-aromatic 

interactions. Therefore, all spectroscopic studies were performed in appropriate composition of 

MeCN – aq. HEPES buffer (10 mM solution in water). On increasing percentage of aq. HEPES 

in MeCN, continuous broadening and red shift of band in absorption spectra along with 

quenching of monomer emission band and the appearance of a weakly emissive red shifted 

band was observed as shown before in Chapter 4.1 (Figure 4.1.1). These are characteristic 

features of J-type aggregate formation in coronene diimide derivatives.
13
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Figure 4.2.1. Changes in a) absorption spectra, b) emission intensity (λex=350 nm) and c) CD 

signal of ZnCPA upon addition of increasing eq. of ADP (30% MeCN in aq. HEPES buffer, c = 

2 x 10
-5

 M). Schematic in d) shows ADP binding induced helical organization into assembly of 

ZnCPA. 

Binding of homochiral guest like ADP to ZnCPA stacks results in broadening of 

absorption bands along with their red shift from 409 nm to 505 nm, indicating guest induced 

improved ordering (Figure 4.2.1a). Simultaneously, fluorescence spectra shows quenching of 

monomeric emission at 506 nm along with 3.5 times enhancement of aggregate band at 575 nm 

(Figure 4.2.1b). As discussed in previous chapter (Section 4.1.2), such a turn on of emission 

intensity has been attributed to prevention of photo electron transfer (PET) upon interaction of 

DPA substituted chromophores with adenosine phosphate.
14

 Moreover, ADP binding induced a 

left-handed helical assembly (M)-ZnCPA-ADP, as evident from the negative bisignated CD 

signal, negative at 343 nm and positive at 268 nm, with a zero crossing at 286 nm (Figure 

4.2.1c, 30% MeCN in aq. HEPES, c = 2 x 10
-5

 M). Bisignation at the red shifted π-π* transition 

(500 nm region) was also clearly visible at higher concentration (c = 4 x 10
-5

 M), indeed 

confirming the efficient binding of ADP leading to chirality transfer into assembly of achiral 

ZnCPA (Figure 4.2.2a). 
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Interestingly, plot of CD intensity on titration with ADP showed CD silent till 0.5 eq. of 

ADP, beyond which the signal increased gradually saturating at 1 eq. of ADP (Figure 4.2.2b). 

Such a non-linear response suggest a highly cooperative induction of helicity, whereas 

saturation at 1 eq. ADP once again proves clipping mode of binding. Absorption and emission 

changes were compared to understand if conformational variation has any role in such an 

unusual cooperative signaling. Simultaneous monitoring of absorption features reveal that till 

0.5 eq. ADP, there are no significant changes in spectra, beyond which the S0-S2 electronic 

transition band (330 nm) begins to broaden and S0-S1 transition band (502 nm) red shifts to 506 

nm (Figure 4.2.3a and its inset). Similar observations were made at 90% HEPES in MeCN 

wherein the evolution of CD signal was accompanied by the absorption red shift (504 nm to 

510 nm) (Figure 4.2.3b and its inset). A comparative plot of CD intensity and absorption 

maxima (π-π* transition at 500 nm region) against ADP eq. show that at both the compositions 

i.e. 70% and 90% aq. HEPES in MeCN, the changes in CD signal closely follow the absorption 

signal (Figure 4.2.3 a, b). Since such absorption changes indicate variation in supramolecular 

ordering, we propose that ADP binding induced conformational reorganization of stacks is 

responsible for such cooperative chirogenesis.
15

 

 

Figure 4.2.2. a) Induction of CD signal in ZnCPA at higher concentration (30% MeCN in aq. 

HEPES buffer, c = 4 x 10
-5

 M), showing bisignation of π-π* transition (500 nm region). b) Data 

points showing the changes in fluorescence intensity (red trace, 585 nm) and CD signal (blue 

trace, 268.5 nm) against eq. of ADP (30% MeCN in aq. HEPES buffer, c = 2 x 10
-5

 M). 

To further probe into such unusual behavior, fluorescence measurements were 

performed with increasing molar eq. of ADP. Simultaneously monitoring CD signal (268.5 nm) 

and luminescence intensity (585 nm) against varying eq. of ADP at 70% HEPES in MeCN 

shows a clear two stage transition (Figure 4.2.2b). Till 0.5 eq. ADP, we see that emission 

intensity reaches its maxima, indicating that even at lower eq. of phosphates, they bind to 

ZnCPA. Moreover, when emission reaches a maximum, CD signal is still silent. Further, CD 
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signal continues to rise till 1 eq. ADP, whereas fluorescence signal begin to decrease.
16

 As 

explained before, when the CD signal sets in, we observe stronger aggregation as seen from the 

bathochromic absorption shifts (Figure 4.2.3). Thus decrease in emission could be due to ADP 

binding induced aggregation leading to quenching of fluorescence. 

 

Figure 4.2.3. Simultaneous probing the variation in CD signal (268.5nm) and shift in 

absorption peak against eq. of ADP at a) 70% aq. HEPES, b) 90% aq. HEPES in MeCN, 2 x 

10
-5

 M; c) and d) show respective absorption spectral changes on binding to varying eq. of 

ADP. Inset in c) and d) are the zoomed in portions highlighting respective absorption changes. 

Microscopic studies were performed to gain insight into the molecular reorganization 

and two stage transitions. Transmission Electron Microscopy imaging at 0.5 eq. ADP shows the 

formation of well-defined one dimensional individual fibers with width ~ 3.5-4.5 nm (Figure 

4.2.4a) matching the molecular dimension of ZnCPA attached to ADP on one sides and growth 

axis being the π-π stacking direction. These high aspect ratio individual fibers bundles together 

on increasing from 0.5 eq. to 1 eq. ADP, wherein all the binding sites are occupied. Widths of 

these nanofibers were ~ 4.6 nm (Figure 4.2.4 b, c white arrow) which matches the molecular 

dimension of chromophores with both sides phosphates bound as shown in the schematic. The 

bundling of nanofibers can be due to increased lipophilic character upon ADP binding, which 

decreases the interstack electrostatic repulsion when all the binding sites are occupied. 
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Figure 4.2.4. TEM images of ZnCPA with a) 0.5 eq. ADP and b), c) 1 eq. ADP (70% water in 

MeCN, 5 x 10
-5

 M solution). Samples were post stained with uranylacetate (1 wt % in water) 

before measurements. Schematic in d) represent the probable supramolecular organization. 

4.2.3 Chaperone Stabilized Imprinted Helicity 

 Having understood the chiral auxiliary (ADP) induced helicity into the assembly of 

achiral ZnCPA, we investigated the stability of these stacks to retain its handedness even after 

removal of chiral information, i.e. ADP. First, we introduced an inorganic polycationic 

scaffold, aminoclay (details in Section 4.2.7), in an attempt where ADP which are bound to 

ZnCPA stacks, can preferentially interact with multivalent positively charged aminoclay, 

thereby removing them from the ZnCPA stacks. However, addition of aminoclay to (M)-

ZnCPA-ADP led to instantaneous loss of CD signal (Figure 4.2.5a). Absorption spectra also 

show a blue shift of band (493 nm to 496.5 nm) which indicates the removal of ADP from the 

stacks, thereby weakening of aggregates. Thus, we confirm that the stacks are so dynamic that 

the removal of phosphate cannot stabilize the preferred helical organization. So, in a more 

appropriate approach, we could substitute bound ADP with its achiral analogue PPi [(P2O7)
4-

] 

through competitive binding of multivalent guest, which could then retaining its helical 

organization. To the contrary, we found that increasing amount of PPi also lead to complete 

loss of CD signal (Figure 4.2.5 c). The lost helicity reiterates the low stability and highly 

dynamic nature of these chiral assemblies. Thus, retention of helicity in absence of chiral guests 
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mandates the stabilization of these stacks with an external agent leading to a kinetically trapped 

chiral memory state. Therefore, we chose an enzyme, calf-intestinal alkaline phosphatase 

(CIAP) for its dual action i.e. 1) hydrolysis of phosphoanhydride bonds of ADP, resulting in 

phosphate and neutral adenosine
17

 and 2) its negatively charged surface (vide infra) which is 

aptly suited to stabilize the positively charged assembly of ZnCPA through electrostatic 

interactions. 

 

Figure 4.2.5. Variation in CD signal of (M)-ZnCPA-ADP upon addition of a) inorganic 

polycationic scaffold i.e. aminoclay, c) PPi for competitive replacement of bound ADP. b) 

shows change in absorption spectra corresponding to a) (70% aq. HEPES in MeCN, 2 x 10
-5

 

M). d) Schematic representation of the processes shown in a) and c).  

Zeta potential measurement for CIAP confirmed negatively charged surface (-16.8 mV) 

whereas ZnCPA with cationic Zn
2+

 on either side of molecule was shown to be positively 

charged (+18.7 mV) (Figure 4.2.6a). Upon mixing the two solutions, i.e. ZnCPA and CIAP, the 

surface shows charge neutralization, indicating binding of CIAP to ZnCPA stacks through 

multivalent electrostatic interactions (90% aq. HEPES buffer in MeCN, c = 2 x 10
-5

 M). Thus, 

we envisaged that CIAP can be used to remove the bound ADP and stabilize the chiral memory 

state. 
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Figure 4.2.6. a) Zeta potential measured for ZnCPA stacks, CIAP and their mixture. Variation 

in b) fluorescence and c) CD spectra upon addition of CIAP (0.28 U/ml) to (M)-ZnCPA-ADP 

(1 eq.) (90% aq. HEPES in MeCN, 2 x 10
-5

 M). d) TEM micrograph of self-assembled ZnCPA-

ADP (1 eq.) upon addition of CIAP (0.28 U/ml) (90% water in MeCN, 2 x 10
-5

 M). For better 

contrast in TEM samples were post stained with uranylacetate (1 wt % in water) before 

measurements. 

 Role of CIAP in construction and stabilization of chiral memory state was investigated 

spectroscopically. Since binding of ADP has been shown to enhance the emission intensity, this 

could be used as a useful tool to probe the removal of chiral auxiliary. Thus, an aq. HEPES 

solution of CIAP was added to (M)-ZnCPA-ADP (90% aq. HEPES in MeCN with 1 eq. ADP, 

2 x 10
-5

 M) and emission spectra were obtained immediately. We see that fluorescence signal 

quenches completely to resemble the state without any ADP, indicating that all ADP have been 

replaced from the stack (Figure 4.2.6b).  Slight enhancement in emission compared to unbound 

ZnCPA is due to CIAP binding to stacks, as we notice slight increase in emission upon 

addition of CIAP to free ZnCPA stacks (Figure 4.2.6b). This also supports the previous 

conclusion of interaction between ZnCPA and CIAP, as evident from zeta potential 

measurements. Having proven the very fast removal of bound ADP upon interaction with 
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CIAP, we looked at the corresponding CD signal changes. Interestingly, there was no 

significant change in the CD signal after CIAP addition at 20
 °

C (Figure 4.2.6c).
18

 That is to 

say, we have shown complete removal of chiral auxiliary without disrupting the helical 

organization in a dynamic system. Further proof of retaining self-assembled nanostructure 

comes from the TEM analysis of (M)-ZnCPA-ADP upon addition of CIAP. We observe that 

the well defined 1-dimensional fibrillar morphology of ADP bound stacks is retained even after 

removal of ADP (Figure 4.2.6d). This once again confirms the role of CIAP in providing 

conformational stability to dynamic assembly. These experiments clearly indicate the 

stabilization of chiral metastable state into a local minima in energy landscape leading to chiral 

memory (imprinted chirality), where the strength of memory would be governed by the 

parameters like temperature and interchromophoric interactions (vide infra). 

4.2.4 Role of Enzyme 

Results thus far have proven that addition of CIAP leads to removal of bound ADP 

from the ZnCPA stacks and subsequent binding of CIAP to the stacks. However, to investigate 

into the fate of ADP in presence of enzyme, detailed spectroscopic investigations were 

performed. For e.g., to probe the enzymatic hydrolysis of ADP in presence of CIAP, 
31

P NMR 

of ADP was recorded in pure D2O and in 10% CD3CN in D2O (Figure 4.2.7a). It is to be noted 

that since all the ADP binding studies were performed in MeCN - aq. HEPES composition, 

NMR measurements were also done in same solvent mixture. In pure aq. HEPES Solution, we 

notice that the signal corresponding to ADP at -11 ppm vanishes with time in presence of CIAP 

(2), indicating complete hydrolysis of ADP in presence of enzyme. However, when the same 

experiments were repeated in presence of 10% CD3CN in D2O, ADP persists without 

hydrolysis (4), implying enzyme inactivity. Thus we conclude that CIAP shows enzymatic 

action only in 100% aqueous medium (aq. HEPES buffer), whereas in presence of even 10% 

MeCN in aq. HEPES, which is essential for ZnCPA based study, it loses its activity, probably 

due to loss of enzyme’s active conformation in organic solvents.
19

 Having confirmed that the 

enzyme do not hydrolyze the ADP, but we have already shown its completely removal from the 

stacks in presence of CIAP (Figure 4.2.6b), suggest that the negatively charged CIAP is 

competitively replacing the bound ADP and in the process stabilizing the helical organization 

as shown in schematic (Figure 4.2.7b). This is analogous to “molecular chaperones”, which 

provide stability to the functional conformation of macromolecules.
20

 In our case, the CIAP 

based protein molecules are utilized for stabilizing the chiral memory based kinetic state via 

non-covalent forces. Detailed experimental evidences described below confirmed the 

hypothesis of bound ADP replacement by CIAP and its interactions with the stacks along with 

loss of enzymatic activity.       
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Figure 4.2.7. 
31

P NMR of ADP recorded in D2O (1 and 2) and in 10% CD3CN in D2O (3 and 4) 

to probe the enzymatic cleavage of ADP with CIAP. All CIAP based measurements (2 and 4) 

were performed after 12 hrs of CIAP addition to a 2 x 10
-3 

M solution of ADP. Schematic in b) 

represents the action of CIAP in competitive replacement of ADP and stabilization of stacks. 

 Emission spectra of (M)-ZnCPA-ADP were monitored with increasing amount of 

CIAP added, which show gradual quenching. Interestingly, plot of variation in fluorescence 

intensity (580 nm) versus time, upon increasing amount of CIAP added at regular interval 

showed a stepwise sharp decrease in emission with each addition (Figure 4.2.8a). Moreover, the 

sharp decrease followed by no further change till the next aliquot of CIAP, suggest that the 

enzyme is no more a catalyst but as a ligand for replacing ADP. For enzyme to be active as a 

catalyst, we should have observed a fluorescence decay kinetics due to time dependent 

enzymatic hydrolysis. Secondly, the extent of ADP removal from ZnCPA stacks is directly 

proportional to the net concentration of CIAP added (till a critical concentration when all ADP 

are removed). This once again rules out the catalytic behaviour, where the concentration of 

catalyst governs the rate of the reaction and not the percentage conversion. Thus we confirm the 

loss of enzyme activity in 10% MeCN as well as fast removal of bound ADP from the stacks.      

 

Figure 4.2.8. a) Time dependent variation in emission intensity of ZnCPA-ADP upon 

sequential addition of CIAP aliquots (90% aq. HEPES in MeCN, 2 x 10
-5

 M). Red arrow 

indicate addition of CIAP in aliquots. b) Emission spectra of ZnCPA in a partially aggregated 

state (70% aq. HEPES buffer in MeCN, 2 x 10
-5

 M) upon binding to ADP followed by CIAP. 
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To further elucidate the binding of enzyme to the ZnCPA stacks, emission changes 

upon ADP binding followed by CIAP addition were monitored in a partially aggregated state 

(70% aq. HEPES buffer in MeCN). In absence of any phosphate, in 1 we observe two bands at 

500 nm and 580 nm corresponding to monomer and aggregate emission implying partial 

aggregation in 70% aq. HEPES buffer (Figure 4.2.8b). Binding of ADP leads to complete 

aggregation as shown by loss of monomer band and enhanced aggregate emission in 2. Upon 

addition of CIAP, we see decrease in aggregate emission intensity indicating removal of ADP 

in 3. But as monomer band did not reappear suggest the conformational stabilization by binding 

of CIAP to the stacks (Figure 4.2.8b). CD spectra of ZnCPA stacks in presence of CIAP alone 

did not show any characteristic signal suggest its role only as a structure stabilizing motif and 

not as chiral auxiliary for induction of helicity (Figure 4.2.9a). Moreover, when ADP and CIAP 

were premixed before injecting into the ZnCPA stacks (90% aq. HEPES in MeCN), complete 

loss of CD signal was observed (Figure 4.2.9b). This again reiterates the preferential binding 

of CIAP over ADP, which cannot induce helicity into the ZnCPA stacks. With all the 

above experiments we have conclusively proven the following: i) Enzyme activity of CIAP is 

lost in presence of 10% MeCN in aq. HEPES buffer, ii) negatively charged CIAP competitively 

binds to ZnCPA stacks via electrostatic interactions and iii) the removal of ADP upon CIAP 

addition is very fast (<  5sec).     

 

Figure 4.2.9. Control experiments showing a) CD signal upon addition of CIAP to ZnCPA 

stacks without ADP and b) complete loss of CD signal upon premixing of ADP (1 eq.) and 

CIAP (0.28 U/ml) prior to its interaction with ZnCPA stacks, confirming that the enzyme 

preferentially binds to the stacks in comparison to ADP and thus loss of helicity (90% aq. 

HEPES buffer in MeCN, 2 x 10
-5

 M). 
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4.2.5 Kinetics of Stereomutation 

Having constructed the imprinted (M)-ZnCPA-CIAP based metastable state in 

coronenebisimide assembly, we probed into the stereomutation kinetics i.e. conversion from 

(M)-ZnCPA-CIAP to (rac)-ZnCPA-CIAP. Time dependent variation in CD signal (268.5 nm) 

at various temperatures show the transition from imprinted helical (M)-ZnCPA-CIAP to (rac)-

ZnCPA-CIAP. We observe that the rate of racemization increases as we increase the 

temperature from 25 
°
C to 30 

°
C, leading to complete loss of CD signal at varying time scale 

(Figure 4.2.10a). This clearly proves that the racemization is an activation energy driven 

process as indicated in the energy level diagram (Figure 4.2.11, c d). Interestingly, at lower 

temperatures like 2.5 
°
C, the kinetics becomes so slow that we do not see any significant loss of 

CD signal with time, confirming the integrity of helical organization leading to a metastable 

state. When same experiment was performed without CIAP, we observe complete retention of 

CD signal even at temperatures like 30 
°
C (Figure 4.2.10b, black trace). These experiments 

confirm the retention of imprinted handedness even in the absence of chiral guest (chiral / 

helical memory).  

 

Figure 4.2.10. Time dependent variation in CD signal intensity of (M)-ZnCPA-ADP (1 eq.) 

monitored at 268.5nm, upon addition of CIAP (0.28 U/ml) at a) varying temperatures (70% aq. 

HEPES in MeCN) and b) varying solvent composition at 30 °C (c = 2 x 10 
-5

 M). CD intensities 

are normalized for ease of comparison. 

 As aq. HEPES induces interchromophoric interaction in ZnCPA, we envisaged that the 

exciton coupling and strength of chiral memory could be improved by increasing composition 

of aq. HEPES in MeCN. Thus, time dependent CD intensity was monitored as a function of 

solvent composition. We notice that at 30 °C, as we increase the composition from 70% to 80% 

aq. HEPES in MeCN, the kinetics of racemization decreases (Figure 4.2.10b, red and blue 

trace).
21

 Looking at the energy level diagram, increasing composition of aq. HEPES buffer 
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stabilizes the (c) memory state (Figure 4.2.11), consequently higher activation energy is 

required for stereomutation. Thus, variation in solvent composition provides a unique and 

simple method to control the strength of helical memory and modulate the stereomutation 

kinetics. 

 

Figure 4.2.11.Energy level diagram providing a qualitative picture of the probable change in 

free energy at each stage of chiral memory process along with their schematic representations.  

To gain control over erasing the imprinted helicity, temperature dependent experiments 

were performed. Monitoring CD signal (268.5 nm) over one heating-cooling cycle for the two 

helical stacks i.e. (M)-ZnCPA-ADP and (M)-ZnCPA-CIAP showed clear differences. The 

ADP bound helical stacks i.e. (M)-ZnCPA-ADP showed CD silent features at elevated 

temperature, whereas complete recovery of signal upon cooling (Figure 4.2.12a). From the 

previous chapter (Section 4.1.3), we have shown that the clipped phosphates do not detach even 

at higher temperatures. So the loss of CD signal at higher temperatures could be due to 

weakening of aggregates leading to poor exciton coupling, resulting in racemization of helical 

stacks. However, upon cooling it regains the same CD signal as the chiral auxiliary (ADP) is 

still bound to the stacks. But, in the (M)-ZnCPA-CIAP imprinted memory state, upon cooling 

we do not observe any CD signal as the chiral guest (ADP) has been replaced with CIAP and 

there is no drive to force them into chiral stacks anymore (Figure 4.2.12b). Interestingly, upon 

partial racemization of helical memory by heating till 30 
°
C, further cooling continues to retain 

its segmental helicity and rules out any chiral amplification or nucleation-elongation pathways 

(Figure 4.2.12c).
22
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Figure 4.2.12. Temperature dependent variation in CD intensity upon heating and cooling (M)-

ZnCPA-ADP (1eq. ADP) a) without CIAP showing complete recovery,b) with CIAP (0.28 

U/ml) showing complete racemization and c) with CIAP(0.28 U/ml) upon heating till 30 °C for 

partial  racemization and subsequent cooling, (monitored at 268.5nm, 70% aq. HEPES buffer 

in MeCN, 2 x 10
-5

 M).d) Schematic representation of racemization process in presence of CIAP. 

4.2.6 Conclusions 

In conclusion, we have demonstrated DPA functionalized CBI as a supramolecular 

design principle for ADP binding induced supramolecular helicity. We have successfully 

created a metastable chiral memory state by removal of chiral auxiliaries in a highly dynamic 

self-assembly. Use of enzyme as a biomimetic analogue of molecular chaperone was essential 

for the stabilization of imprinted helical conformation in an otherwise dynamic assembly. 

Detailed spectroscopic and microscopic investigations confirmed the role of enzyme in removal 

of bound ADP and stabilization of trapped kinetic state. Finally, we demonstrate a unique 

method to control the strength of memory, just by changing the solvent medium. With this 

imprinted memory, we can work towards better kinetically stable systems for second generation 

helicity transfer and chiral amplification and asymmetric catalysis. 
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4.2.7 Experimental Section 

General Methods:  

Transmission Electron Microscopy (TEM): TEM measurements were performed on a JEOL, 

JEM 3010 operated at 300 kV. Samples were prepared by placing a drop of the solution on 

carbon coated copper grids followed by drying at room temperature. The images were recorded 

with an operating voltage 300 kV. In order to get a better contrast samples were stained with 

uranyl acetate (1 wt % in water) before the measurements.  

For TEM, water was used instead of aq. HEPES solution to avoid masking of nanostructures 

due to HEPES deposition upon drying. 

Optical Measurements: Electronic absorption spectra were recorded on a Perkin Elmer 

Lambda 900 UV-Vis-NIR Spectrometer and emission spectra were recorded on Perkin Elmer 

Ls 55 Luminescence Spectrometer. UV-Vis and emission spectra were recorded in 10 mm path 

length cuvettes. Fluorescence spectra of solutions were recorded with 350 nm excitation 

wavelength. Circular Dichroism measurements were performed on a Jasco J-815 spectrometer 

where the sensitivity, time constant and scan rate were chosen appropriately. Corresponding 

temperature dependent measurements were performed with a CDF – 426S/15 Peltier-type 

temperature controller with a temperature range of 263-383 K and adjustable temperature slope.  

NMR Measurements: NMR spectra were obtained with a Bruker AVANCE 400 (400  MHz) 

Fourier transform NMR spectrometer with chemical shifts reported in parts per million (ppm) 

with respect to TMS. 

Sample Preparation: Aq. HEPES buffer used was a 10 mM HEPES solution in water. All 

samples for spectroscopic measurements were prepared by injecting the stock solution of 

ZnCPA in MeCN into appropriate volume of solvent (aq. HEPES buffer and MeCN). To that 

required amount of phosphates were injected and the solution was mixed by manual shaking 

before measurements.  

Commercially available CIAP was 2.8 units per mg and stock solution of CIAP was prepared 

by dissolving 1 mg of CIAP in 80 µl of aq. HEPES buffer. For each measurement, 20 µl of this 

stock solution was added into 2.5 ml of required solution making the net CIAP concentration to 

be 0.28 U/ml. 

Materials: 3,4,9,10-coronenetetracarboxylic dianhydride,
23

  N,N-Bis(2-pyridylmethyl)ethane-

1,2-diamine
24

 was synthesized based on reported procedure. CIAP was purchased from Sisco 

Research Laboratory Pvt. Ltd. India. All other chemicals were purchased from the commercial 
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sources and were used as such. Spectroscopic grade solvents were used for all optical 

measurements.  

Aminoclay: The amino clay used is a layered magnesium organosilicate having the structure 

analogous to 2:1 trioctahedral smectites with an approximate composition of 

R8Si8Mg6O16(OH)4, where R is covalently linked aminopropyl substituents. These are highly 

soluble in water due to covalent functionalization with organo amines.
25

 The resultant amino 

functionalized clays, amino clay are soluble in water via protonation of their amine groups and 

exfoliate into single layers due to charge repulsion. These exfoliated sheets resemble like 

multivalent 2D cationic macromolecules and can be used to co-assembled anionically charged 

molecules. 

Synthesis of ZnCPA: This was synthesized as described in the previous chapter (Section 

4.1.6). 
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Chapter-5 

Homotropic and Heterotropic Allosteric Regulation of     

Supramolecular Chirality 

Abstract 

Allosteric regulation, a key biological phenomenon, has been utilized by nature to control 

various processes. In this chapter, we have demonstrated it for controlling the supramolecular 

handedness of an artificial self-assembled system. Supramolecular assembly of Perylene 

bisimide (PBI) functionalized with dipicolylethylenediamine (DPA) binding sites demonstrates 

bistable chiral on-off state by the non-covalent interaction of adenosine phosphate guest. Both 

homotropic and heterotropic allosteric control of supramolecular chirality in this otherwise 

helically dormant assembly could be achieved by the binding of chiral guest (ADP) and achiral 

phosphate guest (PPi), respectively. Through detailed spectroscopic and morphological 

investigations, the role of supramolecular reorganization in such an effect has been clearly 

established. Thus, we present a stimuli responsive helical supramolecular polymer, which show 

both homotropic and heterotropic allosteric effects with cooperative signalling, hitherto 

unknown in artificial biomimetic systems.  
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5.1 Introduction 

  Macromolecular helical assemblies have inspired chemists not only as structural 

mimics of biomolecules, but also as model systems to understand the chiral amplification in 

nature.
1
 These assemblies are mainly constructed by the presence of a chiral centre in the 

monomeric unit itself.
2
 But, such a design involves greater synthetic challenge, wherein 

creation of opposite handed assembly requires both the enantiomeric monomer units. In this 

respect, asymmetric synthesis of helical (supramolecular) polymers obtained via non-covalent 

binding of chiral guests (auxiliaries) to achiral/racemic assemblies offer a simplistic synthetic 

design with easily switchable helicity and novel chirotechnological functions.
3 

For example, 

this design has been used to construct metastable helical states
4
 (helical memory) from 

conformationally stable assemblies to study various stereomutation processes and its 

application in enantiomeric purification. Dynamic assemblies with stimuli responsive 

handedness have been utilized as chiroptical sensors to determine the absolute chirality of 

natural products, drug molecules and enantiomeric excess of chiral mixtures.
5
 Another 

important aspect which can be envisaged from such macromolecular systems with multiple 

binding sites is the allosteric cooperativity, a strategy vastly employed by nature for efficient 

regulation of a number of biological processes.
6 

Biomimetic molecular analogues of allosteric 

cooperative binding with non-linear response to analyte concentrations have recently gathered 

much attention. Such systems have been employed for the design of sensors with amplified 

signalling, wherein a small change in the analyte concentration at the steep transition region is 

expressed into a large variation in the output signal.
7
 Although many molecular complexes have 

been investigated for such purposes, an allosteric modulation of supramolecular chirality in 

extended helical assemblies of π-conjugated chromophores still remains underexplored. 
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Scheme 5.1. a) Schematic representation of conformational variation leading to homotropic 

and heterotropic allosteric effects. b) Shows the cooperative binding of dioxygen to 

haemoglobin as a well-known example of allosteric effect. Adapted with permission from ref. 

6b, copyright 2008, Macmillan Publishers Ltd: Nat. Chem. Biol.; Adapted with permission 

from ref. 6c, copyright 2009, Wiley-VCH. 
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 Allosteric communication across multiple binding sites allows the ligation at one site to 

influence the outcome of subsequent binding at remote place and which is usually achieved due 

to conformational variation of the receptors upon guest recognition (Scheme 5.1a). The initial 

ligand binding can either enhance or hinder further binding to the host leading to either positive 

or negative cooperativity, respectively. Another classification can also be made depending on 

whether the subsequent binding is by same or different guest, leading to homotropic or 

heterotropic allosteric regulation, respectively.
7a-b

 Nature has extensively utilized this 

phenomenon for amplified signalling and controlling complex processes like autoregulation. 

One of the well-known examples is that of oxygen molecules binding to haemoglobin in a 

positive allosteric manner, as characterized by an initial lag phase followed by a sharp rise in 

signal intensity (Scheme 5.1b).
6
 This has also been assigned to conformational change in 

metalloporphyrin assembly upon dioxygen binding, leading to such effects. Many proteins 

undergo nucleotide binding induced allosteric transformation, which are very crucial for their 

activity.
8
 In specific, adenosine triphosphate (ATP) has been well utilized as an effector 

molecule in various enzymatic processes, both as an inhibitor or activator. For example, 

glycolysis is mediated by Phosphofructokinase-1 (PFK-1) enzyme, where ATP is involved in 

both homotropic and heterotropic allosteric processes, leading to its autoregulation.
9
 In almost 

all these cases, multivalent interactions between host and guest is essentially involved.  

5.2 Design of Artificial Allosteric System 

 In this chapter, we report a supramolecular polymeric multivalent scaffold, which 

exhibits both homotropic and heterotropic allosterism in the expression of chirality, by dynamic 

conformational changes in response to the binding of various adenosine phosphates. Co- 

assembled stacks of Perylene bisimide (PBI) and ATP exist in on and off chiral states 

depending upon the concentration of ATP (Scheme 5.2). Detailed spectroscopic investigations 

suggested two different molecular assemblies responsible for such “all or nothing” behaviour. 

This is also reflected in their microscopic characteristics showing a transition from two 

dimensional (2-D) sheets to one dimensional (1-D) nanofibers in their off and on state 

respectively. The ATP bound helically dormant off-state could be stimulated to chiral on-

state either by further addition of ATP (homotropic) or even by the addition of other ditopic 

guests like achiral pyrophosphate (PPi, P2O7
4-

) or  ADP (heterotropic). Through detailed 

investigations, a mechanistic insight into this unprecedented allosteric induction of chirality in 

extended assembly of chromophores is provided. 

 Towards the realization of allosteric regulation of chirality in artificial multivalent 

systems, we designed a PBI chromophore (PDPA), end functionalized with 

dipicolylethylenediamine-Zinc (DPA-Zn) receptor motifs (Scheme 5.2), which is known to 
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specifically bind to phosphates.
10

 Hence, adenosine phosphates have been used as the chiral 

guests, which can assist in chromophoric assembly and bias the helical handedness of the 

resultant supramolecular stacks. 
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Scheme 5.2. Chemical structure of PDPA and schematic of the guest induced allosteric 

regulation of supramolecular chirality in PDPA-assembly. 

 We first constructed self-assembled stacks of PDPA in aq. HEPES buffer/CH3CN 

solvent mixture (9/1 v/v, c = 2 x 10
-5

 M). PDPA is molecularly dissolved in CH3CN due to the 

presence of two polar end groups, whereas water induces interchromophoric association due to 

hydrophobic and π-π stacking interactions. Spectroscopic investigations show characteristic 

signatures of a PBI assembly. For e.g. the UV/Vis absorption spectrum of PDPA in MeCN 

showed sharp vibronic features at 460 nm, 488 nm and 521 nm due to S0-S1 electronic 

transition with the breathing vibration of perylene core polarized along the long molecular axis, 

characteristic of monomeric PBI chromophores (Figure 5.1a).
11

 Upon increasing the percentage 

of aq. HEPES buffer in MeCN, broadening of absorption spectra and change of relative 

absorbance peak ratio were observed. Fluorescence signal (λex = 470 nm) in Figure 5.1b show 

sharp bands at 536 nm, 572 nm and 625 nm in MeCN which are typical of monomer emission 
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in PBI. Upon increasing composition of aq. HEPES, we see a gradual quenching of the 

monomer emission with no additional band. The excitation spectra collected at 600 nm also 

revealed its monomeric origin (Figure 5.1c). These spectral features confirm that the PDPA 

chromophores are arranged in a „H-type‟ cofacial manner (H1-state).
2
 Percentage of 

aggregation was also plotted with varying composition of MeCN in aq. HEPES (Figure 5.1d), 

which shows that at 10% MeCN in aq. HEPES buffer, ~ 93% of PDPA molecules are 

aggregated.
12

 These H1 assembly formed 2-dimensional nanosheets (Figure 5.1e), as visualized 

through transmission electron microscopy (TEM).  
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Figure 5.1. Self-assembly of PDPA: Solvent dependent a) absorption and b) emission spectra 

(λex=470 nm) of PDPA with varying percentages of MeCN in aq. HEPES buffer (c = 2 x 10
-5

 

M). c) Excitation spectra of PDPA assembly collected at 600 nm showing monomeric features 

(10% MeCN in aq. HEPES solution, c = 2 x 10
-5

 M). d) Plot of percentage aggregation at 

varying composition of MeCN in HEPES.
12

 e) TEM micrograph of nanostructure obtained from 

2 x 10
-5

 M solution of PDPA (10% MeCN in water) without  ATP (PDPA-stack). f) CD 

spectrum of PDPA with 1 eq. ATP (10% MeCN in aq. HEPES solution, c = 2 x 10
-5

 M). 

When the H1-assembly was mixed with one eq. (eq.) of ATP, a positive bisignated CD 

signal, i.e. positive at 518 nm followed by negative at 480 nm, in the PBI absorption region 

with a zero-crossing at 507 nm was observed,
2n

 characteristic of excitonically coupled right-

handed helical organization of PBI chromophores (Figure 5.1f). Such efficient chirality 

induction to achiral chromophoric assembly further reveals the specific binding of phosphate 
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guest molecules to the DPA-Zn sites of the receptor stacks, in congruence with the molecular 

design.  

5.3 Supramolecular Reorganization for Allosteric Effect 

Interestingly, CD titration experiments in which increasing eq. of ATP was added to 

the H1-stacks show that signal remains silent till 0.5 eq. ATP, beyond which sharp rise in CD 

signal was observed, which continues to enhance passing through an isodichroic point. Highly 

cooperative nature of this chiral induction process was further reflected in the plot of CD 

intensity at 480 nm with eq. of ATP guests, which clearly shows a non-linear sigmoidal curve 

with a sharp inflection point at 0.5 eq. of ATP (Figure 5.2d).
13
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Figure 5.2. Homotropic allosteric regulation of helicity: Spectroscopic changes characterizing 

H1 to H2 transition of PDPA-assembly upon ATP binding (legends in a-c show eq. of ATP). 

Evolution of a) CD signal and d) plot of CD intensity at 480 nm upon ATP titration. b) Shows 

the normalized absorption changes and corresponding variation in λmax is plotted in e) to show 

two states of the assemblies on ATP binding. c) Shows decrease in monomeric emission 

intensity and evolution of new emission band upon ATP addition (λex=470 nm), whereas f) 

shows comparative emission plot at 593 nm and 700 nm upon selective excitation at 470 nm 

and 570 nm respectively (CH3CN in aq. HEPES, 1:9 v/v, c =2 x 10
-5

 M). 

To gain mechanistic insights into the cooperative process in PDPA-assembly, we have 

performed detailed spectroscopic measurements, which revealed the allosteric mechanism 

behind the observed “all or nothing” behaviour giving rise to bistable on/off chiral assembly. 

Monitoring the changes in absorption spectra upon ATP titration, a continuous decrease in 
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absorbance along with broadening of bands were noticed, without any significant shift in λmax 

till 0.5 eq. of ATP. However, on further addition of ATP, the peak maxima takes a 

bathochromic jump from 499 nm to 514 nm and 535 nm to 564 nm which saturates beyond 0.8 

eq. of ATP. This two-state change is lucidly visualized in the normalized absorption spectra and 

the plot of λmax vs eq. of ATP, consistent with the CD spectral changes (Figure 5.2 b, e).  

Furthermore, fluorescence intensity monitored upon ATP titration resulted in a gradual 

decrease in the residual monomeric fluorescence (λex = 470 nm) at 593 nm till 0.5 eq. of ATP 

(Figure 5.2c). Such an observation has already been assigned to H-aggregates of PBI and 

indicates that initial addition of ATP ensures complete aggregation of PDPA monomers to H1-

assembly.  Beyond 0.5 eq. of ATP, as the CD signal begins to appear, a new red-shifted 

emission peak at 665 nm emerged, which also saturates along with the CD signal. To probe into 

the genesis of this band, an excitation spectrum was recorded by monitoring the emission at 675 

nm, which showed a maximum of 514 nm, which is 20 nm hypsochromically shifted compared 

to the monomer absorption (Figure 5.3b), indicating a new kind of fluorescent H-type assembly 

(H2-assembly).
14

 Probing the emission intensity at 593 nm (monomer) and 700 nm (H2-

assembly) upon selective excitation at λex = 470 nm and 560 nm respectively, revealed that the 

red shifted emission sets in only after 593 nm band disappears, showing their mutually 

exclusive nature (Figure 5.2f, 5.3a). The observation of initial lag phase in all the above three 

measurements (Figure 5.2 d, e, f), could not have been due to phosphate binding selectively to 

monomers initially, as ~93% of PDPA molecules were already aggregated without ATP 

binding under these conditions (Figure 5.1d). 
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Figure 5.3. Emission and excitation spectral changes upon H1 to H2 transition of PDPA 

assembly, induced by ATP: a) Emission spectra upon selective excitation of aggregate at λex= 

570 nm. b) Comparative excitation spectra at various states of aggregation i.e. in H1 and H2 

state collected at various fluorescence bands. All measurements were done in 10% MeCN in 

aq. HEPES solution, c = 2 x 10
-5

 M PDPA. 
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All the above spectroscopic signatures clearly indicate a supramolecular reorganization 

being responsible for allosteric cooperativity. In order to obtain direct evidence of 

conformational transition, detailed transmission electron microscopy (TEM) imaging on 

various PDPA assemblies were performed. PDPA alone self assembles to form two-

dimensional (2-D) sheets (Figure 5.1e), where the electron density mapping of exposed edges 

revealed the thickness of individual layers to be around 3.8 nm, which corresponds to the 

molecular length of PDPA. This suggests that the molecules are arranged in a perpendicular 

fashion along the thickness of the sheets via π-stacking interactions, with hydrophilic DPA-Zn 

binding sites exposed outside. Up to 0.4 eq. of ATP binding (H1-state), their 2-D morphology 

remains unperturbed, in agreement with their unaltered spectroscopic signatures, suggesting 

similar molecular organization to that of unbound stacks (Figure 5.4a). Upon further binding of 

ATP, which leads to molecular reorganization from H1-state to H2-state, a morphology 

transition from 2-D sheets to 1-D nanofibers was observed. TEM images show fiber bundles 

composed of 2-4 nanofibers with an average width of 5.0 nm, which correlates to the molecular 

dimension of PDPA molecules with ATP bound on both DPA-Zn sides (Figure 5.4 b-d). The 

length of these fibers is in the range of 300-500 nm, where growth is the direction of π-

stacking. 
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Figure 5.4. Morphological evidences of H1 to H2 transition: TEM images of nanostructures 

obtained from 2 x 10
-5

 M solution of PDPA (10% MeCN in water) with a) 0.4 eq. ATP (H1), b) 

and c) 1 eq. ATP (H2). d)  Schematic depicting the morphology transition of PDPA-assembly 

upon ATP binding along with the probable molecular organization in each state. 
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Thus, the conformational change of PDPA assembly from H1-state to H2-state is 

pivotal for the cooperative expression of helicity upon guest binding. The H1-state can be best 

described as a prochiral assembly, which remains in a helically dormant state despite the 

attachment of chiral guests to nearly half of its available binding sites. However, further 

binding of ATP molecules to the remaining free sites of the assembly activated its helical 

conformation, thus exemplifying a homotropic allosteric mechanism for the regulation of 

supramolecular chirality. For the present system, homotropic allostery could be achieved only 

in presence of ATP and failed with other phosphates like ADP/AMP/PPi.
15

 

5.4 Heterotropic Allosteric Regulation of Helicity 

We envisage that, any heterotropic binding of multivalent guest molecules to prochiral 

H1-assembly, would also trigger the molecular reorganization to induce supramolecular 

chirality. Thus, attempts were made to demonstrate heterotropic allosteric regulation of 

helically dormant PDPA-assembly containing partially bound ATP (H1-state), using different 

achiral and chiral phosphate guests. Remarkably, the successive addition of PPi, which is an 

achiral ditopic phosphate, to the helically dormant H1-state obtained with 0.5 eq. of ATP, 

showed the induction of (P)-handed helicity similar to the  H2-state obtained by ATP alone 

(Figure 5.5a). Thus, the system is uniquely bestowed with the ability to probe the presence of 

achiral guest through chiral induction, whereas amplified signalling is achieved through highly 

cooperative effect.  
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Figure 5.5. Heterotropic allosteric regulation of supramolecular helicity: Variation in CD 

signal of PDPA-assembly in H1-state (0.5 eq. ATP) upon addition of a) achiral PPi and b) 

ADP (10% MeCN in aq. HEPES solution, c = 2 x 10
-5

 M). c) Schematic representation of the 

two processes.  



Chapter-5 

 

~ 138 ~ 
 

Further, we have used ADP, another chiral divalent phosphate, as the heterotropic 

guest. Individual binding of adenosine diphosphate (ADP) to PDPA produced a negative 

bisignated CD signal, negative at higher wavelength (557 nm) followed by positive at 496 nm, 

an opposite bisignated spectra when compared to ATP bound stacks (Figure 5.6a). Unlike ATP 

binding, ADP did not show any allosteric effect indicating a different mode of binding in these 

cases. Even the emission spectra changes on ADP binding showed just quenching of monomer 

emission without evolution of any additional band, confirming formation of H1 aggregates 

(Figure 5.6b). Interestingly, addition of ADP to the prochiral H1-state (0.5 eq. ATP) also 

activates the helicity to attain the H2-state and more importantly with the right-handed (P)-

helicity as preferred by ATP rather than the heterotropic guest ADP (Figure 5.5b). Thus both 

PPi and ADP bind to H1-state to form helical H2-state, hence representing heterotropic 

allosteric regulation of supramolecular chirality even by the addition of achiral or different 

chiral guests.  
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Figure 5.6. Binding of ADP to PDPA-assembly: Variation in a) CD spectra b) emission 

spectra of PDPA upon titration with ADP (10% MeCN in aq. HEPES solution, c = 2 x 10
-5

 M). 

Schematic on the right side is a representation of ADP bound helical stacks which is opposite 

in handedness w.r.t ATP bound stacks. Legends in the graph represent molar eq. with respect 

to PDPA. 

Heterotropic allosteric transformation of H1 to H2 was further confirmed by detailed 

spectroscopic and microscopic studies. For example, on binding of PPi and ADP to H1-state, 

new emission band at 665 nm was observed, a characteristic feature of H2-aggregates (Figure 

5.7). Furthermore, addition of 0.25 eq. of PPi to H1-state (0.5 eq. ATP) also led to the 

morphology transition from 2-D sheets to 1-D nanofibers, analogous to ATP addition, thus 

confirming the H2-state (Figure 5.7). Interestingly, binding of monophosphates like Pi or AMP 

did not show any heterotropic allosteric regulation of supramolecular handedness, indicating 

that multivalent guest binding is crucial for inducing the conformational change in PDPA-
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assembly (Figure 5.7 c, f). Thus the present system shows both homotropic and heterotropic 

allosteric effects with cooperative signalling, hitherto unknown in artificial biomimetic systems. 
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Figure 5.7. Variation in fluorescence spectra upon binding of a) ADP and b) PPi to the H1-

state of the PDPA-assembly pre-bound with 0.4 eq. of ATP (λex= 470nm), suggesting the 

formation of H2-states. This is more clear upon the selective excitation of the assembly at 570 

nm, which is shown in d) and e) for ADP and PPi, respectively. These emission signals show 

heterotropic allosteric effect leading to transition from H1 to H2 state with ADP, PPi. It should 

be noted that, in the ADP case the emission intensity reaches close to that of ATP alone 

(ATP:ADP = 0.9:0), whereas in PPi case only half the intensity could be achieved. This can be 

due to the competitive replacement of ATP by PPi as shown in Figure 5.10d. c) Variation in 

emission spectra of PDPA-assembly on titration with Pi. f) Shows changes in the CD signal on 

addition of Pi to H1-state (0.5 eq. ATP), (10% MeCN in aq. HEPES solution, c = 2 x 10
-5

 M).  

Detailed heterotropic allosteric experiments of prochiral H1-states containing varying 

fraction of ATP bound sites (0.1-0.5 eq.), with PPi or ADP guests, shed some light on the 

mechanism of allosteric regulation assisted chiral manifestation. Figures 5.9 and 5.10 show the 

results of PPi and ADP titration, respectively, with different H1-states, obtained by varying eq. 

of pre-bound ATP molecules onto the H1-state. It is important to note that, with the increase in 

pre-bound ATP (or decrease in free binding sites on H1-assembly), both ADP and PPi induces 

higher CD signal, and the maximum allosteric induction of helicity was observed, when the 

H1-assembly is pre-bound with around 0.5 eq. of ATP molecules. This is further evident from 

the plot of ascending eq. of pre-bound ATP versus the maximum CD intensity attained, which 

show a positive slope with PPi and ADP (Figure 5.10c). As expected, binding of 
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monophosphate like Pi does not show induction of chirality, which reiterates the significance of 

multivalent guests to induce the allosteric regulation (Figure 5.7f).
16

 These observations suggest 

that chromophores which are bound by ATP at least on one side, can only contribute to the 

helicity upon conversion to H2-state by binding with heterotropic guests like ADP and PPi. It is 

further evident that the handedness of H2-helical assembly with bound ATP and achiral PPi 

guest is governed by the bound chiral ATP molecules.  

100 nm 

PPi 

a) b) c) H1, 0.4 eq. ATP H2, 0.4 eq. ATP + PPi  H2, 0.4 eq. ATP + PPi  

 

Figure 5.8. TEM images showing H1 to H2 transition upon PPi addition to ATP bound H1 

state. a) 2-D sheets of H1-state with 0.4 eq. ATP and b), c) nanofibers obtained upon addition 

of PPi to H1-state (0.25 eq. PPi + 0.5 eq. ATP), through heterotropic allosteric regulation 

(10% MeCN in water, c = 2 x 10
-5

 M). 

Similarly, in the case of ATP-ADP bound stacks, ATP again controls the handedness 

(Figure 5.9 d-f), despite the fact that chiral ADP has a preference for opposite helicity (Figure 

5.6).
17

 It is clear that at lower eq. of ATP, many PDPA molecules would be free from ATP at 

both binding sites, and thus they cannot express heterotropic allosteric effects. This is further 

evident from the fact that, at very low eq. of ATP like 0.1 eq. ATP, we observe that initial 

addition of ADP shows signal corresponding to ADP bound stacks which is opposite in 

direction to the H2-state (Figure 5.9f). Further, ADP addition leads to manifestation of H2-

state, thereby co-existence of two bisignated signals i.e. one from only ADP bound portion and 

other from ATP bound H2-state. Due to non-enantiomeric nature of these ATP and ADP bound 

stacks which are not exactly mirror images, their co-existence in a given solution could be 

easily visualized in CD signal. Such observations confirm the fact that parts of the stacks which 

are free from ATP do not undergo allosteric regulation and they behave independently. This 

also hints towards absence of any significant chiral amplification in these stacks.  In addition, 

any contribution of chiral amplification in the allosteric regulation of chirality was ruled out by 

performing Sergeant and Soldiers like experiments with mixture of guest molecules in the H2-

state of the assembly (Figure 5.11).  
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Figure 5.9. Evolution of CD signal upon addition of increasing eq. of PPi to PDPA-assembly 

pre-bound with a) 0.5 eq., b) 0.4 eq., c) 0.3 eq. of ATP. Higher amounts of PPi begin to 

decrease the CD intensity due to competitive replacement of ATP by PPi as seen in Figure 

5.10e. Similar CD spectra plotted upon addition of increasing eq. of ADP to PDPA-assembly 

pre-bound with a) 0.5 eq., b) 0.4 eq., c) 0.1 eq. of ATP (10% MeCN in aq. HEPES solution, c = 

2 x 10
-5

 M). 

Another important observation from these graphs is the presence of lag phase, 

especially at lower eq. of pre-bound ATP, where the assembly remains CD silent despite the 

binding of ADP or PPi (Figure 5.10 a, b). For example, upon the addition of ADP, H1-

assembly with 0.1 eq. of pre-bound ATP remains CD silent until 0.7 eq. of ADP is added, 

beyond which chirality induction sets in. This lag phase decreases with the increase of binding 

sites pre-occupied with ATP molecules and disappears completely when 0.5 eq. of ATP was 

added. Explanation to such a phenomenon is sought from the possibility that, initial ATP and 

other phosphate molecules bind preferentially to only one of the two binding sites of each 

chromophores in the H1-assembly, which does not give any CD signal as discussed above. 

Subsequent binding of multivalent guests to the second site is essential for the manifestation of 

H2-state and induction of chirality. However, the observation that chiral induction is absent till 

half of the binding sites in the assembly are occupied, irrespective of the eq. of pre-bound ATP 

molecules, prompt us to propose a preferential binding of the guests to one side of the H1-

assembly at the initial stages. Although, the exact reason for such a preferential facial binding 

of the guest molecules is not clear at this moment, we believe it could be due the morphological 

constraints, where multi-layered 2D assembly of H1-state prevents the accessibility to all 

binding sites.  
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Figure 5.10. a-c) Heterotropic allosteric experiments of H1-states containing varying fraction 

of ATP bound sites (0.1-0.5 eq.). Variation in anisotropy value or g-value of PDPA in ATP 

bound H1-state upon addition of a) PPi and b) ADP. c) Plot of ascending eq. of pre-bound ATP 

versus the maximum CD intensity attained for the H2-states with different heterotropic guests, 

which show a positive slope with PPi and ADP. The decrease in CD signal after reaching 

maximum value in a) is due to competitive replacement of ATP by PPi as clearly visible in d) 

where CD signal decreases upon addition of PPi to 0.9 eq. ATP bound PDPA. e) Shows the 

percentage H2-conversion upon addition of ADP to H1-state (calculated with respect to g-

value of ATP bound H2 with gATP(max)  = 27.3 x 10
-4

). f) Change in the absorption spectra upon 

addition of 1 eq. ADP to H1-states created with varying eq. of ATP showing transition to H2-

state. All measurements were in 10% MeCN in aq. HEPES solution, c = 2 x 10
-5

 M. 

Thus, in the H1-assembly with 0.5 eq. of pre-bound ATP, binding sites at one face of 

the 2-D sheets are completely occupied.  Further addition of any multivalent phosphate causes 

morphology transition to 1-D fibers, thereby setting in the allosteric mechanism with induced 

chirality. On the other hand, H1-assembly with 0.2 eq. of ATP, further required 0.4 eq. of ADP 

or PPi to completely occupy the binding sites on the exposed face of sheet, and hence they are 

CD silent. As expected, further addition of phosphates regulates the chirality induction, with 

less CD intensity. The final CD intensity of the H2-assembly, which reflects the induced ee in 

the helical stack formed during these experiments, directly correlates to the number of PDPA 

chromophores pre-bound with ATP at one site (Figure 5.10 c, e). In c) we notice that the 

conversion to H2 state on PPi or ADP binding is not 100%, which can be due to inherent lower 

strength of ADP/PPi binding when compared to ATP and competitive replacement of ATP by 
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ADP/PPi. We see that at 0.6 eq. ATP, addition of ADP indeed leads of red shifted absorption 

expected of H2-state, but with lower absorbance (Figure 5.10f). This could be either due to 

inherent weaker association of ADP compared to ATP, which might affect the 

interchromophoric interactions leading to slightly lower effects. This is also supported by only 

83% recovery of H2-state, when compared with the H2 obtained from ATP alone as shown in 

Figure 5.10e). 
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Figure 5.11. Sergeant and soldiers like experiment of the H2-state of the PDPA-assembly 

performed with a mixture of ATP and PPi. a) CD signal with varying molar ratios of ATP-PPi 

b) shows respective plot of CD intensity against mole fraction of ATP monitored at 480 nm. 

(10% MeCN in aq. HEPES solution, c = 2 x 10
-5

 M). The initial lag in b) till χATP = 0.3 is due to 

the allosteric effect of ATP binding, where initial eq. of ATP do not show any CD signal. 

However, the linear response in CD signal clearly suggests the absence of chiral amplification 

in the present system. 

5.5 Conclusions 

In conclusion, we have demonstrated a new allosteric regulation design for modulating 

the supramolecular chirality of helical receptor assemblies, by the homotropic and heterotropic 

binding of adenosine phosphate guest molecules. Through chiral guest induced helicity into the 

1-D assembly of PBI, we have shown both homotropic and heterotropic allosterically 

responsive supramolecular chirality in a single system, which finds no precedence. Detailed 

investigations revealed the crucial role of conformational reorganization from 2-D sheets to 1-D 

nanofibers being responsible for such allosteric effect. Such systems with highly cooperative 

response to biologically relevant molecules can allow amplified signalling of both chiral as well 

as achiral phosphates, whereas the unique heterotropic allosteric effects could be utilized 

further for the autoregulation of ATP. 
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5.6 Experimental Section 

General Methods: 

Transmission Electron Microscopy (TEM): TEM measurements were performed on a JEOL, 

JEM 3010 operated at 300 kV. Samples were prepared by placing a drop of the solution on 

carbon coated copper grids followed by drying at room temperature. The images were recorded 

with an operating voltage 300 kV. In order to get a better contrast, the samples were stained 

with uranyl acetate (1 wt % in water) before the measurements. For TEM, water was used 

instead of aq. HEPES solution to avoid masking of nanostructures due to HEPES deposition 

upon drying. 

Optical Measurements: Electronic absorption spectra were recorded on a Perkin Elmer 

Lambda 900 UV-Vis-NIR Spectrometer and emission spectra were recorded on Perkin Elmer 

Ls 55 Luminescence Spectrometer. UV-Vis and emission spectra were recorded in 10 mm path 

length cuvettes. Fluorescence spectra of solutions were recorded with 470 nm and 570 nm 

excitation wavelength as per the requirement. Circular Dichroism measurements were 

performed on a Jasco J-815 spectrometer where the sensitivity, time constant and scan rate 

were chosen appropriately. Corresponding temperature dependent measurements were 

performed with a CDF – 426S/15 Peltier-type temperature controller with a temperature range 

of 263-383 K and adjustable temperature slope. 

Sample Preparation: All samples for spectroscopic measurements were prepared by injecting 

the stock solution of PDPA (solvent MeCN) into required volume of solvent (aq. HEPES 

buffer in MeCN, wherever applicable). To that required amount of phosphates were injected 

and the solutions were mixed by manual shaking before measurements. 

Aq. HEPES buffer was prepared by making 10 mM solution of the compound in water. 

Phosphates stock solutions were prepared in 10
-2

 M concentration by dissolving the required 

amount of compound in HEPES buffer solution.  

Materials: All chemicals / solvents were purchased from the commercial sources and were 

used as such. Spectroscopic grade solvents were used for all optical measurements.  

Legends in graphs represent molar eq. with respect to PDPA. 

Synthesis: PDPA was synthesized and characterized according to the literature procedure.
10a 

 

 



Allosteric Regulation of Supramolecular Chirality 

~ 145 ~ 
 

5.7 References and Notes 

                                                           
1. a) A. R. A. Palmans and E. W. Meijer, Angew. Chem. Int. Ed., 2007, 46, 8948; b) A. E. 

Rowan and R. J. M. Nolte, Angew. Chem. Int. Ed., 1998, 37, 63; c) E. Yashima, K. Maeda, 

H. Iida, Y. Furusho and K. Nagai, Chem. Rev., 2009, 109, 6102; d) M. M. Green, K.-S. 

Cheon, S.-Y. Yang, J.-W. Park, S. Swansburg and W. Liu, Acc. Chem. Res., 2001, 34, 672; 

e) M. Fujiki, J. R. Koe, K. Terao, T. Sato, A. Teramoto and J. Watanabe, Polym. J., 2003, 

35, 297; f) A. Lohr and F. Würthner, Isr. J. Chem., 2011, 51, 1052; g) V. K. Praveen, S. S. 

Babu, C. Vijayakumar, R. Varghese and A. Ajayaghosh, Bull. Chem. Soc. Jpn., 2008, 81, 

1196; h) D. K. Smith, Chem. Soc. Rev., 2009, 38, 684; i) Y. Wang, J. Xu, Y. Wang and H. 

Chen, Chem. Soc. Rev., 2013, 42, 2930. 

2. a) Z. Huang, S.-K. Kang, M. Banno, T. Yamaguchi, D. Lee, C. Seok, E. Yashima and M. 

Lee, Science, 2012, 337, 1521; b) Y. Nakano, A. J. Markvoort, S. Cantekin, I. A. W. Filot, 

H. M. M. ten Eikelder, E. W. Meijer and A. R. A. Palmans, J. Am. Chem. Soc., 2013, 135, 

16497; c) B. W. Messmore, P. A. Sukerkar and S. I. Stupp, J. Am. Chem. Soc., 2005, 127, 

7992; d) M. Banno, T. Yamaguchi, K. Nagai, C. Kaiser, S. Hecht and E. Yashima, J. Am. 

Chem. Soc., 2012, 134, 8718; e) V. Percec, A. E. Dulcey, M. Peterca, M. Ilies, M. J. 

Sienkowska and P. A. Heiney, J. Am. Chem. Soc., 2005, 127, 17902; f) F. García and L. 

Sánchez, J. Am. Chem. Soc., 2012, 134, 734; g) A. Gopal, M. Hifsudheen, S. Furumi, M. 

Takeuchi and A. Ajayaghosh, Angew. Chem. Int. Ed., 2012, 51, 10505; h) K. Toyofuku, 

M. A. Alam, A. Tsuda, N. Fujita, S. Sakamoto, K. Yamaguchi and T. Aida, Angew. Chem. 

Int. Ed., 2007, 119, 6596; i) J. Kumar, T. Nakashima, H. Tsumatori and T. Kawai, J. Phys. 

Chem. Lett., 2014, 5, 316; j) A. Lohr and F. Würthner, Angew. Chem. Int. Ed., 2008, 47, 

1232; k) I. Danila, F. Riobé, F. Piron, J. Puigmartí-Luis, J. D. Wallis, M. Linares, H. 

Ågren, D. Beljonne, D. B. Amabilino and N. Avarvari, J. Am. Chem. Soc., 2011, 133, 

8344; l) U. Rösch, S. Yao, R. Wortmann and F. Würthner, Angew. Chem. Int. Ed., 2006, 

45, 7026; m) H. C. Fry, J. M. Garcia, M. J. Medina, U. M. Ricoy, D. J. Gosztola, M. P. 

Nikiforov, L. C. Palmer and S. I. Stupp, J. Am. Chem. Soc., 2012, 134, 14646; n) Ž. 

Tomović, J. van Dongen, S. J. George, H. Xu, W. Pisula, P. Leclère, M. M. J. Smulders, S. 

De Feyter, E. W. Meijer and A. P. H. J. Schenning, J. Am. Chem. Soc., 2007, 129, 16190; 

o) F. Aparicio, B. Nieto-Ortega, F. Nájera, F. J. Ramírez, J. T. López Navarrete, J. Casado 

and L. Sánchez, Angew. Chem. Int. Ed., 2014, 53, 1373; p) A. Ajayaghosh, C. 

Vijayakumar, R. Varghese and S. J. George, Angew. Chem. Int. Ed., 2006, 45, 456; q) A. 

Ajayaghosh, R. Varghese, S. Mahesh and V. K. Praveen, Angew. Chem. Int. Ed., 2006, 45, 

7729; r) W. Jin, T. Fukushima, M. Niki, A. Kosaka, N. Ishii and T. Aida, Proc. Natl. Acad. 



Chapter-5 

 

~ 146 ~ 
 

                                                                                                                                                                         
Sci. U. S. A., 2005, 102, 10801; s) K. Sato, Y. Itoh and T. Aida, Chem. Sci., 2014, 5, 136; 

N. Ousaka, Y. Takeyama and E. Yashima, Chem. Sci., 2012, 3, 466. 

3. a) P. G. A. Janssen, J. Vandenbergh, J. L. J. van Dongen, E. W. Meijer and A. P. H. J. 

Schenning, J. Am. Chem. Soc., 2007, 129, 6078; b) M.-a. Morikawa, M. Yoshihara, T. 

Endo and N. Kimizuka, J. Am. Chem. Soc., 2005, 127, 1358; c) H. Fenniri, B.-L. Deng and 

A. E. Ribbe, J. Am. Chem. Soc., 2002, 124, 11064; d) A. R. A. Palmans, J. A. J. M. 

Vekemans, E. E. Havinga and E. W. Meijer, Angew. Chem., Int. Ed. Engl., 1997, 36, 2648; 

e) S. J. George, Z. Tomovic, A. P. H. J. Schenning and E. W. Meijer, Chem. Commun., 

2011, 47, 3451; f) S. J. George, Ž. Tomović, M. M. J. Smulders, T. F. A. de Greef, P. E. L. 

G. Leclère, E. W. Meijer and A. P. H. J. Schenning, Angew. Chem. Int. Ed., 2007, 46, 

8206; g) J. Lin, M. Surin, D. Beljonne, X. Lou, J. L. J. van Dongen and A. P. H. J. 

Schenning, Chem. Sci., 2012, 3, 2732; h) T. H. Rehm, M. R. Stojkovic, S. Rehm, M. 

Skugor, I. Piantanida and F. Würthner, Chem. Sci., 2012, 3, 3393; i) A. Ajayaghosh, P. 

Chithra and R. Varghese, Angew. Chem. Int. Ed., 2007, 46, 230. 

4. a) E. Yashima, K. Maeda and Y. Okamoto, Nature, 1999, 399, 449; b) S. J. George, R. de 

Bruijn, Ž. Tomović, B. Van Averbeke, D. Beljonne, R. Lazzaroni, A. P. H. J. Schenning 

and E. W. Meijer, J. Am. Chem. Soc., 2012, 134, 17789; c) P. A. Korevaar, S. J. George, 

A. J. Markvoort, M. M. J. Smulders, P. A. J. Hilbers, A. P. H. J. Schenning, T. F. A. De 

Greef and E. W. Meijer, Nature, 2012, 481, 492; d) A. Mammana, A. D'Urso, R. Lauceri 

and R. Purrello, J. Am. Chem. Soc., 2007, 129, 8062; e) W. Zhang, W. Jin, T. Fukushima, 

N. Ishii and T. Aida, J. Am. Chem. Soc., 2013, 135, 114; f) F. Helmich, C. C. Lee, A. P. H. 

J. Schenning and E. W. Meijer, J. Am. Chem. Soc., 2010, 132, 16753; g) R. Lauceri, G. F. 

Fasciglione, A. D‟Urso, S. Marini, R. Purrello and M. Coletta, J. Am. Chem. Soc., 2008, 

130, 10476; h) I. De Cat, Z. Guo, S. J. George, E. W. Meijer, A. P. H. J. Schenning and S. 

De Feyter, J. Am. Chem. Soc., 2012, 134, 3171; i) J.-S. Zhao, Y.-B. Ruan, R. Zhou and Y.-

B. Jiang, Chem. Sci., 2011, 2, 937; j) K. Shimomura, T. Ikai, S. Kanoh, E. Yashima and K. 

Maeda, Nat. Chem.,  2014, 6, 429. 

5. a) E. Yashima, T. Matsushima and Y. Okamoto, J. Am. Chem. Soc., 1995, 117, 11596; b) 

F. Riobe, A. P. H. J. Schenning and D. B. Amabilino, Org. Biomol. Chem., 2012, 10, 

9152; c) T. Ikeda, O. Hirata, M. Takeuchi and S. Shinkai, J. Am. Chem. Soc., 2006, 128, 

16008; d) W.-S. Li, D.-L. Jiang, Y. Suna and T. Aida, J. Am. Chem. Soc., 2005, 127, 7700; 

e) C. Zhao, Q.-F. Sun, W. M. Hart-Cooper, A. G. DiPasquale, F. D. Toste, R. G. Bergman 

and K. N. Raymond, J. Am. Chem. Soc., 2013, 135, 18802. 

6. a) J.-P. Changeux and S. J. Edelstein, Science, 2005, 308, 1424; b) A. Whitty, Nat. Chem. 

Biol. 2008, 4, 435; c) C. A. Hunter and H. L. Anderson, Angew. Chem. Int. Ed., 2009, 48, 

7488. 



Allosteric Regulation of Supramolecular Chirality 

~ 147 ~ 
 

                                                                                                                                                                         
7. a) S. Shinkai, M. Ikeda, A. Sugasaki and M. Takeuchi, Acc. Chem. Res., 2001, 34, 494; b) 

M. Takeuchi, M. Ikeda, A. Sugasaki and S. Shinkai, Acc. Chem. Res., 2001, 34, 865; c) E. 

M. Pérez, L. Sánchez, G. Fernández and N. Martín, J. Am. Chem. Soc., 2006, 128, 7172; d) 

M. Takeuchi, T. Imada and S. Shinkai, Angew. Chem. Int. Ed., 1998, 37, 2096; e) M. 

Ikeda, M. Takeuchi, A. Sugasaki, A. Robertson, T. Imada and S. Shinkai, Supramol. 

Chem., 2000, 12, 321. 

8. a) T. Noguchi, T. Shiraki, A. Dawn, Y. Tsuchiya, L. T. N. Lien, T. Yamamoto and S. 

Shinkai, Chem. Commun., 2012, 48, 8090; b) G. M. Cockrell, Y. Zheng, W. Guo, A. W. 

Peterson, J. K. Truong and E. R. Kantrowitz, Biochemistry, 2013, 52, 8036. 

9. L. A. Fothergill-Gilmore and P. A. M. Michels, Prog. Biophys. Mol. Biol., 1993, 59, 105. 

10. a) X. Chen, M. J. Jou and J. Yoon, Org. Lett., 2009, 11, 2181; b) L. Yan, Z. Ye, C. Peng 

and S. Zhang, Tetrahedron, 2012, 68, 2725; c) M. Kumar, N. Jonnalagadda and S. J. 

George, Chem. Commun., 2012, 48, 10948. 

11. The intensity ratio of the two most intense band was 0.94, which is high compared to 

known PBI monomers, indicating the existence of weak interchromophoric interactions 

even in MeCN at this concentration. 

12. This was calculated from the emission quenching data shown in Figure 6.1b, where 

emission of MeCN solution was taken as 100 % monomers and completely aggregated 

species to be non-fluorescent (zero in intensity). 

13. ATP‟s three site binding should have saturated all site at 0.66 eq., however, we observe 

CD saturation at 0.9 eq. ATP which could be due to inability of few ATP to bind via all 

three sites. 

14. X. Zhang, D. Görl, V. Stepanenko and F. Würthner, Angew. Chem. Int. Ed., 2014, 53, 

1270. 

15. Allosteric control of helicity was seen only with ATP and not with AMP or ADP probably 

due to its multivalent interactions compared to ADP and AMP. Usually only multivalent 

ligands are known to show such effects. Also preliminary investigations with single 

stranded DNA (which is a polymeric analogue of AMP) with PDPA also shows allosteric 

control over chirality, confirming the role of multivalent host guest interactions and ruling 

out any specific interaction with ATP being responsible for the allosterism.  

16. AMP also did not induce heterotropic allosteric effects. 

17. Handedness of the stacks are dictated by the strength of guest ligation. 

 

 

 

 



Chapter-5 

 

~ 148 ~ 
 

                                                                                                                                                                         
 

 



 Chapter-6 

~ 149 ~ 
 

 

 

 

 

 

 

 

Chapter-6 

 

Towards Chiroptical Functionality  

 

Chapter-6.1  Induction and Imprinting of Circularly Polarized 

Luminescence by Chiral Auxiliary Approach 

Chapter-6.2      Supramolecular Clippers for Controlling Photo-Physical 

Processes via Pre-Organized Chromophores 

 

 

 

 

 

 

 



Chapter-6 

 

~ 150 ~ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



~ 151 ~ 
 

Chapter-6.1 

Induction and Imprinting of Circularly Polarized Luminescence by 

Chiral Auxiliary Approach 

Abstract 

Circularly polarized luminescence (CPL) from assemblies of chiral π-conjugated molecules has 

been investigated in great detail. Here we present guest induced CPL as a novel approach for 

the construction of helical electronic excited state in the assembly of achiral molecules. 

Coronene bisimide and perylene bisimide functionalized with dipicolylethylenediamine (DPA) 

based molecular recognition unit show adenosine phosphate binding induced CD signal. The 

chiral and fluorescent nature of these aggregates were most suited for CPL measurements, 

which showed high luminescence dissymmetric factor i.e. glum, even in dilute solutions. 

Moreover, enzyme assisted removal of chiral guest molecules from the helical stacks allows the 

imprinting of chiral excited state in the assembly of achiral monomers, termed as “CPL 

memory”. Detailed spectroscopic investigations reveal the role of supramolecular 

reorganization in obtaining such imprinted CPL. Thus, we conceptualize this guest induced 

CPL in assembly of achiral π-conjugated fluorophores, as a unique approach for variety of 

CPL based chirotechnological applications. 

   

 

 

 

 

 

Manuscript based on this work is under preparation. 
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6.1.1 Introduction 

 Macromolecular helical assemblies, constructed from inherently chiral molecules, have 

been well investigated as structural mimics of biomolecules and as model systems to 

understand the homochirality in nature.
1, 2

 In this regard, helical polymers and supramolecular 

assemblies of achiral monomeric unit, obtained by chiral auxiliary approach, have attracted 

immense attention for various chiroptical applications.
3
 Such systems have been utilized for the 

construction of helical metastable state (chiral memory), by removal of chiral guest molecules 

from the helical assembly of achiral molecules.
4
 Another application of these helical assemblies 

is their excited state chirality, leading to CPL emission.
5
 Such studies provide insights into the 

helical organization of molecules in their electronic excited states.
6
 Although, this has been 

demonstrated with many chiral fluorophores,
 7

 guest induced CPL into the assembly of achiral 

π-conjugated fluorophores is unprecedented. Moreover, such a design can be utilized for 

imprinting CPL in the assembly of achiral molecules in a so called “CPL memory”, by post 

synthetic removal of chiral guest molecules. 

 

Scheme 6.1.1. Schematic illustration of guest induced CPL and “CPL Memory” in the 

assembly of achiral π-conjugated fluorophores. 

   For a helical assembly of chromophores to show CPL, the aggregates must be 

fluorescent. This is a serious limitation as aggregation is known to quench the fluorescence of 

molecules.
8
 In this chapter, we investigate the CPL emission from the helical organization of 

dipicolylethylenediamine (DPA) functionalized achiral coronene bisimide (ZnCPA) and 

perylene bisimide (PDPA) derivatives (Scheme 6.1.1). These molecules show induced helical 

organization upon interaction with homochiral adenosine phosphates, resulting in a bisignated 

CD signal. Interestingly, binding to phosphate leads to enhanced emission in ZnCPA assembly 

and a new emission band in PDPA assembly, both of which render the aggregates fluorescent, 

making the system suitable for CPL study. These chromophores show phosphate induced CPL 

emission with luminescence dissymmetric factor (glum) comparable with the well studied 

assembly of chiral fluorophores. Moreover, as demonstrated in Chapter 4.2, we have used an 

enzyme (CIAP) for competitive removal of chiral auxiliary, wherein PDPA assemblies 

Chiral 
 Auxiliary 

Racemic Chiral 

enzyme 

CPL CPL 

Chiral Memory 

Guest Induced CPL CPL Memory 
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continues to show CPL emission, leading to “CPL memory” effect (Scheme 6.1.1). Thus, we 

present a unique system with guest induced chiral assembly, which are fluorescent to show 

CPL, whereas the removal of chiral phosphate retains its emission to allow investigation of 

imprinted CPL and study their excited state stereomutation kinetics. 

6.1.2 Chiral Guest Induced CPL  

 

Figure 6.1.1. Molecular structure of ZnCPA along with its schematic representation. Changes 

in a) CD spectra and b) emission spectra (λex=350 nm) of ZnCPA upon titration with ADP 

(70% aq. HEPES in MeCN, 2 x 10
-5

 M).
 9
   

The coronene bisimide derivative ZnCPA was synthesized as described in Chapter 4 

(Section 4.1.6). This bolaamphiphilic molecule was completely soluble in solvents like MeCN, 

DMF and self-assembled in water through hydrophobic and aromatic-aromatic interactions. 

Therefore, all spectroscopic studies were performed in appropriate composition of MeCN – aq. 

HEPES buffer (10 mM solution in water). Through spectroscopic investigations, we have 

previously shown that these molecules form typical J-type aggregates by slipped packing of 

chromophores (Chapter 4.1.1). Binding of homochiral guests like ADP to ZnCPA stacks 

induced a left-handed helical assembly (M)-ZnCPA-ADP, as evident from the negative 

bisignated CD signal, negative at 343 nm and positive at 268 nm, with a zero crossing at 286 

nm (Figure 6.1.1a, 30% MeCN in aq. HEPES, c = 2 x 10
-5

 M). This confirms the potential of 

molecular recognition design for binding of ADP leading to efficient chirality transfer into 

assembly of achiral ZnCPA. For such a system with guest induced helical assembly of 

fluorophore to show circularly polarized luminescence (CPL), these aggregates must be 
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fluorescent. Binding of ADP to ZnCPA stacks results in quenching of monomeric emission at 

506 nm along with enhancement of aggregate band at 575 nm (Figure 6.1.1b). As discussed in 

previous chapter (Section 4.1.2), such a turn on emission has been attributed to prevention of 

photo electron transfer (PET) upon interaction of DPA substituted chromophores with 

adenosine phosphates. Unlike usual fluorophores, which show aggregation induced quenching 

of emission, binding of ADP leads to formation of fluorescent nanofibers (Chapter 4, Figure 

4.1.10), making it suitable for CPL investigations.  

 Chiral nature of emission or helical assembly of fluorophores which is in chiral 

environment even in their electronic excited state, can be characterized by CPL. It is usually 

measured as luminescence dissymmetric factor i.e.│glum│= 2(IL-IR)/IL+IR, where IL+IR are 

fluorescence intensities of left and right circularly polarized light (LCP and RCP respectively). 

ZnCPA stacks upon binding to 2 eq. ADP i.e. ZnCPA-ADP, show a strong positive CPL signal 

indicating preferential emission of LCP over RCP (Figure 6.1.2, 70% aq. HEPES in MeCN, 2 x 

10
-5

 M). The fluorescence anisotropy value, glum obtained was 2.3 x 10
-4

, which is comparable 

to most self-assembled chiral fluorophores.
5
 Moreover, similar experiments done without any 

phosphates or in presence of achiral guest molecules like Pi (PO4
3-

) do not show any significant 

CPL signal, ruling out the contribution from any scattering based artifacts. Thus, it clearly 

demonstrate the guest induced chiral organization of achiral ZnCPA, in the electronic ground 

state (as shown by CD signal (Figure 6.1.1a) as well as excited state (shown by CPL 

measurements), an unprecedented report in the self-assembly of π-conjugated systems.    

 

Figure 6.1.2. a) CPL spectra of ZnCPA upon binding to 2 eq. of Pi (PO4
3-

) and ADP. b) 

Schematic representation of chiral guest induced CPL in assembly of achiral chromophores. 

6.1.3 CPL Memory 

 Having demonstrated the chiral guest induced CPL in the assembly of achiral 

chromophores, the next challenging task was the retention of this preferential emission even 

after removal of chiral information in a so called “CPL memory”. In Chapter 4.2, we have 
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already established the construction of imprinted helicity in the assembly of achiral monomers, 

by the detachment of bound ADP upon addition of enzyme (calf intestinal alkaline phosphatase 

- CIAP). These enzymes (CIAP) were shown to act as polyvalent anionic scaffold for 

competitive replacement of ADP and as molecular chaperone for the stabilization of chiral 

memory. Such an imprinted helical assembly was probed by CD signal and is due to retention 

of chiral organization of achiral chromophores in the ground state. Thus, we investigated if 

such a system could also retain its organization in the excited state and emit CPL. However, to 

be able to exhibit the CPL memory, the imprinted helical system must be fluorescent 

(schematic of Figure 6.1.3). Thus, emission spectra of (M)-ZnCPA-ADP were monitored upon 

addition of enzyme. We notice that the highly fluorescent (M)-ZnCPA-ADP instantaneously 

quenches its emission upon removal of ADP by enzyme addition (Figure 6.1.3). This is 

expected as the enhancement in emission was due to ADP binding induced prevention of PET, 

which would restart after phosphate removal (Section 4.2.3, Figure 4.2.6).              

 

Figure 6.1.3. a) Variation in  fluorescence spectra upon addition of CIAP (0.28 U/ml) to (M)-

ZnCPA-ADP (1 eq.) (90% aq. HEPES in MeCN, 10
-5

 M, λex=350 nm). b) Pictorial 

representation of enzyme binding induced ADP removal and emission quenching.
 9
 

 Thus, a simple design for “CPL memory” would require a system which undergoes 

chiral guest binding induced supramolecular reorganization leading to fluorescent helical 

assembly. We have already shown in chapter 5 that DPA functionalized perylenebisimide 

(PDPA) shows ATP binding induced allosteric regulation of supramolecular chirality. Binding 

to ATP shows a positive bisignated CD signal, positive at 518 nm followed by negative at 480 

nm (Figure 6.1.4a). Interestingly, fluorescence spectra upon ATP titration shows emergence of 

a new red shifted band at 665 nm (Figure 6.1.4b). Through detailed spectroscopic 

investigations, we have already established the role of conformational reorganization upon ATP 

binding, leading to transition from non-fluorescent H1-state to fluorescent H2-state (Chapter 5, 

Section 5.3). These results indicate that the fluorescence at 665 nm is due to formation of H2-
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state, and ATP is merely a structure directing unit. Therefore, this can be an ideal system to 

study the concept of excited state chiral memory, where we envisage that removal of ATP from 

the H2-state would continue to retain its helical organization both in the ground state and 

excited state.      

 

Figure 6.1.4. Molecular structure of PDPA and variation in a) CD spectra and b) emission 

spectra (λex=470 nm) of PDPA upon ATP titration (90% aq. HEPES in MeCN, 2 x 10
-5

 M).
 10

    

 We first probed into the CPL emission property of these assemblies. ATP bound helical 

assembly (P)-PDPA-ATP (90% aq. HEPES in MeCN, 2 x 10
-5

 M) showed a positive CPL 

signal with maximum glum = 5 x 10
-3

 (Figure 6.1.5a). Such an intense CPL intensity indicates 

efficient transfer of chirality from the chiral guest to the assembly of achiral fluorophore in the 

excited state. To prove that the CPL signal is indeed due to the formation of ATP bound 

fluorescent H2-state, we repeated the same experiment upon interaction of AMP to PDPA i.e. 

(M)-PDPA-AMP. We see that (M)-PDPA-AMP does not show any significant CPL signal. 

This could be easily explained based on AMP binding induced CD and fluorescence 

characteristics. As already discussed in Chapter 2 (Section 2.5), binding of AMP to PDPA 

results in negative bisignated CD signal (Figure 6.1.6a). Interestingly, emission spectra show 

quenching of monomeric emission without the appearance of any new band. These data clearly 

confirm that (M)-PDPA-AMP are non-fluorescent aggregates and thus they cannot show any 

differential emission (CPL). With all these experiments, it is clear that (P)-PDPA-ATP is a 

unique system which can be very useful in understanding the excited state chiral memory. 
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Figure 6.1.5. CPL spectra of a) (P)-PDPA-ATP (3 eq.) and b) (M)-PDPA-AMP (1 eq.) (90% 

aq. HEPES in MeCN, 2 x 10
-5

 M). c) Schematic representation of the two processes. 

 

Figure 6.1.6. Variation in a) CD spectra and b) emission spectra (λex=470 nm) of PDPA upon 

titration with AMP (90% aq. HEPES in MeCN, 2 x 10
-5

 M).
10

 

 Following our well established enzyme approach for fast removal of chiral phosphate 

(as shown in Chapter 4.2 and Figure 6.1.3), we first probed the ground state imprinted chirality 

based on CD signal. Thus, time dependent variation in CD signal of (P)-PDPA-ATP was 

monitored at 477 nm upon addition of CIAP (90% aq. HEPES in MeCN, 2 x 10
-5

 M, [CIAP] = 

0.56 U/ml). We notice that the helical stacks take a finite amount of time for complete 

racemization (Figure 6.1.7 a, b). Thus, although CIAP instantaneously (within seconds) 

removes ATP from the stacks, the assembly retains its chiral organization in the ground state in 

a metastable helical memory. CD spectra monitored after complete stereomutation shows no 

signal, confirming the racemization of stacks, which in the present case is due to transition from 
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H2 to H1 state of assembly. (Figure 6.1.7c). Moreover, absorption spectral changes clearly 

indicate the conformational transformation during the racemization process. As shown before 

(Chapter 5, Figure 5.2), ATP binding leads to a bathochromic jump in the absorption maxima 

(499 nm to 514 nm and 535 nm to 564, Figure 6.1.7d). These have been assigned to H1- to H2-

state transformation upon ATP binding. Interestingly, after complete racemization i.e. from (P)-

PDPA-CIAP to (rac)-PDPA-CIAP, we see a blue shift in absorption spectra (514 nm to 500 

nm and 564 nm to 550 nm, Figure 6.1.7c). Moreover, the final absorption spectrum resembles 

an H1-state of PDPA. Thus, we confirm that the racemization process is indeed a result of 

transition from H2- to H1- state.  

 

Figure 6.1.7. a) Schematic representation of CIAP binding induced chiral memory in PDPA 

assembly. b) Time dependent changes in CD signal of (P)-PDPA-ATP upon addition of CIAP 

(0.56 U/ml) at various temperatures. Change in c) CD spectra and d) absorption spectra of 

(P)-PDPA-ATP upon racemization in presence of CIAP (0.84 U/ml) at 40 °C. e) Time 

dependent variation in CD intensity of (P)-PDPA-ATP (0.9 eq.) with varying concentration of 

enzyme at 40 °C (90% aq. HEPES in MeCN, 2 x 10
-5

 M). 
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 The racemization kinetics of the helical memory was probed at various temperatures. 

CD signal of (P)-PDPA-CIAP (chiral memory) was monitored upon increasing temperature 

from 35 °C to 50 °C (90% aq. HEPES in MeCN, 2 x 10
-5

 M, [CIAP] = 0.56 U/ml, Figure 

6.1.7b). We observe a faster decay at higher temperatures, clearly confirming the activation 

energy mediated process. Moreover, when the racemization kinetics were probed at varying 

concentration of enzyme, we do not see any change in their stereomutation rate (90% aq. 

HEPES in MeCN, 2 x 10
-5

 M, 40 °C, Figure 6.1.7e). Rate of racemization being independent of 

CIAP concentrations clearly proves that it is not an enzyme catalysed process (as conclusively 

demonstrated in section 4.2.3). This once again confirms the fact that enzyme is not active as a 

catalyst for phosphate hydrolysis, but acts as a guest for competitive replacement of bound 

phosphate.
11

    

 

Figure 6.1.8. Time dependent variation in a) fluorescence intensity (665 nm, λex=570 nm), CPL 

signal b) with 0.70 U/ml CIAP and c) without CIAP (90% aq. HEPES in MeCN, 2 x 10
-5

 M). 

Emission in a) does not completely quench mainly due to partial overlap of monomeric 

emission.  

 Results thus far have shown that (P)-PDPA-ATP form right-handed helical assembly 

leading to fluorescent H2-assembly. This chiral auxiliary i.e. ATP could be easily removed for 

the construction of ground state helical memory (P)-PDPA-CIAP. Now, for the construction of 

CPL memory, we need to first prove that the assembly retains its fluorescence even after 

removal of ATP by enzyme addition. Thus, emission intensity of (P)-PDPA-CIAP (90% aq. 

HEPES in MeCN, 2 x 10
-5

 M, 25 °C, [CIAP] = 0.70 U/ml, 0.9 eq. ATP, λex=570 nm) was 

monitored as a function of time (Figure 6.1.8a). Finite kinetics involved in the emission decay 

clearly indicates that the H2-state emission is retained even after ATP detachment.
12
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0 500 1000 1500
0

3

6

 g
lum

 (average)

       

1
0

3
 

 g
lu

m
 

Time (sec)
0 1000 2000 3000

10

20

 I
n

te
n

s
it

y
 (

a
.u

.)

Time (sec)

0 2000 4000
-2

0

2

4

1
0

3
 

 g
lu

m

Time (sec)

g
lum

 (average)

(624+634+645+665nm) 

(P)-PDPA-CIAP (H2) 
Fluorescent Helical Memory 

CIAP 

ATP 
Time 

(P)-PDPA-ATP (H2) 

CPL CPL 
Time 

(rac)-PDPA-CIAP (H1) (P)-PDPA-ATP (H2) 

CPL CPL 

a) b) c) 

d) 



Chapter-6.1 

 

~ 160 ~ 
 

when time dependent CPL was measured upon addition of CIAP, we see that it also follows the 

same pattern of decay as that of steady state emission (Figure 6.1.8 b) (90% aq. HEPES in 

MeCN, 2 x 10
-5

 M, 25 °C, [CIAP] = 0.70 U/ml, 0.9 eq. ATP). Also, time dependent CPL 

measured without CIAP do not show any change in signal intensity (Figure 6.1.8c), confirming 

that the racemization process is responsible for the slow decay of CPL in presence of enzyme. 

Thus, we demonstrate an unprecedented report of CPL memory in the assembly of achiral π-

conjugated fluorophores.   

6.1.4 Conclusion 

  To conclude, we have presented a new design strategy for the CPL emission from the 

assembly of achiral molecules. Adenosine phosphate recognition driven chiral induction for the 

CPL emission from the assembly of π-conjugated system is unprecedented and the strategy 

could be generalized by demonstrating it in both PDPA and ZnCPA derivatives. Moreover, the 

glum obtained is comparable to literature report of CPL emission in assembly of chiral 

monomers, confirming the efficient induction of helicity in the electronic excited state. Finally, 

we have also shown “CPL memory” in our system, where the stacks of achiral molecules 

continue to emit CPL, even after removal of chiral guest molecules. Such a unique system 

holds great potential in CPL based light emitting technologies and display materials.  

6.1.5 Experimental Section 

General Methods: 

Optical Measurements: Electronic absorption spectra were recorded on a Perkin Elmer 

Lambda 900 UV-Vis-NIR Spectrometer and emission spectra were recorded on Perkin Elmer 

Ls 55 Luminescence Spectrometer. UV-Vis and emission spectra were recorded in 10 mm path 

length cuvette. Fluorescence spectra of solutions were recorded with 350 nm excitation 

wavelength. Circular Dichroism measurements were performed on a Jasco J-815 spectrometer 

where the sensitivity, time constant and scan rate were chosen appropriately. Corresponding 

temperature dependent measurements were performed with a CDF – 426S/15 Peltier-type 

temperature controller with a temperature range of 263-383 K and adjustable temperature slope. 

Circularly Polarized Luminescence Measurements: Circularly polarized luminescence 

spectra were measured on a home-built setup that uses a photoelastic modulator and a 

multichannel photon-counting detection system. The incident light was depolarized by passing 

it through an optical fiber. The emission was detected in an in-line geometry to avoid artifacts 

resulting from linear polarization. CPL error bars represent standard deviations in the 
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measurement, estimated from repeated sampling of the dissymmetry factor for circular 

polarization in luminescence glum. 

Materials: All chemicals / solvents were purchased from the commercial sources and were 

used as such. Spectroscopic grade solvents were used for all optical measurements. 

Commercially available CIAP was 2.8 units per mg and stock solution of CIAP was prepared 

by dissolving 1 mg of CIAP in 80 µl of aq. HEPES buffer. For each measurement, appropriate 

µl of this stock solution was added into 2.5 ml of required solution.  

Synthesis of ZnCPA was peformed as reported in chapter 4.1 (Scheme 4.1.1). PDPA was 

synthesized following a reported procedure.
13
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Chapter-6.2 

Supramolecular Clippers for Controlling Photo-Physical Processes via      

Pre-Organized Chromophores 

Abstract  

In this chapter, a novel supramolecular clipping design for influencing the photo-physical 

properties of functional molecular assemblies, by the pre-organization (clipping) of 

chromophores, is described. Several chromophores end-functionalized with molecular 

recognition units were designed, which serve as handles to appropriately position these systems 

upon non-covalent interactions with multivalent guest molecules (supramolecular clippers). 

Towards this goal we have synthesized 1,5-Dialkoxynaphthalene (DAN) and 

Naphthalenediimide (NDI) functionalized with dipicolyl-ethylenediamine (DPA) motif. These 

molecules could pre-organize upon non-covalent clipping with adenosine di/tri phosphates 

resulting in pre-associated excimers and mixed (co- facial) charge-transfer assemblies. Chiral 

guest binding could also induce supramolecular chirality not only into their individual 

chromophoric assembly, but also into the hetero CT organization, as seen from the strong 

Circular Dichroism (CD) signal of the CT transition. The unique ability of the present design to 

influence the intermolecular interactions by changing the binding strength of clippers further 

make them very attractive for controlling the bimolecular photo-physical processes. 
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6.2.1 Introduction 

Pre-organization of chromophores plays a very important role in various bi-molecular 

photophysical and photochemical processes, mainly due to the short-lived nature of the 

electronic excited states. In this regard, small ditopic receptor molecules that can 

simultaneously bind two chromophores using non-covalent interactions provide an elegant 

“supramolecular clipping” design for pre-assembling the chromophores in a reversible manner. 

Topochemical [2+2] cycloaddition reaction represents a class of bimolecular photochemical 

reaction, where relative orientation of reactant olefins is critically important.
1
 In this respect, 

hydrogen bonding,
2
 halogen bonding

3
 and metal-coordination interactions

4
 have been 

extensively used to clip and to pre-orient olefins in a geometrically suitable organization. Thus, 

it allows topochemical control in solid-state photo-cycloaddition reactions, resulting in near-

perfect regio- and stereo-specific product. To date, however, the application of this 

supramolecular clipping approach to control various intermolecular photo-physical processes 

has been surprisingly unexplored, despite the remarkable potential of tuning the functional 

properties of resulting molecular assemblies. 

Pre-associated excimer and mixed (alternate) charge transfer (CT) complex formation 

(homo and hetero bimolecular process, respectively) are two important photophysical 

processes, which demand inter-chromophoric preorganization in the ground-state.  Pre-

associated excimers, unlike typical excimers, are stable excited state dimers with relatively long 

life-time. These are formed due to the co- facial organization of chromophores in the ground 

state as observed in certain crystalline and self-assembled phases.
5
 On the other hand, mixed 

CT complexes are face-to-face hetero chromophoric dimers formed between aromatic donor 

(D) and acceptor (A) molecules and are of great significance as a versatile supramolecular 

motif
6
 and for applications in organic electronics.

7 

Pre-associated excimer: There are a few reports of pre-associated excimer formation in certain 

class of chromophores. For example, we have reported them in various Naphthalenediimide 

(NDI) derivatives. NDI-Bola was synthesized as shown in Scheme 6.2.4.
5b

 NDI-Bola highly 

soluble in MeOH and self-assembled in presence of water due to hydrophobic interactions. 

Interestingly, we notice the evolution of a red shifted excimeric emission band at 513 nm (λex = 

350 nm) (Figure 6.2.1a), which enhancess upon further aggregation by increasing percentage of 

water in methanol (MeOH). Usually chromophores are known to show aggregation induced 

quenching of emission, whereas here we show a new strategy for aggregation induced enhanced 

emission (AIEE) by formation of pre-associated excimer. These molecules self-assemble to 

form nanoparticles with an average diameter of 100 nm. As expected, these organic 

nanoparticles were retaining its emission as seen from the confocal fluorescent microscopic 
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imaging. These formed green fluorescent organic nanoparticles due to pre-associated excimer 

emission. 

 

Figure 6.2.1. a) Molecular structure of NDI-Bola, b) steady-state emission spectra (λex = 350 

nm, normalized at 411 nm) in water-methanol solvent mixtures (1 x 10
-3

 M). All the spectra 

were recorded with front face geometry in 1 mm path length cuvette to minimize self-

absorption. Inset in b) show the photographs of NDI-Bola in i) methanol and ii) water under 

UV illumination. Spherical aggregates of NDI-Bola as imaged under c) fluorescent confocal 

microscope and d) tapping mode AFM (10
-3

 M solution in 90% (v/v) water in methanol). 

Another report of such excimeric emission was shown in amphiphilic NDI-Amph 

(Figure 6.2.2a), which was synthesized as shown in Scheme 6.2.5.
5c

 The weak blue emission of 

self-assembled film turned into enhanced green fluorescence upon exposure to vapors of 

organic solvents like CHCl3, CH2Cl2, THF etc. (inset: Figure 6.2.2 d). Through detailed 

spectroscopic investigations, the exsistence of complex self-assembly processes accompanying 

three different states of assembly were observed (Figure 6.2.2 b-d). All photophysical studies 

were done at various percentage of water in MeOH with 1% CHCl3. At 0% water the molecules 

self-assemble in the H1 state with very weak emission (Figure 6.2.2c). On increasing water 

composition to 60%, a bathochromic shift of absorption spectra along with enhanced red shifted 

emission indicates the transformation from an H1 state to J state of assembly. On further 

increase in water till 70%, we notice the evolution of a broad featureless emission band at 500 

nm along with blue shift of the absorption spectra (Figure 6.2.2 b, c). Such an emission is 

characteristic of excimer formation in NDI derivatives and blue shift in absorption spectra 

indicates the formation of a different H2 aggregate. Thus, when vapochromic behavior was 

probed with fluorescence spectroscopy, we notice the transformation from a J state to H2 

excimeric state upon exposure of NDI-Amph film with vapors of CH2Cl2 (Figure 6.2.2d). Such 
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a turn on of fluorescence was due to formation of pre-associated excimer and could be utilized 

as a turn on organic vapor sensor. 

 

Figure 6.2.2. a) Molecular structure of NDI-Amph and steady state b) absorption spectra, c) 

emission spectra (λex = 350 nm) of three different states, i.e. H1 , J and H2 of NDI-Amph in 

0%, 60%, 70% water in MeOH with 1% CHCl3 respectively (c = 1 x 10
-4 

M). d) Emission 

spectra of NDI-Amph films (ex = 350 nm) upon exposure to saturated vapors of CH2Cl2 and 

inset shows the visual changes in fluorescence of a NDI-Amph film upon exposure to CH2Cl2 

vapors (illuminated with 365 nm UV light, the letters NCU is the abbreviation for New 

Chemistry Unit). 

In both these cases and many others reported in literature,
5
 we observe the excimer formation, 

but there is no rational approach known yet to control such processes. 

Charge transfer complex: Mixed stack charge-transfer (MS-CT) assemblies have been 

constructed via macromolecular,
8
 supramolecular amphiphilic,

9
 and host-guest designs.

10 
In all 

such approaches, the alternate assembly of donor-acceptor were reported with varying 

association constants. For example, we have introduced coronene and NDI based novel D-A 

CT pairs (Figure 6.2.3). These formed strong CT complex in water with high association 

constants. Through systematic structural variation of the NDI at imide substitution, a structure 

property correlation has been established. Association constant measurements indicated that the 

CS:NDI-DC forms stronger CT compared to CS: NDI-Bola. Detailed studies clearly 

established the role of secondary forces like electrostatic interactions and amphiphilic 

organization in stabilizing the CT co-assembly. Thus we have shown simple ways to control the 

strength of CT interactions as well as to tune the supramolecular organization in solution 

leading to 1-D charge transfer nanofibers. 
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Figure 6.2.3. Chemical structure of coronene based donor and NDI based acceptors. a) 

Evolution of CT absorption band upon CS:NDI-MC 1:1 CT co-assembly (10
-4

 M, 90% water in 

MeOH, l=10mm). Inset in a) shows the schematic representation of alternate D-A CT co-

assembly and b) shows the corresponding TEM image of CS:NDI-MC CT nanofibers. 

Thus we see that there are many reports of excimer and charge-transfer complex 

formation. However, it is still challenging to design a general supramolecular pinning strategy 

which can provide essential pre-organization of chromophores for the formation of excimer and 

mixed charge transfer complex. 

In this chapter, we describe a novel molecular design where, the supramolecular 

clippers drive the pre-organization of chromophores in solution and thus dictating the 

bimolecular photo-physical processes of resulting assemblies (Scheme 6.2.1).  As a proof of 

this concept, we have designed chromophores end-functionalized with molecular recognition 

units, which serve as handles to position these molecules upon non-covalent interactions with 

multivalent guest molecules (supramolecular clippers). 
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Scheme 6.2.1. Chemical structures and schematic representations of DPA functionalized 

chromophores, NDPA, DAN-Bola and DAN-Amph. Top left:  Pictorial representation of the 

supramolecular clipping approach for the homo and hetero pre-organization of D and A 

chromophores, which results in pre-associated excimer and alternate (mixed) D-A 

charge-transfer based assembly, respectively. Supramolecular clippers are multivalent 

guest molecules which binds specifically to the molecular recognition units of the 

chromophores. 

Dipicolylethylenediamine (DPA) motif is a well-known receptor for the selective 

binding of phosphate guest molecules and thus has been extensively used in the design of 

molecular phosphate sensors.
11 

Hence, we have functionalized various chromophores with DPA 

units so that multivalent phosphates like AMP, ADP, ATP and PPi can be used as clipper 

molecules for the pre-organization of these chromophores. In this study, DPA derivatives of 

dialkoxynaphthalene (DAN-Bola) and naphthalenediimide (NDPA) were designed (Scheme 

6.2.1) which on binding with multivalent phosphates resulted in strong pre-associated excimer, 

indicating the clipping action. In addition, phosphate clipping induced CT complexation 

between DPA functionalized NDI and DAN, a well-known donor-acceptor (D-A) pair,
12

 is also 

demonstrated, thus proving the potential of this design for heterogeneous bi-component self-

assembly (Scheme 6.2.1). Detailed photophysical and NMR studies further indicate that 

phosphate clipping also promotes higher order self-assembly of both homo and hetero-

chromophoric systems, in agreement with our previous results.
13

 In addition, amphiphilic DPA 

functionalized DAN derivative (DAN-Amph) provided insights into the crucial role of 

phosphate clipping for controlling these photophysical processes even in pre-aggregated 

assemblies. 
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6.2.2 Synthesis and Characterization 

 

Scheme 6.2.2. Chemical pathway for the synthesis of DAN-Bola. Reagents and conditions: (a) 

K2CO3, dry MeCN, 85 °C, 15 h; (b) TFA, DCM, 0 °C, 2 h; (c) 5M aq. NaOH, overnight; (d) 

CHCl3/MeOH, Zn(NO3)2.6H2O, 2 h. 

The synthesis of DAN-Bola and DAN-Amph were carried out following a multistep 

pathway as shown in Schemes 6.2.2 and 6.2.3, respectively (Section 6.2.7). DAN-Bola 

synthesis started with the alkylation of 1,5-dihydroxynaphthalene with BOC (tert-

butyloxycarbonyl) protected bromoethylenediamine (1), which was then followed by the 

deprotection with TFA (trifluoroaceticacid) to yield diamine 3. Electrophilic substitution on 3 

with 2-(chloromethyl) pyridinehydrochloride gave 4, which was then complexed with Zn
2+

 to 

yield the desired compound DAN-Bola (Scheme 6.2.2). For the synthesis of DAN-Amph, 

statistical alkylation of 1,5-dihydroxynaphthalene with 1 and dodecyl bromide was carried out 

to obtain 5 (Scheme 6.2.3). Further steps followed similar procedures as described for DAN-

Bola. NDPA was synthesized based on a reported procedure.
14

 All compounds were completely 

characterized by 
1
H/

13
C NMR and high resolution mass spectrometry (HRMS). 

Bolaamphiphilic derivatives, i.e. NDPA and DAN-Bola, were completely soluble in water and 

therefore all measurements were performed in aq. HEPES buffer (10 mM aq. HEPES solution). 

On the other hand, the amphiphilic derivative DAN-Amph was completely soluble in THF and 

was expected to trigger a surfactant-like self-assembly in water. Hence all the investigations of 

DAN-Amph were carried out in various solvent compositions of aq. HEPES in THF. 
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Scheme 6.2.3. Chemical pathway for the synthesis of DAN-Amph. Reagents and conditions: 

(a) K2CO3, dry MeCN, 85 °C, 20 h; (b) TFA, DCM, 0 °C, 2 h; (c) 5M aq. NaOH, DCM, 15 h; 

(d) CHCl3/MeOH, Zn(NO3)2.6H2O, 4 h. 

6.2.3 Clipping Induced Pre-associated Excimer 

We studied the phosphate clipping of individual D and A chromophores by probing 

their optical properties. DAN-Bola being molecularly soluble in water shows three sharp 

absorption bands at 297 nm, 312 nm and 325 nm in aq. HEPES buffer (c = 8 x 10
-5

 M). Upon 

binding with increasing eq. of adenosine triphosphate (ATP), a trivalent clipper molecule, 

gradual bathochromic shift (2 nm) along with decrease in absorbance and slight scattering at 

higher wavelengths were observed. These are clear signature of J-type inter-chromophoric 

organization in dialkoxy-naphthalene derivatives (Figure 6.2.4a).
15

 Quite surprisingly, the 

corresponding emission spectra showed a gradual decrease in the monomeric emission at 342 

nm, with simultaneous evolution of a significantly bathochromic emission band at 472 nm, 

which is 130 nm red-shifted compared to the monomeric emission, passing through an 

isoemissive point at 389 nm (Figure 6.2.4b). Such red shifted broad emission band with high 

fluorescence intensity and without any vibrational features is characteristic of excimer 

emission, well known in NDI, naphthalene or pyrene derived chromophores.
16

 However, to our 

knowledge, this is the only report of excimer emission in dialkoxy naphthalene derivatives. 
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Figure 6.2.4. a) Absorption and b) emission (λex=300 nm) spectral changes of DAN-Bola upon 

titration with ATP. All measurements were done in 10 mM aq. HEPES buffer, c = 8 x 10
-5

 M in 

10 mm cuvette. Schematics on the right-hand side show the molecular clipping process for pre-

associated excimer. 

To probe into the nature of this excimer emission, excitation spectra were collected at 

monomeric (355 nm) and excimeric (480 nm) emission. Excitation spectra collected at 350 nm 

(without ATP, Figure 6.2.5a) appears like monomeric absorption of DAN-Bola. But, upon ATP 

binding, spectra collected at 490 nm is red shifted (4 nm) and broadened compared to the one 

collected at 350 nm (Figure 6.2.5a), characteristic of pre-associated excimer.
17

 Thus providing 

an unambiguous proof of clipping induced pre-organization of chromophores in the ground 

state. Time correlated single photon counting studies were also done to characterize the excimer 

emission. Monitoring at 480 nm (excimer band) upon excitation at 310 nm showed 

biexponential decay with life-times of, τ1 =4.93 ns (33%) and τ2 =1.72 ns (67%) (Figure 6.2.5b). 

Such a high lifetime also indicates excited state stabilization through excimer formation.  

 

Figure 6.2.5. a) Comparative excitation spectra collected at monomeric emission as well as 

excimeric emission for DAN-Bola with and without ATP. Fluorescence lifetime decay profile of 

DAN-Bola (λex=310 nm) with 1 eq. ATP, monitored at excimeric emission. All measurements 

were in aq. HEPES buffer, c = 8 x 10
-5

 M (IRF=Instrument response function). 
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 In addition, binding of other multivalent phosphates like ADP or PPi (P2O7
4-

) also 

showed excimer formation with varying degree of enhancement in 472 nm emission (Figure 

6.2.6). On the other hand, addition of AMP, which is a monovalent phosphate, showed 

negligible excimer emission compared to others indicating the requirement of multivalent 

molecules for supramolecular clipping action. 

 

Figure 6.2.6. Changes in absorption spectra upon titration of DAN-Bola with (a) AMP, (b) 

ADP and (c) PPi, whereas (d), (e) and (f) shows respective fluorescence spectra (λex=300 nm). 

All measurements were done in 10 mM aq. HEPES buffer, c = 8 x 10
-5

 M in 10 mm cuvette. 

 Similarly, binding of pyrophosphate clipper to NDPA (c = 8 x 10
-5

 M) also resulted in 

their aggregation, marked by the changes in absorption spectra. With increasing eq. of PPi, max 

of NDPA showed a red shift from 383 nm to 385 nm with broadening of absorption bands and 

reversal of their peak intensity ratio (I0-0/I0-1 from 1.2 to 0.77, Figure 6.2.7a).
18

 Emission spectra 

showed decrease in the monomeric emission at 411 nm with concomitant evolution of a red 

shifted broad band centred at 485 nm (Figure 6.2.7b), similar to the observation in DAN-Bola. 

This highly emissive band has been assigned to pre-associated excimer formation by NDPA, as 

evident from their excitation spectra (Figure 6.2.7c)
5, 17

 which show a new red shifted aggregate 

band. This is shown to have originated from the clipping of chromophores upon selective PPi 

binding.
14,

 
19

 Thus, preassociated nature of excimer emission and the unique ability of 

multivalent phosphates to induce excimeric emission validate our design of guest induced pre-

organization through supramolecular clipping of chromophores. 
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Figure 6.2.7. a) and b) show respective changes in absorption and fluorescence (λex=350 nm) 

spectra of NDPA on binding with PPi. Inset in b) shows photographs of NDPA solution 1) 

without and 2) with PPi under UV illumination (365 nm). c) Excitation spectra collected at 

excimeric emission for NDPA with 0.7 eq. PPi demonstrating its pre-associated (aggregated) 

nature. All measurements were done in 10 mM aq. HEPES buffer, c = 8 x 10
-5

 M in 10 mm 

cuvette. Schematics on the right hand side show the molecular clipping process for pre-

associated excimer. 

 

Our previous studies with DPA-functionalized molecules have shown that molecular 

recognition of multivalent guest molecules results in one-dimensional self-assembly of 

chromophores, probably through simultaneous clipping at two or more consecutive binding 

sites, resulting in supramolecular stitching of chromophores along the stacking direction 

(Chapter 2).
13

 Using dynamic light scattering and transmission electron microscopy 

experiments we have shown that supramolecular clipping of NDPA results in extended 

assembly rather than terminating the growth at dimeric or tetrameric level. Inter-chromophoric 

interactions are known to decrease the emission intensity of various chromophores, including 

NDI and DAN derivatives.
20

 In the present investigation, it is evident that even though 

phosphate binding induces self-assembly of both these derivatives, emission is enhanced and 
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retained in their assembly through aggregation induced enhanced emission (AIEE) 

mechanism
21

 i.e. via formation of pre-associated excimer as shown in other NDI derivatives 

(Figure 6.2.1, 6.2.2).
5
  Thus, phosphate binding induced clipping of chromophores presents a 

simple and rational approach for the construction of fluorescent (AIEE) assemblies. 

To investigate the role of clipping induced pre-organization and general scope of our 

excimer design strategy, we have synthesized amphiphilic DAN derivative, DAN-Amph, 

which exists as free molecules in THF and self-assembles in the presence of water due to 

hydrophobic and aromatic-aromatic interactions. Unlike DAN- Bola which could aggregate 

only in presence of phosphates, interchromophoric interactions in DAN-Amph could be 

achieved without phosphates in presence of polar solvents like water. 

 

Figure 6.2.8. a) Normalized absorption spectra of DAN-Amph with varying HEPES 

composition in THF, whereas b) shows solvent dependent emission (λex=300 nm) changes on 

binding to 1 eq. of ADP. Inset in a) shows the corresponding zoomed in portion showing 

aggregation features in absorption. c) TEM images of self-assembled DAN-Amph with 1 eq. 

ATP. d) Emission spectra of DAN-Amph (λex=300 nm) upon titration with ADP and e) 

fluorescence lifetime decay profile of DAN-Amph (λex=310 nm) with no ADP and 1 eq. ADP, 

monitored at monomeric (350 nm) and excimeric emission (450 nm). f) Comparative emission 

spectra of DAN-Amph (λex=300 nm) with various adenosine phosphates (1 eq. each). d)–f) 

were recorded in 90% HEPES in THF. All measurements were done in 10 mm cuvette, c =7 x 

10
-5
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On increasing the percentage of HEPES, DAN-Amph begins to aggregate as seen from 

the slight red shift in the absorption maxima and appearance of scattering along with decrease 

in monomeric emission (Figure 6.2.8 a, b). Formation of higher order assembly upon phosphate 

binding in 90% HEPES was evident from TEM analysis, which showed the presence of short 

nanostructures (Figure 6.2.8c). However, significant excimer emission could not be observed 

even in 90% HEPES in THF solvent mixture (Figure 6.2.8b). Remarkably, upon titration with 

ADP (90% HEPES in THF, c = 7x10
-5

 M), the monomeric emission (345 nm) further decreases 

with the emergence of a new red shifted band at 450 nm (Figure 6.2.8d), which is assigned to 

excimer formation (vide supra). This suggests that even in pre-assembled chromophores, 

molecular clipping has the unique role of inducing appropriate pre-organization in the ground-

state required for excimer formation. Characterization of excimer emission was again probed 

with time resolved fluorescence measurements. Fluorescence decay profile of DAN-Amph 

without ADP (90% HEPES in THF, c = 7 x 10
-5

 M) monitored at 350 nm (λex = 310 nm), shows 

very fast decay as expected of monomeric species (Figure 6.2.8e). Upon binding with ADP, 

monitoring the emission at 350 nm again shows similar very short lived species indicative of 

monomeric species. Monitoring at excimeric band (450 nm) showed a triexponential decay 

with lifetimes of τ1 = 16.82 ns (27%), τ2 = 5.44 ns (27%) and τ3 = 1.07 ns (46%). Existence of 

such high lifetimes proves the pre-associated nature of this excimer emission. 

Further emission studies of DAN-Amph with 1 eq. of bound ADP in various solvent 

compositions showed that the excimer intensity increases with HEPES percentage in THF 

(Figure 6.2.8b) i.e. 90% HEPES solution showed higher excimer intensity compared to 80% or 

70% HEPES composition. Also there is weak emission at 450 nm even without ADP as seen in 

90% HEPES mixture. These two facts indicate that pronounced aggregation of chromophores 

(at higher HEPES percentages) can indeed assist in the pre-orientation of chromophores, but it 

cannot be a substitute for phosphate binding in inducing the excimer formation. In addition, a 

comparison among various phosphate binding shows that excimer emission is highest for 

stronger binding guest ATP, and least for AMP (weakest binding), whereas ADP falls in 

between (Figure 6.2.8f), thus providing a simple means for controlling the intermolecular 

interactions and the emission properties. 

With this we have shown the phosphate binding induced clipping for excimer formation 

in NDPA, DAN-Bola and DAN-Amph derivatives. This justifies the broader scope of 

dipicolylethylenediamine functionality based design strategy for guest induced pre-organization 

of chromophores leading to excimer formation. 
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6.2.4 Clipping Induced Donor-Acceptor Co-assembly  

Having established the role of clipping in pre-organizing individual chromophores, we 

extended it to the hetero-dimerization of D and A molecules for the construction of mixed CT 

assemblies. Several molecular designs have been utilized in literature for obtaining effective 

CT between DAN and NDI derivatives,
8,12

 a well studied donor-acceptor (D-A) pair. Since pre-

organization of D and A chromophores in a face-to-face manner is a prerequisite for these 

mixed (alternate) CT complexes, we investigate the potential of present molecular clipping 

design for co-facial D-A alternate assembly. 

 

Figure 6.2.9. a) Schematic representation of ATP/PPi clipped mixed CT stack formation of 

DPA functionalized NDI (A) and DAN (D) chromophores. Absorption spectra of NDPA (NDI), 

DAN-Bola (DAN) and their 1:1 CT complex upon binding of b) ATP, c) PPi. Insets show the 

corresponding zoomed in portions of absorption spectra near CT transition region. All 

measurements were performed in 10 mM aq. HEPES buffer, c = 8 x 10
-5

 M in 10 mm cuvette. 

Low intensity band at 475 nm seen in the absence of ATP (blue curve) is due to noise and not a 

CT band.  

Thus co-assembly of NDPA and DAN-Bola (aq. HEPES buffer, 8 x 10
-5

 M) was 

investigated in presence of multivalent phosphates, to study the role of guest binding in hetero 

pre-organization. As shown above, both these chromophores show absorption and emission 

features of molecularly dissolved state in the absence of any binding phosphates. When these 

chromophores were mixed in 1:1 molar ratio in the absence of any clippers, the absorption 

features of individual D and A were retained, indicating no interaction between the D-A pair 

(Figure 6.2.9b). In addition, absence of any new low-energy absorption band, corresponding to 
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CT transition, clearly rules out formation of any D-A complex. Remarkably, addition of 1 eq. 

of ATP to the solution of D and A mixture, showed a clear change in the absorption spectral 

features. Apart from inducing aggregation to these chromophores, binding of ATP resulted in 

the appearance of a new red-shifted broad band at 510 nm, characteristic of ground state CT 

complex formation between NDI-DAN D-A pair.
8,12

 Similar experiments with other divalent 

phosphates, such as PPi and ADP, also resulted in alternate D-A complex as evident from the 

red shifted absorption band (Figure 6.2.9c, Figure 6.2.11a). Monitoring the emission spectra 

also corroborates with the formation of clipping induced charge-transfer complex formation. 

For example, emission spectra of a 1:1 mixture of NDPA and DAN-Bola with clipping 

phosphates (ATP), upon excitation at 300 nm showed significant quenching of monomeric or 

excimeric emissions of both the components, characteristic of charge-transfer interactions 

(Figure 6.2.10a). On the other hand, as expected, binding of monovalent AMP did not show any 

characteristics of CT formation, due to their inability to clip the chromophores together (Figure 

6.2.11a). ATP binding induced 1:1 CT complex formed extended supramolecular assembly, as 

evident from the TEM analysis which showed short nanostructures (Figure 6.2.10b). 

 

Figure 6.2.10. a) Steady state emission spectra of NDPA, DAN-Bola and their 1:1 complex 

upon binding of ATP (λex=300 nm) (c = 8 x 10
-5

 M in aq HEPES buffer). Quenching of 

monomeric and excimeric emission proves CT formation. b) Nanostructures formed by 1:1 D-A 

assembly of DAN-Bola (D) and NDPA (A) with 1 eq. ATP (c = 8 x 10
-5

 M in water).  

Interestingly, comparing the CT band intensity at 510 nm with different binding 

phosphates showed that the strength of CT complexation is highest for ATP followed by ADP 

whereas AMP with only one binding site fails to induce CT formation (Figure 6.2.11a). This is 

in agreement with the higher binding strength of ATP through three point clipping compared to 

its lower analogues like ADP and AMP, due to multivalent interactions. Thus, it is evident that 

the role of phosphate clipping is very crucial in providing appropriate organization and 

association energy for CT complexation in the present system. Moreover, supramolecular 
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clipping provides a unique and very simple handle to control and tune the strength of CT 

complexation between same D-A pair without any tedious structural modifications; but just by 

changing the clipper molecules. A simple strategy like presented here, for tuning the strength of 

CT provides an additional dimension to their potential use in various applications in organic 

electronic and ferroelectric materials.
22

  

 

 

Figure 6.2.11. Absorption spectra of NDPA, DAN-Bola and their 1:1 complex upon binding 

with a) all three adenosine phosphates showing comparative strengths of 1:1 CT formation.
23

 

b) Shows the comparison of CT formation between mixing of pre-assembled stacks of D and A 

molecules using ATP (method (A)) with that of in situ construction by the addition of ATP to a 

mixture of D and A monomers (method (B)). c) Schematic representation of these two methods 

is shown in c). Insets show the corresponding zoomed in portion of absorption spectra near CT 

transition region. All measurements were done in 10 mM aq. HEPES buffer, c = 8 x 10
-5

 M, 10 

mm cuvette. 

We further investigated the dynamic nature of the chromophores and phosphate 

clipping in these supramolecular aggregates using CT as a probe. For that, we have mixed the 

individual stacks of both NDPA and DAN-Bola, which are pre-assembled with 1 eq. of ATP 

and monitored the kinetics of CT band formation. Interestingly, charge-transfer band due to the 

formation of alternate D-A assembly was fully attained within seconds, suggesting a very fast 

dynamics of all the components in this assembly (Figure 6.2.11b). This was further confirmed 

by similar experiments with other guests like ADP and PPi. Insight into phosphate binding 

induced extended aggregation of mixed D-A chromophores was provided by NMR 

measurements. In the absence of any clipping guests, 1:1 mixture of NDPA and DAN-Bola did 
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not show any shift or broadening of their characteristic peaks, indicating the existence of non-

interacting monomeric chromophores. However, complete broadening of the peaks was 

observed on guest binding, confirming the formation of extended aggregates (Figure 6.2.12, 

Figure 6.2.13).  

 

Figure 6.2.12. Partial 
1
H NMR spectra showing changes in the aromatic region of a) NDPA 

and b) DAN-Bola with and without ATP. All measurements were done in D2O, c = 3 x 10
-4

 M. 

 

Figure 6.2.13. Partial 
1
H NMR spectra showing changes in the aromatic region of NDPA, 

DAN-Bola along with their 1:1 complex with and without ATP.  All measurements were done 

in D2O, c = 3 x 10
-4

 M. 
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Chiral Organization of Mixed Charge-Transfer Chromophores 

An interesting feature of the supramolecular clippers used in the present study is their 

molecular chirality, which can be expressed in stacked chromophores and helically bias their 

pre-organization during clipping action. This would result in the expression of supramolecular 

chirality to excitonically coupled chromophores and mixed D-A assemblies. Although, chiral 

clipping induced helical assembly has been reported in polymeric
24

 and one-dimensional 

supramolecular assembly,
25

 chirality induction in charge-transfer coupling between 

alternatively stacked D and A molecules using supramolecular clipping design is not yet 

reported. 

 

Figure 6.2.14. CD spectra of a) NDPA and b) DAN-Bola with 1 eq. of ADP and ATP, and 

their 1:1 DAN-Bola:NDPA co-assembly formed with chiral guests c) ATP, d) ADP and AMP. 

Inset in c) shows schematic illustration of CT based helical co-assembly. All measurements 

were done in 10 mM aq. HEPES buffer, c = 8 x 10
-5

 M in a 10 mm cuvette. 

Motivated by this, we have further probed the chiroptical properties of the present 

phosphate clipped chromophoric stacks. Chiral clipping of NDPA by ATP and ADP biases the 

organization of chromophores in right- and left-handed helical organizations, respectively as 

reported in Chapter 2.
13

 This differential bias in organization and the presence of excitonically 

coupled chromophores upon phosphate clipping were signalled by the oppositely bisignated 

circular dichroism (CD) spectral features. (Figure 6.2.14a). On the other hand, binding of ATP 

or ADP to DAN-Bola resulted in a positive bisignated CD signal, with 299 nm and 267 nm as 
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the positive and negative maxima respectively, again suggesting the expression of helical bias 

to the chromophoric organization (Figure 6.2.14b). These CD signals were significantly distinct 

compared to that of individual ATP or ADP clippers, though a partial contribution from them 

cannot be ruled out. Having confirmed the chirality induction into individual organization of D 

and A chromophores, we further looked at the role of chiral clippers in biasing their co-

assembled CT state. Interestingly, binding of 1 eq. of ATP to a 1:1 mixture of NDPA and 

DAN-Bola chromophores (aq. HEPES buffer, c = 8 x 10
-5

 M), showed a strongly coupled 

bisignated CD signal (Figure 6.2.14c). The signal obtained is distinctly different when 

compared with that of individually organized NDI and DAN chromophores, as evident from the 

broadening of CD signal in the 350 nm range, with shift in the CD zero crossing point from 365 

nm to 332 nm, suggesting the chiral co-organization of D-A complex. In addition, a broad 

monosignated CD band with a maximum at 500 nm was observed, which lies in the absorption 

region of characteristic CT transition. These observations clearly confirm the presence of strong 

excitonically coupled and helically organized mixed CT assemblies.  Such chiral CT complexes 

displaying strong CD signals are seldom reported in literature
26

 and the present system provides 

the only report of clipping induced chirality in CT complexes. Similar experiments performed 

on binding of ADP/AMP with the D and A chromophoric mixture, failed to show any such 

features in the CD signal, but rather retained the individual CD signatures of DAN and NDI 

(Figure 6.2.14d), reiterating the weak or insignificant CT formation as reflected in the intensity 

of CT band in their absorption spectra (Figure 6.2.11a). 

6.2.5 Conclusions 

We have demonstrated a new design strategy for the pre-organization of chromophores 

to modulate their photophysical properties based on supramolecular clippers. 

Dipicolylethylenediamine (DPA) motif, a well known receptor for phosphate groups, was 

utilized as the molecular recognition unit, whereas multivalent adenosine phosphates were used 

as supramolecular clippers. 

As a proof of principle, we synthesized 1,5-dialkoxynaphthalene (DAN) functionalized 

with DPA motif which could pre-organize upon non-covalent binding with adenosine di/tri 

phosphates. Phosphate clipping led to aggregation induced pre-associated excimer formation in 

DAN assemblies, hitherto unknown in various DAN derivatives. This design could be 

generalized by extending it to the excimer formation in DPA functionalized 

Naphthalenediimide (NDI) derivative as well.  Detailed spectroscopic studies, with self-

aggregating amphiphilic, DPA appended DAN derivative, revealed the unique task of 

phosphate clippers in providing the appropriate pre-organization of chromophores for excimer 

formation. 
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Adenosine phosphate clipping was also applied for the heterogeneous assembly of 

donor and acceptor chromophores, as shown by clipping induced charge transfer (CT) complex 

formation. DAN and NDI, a well known donor-acceptor pair could be arranged in a co-facial 

manner only in presence of these phosphates. 

Apart from controlling the photophysical properties, phosphate clippers, being chiral, 

also induced helical bias to the homo- and hetero-chromophoric assemblies, as evident from the 

chiroptical studies. Chirality induction in the CT transition by the helical organization of the 

donor-acceptor co-assembly is seldom achieved and would be of great interest in 

chirotechnological applications.  

It is evident that clipping induced modulation of chromophoric organization was 

primarily responsible for the observed bimolecular photophysical properties in the present 

systems. Remarkably, this design also allows the modulation of inter-chromphoric interactions 

by varying the binding strength of clipper molecules. Thus we believe that the supramolecular 

clipping approach presented here holds great promise in controlling various interchromophoric 

phenomena like energy/electron transfer, which can be investigated in future. 

6.2.6 Experimental Section 

General Methods:  

Transmission Electron Microscopy (TEM): TEM measurements were performed on a JEOL, 

JEM 3010. Samples were prepared by placing a drop of the solution on carbon coated copper 

grids followed by drying at room temperature. The images were recorded with an operating 

voltage 300 kV. In order to get a better contrast samples were stained with uranyl acetate (1 wt 

% in water) before the measurements. For TEM, water was used instead of aq. HEPES solution 

to avoid masking of nanostructures due to HEPES deposition upon drying. 

Atomic Force Microscopy (AFM): AFM measurements were performed on a Veeco diInnova 

SPM operating in tapping mode regime. Micro - fabricated silicon cantilever tips doped with 

phosphorus and with a frequency between 235 and 278 kHz and a spring constant of 20-40 Nm
-

1 
were used. The samples were prepared by drop casting 10

-3
 M solution of 1 in 90% (v/v) water 

in methanol on glass substrate and dried in air followed by vacuum drying at room temperature. 

Optical Measurements: Electronic absorption spectra were recorded on a Perkin Elmer 

Lambda 900 UV-Vis-NIR Spectrometer and emission spectra were recorded on Perkin Elmer 

Ls 55 Luminescence Spectrometer. UV-Vis and emission spectra were recorded in 10 mm path 

length cuvettes. Fluorescence spectra of solutions were recorded with 350 nm or 300 nm 

excitation wavelength. Circular Dichroism measurements were performed on a Jasco J-815 
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spectrometer where the sensitivity, time constant and scan rate were chosen appropriately. CD 

spectra were smoothened using adjacent averaging method.  

Confocal Microscopy Imaging: Confocal Microscopy imaging was done at room temperature 

using a Zeiss LSM 510 META laser scanning confocal microscope. The microscope objective 

of 63X (NA 1.4) and 20X (NA 0.5) were employed. Sample was prepared by sealing the 

solution between two glass plates. 

NMR Measurements: NMR spectra were obtained with a Bruker AVANCE 400 (400  MHz) 

Fourier transform NMR spectrometer with chemical shifts reported in parts per million (ppm) 

with respect to solvent residual peak . 

High-Resolution Mass-Spectrometry (HR-MS): HRMS measurements were performed with 

Agilent Technologies Q-TOF-LCMS system, 6538 instrument. Measurements were done in ESI 

mode (positive mode). 

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF): MALDI-TOF 

spectra were obtained on a Bruker ultraflex 2 MALDI-TOF mass spectrometer with α-cyano-4-

hydroxycinnamic acid matrix. 

Single Photon Counting Spectrometer: Fluorescence decay was recorded in a timecorrelated 

single-photoncounting spectrometer of Horiba-Jobin Yvon with 310 nm nanosecond LED. 

Sample Preparation: All samples for spectroscopic measurements were prepared by injecting 

the aqueous stock solution of NDPA or DAN-Bola into required volume of aq. HEPES buffer 

(HEPES - (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid). For DAN-Amph THF stock 

solution was injected into required volume of aq. HEPES-THF composition. To these 

appropriate amount of phosphates were injected and the solution was mixed by manual shaking 

before measurements.  

For CT measurements, both the stock solutions of D and A were mixed and then introduced 

into appropriate solvents followed by phosphate addition.  

For pre-complex dynamic CT experiment shown in Figure 6.2.11b, individual NDPA and 

DAN-Bola were separately pre-complexed with 1 eq. of ATP and then the two solutions were 

mixed together. 

Materials: N,N-Bis(2-pyridylmethyl)ethane-1,2-diamine was synthesized based on reported 

procedure.
27

 All other chemicals were purchased from the commercial sources and were used as 

such. Spectroscopic grade solvents were used for all optical measurements. 
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Synthesis and Procedures 

 

Scheme 6.2.4. Chemical pathway for the synthesis of NDI-Bola. 

Synthesis of NDI-Bola: 0.53 g (2 mmol) of 1,4,5,8–naphthalenetetracarboxylic dianhydride 

and 0.91 g (4.37 mmol) of methoxytetraethylene-glycolamine
28

 in 15 ml DMF was heated at 

110 °C for 12 h. After the removal of DMF, the reaction mixture was extracted with CHCl3 and 

washed with water. Organic layer was dried with anhydrous Na2SO4 and solvent was removed 

under vacuum. Silica gel column chromatography (100-200 mesh, eluent 5% MeOH in CHCl3) 

followed by precipation in diisopropyl ether gave 0.97 g of NDI-Bola in 75% yeild.  
1
H NMR 

δH (400 MHz; CDCl3; Me4Si): 8.75 (s, 4H, ArH), 4.46 (t, J=7 Hz, 4H, N-CH2), 3.85 (t, J=7 Hz, 

4H, N-CH2CH2), 3.5-3.7 (m, 24H, CH2), 3.35 (s, 6H, O-CH3) ; 
13

C NMR  δC (100 MHz, 

CDCl3): 163.01, 131.12, 126.92, 126.79, 72.06, 70.76, 70.71, 70.63, 70.28, 67.94, 59.14, 39.76 

; MALDI-TOF MS  m/z: 669.37 [M+Na
+
], HRMS (TOF-MS ES+): m/z: calcd for 

C32H42N2O12Na
+ 

: 669.2635 [M+Na
+
], found: 669.2440. 

 

Scheme 6.2.5. Chemical pathway for the synthesis of NDI-Amph. 

Synthesis of NDI-Amph: 0.97 g (3.645  mmol) of 1,4,5,8–naphthalenetetracarboxylic 

dianhydride, 0.91 g (4.37 mmol) of methoxytetraethylene-glycolamine
28

 and 0.81 g (4.37 
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mmoles) of dodecylamine were taken in 25 ml DMF and heated at 110 °C for 24 h. Upon 

cooling the reaction mixture DMF was removed under vacuum. The reaction mixture was 

extracted with CHCl3 and washed with water. Organic layer was dried with anhydrous Na2SO4 

and solvent was removed under vacuum. Silicagel column chromatography (100-200 mesh, 

eluent 5 - 10% MeOH in CHCl3) gave NDI-Amph (0.32 g, 14% yield) along with 

Boloamphiphilic product
5b 

(0.43 g, 18% yield) and the di-dodecyl derivative. 
1
H NMR δH (400 

MHz; CDCl3; Me4Si): 8.75 (s, 4H, ArH), 4.45 (t, J=6 Hz, 2H, N-CH2 of tetraethyleneglycol 

{TEG}), 4.18 (t, J=7.6 Hz, 4H, N-CH2 of dodecyl), 3.84 (t, J=5.6 Hz, 2H, N-CH2CH2 of TEG), 

3.70-3.49 (m, 12H, CH2 of TEG), 3.35 (s, 3H, O-CH3); 1.77-1.25 (m, 20H, CH2 of dodecyl), 

0.87 (t, J=7 Hz, CH3 of dodecyl); 
13

C NMR  δC (100 MHz, CDCl3): 163.05, 162.95, 131.13, 

131.05, 126.93, 126.88, 126.85, 126.71,72.07, 70.76, 70.71, 70.63, 70.29, 67.95, 59.14, 41.16, 

39.75, 32.05, 29.77, 29.76, 29.73, 29.66, 29.47, 28.23, 27.24, 22.82, 14.24 ; ESI- MS  m/z: 

647.55 [M+Na]
+
, HRMS (TOF-MS ESI+): m/z: calcd for C35H48N2O8Na

+ 
: 647.3308 [M+Na]

+
, 

found: 647.3127. 

NDPA and compound 1 was synthesized following the reported procedure and was 

characterized accordingly.
14

  

Synthesis of DAN-Bola was peformed according to Scheme 6.2.2. Procedures are given below.  

Synthesis of 2: 300 mg (1.87 mmol) of 1,5-Dihydroxynaphthalene and 2 g of dry K2CO3 along 

with 10 mL of dry MeCN were stirred for 10 minutes at 50 °C. To this solution 1.05 g (4.68 

mmol) of 1 in 5 mL of dry MeCN was added and whole solution was refluxed for 15 h under 

inert atmosphere. MeCN was evaporated under low pressure and the residue obtained was 

dissolved in CH2Cl2. This solution was filtered to remove insoluble K2CO3 and filtrate obtained 

was extracted with water and brine. The organic layer was dried over Na2SO4 and evaporated. 

Compound was purified by column chromatography (Silica gel, 100-200 mesh, eluent 5% 

MeOH in CHCl3) to obtain 320 mg of pure product in 38% yield. 
1
H NMR δH (400 MHz; 

CDCl3; Me4Si) : 7.84 (d, 2H, J = 8.4 Hz), 7.36 (t, 2H, J = 8 Hz), 6.84 (d, 2H, J = 7.6 Hz), 4.19 

(t, 4H, J = 4.8 Hz), 3.68 (q, 4H, J = 4.8 Hz), 1.45 (s, 18H); MS (EI): m/z: calcd for C24H34N2O6 

: 446.5 [M]
+
, found : 446. 

Synthesis of 3: 10 mL of trifluoroacetic acid (TFA) was dissolved in 10 mL of DCM and the 

solution was stirred at 0 °C. 300 mg (0.67 mmol) of 2 was dissolved in 10 mL of DCM and was 

added to the above solution dropwise over 20 minutes. The reaction mixture was stirred at 0 °C 

for 1 hr and at rt for 1 hr. TLC was checked to confirm the completion of reaction.  TFA and 

DCM were removed under low pressure and the residue was dissolved in DCM. The whole 

solution was neutralized with 2 M NaOH solution and the product was washed with water and 

extracted with DCM. Organic layer was dried over Na2SO4 and solvent was removed. Product 
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was characterized with NMR and proceeded to next step without any further purification.
 1

H 

NMR δH (400 MHz; CDCl3; Me4Si): 7.86 (d, 2H, J = 8.4 Hz), 7.36 (t, 2H, J = 8 Hz), 6.86 (d, 

2H, J = 7.6 Hz), 4.17 (t, 4H, J = 5.2 Hz), 3.22 (t, 4H, J = 5.2 Hz).  

Synthesis of 4: 120 mg (0.48 mmol) of crude 3 and 400 mg (2.43 mmol) of 2-

(Chloromethyl)pyridinehydrochloride along with 20 mL of 5 M aq. NaOH solution was stirred 

at room temperature overnight. Some precipitate formation was observed and to make sure that 

everything undergoes complete substitution, 10 mL of DCM was added and the whole solution 

was stirred for another 3 h. The reaction mixture was extracted with DCM and organic layer 

was dried over anhydrous Na2SO4. DCM was removed at reduced pressure and the compound 

obtained was purified by neutral alumina column, initially with 1% MeOH in CHCl3 which 

removed most of the impurities and later increased polarity to 3% MeOH in CHCl3 to give pure 

compound 93 mg in 32% yield. 
1
H NMR (400 MHz, CDCl3, TMS) : δ 8.53 (td, 4H, J = 1.2 Hz, 

4.8 Hz), δ 7.79 (d, 2H, J = 8.4 Hz), δ 7.61 (m, 8H), δ 7.29 (t, 2H, J = 8 Hz), δ 7.15 (m, 4H), δ 

6.76 (d, 2H, J = 7.6 Hz), δ 4.27 (t, 4H, J = 5.6 Hz), δ 4.07 (s, 8H), δ 3.24 (t, 4H, J = 5.6 Hz);
 13

C 

NMR δC (100 MHz, CDCl3): 159.3, 154.4, 149.1, 136.8, 126.8, 125.2, 123.3, 122.3, 114.6, 

105.4, 66.4, 61.0, 53.5; HRMS (ESI): m/z: calcd for C38H39N6O2 : 611.3129 [M+H]
+
, found : 

611.3253. 

Synthesis of DAN-Bola: 50 mg (0.08 mmol) of 4 was dissolved in 4 mL of CHCl3. 60 mg (0.2 

mmol) of Zn(NO3)2.6H2O was dissolved in 1 mL of MeOH and was added drop wise to the 

above solution. The whole solution was stirred at room temperature for 2 h during which the 

reaction mixture turned turbid. This mixture was filtered and the residue was washed with 

excess CHCl3 (to remove unreacted 4) followed by washing with cold MeOH (to remove 

excess Zn(NO3)2.6H2O. The residue obtained was dried under high vacuum which weighed 

50.5 mg (62% yield). 
1
H NMR (400 MHz, D2O) : δ 8.51 (d, 4H, J = 4.8 Hz), δ 7.93 (t, 4H, J = 

7.6 Hz), δ 7.84 (d, 2H, J = 8.4 Hz), δ 7.54 (t, 4H, J = 6.4 Hz), δ 7.47 (m, 6H), δ 6.77 (d, 2H, J = 

7.6 Hz), δ 4.66 (d, 4H, J = 16 Hz), δ 4.33 (m, 8H), δ 3.39 (br, 4H); 
13

C NMR δC (100 MHz, 

D2O): 154.59, 153.03, 147.36, 140.97, 125.97, 125.87, 124.77, 124.62, 114.39, 106.25, 64.33, 

58.21, 53.45; HRMS (ESI): m/z: calcd for C38H39N6O2 : 611.3129 [M+H-2Zn(NO3)2]
+
, found : 

611.3241. 

Synthesis of DAN-Amph was performed according to Scheme 6.2.3 in the main text. 

Procedures are given below.  

Synthesis of 5: 1.3 g (8.16 mmol) of 1,5 Dihydroxynaphthalene and 4 g of dry K2CO3 along 

with 30 mL of dry MeCN were stirred for 10 minutes at 50 °C. A solution of 2.19 g (9.8 mmol) 

of 1 and 2.3 g (9.22 mmol) of dodecylbromide in 10 mL of dry MeCN was added to the above 

mixture and the whole solution was refluxed for 20 h under inert atmosphere. This solution was 
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cooled to room temperature and MeCN was evaporated at low pressure. The obtained residue 

was dissolved in CHCl3 and filtered to remove insoluble K2CO3 and the filtrate obtained was 

extracted with water. The organic layer was dried over Na2SO4 and evaporated. Compound was 

purified by column chromatography (Silica gel, 100-200 mesh, eluent 2% MeOH in CHCl3) to 

obtain 790 mg of desired unsymmetrical product 5 in pure form (21% yield) along with two 

other symmetrical by products. 
1
H NMR (400 MHz, CDCl3, TMS) : δ 7.88 (d, 1H, J = 8.4 Hz), 

δ 7.80 (d, 1H, J = 8.4 Hz), δ 7.37 (d, 1H, J = 7.6 Hz), δ 7.34 (d, 1H, J = 7.6 Hz), δ 6.84 (d, 1H, 

J = 7.2 Hz), δ 6.82 (d, 1H, J = 7.2 Hz), δ 4.19 (t, 2H, J = 4.8 Hz), δ 4.12 (t, 2H, J = 6.4 Hz), δ 

3.68 (m, 2H), δ 1.92 (m, 2H), δ 1.5 - 1.2 (m, 18H), δ 0.88 (t, 3H, J = 6.8 Hz); 
13

C NMR δC (100 

MHz, CDCl3): 155.95, 154.78, 154.05, 126.85, 126.53, 125.32, 124.95, 114.83, 113.72, 105.49, 

68.23, 67.58, 40.26, 31.92, 29.67, 29.61, 29.44, 29.35, 29.31, 28.40, 26.27, 22.70, 14.12; MS 

(EI): m/z: calcd for C29H45NO4 : 471.6 [M]
+
, found : 471.  

Synthesis of 6: 20 mL of TFA was dissolved in 20 mL of DCM and stirred at 0 °C. A solution 

of 5 (790 mg, 1.67 mmol) in 20 mL DCM was added dropwise to the above solution over 30 

minutes and the reaction mixture was stirred at 0 °C for 1 hr and room temperature for 1 hr. 

DCM and TFA were removed from the reaction mixture at low pressure. The obtained residue 

was dissolved in CH2Cl2 and extracted with 2 M NaOH to neutralize excess TFA in the 

mixture. After extraction with CH2Cl2 – water, organic layer was dried over anhydrous Na2SO4 

and CH2Cl2 was evaporated to obtain 6 in crude form. NMR was obtained to confirm the 

product and it was used for the next step without further purification. 
1
H NMR (400 MHz, 

CDCl3, TMS) : δ 7.87 (d, 1H, J = 8.4 Hz), δ 7.83 (d, 1H, J = 8.4 Hz), δ 7.35 (m, 2H), δ 6.85 (d, 

1H, J = 7.2 Hz), δ 6.83 (d, 1H, J = 7.2 Hz), δ 4.16 (t, 2H, J = 5.2 Hz), δ 4.12 (t, 2H, J = 6.4 Hz), 

δ 3.22 (t, 2H, J = 5.2 Hz), δ 1.92 (m, 2H), δ 1.6 - 1.2 (m, 18H), δ 0.88 (t, 3H, J = 6.8 Hz). 

Synthesis of 7: 380 mg (1.02 mmol) of crude 6 was dissolved in 10 mL of DCM. 402 mg (2.45 

mmol) of 2-(Chloromethyl)pyridinehydrochloride along with 20 mL of 5 M aq. NaOH solution 

was added to the above solution and stirred at room temperature for 15 h. The reaction mixture 

was extracted with DCM and organic layer was dried over anhydrous Na2SO4. DCM was 

removed at low pressure and the compound obtained was purified by silica gel column 

chromatography (100-200 mesh, eluent: 5% to 10% MeOH in CHCl3). This was followed by 

size exclusion chromatography (Biobeads, S-X3; CHCl3 as the solvent) to obtain pure 

compound in 17% yield (100 mg). 
1
H NMR (400 MHz, CDCl3, TMS) : δ 8.54 (td, 2H, J = 1.2 

Hz, 4.8 Hz), δ 7.84 (d, 1H, J = 8.4 Hz), δ 7.79 (d, 1H, J = 8.4 Hz), δ 7.60 (m, 4H), δ 7.32 (t, 1H, 

J = 8 Hz), δ 7.30 (t, 1H, J = 8 Hz), δ 7.12 (m, 2H), δ 6.82 (d, 1H, J = 7.2 Hz), δ 6.75 (d, 1H, J = 

7.2 Hz), δ 4.25 (t, 2H, J = 5.6 Hz), δ 4.12 (t, 2H, J = 6.8 Hz), δ 4.03 (s, 4H), δ 3.19 (t, 2H, J = 

5.2 Hz), δ 1.91 (m, 2H), δ 1.6 – 1.2 (m, 18H), δ 0.88 (t, 3H, J = 7.2 Hz); 
13

C NMR δC (100 

MHz, CDCl3): 159.85, 154.88, 154.51, 149.14, 136.80, 127.01, 125.27, 125.10, 123.18, 122.15, 
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114.53, 114.25, 105.46, 105.41, 68.39, 66.61, 61.26, 53.60, 32.07, 29.85, 29.82, 29.79, 29.77, 

29.70, 29.60, 29.50, 26.43, 22.84, 14.26; HRMS (ESI): m/z: calcd for C36H47N3O2 : 554.3741 

[M+H]
+
, found : 554.3829. 

Synthesis of DAN-Amph: 50 mg (0.09 mmol) of 7 was dissolved in 5 mL of CHCl3. 30 mg 

(0.1 mmol) of Zn(NO3)2.6H2O was dissolved in 1 mL of MeOH and was added drop wise to the 

above solution. The whole solution was stirred at room temperature for 4 h during which the 

reaction color turned slightly dark. The solvent was completely removed at low pressure and 

the residue was redissolved in CHCl3 followed by filteration (to remove excess 

Zn(NO3)2.6H2O). The filtrate obtained was dried under high vacuum which weighed 50 mg 

(almost quantitative yield). 
1
H NMR (400 MHz, CDCl3, TMS) : δ 8.84 (br, 2H), δ 7.83 (d, 1H, 

J = 8.4 Hz), δ 7.68 (m, 3H), δ 7.41 (m, 3H), δ 7.19 (m, 3H), δ 6.87 (d, 1H, J = 7.6 Hz), δ 6.46 

(d, 1H, J = 7.6 Hz), δ 4.56 (br, 2H), δ 4.38 (br, 2H),  δ 4.24 (br, 2H), δ 4.14 (t, 2H, J = 6.4 Hz), 

δ 3.28 (br, 2H), δ 1.93 (m, 2H), δ 1.5 – 1.2 (m, 18H), δ 0.88 (t, 3H, J = 6.8 Hz); 
13

C NMR δC 

(100 MHz, CDCl3): 155.15, 153.80, 152.94, 149.10, 140.20, 127.20, 126.80, 126.38, 125.69, 

125.10, 113.33, 107.70, 105.51, 105.29, 68.48, 32.07, 29.83, 29.80, 29.78, 29.70, 29.60, 29.50, 

29.45, 26.43, 22.84, 14.26; HRMS (ESI): m/z: calcd for C36H47N3O2 : 554.3741 [M+H- 

Zn(NO3)2]
+
, found : 554.3834. 

6.2.7 References and Notes 

                                                           
1.  a) G. M. J. Schmidt, Pure Appl. Chem., 1971, 27, 647; b) D. Braga and F. Grepioni, 

Angew. Chem. Int. Ed., 2004, 43, 4002; c) A. Vidonne and D. Philp, Eur. J. Org. Chem., 

2009, 593. 

2.  a) B. R. Bhogala, B. Captain, A. Parthasarathy and V. Ramamurthy, J. Am. Chem. Soc., 

2010, 132, 13434; b) M. Nagarathinam, A. M. P. Peedikakkal and J. J. Vittal, Chem. 

Commun., 2008, 5277; c) N. Shan and W. Jones, Tetrahedron Lett., 2003, 44, 3687; d) X. 

Gao, T. Friščić and L. R. MacGillivray, Angew. Chem. Int. Ed., 2004, 43, 232; e) L. R. 

MacGillivray, J. L. Reid and J. A. Ripmeester, J. Am. Chem. Soc., 2000, 122, 7817. 

3.  T. Caronna, R. Liantonio, T. A. Logothetis, P. Metrangolo, T. Pilati and G. Resnati, J. Am. 

Chem. Soc., 2004, 126, 4500. 

4.  a) M. Nagarathinam and J. J. Vittal, Angew. Chem. Int. Ed., 2006, 45, 4337; b) N. L. Toh, 

M. Nagarathinam and J. J. Vittal, Angew. Chem. Int. Ed., 2005, 44, 2237; c) T. Wu, L.-H. 

Weng and G.-X. Jin, Chem. Commun., 2012, 48, 4435; d) I. G. Georgiev and L. R. 

MacGillivray, Chem. Soc. Rev., 2007, 36, 1239. 

5.  a) N. S. S. Kumar, S. Varghese, C. H. Suresh, N. P. Rath and S. Das, J. Phys.Chem. C, 

2009, 113, 11927; b) M. Kumar and S. J. George, Nanoscale, 2011, 3, 2130; c) M. Kumar 



  Supramolecular Clippers 

~ 191 ~ 
 

                                                                                                                                                                         
and S. J. George, Chem. Eur. J., 2011, 17, 11102; d) S. Basak, J. Nanda and A. Banerjee, 

Chem. Commun., 2013,49, 6891. 

6.  a) B. V. V. S. P. Kumar, K. V. Rao, T. S. Soumya, S. J. George and M. Eswaramoorthy, J. 

Am. Chem. Soc., 2013, 135, 10902; b) D. Jiao, J. Geng, X. J. Loh, D. Das, T.-C. Lee and O. 

A. Scherman, Angew. Chem. Int. Ed., 2012, 51, 9633; c) J. F. Stoddart, Chem. Soc. Rev., 

2009, 38, 1802; d) L. Fang, M. A. Olson, D. Benίtez, E. Tkatchouk, W. A. Goddard and J. 

F. Stoddart, Chem. Soc. Rev., 2010, 39, 17. 

7.  a) L. Zhu, Y. Yi, Y. Li, E.-G. Kim, V. Coropceanu and J.-L. Brédas, J. Am. Chem. Soc., 

2012, 134, 2340; b) J. Guasch, L. Grisanti, M. Souto, V. Lloveras, J. V.-Gancedo, I. 

Ratera, A. Painelli, C. Rovira and J. Veciana, J. Am. Chem. Soc., 2013, 135, 6958; c) A. 

Jain, K. V. Rao, U. Mogera and A. A. Sagade, S. J. George, Chem.-Eur. J., 2011, 17, 

12355; d) M. Sakai, H. Sakuma, Y. Ito, A. Saito, M. Nakamura and K. Kudo, Phys. Rev. B, 

2007, 76, 045111; e) A. A. Sagade, K. V. Rao, U. Mogera, S. J. George, A. Datta and G. 

U. Kulkarni, Adv. Mater., 2013, 25, 559; f) A. A. Sagade, K. V. Rao, S. J. George, A. 

Datta and G. U. Kulkarni, Chem. Commun., 2013, 49, 5847; g) A. Girlando, A. Painelli, C. 

Pecile, G. Calestani, C. Rizzoli and R. M. Metzger, J. Chem. Phys., 1993, 98, 7692. 

8.  a) S. Ghosh and S. Ramakrishnan, Angew. Chem. Int. Ed., 2004, 43, 3264; b) S. De and S. 

Ramakrishnan, Chem. Asian J., 2011, 6, 149; c) R. S. Lokey and B. L. Iverson, Nature, 

1995, 375, 303. 

9.  a) C. Wang, Z. Wang and X. Zhang, Acc. Chem. Res., 2012, 45, 608; b) X. Zhang and C. 

Wang, Chem. Soc. Rev., 2011, 40, 94; c) K. V. Rao, K. Jayaramulu, T. K. Maji and S. J. 

George, Angew. Chem. Int. Ed., 2010, 49, 4218; d) K. V. Rao and S. J. George, Chem. Eur. 

J., 2012, 18, 14286; e) M. Kumar, K. V. Rao and S. J. George, Phys. Chem. Chem. Phys., 

2014, 16, 1300; f) K. V. Rao, K. Jalani, K. Jayaramulu, U. Mogera, T. K. Maji and S. J. 

George, Asian J. Org. Chem., 2013, 3, 161. 

10.  a) Y. Liu, Y. Yu, J. Gao, Z. Wang and X. Zhang, Angew. Chem. Int. Ed., 2010, 49, 6576; 

b) J. Zhang, Y. Liu, B. Yuan, Z. Wang, M. Schönhoff and X. Zhang, Chem. Eur. J., 2012, 

18, 14968. 

11.  a) S. K. Kim, D. H. Lee, J.-I. Hong and J. Yoon, Acc. Chem. Res., 2009, 42, 23; b) T. 

Sakamoto, A. Ojida and I. Hamachi, Chem. Commun., 2009, 141. 

12.   a) A. Das, M. R. Molla, A. Banerjee, A. Paul and S. Ghosh, Chem. Eur. J., 2011, 17, 

6061; b) J. J. Reczek, K. R. Villazor, V. Lynch, T. M. Swager and B. L. Iverson, J. Am. 

Chem. Soc., 2006, 128, 7995; c) S. A. Vignon, T. Jarrosson, T. Iijima, H.-R. Tseng, J. K. 

M. Sanders and J. F. Stoddart, J. Am. Chem. Soc., 2004, 126, 9884. 

13.  M. Kumar, N. Jonnalagadda and S. J. George, Chem. Commun., 2012, 48, 10948. 



Chapter-6.2 

 

~ 192 ~ 
 

                                                                                                                                                                         
14.  H. N. Lee, Z. Xu, S. K. Kim, K. M. K. Swamy, Y. Kim, S.-J. Kim and J. Yoon, J. Am. 

Chem. Soc., 2007, 129, 3828. 

15.  A. Das and S. Ghosh, Chem. Eur. J., 2010, 16, 13622. 

16.  a) K. Jalani, M. Kumar and S. J. George, Chem. Commun., 2013, 49, 5174; b) M. Licchelli, 

A. O. Biroli and A. Poggi, Org. Lett., 2006, 8, 915; c) E. C. Lim, Acc. Chem. Res., 1987, 

20, 8. 

17.  F. M. Winnik, Chem. Rev., 1993, 93, 587.. 

18.  a) S. V. Bhosale, S. V. Bhosale and S. K. Bhargava, Org. Biomol. Chem., 2012, 10, 6455.; 

b) B. Narayan, C. Kulkarni and S. J. George, J. Mater. Chem. C, 2013, 1, 626.. 

19.  As shown earlier in ref no. 14 adenosine phosphate binding fails to show excimeric 

emission. 

20.  a) M. Kasha, H. R. Rawls and M. A. EL-Bayoumi, Pure Appl. Chem., 1965, 11, 371.; b) 

Y. Hong, J. W. Y. Lama and B. Z. Tang, Chem. Commun., 2009, 4332. 

21.  Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2011, 40, 5361.  

22.  a) A. S. Tayi, A. K. Shveyd, A. C.-H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. 

Kennedy, A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. 

R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart and S. I. Stupp, Nature, 

2012, 488, 485; b) S. Horiuchi and Y. Tokura, Nature Mater., 2008, 7, 357; c) J. J. Tan, Z. 

Ma, W. Xu, G. Zhao, H. Geng, C. Di, W. Hu, Z.  Shuai, K. Singh and D. Zhu, J. Am. 

Chem. Soc., 2013, 135, 558. 

23.  Higher eq. of phosphate did not have any effect on the intensity of CT band.  

24.  E. Yashima, K. Maeda and Y. Okamoto, Nature, 1999, 399, 449. 

25.  a) S. J. George, R. de Bruijn, Ž. Tomović, B. V. Averbeke, D. Beljonne, R. Lazzaroni, A. 

P. H. J. Schenning and E. W. Meijer, J. Am. Chem. Soc., 2012, 134, 17789; b) T. Ma, C. Li 

and G. Shi, Langmuir, 2008, 24, 43; c) K. P. Nandre, S. V. Bhosale, K. V. S. R. Krishna, 

A. Gupta and S. V. Bhosale, Chem. Commun., 2013, 49, 5444; d) A. A. Sobczuk, Y. 

Tsuchiya, T. Shiraki, S.-ichi Tamaru and S. Shinkai, Chem. Eur. J., 2012, 18, 2832. 

26.  a) T. Mori, Y. H. Ko, K. Kim and Y. Inoue, J. Org. Chem, 2006, 71, 3232; b) T. Mori and 

Y. Inoue, Angew. Chem. Int. Ed., 2005, 44, 2582; c) Y. Tatewaki, T. Hatanaka, R. 

Tsunashima, T. Nakamura, M. Kimura and H. Shirai, Chem. Asian J., 2009, 4, 1474.  

27.  S. Mizukami, S. Okada, S. Kimura and K. Kikuchi, Inorg. Chem., 2009, 48, 7630.   

28.  R. Voicu, R. Boukherroub, V. Bartzoka, T. Ward, J. T. C. Wojtyk  and D. D. M. Wayner, 

Langmuir, 2004, 20, 11713. 



  Curriculum Vitae 

~ 193 ~ 
 

Curriculum Vitae 

Mohit kumar was born on April 24, 1986 in Munger, Bihar 

(India). He completed his B.Sc. (Chemistry Hons.) from Sri 

Sathya Sai University, Puttaparthi in 2007, where he continued 

to finish his M.Sc degree in Chemistry in 2009. There after he 

joined Jawaharlal Nehru Centre for Advanced Scientific 

Research as a Ph.D. student in 2009, under the guidance of Prof. Subi J. George. His 

research work at Supramolecular Chemistry Laboratory focused on the dynamic self-

assembly of chromophores and guest induced chirality in functional supramolecular 

polymers.  

 

 

 

 

 

 

 

 

 

 

 

 

 


	first page on cover
	Initial pages f
	Front pages b-w n dedication
	Declaration
	Table of content
	Chapter 1 f
	Chapter 2 f
	Chapter 3 f
	Chapter 4 f
	Chapter 5 f
	Chapter 6 f

	Chapter 1 f
	Chapter 1
	Chapter 2 f
	Chapter2
	Chapter 1 cutepdf removed bad figure
	Chapter 1 Missing pages
	Chapter 2
	Chapter 3
	Chapter 4.1
	Chapter 4.2
	Chapter 5
	Chapter 6.1
	Chapter 6.2
	CV

	Chapter 3 f
	Chapter3
	Chapter 1 cutepdf removed bad figure
	Chapter 1 Missing pages
	Chapter 2
	Chapter 3
	Chapter 4.1
	Chapter 4.2
	Chapter 5
	Chapter 6.1
	Chapter 6.2
	CV

	Chapter 4 f
	Chapter4
	Chapter 1 cutepdf removed bad figure
	Chapter 1 Missing pages
	Chapter 2
	Chapter 3
	Chapter 4.1
	Chapter 4.2
	Chapter 5
	Chapter 6.1
	Chapter 6.2
	CV

	Chapter 5 f
	Chapter 5
	Chapter 1 cutepdf removed bad figure
	Chapter 1 Missing pages
	Chapter 2
	Chapter 3
	Chapter 4.1
	Chapter 4.2
	Chapter 5
	Chapter 6.1
	Chapter 6.2
	CV

	Chapter 6 f
	Chapter 6
	Chapter 1 cutepdf removed bad figure
	Chapter 1 Missing pages
	Chapter 2
	Chapter 3
	Chapter 4.1
	Chapter 4.2
	Chapter 5
	Chapter 6.1
	Chapter 6.2
	CV


