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Abstract 

 

Free turbulent shear flows (e.g. mixing layers, jets and wakes) are ubiquitous in a wide range of 

technologically relevant (e.g. combustion, chemical lasers) and geophysical flows. The convincing 

demonstration of the presence of „coherent (vortical) structures‟ in a fully turbulent mixing layer by Brown 

and Roshko (1974), and the work that followed, revealed that turbulent shear flows are distinct in character 

from the widely studied statistically homogenous isotropic turbulence (H.I.T), due to the emergence (and 

sometimes dominance) of large scale order amidst chaos. If, as suggested by Liepmann (see Narasimha et al, 

2013), H.I.T may not be the simplest problem from which to start for understanding a wider class of turbulent 

flows, a strong alternative candidate would be a temporally evolving plane free-shear layer. This thesis 

considers such a temporal free-shear layer in a vortex gas (point vortices in an inviscid fluid). This flow is 

investigated via extensive computer simulations. One of the objectives of this study is to investigate in great 

detail the central and controversial issue of universality or otherwise of the asymptotic self-preservation state 

(Narasimha 1990, George 2004), at least for this special case. This work makes comparison with experiments, 

instability and statistical-mechanical theories, describes applications to flow control and also presents results 

on the effects of viscosity, desingularization of the point-vortex and spatially evolving flows. 

The temporal shear layer is a flow that is statistically homogeneous in the streamwise direction (x) 

evolving in the direction normal to it (y) from two counter-flowing streams initially separated by a thin 

vortical layer. It is the simplest free turbulent shear flow as it involves only one parameter, the velocity 

difference (  ) across the layer, in the high Reynolds number (Re) limit. It is favored for numerical 

simulations due to unambiguous boundary conditions and is usually studied in a periodic-in-x domain with 

period L. It is related to the spatial mixing layer which has been a subject of much experimental investigation 

(from Liepmann & Laufer 1947 to D‟ovido & Coats 2013), via a Galilean transformation in the limit where 

   is small compared to the convection velocity     .   

In the present work, the vortex gas analogue of the temporal shear layer is studied by numerically 

solving an appropriate initial value problem for a finite but large collection of (N) point vortices of same 

strength () and sign in a singly periodic domain. The fluid-dynamical boundary conditions of velocity being 

      are satisfied at      by setting LU/N. The evolution of this system can be described by    

first-order non-linear ODEs that can be written in Hamiltonian form. 

While the vortex-gas is strictly 2D and inviscid, it is not an inappropriate model to understand the 

large-scale momentum „dispersal‟ in a turbulent free shear layer (at least before the mixing transition). The 

reasons are that turbulent free shear flows are largely independent of Re at sufficiently high Re; the coherent 

structures present in the flow have been shown to be quasi-2D (Wygnanski et al, 1979); and the vortex-gas 

model provides a weak solution of the Euler equations (Marchioro & Pulvirenti, 1993). Regardless of its 

possible connections with the 3D Navier Stokes (NS) mixing layer, it is highly worthwhile to study the vortex 

gas shear layer as a prototypical shear flow. Though more sophisticated vortex methods have been developed, 

the point-vortex model offers the possibility of connections between the dynamics of coherent structures in 

turbulent shear flows with the statistical mechanics of a „vortex gas‟, first formulated by Onsager (1949), who 

proposed that the emergence of large scale order is consistent with the negative temperature states that the 

underlying Hamiltonian system implies. While there have been subsequent developments on both equilibrium 

statistical mechanics (see Eyink & Sreenivasan 2006 for a recent review) and vortex-gas kinetic theories (e.g. 

Chavanis 2001, 2012), they have been mostly applied to study atmospheric vortices such as the Jupiter‟s red 

spot. Attempts to relate such theory to evolving turbulent shear flows have been limited (e.g. Aref & Siggia, 

1980).  

There have been several earlier studies of the vortex-gas shear layer (Rosenhead 1931, Delcourt & 

Brown 1979, Aref & Siggia 1980) that broadly mimic such dominant features of shear layer evolution as 

clustering of vortices to form structures and linear growth of the layer thickness through amalgamation events 

between structures. The present simulations involve over 20 different classes of initial vortex                                     

y-displacements, vary   from 50 to 32000 (Delcourt & Brown use 750, Aref & Siggia use 4096), evaluate 
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statistics by ensemble averages over upto     realizations (no ensemble averaging has been attempted in 

earlier studies) and involve integration upto           (as against O(1) in earlier studies).  All 

computations are carried out employing RK-4 and double precision. The time-step chosen ensures 

conservation of the Hamiltonian to within        per      (Delcourt & Brown quote 6%; present long-time 

simulations use a smaller time-step ensuring a total change of less than 0.5%). Further, robustness of the 

present results has been established via detailed time step and (upto quadruple) precision studies and various 

internal consistency checks. The present simulations are thus far more extensive and accurate than any earlier 

study of this kind, and lead to the following conclusions that could not have been drawn from earlier work. 

  The simulations reveal the existence of three distinct regimes during the temporal evolution of the 

vortex-gas shear layer – an initial condition influenced Regime I (lasting over 1000 times the amplitude of the 

initial y-displacement of the vortices, for certain long wavelength initial conditions); a domain influenced 

Regime III; and an overlap self-similar Regime II of linear growth, relevant to the fluid-dynamic state of self-

preservation (Townsend, 1956), and explained by intermediate asymptotics. 

The present simulations, over a wide range of N and wide class of initial conditions that include both 

random and sinusoidal perturbations, show the Regime II spread rate in terms of the momentum thickness, 

         , has the value              , strongly suggesting that it is universal.  This represents a 

universality of the exponent (on t) as well as the coefficient in the relation between  and t.  However, Regime 

II is found to have large N-independent two-vortex correlations, hence neither equilibrium theories, nor 

existing vortex-gas kinetic theories that neglect correlations or consider them as O(1/N), would be relevant for 

describing this regime.  

Regime III marks the departure from linear growth, and begins when the evolution is dominated by 

interaction among a small number of structures, as tU/L becomes O(1). Eventually only one structure is left 

in the domain, and the rate of momentum dispersal is greatly reduced as the layer has no opportunity to grow 

by amalgamation. The present long-time simulations show that the single structure approaches its final state 

after two stages in relaxation, respectively characterized (Chavanis, 2012) as „violent‟ and „slow‟ and lasting 

over times of O(10) and O(10
4
) of L/U respectively (for N = 400). During the violent relaxation, excellent 

agreement with the 2D NS calculations (Sommeria et al, 1990, higher Re case) is observed both for layer 

thickness and the vorticity-stream function relation. This agreement suggests that the vortex-gas and the 2D 

NS approach the solution of the 2D Euler equation from different directions, and confirms the value of the 

vortex gas model in providing a weak solution of the Euler equations. At very long times (~10
4
 L/U), the 

distribution of vortices relative to the single structure (which moves stochastically in x) approaches a steady 

state, and the vorticity-stream function relationship satisfies the „Boltzmann distribution‟ proposed by Joyce & 

Montgomery (1973), with negative value for the temperature.  Further, the distribution of the vortices within 

the structure is related to the Lundgren-Pointin (1977) equilibrium distribution. These results show that while 

Regime III can be described by equilibrium theories, Regime II (paradoxically labeled „equilibrium‟ in the 

fluid-dynamical literature) is indeed very far from statistical-mechanical equilibrium. Thus an expansion 

around equilibrium seems to be an unlikely candidate to describe this strongly non-equilibrium Regime II, 

which we propose may legitimately called „explosive relaxation‟ as it has a timescale shorter by at least one 

order of magnitude compared to what has been termed „violent‟ relaxation.  

The initial development of layer thickness observed in experiments with sinusoidal forcing (Oster & 

Wygnanski 1982) is quantitatively recovered as Regime I in the present simulations with appropriate space-to-

time transformations. Further, the universal spread rate in Regime II is within the scatter of the quoted self-

preservation spread rates reported in experiments with             , as well as LES/ DNS results for 

3D NS temporal shear layers. This suggests that 2D inviscid interaction of the vortical structures via the 

Kelvin Biot-Savart mechanism is central to momentum dispersal in this flow. The present study also suggests 

that variations in growth rate reported across experiments and other simulations  could be due to the 

inadequate appreciation of the time or distance required for relaxation to Regime II, very long memories of 

certain types of initial conditions, and insufficient averaging, rather than the existence of non-unique self-

preservation states. 
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While some studies have suggested the relevance of linear (Morris et al, 1990) or weakly non-linear 

(Monkewitz, 1988) theories to understand fully turbulent free shear flow, the subject has been controversial 

(Husain & Hussain 1995).  Present simulations with initial conditions representing a piece-wise linear mean 

velocity profile, show agreement with linear stability (Rayleigh) theory at early times. But the subsequent 

development (after the „roll-up‟) shows that the Karman-Lamb instability theory based on monopoles is more 

relevant than that of Rayleigh. However, preliminary results suggest that neither approach provides a 

completely satisfactory explanation for Regime II, though there is a surprisingly good agreement with 

Rayleigh theory for the growing modes.  The combination of the theoretical understanding derived from the 

above study and the computationally inexpensive vortex-gas simulations can be used to determine the optimal 

initial conditions for enhancing or suppressing the momentum dispersal (and hence mixing) for a given set of 

constraints. This is illustrated with examples. 

While the above mentioned comparisons establish the relevance of the inviscid point-vortex 

simulations to high Re shear layers, the effects of viscosity are studied by incorporating them through the 

addition of a random walk component to the motion of each point vortex (Chorin 1973). Such „viscous vortex 

gas‟ simulations, in which the Hamiltonian is no longer conserved, show an initially „laminar‟ layer growing 

as   , transitioning eventually (for          to linear growth at the same universal Regime II rate quoted 

earlier. An interesting finding is that over the range of Re that exhibits universal linear growth, the viscous 

shear „stress‟ is not always negligible and can contribute upto 40% of the total shear stress, and that the 

Reynolds shear stress appears to „adjust‟ itself to ensure self-similarity in the total stress. This suggests that 

the so-called „fluid dynamical‟ equilibrium may have a sub-regime in which the self-similarity is in total stress 

rather than solely the Reynolds turbulent stress, via internal transfer or balance mechanisms that demand 

further investigation.  There is some evidence (Redford et al, 2012) to support such a hypothesis in an 

axisymmetric wake. At later times, the viscous vortex gas shear layer also reaches a state with a single 

structure. Favorable agreement with the low Re number case of 2D NS simulations of Sommeria et al (1990) 

is observed in early Regime III. Far into Regime III, diffusion begins to dominate once again as the single 

structure „melts‟ to form a uniform-in-x Gaussian-in-y distribution of vortices, and    growth is recovered.  

Simulations with desingularized vortices show a regime of scaling with the desingularization parameter, but 

eventually attain the same universal growth rate in Regime II.        

The velocity ratio in spatially evolving shear layers plays an important role in the flow development 

as    becomes comparable to   . The scatter among quoted equilibrium spread rates is most conspicuous at 

 = 1 (single-stream), which raises questions on the applicability of universality at this limit. The spatial 

simulations with appropriate inflow and outflow boundaries, based on Basu et al (1995), show that the spread 

rate is very close to the temporal results near the shear-less limit and varies with  along a curve that is 

concave upwards (in contrast to earlier suggestions) and is within the scatter of the experimental results 

through the entire range. While the equilibrium spread rate is found to be universal for a given velocity ratio, 

downstream boundaries can affect the flow upstream upto 80% of the domain length in the single stream limit. 

This may be a part of the reason for the relatively greater scatter in the experimental data for  =1. The thesis 

presents a discussion of the recent experimental results of D‟ovidio & Coats (2013), who report differences in 

structure growth mechanisms between a pre-mixing transition and a post-transition shear layer. They attribute 

the differences to the mixing transition and 3D mechanisms, even though the experiments were carried out at 

different velocity ratios ( = 0.627 and 1.0 respectively). The present spatial vortex-gas simulations, which are 

purely 2D, performed at the same two velocity ratios, lead to observations similar to those in the experiment. 

This suggests that the change in the mechanism attributed to 3D, is more likely a consequence of the 

difference in . 
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Chapter 1:   Introduction 

  

1.1. The turbulence problem 

The word „turbulence‟ is most commonly encountered during an in-flight announcement urging 

passengers to fasten seat-belts, in anticipation of unsteadiness due to the large scale turbulent motion in 

the atmosphere. However, turbulent flows are ubiquitous over a wide range of technologically relevant 

scenarios including energy, transportation and weather prediction.  When the inertia associated with a 

fluid flow becomes much larger than the frictional forces due to viscosity (the ratio UL/  is the Reynolds 

number), the smooth laminar flow transitions to turbulence (Reynolds, 1895) characterized by unsteady, 

multi-scaled, chaotic (Gollub & Swinney 1975, Maurer & Libchaber 1979) and rotational flow. This 

transition can often be observed in a faucet. 

Turbulence is considered to be the last unsolved problem in classical physics (Feynman,1964) even 

though it is generally accepted to be governed by the same Navier-Stokes (NS) equations (Euler 1755, 

Navier 1823, Stokes 1845) that describe laminar flow. It is „unsolved‟ in the sense that prediction based 

on first principles has not been possible even in simple scenarios. For example, when the flow is 

turbulent it is not possible to determine, purely from first principle analyses, even the order of magnitude 

of drag on a sphere in the limit of high Reynolds number (Re), or the amount of pressure drop require to 

pump a specified flow rate of a given fluid through a circular or rectangular duct or even the angle of 

spread of a jet. 

One reason for this difficulty is that the solutions of NS become intractable (Millikan, 1928) at high 

Re. While the NS equations can be solved numerically on a computer, the range of scales greatly 

increases with Reynolds number and the computing effort increases as Re 
13/4

.  As it takes an order of a 

month to simulate Re ~ 10
3
 on a parallel computer (with over 10

2
 processors), computing resources 

required for direct simulation of Navier-Stokes (DNS) for any real–world problem  (e.g. aircraft Re ~ 10
7 

- 10
8
 , cyclone ~ 10

12
 ) are astronomical, and such simulations are unlikely to be possible in the 

foreseeable future (see Ch.7 of Davidson, 2004). The current engineering approach to study such flows is 

to use an averaged or filtered version of the NS and use ad-hoc expressions or equations to model the 

effect of the unresolved scales on the computed scales. Such models always involve non-universal 

adjustable constants that have to be tuned for specific flow configurations using appropriate experimental 

data. Limited understanding and unresolved fundamental issues even in canonical turbulent flows are 

bottlenecks in attempts to formulate more accurate models, especially for prediction of flows for which 

extensive experimental data is unavailable.  

One approach to advancing the understanding of turbulence has been to extensively study „simple 

problems‟. An example which has been long favored for both theory and computations is homogenous 

isotropic turbulence. While there has been some historical success of this approach to provide results 

with broader range of applicability (e.g. the Kolmogorov -5/3 spectrum, 1941), further study, including 

some of the largest computer simulations of turbulence (Ishihara et al, 2007), has had limited success in 

terms of implications for real-world flows.  

 

1.2. Turbulent shear flows and emergence of order 

Most real-world turbulent flows are shear flows (the gradient of the mean velocity field has a                   

non-zero symmetric component) which are inhomogenous (at least in one direction) and are not isotropic.  

Figure 1.1 shows some turbulent shear flows in aerospace and atmospheric contexts.  Other relevant 

examples include flows within IC Engines, pollutant dispersal and in the human heart. One can 
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immediately observe that many of these flows show a certain large scale organization which is absent in 

homogenous isotropic turbulence. 

Of particular interest to this work is a class of shear flows whose development is not strongly 

affected by interaction with solid boundaries. These are called free shear flows and include jets, wakes 

and mixing layers. One of the simplest among such flows is a spatially developing mixing layer or free 

shear layer (Fig. 1.2, 1.3a). This is a flow which develops between two streams moving with different 

velocities U1 and U2, separated from each other for x < 0 by a thin splitter plate, and mixing with each 

other for x > 0.  While extensive measurements have been made on this flow for more than fifty years 

(Liepmann & Laufer 1947, Brown & Roshko 1974, Winant & Browand 1974, Oster & Wygnanski 1982 

…, D‟ovidio & Coats 2013), a particularly striking development was the convincing demonstration by 

Brown & Roshko (1974) of the till-then unsuspected presence of highly organized large-scale vortices as 

an integral part of what was a canonical fully developed turbulent shear flow in the region x > 0. This 

work established that turbulent shear flows could contain ordered motion, and led to the study of 

coherent structures in a wide variety of other shear flows (Liu 1989, Brown & Roshko 2012).  

The general point that all this work drove home was that the character of turbulent shear flows is 

fundamentally different from that of statistically homogenous isotropic turbulence, to the extent that 

ordered motion plays a significant (sometimes dominant) role in determining certain characteristics of 

sheared turbulence, such as for example entrainment of irrotational ambient fluid into the rotational 

turbulent shear flow. 

 

Figure 1.1. Some relevant turbulent free shear flows. Note the presence of large scale order.  

A. Mars Orbiter Mission („Mangalyaan‟) rocket launch, photo taken from : 

 http://www.isro.org/pslv-c25/Imagegallery/launchvehicle.aspx 

B. Cyclone Phailin,  from NASAWorldview 

C. Cumulus cloud, photo credit : Vybhav G.R.  

 

Hence homogenous isotropic turbulence is perhaps not the appropriate simple problem to understand 

the underlying mechanics of most turbulent flows of interest. This view was summarized by                     

H.W. Liepmann in his letter presumed to be addressed to G.K. Batchelor (Narasimha et al, 2013),  

“The preoccupation of the turbulent physics community seems to me the statistics of 

vortex interactions that is, of course, a very important aspect of fluid physics but the 

usual limitation to homogeneous and sometimes isotropic conditions as well, limits the 

connection to realistic flow problems. It is by now quite clear that unlike the equilibrium 

Boltzmann distribution of perfect gases, the isotropic-homogenous state of turbulence 

cannot be used as the first step in a perturbation procedure a la Enskog-Chapman”.  
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Further discussion on general issues on turbulent flows can be found in Davidson (2004) and 

Narasimha (1990), and a recent review on turbulent free-shear flows in Brown & Roshko (2012).  

 

 

Figure 1.2. Large scale coherent structures in a turbulent mixing layer (Konrad, 1977)  

 

1.3. The temporal vortex-gas shear layer 

 

 

Figure 1.3 (a) Schematic of a spatially evolving mixing layer. (b) The temporal analogue (in an Euler or 

Navier-Stokes fluid), often studied in simulations. (Note that the present notations use Reynolds 

decomposition,   indicates averaged velocity that depends only on y, and u‟ and v‟ are the x and y 

components of the fluctuating velocity which has zero mean. Subscript 0 indicates initial value). (c) The 

vortex-gas formulation of the temporal mixing layer showing the configuration of vortices at the initial 

instant. 
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If homogenous isotropic turbulence is not the relevant simple problem, the incompressible plane 

temporal shear layer (Fig. 1.3 b), might be a suitable candidate for a starting point to understand the 

wider class of turbulent shear flows, as it is the simplest turbulent flow with shear and large scale 

organization.This is a time-dependent flow that is statistically homogeneous in the stream-wise direction 

x and evolves temporally in the normal direction y, from an initial condition at t = 0 when the two 

streams moving at +U/2 and –U/2 are separated by a vortex sheet or a thin vortical layer at y = 0. The 

temporal mixing layer is related to the spatial case described earlier (Fig. 1.2, 1.3a) via a Galilean 

transformation in the limit                   . The specification of the canonical (infinite 

domain) temporal shear layer involves only one parameter at high Reynolds numbers, namely the 

velocity differential    across the layer. Further, it is favored for numerical simulations of the Navier-

Stokes equations (e.g. Sommeria et al 1991, in 2D, Rogers & Moser 1994, in 3D), because of its 

simplicity and the unambiguous initial and boundary conditions that can be prescribed for the problem. It 

is usually studied in a domain        that is periodic in the flow direction x with period L. This is a 

valid approximation to the infinite-domain mixing layer, as long as the relevant length scales in the initial 

conditions and in the flow field are much smaller than the domain size.    

Majority of this thesis is concerned with the vortex-gas analogs of shear layers. The vortex gas is 

a collection of large number (N) of point vortices (delta functions in vorticity) in an inviscid fluid. Set of 

point-vortices is a solution of the weak form of Euler (inviscid NS) equations which support singular 

solutions. Kelvin‟s theorem reduces all the dynamics contained in the Euler equations to be represented 

by the kinematic Biot-Savart relation. Hence the evolution of the vortex gas can be described by 2N 

ODEs. Even though the interactions between vortices are long range, the terminology „vortex gas‟ is used 

(following Miller, 1990), since a collection of vortices placed in a box, tend to fill the box like molecules 

of a gas. In other words, even though the density of the fluid in which the vortices exist is a constant, the 

density of the vortices at any given location can change with time.  Under certain limits a sufficiently 

large collection of point-vortices provides a weak solution of the Euler equations (Marchiro & Pulvirenti, 

1993) in a coarse-grained sense (averaged over boxes sufficiently large to contain large number of 

vortices, but small compared to the characteristic length scales of the flow). 

A temporal vortex-gas free shear layer is a singly periodic array of N-point vortices of identical 

sign, so that the x-averaged velocity field resembles that of a temporal shear layer.  The chief object of 

the first part of the thesis is to revisit this problem (early attempts go back to Rosenhead 1931 and 

include Delcourt & Brown 1979, Aref & Siggia 1980) with modern computing resources.  As shown in              

Fig. 1.3c, we consider the evolution for a class of initial conditions involving a single row of point 

vortices placed along the x-axis, equispaced in x and with small displacements in y. We make a detailed 

study of the statistical evolution of the system in the x-y plane for t >0.    

The temporal vortex-gas free shear layer should not be viewed as a discrete model of a 

continuous vortex sheet that rolls ups smoothly (for reasons that will be discussed in Appendix C), but 

rather as a statistical (chaotic) evolution of a gas of point vortices. Further, this 2D inviscid model should 

not be readily viewed as an approximation of the 3D NS temporal mixing layer due to the following 

objections.  

The first is the obvious one about dimensionality.  Both experiments and 3D NS simulations 

show a significant 3D motion to be present in both spatial and temporal shear layers. This is particularly 

evident after a „mixing transition‟ (Konrad 1977, Brown & Roshko 1974, Dimotakis 2000) that takes 

place at Re ~ 10
4
. However, the large coherent structures are quasi-2D (Wygnanski, 1979) and the role of 

3D dynamics on the large scale evolution is not yet clear. Further, there are also other real-world flows 

which are quasi-two-dimensional in some sense: the most well-known of these is atmospheric motion at 

higher latitudes, where the large scales are governed by the dynamics of conserved potential vorticity 

oriented normal to the surface of the earth (Pedlosky, 1987).  Indeed, the reverse energy cascade 

characteristic of 2D turbulence (Batchelor 1969, Kraichnan 1967) has given much insight into the 
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dynamics of terrestrial and other planetary atmospheres. Therefore a 2D model is not necessarily 

irrelevant, and in this case might provide useful insights on various aspects of shear layer dynamics.  

The second limitation of the vortex gas is the complete absence of viscosity (and any molecular 

transport parameters that may be relevant for true mixing).  No purely inviscid fluid can handle 

rigorously the phenomena of mixing and dissipation, both of which depend crucially on molecule-scale 

interaction, and consequently both the Richardson cascade and Kolmogorov-type similarity are beyond 

point vortex dynamics. The vortex-gas model does however describe what may be called the „dispersal‟ 

of vorticity and hence also of momentum, both through the Biot-Savart relation.  It has been argued 

(Eyink & Spohn 1993) that the long time evolution of vortex blobs in real fluids cannot be described by 

vortex-gas motions as the effect of viscosity (say ν), however small, does become manifest on time-scales 

of order ν
1

. Interestingly, this argument takes on a different complexion in shear flows, especially in 

mixing layers.  One consequence of the stream-wise/temporal growth is that the local Reynolds number 

of the flow (δ∆U/ν, say, where δ is a measure of the layer thickness), actually increases with downstream 

distance x in spatially evolving flow, and with time t in the temporally evolving flow that is the chief 

subject of the present study.  Thus the effect of viscosity progressively diminishes (equivalently a locally 

scaled ν→0) as x →∞ or t→∞, and the viscous timescale of O(ν
 -1
) consequently recedes to ∞ in the limit, 

as long as the layer keeps growing. In any case, some effects of viscosity can, if necessary, be taken into 

account by the addition of a random walk component in vortex motion (Chorin, 1973, more details in 

Chapter 7).  

A third objection to the use of the vortex-gas model is the singularity in the velocity field of the 

vortex gas at the location of the vortices. In other words, the velocity close to any vortex can be 

arbitrarily large and hence is not representative of flow fields found in any real-world context. This can 

be overcome by desingularization of some kind (e.g. Krasny 1986), but it will be shown in Appendix C 

that desingularization does not affect our major conclusions and is unnecessary for studying the statistical 

evolution over long times.   

In spite of such objections, early vortex-gas simulations (Delcourt & Brown 1979, Aref & Siggia 

1980) were remarkably successful in mimicking several dominant features of evolving mixing layers as 

observed experimentally, including the emergence of „coherent structures‟ and subsequent growth of the 

layer thickness through amalgamation events among the coherent structures. This success is all the more 

remarkable as the vortex-populations used were small and the accuracy of numerical schemes were 

modest, limited by the computing capabilities of that era, signifying the robustness of the vortex-gas 

picture. 

 

1.4. Connections with statistical mechanics 

Regardless of its relevance to 3D NS mixing layers, the vortex-gas free shear layer is worthy of study 

as a prototypical turbulent shear flow (in the sense it is a chaotic evolution of the vorticity field and the 

mean velocity field has shear). This is because this model offers the possibility of establishing a bridge 

with statistical mechanics –i.e. of predicting the evolution of the large-scale statistics of turbulent shear 

flow as a consequence of the collective interaction of a large number of vortices, in a fashion similar to 

how the relation between pressure, density and temperature of an ideal gas can be derived from molecular 

dynamics (Fig.1.4). 

The first attempt to connect vortex dynamics with statistical mechanics was by Onsager (1949) who 

presented a penetrating discussion of statistical mechanics of a „gas‟ of positive and negative point 

vortices in an ideal fluid on a celebrated paper titled Statistical Hydrodynamics. The motion of such a gas 

is governed by a Hamiltonian (first shown by Kirchhoff, 1876), and may be expected to lend itself to the 

formalism of statistical mechanics. (The demonstration that chaotic motion can occur in a collection of 

more than three vortices (Novikov & Sedov 1978, also see Aref 1983) establishes an underlying 
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stochastic dynamics that justifies a statistical treatment.) Onsager showed that the motion of the vortices 

could be analyzed in terms of energy and entropy as in classical statistical mechanics, but the temperature 

derived therefrom would have to be permitted to take negative values, as the entropy has a maximum 

with respect to the energy.   He also showed that such a gas possessed equilibrium solutions which 

consisted of large-scale vortex clusters or structures, positive and negative segregated from each other. 

Since then considerable work has been done in analyzing the mechanics of point vortices (see Paul 

Newton 2001 for example). In particular the nature of the equilibrium state in such a gas has been 

extensively discussed (see for example Lundgren & Pointin 1977, Eyink & Spohn 1993), especially in 

connection with the emergence of   large-scale, long-lived vortices in the vortex gas.  Several attempts 

(beginning with Marmanis 1997, most recently Chavanis 2010) have also been made to derive a BBGKY 

hierarchy of equations governing vortex distribution functions, based on the Liouville equation, 

beginning with single-particle analogues of the Boltzmann equation and followed by higher members in 

the hierarchy involving two-point correlations or more (Chavanis 2012). A favored target for application 

of these ideas has been Jupiter‟s famous red spot (Miller et al. 1992, Chavanis 2005), seen as one 

dramatic example of the kind of large-scale long-lived vortex predicted by Onsager.   However there 

have been few attempts to make connections between evolving turbulent flows with non-equilibrium 

statistical mechanics of a vortex gas.  (There have been some other attempts to bridge turbulent flows 

with statistical mechanics (Kraichnan & Chen, 1989) that have focused on homogenous isotropic 

turbulence, which is not relevant to the present study, and hence not discussed here.) 

 

Figure 1.4. Illustration of the present philosophy 

Our approach to the problem is akin to that of studying the statistical mechanics of a system of 

molecules via molecular dynamics. Therefore the complete evolutionary trajectory of the vortex-gas 

system is followed all the way from its initial conditions (such as that shown in Fig. 1c) to the final 

asymptotic state (if one exists) as    . With today‟s computational resources, much more accurate and 

comprehensive study is possible compared to earlier work. The present simulations are much longer in 

time (by a factor of 10
4
), far more precise (Hamiltonian conserved to within 10

-5
), and involve large 

(500+ member) ensembles; these (as it shall be demonstrated) turn out to be crucial for obtaining the 

results reported here. 

The majority of this thesis (Part I, Chapters 2 - 5) is concerned with the analysis of the evolution 

of the temporal vortex-gas free shear layer, which is analyzed from two view-points.  The first is in terms 

of statistical mechanics, and describes the evolution of the vortex gas all the way from the initial 

condition to a final asymptotic state, through distribution functions, possible equilibrium states and 

temperatures. Such analyses point to the existence of certain universalities that appear to be novel in  
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non-equilibrium statistical mechanics. The second viewpoint is in terms of concepts that have been found 

useful in the study of turbulent shear flows, such as self-similarity, growth rate of the shear layer and 

effect of initial conditions on subsequent flow development. The two viewpoints together yield fresh 

insights into questions that have been widely discussed but remain controversial in the fluid-dynamical 

literature.   

The organization of this part of the thesis is as follows. In Chapter 2, formulation of the temporal 

problem, a critical review of earlier calculations, the major unanswered questions and the present 

computational strategy are presented.  Then the results of the present temporal simulations will be 

discussed, identifying and describing three distinct regimes in the temporal evolution, and present 

detailed results on universality of the intermediate regime in Chapter 3. Chapter 4 makes connections 

with statistical mechanics, beginning with comparison of long time solutions with equilibrium theories 

and then presents results on the relaxation, including on the applicability of vortex-gas kinetic theories. 

Chapter 5 makes comparisons and connections with 2D/3D NS simulations and experiments. 

Part II (Chapters 6 - 9) of the thesis is concerned with more detailed fluid dynamic questions and 

the extensions of the vortex-gas shear layer to address them. Chapter 6 makes connections between the 

early development (Regime I) and hydrodynamic instability theories and Chapter 7 illustrates how the 

present simulations can be used for optimal control of shear layers. Chapter 8 discusses the effects of 

viscosity via temporal vortex-gas simulations with an additional random walk component to the vortex-

motion. The effects of spatial feedback are studied in Chapter 9 by formulating a vortex-gas analog of the 

spatially evolving shear layer with appropriate boundary elements. The features of the single stream shear 

layer are discussed in great detail, and how some of its features have been incorrectly attributed to 3D 

mechanisms is demonstrated. 

The thesis concludes with remarks on possible future directions. Some preliminary results from a 

nearest-neighbor interaction model and a discussion of other possibilities to understand Regime II are 

presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

 

Chapter 2:  Revisiting the vortex-gas free shear layer -  

Unsettled issues and present strategy 

 

2.1. Present setup and formulation 

Many of the earlier vortex-gas studies involve vortices in an infinite plane (e.g. Lundgren & 

Pointin 1977), or in a doubly periodic box (e.g. Montgomery & Joyce 1974) or on a cylinder (e.g. Bühler 

2002). The object of the present study, a temporal free shear layer in a point vortex gas, is formulated as 

follows. 

 

Figure 2.1. The vortex-gas formulation of the temporal free shear layer showing the configuration of 

vortices at the initial instant. Only the vortices in the L–domain, 0 < x < L (which are denoted by dark 

dots) are tracked. The governing equations account for the velocities induced by all the vortices in the L-

domain as well as all those present in x <  0, x > L (shown in light colored dots) at separations of + kL  

and – kL respectively (k = 1,2, .. ∞) for each vortex. l =L/N is the initial inter-vortex separation in x. 

Consider an array of N point vortices each of fixed strength , initially distributed along or very 

close to the x-axis (equispaced in x) in a domain of length L containing an inviscid fluid as shown in           

Fig. 1c. Corresponding to any vortex i in the domain (say at (xi, yi)), there exist vortices at {(xi   kL, yi)}; 

k  = {1, 2,…},  in the replicated domains extending to     so the boundary conditions are periodic. 

This formulation represents a canonical system of an infinite number of vortices in an infinite domain. 

Our objective is to study the evolution of this system in (x,y,t) space.  

The state of the system at any time t is completely described by the location of all the 

vortices                        as this is sufficient to determine the velocity field over the whole 

domain. The velocity induced at a distance r by a point-vortex is given by the Biot-Savart relation 

        
 

   
      

where    and    are the radial and circumferential components of the velocity at the radial distance of  

          
        

     .  

 The velocity with which any vortex moves is the vector sum of the velocities induced at its 

location by all the other vortices in the system; thus each vortex is a flow-marker and traces a particle 

path. In the present set up, the velocity of a vortex located at         in the L-domain is the sum of the 

velocities induced there by vortices at                                             

                       . This leads to convergent series that sum up to the following expressions 

for the x and y components of the velocity (here,      for all  ):     
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These equations appear to have been first written down by Friedmann & Poloubarinova (1928). The first 

reported calculations using (2.1,2.2) were performed by hand by Rosenhead (1931). Subsequent work 

using (2.1, 2.2) will be reviewed in the Section 2.2.   

Now the circulation   is set to      ,  so that        are respectively the induced x-velocities 

at    ∞ as shown in Fig. 1.  It has to be noted that x is an angular variable as the system is x-periodic. 

In the numerical implementation, vortices that leave the domain during the evolution are relocated 

modulo L using the x-periodicity of the system. Thus if vortex i located at xi
m 

(0< xi
m 

<L ) at time tm would 

have to be moved to
1ˆm

ix 
>L at time tm+1, it is relocated to xi

m+1
 =

1ˆm

ix 
 – L. Similarly, if 

1ˆm

ix 
< 0. Such 

operations do not alter the induced velocities given by (2.1, 2.2), and ensure that N vortices all present 

within the domain 0 < xi < L are tracked. 

The point-vortex gas in an infinite plane possesses the Hamiltonian (Kirchhoff 1876) 

    
  

  
                

 

       

 

   

                                           

where            and    is an arbitrary length scale, often taken as the radius of gyration of the vortex 

system,           
  

      
    

   
 .For the system shown in Fig. 1c, the Hamiltonian (often also called 

Kirchhoff‟s function) takes the form (Delcourt & Brown, 1979) 

    
  

  
     

 

 
                                     

 

       

 

 

   

              

Equations (2.1) and (2.2) can be cast in the Hamiltonian form  

       

  
 

  

       
   

       

  
   

  

       
                               

a system of 2N ODEs that can be solved as an initial value problem. Note that in the present problem the 

notation L is used for the domain size and not the radius of gyration. 

 

2.2. Preliminary simulations and major questions 

Before posing the major questions some simple simulations over a relatively long duration are 

useful. These were performed with N = 800, initially equispaced in x and with initial values of the y-

positions of the vortices from drawn randomly from a uniform probability distribution of amplitude a,   

                                 . 

Figure 2.2 shows the evolution of vortex positions with time for a / L = 10
-6

.The initial evolution 

(          is qualitatively consistent with earlier simulations of this kind (Delcourt & Brown 1979, 

Aref & Siggia 1980); in particular, as is clear from Fig. 2.2, the vortices cluster to form what has been 

called in fluid dynamical literature as „coherent structures‟. In general these structures grow in size by 

successive amalgamations (see amalgamation events A, B, C in Fig. 2.2). The average size of the 

structures and the spacing between them increase with time, while the total number of structures in the 
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domain decreases. We also find that beyond tU/L ~ 4, there is only one structure left in each periodic 

domain, (as at          , Fig.2.2). 

 

 

Figure 2.2. Typical evolution of vortex positions with time.  ( N = 800 , a / L = 10
-6

) 

 

 

Figure 2.3. Evolution of thickness with time, in exploratory simulations of (2.1,2.2) (with N=800). 

Note the existence of different regimes in evolution. 

To quantify these observations, we introduce a rough measure of layer thickness t], defined as 

the maximum y-distance at time t between any two vortices in the system (see Fig. 2.2). (This measure is 

analogous to the visual thickness of a laboratory mixing layer.) The evolution of  with time is shown in 

A                               B                                       C 
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Fig. 2.3 for a/L = 10
–6

 and 10
–2

. (Similar results are obtained if other measures of thickness are used 

instead of .) 

It can be seen that (for a/L = 10
-6

)  grows approximately linearly between                             

              , saturating at about 0.8 for              . At the much higher initial 

amplitude a/L= 10
-2

, the onset of linear growth takes place much later at around tU/L ~ 0.2, but the 

trajectory beyond that point seems to roughly follow the simulation with a/L = 10
-6

, indicating a 

possibility of universal growth.  

These two simulations immediately highlight the presence of at least three regimes in the 

evolution. For some time after initiation, the solution strongly depends on the initial condition (which we 

shall call Regime I), but the effects seem weaker at later times as  grows linearly in time (Regime II). At 

longer times the layer thickness seems to fluctuate roughly around a constant value of about 0.8 (Regime 

III), which has never been explored in earlier simulations.   

These preliminary simulations raise the following basic questions: 

 a) What are the scaling laws in different regimes in the evolution of (1,2) ? 

 b) Are any of the regimes „universal‟, if so which ones and in what variables? 

             c) Wherever there is universality, what is the statistical-mechanical explanation? 

 d) What is the nature of the solution as t   ? 

 e) What is the relevance of the vortex-gas shear layer to 2D/3D NS mixing layers ? 

We now briefly review earlier studies of vortex-gas free shear layers with the above questions in mind.  

 

2.3. Review of earlier (temporal vortex-gas) simulations 

Earlier vortex-gas simulations (mostly carried out with a fluid dynamical perspective) have not 

explicitly identified the above three regimes and hence no attempt has been made to tackle the questions 

raised above. This is due to one or more of the following factors:  

a) Large statistical uncertainties due to small number of vortices, low accuracy and lack of ensemble 

averaging 

The most extensive (non-desingularized) vortex-gas computations to date are due to Aref and 

Siggia (1980), who use 4096 vortices.  They use a cloud-in-cell method which saves computer effort 

using integer algebra and look-up tables for the calculations, but the technique also introduces a 

numerical viscosity. With only a single realization they estimated the uncertainty level as 30% in the 

layer thickness. Delcourt & Brown (1979), also using a cloud-in-cell method, reported a 6% change in 

the Hamiltonian in the computations. No earlier work performs ensemble averaging, which is crucial for 

obtaining reliable statistics, as will be described in Sec. 2.5. 

b) Short integration times 

The maximum tU/L reported in earlier work is 1.2 (Delcourt & Brown, 1979). This is grossly 

inadequate to reach an asymptotic state or even to uncover the different regimes observed in Fig. 3.For 

certain classes of the initial condition, e.g. those involving long-wave sinusoidal displacements of the 

point vortices (e.g. Rosenhead 1931, Acton 1976), the time of integration is too short even to move out of 

Regime I. 
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c) Inadequate scale separation between different regimes due to choice of initial conditions with respect 

to domain size 

In some simulations (see Table.2.1), the length scale of the dominant initial condition (ic) is comparable 

to the domain size (L), leading to a lack of scale separation between the Regimes. Hence it is not possible 

to probe each regime in sufficient detail.   

 

d) Desingularization and variable number of vortices 

It has been noted that point vortices are „too chaotic‟ to provide a satisfactory discrete model for 

a vortex sheet (Hama & Burke 1960, Moore 1971, see also Leonard 1980). This difficulty may be 

overcome by adopting a desingularized version of (1,2) following Krasny (1986). Recent studies include 

Sohn (2005, 2010) and Abid & Verga (2011). Such desingularization is relevant to investigations on the 

smooth roll-up of a vortex-sheet but not for an inherently chaotic object like turbulent shear flow, 

desingularization suppresses chaos, delays transition to Regime II and does not affect the final 

conclusions though the Hamiltonian (2.4) is no longer conserved (see Appendix C).  

Some simulations (e.g. Sohn 2010) vary the number and strength of vortices in an adaptive 

fashion in order to better resolve the curvature of a continuum vortex sheet. These simulations are more 

closely related to discrete vortex sheet models (e.g. Basu & Narasimha 1992, Paul & Narasimha 2013) 

than a vortex gas and are not attractive for statistical-mechanics approaches. 

 

2.4. Present computational strategy 

The N point vortices, placed along the x-axis with a given inter-vortex spacing l, are displaced 

along y by a specified amount at t = 0. This displacement is typically randomly generated using a 

specified probability distribution for each case, but in a few special cases the displacement is taken as a 

sinusoidal function of x.  To obtain the time evolution (2.1,2.2) are solved numerically using a standard 

(explicit) fourth order Runge-Kutta algorithm to advance in time the locations of all the vortices.  

The time-step used for integration and the precision of the calculations play an important role in 

the level of fidelity of the computation to pure Hamiltonian dynamics (Krasny,1986b).To investigate this 

issue we perform a set of simulations (detailed results shown in Appendix A) with different time-steps, 

precisions and schemes (including symplectic). We find that the evolution of the relevant (ensemble-

averaged) statistics, such as the layer thickness and single and two-particle distribution functions, show 

no significant variation for              (although individual vortex trajectories are found to be 

different due to the inherently chaotic nature of the system). Most importantly, the spread rate in Regime 

II was found to vary by less than a percent as    is varied by a factor of 40 (from 0.025 to 1.0      for a 

case with a/l = 10
-3

 , N = 1600), or between double and quadruple precision simulations (for a case with 

N = 400). Hence all calculations in this work use double precision and adopt             as the time-

step except when stated otherwise. Note that in terms of outer units often quoted in other work, 

                     for N = 1600 and 7.81 x 10
-6

 for the simulation with N = 32000 (we use 

             for the latter). This may be compared with the lowest value for           of         

used by Krasny(1986b). 

The accuracy of the algorithm used here has been further assessed monitoring the quantities 

conserved by the equations of motion. We find that for computations on vortices in an infinite plane (in 

which the x- and y-centroids, second moment and Hamiltonian are conserved, see Newton 2001) with 

similar initial conditions and parameters as in the x-periodic mixing layer, the Hamiltonian is conserved 

to within of        of its initial value at (           for       ). The first moments of the 

vorticity distribution about the x and y-axes are conserved to within        and         , and the 

second moment to within         , of their respective initial values. For the periodic-in-x vortex-gas 
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free shear layer the Hamiltonian (4) was conserved to within          of its initial value during 

integration over tU/L = 0.75, with N = 3200. (For other invariants of the present x-periodic system see 

Appendix A.) 

Study of Regime III involves long-time integration so a shorter time-step of 0.025 l/U is 

adopted.  As a result the Hamiltonian is conserved to within 0.5% for an integration time of 3.6 x 

10
4
L/U (0.58x10

9
 time-steps). These numbers demonstrate that the current computations are 

substantially more accurate than any previous work. 

To understand the role of numerical noise on the initial development, we simulate cases (with N 

= 3200) with a/l = 0 and a/l =      , each with two different time-steps,                 and 0.5 and 

with double precision.  We found that the initial evolution (early Regime I) with a/l =0 was different for 

the two different values of time-step, or (equivalently) of the magnitude of the numerical noise. It has to 

be noted that this initial condition is a stationary but unstable solution of the point vortex system. 

Therefore, the numerical noise was essential for triggering the instability and hence its value was 

important in determining the initial evolution. However, the subsequent evolution, especially Regime II,  

was independent but for a shift in the virtual origin in time. We find that for a/l = 10
-10

 the evolution did 

not depend on time-step for t > 0. This suggests that as long as the „disturbance‟ in the initial condition is 

sufficiently large (          ), it dominates the effect of numerical noise throughout the evolution.  

The above results suggest that there is non-zero numerical noise in the present study due to the truncation 

and round-off errors that are inevitable in any computer simulation, the present results seem to be 

robustly independent of the magnitude of the numerical noise, provided it is small and non-zero.  

We do not adopt desingularization for the reasons highlighted in the previous section except for 

the simulations presented in Appendix C. The conservation of the Hamiltonian prevents any two vortices 

from getting arbitrarily close to each other. We find that using the present algorithm and adopted time-

step, the distance a vortex moves during any time-step rarely exceeds that to its nearest neighbor, and is 

almost always at least an order of magnitude less. Hence the unbounded velocity in the neighborhood of 

a point vortex does not present a serious issue in the numerical integration of (2.1,2.2). 

Apart from   (defined in Section 2.2) there are different metrics one can adopt to specify the 

„thickness‟ of the layer such as moments of vortex y-positions. But in order to enable comparison with 

Euler & Navier-Stokes mixing layers, we adopt the so-called momentum thickness, as it is commonly 

used in the fluid dynamic literature and in several earlier vortex-gas free shear layer studies (e.g. Aref & 

Siggia 1980). The momentum thickness () is defined in the usual way as,  

                              
 
 

 

  

 

where, the x-averaged x-velocity  

                         
 

 

 

is computed by x-averaging the induced x-velocity u on a grid of 0.4 N points in x and 200 points in y 

once every 100 time-steps. (Note: There are rare occasions when a vortex can come arbitrarily close to a 

grid point and induce very high velocity. This can reflect in the x-averaged velocities and hence the 

momentum thickness. In principle this effect can be addressed by use of a very fine grid and by averaging 

over a thin strip which would lead to cancelling of the large induced velocities of opposite signs. But we 

find that neglecting the contributions made by those rare instances when x-averaged velocities with 

absolute value greater than U/2 while computing  is an equivalent alternative easier for numerical 

implementation. We note that this strategy does not change the computed value of   by more than 1% 

for 99.9% of cases when tU/l > 10. Further, it was observed that doubling the grid resolution changes 

the computed value of  by less than 0.5% for  tU/l > 10. Thus  computed in this work is a robust 
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measure). We shall show in Chapter 4 that the major conclusions are not affected by the choice of 

measure of thickness.  

 

2.5. Ensemble averaging  

In statistical mechanics ensemble averaging is commonly adopted to reduce fluctuations. For 

measurements of turbulent flow in fluid dynamics long-time averaging is often adopted as an alternative 

to ensemble averaging in statistically stationary flows.  As the present system is non-stationary in time 

but statistically homogenous in x, x-averaging is in principle equivalent to ensemble averaging. However 

we find that an average over an ensemble of realizations (with initial conditions varied within a clearly 

specified class) is adopted due to the following reasons. 

We first note that the statistical error (at a given tU/l) may be expected to vary with N as       

(observed also in our present simulations, as shown in Fig. 2.4),while the computational effort grows as 

  . But if we simulate n realizations with m vortices each, the computational effort grows as      while 

the statistical error goes as           (Fig. 2.4). The errors will be the same if N = nm, which reduces the 

computational effort by            . It is this result that makes the ensemble approach so attractive. 

But a sufficiently large N = L/l may be required to have a sufficiently long extent and preserve the 

inherent distinction between the different regimes observed in Fig. 2.3. But once N is sufficiently large 

the ensemble averaging approach is computationally far more economical. It also has the practical 

advantage of using parallel computers more effectively, as different „realizations‟ can be independently 

simulated on different processors without any need for data communication. We also find that the 

ensemble average of  computed from the x-averaged velocity profile for each realization is not very 

different (for large N and n) from the value computed from the ensemble  average of the (x-averaged) 

velocity. Throughout this study, we shall use the former for the sake of numerical convenience.   We also 

note that, for a given initial condition class, the standard deviation of the Hamiltonian across realizations 

is never more than1% of its mean value for present simulations with more than 400 vortices, and is often 

much less: e.g. less than 0.01% for the set of simulations presented in Chapter 3. Hence the present 

ensemble can be considered a microcanonical ensemble.  

  

Figure 2.4.  .Effect of ensemble averaging. Note that individual realizations have large fluctuations (even 

for N = 3200) and average over a large number of realizations is essential. The RMS departure from the 

respective means (at tU/l = 160) ~ n
-1/2

(shown in dashed line) for a given N and ~ N
-1/2

 for a given n.   
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Ensemble averaging has not been adopted in earlier investigations of vortex-gas free shear layers. 

Statistical uncertainties associated with single realizations as seen in Fig. 2.4 make it impossible to 

address questions such as whether a Regime is universal or not, or how closely  the vortex-gas 

simulations agree (if at all) with Navier-Stokes mixing layers.  

A summary of the present simulation parameters and accuracy compared with earlier simulations 

in presented in Table 2.1. Also listed is the ratio of the domain size (L) to wavelength (   ) of the 

dominant perturbation in the initial condition (    is taken to be equal to the wavelength of the imposed 

sinusoidal perturbation when specified. For several rows of vortices with random initial conditions,     is 

taken the wavelength of the fastest growing mode given by Rayleigh theory for the analogous continuous 

vorticity field, see Ch.6 for details and justification)   . This ratio roughly determines the maximum 

number of coherent structures formed at the beginning of Regime II and thereby extent of Regime II (as 

it determines the separation of scales between Regimes I and III, details in Ch.3).  It can be seen that in 

terms of the number of vortices (both in terms of the maximum as well as in terms of the range), number 

of different initial condition classes, scale separation between the different regimes or maximum time of 

integration, the present simulations are vastly extensive compared to any earlier work. Therefore Table 

2.1 clearly demonstrates why earlier simulations are unable to address any of the major questions raised 

at the beginning of this chapter and why the present simulations may provide insight.  

 

Table 2.1.  Comparison of present simulation parameters with earlier vortex-gas simulations  

(gray font indicates simulations with desingularization, which are not directly relevant and „?‟ indicates 

that data is not available) 

 

Number of 

vortices 

Number 

of initial 

conditions 

Hamiltonian 

conservation 

(per L/U) 

Max. 

number of 

realizations 

Max. 

L/
ic  

 

Max 

tU/L 

Rosenhead 

(1931) 
24 1 ? 1 2 0.8 

Acton (1976) 96 15 ? 1 2 3 

Delcourt & 

Brown (1979) 
750 3 6 x 10

-2

 1 ~ 50 1.2 

Aref & Siggia 

(1980) 
4096 2 ? 1 ~ 40 1 

Krasny 

(1986b) 
1000 1 

10
-4 

  

(Desingularized 

Hamiltonian) 

1 1 4 

Abid & Verga 

(2011) 

32000 

(initial) 
2 ? 1 4 1.4 

Present 50 to 32000 >  20 10
-5

 1024 ~ 10
3

 3 x 10
4
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Chapter 3: Regimes, Scaling and Universality 

 

In this chapter, we address the first two of the major questions raised in Chapter 2 regarding the 

temporal evolution of the vortex-gas free shear layers. We shall begin with an analysis of the three 

different Regimes noted in Chapter 2 and establish their scaling.  The second part of this chapter will be 

devoted to determining whether the intermediate Regime II is universal or otherwise.  

3.1. Scaling of the three regimes in evolution 

 

Figure 3.1 Composite diagram showing effect of initial conditions and domain size on the evolution of 

the mixing layer.  Note use of  and  in different parts of the diagram, and change in the abscissa 

from       with a logarithmic scale up to 500, linear scale between 500 and 1500, and a switch to 

       thereafter.  Appropriate changes have been made on both abscissa and ordinate to ensure that the 

evolution curve should go smoothly from one regime to the next.  Inset A1 variation of initial transient 

with the amplitude of the initial vortex displacement. Insets B1 and B2 give pictures of the configuration 

of the vortices at          and at          respectively.  

To determine the precise scaling laws in each of the three regimes, we carry out several 

additional simulations with different initial displacements drawn from uniform random distributions with 

amplitudes ranging from 10
-4

l  to 10 l, with different domain sizes ranging from 200 l to 1600 l, and with 

averages over up to 12 realizations. A summary of the results is presented in Fig. 3.1 as a composite 

diagram. In order to shed light on the different scaling laws in the different regimes, it is useful to adopt 

two different measures of the layer thickness,  or  (see Ch.2 for definitions) and of time, l /U or         

L /U. It is therefore important to pay attention to the precise variables used as abscissa and ordinate in 

different parts of Fig. 3.1. The figure leads to the following observations about the different Regimes.  

3.1.1. Initial condition dominated Regime I    

As Fig. 3.1 displays, the evolution is widely different for different initial conditions during the 

initial Regime I with time scaled with l/U. The evolution is independent of L for the same initial 

 

       (A1) 

         

         (B1) 

 

 

                       (C1)
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conditions (specified as a function of l), when scaled with l. A suitable measure of thickness in this 

regime is as  is not accurate for tU/l < 10 for reasons discussed Chapter 2. It is seen that the 

duration of this regime (tRI), 10
-2

 to 10 times l/U for the cases considered here, strongly depends on the 

initial conditions as shown in an inset in Fig. 3.1. However, for certain initial condition classes, including 

those where the y-displacement of vortices is a long-wave sinusoidal function of x, Regime I may be 

much longer  (O(10
3
) l/U for case P1 shown in Chapter 4). In such cases the transition to Regime II may 

even be non-monotonic.  

3.1.2. Domain-limited Regime III 

Jumping now to Regime III, we find from Fig. 3.1 that, at times comparable to or larger than the 

domain size time-scale (i.e. tU/L > 1), the effects of finite domain size become noticeable and the 

growth of the layer departs from the linear variation with time seen in Regime II. As shown in the inset 

B1 in Fig. 3.1, the dynamics in the initial stages of Regime III are governed by the interaction among a 

small number of coherent structures. Figure 3.1 shows that the scaling length clearly changes from l to L 

in this regime, as confirmed by the approximate collapse of     vs.       obtained from simulations 

with L/l ranging from 200 to 1600. Beyond          the magnitude of changes in the thickness of the 

layer (in a statistical sense) is greatly reduced.  This is because there is only one structure left in the 

domain (see inset B2 in Fig. 3.1), and hence there is no further opportunity for the layer to grow by 

amalgamation among structures.  The evolution of the single structure to its final stage and its 

connections to vortex-gas equilibrium are discussed in detail in Chapter 4.   

3.1.3. The intermediate asymptotics of Regime II 

It can be observed from Fig. 3.1 that between Regimes I and III is an intermediate Regime II in 

which the layer exhibits linear growth. 

From a mechanics view point, the transition between the short-time initial and long-time 

asymptotic states is governed by an intermediate asymptotics that can be derived by methods similar to 

those used by Millikan (1938) in channel flow and Kolmogorov (1941) in turbulence spectra (see 

Narasimha 1996).  The argument can be applied to the present system as follows. 

Let       be a measure of the mixing layer thickness uniquely determined from               at 

each instant of time t. The value of    could be a statistic directly involving the position of the vortices 

(such as the RMS value of y - displacements of all vortices), or a thickness based on the computed x-

averaged velocity field, such as the momentum or vorticity thickness.  Dimensional analysis shows that 

the growth rate of the mixing layer can be written as  

   

      
     

   

 
 
 

 
  

             

 
                                                                                     

where   is some function to be determined. (We choose U as a basic variable instead of , as it is a 

large scale quantity that is more relevant for fluid dynamics, and this choice will not make any difference 

to the following analysis.) Here l is the initial inter-vortex spacing, but it is important to note that the 

following analysis holds if l were to be replaced by another characteristic length scale of the initial 

condition (such as amplitude or wavelength of periodic forcing). The limit       would imply that the 

domain size is much longer than any length scale characterizing the initial conditions. Such a limit would 

always be appropriate for any „canonical‟ (Basu et al, 1992) temporal shear layer in an infinite domain. 

  If we hypothesize that the solution (3.1) evolves to a state independent of the precise initial 

configuration for sufficiently large       ,the third argument of F in (3.1) will drop out in the limit, so 

1 2
/ /

lim lim , ,
( )t U l t U l

d t U L t U L
F F

d t U l l l l



   

    
    

                                                       

(3.2) 
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where    is the functional form taken by    as        . 

Assuming that this converges in the limit L/l =    , 

1 2
, /
lim lim ,

( )N t U l N

d t U t U
F F N

d t U l l



   

    
    

    
                               (3.3) 

In what may be called the long-time or „outer‟ limit (see Van Dyke 1964), we have            so the 

solution maybe expected to be dominated by the finite domain size and hence depend on         

(              , which we observe as we approach Regime III in Fig. 3.1. This is known to happen in 

other areas of physics. Hence, in this regime, we may write (3.3) as 

 3

ˆ
,   / , / , /  fixed

( )

d t U
F t U l L l t U L

d t U L

  
     

  
                           (3.4) 

where    is the functional form assumed by (3.3) in the limits stated above. The above argument would 

strictly hold only in the early part (         of Regime III, as we shall show in Chapter 6.  

If we postulate an overlap between (3.3) and (3.4) in the simultaneous limits         and 

        (in the spirit of matched asymptotic expansions, Van Dyke 1964), the only possibility is an 

overlap Regime II in which 

   

      
                                                                                                                                      

where CVG is independent of time; i.e. the layer thickness grows linearly with time. This is the analog of 

the log law in channel flow and the k
–5/3 

law in the spectrum.  The above analysis only suggests that CVG 

is a constant, but it may or may not be universal across different initial condition classes.  

A similar analysis can be performed for Navier-Stokes temporal free shear layers (Townsend 

1956, details in Chapter 5), resulting in constant growth rate (say CNS). Whether CNS is universal or not 

has been a subject of significant controversy (Balaras 2001, George 2004) in turbulent free-shear-flow 

literature. Regardless of the connection between CVG and CNS (which will be explored in Chapter 5), it is 

highly worthwhile to address the question of the universality of CVG in the vortex gas, for the reasons 

discussed in Chapter 1.  

 

3.2. The universality and self-similarity of Regime II 

To answer the question on universality, a total of 12 cases, with widely different initial condition 

classes for yi0 domain lengths, number of vortices and ensemble size have been performed.  The results 

are presented in Fig. 3.2. 

The initial conditions considered include uniform random distributions (cases R1, R2, R3, R4-

1600, R4-400, R5-400) with amplitude ratio a/l varying from 10
-8

 to 2; Gaussian distributions(G1); bi-

modal distributions in the form of sums of symmetric or asymmetric displaced Gaussians (respectively 

BM1, BM2); and distributions varying sinusoidally in x (P1 and P2). In the case of random initial 

conditions each realization is initialized with a different set of random numbers from the same class. The 

different „realizations‟ required for ensemble averaging for sinusoidal initial conditions (yi0 = a sin(2xi 

/+) , where a and  are the amplitude and wavelength of the perturbation) can be generated with 

different initial phases ( of the wave at t = 0 with respect to that at the beginning of the domain (x = 

0); small differences in numerics lead to different solutions in terms of evolution of individual vortex 

positions over time due to the chaotic nature of the system, but the statistics will remain robust. This 

strategy is used in case P2. An alternative is to add a small random noise component to the wave at the 
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initial instant, and draw it from some specified distribution. This is done for case P1 whose discussion is 

deferred to Chapter 5. 

 

Table. 3.1. Details of initial conditions, number of vortices, size of ensemble and the best fit 

Regime II spread rate for different cases 

Code N n Initial conditions Best fit d/d(tU) 

R1 3200 577 Uniform random, a / l = 5 x 10
-2

 0.016618 

R2 10000 11 Uniform random, a / l = 1 x 10
-1

 0.016685 

R3 1600 256 Uniform random, a / l = 1 x 10
-8

 0.016587 

R4-32000 32000 14 Uniform random, a / l = 1 x 10
-3

 0.016506 

R4-1600 1600 512 Uniform random, a / l = 1 x 10
-3

 0.016532 

R4-400 400 512 Uniform random, a / l = 1 x 10
-3

 0.016510 

R5 400 512 Uniform random, a / l = 2.0 0.016562 

G1 1600 512 Gaussian,  / l = 1.0 0.016689 

BM1 1600 1024 Symmetric bimodal,  

 / l =  / l = 10
-1

, d / l = 6 x 10
-1

 

0.016737 

BM2 1600 1024 Assymmetric bimodal, 

 / l = 10
-2

,  / l = 2 x 10
-2

, d / l = 4 x 10
-2

 

0.016534 

P1 3200 288 Sinusoidal,   

aw / l = 4 x 10
-1

, an / l = 4 x 10
-4

 ,  / l = 100     

0.016635 

P2 1600 512 Sinusoidal,   

aw / l = 1.188 x 10
-2

, an / l = 0.0 ,  / l = 50     

0.016624 

 

The respective growth histories in Regime II are shown in Fig. 3.2.  A best fit to the growth is obtained 

by minimizing  

                     

      

      

 

with respect to A and B, where tIIb and tIIe are the estimated beginning and end of Regime II. We choose 

tIIe to be 0.8 tU/L or the end of the respective simulation, whichever is earlier. The time beyond which 

the local slope is within 10% of the overall slope is taken as tIIb (except for sinusoidal initial conditions 

for which the criteria is the point beyond which fluctuation in local slope is less than 25% of the overall 

slope) and for the different cases tIIb is indicated in Fig.3.2 by short vertical bars. We take as reference the 

best fit value for R1 (N = 3200 ; n  = 577), in which Regime II extends over more than two decades in 

       (20 – 2400), and                 + const. 

Figure 3.2B shows the ensemble-averaged best-fit growth rates and the 95% confidence limits 

for the ten cases considered.  Based on these results the evolution of momentum thickness in Regime II is 

given by  
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with a universal slope and a non-universal intercept ranging from        (P2) to       (G1) in the present 

simulations (the corresponding „virtual origin‟ (intercept on the time axis) of the linear growth in Regime 

II,   ,  would be         and         ). The departures in Regime II growth rate across the wide 

range of initial conditions are within a band of +1% from the reference, as compared to the 30% 

uncertainty quoted by the authors in the vortex-gas simulation of Aref & Siggia (1980). Further, we find 

that the universality extends to classes of initial conditions not included in Table 3.1, such as ones 

involving several rows of point-vortices to mimic a piece-wise linear velocity profile, which will be 

discussed in Chapter 6. (We shall also show, in Chapter 8, that this universality is robust to addition of a 

random walk to simulate diffusion and that it is unaffected by desingularization of the point-vortices in 

Appendix C). 

 

Figure 3.2. (A) Universality of Regime II. Note the wide range of initial conditions including those with 

very long transients, and the changes in scale at tU/l of 1000 and again at 2500. (B) Estimate of 

uncertainties in Regime II growth rates. The error bars show the 95% confidence limits (computed using 

Student‟s t-distribution). The dotted line is drawn through the reference (R1) growth rate.  

 

For two illustrative cases (G1 and P2) Fig. 3.3 shows that the moments of the vortex positions, 

        
       , become universal multiples of the momentum thickness at sufficiently long times, 

in general longer for the sinusoidal initial condition (P2) compared to the Gaussian initial condition (G1), 

establishing similarity and universality irrespective of the measure used to describe layer thickness. 

These simulations thus provide overwhelming evidence for the existence of a universal growth rate for 

the vortex-gas turbulent free shear layer, over a large and diverse class of initial conditions (as well as for 

diffusion and desingularization).  

 / l 
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Figure 3.3. Evolution of various measures of thickness based on vortex positions for G1 and P2. All of 

them settle to a constant factor of  in Regime II for the two very different initial conditions. 

  

 

Figure 3.4. Self similarity and universality of x-averaged (fluid) velocity and „Reynolds shear stress‟ 

profiles. The latter has been evaluated using integral of vorticity flux (computed from 64 member 

ensembles). 

   We now examine certain fluid dynamically relevant quantities. Figure 3.4 shows profiles of mean 

velocity and Reynolds shear stress for the case P1 and (at two different times) for the case G1. The 

Reynolds shear stresses are evaluated as follows. It is easily shown from the Reynolds-averaged Euler 

equations that, for the 2D temporal mixing layer considered, the stream-wise momentum balance reduces 

to 
    

  
       , where            s the Reynolds shear stress and      is the mean vorticity flux at y. 

In the present vortex-gas free shear layer, the Reynolds shear stress at y can be computed by evaluating 

–         over all the vortices with yi < y, where vi is the vertical velocity induced on the ith vortex. 

(Also note that in the present notation, the sign of the stress is opposite to what is normally adopted. We 

adopt this notation as       is negative in the present problem).  

In the normalization used in similarity theory, with velocities scaled by    and normal 

displacement with , it is seen that the three profiles agree for both mean velocity and Reynolds stress, 

indicating both self-similarity and universality, and hence of (fluid-dynamical) equilibrium in the sense 

of Narasimha & Prabhu (1972).This implies that universality extends to any measure of thickness based 

on the mean velocity profile. For example, in Regime II, vorticity thickness defined as,                              

              
   

 is 4.6 , and the universal slope in terms of   , is 0.076.  
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Figure 3.5 shows the vortex locations at two different times from the largest of the present 

simulations, which employs 32000 vortices. It can be seen that both the internal details of the structures 

as well as the braids between structures are highly resolved at this value of N, with an average of 2000 

vortices per structure at           .  Furthermore, when both x and y are scaled with the layer 

thickness,  the entire solution appears statistically similar (at least at the large scales, say in terms of 

number and average size of structures) and this observation would be quantified in terms of distribution 

functions in Chapter 4.  

The stream function   is related to the velocity field as                  . Using this 

relation and Eqs.(2.1, 2.2) the stream function for the present temporal-vortex-gas free shear layer is 

given by 

         
 

  

 

   

   
 

 
                                                                      

Contours of constant stream function, called streamlines, are local tangents to the velocity field. 

The stream function also has an interpretation of „local energy‟ in statistical mechanics.  The contours of 

stream function shown in Fig. 3.5 (computed on 4096 x 401 grid for R4-32000) indicate the straining and 

rotational motion of the fluid in Regime II, and has features broadly similar to flow fields of Navier-

Stokes shear layers (e.g. Brown & Roshko, 1974).  All of this suggests that while one hand Regime II is 

characterized by universality and statistical self-similarity, on the other it has a complex flow field with 

multiple interacting structures.    

Since the evolution in Regime II is independent of initial conditions and of N (at sufficiently 

large N, say O(10
2
) or more),  it ought to be a characteristic of the internal dynamics which is entirely 

governed by a Hamiltonian. Therefore this result demands a statistical mechanical explanation. 

Furthermore, the evolution of thickness with time in Regime II is a universality of both the exponent on t 

(which is 1) as well as the coefficient in front (the spread rate). This is at the least unusual in statistical 

mechanics and hence worth exploring.  Therefore, we shall study the statistical mechanics of the vortex-

gas shear layer and seek an explanation in the following Chapter 4.   
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Chapter 4: Statistical Mechanics 

 

Is there a statistical-mechanical explanation or analysis for the observed universality in                     

Regime II?  As discussed in the previous two chapters (see Fig. 3.5 in particular) Regime II is 

characterized by a linear increase in layer thickness with time (via interactions between several coherent 

structures).  Hence, we have an essentially non-equilibrium evolutionary regime. It is therefore important 

to understand the whether the system has a final state and, if so, understand the statistical mechanics of 

the entire evolution over all the Regimes discussed in Chapter 3 as stages in the relaxation to that final 

state. In order to do so, we analyze the results (Fig. 4.1) of long-time integrations (         ) of 

Eqs.(2.1), (2.2) for different cases. 

  

 

Figure 4.1. (A) Long time evolution of thickness for different cases. Note the switch to semi-log scale 

beyond       of 3. Beyond Regime II, there are several distinct relaxations, first involving a universal 

but not linear growth, then non-universal relaxation where /L is a function of a/L (shown in inset A1) 

and later a function of  (shown in inset A2) before reaching what appears to be a stationary state.                        

(B) Explanation for the „loss of universality‟ in later Regimes.  

 

While a more detailed explanation of Fig.4.1 will follow, here we point out certain striking features of the 

solution.  
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Firstly, it appears as if a final (steady) state does exist, but it is reached after very long times, of 

order 10
4
      for N = 400, that is four orders of magnitude longer than the extent of the universal 

Regime II.  This therefore suggests that Regime II is indeed very far from equilibrium.  

Secondly, while the evolution beyond Regime II was classified as Regime III, it is important to 

note that it has distinct sub-regimes of relaxation to the final state, all of which will be analyzed in greater 

detail in this chapter.  

The order of presentation in this chapter will follow the order of temporal evolution. Namely, we 

shall first discuss the non-equilibrium statistical mechanics of Regime II by computing single and two-

vortex distribution functions and remarks on the applicability of vortex-gas kinetic theories. Then we 

shall analyze the relaxation to the steady state, using ideas of violent and slow relaxations (Lynden-Bell 

1967, Chavanis et al, 1996, Chavanis 2012). Finally we shall analyze the statistically steady solution and 

make connections with equilibrium solutions (Joyce & Montgomery 1973, Lundgren & Pointin 1977). 

This order of narration is perhaps most appreciated by readers with a fluid-dynamical background. We 

refer the reader to standard texts (e.g. Landau & Lifshitz, 1980) for standard definitions and concepts in 

classical statistical mechanics and to chapter 6 of Newton (2000) for a brief review of statistical 

mechanical ideas applied to the vortex gas. 

.  An equally applicable approach (which especially readers from statistical mechanical 

background may find more compelling) would be to read the rest of the chapter in reverse order, namely 

beginning with connections to equilibrium.  

 

4.1 Non-equilibrium statistical mechanics of Regime II  

4.1.1. Single vortex distribution 

 

Figure 4.2 Sample contour plots of f1 at three different ensemble sizes (for R4-1600) at            . 

Note that with increase in the size of the ensemble, the x-dependence is reduced as a consequence of x-

homogeneity 
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We begin by exploring the possibility of existing kinetic-theory based approaches providing an 

explanation of the observed universality. In order to do so, we compute the single and two-vortex 

distribution functions. We consider cases R4-1600 and R4-400 as they involve a short Regime I and large 

ensemble sizes, and provide a better opportunity to assess the effect of the number of vortices in the 

simulations.  We divide the domain into 40 by 40 boxes of equal size.  While the width of each box (x) 

is fixed, the height (y) is increased linearly with time to cover the entire layer as it grows and to provide 

optimum resolution at all times.  We record           , the number of vortices present in each box of             

     , centered at       at a given time instant t, and then compute ensemble-averages over 512 

realizations to obtain the single particle distribution function f1 defined as,  

                    
 
               

Note that this definition ensures that f1 is normalized such that            (We use this normalization 

for convenience as it renders    dimensionless, in contrast with the conventional definition.) Note that 

this single-particle distribution function is related to the ensemble-averaged vorticity as                                

               . Since the system is homogeneous in x, the ensemble-averages should be independent 

of x.  This is verified by the observation from Fig. 4.2 that the variation of f1 in x decreases with 

increasing ensemble sizes. However, even at an ensemble size of 512 members, there is up to 10% 

fluctuation in f1 with x. Therefore, in order to improve the statistics, the single particle distribution is 

averaged over x to obtain       , with         . (As a consequence of x-homogeneity,           

        with sufficiently large ensembles.) 

 

 

Figure 4.3  (A) Single particle distribution function for different cases when scaled by momentum 

thickness.  (B) Self similar scaling of single particle distribution function (for R4-1600) 

 

From Fig. 4.3.A, which shows Regime II data, at different times, for two cases in which initial 

conditions and number of vortices are both different,         takes the universal form given by 

    

 
           

 

    
                                                                                                                  

where    is the self-similarity function; i.e. a function of two independent arguments   and   is reduced 

to a function of only  a function of one argument       .  
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Further, when     is such that         , Eq.3.1 shows that   is linear in     .  Therefore, in 

the limit of          (equivalently,       for a given a/l and      ),      follows self-similar scaling 

in Regime II : 

   
 

   
   

 

   
                                                                                                                                  

This limit is closely reached for the case R4-1600 for            as seen in Fig. 4.3B. This result is 

important, for the similarity form of the solution (18) is not admitted by the kinetic theory proposed by 

Chavanis (Eq. 129  of Chavanis, 2001).  

4.1.2. Two-vortex correlation 

To explore this issue further, we compute the joint two-vortex distribution function f2[x1,y1;x2,y2] 

by enemble-averaging the product of the number of vortices in two given boxes centered at (x1,y1), (x2,y2) 

respectively at a given time as,  

                                
 
                            

We define the two-vortex correlation function     as 

f2’[x1,y1,x2,y2] = f2[x1,y1,x2,y2] – f1[x1, y1]f1[x2, y2]        

If           is statistically indepenent of           , i.e. if we make the analog of Boltzmann‟s 

„molecular‟ chaos assumption, then the right hand side should vanish. Now due to x-homogeneity f2‟ 

should depend only on       and |x1-x2| for a sufficiently large ensemble. Again averaging over x to 

improve the statistics we present   
                 versus         and fixed y1 and y2 (both set close to 

zero). It can be immediately seen from Fig. 4.4 that   
  shows a systematic variation with        .   and 

that it can take values several times that of the local f1*f1 at small        .  Furthermore   
  takes both 

positive and negative values, indicating the presence of strong two-vortex correlations of both signs 

alternating between each other. 

 

Figure 4.4. Temporal evolution of f2’as a function of x-separation (       ) at  y1 = y2 = 0.0029 tU 

during Regime II  of case R4-1600. Note that there is self-similar scaling except at very small           

(region A).   
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 To understand the r-dependence of   
  exhibited in Fig. 4.4, it is instructive to relate it to the 

coherent structures in the flow, in particular to the length-scales associated with their size and spacing.  

These are obtained as follows. From an analysis of the snapshots of the vortex configurations such as 

those in Figs. 2.2 and 3.5, we find that the average number of coherent structures in the L-domain during 

Regime II is approximately 4L/tU in the limit          and hence the average x-distance between 

their centers is approximately (1/4) tU, equivalently about 15 from Eq.12. Further, from Fig. 2.2, the 

size of the structures is approximately half the spacing between their centers, i.e. about (1/8)  tU  or 7.5 

. The nearest vortex-sparse („braid‟) region and therefore stretches from approximately 0.06 to 0.19 tU 

from the center of a given structure.   

Returning to Fig. 4.4, it is seen that the functional dependence of f2‟ on the x-separation exhibits four 

distinct regions.  

A. At small separations (                  near the x-axis), which approximately correspond to 

distances within the same structure (i.e. less than half the average size of the structure), f2’ is 

several times f1*f1and positive.  

B. At distances                          , '

2f is of order f1
2
 and negative.  This clearly 

characerizes the vortex-sparse region between two neighbouring structures.  

C.  At somewhat larger separations f2‟ oscillates between positive and negative values, with 

amplitude diminishing with distance. The first positive peak is located at approximately 

0.22    , which is roughly the distance to the center of the next structure,and reflects the degree 

of order in the arrangement of nearby structures. The peaks progressively decay with larger 

separation. 

D. At large distances (          0.4 tU ) '

2f is negligible, indicating that vortex positions are 

uncorrleated. It is only in this region that the analog of Boltzmann‟s „molecular chaos‟  is valid. 

 

 

Figure 4.5. Variation of     with number of vortices (case R4-400 and R4-1600 at tU/L = 0.8 with y1 = 

y2 = 0.18Note that the maximum value of     changes by less than 5% from N = 400 to 1600 (which is 

within the statistical uncertainity).  

 We now examine the variations of f2’ with N. Fig. 4.5 compares     (at y1 = y2 = 0.18 tU/L = 

0.8) computed from simulations with N = 400 and N = 1600. The differences are so small that the 
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observed values of f2’ seem to be N independent and this is an evidence for the presence of strong 

correlations in Regime II. This is not surprising because of the nature of vortices to cluster and form 

coherent structures, as indeed the nature of variation of f2’ has been seen to be related to the observed size 

and spacing of the coherent structures.  Hence, in the vortex-gas free shear layer, f2’ can neither be 

neglected as done in most Boltzmann inspired „kintetic theories‟ (Chavanis 2001,2005,2010, Sano 2007) 

nor be considered as O(1/N) as proposed in a recent work (Chavanis,2012).   

 

 

Figure 4.6 (A)Variation of     with y at tU/L = 0.8 for case R4-1600.   

 

 

Figure 4.6 (Contd.) (B) Contour plots of f2‟in the            space for specified   . 

f2‟/ (Nxy/L
2
)

2
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  Figure 4.6A compares     at two different values of  y co-ordinates. It can be seen that the 

variation of      is qualitatively similar but quantitatively different at different values of the y co-ordinate 

when y1 = y2.  Further insight can be obtained from the contour plots of     in the             plane 

shown in  Fig. 4.6B. It can be seen that for both cases shown, the maximum correlation occurs for  y1 = y2 

,          . However, the location of the second maxima corresponding to region C in Fig 4.4, is 

approximately at y2 = -y1 . This can be clearly seen in the second diagram. Though a more detailed 

investigation is required before arriving at definitive conclusions on the shape of     and its physical 

interpretation, Fig 4.6B suggests that for a given structure with y-centroid of above the x-axis, the y-

centroid of the nearest neighbour is most likely to be below the x-axis (and vice-versa), by approximately 

the same normal distance from the x-axis.  

 

Figure 4.7. Dependence of f2’ on initial conditions (tU/L = 0.8) 

 

Figure 4.7 shows the variation of f2’ for two initial conditions whose amplitudes differ by three 

orders of magnitude. The differences are negligible in general, but become barely noticeable as               

         .  On returning to Fig. 4.4, we can also observe the lack of self similarity f2’ of as                

         .  However, there does not seem to be any evidence against self-similarity and universality 

of f1 (Fig. 4.3).  

A possible heuristic explanation for this apparent inconsistency is as follows. When the 

structures grow in size with time, the average inter-vortex spacing is expected to increase in most parts of 

the system. But this has to be balanced by the reduction of inter-vortex spacing somewhere in the system, 

possibly near the center of the structures, as demanded by the conservation of the Hamiltonian. This 

explanation would not be inconsistent with the observation of self-similarity of f2’ except near the center 

of the structures, i.e. when          , where f2’ increases with time (because the vortex density and 

hence the correlations increase at the center of the structures as they grow in size with time). Similarly, a 

different class of initial conditions would have a different Hamiltonian that will be conserved throughout 

the evolution, and this dependence is likely to manifest near the center of the coherent structures. This 

dependence could be responsible for the slight difference in f2’ at          , for the two different 

initial conditions shown in Fig. 4.7. However, it has to be noted that the coherent structures occur at 

different y-locations, as observed in Fig. 2.2. As a consequence, on averaging over different realizations, 

the effect of the vortex distribution within the clusters plays an insignificant role in determining the 

single particle distribution function f1. This will be considered further during the analysis of Regime III in 

the following section. We shall show that as long as more than one structure is present (which is the case 

in Regime II), the vortex distribution within the structure does not alter the single particle distribution 
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function and therefore the mean vorticity and velocity profiles, and hence also the layer thickness, but 

becomes important when only one structure is left in the domain.  

The central message these analyses convey is that the present system of the vortex-gas free shear 

layer is strongly correlated and existing „kinetic theory‟approaches based on the Boltzmann equation that 

neglect correlations or consider them as O(1/N) are inapplicable in Regime II. However, several of the 

features of the two particle correlation function can be qualitatively explained by relating them to the 

coherent structures. 

 

4.2. Relaxation from the universal non-equilibrium Regime II to a steady state 

      In spite of the fact that Regime III is entirely a consequence of the finiteness of the domain (which 

would also be true of any real world system), and so not directly relevant to the canonical temporal 

mixing layer defined in fluid-dynamical studies (    , it is relevant as the long-time solution of an 

initial value problem. It is of fundamental importance to understanding the connections between turbulent 

shear flows and the statistical mechanics of vortex-gas systems in equilibrium.   

4.2.1. Regime III(a) – Interaction between a small number of structures  

From Fig. 4.1A it is seen that the evolution of momentum thickness begins to depart from the 

linear growth of Regime II at around (t-to)U/L ~ 1. However, till about tU/L ~ 3, the variation of          

  continues to remain universal with L as the length scale, independent of initial conditions or N, as 

illustrated in Fig. 4.1A for four widely different cases. We find that in this regime (III(a)) the number of 

structures can vary from  to 2.  

Figure 4.1B shows a snapshot of vortex locations for the two cases 400a, 400b with two different 

realizations in each case. Both have the same number (400) of vortices, but initial y-displacements are 

drawn from uniform random distributions of widely different amplitudes, respectively 1.25 x 10
-5

L (low 

amplitude) and 0.04 L (high amplitude).  It can be observed from Fig. 4.1B that in the left panel, the low 

amplitude simulations show structures with dense cores, characterized by high concentration of vortices. 

With high initial disturbances (right panel, 400b) the cores are not so dense. 

From the snapshots in the top panel in Fig. 4.1B, at tU/L = 2.5 corresponding to an early phase 

in Regime III(a), it can be seen that the size and relative locations of the two coherent structures present 

in the domain are similar. Also, there is almost no difference in the x- and ensemble averaged single-

vortex distribution function  
 
. This suggests that the averaged vorticity and velocity profiles have a 

much stronger dependence on the distribution of the coherent structures in the domain than on the 

distribution of vortices within each coherent structure.  In contrast the bottom panel, at tU/L = 15 in 

Regime III(b), shows significant differences in  
 
, which has a tall narrow peak at the centre, showing the 

small dense cores in the low amplitude case.  These observations indicate why the evolution of  

obtained from the x- and ensemble averaged velocity distribution is universal for different initial 

condition classes, whereas the vorticity distribution within a single coherent structure is not: variations in 

the y - locations of the structures averages out the effect of vorticity distribution within each structure. 

This also explains the universality of    in spite of the non-universality of f2’ at small r in Regime II 

shown in Fig. 4.7. 

4.2.2. Regime III(b) – Violent and slow relaxations 

Figure 4.1 shows that, following III(a), the momentum thickness varies very slowly:                     

(/L) < 0.01during 4< tU/L< 10
4
 , a change less than 20% of that seen during 0 < tU/L< 4. Further, 

beyond tU/L ~ 4, there is only one structure left in the domain (Fig. 4.1B); and the evolution of 

momentum thickness is no longer universal. We label this sub-regime III(b).  
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The lack of universality in Regime III(b) (and subsequently also in III(c)) is consistent with the 

argument presented above for Regime III(a), namely, higher vortex density in the core of the structure 

with the lower amplitude initial conditions. Since III(b) involves a single structure, and since the y-

centroid is invariant in time, the ordinate of the core of the structure would be similar in different 

realizations. Hence, unlike in Regimes II and III(a), an altered distribution of vorticity within the 

structure does affect the ensemble averaged statistics (Fig. 4.1B). This explanation is consistent with the 

observation of lower thickness for the gentler initial conditions in Regime III(b), shown in Fig. 4.1A.  

Regime III(b), for certain classes of initial conditions (a/l >>1), exhibits two distinct sub-

regimes. During the early part of III(b), say       ~ O(10) the thickness is a function of only a/L as 

shown in the inset A1 of Fig.4.1A  Further we compute the vorticity - stream-function relation in this 

sub-regime to make connections with existing statistical mechanical ideas on relaxation to equilibrium. 

We divide the space [0, L] x [-L, L] into 41 x 81 boxes and compute f1 by ensemble averaging, using the 

same definitions and methods presented in section 4.1. But here, since we are interested in the vorticity 

distribution within the single structure, we compute the statistics in the frame of reference of the centre or 

core of the structure (zone of highest vortex density, taken as the x-location of the vertical strip with the 

highest number of vortices, out of the 101 vertical strips of equal thickness over the domain). This is 

required as the single structure at the end of Regime III(a) can be formed at any x-location, and is 

expected to occur at different x-locations for different realizations. This averaging can also be thought as 

a phase averaging. The averaged stream function   can be computed from the single particle distribution 

function from the definitions of  ,    and governing equations (2.1 and 2.2) as 

         
  

 
 

 

  
      

        
 

 
      

        

  
      

        

 
           

The averaged stream function at the i
th
 box is determined numerically from the computed discrete 

values of f1 using  

        
  

 
 

 

  
          

 

 
      

         

  
      

         

 
              

In the j = i box, the contribution to the integral is computed by once again dividing the original box into 

101 x 101 smaller boxes.  

The statistical equilibrium for a point-vortex gas (Montgomery & Joyce (1974), see also 

Chavanis (2001)), neglecting correlations (i.e. setting f2‟ = 0) and taking the limit     before the 

limit    , is shown to be characterized by the Boltzmann distribution  f1 ~ exp [–], where the 

Lagrange multiplier   can be interpreted in terms of an inverse temperature.  The Boltzmann distribution 

is obtained by maximization of         , subject to the constraint that the Hamiltonian is conserved. 

On the other hand, it has been proposed that an „equilibrium state‟ for Euler flow (Robert & 

Sommeria, 1991) can be obtained by maximization of the Kullback entropy                                   

(                           where f1 is non-dimensionalized with its maximum value in the initial 

condition, subject to constraints of kinetic energy and linear and angular momentum of the Euler flow.  

This is a fluid-dynamical analog of the Lynden-Bell theory (1967) of stellar systems. This limit is 

expected to be reached if the limit     before the limit     (Chavanis, 2011).    

The present results, shown in Fig. 4.8, suggest that the vortex gas has a tendency to relax towards 

the Robert-Sommeria Euler equilibrium at „intermediate times‟ of O(10 L/U), and  to the Boltzmann 

type equilibrium at much longer times of O(10
2
-10

4
L/U) for N = 400, a/L = 0.04. For the vortex-gas 

simulations NlnN ~ 2400 and (Na/L) ln (Na/L) ~ 45, putting them possibly beyond the parameter range 

where finite N effects become important.  We may label these two sub-regimes of relaxation as III(b1) 

and III(b2). 

This is not inconsistent with the recent theoretical results of Chavanis (2011), which suggest that 

relaxation to equilibrium in a vortex gas has two stages. The first is a „violent relaxation‟ that closely 
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approximates Euler dynamics and the second is a „slow relaxation‟ to the „Boltzmann‟ distribution driven 

by finite N effects that appear at timescales of O(NlogN).   However, the values of N = 400 used in the 

present long-time simulations are not large enough for a rigorous verification of the proposed NlogN 

scaling or for a strict comparison with the proposed Euler equilibrium. 

 Hence the present simulations show that the evolution beyond Regime II undergoes distinct 

phases of interaction between small but more than one structure to a single structure, violent relaxation of 

the structure towards Euler equilibrium and finally a finite-N driven slow relaxation towards a state 

possibly described by the Boltzmann distribution. We shall make detailed study of the existence and the 

relation to vortex-gas equilibrium of the asymptotic state of the vortex-gas free shear layer in the 

following section.    

 

 

Figure 4.8. Comparison of present simulations at two times with Euler equilibrium of Robert & 

Sommeria (1991), and the „Botlzmann‟ distribution of Onsager/Chavanis.  Note that both the theoretical 

curves are two-parameter fits, and the averaging in the present simulation has been done relative to the 

centre of the structure. 

 

4.3. Long time solution and relation to equilibrium statistical-mechanical theories 

The single wandering structure  

To study the possible existence asymptotic state as        , four very long-time simulations 

(tU/L upto 3x10
4
) have been performed, with N ranging from 50 to 400. Figure 4.9 shows snapshots of 

the vortex locations at two different times 15000 and 21000 L/U, and it can be seen that at both times 

there is a single structure with a similar configuration of vortices within the structure, but the structure 

itself is present at different x-locations.  The lone structure in the domain in fact keeps moving back and 

forth in x, sampling the entire domain over timescales of O(10
3 
L/U) from Fig. 4.10A, which shows the 

time series of the position of the core (defined in 4.2.2) and, on the right, the PDF showing that the core 

samples the entire domain with roughly equal probability.  From Fig. 4.10B, it is seen that the PDF of the 

velocity of the core does not change with time beyond 15000 L/U and appears to agree well with a 

Gaussian distribution with zero mean. Therefore it is clear that xcore(t) is a stationary stochastic process. 
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Figure 4.9. Snapshots of the lone vortex structure at two different times in III(c). 

 

 

Figure 4.10. (A) Motion of the core of the structure in Regime III(b).  The solution samples all x-

translated states but with very long timescales that increase with increase in number of vortices. Also 

shown is a histogram of the locations sampled by the core over t = 15000 – 27000 L/U for N = 400.         

(B) The motion of the core relaxes to a stationary stochastic process as can been seen from the PDF of a 

characteristic velocity (defined as the distance moved by the core as a fraction of the domain during one 

L/U). (C) The velocity of the core decreases with increasing number of vortices as N
-0.4

. 

Note that, unlike in the case of the infinite plane, the x-centroid (in the sense it has been used in 

this chapter) of the present x-periodic system is not conserved (see Appendix A). Therefore the observed 

stochastic motion of the vortex structure in x, sampling all the x-translated solutions with equal 

probability over sufficiently long intervals of time, is consistent with ergodicity.  It is important to note 

that the size of the structure in the final state scales with L, hence the effect of boundaries cannot be 

neglected in III(c) however large the domain size. This shows that the common argument about 
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independence from the boundary, widely used in much of statistical mechanics, is not applicable to 

describe the final state of the present system involving long range interactions.   

 However, according to Fig. 4.10A the number of crossings of x = 0.5 L with N = 400 is roughly 

half that at N = 50, so the time taken by the structure for crossing the L domain is about twice as long at 

N = 400. From Fig. 4.10C, the standard deviation of a characteristic velocity of the structure decreases 

like N
-0.4

. This suggests that ergodicity may break down if the limit     is taken before the limit 

    (private communication, Sommeria).  Thus, while the „final state‟ consists of a single wandering 

structure that continually samples the entire x-domain in the limit     (N fixed), the possibility that the 

structure may be stationary if the limit     is taken first cannot be ruled out. The final asymptotic 

state therefore could depend on the order in which the limits     and     are taken (this has been 

pointed out by Chavanis (2011) in the more generalized context of vortex-gas statistical mechanics).  

 

 

Figure 4.11. (A) Vortex positions relative to (moving) centre in Regime III(b),at times tU/L = 15000 

(left) and 21000 (right) (same data as in Fig.4.9). (B) The single-vortex distribution of (x-xcore, y) at            

tU/L = 15000 and 21000, averaged over 250 L/U. Note invariance with time.  

 

Therefore, one might argue that at large N, the motion of the structure might sufficiently slow 

down to probe via short-time averages, whether the vortex distribution around the structure reaches a 

stationary state and whether such a state can be considered a relative equilibrium in the sense of Newton 

(2000). Figure 4.11A shows snapshots of the positions of vortices re-centered around the core at two 

different times separated by 6000 L/U. We carry out a „short-time average‟ (tavg = 250 L/U) of the 

location of the vortices relative to the core, and these are shown in Fig. 4.11B. It is seen that there is very 

little variation between the single-vortex distributions across the two times. Further, as the orientation of 

the non-circular shape (the ratio of the major and minor axes is about 1.4) does not change in time, the 

structure as a whole is not in solid body rotation, but the individual vortices are in relative motion with 

respect to each other, as for example in the density wave motion in galaxies. 
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Figure 4.12 Comparison of distribution functions for vortices relative to the center in Regime III(c) 

(averaged over       = 15000 - 27000). 

 

Connections to equilibrium  

This leads us to perhaps the most important question in the statistical-mechanical analysis of any 

system, concerning whether a state of equilibrium (in our case, relative to the core of the moving 

structure) has been reached or not. We shall therefore try to assess whether the very long-term evolution 

of our system leading to regime III(c) represents a state of equilibrium, characterized by a well defined 

temperature. A necessary, but not sufficient, condition for the system to be in equilibrium is that (the 

equivalent of) molecular chaos should have set in. More precisely, the two-point correlation functions     

must vanish in such a state (in the thermodynamic limit    ). That would also be consistent with all 

higher order correlation functions being zero. This issue is specifically addressed in Fig. 4.12. It is seen 

here that f2‟ computed from the time-averaged statistics in the frame of reference of the moving structure 

is small (less than 10%) compared to the f1*f1. This suggests that molecular chaos (        ) might be 

a reasonable assumption to describe the statistics of the distribution of vortices within the moving 

structure. A comparison may be made with the two-vortex correlation in Regime II, where it was found 

to be of the same order and sometimes several times f1*f1 (Fig 4.4).  

Now we turn to conditions that are both necessary and sufficient for equilibrium. The single 

particle distribution must first of all be independent of time, and secondly must be governed by a single 

parameter, namely the temperature. The time-independence of the distribution function across widely 

separated instants has already been demonstrated in Fig. 4.11. 

Regarding the temperature, we approach the issue in two very different ways. The first is based 

on the results of Joyce and Montgomery (1973), and of Chavanis (2001). In this approach the equilibrium 

single-particle distribution function is expressed in terms of the stream function (   and a temperature T 

via what is called the „Boltzmann distribution‟             with       , where          ,    is 

the Boltzmann‟s constant, and    is a suitable density (not necessarily of the fluid, see Appendix B for 

further discussion on appropriate density, thermodynamic limit and other related issues). 

 



37 

 

 

Figure 4.13. The stream function-vorticity relation in the frame of the moving structure  in Regime III(c) 

(averaged over tU/L = 15000 – 27000) for case 400a.  

 

For the present simulation of case 400a, it is seen from Fig. 4.13 that the  -  relationship in 

Regime III(c) follows the Boltzmann distribution for        , with the best fit B =            for 

the time-averaged data. Note that this is negative, corroborating the seminal ideas of Onsager. 

 (Note that for        , there seem to be two distinct branches. It was found that the two 

branches correspond to data from the two sides of the shear layer and that there is only one branch if 

symmetry is forced by averaging    from the top and bottom and then computing   from the mirrored 

distribution. This asymmetry in the calculated values of f1 comes from inadequate sample size for the 

very low vortex-density region for the adopted time of averaging. Note that this region corresponds to |y| 

  0.5 L, where there is hardly a single vortex at any given time instant in the present simulation as seen 

in Fig.4.11A.  Further it is important to note that   is essentially computed via a double integral (i.e. by 

inverting the laplacian of f1). Therefore any small asymmetry in f1, say a delta perturbation due to a 

single vortex wandering bit further in the top half plane compared to the bottom half which is purely a 

statistical fluctuation, will cause an apparently systematic shift of y in  ).   

Since          , the Boltzmann distribution leads to a PDE for the stream function (Joyce & 

Montgomery 1973),  

                                                                                                                              

A comparison with the analytical solution of Stuart (1967) is presented in Appendix E.             

The final state of a variant of the temporal vortex-gas free shear layer has been studied by                         

Shirkov & Berdichevsky (2009) who solve Eq.4.3 with a variant of the appropriate boundary conditions. 

The authors assume x-homogeneity in solving the problem, in which case Eq.(4.3) is not valid.   

Lundgren & Pointin (1977) derived a solution for the final state of vortices in an infinite plane. 

The single particle distribution function in L-P solution depends only on the radial distance (r) from the 

centroid, and is given by 
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where R0 is the radius of gyration           
    

   
    , the inverse temperature                

and    is a normalization constant that ensures that the integral           
 

 
  .  

 

 

Figure 4.14.  Sector averaged radial (core-centered) distribution function in Regime III. The each              

sector-wise distribution functions is similar to a Lundgren-Pointin equilibrium type but of different 

„temperatures‟. R0 is the initial value of the second moment. Note that the sectors are chosen only for 

illustration and numerical convenience and that the „temperature‟ is expected to continuously vary with  

tan
-1

[x/y]

 

However, some words of caution are necessary in interpreting the results from the L-P theory for 

the free-shear-layer problem. The infinite plane problem studied by L-P has the Hamiltonian given by Eq. 

2.3 is clearly different from the Hamiltonian given by Eq.2.4. Furthermore, the radius of gyration is not 

conserved in the present system.  

The scaled temperature   of L-P can be determined in two rather physically distinct ways. The 

two methods we have adopted for a determination of   based on the LP relation between scaled energy 

             and  . We find             using this method.   can also be determined by the 

best fit to the L-P distribution function (4.4). As seen in Fig. 4.11, the vortex distribution in the present 

problem is not isotropic. The source of this anisotropy is evidently due to periodicity only along                    

the x-direction. To analyze the distribution we perform sector-wise averaging in the xy plane, and 

renormalize with the number of vortices in the respective sector. We then find (Fig. 4.14) that the radial 

distribution of vortices in each sector approximately follows a truncated Lundgren-Pointin distribution 

but with   taking different values in different sectors. Thus the values of   determined by the fit as we 

move  the x-axis to the y-axis (from sector 1 to sector 3 in Fig 4.4) are        ,        and        

respectively. We note that the values of   thus obtained are close to −1, the lowest value allowed by L-P. 
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This could be due to the present initial conditions, wherein the vortices are concentrated in a thin strip, 

which result in high energy configurations that lead to negatively high temperatures. We also note that   

computed from the  -  relationship is  = '

The above analyses show that the temperature of the present vortex-gas system, regardless of the 

method of estimation, is negative, corroborating the seminal idea of Onsager, namely the connection 

between emergence of order in the form of coherent structures and negative temperature states.  

To summarize we have, through extensive simulations, uncovered here certain remarkable 

properties of the statistical evolution of a vortex-gas shear layer. Beyond Regime I affected by the initial 

conditions and the universal Regime II, the vortex-gas free shear layer undergoes multiple stages of 

relaxation towards what appears to be its asymptotic state. The domain-dependent evolution initially 

involving a few structures (IIIa) continues to grow via mergers that result in a single structure. The  

single structure relaxes initially via Euler dynamics (connection will be made stronger in Ch.5), followed 

by a finite-N driven stage, termed respectively as violent and slow relaxations (with outer time scales of 

O(10) and O(10
4
)).  The distribution of vortices within the randomly moving structure reached at the end 

of the slow relaxation can be described by a truncated, anisotropic variant of the Lundgren-Pointin 

distribution, and the  -  relationship approaches the Boltzmann distribution for the vortex gas, hence 

constituting a “relative” equilibrium in the sense defined by Newton (2000): namely, the distribution is 

time-invariant relative to the center of a non-stationary structure. 

However, such connection with theory has not yet been possible in the most interesting and fluid-

dynamically relevant Regime II, as it is far from equilibrium. Indeed, this regime lasts for just                  

tU/L = O(1), an order of magnitude shorter and more intense than the violent relaxation process, and 

can therefore be justifiably called an explosive phase. Furthermore, the existing non-equilibrium 

framework based on Boltzmann-inspired vortex-gas kinetic theories are shown to be not applicable in 

Regime II, as they do not account for the strong correlations due to multiple, interacting coherent 

structures of vortices that characterize Regime II.  

While the results presented in this chapter do not provide a „statistical-mechanical explanation‟ in 

the form of a closed form solution or a single theory, the detailed analyses presented in this chapter 

provide useful ideas on how such a theory might be constructed, e.g. accounting for the interaction at the 

level of the coherent structures appears to be the key in formulation of such a theory. Some further 

discussion and outlook on this is presented in Chapter 10.   
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Chapter 5 : Connections to Navier-Stokes mixing layers 

 

So far we have considered the vortex-gas free shear layer as a prototypical problem in non-

equilibrium statistical mechanics in its own right. It is however known that under certain conditions 

discrete point-vortex simulations weakly converge to smooth solutions of the 2D Euler equations (Beale 

& Majda 1983, Marchioro & Pulvirenti 1993) and, as discussed in the introduction, the effect of viscosity 

becomes vanishingly small at high Reynolds numbers in turbulent free shear flows.  Furthermore, 

experiments show that plane mixing layers are dominated by the largely inviscid interaction of quasi-2D 

coherent structures and that growth occurs through interaction between such coherent structures (Brown 

& Roshko 1974, Wygnanski et al 1979). Vortex-gas simulations show the same mechanisms in 

operation. Therefore, it is of interest to analyze briefly connections with 2D and („real‟) 3D Navier-

Stokes mixing layers.  

In this chapter we shall make the following two broadly different sets of comparisons. Firstly, (in 

5.1) we shall compare present Regime III(b) solutions (non-universal violent relaxation of the single 

structure as described in Chapter 4), in terms of both thickness as well as vorticity-stream function 

relations with the appropriately long-time simulation of the 2D Navier-Stokes temporal mixing layer 

(Sommeria et al, 1991). The purpose of such a comparison is to estimate the relevance of the vortex-gas 

method to describing the detailed long time evolution of 2D Navier-Stokes for the same system.  

The second set of comparisons (5.2 to 5.5) will involve comparing the evolution of layer 

thickness in non-universal Regime I and universal Regime II with experiments, as well as with direct 

numerical simulations of 3D NS. This set of comparisons, though involving only the gross large scale 

development, is aimed at answering whether or not the present temporal vortex-gas simulations are 

indeed relevant to the evolution of „real‟ mixing layers, in which several additional complexities such as 

three dimensionality and spatial „feedback‟ (considered separately in Ch.9) may come into play.   

   

5.1. Comparison with 2D Navier-Stokes simulations in Regime III(b) 

Regime III has, for obvious practical reasons, not been a subject of any experimental studies. 

However the long time 2D Navier-Stokes simulations due to Sommeria et al. (1991) are illuminating in 

this context, and we attempt a comparison of their results with the present work. The continuum constant-

vorticity layer of finite thickness (with a piecewise linear velocity profile) solved by Sommeria et al 

(1991) for the Navier-Stokes equations, can be accurately represented by a suitable array of point vortices 

in the Euler limit. One way of defining the relevant vortex-gas formulation is a uniform random initial 

distribution with the inter-vortex spacing that is small compared to the thickness of such a layer, i.e. that 

a/l >> 1 (when a/l >> 1, the initial conditions mimic a shear layer with a finite initial vorticity thickness, 

    = 2a)   

 Sommeria et al. (1991) have studied 2D temporal Navier-Stokes mixing layers evolving from a 

constant vorticity band with two different thicknesses (   ) of  2 x 0.017 L and 2 x 0.034 L, at Reynolds 

numbers       ranging from 9425 to 18850 (750 – 1500 in their units, where L = 2 and U = 2). Their 

results show an initially rapid growth of momentum thickness, with slow changes beyond tU/L ~ 4. 

Since they do not perform ensemble averaging, and consider long wavelength initial (including modes 

with    ) conditions, a rigorous estimation of spread rates in Regime II is not possible. However, we 

can still compare the evolution in the slowly varying Regime III(b).  
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Figure 5.1. Comparison of momentum thickness in Regime III(b1) of the present vortex-gas simulations 

at different a/l and N with 2D Navier-Stokes (Sommeria et al, 1991) 

 

 

Figure  5.2. Comparison of momentum thickness in Regime III(b1) (averaged over tU/L =14 to 16) of 

the present vortex-gas simulations with a/L = 0.04 with 2D Navier-Stokes with a/L = 0.034. Error bars 

show 95% confidence limits and the dashed line shows a possible asymptotic value of thickness. 

 Figure 5.1 plots the average value of / L between tU / L  of 14 and 16 as a function of a/L, for 

different N in the present vortex-gas simulations and for different Reynolds numbers for the 2D NS 

simulations. It can be seen that the differences between N = 400 and 800 is less than 1% for the range of 

a/L considered here (10
-5

 to 10
-1

). This suggests that for sufficiently large N, the solution in this sub-

regime (corresponding to the „violent relaxation‟ described in Ch. 4) does not depend strongly on N in the 

vortex-gas simulations, and  / L in Regime III(b) a function only of a/L.  Furthermore, there is a 

reasonable agreement with the 2D NS results in terms of the trend with a/L, and the value the thickness 

observed in vortex-gas simulation with a/L = 0.034, N = 800 is only about 2% of the highest Reynolds 

number case of Sommeria et al for a/L = 0.034.  Further, Fig.5.2 suggests that the 2D NS and vortex-gas 

appear to approach the same asymptotic solution with increasing values of Reynolds number and N 
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respectively.  This is consistent with the 2D NS and vortex-gas converging to the Euler solution for free 

shear layers in the respective limits.  

 

Figure 5.3. Comparison of the vorticity stream function relation between a present vortex-gas 

computation (a/L = 0.034 and 0.04) and 2D Navier-Stokes of Sommeria et al (a/L = 0.034).  <> is the 

time averaged vorticity (f1 U/L) and 0 is the maximum vorticity in the initial condition (U / (2a)).  

 

We next compare the vorticity-stream function relation between the vortex-gas and 2D NS 

solutions. As described in Chapter 4, the present simulations show a slowly wandering final structure in 

III(b).  We may therefore compute ensemble and short-time averages in a frame of reference fixed with 

respect to the centre of the structure.  Further, since   is defined upto an additive constant, it is adjusted 

to 0 at          (by subtracting the mean of the values at     and   – ) as done in Sommeria et al 

to enable a one-to-one quantitative comparison.  

Figure 5.3 compares that the  -   relation in 2D NS calculations of Sommeria et al (for a/L = 

0.034; Re = 1500) with the present simulations (a/L = 0.034 and 0.04; N = 800). For the same a/L of 

0.04, for a given value of      the differences in         between the vortex gas and 2D NS are less 

than 10% for the range of data shown in Fig.5.2.  (An even more significant agreement is observed 

between the 2D NS with a/L = 0.034 with the vortex gas with a/L = 0.04. This was also observed for 

thickness in Fig.5.1.  This agreement is perhaps due to the higher initial thickness mimicking the effects 

of layer thickening due to viscosity, considering the modest Reynolds number of the 2D NS used in the 

comparison).   

The overall agreement between the 2D NS and the vortex gas must be considered of great 

significance, for the close agreement between two such physically and mathematically distinct 

approaches to the same problem establishes the quantitative relevance of the vortex-gas results to high-

Reynolds number 2D Navier-Stokes solutions. 
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5.2. Comparison of initial transient (Regime I) with sinusoidally ‘forced’ experiments of spatial 

shear layers  

Many experiments (e.g. Brown & Roshko 1974, see Chapter 1) have suggested that the evolution 

of plane mixing layers is dominated by the largely inviscid interaction of quasi-2D coherent structures 

and that growth occurs through interaction of such coherent structures (though it is in part contradicted 

by D‟Ovidio & Coats 2013, whose results will be discussed in detail in Chapter 9). Vortex-gas 

simulations show the same mechanisms in operation. It is therefore worthwhile to make some brief 

comparisons with „real‟ (i.e. 3D Navier-Stokes) mixing layers. Regimes I and II are most relevant to what 

is observed in experimental studies of (spatial) mixing layers, and as an understanding of the two regimes 

is central to turbulent shear flows in general, it is particularly worthwhile to explore this issue in detail.  

In this section, we shall confine ourselves to what is referred to in the fluid-dynamical literature 

as „periodically forced‟ mixing layers. They provide excellent test cases for the purpose of comparison 

with vortex-gas simulations in Regimes I and II.  One reason is that the most dominant initial 

perturbation is accurately known experimentally in these flows. A second is that experiments show that 

periodic forcing greatly alters the development of the mixing layer and this has led to strong doubts about 

universality (e.g. Oster & Wygnanski 1982, Ho & Huerre 1984). Periodic forcing can be imposed in 

many ways: oscillating the free streams (e.g. Ho & Huang, 1982), acoustic excitation by loud speakers 

(Husain & Hussain, 1995) or periodic deflection of a flapper at the end of the splitter plate (e.g. Oster & 

Wygnanski 1982, Gaster et al 1985, Naka et al 2010). The last method basically imposes a periodic 

deflection on a vorticity layer at its origin x = 0. The analogue for the temporal vortex-gas free shar layer 

is to have an initial (t = 0) y-displacement of vortices that varies sinusoidally with x, as with cases P1 and 

P2 discussed in Chapter 3.  

On this basis, we compare experimental results of the spatial mixing layer reported by Oster & 

Wygnanski (1982) with the present temporal vortex-gas simulations using the Galilean transformation x 

= Um t (see Fig.1.3 in Introduction; more details in next section 5.3). Two such cases are shown in Fig. 

5.4. We compare the evolution of thickness with time, both non-dimensionalized using the wavelength 

(   of the perturbation as the length scale. The simulations are chosen to have approximately the same 

value of the amplitude      to wavelength ratio of the initial perturbation as in the experiment. The 

space-time transformation of the initial conditions implies initializing vortex locations in the simulations 

as xi = N (i / L); yi = aw sin[2  xi / ] + an Yi, where Yi is a random number uniformly distributed between 

 1 and 1, and aw/ = af f /Um , where  af and f are amplitude and frequency of flapper motion in the 

experiment. We have added a random disturbance an to the periodic vortex deflection imposed at t = 0 to 

allow for the presence of tunnel free-stream turbulence, which is a source of facility-specific random 

disturbance on the flow. This may also be a proxy for effects due to spatial feedback or three-

dimensionality.   

Figure 5.4A shows the evolution of momentum thickness for aw/ = 0.0074 for two different 

values of an/aw.  We find from both the simulations that the spread rate is first enhanced (higher than the 

Regime II value) and then suppressed, but finally appears to approach the universal spread rate in Regime 

II .  The vortex-gas simulation with an/aw = 1.5 agrees quantitatively with the Oster-Wygnanksi 

experiment (1982) with af f / Um = 0.0074 all the way.  If an/aw is drastically reduced to 10
-3

, the 

simulation still agrees qualitatively with the observed behavior of the mixing layer, but the temporal 

extent of suppression is longer. Interestingly, addition of the disturbance an hardly affects either the early 

evolution of the layer (           ) or the Regime II spread rate (reached beyond         ). (The 

reasons for this behavior are discussed in Ch. 6.)  The agreement seen in Fig. 5.4A is therefore 

encouraging. (Note that the free stream turbulence intensity in the experiment is 0.2 % of the mean 

velocity, ut = 0.002 Um. The value of an/aw may be crudely calculated as ut / faf = 0.002/0.0074 ~ 0.3.  

While this value is much lower than the required noise in the vortex-gas initial condition to provide the 

same evolution, it is important to note that the free stream turbulence acts as a continuous random 
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forcing, whereas in the temporal vortex-gas shear layer an is added only at the initial instant, and hence 

the crude conversion used here is perhaps not valid. Furthermore, the random noise in the vortex-gas 

initial condition could in part also be a proxy for the finite thickness and turbulence within the boundary 

layers at the trailing edge, for effects disturbances arising from 3D and from downstream)    

In Fig. 5.4B we compare the results of case P1 (Table 3.1, aw/ = 0.004) with the experiment 

with approximately the same amplitude to wavelength ratio (af f / Um  = 0.004167). Here the experiments 

do not go beyond the initial growth-enhancement phase (           ).  However the simulation shows 

excellent agreement with experiment, but continues into the two later phases respectively of suppressed 

growth and recovery towards universality, shown in Fig. 5.4B. 

 

 

Figure 5.4.Comparison of temporal evolution of momentum thickness in the present vortex-gas 

computations with sinusoidal (in x) initial conditions (t = 0) with the spatial evolution of momentum 

thickness in experiments (Oster & Wygnanski, 1982) with sinusoidal (in t) forcing at x = 0. 

 

One might argue that the above observed agreement does not necessarily suggest the relevance of 

the vortex gas to the self-preserving 3D Navier-Stokes shear layer, as the regions of comparison mostly 

involved the transient region still affected by 2D forcing. We shall address that question in the following 

(5.3 to 5.5) sections.  However, the good agreement of the vortex-gas simulations with the experiment 

over the range of data available suggests that experimental data like those in Fig. 5.4A or B cannot be 

taken as evidence of lack of universality. An alternative explanation for the experimental data is that 

introducing strong long-wave periodic perturbations just makes the initial transient (Regime I) much 
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longer.  Extrapolating from the simulation results of Fig. 5.4B on the time taken to reach Regime II, the 

distance necessary to reach the equivalent state would be six times as long as the spatial range available 

in the experimental facility used: the wind-tunnel test section length would have to be increased from 

1.5m to about 9.0m. This conclusion is consistent with other evidences for the long memory of free-shear 

–flows (Kleis & Hussian (1979) for single-stream shear layer, Narasimha & Prabhu (1972), for plane 

wakes, Bradshaw (1966) for mixing layers, Carazzo et al (2006) for jets, and Redford et al (2012) for axi-

symmetric wakes). 

 

5.3. Comparison of universal Regime II spread rate with self-preservation spread rates reported in 

(unforced*) experiments of spatial shear layers 

The explosively relaxing Regime II is analogous to the „self-preserving‟ state in a turbulent shear 

flow, where the lower order turbulence statistics (in particular the Reynolds shear stress) are specified to 

be self-similar (Townsend, 1956).  (It is ironical that the evolution or flow development that is labeled as 

„equilibrium‟ flow in fluid dynamics is a highly non-equilibrium phenomenon in statistical mechanics.) 

Briefly, the first step in a fluid dynamical analysis of a canonical Navier-Stokes temporal mixing layer 

(with    ) would proceed as follows. From dimensional analysis,  

   

      
                                                                                                           

Two major hypotheses are introduced at this stage: (i) any turbulent flow (subjected to constant boundary 

conditions) evolves asymptotically to a state independent of the detailed initial conditions excepting for 

any integral invariants demanded by mass, momentum and/or energy conservation, and           (ii) „if the 

equations and boundary conditions admit a self-preserving solution the flow asymptotically tends to that 

solution‟.  Both hypotheses, while still controversial, are extensively used in turbulent shear flow 

analyses (see „working rules‟ (2) and (3) in Narasimha (1990)).  

Following the above hypotheses, if the initial conditions are assumed to be „forgotten‟ as     and the 

effect of Reynolds number becomes vanishingly small as     , eqn 5.1  reduces to 

   

      
                                                                                                                        

The question of whether the constant CVG (in  eq. 3.5) is universal in the vortex-gas shear layer  

is analogous to the controversy on the possible dependence of the self-preservation state of turbulent 

shear flows on initial conditions (extensively debated elsewhere, e.g. George 2004, Oster & Wygnanski 

1982, Balaras 2001) i.e. whether CNS is a universal constant.  We discuss the relation between CVG and 

CNS in this section by comparing the reported self-preservation spread rates across „unforced‟ 

experiments with that predicted by the present temporal vortex-gas simulations on appropriate Galilean 

transformation. The results are shown in Figure 5.5.   

Galilean transformation is a space-time transformation that connects the temporally evolving 

(homogenous in x) shear layer (Fig 1.3b,c) with the spatially evolving (in x) temporally stationary shear 

layer (Fig 1.2, 1.3 a) by considering the former as a parcel of fluid moving with a mean speed in the 

latter. This is exact only in the limit        , as while the evolution of the spatial layer at any given 

x0 can be affected by events at x > x0,  the evolution of the temporal layer at any given t0 cannot be 

affected by events at t > t0. In other words, while there can be upstream feedback in space (which will be 

discussed in detail in Chapter 9), the future cannot affect the present.  For the spread rate, the Galilean 

transformation leads to 

* The word „unforced‟ as used in this thesis (as well in most fluid-dynamical literature) implies that no specified 

external forcing has been intentionally introduced. Facility specific forcing, free-stream turbulence and random 

disturbances may exist in such „unforced‟ layers.  
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where                  . The above relation is exact in the limit    .  

In Regime II, the evolution of vorticity thickness is given by                   and the 

corresponding Galilean transformation gives 0.0153 . We use vorticity thickness in this section, as a 

majority of experiments use this measure. The ratio between    and   is found to be 4.6 in the present 

vortex-gas simulations. Values between 4.44 (which is the case for an error function velocity profile) to 

4.8 have been used in literature for this factor, and its dependence on  is not clear.  

We use a factor of 4.6 to convert the spread rates quoted in terms of momentum thickness in 

Fig.5.5, except at  = 1, where we use factor of 4.8, as it has been explicitly reported by Hussain & 

Zaman (1985). The uncertainties of velocity measurement in the tails of the velocity profile make it 

difficult to accurately estimate the momentum thickness in experiments and hence the factor. Regardless, 

     uncertainty in       is small compared to the scatter and uncertainties in the spread rate across 

experiments (                    .  

 

Figure 5.5. The self-preservation spread rate (in terms of vorticity thickness) quoted across different 

(unforced) experiments on spatially evolving mixing layers (performed over 1947 to 2013, list not 

exhaustive) plotted against  = (U1-U2) / (U1+U2), and compared with the Galilean-transformed spread 

rate given by the present temporal vortex-gas shear layer in Regime II  (d/dx =  0.0153 ) shown in 

black dashed lines.  

It can be seen from Fig. 5.5, the present temporal vortex-gas results are indeed in the same ball 

park and within the scatter of the experiments. While the large scatter has often been attributed to non-

universal self-preservation states, the overall agreement with the vortex gas is encouraging.  Many 

experiments with 0.1  λ  0.6 (region shown in faint red dotted lines), particularly those of Spencer & 

Jones (1971, blue +) and D‟Ovidio and Coats (2013, black squares) are in close agreement with the 

transformed temporal vortex-gas results (though there are quite a few experimental points with slightly 
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higher spread rates). At very small values of , the experiments may not be expected to provide a reliable 

self-preservation spread rate as the spatial extent required to reach the analog of Regime II would be very 

large (              . At large values of   the effects of spatial feedback may become dominant and 

Galilean transformation is no longer valid (particularly interesting is the very large scatter in the single 

stream limit of    ; this and other issues related to spatial feedback are discussed in Chapter 9).  

Therefore, it is consistent that the best agreement is observed at a moderate value of   (the value of    for 

the Regime I comparisons done in the previous section was 0.25). It is surprising however, the agreement 

is fair till   as high as 0.6.  This agreement suggests that the vortex-gas dynamics are indeed relevant to 

spatially evolving 3D NS and that the self-preservation spread rate in mixing layers is likely a universal 

function of velocity ratio (at least for      ). While we do not explore the reasons for the differences in 

the reported spread rates for each of the experiments, lack of appreciation of the sometimes-very-long 

memories of initial conditions (as discussed in 5.1), inadequate flow development lengths, relatively low 

Reynolds number, inadequate averaging are all possible factors.   

 

5.4. Critical assessment of DNS/LES results 

We next examine results from Direct Numerical Simulations (DNS, no modeling) and Large-

Eddy Simulations (LES, subgrid scales modelled, see Sagaut (2002) for reference) of 3D Navier-Stokes 

temporal mixing layers, listed in Table 5.1. The reported self-presevation (Regime II) spread rates, in 

terms of momentum thickness (            are found to in the range       to     . As in the scatter 

across experiments, the differences in the spread rate in the temporal simulations have been used as an 

argument in support of existence of non-universal self-presevation states (see in particular Balaras et al, 

2001).  However, the vortex-gas simulations suggest there are several reasons why a reported self-

preservation spread rate may apparently deviate from the universal Regime II value.   

Firstly, as shown in Fig. 2.4 that inadequate averaging can result in upto 30% inaccuracy in 

estimation of the spread rate. We note that none of the DNS/LES simulations analyzed here (or reported 

elsewhere to the best of our knowledge) have performed ensemble averaging. Though all of them 

perform spanwise averaging, it is not an equivalent of ensemble averaging due to the quasi-2D nature of 

the solution.   

The second reason is the presence of long memories of certain initial conditions as discussed in 

the Sec.5.2. We find that, one way of quatifying the relaxation towards Regime II (i.e. forgetting the 

memory of initial conditions) is via an estimate of the number of generations of mergers during the 

perceived linear growth regime using the expression, log2[LE/LS]. This parameter, hereby referred to as 

„age parameter‟, takes the value unity when LE/LS = 2; this choice reflects the experience from the 

current simulations, which show that the momentum thickness doubles by the time that every structure at 

tLS has gone through one merger on an average.  This parameter also decribes the extent of the fit, which 

determines the confidence of estimation of the spread rate. So, larger the value of log2[LE/LS], higher 

the likelyhood that the reported spread rate is a representation of the Regime II spread rate. It can be seen 

from Table. 5.1 most DNS/LES simulations have an age parameter less than 0.59 (shown in red in Table. 

5.1), which means that the thickness of the layer has not even increased by one and half times in during 

the observed linear growth, suggesting that there have hardly been any amalgamations. Such simulations 

cannot be considered to provide a reliable estimate of Regime II spread rate of 3D NS mixing layers.   

The third  possible reason for the inaccurate estimate of spread rate  in Regime II is that  the 

spread rate deviates from its self-presevation (Regime II) value when tU/L is of O(1) as seen in Figs 

3.1, 4.1, due to the effects of imposed periodicity of the finite domain. In the present study, we make a 

clear distinction between Regime II and Regime III(a), which involves more than one but less than 4 

structures.  However, this distinction has not been carefully made in other simulations. We note that the 

number of structures left in the domain at the end-point in the duration over which the fit is made, say tLE, 
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is approximately 4 (tLEU/L)
-1

, as on an average there are approximately 4 structures in the domain at 

tU/L = 1, and the number of structures decreases linearly with increase in time during Regime II.  

Higher values of the parameter 4 (tLEU/L)
-1

, hereby referred to as „population parameter‟, ensure that the 

temporal extent over which the fit (to determine spread rate) has been made is far away from the onset of 

Regime III.  It also indicates that the statistics (including thickness) have been obtained as an average 

over larger number of structures.  As seen in Table 5.1 many DNS/LES simulations have a population 

parameter less than 3 (shown in red in Table. 5.1) and hence the quoted spread rate in such simulations 

also includes part of Regime III.   

Hence, for a robust indication Regime II spread rate, both age and  population parameter have to 

be large. When we consider only simulations with both age parameter greater than 0.59 and population 

parameter greater than 3, the scatter in the spread rates comes down to 0.015 to 0.017, which is a 

reduction in scatter by about 75% and the extreme values are now within 10% of the universal Regime II 

value observed in the present vortex-gas simulations. 

The age and population parameters for the cases presented in Table 3.1 is listed in Table 5.2 (in 

bold). It can be observed that for all the (bold) cases, (including for G1 and P1, but not for variants of G1 

and P1 (shown in red), which will be described below), the age parameter is atleast close to one and 

population parameter is greater than or equal to 5. This has ben achieved by considering sufficiently large 

L and considering only the data over tU/L < 0.8 respectively. The deviation of the observed self-

preserving spread rates from 0.0166 is within a percent for all these cases. But if we perfomed poorly 

designed/ poorly analyzed simulations such that the age or the population parameter is inadequate, would 

the best fits over the perceived Regime II result in apparent deviations from the universal spread rate ? In 

order to answer this question, we consider the following additional cases, listed in Table 5.3.  

    

Table. 5.1.  Age, population and reported spread rates in DNS / LES of 3D NS mixing layers  

 

 Population 

parameter 

Age 

Parameter 

Age x 

Population 

Reported 

d/ d(tU) 

% Deviation 

from CVG 

Rogers & Moser, 1994 DNS 3.33 0.42 1.41 0.014 -15.7 

Rogers & Moser, 1994 DNS 3.33 0.47 1.58 0.014 -15.7 

Rogers & Moser, 1994 DNS 4 0.89 3.55 0.017 2.4 

Silvestrini,2000 LES 0.93 0.86 0.80 0.0207 24.4 

Tanahashi, 2001 DNS 1.16 1.84 2.14 0.0189 13.6 

Balaras 2001 LES 2.44 1.16 2.83 0.014 -15.7 

Balaras 2001 LES 4.4 1.07 4.71 0.015 -9.6 

Balaras 2001 LES 1.57 0.45 0.71 0.012 -27.7 

Balaras 2001 LES 3.14 0.51 1.61 0.0135 -18.7 

Patano & Sarkar, 2002 DNS 2.76 1.05 2.89 0.016 -3.6 

Foysi & Sarkar, 2010 LES 6.88 0.96 6.61 0.0161 -3.0 

Martiner 2011 LES 1.97 2.70 5.32 0.0145 -12.7 

Martiner 2011 LES 2.56 1.00 2.56 0.0123 -25.9 
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Table. 5.2.  Age and population parameters for the present vortex-gas simulations  

 

Population 

parameter 

Age 

parameter 

Age x 

Population 

Observed  

d / d(tU) 

% Deviation 

from CVG 

R1 5.33 6.66 35.49 0.016618 0.11 

R2 22.99 5.55 127.52 0.016685 0.51 

R3 5.38 4.88 26.26 0.016587 -0.08 

R4 – 32000 15.46 7.84 121.25 0.016506 -0.56 

R4 – 1600 5.00 5.46 27.30 0.016532 -0.41 

R4 – 400 5.13 3.91 20.04 0.016510 -0.54 

R5 5.00 1.14 5.72 0.016562 -0.23 

G1 5.38 2.93 15.77 0.016689 0.54 

BM1 5.38 3.93 21.14 0.016737 0.82 

BM2 5.38 5.66 30.42 0.016534 -0.40 

P1 5.36 0.99 5.30 0.016635 0.21 

P2 5.38 1.17 6.31 0.016624 0.15 

G1b 4.44 0.51 2.31 0.0194 16.8 

G1c1 1.33 3.08 4.11 0.0172 3.6 

G1c2 1.6 2.89 4.64 0.0162 -2.4 

P1b 9.48 0.13 1.26 0.0148 -10.8 

 

Table. 5.3. Details of vortex-gas cases to illustrate the effects of inadequate age and population.  

Case Initial condition L/l tbRII U/ l teRII U/ l N 

G1 Gaussian, /l = 1 1600 120 1190 32 

G1b Gaussian, /l = 1 200 120 180 32 

G1c1 Gaussian, /l = 1 400 120 1000 32 

G1c2 

(same data as G1c1) 

Gaussian, /l = 1 400 120 1200 32 

P1 Sinusoidal, aw/l=0.4,            

an/l = 0.0004, /l = 100 

3200 1220 2390 288 

P1b 

(same data as P1) 

Sinusoidal, aw/l=0.4,            

an/l = 0.0004, /l = 100 

3200 1220 1350 288 

 

  Note that that Regime II spread rates of G1 and P1 deviated by only 0.54% and 0.21% from 0.0166 

respectively and that the G1b, G1c1 and G1c2 have the same initial conditions and tbRIIU/L as G1 and 

the P1b same as that of P1. (Therefore any observed departure in spread rate cannot be attributed to initial 

conditions not being forgotten). However, the L/l and teRIIU/L are chosen such that either the age (G1b 
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and P1b) or population parameter (G1c1 and G1c2) is inadequate. It can be seen from Table 5.2 that all 

the four cases deviate by well over 2% from the universal spread rate, with of P1b deviating by -10% and 

G1b deviating by 16.8%.  This is therefore consistent with the argument that attributes to the deviations 

observed in the DNS/LES at comparably inadequate age or population parameters.  

Futhermore, when we analyze the deviations of the reported spread rates from the present 

Regime II value as a function of product of age and population parameters (Fig 5.6), there appears to be a 

trend of larger deviations (on both sides) with lower values of the product, with the spread rates from the 

vortex-gas simulations showing a similar trend to the DNS/LES mixing layers. The value of the product 

is usually low when either or both the parameters are inadequate (although this statement would not 

necessarily hold if one of the parameters is very large) and hence provides a compact description of the 

reliability of a given simulation. Additionally, the product also has a physical interpretation, namely it is 

a rough measure of the total number of participating structures over (a single realization of) the perceived 

Regime II of the given simulation.   

 

 

Figure.5.6. Departures of the reported growth rates in DNS/LES of 3D Navier-Stokes Temporal mixing 

layers and present vortex-gas simulations from the universal Regime II growth rate with the product of 

„age‟ and „population‟ parameters  

  

Particular  attention may be drawn to the work of Balaras et al (2001) who, reported results from 

four simulations, each of which gave a different growth rate; it was therefore concluded that the self-

preservation spread rate of the temporal mixing layer is not universal. However Fig. 5.6 shows that the 

spread rates quoted by Balaras et al. are not inconsistent with a systematic approach towards the proposed 

universal value as the age-population parameter increases. Therefore, in addition to not accounting for 

the long memory of initial conditions and inadequate averaging, the low generational age and / or low 

end-point population of coherent structures seem to be responsible for deviations of the quoted spread 

rate from the preset Regime II value. The systematic trend in Fig.5.6 suggests that the observed scatter 

can neither be considered as an evidence for non-universal self-preservation nor for the non-applicability 

of vortex-gas simulations to describe 3D NS.  The convergence to the vortex-gas spread rate at large 
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values of the age-population product supports the conclusions drawn in 5.3, namely the validity of the 

vortex-gas simulations to describe the large scale evolution of 3D Navier-Stokes mixing layers.  

 

5.5. The question of multiple self preservation states 

Another phenomenon that has been the subject of much controversy concerns the proposal that 

there are multiple self-preservation solutions in the growth of a mixing layer (i.e. CNS is not only 

dependent on initial conditions, but can also vary with time over long times), leading to segmented 

growth curves consisting of short straight stretches.  

Such segmented growth curves are encountered in single realizations of vortex-gas simulations 

as well. Figure 5.7A shows a single realization in Regime II of a temporal vortex-gas shear layer (case 

R1, N = 3200) over a duration of 0.3 tU/L.  The evolution consists of four linear segments, each with a 

different slope varying from 0.0117 to 0.0275 (a factor of 2.35).  However an ensemble average (over 

577 realizations) yields an excellent linear growth throughout, very close to the universal value (0.0166) 

in each of the indicated segments as seen in Fig.5.7B.  The explanation for the segmented growth in 

Figure 5.7a is contained in the vortex location snapshots of Fig. 5.7V.  These reveal the presence of 

several co-oriented vortex „trains‟ in each snapshot, the common orientation being indicated by the short 

lines on the left. As the structures co-rotate their orientation changes from 0-180
0
 to 90

0
-270

0
, i.e. from 

low to high local thickness for the shear layer, each quarter of the rotation cycle providing a stretch of 

high or low growth rate. However there is jitter in the system (of the same kind as noted in spatial 

experiments by Bernal, 1981), and the segments are indeed „transients‟. Long spatial averages in a 

temporal simulation, or long temporal averages in a spatial simulation, and / or a large-ensemble average 

in either, removes the segmentation to produce the universal growth rate. This behavior in the vortex-gas 

shear layer is consistent with the concept of transient metastable states proposed by Narasimha (1990). It 

is thus possible that reports of multiple or serial self-preservation states (George 2004, Carton de Wiart et 

al, 2010) are the result of averages over short samples.  

 

5.6. Summary 

In summary,  the series of comparisons and analyses presented from 5.1 to 5.5, taken together, 

strongly suggest the following two major conclusions. First is that the vortex gas is indeed relevant to 2D 

NS as well for growth rates in 3D NS mixing layers in spite of the apparently severe modeling 

assumptions in the concept of the vortex gas.  This implies that 2D inviscid interactions given by Kelvin/ 

Biot-Savart mechanism dominate large-scale momentum dispersal in free shear layers, supporting the 

argument that strictly 2D approximation of the vortex-gas approach is not unduly restrictive for 

determining layer growth, as the coherent structures in plane mixing layers tend to be quasi-2D. Further, 

this is also consistent with the conclusions of the nonlinear calculations of Corcos and Sherman (1984) 

and Corcos and Lin (1984), who show that 3D instabilities are inhibited by the growth of the 2D 

instabilities and are slow growing relative to the 2D coherent-structure amalgamations.  
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Figure 5.7. Insufficient averaging may lead to apparent non-universal or multiple „local self preservation 

states‟ with different spread rates. The orientation of train of structures (marked in boxes) may be locally 

coherent (orientation indicated by the black lines) and may lead to a linear growth for a substantial 

duration but with a very different slope compared to the average.  
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The temporal vortex-gas shear layer also satisfactorily describes the spatial mixing layer for 

      (      particularly     is discussed in Chapter 9).  Therefore the universality of spread rate 

in Regime II suggests that the self-preservation spread rate in real mixing layers also likely to be 

universal and        .  Second is that controversies about asymptotic states appear to be due to 

grossly inadequate appreciation of the long memory of initial conditions, the need for averaging over 

sufficiently long or large sample sizes and unreliablity of fits made over short temporal and / or spatial 

domains.  In many temporal simulaton, there is also lack of appreciation of the beginning of Regime III 

during which the size of the flow domain becomes an additional parameter in the problem.  

The implied universality self-preservation in mixing layers may also extend (in appropriate 

variables) to other shear flows. There has been a recent demonstration of the same in a temporally 

evolving DNS of an axi-symmetric wake (Redford et al, 2012). Such evidence in other flows, taken 

together with earlier work on plane wakes (Prabhu et al 1973, also see Narasimha 1990), and analyses 

such as that presented in this chapter support the view that turbulent shear flows are likely to possess 

asymptotically universal self-preservation states, though such states may be observable only under certain 

conditions like very long flow development in space and/or time, that may not be realizable in most 

experiments or technological scenarios. However, the existence of a unique asymptotic self-preserving 

state is a fundamental issue of great importance and changes the way of thinking about turbulent shear 

flows. Even if the universal self-preserving state is not reached in the domain of interest of a given 

application, it is still relevant for the simple reason that the flow of interest can now be seen as a part of a 

relaxation towards such a state. The models that one would then make for computing a flow, say, a 

RANS approach would be of a different class. Such models have been proposed (eg. Nee & Kovasznay 

1969, Narasimha & Prabhu 1972), and need more attention.  

The validity of the vortex gas to describe the large scale evolution of 3D NS mixing layers 

motivates us to explore several fluid dynamically relevant issues using vortex-gas simulations, and sets 

the tone for part II of this thesis.  
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PART II 

 

Chapter 6 : Connections to instability theory 

 

In this chapter we assess the role of hydrodynamic instability in attempts to understand the 

evolution of the temporal vortex-gas free shear layer, and by extension Navier-Stokes mixing layers (as 

substantiated in Chapter 5). 

 Most instability analyses involve the study of the evolution of a small (usually sinusoidal) 

perturbation in time or space, enabling the linearization of the governing equations around the prescribed 

base state. Such a linear analysis allows for a normal-mode decomposition, as each perturbation mode 

evolves independently. A normal mode decomposition of a linearized version of the Euler or Navier-

Stokes equations (known respectively as Rayleigh and Orr-Sommerfeld equations) leads to an eigen-

value problem that can be solved analytically or numerically (depending on the complexity of the base 

profile) to determine the initial response of the system to different perturbations. A detailed review of 

hydrodynamic instability analysis can be found in Drazin & Reid (2004) and Schmid and Henningson 

(2001).  

 Free shear layers are susceptible to inviscid instability as they have an inflectional velocity 

profile satisfying the Fjortoft criteria (1950). Linear analyses of the inviscid equations are hence 

applicable to describing the initial development of free shear layers, and such analyses have been done 

since Helmholtz (1868), Kelvin (1871) and Rayleigh (1879). Though turbulence is generally considered 

to be a strongly non-linear phenomenon, the possible relevance of linear stability theory has been 

discussed (Roshko, 2000) and there have been attempts to use linear (e.g. Gaster & Wynanski, 1985) or 

weakly non-linear (e.g. Monkewitz, 1988) stability theories to describe the growth of perturbations in a 

turbulent free shear layer. Though such studies have achieved reasonable success in predicting growth 

rates of externally imposed perturbations (see Ho & Huerre, 1985 for a review), they have been 

controversial (Husain & Hussain, 1995). Furthermore, there have been attempts to relate the self-

preservation growth of a shear layer (Regime II) with ideas from linear instability theory (Morris et al, 

1990). We therefore assess the usefulness of linear stability theory to describe free-shear-layer dynamics 

in Regimes I and II.   

Many of the simulations presented in this section have several rows of vortices to better 

approximate a continuum constant-vorticity field with a well defined initial thickness. The resulting shear 

layer has an initially piece-wise linear velocity profile.  As we shall see, the Regime II spread rate for this 

class of initial conditions (as long as L is much larger than the length scale of the initial perturbations) is 

the same as for the initial condition classes analyzed in Chapter 3. However, the several-row initial 

condition provides further insight into the initial development of the layer (Regime I), particularly in 

establishing connection to stability theories, as linear (Rayleigh) instability of the piece-wise linear 

velocity profile can be exactly calculated (see Drazin & Reid, 2004). In this chapter, we first examine the 

evolution with a single mode initial perturbation, followed by two modes and finally with filtered and 

white-noise. We shall track the evolution of the different modes and make comparison with stability 

theories to establish their usefulness and limitations.   

 

 

Much of the work presented in this Chapter has been done in collaboration with Prof. Garry Brown 

(Princeton). 
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6.1. Linear and non-linear instability of a single mode in a piece-wise linear shear layer 

In this section we shall consider the evolution of a single-mode perturbation on a vortex-gas 

analog of a free shear layer with an initially piece-wise linear velocity profile. The case simulated here 

has 19 rows of vortices with 140 vortices per row (N = 2660), equispaced in both x and y (contributing to 

an unperturbed „thickness‟ of 18 inter-vortex spacings, which we shall consider as    ). At t = 0, all the 

vortices are given a sinusoidal perturbations in y, with a wavelength    exactly equal to the length of the 

periodic domain L and with an amplitude that is 0.005    . 

 

Figure 6.1. (A) Temporal evolution of the vortex-gas analog of the constant-vorticity free shear layer 

with a single mode perturbation.  (B) Contours of constant vorticity of 2D NS (finite difference 

simulations, provided kindly by Prasanth P) simulations corresponding to the vortex-gas solutions at 

tU/0 of 7.5, 9.5 and 11.5 (after adjustment of virtual origin in time). 

 

 

Figure 6.2.  (A) Evolution of the modal amplitude of the perturbation stream function at y = 0, shown in 

log-linear scale. Note that the growth is exponential (linear in log scale) between                     

and the exponent is in agreement with that predicted by Rayleigh theory.  (B) Variation of the 

perturbation amplitude with y during the exponential evolution. Notice that the shape of the „mode‟ does 

not significantly change and is close to the Rayleigh eigen-function. 

A1          A4                B1 

 

 

 

A2          A5        B2 

 

 

A3          A6       B3 

 

A         B 
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The temporal evolution of such a layer is shown in Figure 6.1. It can be seen that the sinusoidal 

perturbation grows in time before culminating in the „roll-up‟ to a structure at later times (tU/0 = 9.5 to 

11.5, note that we use U = U/2 as the velocity scale in this chapter). The evolution of the perturbation 

can be quantified via the amplitude of the perturbation stream function (introduced in  Ch.3) at y = 0, 

computed at 256 equispaced locations in x. The evolution of the absolute value of the Discrete Fourier 

Transform of the perturbation streamfunction, 

                                

is shown in Fig. 6.2.  It can be seen that after a short initial transient (which occurs due to the initial 

condition not being the exact eigen-mode), the perturbation grows exponentially over        between 

2.5 and 8.5 and the amplitude increases by nearly 20 times. The growth exponent, G, determined by a 

best-fit to data between these two times, is 0.401, which is within 0.25% of that predicted by Rayleigh 

theory (0.402, Drazin & Reid 2004).  

  Furthermore, it can be seen from Fig.6.2B that the distribution of the perturbation amplitude in y 

also agrees with the Rayleigh eigenfunction for the perturbation stream function. Figure 6.3 shows that 

the growth exponent during this linear regime agrees with Rayleigh analysis not only for the most 

amplified mode studied so far, but also for a range of different wave numbers. It has to be noted that the 

present simulations without desingularization still lead to a smooth roll-up of the shear layer as a whole 

(with the exception of local regions of disorder around the centre of the structure), when several rows of 

vortices are used.  

 

Figure 6.3. Comparison of growth exponents observed in vortex-gas simulations with the predictions of 

Rayleigh theory for different wave numbers 

On one hand, the agreement between the vortex-gas solution and linearized Euler is expected as 

the vortex gas weakly converges to the smooth solution of the Euler equation (Marchioro & Pulvirenti, 

1993) and the linear assumption is valid when the perturbations are small. However, it has to be noted 

that in the case of the Rayleigh equation, the vorticity is strictly confined between         and the 

solution is obtained by matching pressures at the interfaces, whereas the vortex-gas formulation permits           

non-linear behavior from t = 0 and condenses all the dynamics into the kinematics of the Biot-Savart 

relationship. Therefore, it is remarkable as to how the two apparently distinct mathematical approaches 

lead to nearly the same solution at least during these early times. 

 Beyond         , the evolution of the perturbation departs from exponential growth and 

eventually saturates around           (as seen in Fig. 6.2A). It can be seen from Fig.6.1A that this 

corresponds to the non-linear roll-up into a structure. (Due to the choice of the initial condition with 

    , there is only one structure per L, which is an analog of Regime III. Therefore there is no Regime 

II in this simulation). From Fig.6.1B it can be seen that the vortex-gas solution is in agreement with 2D 

NS simulation during this distinctly non-linear phase of evolution, once again confirming the conclusions 

drawn in Chapter 5.  
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Thus, the two major conclusions from this section are : (i) the usefulness of Rayleigh theory is 

limited to times before the formation of coherent structures and (ii) the vortex gas has no such limitations 

and hence is a powerful method for studying the non-linear evolution. 

 

6.2. Evolution with two modes and regime of monopole dynamics 

Before proceeding to study a „turbulent‟ (Regime II) free shear layer, whose evolution is 

presumably governed by the interaction of a large number of modes, we study the evolution of two 

modes and their interaction. We solve a system of 5320 vortices, arranged in 19 rows as before.  At t = 0, 

we perturb the y-positions of the vortices with two modes. The mode with the shorter wavelength 

      , which we shall call the fundamental (in accordance with the fluid-dynamical literature), has an 

amplitude    = 0.005   .  The mode with the longer wavelength, called the sub-harmonic, has 

wavelength           and amplitude            . The initial configuration and subsequent 

evolution of the vortex locations are shown in Fig. 6.4. 

 

Figure 6.4. Snapshots of evolution of vortex-gas analog of constant vorticity shear layer with two-mode 

perturbation. The black crosses show the centroids of the vortices in the first and second half of the 

domain. Red circles are the locations of monopoles (being a single point vortex replacing a structure), 

that are initialized at the location of the centroids at          . 

As in the case of the single mode perturbation, it can be seen that the waves roll up into 

structures at          . Beyond this time, the evolution seems to be dominated by what appears to be 

an interaction of the two structures, as the right structure moves upwards and towards the left and the left 

structure moves downwards and towards the right (clearly seen by tU/0 = 20). They eventually get 

close to each other and begin to „merge‟ at          . 
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Further insight on the applicability of stability theory to the evolution of the free shear layer with 

two modes can be obtained by studying the evolution of the perturbation stream function amplitudes 

corresponding to each of the two modes. This is shown in Fig. 6.5, from which it can be seen that 

between                  ,  both the fundamental and the subharmonic grow exponentially.  The 

exponent corresponding to the fundamental is nearly identical to the case where the subharmonic was 

absent (Fig. 6.2 A), and is in agreement with Rayleigh theory. However, the exponent corresponding to 

the evolution of the subharmonic is about 25% higher than the value when the fundamental was absent             

(Fig. 6.3). This suggests that even during these relatively early times, while the evolution of the 

fundamental is governed by linear dynamics, the evolution of the subharmonic appears to be affected by 

the fundamental; the problem is therefore weakly non-linear even at early times.  

 

Figure 6.5. Evolution of the perturbation stream function amplitudes corresponding to the fundamental 

and subharmomic 

 Interestingly, as seen from Fig. 6.5, the subharmonic enters a new regime of exponential growth 

between                 . Note that           approximately corresponds to the time at which the 

fundamental saturates as a result of the roll-up and formation of structures  (see Fig. 6.4).  The exponent 

of 0.20 is significantly different from 0.14 obtained by the Rayleigh analysis (for a tanh profile, 

Michalke, 1965), applied to the „new base flow‟ (averaged velocity profile between        

         is well approximated by a tanh profile with    = 2.3    ). This disagreement is not surprising 

considering that the (coarse-grained) perturbation vorticity is of the same order as the maximum mean 

vorticity. Thus, the saturation of the fundamental is a non-linear process and therefore there is no reason 

to expect linear stability theory with a uniform base flow to describe processes that follow the roll-up. In 

other words, describing the flow field at say           (Fig. 6.4) as a small perturbation over a 

uniform-in-x base flow does not seem appropriate.  

 The other extreme approximation to describing the flow field at           is to consider each 

structure as a single point vortex (referred to as monopoles), located at the respective centroid and with a 

strength equal to the circulation of the structure (which, for the vortex-gas case is equal to the sum of the 

strengths of all the point vortices contained within the structure). Since the number of vortices located in 

the thin braids is small (less than 10%) compared to the number in the structure, we can crudely 

approximate the locations of the monopoles based on the centroid of vortices with       and       

respectively. Further, we shall also consider monopoles of equal strength (       , though there are 

2661 and 2559 vortices in the left and right half of the domains at          .  Such an approximation 

is shown in Fig.6.4, with the locations of the monopoles (red circles) initialized at the locations of the 

G 
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centroids (black crosses).  We now simulate the system of two monopoles and compare their trajectories 

with those of the centroids of the structures in the full simulations in Fig. 6.4 over                .  

 It can be seen (Fig. 6.4) that the evolution of the monopole locations is nearly identical with the 

evolution of the centroids till           and hence this approximation seems sufficient to provide a 

simple description of the evolution, before the onset of merger of the two structures (furthermore, note 

that at times          , the centroid of the vortices in the left or the right half-plane is no longer a 

reasonable approximation to the centroid of the respective structure). When the monopole displacements 

from their „base‟ locations (                are small compared to the distance between them 

(        , the evolution of their perturbations can be analytically calculated to be exponential, with 

an exponent of           . This was first proposed by Karman and Rubach (1912) and reproduced in 

detail by Lamb (1932). For the present flow for             , the displacement of the monopole 

locations is less than 15% of the initial distance between them, and hence this approximation may hold. 

Indeed, we find that the exponent computed using           , with        and        , is 

                 very close to the observed value of the exponent in the interval                          

             (Fig. 6.5).  

 

Figure 6.6. The effect of phase difference between fundamental and subharmonic in the evolution of the 

layer 

 Another piece of evidence, which suggests that the mechanics beyond           is 

significantly better approximated by Karman-Lamb theory than Rayleigh, is the dependence of the 

evolution of the layer on the phase difference between the fundamental and subharmonic. This is shown 

in Fig. 6.6. The effect of the subharmonic is the highest when the phase difference is such that the peaks 

and troughs of the subharmonic coincide with the roll-up locations of the fundamental, and when the 

phase difference is such that the zero crossings of the subharmonic coincide with the roll-up locations of 

the fundamental, the evolution is nearly identical to the case where the subharmonic is absent. This effect 

of the phase difference, which has been observed in experiments (Husain & Hussain, 1995), is consistent 

with Karman-Lamb theory (the subharmonic perturbation translates to the perturbation of the monopole 

locations in the first case, but not in the second case), and is inconsistent with Rayleigh theory (though 

the weakly non-linear theory due to Monkewitz incorporates the effect of phase). The reader is referred to 
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a related discussion by Husain & Hussain (1995), who attempt to explain the observed phase difference 

using vortex-dynamics concepts, and to Winant & Browand (1974) who have suggested a model akin to 

the present monopole model to describe the growth of the turbulent mixing layer.   

To summarize, the study of the vortex-gas shear layer with two modes suggests that the evolution 

is satisfactorily described by a Rayleigh theory only at early times before the roll-up of the fundamental, 

though there is a departure in the evolution of the subharmonic even at these early times. At times beyond 

the saturation of the fundamental, Rayleigh theory is no longer applicable, as the uniform-in-x base flow 

is no longer a reasonable approximation. On the other hand replacing the rolled-up structures with 

monopoles and using the associated linear theory due to Karman & Lamb provides a more accurate 

description of this phase of the evolution. 

 

6.3. Evolution with multiple modes and relaxation to Regime II 

 While the simulations presented in 6.1 and 6.2 showed the limits of validity of Rayleigh and 

Karman-Lamb theories, the turbulent free-shear-layer evolution could involve strong non-linear 

interaction between several modes. As noted in Ch. 3 and 4, Regime II (which cannot be observed in 6.1 

and 6.2 as      , being 1.0 and 0.5 respectively, is not small) is governed by the long range interaction 

of several structures, and by amalgamations which are not described by the monopole approximation. 

 In order to shed light on the issue of applicability of stability theory to Regime II, or at least to 

the later phases of the relaxation to Regime II, we therefore perform additional simulations with two 

different initial-condition classes, each with several modes.  The first is with white-noise, and second is 

white-noise filtered to have only the modes with 33 – 64 waves in the domain (              

      . Note that this filtered noise does not contain the subharmonic corresponding to the most 

amplified mode predicted by Rayleigh theory. Both simulations have 4 rows of vortices, with 1120 

vortices in each row (N = 4480). We use a Krasny-type desingularization for these simulations, with 

      (which does not affect the evolution, as shown in Appendix C). The combination of the present 

initial condition and desingularization results in an initial vorticity thickness      . The results 

presented below are averages over 16 realizations.   

 

Figure 6.7. Evolution of momentum thickness of vortex-gas (thick) shear layers with white and filtered 

noise.  
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The evolution of momentum thickness in both cases is shown in Fig.6.7.  At early times,              

         5, there is hardly any change in the bulk thickness of the layer. Subsequently, around        

~ 10, there is a rapid growth of layer thickness. In case of the filtered noise, there is a plateau between           

      ~ 15 and 20 beyond which the layer resumes rapid growth before eventually relaxing to a 

constant spread rate. In the case of white-noise, the relaxation to constant spread rate is smoother and is 

achieved slightly earlier. Eventually, at later times of           , it can be observed that both initial 

conditions relax to a state of constant spread rate which is the same as the universal Regime II spread rate 

noted in Ch.3 for the single-row initial conditions.  We shall examine the spectral content and the growth 

rates of different modes over different segments of the relaxation process and make comparisons with the 

predictions of Rayleigh and Karman-Lamb theories.  

 

 

Figure 6.8. Spectral evolution during early times (      = 2.5    5.0). A1 and B1 show the power 

spectral density of the perturbation stream function for filtered noise and white noise initial conditions, 

A2 and B2 show the respective growth exponents, B3 and B4 show the vortex-positions at        = 2.5 

and 5.0 for a realization of the white noise initial condition.  

 

 We first study the evolution at early times of        = 2.5 to 5.0. It can be observed from Fig. 

6.8A1 and B1 that there is an increase in the amplitude of the perturbation modes with           , 

with some modes (around        ~ 0.8) growing by over a factor of two. Figure 6.8 A2 and B2 show 

the computed values of estimates of a local growth exponent,             , for the different modes. It 

can be observed that for filtered as well as white noise initial condition, there is broad agreement between 



62 

 

the observed growth exponents and those predicted by Rayleigh theory, particularly near the maximum 

growth rates.  This is consistent with the observations made in Sec.6.1 and 6.2 to the effect that the initial 

evolution, particularly of the most amplified mode is well described by Rayleigh theory. This is also an 

expected consequence of the observation (Fig. 6.7) that the momentum thickness of the shear layer hardly 

varies till        ~ 5, which implies that the perturbations do not yet significantly alter the base flow.  

This can also be seen from Fig. 6.8B3 and B4, which show the growth of wavy perturbations does not 

greatly change the constant vorticity base state, i.e there are no coherent structures at these times.  

However, the modes away from the maximum growth exponent (            and  

        ) show higher values compared to the theory. This suggests that they are enhanced by            

non-linear interactions. The generation of modes that were absent in the filtered noise initial conditions as 

shown in Fig. 6.8A1 further supports the argument that even at early times nonlinearity may play a role. 

Figure 6.9 Evolution during intermediate times (after formation of coherent structures,                                   

      = 18.75 to 25.0).    is the average thickness during the evolution considered. A1 and B1 show 

the power spectral density of the perturbation stream function for filtered noise and white noise initial 

conditions, A2 and B2 show the respective growth exponents, B3 and B4 show the vortex-positions at  

      = 18.75 and 25.0 for a realization of the white noise initial condition.  

 

 We next examine the spectral evolution at        between 18.75 and 25.0 in Fig.6.9. This 

corresponds to the duration of rapid growth just beyond the plateau in the case of the filtered noise initial 

condition (see Fig.6.7). At these times, the instability waves have rolled-up and formed coherent 
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structures, as shown in Fig.6.9B3.   Figures 6.9A1 and B1 show, for both initial conditions, that while the 

modes which have the maximum amplitude appear to have saturated, there is a significant growth of 

modes which have approximately twice the wavelength. This observation is similar to the saturation of 

the fundamental and subsequent growth of the subharmonic analyzed and discussed in Sec.6.2, though 

the „fundamental‟ and the „subharmonic‟ in this case each corresponds not to a single mode, but to a 

range of modes. Thus the structures are not equally spaced, but have a preferred range of spacings 

corresponding to the preferred initial amplification of the perturbations.    

The growth exponents computed during intermediate times are shown in Fig. 6.9A2 and B2 and 

compared with both Rayleigh (which depends on the thickness) and Karman-Lamb (which depends on 

the monopole spacing) distributions. The spacing between the monopoles for the Karman-Lamb is taken 

to be equal to the wavelength of the most amplified mode at tU/0 = 18.75. Though the structures are 

neither equally spaced nor of equal strength, it can be seen that the agreement with the Karman-Lamb is 

reasonable and significantly closer than the exponents given by Rayleigh corresponding to the mean base 

flow. Therefore, this supports the discussion in Sec. 6.2 that the evolution after the roll-up is dominated 

by monopole interactions, eventually leading to mergers, and this is also observed in the vortex 

snapshots, shown in Fig.6.9B4.   

Figure 6.10 shows the spectral evolution during tU /0 = 46.25 to 52.5.  The evolution of 

momentum thickness (Fig. 6.7) suggests that at these times, the white noise initial condition is well into 

Regime II, while the filtered noise initial condition has just begun to grow at universal spread rate (the 

higher order statistics may not yet have relaxed to their respective universal states).  The differences in 

the spectrum between the two initial conditions (Fig. 6.10 A1 and B1) suggest that either or both of the 

flows have not yet completely relaxed to Regime II.  

The growth exponents of the different modes during this evolution are shown in Fig. 6.10 A2 and 

B2 and compared with the Rayleigh and Karman-Lamb theories as before.  Interestingly, the ratio 

thickness to wavelength of the dominant mode is such that the predictions of both theories are in close 

agreement with each other except at short wavelengths.  Surprisingly, the computed exponents in the 

amplified part of the spectrum are closer to the values given by Rayleigh theory than Karman-Lamb. The 

snapshots in Fig.6.10 B3 and B4 show that the structures have greater variability and jitter than those 

observed in Fig. 6.9 B3. Therefore the deviation from Karman-Lamb theory is not unexpected, but the 

agreement with Rayleigh theory is.  However, it must be noted that there is a part of the spectrum beyond 

         which shows decaying modes. Decaying modes are absent in any linear inviscid theory, and 

this clearly shows the role of non-linear transfer from short wavelengths to longer wavelengths, 

consistent with the appearance of larger structures and (the 2D) reverse cascade.  

 Since the simulations above discussed have relatively small ensemble sizes, we revisit case R1 

presented in Ch.3 to provide more precise spectral statistics in Regime II. The results are shown in 

Fig.6.11. It is seen from Fig. 6.11A that the spectrum is universal over                 when scaled 

with thickness at the respective instant of time. The evolution of the different modes can be observed, 

when scaled with averaged thickness over short times as shown in Fig 6.11B. It can be observed that 

there is growth of longer wavelength modes and a decay of short-wavelength modes consistent with the 

observations in the thick shear layer. The growth exponents are shown in Fig.11C, and Fig. 11D shows 

the data after locally averaging in wavenumber space provides greater clarity.   It can be observed that the 

growth exponents in Regime II are also universal and self-similar. Most significantly, once again a 

remarkable agreement can be observed with Rayleigh theory for the positive exponents. However, 

consistent with the observations in the thick sheet, the negative exponents do exist (in this case, definitely 

beyond the uncertainty of statistical scatter) and their description is beyond linear theory. 
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Figure 6.10. Evolution during later times (transition to Regime II,         = 46.25 to 52.5). A1 and B1 

show the power spectral density of the perturbation stream function for filtered noise and white noise 

initial conditions scaled with the time-averaged thickness, A2 and B2 show the respective growth 

exponents, B3 and B4 show the vortex-positions at         = 46.5 and 52.5 for a realization of the white 

noise initial condition.  

 

Even though the Karman-Lamb theory (as applied here) does not provide a satisfactory 

description at shorter wavelengths, it does not rule out the dominance of monopole dynamics in 

describing the large scale evolution of the layer. This is because the lack of agreement with Karman-

Lamb could be a consequence of the violation of assumptions of small monopole displacements and 

equal monopole strengths made by the Karman-Lamb theory, rather than the approximation of 

representing each coherent structure with a monopole, as the analysis of structures in Regime II show the 

standard deviation of monopole strengths is 30% of the mean value and that of spacing is 15%.   

Figure 6.12 shows the evolution of structures and the independent evolution of monopoles 

initialized at the centroids and with the strengths of visually identified structures at tU/l = 600.                       

(In this model, the strengths of the monopoles are initially different from each other but remain constant 

with time). It can be seen from Fig.6.12 that the monopole picture does provide a satisfactory 

approximation except during mergers.  
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Figure 6.11. Spectral evolution in Regime II for case R1. Note that    indicates vorticity thickness 

(computed from the x-averaged velocity field) at the specified time and    is the short-time averaged 

vorticity thickness (between t1 and t2 which are respectively 200 and 220 in B, C and for the red line in D 

and 400 and 420 for blue line in D). 
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This suggests that, strangely, the two opposite extreme approximations, one involving small 

perturbations to a uniform-in-x base flow and the other that replaces each coherent structure with a single 

monopole, both appear to provide a reasonable understanding of positively growing modes in Regime II.  

This is possibly due to ratio of the thickness of the layer to the dominant spacing between coherent 

structures attained in Regime II (the peak of the spectrum in Fig.6.11A corresponds to         .  The 

underlying mechanics which led to such a thickness to spacing ratio is not yet clear.   

The present results suggest that there are two possible explanations for the agreement with 

Rayleigh theory for the exponents of the growing modes in Regime II. One possibility is that, the 

agreement is not because the underlying mechanics are linear, but due to the two extreme idealizations of 

small perturbations and monopole dynamics leading to very similar results for the observed thickness to 

spacing ratio in Regime II. Supporting this conclusion are : (i) the observations of non-linear transfer 

even at very early times (Fig. 6.8), (ii) the failure of Rayleigh theory immediately after the roll-up of the 

fundamental, and (iii) the negative exponents at shorter-wavelengths in Regime II, all of which indicate 

that non-linear processes are at play. 

However, the other possible explanation is that the dynamics at the relevant scales are indeed ( at 

least, in part) linear. The examination of velocity profiles averaged over x-extents of 6which is 

roughly the wavelength at which maximum growth exponents are observed; see Fig. 6.11D) show that 

the velocity fluctuations from the mean are of the order of 10% of the velocity difference across the layer. 

It might be possible that this perturbation of the velocity field averaged over the relevant length scale, is 

sufficiently small so that linear theory is indeed valid in describing the evolution of modes at the scales 

corresponding to the growing modes.  

Further analysis is needed before determining which of the above two arguments (for why 

Rayleigh theory is useful in Regime II) is correct.  Though the present results fall short of a complete 

description of the turbulent shear layer in terms of instability, they do shed some light and also raise 

some questions, particularly on the controversial issue of the usefulness of ideas from linear (and by 

extension weakly nonlinear) stability theory for fully turbulent flow.  
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Chapter 7 : Applications to flow control 

 

Experiments such as those of Oster & Wygnanski (1982, see Section 5.2) have shown that the 

spreading of a mixing layer can be greatly enhanced or suppressed by introducing appropriate sinusoidal 

perturbations in the flow. It was also shown in Section 5.2, that the spread rate eventually relaxed to the 

universal value in Regime II; however the extent of the affected region (Regime I) can be very large with 

respect to the amplitude of the perturbations (e.g. The flow can be strongly influenced upto a downstream 

distance of over 3 m for perturbation amplitude 1.5 mm, see Fig 5.2) , and in the experiments it can 

correspond to a significant part of the flow development. Such perturbations can be introduced in several 

ways -  a flapper at the end of the splitter plate (Fiedler & Wygnanski 1981,Oster & Wygnanski 1982, 

Gaster & Wygnanski 1985), by using loudspeakers (Husain & Hussain, 1995), or by perturbing the free 

stream velocity (Ho & Huang, 1982) or using piezoelectric devices (Naka et al,2010) .  

This effect of „periodic forcing‟ can be exploited for enhancing / suppressing mixing in 

applications such as combustion chambers and chemical lasers, and for reduction of drag and 

aerodynamic noise (Bridges & Hussain, 1987). (Though „mixing‟ at the molecular level is greatly 

influenced by smaller scales, the region of momentum or vorticity dispersal determines the mixing zone 

and therefore is an important factor.) 

 

Figure 7.1. N-independence study of a vortex-gas free shear layer with a sample two-mode initial 

condition (see text for definitions of parameters). 

As discussed in Chapter 6, while there have been several experimental studies and stability-based 

arguments to explain the role of periodic perturbations, a theoretical understanding remains incomplete. 

The initial growth of the fundamental mode is adequately represented by linear stability theory, the 

subsequent development is observed to be nonlinear, and this limits the applicability of theoretical 

analysis to determine optimal multimode forcing. (Even though some encouraging agreement was 

observed later at Regime II, the saturation of the fundamental and evolution of the subharmonic were 

shown to be beyond Rayleigh theory.) However, as seen in Section.5.2, the vortex gas quantitatively 

recovers the effect of periodic perturbations and shows excellent agreement with experiments. Thus it 

Work presented in this chapter has in part appeared in: 

Suryanarayanan and Narasimha, “Vortex methods: A tool for optimal control of high Reynolds number 

free shear flows”, Proceedings of Symposium on Applied Aerodynamics and Design of Aerospace Vehicle 

(SAROD 2013) November 21-23, 2013, pg. 229-233, Hyderabad, India. 
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provides an inexpensive and effective nonlinear tool for optimization in flow control applications,  and 

could be more practically feasible than those based on LES/DNS (Delport et al, 2010). 

In this study, we shall focus on two-mode forcing, with single-mode forcing recoverable as a 

special limit. The two-mode strategy is suggested by the experimental observation (e.g. Ho & Huang 

1982, Husain & Hussain, 1995) that forcing around the subharmonic leads to enhanced spreading.  The 

present strategy serves to demonstrate optimization via vortex-gas simulations, as the complete evolution 

of the shear layer with such a forcing is beyond any (single) known stability theory, as noted in Ch. 6. An 

example of the behavior of a flow subjected to two-mode forcing is shown in Fig. 7.1 for different N. 

Interestingly, it can be observed from Fig.7.1, the evolution of the momentum thickness does not 

significantly vary between  N = 200 and N = 800 for the two-mode initial condition considered, 

suggesting that simulations with as few as 200 vortices can provide reasonable estimates of spread rate, 

provided    .  This is significant as a single realization of with   N = 200 takes less than 20 seconds on 

a single-processor core. This permits simulating a large number of cases and carrying out an extensive 

optimization study. In comparison, a 2D DNS even with very modest Reynolds numbers would take at 

least a few hours for a single realization on the same single-processor.  

The initial position of the vortices         for a generic two-mode initial condition (with noise) is 

specified as 

                 , 

                
    

 
        

    

  
          ,  

where     is a random number uniformly distributed between    and   . 

The different parameters involved in the initial conditions of the above form are  

 L – Length (in x) of the periodic-in-x domain 

 N – Number of vortices ( l = L/N is the initial inter-vortex spacing in x)  

  a1, a2 – Amplitudes of periodic perturbations with shorter and longer wavelength. 

  an – Amplitude of noise 

, 2 – Wavelengths of periodic perturbations with shorter and longer wavelength. 

 – Phase difference between the two periodic perturbations. 

Present simulations are averaged over 16-member ensembles except when noted.  

We first investigate the effects of various parameters including the amplitudes and the phase 

difference between the perturbations, and the noise level. The results are shown in Figure 7.2. The 

observations can be summarized as follows. Single mode initial conditions are characterized by an 

initially accelerated growth, followed by suppression and an eventual relaxation to the universal self-

preservation state.  In case of two-mode initial conditions, the features of the single-mode initial 

conditions are observed at early times (         corresponding to the growth and roll-up of the 

shorter wavelength, however following the suppression there is an another cycle of enhancement and 

suppression (before an eventual relaxation to the universal Regime II). Figure 7.2A suggests that the 

balance between the suppression after the initial growth (due to the saturation of the shorter wave) and 

the accelerated growth immediately after (due to the growth of the longer wave) can be controlled by 

varying the relative amplitudes of the two waves. 

It can be seen from Fig. 7.2 B that the enhancement beyond the initial suppression is most 

significant when the second mode has twice the wavelength of the first, and when the phase difference is 

such that the peaks and troughs of the sub-harmonic coincide with the roll-up location of the fundamental 

(Fig. 7.2C). This is consistent with the theoretical ideas of sub-harmonic resonance (Ho & Huang, 1982) 

and with the experimental observations (Husain & Hussain, 1995), and follows the analyses and 

explanations presented in Ch.6.   
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Figure 7.2. Influence of various parameters on the evolution of the layer 

The effect of the periodic perturbations is higher at higher amplitudes (Fig. 7.2D, though the 

enhancement is not higher at all times, the maximum enhancement obtainable appears to be higher with 

higher amplitudes) and at lower values of noise (Fig. 7.2E), along expected lines. However, it is found 

that the effect is appreciable even when the amplitude is less than a percent of the wavelength and when 

noise is comparable to the signal. This suggests that relatively low intensity signals of the correct nature 

can be used to achieve substantial control of the spreading.  

Having obtained a rough understanding of the influence of the various parameters on the 

evolution of the layer, we next conduct a sample study to determine the optimal initial condition to 

maximize enhancement of thickness for a given set of constraints. The thickness of a vortex-gas free 

shear layer with a two-mode initial condition can be written as  

                                                                                                   

We shall fix 2/= 2 and  = /2 as they provide the maximum enhancement.  Since the signal 

to noise ratio is likely to be a constraint of the application, we conduct this study at a fixed value of               

an / aw 
 
fixed at 0.5.  Furthermore, as long as          ,   and   are not relevant (in Regimes I and 

II we are interested in). Therefore Eq.7.1 can be written in dimensionless form as 

E 

D C 

B A 
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The left hand side is non-dimensionalized by the spreading of the unforced layer,                           

                , as we are most interested in the relative enhancement or suppression. All other 

length scales are non-dimensionalized by aw = a1+a2. It may be noted that   was used to non-

dimensionalize length scales in Fig. 7.2. This was because,   is a mechanistically appropriate choice and 

roughly determines the time to reach and momentum thickness of the first plateau, observed to be of the 

order of      and        respectively (for the range of other parameters considered here, see Fig. 7.2). 

The reason for using a1+a2 instead of , in Eq.7.2 (and in Fig.7.3) is that it is more likely to represent 

physical constraint in a real-world flow control application, say by the use of a flapper. While changing 

wavelength of the perturbation requires changing the frequency of the flapper, which can presumably be 

done with hardly any limitation, there are going to be sterner limitations on increasing a1+a2 in any given 

setup, as it may require increase in flapper dimensions. Still, mechanistic parameterization is also useful 

because of possible universalities and hence we shall also analyze the same data scaled with  in Fig 7.4. 

  Figure 7.3 shows the contours of (         in the                 -           plane 

for different values of            .  For a given velocity ratio, the value of             is related 

to the ratio of the length of the setup (more precisely, the x-location where the maximum enhancement is 

desired) to the sum of the amplitudes of the introduced perturbations.  Therefore             is 

constrained by the setup and actual requirements. Each snapshot in Fig.7.3 shows, for the given set of 

constraints, the effect obtained by changing                 and          . The latter two are 

both the adjustable parameters for a given setup, as they determine the frequency content of the signal for 

a given sum of amplitudes. The first adjustable parameter,                 represents the relative 

amplitudes of the two modes, recovering the single-mode limits of subharmonic only at  1 and 

fundamental only at  1. The second adjustable parameter           determines the wavelength (and 

hence flapper frequency) of the fundamental and hence the subharmonic (as       = 2 by definition).  

The results shown in Fig.7.3 have been computed from a total of 399 cases: 21 values of (a1 a2)/(a1+a2) 

and  19 values of 1/(a1+a2)), each averaged over an ensemble of 32 realizations, resulting in a total of 

12768 individual simulations.   

It can be observed from Fig 7.3 that the maximum enhancement that can be obtained by varying 

the frequency content of the imposed forcing (for given sum of amplitudes) is inversely proportional to 

the ratio of the sum of amplitudes to the size of the setup. E.g., a maximum enhancement of 150% in  

over the unforced case can be obtained for          , only 74% can be obtained for                   

          . This is consistent with the results shown in 7.2D, namely larger amplitudes provide 

higher enhancement capability. (Though the enhancement obtained at given  and tU is not always 

higher for higher values of aw, the maxima in the /aw - (a1 a2)/aw plane is always higher for higher 

values of aw /tU).   

The set of contour plots shown in Fig.7.3 can be readily translated and applied to obtain optimal 

perturbation for maximum enhancement in spatially developing shear layers. For example, consider the 

case where we wish to enhance the spread rate at 1 m downstream of the flapper in a 2 stream mixing 

layer with velocities 10 m/s and 4.55 m/s (note that                      , hence temporal 

results are useful to describing the spatial evolution, see Ch.5.3) under the constraint that the sum of the  

perturbation amplitudes (introduced by the flapper) is 2 mm. Appropriate space to time transformation 

(as described in Sec.5.2) leads to                       . It can be seen from Fig. 7.3, for 

          , the maximum enhancement of 74% over the unforced case can be obtained for 

                     and                .   This result on utilizing an appropriate Galilean 

transformation, provides the optimal flapper forcing as a combination of 0.4 mm amplitude at 43.6 Hz + 

1.6 mm at 21.8 Hz (shown in Fig. 7.5A), which would result in an enhancement by  74 % (Fig. 7.5B).  It 

is noteworthy that the maximal enhancement via single-mode forcing for the same case is only 47%.  
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Figure 7.3. The evolution with time of thickness relative to unforced layer in the amplitude-wavelength 

plane.  
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Figure 7.4.  Data presented in Fig.7.3 on scaling 



Figure 7.4 replots the same data using  mechanistically more appropriate scales. Each snapshot plots the 

enhancement in momentum thickness scaled by tU,  in the [(a1 a2)/, (a1 a2)/(a1+a2)] plane for a 

given value of tU/It can be seen that consistent with Fig. 7.2, the evolution is most economically 

characterized as a function of tU/The insight obtained from Fig.7.4 can be summarized as follows. 

For tU/  < 2 the best enhancement is obtained by forcing primarily around the fundamental, as this 

time duration corresponds to the growth and roll-up of the fundamental.  But beyond this time, the 

optimal forcing for enhancement shifts towards the subharmonic. This is because the fundamental 

saturates and further evolution (via the Karman-Lamb mechanism described in Ch.6) depends on the 
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perturbation to the monopole location provided by the subharmonic. In fact, forcing with only the 

fundamental at these times would actually lead to a lower thickness than in the unforced case, as these 

times correspond to the region of suppression seen in the single mode initial conditions.    

The maximum enhancement is obtained around tU/and corresponds to the saturation of the 

subharmonic resulting from the merger of the structures at that scale. The second region of suppression 

follows. This is best seen at tU/ = 9.0, where the entire plane of forcing is dominated by suppression. 

At times of tU/ the effects of forcing gradually disappear as the layer relaxes towards Regime 

II.   

 

 

Figure 7.5. (A) Optimal forcing and (B) evolution in spatial variables (with appropriate Galilean 

transformation).  

 

Turbulent flow control remains a semi-empirical science due to the limitations of existing 

stability theory, and the expensive nature of high fidelity options like DNS and incapability of RANS 

models in predicting the effects of periodic forcing. In this chapter, we have shown that the vortex gas 

provides an inexpensive and accurate alternative to study optimal control of free shear layers. While the 

present demonstration has involved only two-mode forcing, and did not implement any gradient or 

adjoint based optimization techniques, it should be a straightforward extension to implement such 

algorithms for multi-mode optimization. Furthermore, it is highly worthwhile to explore the usefulness of 

vortex-gas (or similar) calculations to aid in control of other turbulent shear flows. 
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Chapter 8 : Effect of viscosity 

 

  The vortex-gas free shear layer has been observed to have three distinct Regimes, among which 

Regime II is characterized by a universal spread rate (Ch.3). One of the limitations of the vortex-gas 

model is the total absence of viscous diffusion. As argued in Chapter 1, the effect of viscosity on the 

large scale evolution of the flow is expected to diminish as Reynolds number keeps increasing.  

Consistent with this argument is the agreement (Ch.5) observed between the vortex-gas free shear layer 

with experiments and DNS strongly suggesting that the vortex-gas is not irrelevant to describing the large 

scale evolution of high Reynolds number Navier-Stokes mixing layers. However, the role of viscosity at 

moderate Reynolds number is not entirely clear, and in this chapter we examine the same.  

The effects of viscosity are simulated by adding a random walk component to the motion of 

individual vortices as proposed by Chorin (1973). This is based on splitting the advection and diffusion 

parts of the Navier-Stokes equation.  Variants of this method have been used in to simulate viscous flows 

in engineering contexts (e.g. Ghoneim 1987, also see Cottet & Koumoutsakos, 2000).  

Furthermore, since random walk causes dissipation of the Hamiltonian, it is not clear what effect 

this might have on the underlying statistical mechanics such as on the evolution of distribution functions 

and long time statistics. Further, the simulations reveal an unexpected interplay between the viscous and 

turbulent „stresses‟ at intermediate Reynolds numbers, which is worth investigating. We shall explain the 

formulation and problem setup in Section 8.1 and discuss results on initial development & universality of 

Regime II, interplay between viscous and turbulent stresses, long time evolution and comparison to long 

time 2D NS solutions in Sections 8.2, 8.3, 8.4 and 8.5 respectively.   

 

8.1. Problem setup for the viscous vortex-gas free shear layer 

It is well known that for a set of particles undergoing a random-walk, the evolution of the 

probability distribution is a solution to the diffusion equation with diffusion coefficient   that is related to 

the standard deviation   of the random displacement as           , where    is the time-step.  This 

is the basis of modeling the viscous diffusion of vorticity using random walk of point-vortices, first 

proposed by Chorin (1973). The 2D vorticity equation (derived from the 2D Navier-Stokes) is 

  

  
     

  

  
   

  

             
         

    
   

   
  

   

    
           

         

                                                            

A numerical time integration can be split into advection and diffusion steps. In a system with a large 

number of point vortices (that represent a continuous vorticity field), the diffusion part can be modeled 

by a random walk of point vortices. Note that the point-vortices themselves do not diffuse in this 

formulation, in which the distance moved by a vortex during a time-step is given by (Friedmann & 

Poloubarinova 1928, Chorin 1973) 
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where    and     are Gaussian random variables with zero mean and unit variance. Detailed results on 

convergence of this method can be found in Cottet & Komousatakos (2000).   

 Alternatively, the effects of viscosity can also be introduced by changing the strength of the vortices 

(Cottet & Mac-Gallic, 1983, Raviart 1983). While such a method might have higher point-wise accuracy 

(see Cottet & Komousatakos, 2000), we adopt the simpler random walk method in this script to enable 

more direct connections to the results on vortex-gas free shear layer and statistical mechanics.  

The setup is similar to that described in Ch.2. The simulations are initialized with   vortices distributed 

along the  -axis in a domain with period   and uniform inter-vortex spacing       and with  -

displacements drawn from a uniform random distribution with amplitude  . The circulation of each 

vortex is          so that the velocities at       are set to      . The time integration of the  

advection part implemented by fourth order Runge-Kutta with time-step           , and at the end of 

each time-step, a random number drawn from a Gaussian distribution with the standard deviation that 

would provide the specified viscosity is added to the x and y location of each vortex. The mean-velocity 

and momentum thickness using the same expressions (Ch.2) used in the inviscid point-vortex case, i.e. 

the random-walk component is added only to the motion of each of the vortices.  

 

8.2.  Initial evolution and universality of Regime II 

We simulate a number of cases, with initial vortex y-displacements chosen from uniform random 

distributions with different amplitudes, different number of vortices and different values of  . As the 

thickness provides a bulk description of free shear layers and since one of the central results in the 

inviscid case is the universality in the evolution of thickness, we first analyze the evolution of momentum 

thickness with time for the different simulations. 

 

Figure 8.1.  (A) The evolution of momentum thickness with time for different cases.  (B) The same data 

plotted in scales non-dimensionalized with   .  

It can be seen from the results shown in Fig. 8.1 that the momentum thickness is initially given by 

      , which is the laminar mixing layer solution. This suggests that the early evolution is dominated 

by diffusion. This laminar evolution is followed by a „transition‟, beyond which the evolution of 

thickness departs from the      scaling.  The exact beginning and duration of the transition depends on 

initial conditions (both       and      ), for the cases considered here, the departure from the laminar 

evolution seems to take place around              and the beginning of linear growth at about 40.  

Beyond this point, the layer appears to grow linearly with the same spread rate (                  

as in Regime II of the inviscid case (Ch.3) across the different initial conditions (a/l = 0.05 and 0.001), 
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values of       (0, 0.01, 0.04, 0.1) and N (400, 1600, 3200) considered here. For the case with       

           the spread rate determined from the best fit of data from            to     is 

        . This is within       of the value for inviscid case. This strongly suggests that universality in 

Regime II is independent of viscosity and (at least for the cases considered here) can be observed from a 

Reynolds number as low as 40, at which viscous effects are not expected to be negligible. We also note 

that for the same case, the change in the Hamiltonian is around 2% during the observed evolution (over 

10
3
 times larger than for the inviscid case over the same duration).  From a statistical-mechanics point of 

view, this leads to an important implication that the universality in the non-equilibrium evolution is 

robust to small changes in the Hamiltonian.  

 

Figure 8.2. Snapshots of vortex locations (scaled by local thickness) at different Reynolds numbers.  

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

(e) 
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The snapshots of evolution of the vortex locations are shown in Fig.8.2. It can be seen (from Fig. 

8.2a) that there is almost no organization during the „laminar‟ evolution (but there appears to be a wave-

like disturbance). Coherent structures begin to appear in the form of weak clusters at around        

(Fig.8.2b), which approximately marks the onset of linear growth. The level of organization is observed 

to increase with    . However, even at the Reynolds number of 380.86 (Fig. 8.2f) shown in the snapshot, 

the coherent structures in the viscous case are relatively less well defined as compared to the inviscid 

case (Fig. 8.2g).   

 

 

Figure 8.3. Effect of Re on single and two particle distribution functions  (N = 1600, a/l = 0.001, /lU 

= 0.1, n = 32) 

 

We can quantify these observations by computing the distribution functions following the 

methodology described in Ch.4. It is found that the single particle distribution functions (Fig.8.3A), 

which contain information on the x-averaged vorticity distribution, show no noticeable difference with 

change in     between 66.85 and  . But it can be seen from Fig. 8.3B that the two-particle correlation 

function, which contains information on the coherent structures, is indeed different for different Reynolds 

numbers. While the overall shape of     computed in the viscous case is similar to that in the inviscid 

case, the magnitude of the minimum or the second peak (shown in inset in Fig 8.3B) is lower by an order 

at     of 66.85. This implies that the average spacing of the coherent structures (scaled with the local 

thickness, roughly given by the location of the second peak in the correlation function) is not greatly 

affected by diffusion, although the structures themselves are more diffuse. If the coherent structures and 

their interaction are responsible for growth of the layer, it becomes important to understand how the 

viscous layer grows at the same universal rate even when the correlations are an order of magnitude 

lower (in early Regime II).  

 

8.3.  Internal balance between viscous and Reynolds stresses 

To answer this question we next analyze the viscous and non-viscous contributions to the growth by 

computing the stresses in the present vortex-gas simulations, even though „stress‟ is generally a 

continuum mechanics concept. But as it has been rigorously demonstrated that the inviscid vortex gas 

converges to a weak solution of the Euler equation (Marchioro & Pulvirenti, 1993, also see Ch.5) taken 

together with Chorin‟s theorem (1973), this justifies the computation of the terms in the Reynolds 

averaged Navier-Stokes (RANS) equation using the induced velocity field of the vortex gas.  
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For a homogenous-in-x system, the RANS evolution of the averaged x-velocity field is given by  

       

  
  

    

  
                   

Where the viscous and turbulent Reynolds stresses are respectively given by 

        
  

  
                   

 

  

                  

    

 

(Note : If the maximum mean velocity gradient occurs at the centerline, as in the cases considered here, 

the centerline viscous stress is related to the vorticity thickness                 
 
 as        

         .  For the inviscid case, it was found that            in Regime II (Ch.3).  For the laminar 

mixing layer solution (error function profile),           (which is only 3% less than the Regime II 

value).  Further, it can from Fig. 8.3A that the      (             ) is within 2% of 4.6 for       

     . Hence, we evaluate centerline viscous stress as            as this method leads to 

significantly less scatter, being based on an integral quantity. However the viscous stresses are directly 

evaluated in Fig. 8.4B and 8.4C)  

Figure 8.4A shows the evolution of the centerline viscous and turbulent stresses for three different values 

of      . All the three cases show the following broad features. Initially (i.e. upto       ) viscous 

stresses dominate and can be several times the Reynolds stress. The Reynolds stresses are seen to initially 

increase with     but the viscous stresses decrease as expected. However, at the Reynolds number (~ 50) 

that corresponds to the transition (from the laminar     ) to the turbulent    growth (Regime II) with the 

same slope as in the inviscid case, the viscous stresses contribute to over a third of the total stress. It is 

important to note that the    law is derived in turbulent shear flow literature based on dimensional 

grounds („equilibrium self-preservation analysis‟) after assuming viscous stresses are negligible 

(Townsend 1956, also see Ch.5 for results specific to the temporal vortex-gas free shear layer).  

Further, it can be observed that beyond         (for                                  the 

value of the total centerline-stress is a constant and is equal (to within statistical fluctuations of     ) to 

the Reynolds stress in inviscid simulations (             ) and Figure 8.4B shows that the Regime II 

is characterized by the similarity of total stress and not Reynolds stress. The above finding is in contrast 

to traditional view, which would is shown (in Figure 8.4A) to be valid only in the limit of high Reynolds 

numbers (        , where the distinction between total and Reynolds stresses becomes increasingly 

irrelevant.  

 This finding is further validated by performing an initially viscous simulation in which viscosity 

is „switched off‟ at              , shown in Fig. 8.5A. It can be observed that the new total stress 

which now contains only the Reynolds stress, relaxes to the earlier value of total stress much faster than 

in the case where viscosity is not switched off (Fig. 5A). Further, Fig 8.5B shows the evolution of an 

initially inviscid simulation (in which Regime II is reached at          ) in which viscosity is suddenly 

turned on at          .  It can be observed that the sudden addition of viscosity leads to a step-

increase in the total stress (which is now equal to Reynolds + viscous stresses), but further evolution 

shows that the Reynolds stress decreases to allow for relaxation of the total stress to the universal Regime 

II value.  
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 Figure 8.4A. Evolution of viscous and turbulent shear stresses. Note that the total stress reaches the 

inviscid Regime II value (and the layer grows with the universal constant spread rate) even when the 

viscous stress is over a third of the total stress. B Self-similarity of total stress (B1) though the 

contributions of the viscous and Reynolds stress are different (B2). C. Viscous (red squares) and 

Reynolds (blue crosses) stresses normalized by the respective maxima at different Reynolds numbers; 

bottom panel shows the same data in log-linear scale. 
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Figure 8.5. Evolution of viscous and turbulent shear stresses for cases for which viscosity is suddenly 

„switched-off‟ (A) or switched on (B). 

 

It might be argued that the present finding is a peculiarity of the vortex-gas model or the method 

by which diffusion is simulated, but as we shall shown in the following section (8.4)  the present vortex-

gas simulations with viscosity simulated by random-walk are indeed representative of 2D Navier-Stokes. 

A further argument could be that this observation is might be a feature of mixing layers where the 

viscous and turbulent stresses are similar in shape (except at the tails, see Figure 8.4C) and may not be 

applicable to other free shear flows. But 3D Navier-stokes simulations (DNS) of axi-symmetic 

(temporally evolving) wakes by Coleman et al (2012) also show a similarity of the total stress as against 

the similarity of Reynolds stresses, suggesting that the present findings may have a wider implication to 

free shear flows in general.   
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8.4. Subsequent evolution of viscous vortex-gas shear layers (Regime III) 

 

Figure 8.6. The different temporal regimes of evolution.  (  is taken as           for N = 100 

simulations) 

To understand the influence of viscosity over long time, we perform simulations with N = 400 and N = 

100 over       of 10 and 10
4
 respectively.  The results on the evolution of thickness are shown in Fig. 

8.6, from which the following observations can be made.  

As described earlier, the viscous vortex-gas free shear layer initially grows as      before „transitioning‟ 

to Regime II, during which the layer thickness grows as   . Other than the reduction of fluctuations (for a 

given number of vortices and realizations), the early part of Regime III (III(a) as in Ch.4) immediately 

following Regime II is similar for the cases with and without viscosity.  Namely, while the growth of the 

layer departs from the linear evolution of Regime II, it continues to grow rapidly till about           , 

flattening at           . In the inviscid case, the spreading is greatly reduced beyond this point as there 

is a single structure left in each periodic domain and growth by amalgamation is no longer possible.   

However, beyond this point, the thickness of the viscous vortex-gas continues to increase (at a 

significantly higher rate than in the inviscid case) due to viscous diffusion (scaling as 

                       ) and the even the viscous layer with the lowest viscosity (highest initial 

Reynolds number) considered here (          ) is about 15% thicker than the inviscid layer at 

         .  At much longer times, the growth by diffusion dominates and the viscous shear layer 

grows as      and the thickness is over 10 times that of the inviscid layer at               . Hence 

the viscous layer does not have a final steady state.  This is further seen in a series of vortex snapshots 

shown in Fig. 8.7   

In the inviscid case (as shown in Ch.4), the single structure slowly relaxes towards a stationary 

distribution of vortices (relative to the core that moves stochastically in x and satisfies ergodicity) over 

timescales of         . On the other hand, the continuously diffusing single viscous structure retains 

identity only to about            (for the case shown in Fig.8.7), beyond which it „melts‟ to have a 

nearly uniform-in-x and Gaussian (whose width increases as   ) in y distribution of vortices.  Such a 

distribution is not a solution to the Boltzmann distribution (Joyce & Montgomery, 1976).  
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 Figure 8.7.  Comparison of long-time evolution of vortex locations for inviscid and viscous (  

        ) vortex-gas shear layers (                  .The vortex locations are translated in x 

such that the „center‟ of the structure is approximately at 0.5 for clarity of presentation. Also shown are 

the single-vortex distribution function at tU/L = 500 (averaged between 475 and 525, note that this is 

less than the timescale of the structure wandering across the domain in inviscid simulations, indicating 

the uniform-in-x distribution is a consequence of the melting of the structure rather than wandering).  

A fit of the Lundgren – Pointin equilibrium distribution (1977) for the inviscid case (Sec.4.3) 

revealed high negative temperatures in all directions (though it was anisotropic). In the viscous case, a 

uniform distribution in x would lead to L-P temperature of    and Gaussian in y would imply zero 

temperature. 

Connections to long time solutions of 2D NS  

It was shown (in Sec.5.1) that the (inviscid) vortex-gas simulations (with appropriate initial conditions 

and sufficiently high N) tend to approach Euler equilibrium during the „violent‟ relaxation of the single 

structure.  The solutions from the early Regime III(b) also compared favorably with the corresponding 

results from the higher Reynolds number case of 2D Navier-Stokes simulations of Sommeria et al (1990), 

both in terms of layer thickness and vorticity-stream-function plot. 

Here we compare the results from the lowest Reynolds number case with vortex-gas simulations with 

random walk to provide the same viscosity and with the same initial thickness. Figure 8.8A shows the 

evolution of thickness for the 2D NS and viscous vortex-gas calculations. The momentum thickness is 

observed to be slightly higher (by about 4%) for the vortex-gas case. However on adjusting for the virtual 

origin (due to the long wave sinusoidal perturbations used in 2D NS not in the present vortex-gas 

simulations) the long-time evolution is nearly identical. Figure 7B shows that the  -  plots (after 

adjustment of the virtual origin) show good agreement with the 2D NS. This can be considered as a 

validation of the viscous vortex-gas method (with the present numerical scheme and N) to accurately 

describe viscous (2D) Navier-Stokes shear layers and hence the relevance of the present conclusions for 

the same. 

8. 5. Concluding Remarks on viscous vortex-gas shear layers 

Extension of the temporal vortex-gas shear layer via addition of a random walk to the motion of 

the vortices has yielded some interesting results, some of which are relevant to understanding the 

dynamics of turbulent free-shear flows at relatively low Reynolds numbers. The agreement with the 

laminar mixing layer solution at early times and with the stream function vorticity relationship of long 

time simulations of 2D NS, establish the validity of the random-walk method to studying viscous shear 

layers.  
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Figure.8.8  (A) Comparison of temporal evolution of layer thickness (shown in light grey is the viscous 

simulation displaced in time). (B) with the (short-time averaged)  -  relation, of the inviscid and 

viscous vortex-gas simulations with low and high Reynolds number 2D Navier-Stokes calculations of 

Sommeria et al (1990) 

 

  Once again, the central results deal with the intermediate non-equilibrium Regime II. The viscous 

vortex-gas simulations show that, the slope of the linear growth in this Regime is not only universal, but 

also identical to that of the inviscid simulations. This is noteworthy considering that both the early-time 

as well as long-time regimes are different for the viscous and inviscid cases. Furthermore, in the viscous 

vortex-gas simulations there exists a sub-regime within Regime II, corresponding to              

where the viscous effects are not negligible and the viscous contribution to growth is 10 – 40 %. In this 

sub-regime, the spread rate is the same as the inviscid case, even though the coherent structures are less 

distinct and the two vortex correlation functions are significantly weaker. Further probing of the stresses 

reveals that this Regime is characterized by the similarity of the total stress rather than turbulent stress. 

This is consistent with observations made in recent 3D DNS studies of an axi-symmetric wake (Redford 

et al, 2012).  
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Chapter 9 :  Effect of spatial feedback 

 

As argued in Ch.1, when the velocity difference U = U1 – U2 is small compared to the average 

velocity Um = ½ (U1 + U2)  (the ratio (U1 – U2)/ (U1 + U2) is denoted by it is possible to relate the 

spatially evolving to the temporally evolving shear layer  via a Galilean transformation. This was also 

supported by the results presented in Sections 5.2 and 5.3. In particular, it was observed (Fig. 5.5) that the 

universal spread rate (on Galilean transformation) was within the scatter of reported self-preservation 

spread rates in experiments with    0.5.    

However, Fig. 5.5 also shows that spread rate quoted by experiments with    0.5 deviate from 

the Galilean-transformed temporal vortex-gas result, and this is particularly true for the single-stream 

shear layers (    . It is important to note that the scatter in the spread rates quoted across experiments 

is largest for single stream shear layers. This not only suggests that the temporal result is not valid in this 

limit but also raises the question whether the conclusion drawn on universality from the temporal 

simulations applies in this limit. Further, even if the spread rate is a universal function of the velocity 

ratio, its functional dependence on velocity ratio and the role of spatial feedback are not clear due to the 

scatter in the experimental data. The above questions cannot be tackled by temporal simulations.   

  Therefore, in order to derive some insight on the above issues, we revisit the vortex-gas analog of 

the spatially evolving shear layer.  While there have been several early spatial vortex-gas simulations 

(e.g. Ashurst 1979, Inoue 1985, Inoue & Leonard 1987, Ghoniem & Ng 1987), the simulations of            

Basu, Narasimha & Prabhu (1995) were the first to rigorously handle the upstream and downstream 

boundaries. The present simulations are based on the method of Basu et al (1995), but with a crucial 

improvement that ensures global conservation of the circulation by adding a downstream buffer-vortex, 

whose strength is adjusted at each time-step in the simulation.   

  Another issue we shall discuss in this chapter is the interpretation of the recent experimental 

work of D‟ovidio & Coats (2013). Two different mechanisms by which structures in the shear layer 

increase in size were observed in different experiments. In one set of experiments, mergers were largely 

responsible for the growth in size of structures. This was confirmed by studying the evolution of size of 

individual structures with time/downstream distance, which showed constant size between mergers and 

step changes in size coinciding with merger events. In the second set of experiments, the structures grew 

approximately linearly with downstream distance, even between mergers, and mergers did not make a 

significant difference.  The first set of experiments were pre-mixing transition shear layers and second set 

corresponded to post-mixing transition shear layers, based on which the observed change in mechanism 

was attributed to mixing-transition and three dimensionality by the authors.  However, the comparison 

involved different velocity ratios and since the effect of velocity ratio of shear layer growth and evolution 

is yet to be understood, it cannot be ruled out as a contributing factor. The present spatial vortex-gas 

simulations, though are strictly 2D, may provide some insight in this regard, and we shall present an 

analysis of the influence of velocity ratio on structure growth dynamics.  

We first describe the setup used in the present simulations in Section 9.1 and then discuss the 

results on growth rate in Section 9.2 followed by detailed analysis of dynamics of structures at different 

velocity ratios presented in Section 9.3. Some supplementary information is presented in Appendix D.        

9.1. Present computational setup 

The present setup, shown in Figure 9.1, is broadly based on Basu et al (1992,1995).  The numerical 

method used in the present work is similar to the temporal case (Ch.2), namely double precision 
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calculations with fourth order Runge Kutta for time integration, with the time-step           , similar 

to the    that ensured conservation of Hamiltonian to      in the temporal simulations. 

 

 

Figure 9.1. The present buffer-fan model for spatially evolving vortex-gas shear layer used throughout 

this work, unless specified otherwise. 

  

There are two major differences between the earlier temporal simulations and the present spatial 

simulations.  The first is that, in addition to the induced velocity due to other vortices, we also include a 

uniform x-velocity of    to ensure the x-velocity boundary conditions at      and the contributions 

due to other elements in the flow in the present spatial setup (Fig.9.1) namely a semi-infinite vortex-sheet 

upstream, a fan of semi-infinite vortex sheets downstream (the infinite contributions cancel, see Basu et 

al, 1992) and a buffer vortex (which will be described below).  The second difference is that while the 

temporal simulations tracked a fixed number of vortices in a singly periodic domain, vortices enter and 

leave the computational domain in the spatial case. Constant strength () vortices are released at x = 0,  y 

= y
i
   (y

i
 drawn from a uniform random distribution) once every t

r
, such that ½ (U

1
 + U

2
)

   
t
r
U = Note 

that l ≡ L /N
0
 is the inter-vortex spacing at  x = 0, and the initial number of vortices is N

0
 = LU/   After 

every time-step of integration, vortices with x > L are „removed‟ from the computations. Therefore the 

number of vortices in the domain can fluctuate with time, N = N[t].Hence total circulation of vortices in 

the domain is not conserved at each instant, unlike in the temporal case.   

The strength of the upstream vortex-sheet is given by      . The strengths       and angle 

made with the x-axis      of the downstream vortex sheets are chosen to approximate a symmetric, 

linearly spreading Gaussian vorticity profile, with the standard deviation at     and rate of spread 

computed from the upstream solution between x/L = 0.2 and 0.5. We use 13 vortex sheets in the 

simulations reported in this work (though it will be shown that the solution till          is not 

significantly affected even if a single downstream vortex sheet is used, see Fig.A1 in Appendix). It is also 

ensured that             . In this formulation, the       factor and the symmetry about the x-axis 

are required to cancel the infinite contributions to the vertical and horizontal velocity components 

respectively.  The simulations reported here are started with a single downstream vortex sheet, and the 

fan is spread at         , based on the upstream solution averaged between               . 

Beyond this point, the angle of the downstream vortex sheets is dynamically varied using the 

instantaneously computed cumulative upstream solution. 

Though the above characteristics are similar in spirit to those adopted in Basu et al (1995), the 

present setup differs in two ways, namely the lack of a doublet sheet on the splitter plate and the 

introduction of a „buffer vortex‟. The reasons and justifications for the same are as follows. A doublet 
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sheet at the splitter plate is necessary to ensure the physically realistic zero normal velocity on the plate.  

However, preliminary simulations with discrete doublet sheets revealed that it did not make any 

significant difference on the self-preservation spread rate (see Fig.D2). We also considered releasing 

vortices at a rate based on the instantaneous induced velocity at the tip of the plate, but the effect of such 

an implementation was also found to be negligible on the evolution of the layer beyond x = 100 l (Fig. 

D3). Hence the more complex realistic conditions at the splitter plate are not adopted in the present work 

as they do not justify the higher computational cost and complexity arising due to additional parameters. 

 

 

Figure 9.2 (A) RMS fluctuation of the number of vortices in the domain as a function of velocity ratio 

(for N = 400, no buffer). (B) Time trace of the fluctuation of number of vortices for     with snapshots 

of the vortex-locations at times I to VI (shown below). For initial condition (I) in the present formulation, 

there is an initial transient (II – IV) that leads to a non-zero excess due to accumulation of vortices 

towards the end of the domain. The fluctuations continue to persist in the steady state (V, VI). The local 

maxima (V) appear to correspond to times just before a structure leaves the domain (as indicated in V); 

and the local minimum occurs (VI) immediately after such a structure has left the domain. The qualitative 

picture remains the same on the introduction of the buffer-vortex. 
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  Figure 9.2 (contd.) (C) The distribution of average number of vortices across bins of width 0.2 L for      

N = 2000 (red circles indicate buffer-fan results, grey squares simulations without buffer and the dashed 

lines the respective means over the entire domain). Note that for         there is hardly any excess 

over the initial value (Nb refers to the number in each bin, with initial value Nb0 = 0.2 N0 ). (D) Standard 

deviation of fluctuation of number of vortices in the region between 0 and x (Nc) as a function of x, 

normalized by the initial number of vortices in the corresponding region (Nc0 = x / L N0)    

 

Figure 9.2A shows the RMS fluctuation in the number of vortices in the domain (in simulations 

without the buffer vortex) as a fraction of the initial number for different velocity ratios. It can be seen 

that the RMS fluctuation increases with  (can be over 10% for  = 1) but as a fraction of the total 

number of vortices, is independent of N. To understand the origin of these fluctuations, we examine the 

time evolution of the number of vortices in the domain for  = 1, shown in Fig. 9.2B with insets showing 

the snapshot of vortex locations at the corresponding times. It can be seen that there is a net accumulation 

of vortices during the initial transient, beyond which the number of vortices fluctuates with time around a 

stationary mean (which is about 10% higher than the initial number of vortices). As seen in Fig. 9.2C, the 

excess in the mean is concentrated towards the edge of the domain, whereas the fluctuations are 

approximately self-similar across the domain (Fig. 9.2D).  Most significantly, the fluctuations are present 

even after the layer reaches a statistically steady state, and having constant (at steady state) strength 

vortex-sheets as downstream boundary conditions leads to an instantaneous fluctuation of the total 

circulation of the system, in time.   

It is important to note that while the flux of vorticity into the domain is a constant (as vortices are 

released at a constant rate at the edge of the splitter plate), the vortices in the domain form clusters      

(Fig 9.2B), with vortex-rich „coherent structures‟ and vortex-depleted „braid regions‟ between the 

structures. As observed from the vortex snapshots (Fig.9.2B), this clustering is responsible for the 

fluctuation in the instantaneous flux of vortices leaving in the domain. Further, the fluctuations occur in 

the timescale 0.5 L/Um (~ 3  [x = L]/Um ) for   = 1, which roughly corresponds to the average period 

between passage of structures at x = L (also supported by data at other  not shown here).   

Regardless of the physical nature of the fluctuations, it is reasonable to introduce a fluctuation in 

circulation opposite in sign to the fluctuation of circulation in the domain in order to instantaneously 

preserve the total (global) circulation (in the infinite domain at steady state) in accordance with Kelvin‟s 

theorem.  Also, since the fluctuation of vorticity in the domain should arise from the fluctuation of the 

vorticity out flux  downstream at x = L (as the vorticity flux from upstream is a constant), it is reasonable 

to introduce the opposite-sign fluctuation immediately downstream of the domain. A first-order 

approximation to vorticity conservation would be to introduce this via a single stationary „buffer vortex‟, 

say at          , with a circulation fluctuating with time as                   .  
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A physical argument for the introduction of the buffer vortex is as follows. The number of 

vortices in the domain dips from the mean when a structure leaves the domain (e.g. see snapshots V and 

VI in Fig.9.2B). In reality the structure, and hence an associated vorticity excess, would then appear just 

downstream of the domain. Similarly the maximum excess of the vortices in the domain occurs when a 

vortex-depleted braid region is convected out of the domain (just preceding the exit of a structure from 

the domain), and one would then expect a corresponding deficit immediately downstream. This 

excess/deficit of vorticity downstream during the deficit/excess of vortices in the domain is compensated 

for as a buffer vortex. 

 

Figure 9.3. (A) Evolution of a single-stream vortex-gas shear layer with buffer vortex placed at different 

distances downstream, compared to evolution without buffer vortex. (B) Spread rate determined via best 

fit for data from x/L between 0.1 and 0.5. 

Before we discuss the significant differences to the development of the layer due to the buffer 

vortex, it has to be noted that in the present formulation the buffer-vortex has a non-zero (negative) mean 

circulation. This is because the mean number of vortices in the domain is higher than the initial value as 

noted earlier. Since the excess in the mean is concentrated near the downstream edge (Fig 2C), being 

compensated by a buffer vortex placed near the downstream edge with a negative mean is reasonable. 

Regardless, the change in   , due to the direct contribution of     to the induced velocity field, is only 

around 2 % at x/L = 0.7 (for       , and the change is even less significant further upstream. Further, 

it can be seen, from Fig 9.3A, that „switching off‟ the mean circulation (by defining            ) 

results in nearly identical development of the layer as the case with the non-zero mean and both cases 

contrast with the one without the buffer. This suggests that only the fluctuating part of    contributes 

significantly to altering the evolution of the layer.    

 The evolution of the layer is more strongly affected by the presence of the buffer-vortex, as 

   .  Thus, for the single-stream case, the spread rate without the buffer-vortex can be upto 30% 

higher over the last 70% of the domain.  However, as shown in Fig. 9.3, the results are robust to the 

location of the buffer vortex provided      . 

 Furthermore, it can be seen in Fig 9.4, that the evolution of a single-stream vortex-gas 

shear layer from a buffer-fan simulation with N = 400 agrees with evolution in the same spatial region (in 

terms of x/l) in a simulation with a much longer flow development domain  (L/l = 2000). It also has to be 

noted that for the longer flow development simulation the spatial extent shown is within the first 10% of 

the domain, and is largely invariant to the downstream boundary condition (the difference between 

buffer-fan and no buffer with single downstream sheet is < 5% for x/L < 0.1). This suggests that the 

buffer vortex is a valid proxy for the effect of the downstream fluctuations. 



90 

 

 

Figure 9.4. The evolution of layer thickness from a simulation with and without buffer-vortex compared 

to simulation with larger domain (in terms of l). 

 

9.2. Results on spread rate 

We first address the question of universality of spread rates in the single-stream limit. Figure 9.5 

shows the evolution of thickness in two single-stream vortex-gas simulations with disturbance amplitudes 

at x = 0 varying by a factor of 10
5
, and also with different number of vortices (400 and 2000). It can be 

seen that, the variation in self-preservation spread rate is within 2% across the two cases.  Furthermore, 

different upstream (Fig. D1, D2 in Appendix D) and downstream boundary conditions (Figure 9.4, D3), 

while greatly altering the extent of the self-preservation zone, do not significantly affect the value of the 

spread rate. These two observations taken together, strongly indicate that there is a  universal spread rate 

at a given velocity ratio, even at the single-stream limit.  

Figure 9.6 shows the self-preservation spread rate as a function of velocity ratio. It can be seen 

that for , the spatial vortex-gas results closely agree with the Galilean-transformed universal 

Regime II (                            ) from the temporal vortex-gas simulations (Ch.3). 

This is consistent with the Galilean transformation being exact at the shear-less limit.  Beyond            

   0.5, the spatial vortex-gas simulations show a concave upward trend for the spread rate vs. .  The 

results are within the scatter across experimental data.  At the single-stream limit, the spread rate from the 

present vortex-gas simulations (0.184 for N = 1000, tavgUm/L = 980; 0.185 for N = 2000, tavgUm/L = 80, 

where tavg is the duration over which the steady state statistics are averaged) is within 10% of the Morris-

Foss (2003) experiment. This experiment is probably the most reliable measure of spread rate, as 

Reynolds numbers of 10
5
 were reached, the top-wall was as far away as the length of the measurement 

zone, and the downstream boundary was nearly 10 times as far. (In many other experiments, it is difficult 

to rule out the effect of the top and downstream boundaries, based on the insights provided by the vortex-

gas simulations on the sensitivity of the single stream, see Fig. D7.) The rough agreement with 

experimental data throughout the range of velocity ratios suggests the dominance of the 2D Biot-Savart 

interactions in determining the large scale momentum dispersal for spatially evolving plane free shear 

layers.  
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Figure 9.5. Universality of spread rate for  = 1 

 

 

Figure 9.6. Spread rate in the present vortex-gas simulations as a function of velocity ratio and 

comparison with experiments. Inset shows the comparison with experiments (D‟Ovidio & Coats, 2013), 

2D and 3D LES (McMullan, Gao & Coats, 2010) over              .   
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The applicability of 2D models to study shear layers has been most recently contested by 

McMullan, Gao & Coats (2010) and D‟Ovidio & Coats (2013, henceforth referred to as DC), based on 

the results of high Reynolds number experiments and large eddy simulations (LES).  The inset on Fig. 

9.6 shows the spread rate observed in their experiments, 2D LES, 3D LES and present vortex-gas 

simulations for  between 0.42 and 0.63. (It has to be noted that for this range of velocity ratio, the 

vortex-gas shear layer was found to be largely insensitive to downstream conditions.)  McMullan et al 

(2010) observed that, while the results of their 3D LES agreed with DC experiments, but their 2D LES 

predicted upto 25% higher spread rates. Based on this finding McMullan et al concluded that 2D 

simulations are „wholly inadequate‟ for describing the large scale momentum dispersal in high Reynolds 

number free shear layers.  However, as seen in Fig. 9.6, the spread rate from present vortex-gas 

simulations, which are strictly 2D, very closely agree with both the DC experiments and 3D LES of 

McMullan et al (2010).  We speculate that the 2D LES led to significantly higher spread rate due to either 

or both of the following reasons. First is the use of 3D type sub-grid models for the 2D simulations, the 

rigor of which can be questioned considering the very different small scale behavior of 2D and 3D 

turbulence. Second is the presence of opposite signed vorticity due to the choice of initial condition with 

two boundary layers. Preliminary studies (Prasanth, Suryanarayanan & Narasimha, unpublished) have 

suggested that the spread rate of 2D wakes may be higher than 3D planar wakes, due to additional 

contribution to momentum dispersal via dipole motion, a mechanism that may be absent or significantly 

weaker when 3D fluctuations are present. Regardless of why 2D LES predictions are not in agreement, 

the suggestion 2D is irrelevant is not justified in the light of the remarkable agreement between the 

present 2D vortex-gas simulations with both high Re experiments and 3D LES.  

 

9.3. Analysis of coherent structures  

In this section, we analyze the evolution of „coherent structures‟ in the vortex-gas shear layers at 

different velocity ratios. The main motivation for this investigation is the DC experimental finding that 

there are two distinct mechanisms through which the coherent structures in the flow (and by extension, 

the thickness of the layer) grow as they are convected downstream.  First is the traditionally known 

mechanism of growth by amalgamation (or mergers), where the size of the structures change little in 

between but undergo a step change during well defined mergers between (usually) two structures. Second 

is the not so well known mechanism via which each individual structure grows linearly with downstream 

distance, with mergers playing an insignificant role in the overall evolution of the layer. DC observed 

merger-dominated evolution in pre-mixing transition layers and continuous linear growth of structures in 

post-transition mixing layers. Based on this observation, it was concluded that the mixing transition was 

responsible for the change in growth mechanism, and the continuous growth of structures was attributed 

to 3D effects.  However, the conclusions were drawn based on comparisons between pre- and post-

mixing transition layers that did not have the same velocity ratio. Thus, for the constant density case (to 

which the present discussion will be limited), the pre-mixing transition layer (in which merger-dominated 

evolution was observed) had  = 0.627, whereas the post-transition layer (in which continuous growth 

was observed) was a single-stream shear layer ( = 1). Hence it is not possible to determine whether the 

observed effects were a consequence of mixing transition or differences in velocity ratio.  

To explore this question, we have conducted simulations of two vortex-gas shear layers                  

(N = 2000, a/l = 0.001, buffer-fan setup) at the same two velocity ratios DC used in their experiments. 

The respective evolutions are shown in Fig. 9.7. It can be seen that for  = 0.627, the evolution is merger 

dominated. This is best illustrated by tracking the green (G) and violet (V) structures. Their sizes change 

very little among the first snapshots and the well-defined merger (over snapshots 3 and 4) leads to a new 

structure that whose area is roughly the sum of the areas of the original two structures. 
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Figure 9.7.  Sample comparison of evolution of structures at  = 0.627 and 1.0 in the present vortex-gas 

simulations  

This may be contrasted with the observations for  = 1. E.g. the red structure (R) does not seem 

to undergo any distinct merger event, yet grows to over twice its original size as it travels downstream 

from x/L ~ 0.2 to ~ 0.5.  The green (G) and violet (V) structures do amalgamate (between the second and 

third snapshots), but overall evolution of the violet structure does not seem to be greatly affected by the 

amalgamation. If one follows the violet structure alone, it appears to grow continuously with 

time/downstream distance.  Similar observations can be made for several other structures. Therefore the 

observation that structures individually undergo continuous growth, made from the present (2D) vortex-

gas simulations at   = 1, are consistent with the experimental observation of DC at  = 1.  This suggests 

that the differences in mechanism noted by DC can be adequately explained by differences in the velocity 

ratio, without appealing to mixing transition or associated 3D mechanisms.  

Figure 9.8 displays the data shown in Fig. 9.7 extended in time to 98.48 L/Um, in terms of x-t, and 

size vs. x diagrams, presented in a fashion similar to DC. Unlike DC, we fit ellipses instead of circles (as 

the structures are clearly elliptical) and define an effective radius of the structure as a geometric mean of 

the major and minor axes of the ellipse. There is a certain degree of subjectivity involved in fitting the 

ellipses as it is done visually, a limitation shared with the analysis of DC. Nevertheless, the central 

conclusion is clear, that structures in the single stream case undergo continuous linear growth, unlike 

those in the  = 0.627 case which shows increase in size only during well-defined merger events.  (It 

must be noted that the DC results show lower scatter in the size vs. x diagrams than the present vortex-

gas simulations. This could be due to the span-wise averaging the DC visualization implies). 
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Figure 9.8. Comparative evolution of downstream location and size of structures at  = 0.627 and 1.0.  

This analysis repeated over another randomly picked time (tU/L = 82 – 82.5) led to similar 

results (see Fig.D4, also results are qualitatively similar for other downstream boundary conditions as 

shown in Fig. D5). Yet, we must enter a note of caution that these relatively short times (though 

comparable to DC analysis) may not necessarily provide representative statistics over long timescales.  

Therefore we perform the following (independent) objective analysis over much longer times (tUm / L = 

20 to  80). We compute at each time instant (beyond the initial transient) the number of vortices 

(proportional to the circulation) within x = L/2   [x = L/2].  As seen from Fig. 9.8, the average size of 

a structure is O() and the spacing between structures is over twice the size, so the sampled extent is 

expected to contain a single structure on an average. We compute the local maxima of the circulation 

over  tUm/[L/2], which corresponds to a structure passing time.  Hence this statistic is expected to 

reflect the circulation over each structure that passes through x = L/2. Note that there is no subjectivity 



95 

 

involved in this analysis other than the selection of the bin size, which is chosen to be the same fraction 

of the local thickness for both cases. The probability distribution function (PDF) of this quantity is 

computed from the time-series for  = 0.627 and 1.0 simulations, and are shown in Fig. 9.9.  

 

Figure 9.9. Comparison of  PDF of circulation in of local maxima of circulation in the region                                             

x = [L/2 – [L/2] , L/2 + [L/2]]  y = [-∞,∞ ] between different velocity ratios. Note that the 

distribution at  = 0.627 (left) agrees with a bi-modal fit (shown in dashed line) as opposed to the 

Gaussian (faint dotted line) corresponding to the mean and variance. This is in contrast with the 

distribution for  = 1 (right), which is adequately described by a uni-modal Gaussian (dashed line).  

 

It can be seen that for  = 0.627   the distribution of circulation is bimodal, indicating that the 

structures that pass x = L/2 have two preferred values of size. This is consistent with the earlier 

observation of structure size strongly affected by mergers, with the two preferred size ranges possibly 

corresponding to structures that have undergone mergers before and after the zone. On the other hand, we 

observe a unimodal Gaussian for  = 1.0, supporting the conclusion that mergers do not cause a step 

change in structure size for the single stream case.  

 Furthermore, we find (Fig.D6) that = 0.905 shows intermediate behavior. At this velocity ratio 

mergers still play an important role causing significant step increases in size, but the structures also 

undergo linear growth. This intermediate point establishes that the trend is neither accidental nor the 

unique peculiarity of the single stream case.  

 The results on studying evolution of individual structures (presented in Figs. 9.7 and 9.8), taken 

by themselves, should not be considered as strong evidence of purely 2D dynamics. But they do strongly 

suggest that the DC evidence is inadequate to support in the claim that 3D mechanisms play a significant 

role, as qualitatively similar observations are made using similar analyses in the present 2D study. 

Furthermore, when those results are taken together with the independent objective analysis presented in 

Fig. 9.9, it appears likely that the mechanism of structure interactions does change with velocity ratio. 

2D mechanisms responsible for shift in structure interaction  

While the present simulations and analysis do not conclusively indicate the (2D) mechanism 

responsible for the shift in the behavior, a plausible explanation is that it has its origins in the 

dissimilarity in size and/or strength between interacting structures. In order to provide more insight into 

details of the underlying mechanism, we examine the evolution shown in Fig. 9.7 for  = 1 in greater 

detail. Figure 9.11 tracks individual vortices that belonged to individual structures at tUm/L = 98.0, over a 

time span that covers tUm / L = 97.84 to 98.32. 
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Figure 9.10.  History and evolution of vortices belonging to individual structures for  = 1(at tUm/ L = 

98.0, except for yellow vortices, that are tracked from tUm /L = 98.24).  Disorganized vortices between 

the violet and cyan structures at tUm /L = 98.0 are indicated in black and tracked from tUm /L = 97.84 to 

98.08.  Vortices that are not tracked are shown in gray.  
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It can be seen that the increase in size of violet structure from tUm /L = 98.0 to 98.16 has three 

contributions.  

(i) The obvious merger with green completed just before tUm /L = 98.16, which was noted in                       

Fig. 9.7.  But the following two other contributions become clearer from Fig. 9.10.  

(ii)  Capturing of (green) vortices from the green structure by the violet structure before the actual merger 

(tUm /L = 98.08) between the two structures. A similar observation can be made on the interaction 

between the red- yellow and dark blue structures at  tUm /L = 98.32. 

(iii) The capture of background vorticity present between the violet and cyan structures at tUm /L  = 98.0, 

shown as black vortices. This cluster of vortices is not a coherent structure  (and therefore not marked 

with an ellipse in Fig. 9.7) because its vorticity (circulation per unit area) is less than a fourth of the 

neighboring structures. By tracking the history of these disorganized black vortices, it is observed that 

their lifetime as a cluster is indeed very short (seen as a single cluster only in one frame, whereas an 

average structure can be seen as a distinct entity for at least four frames in Fig 9.10).   Some of the 

disorganized vortices are „ejected‟ during a merger between two structures  (to form what would become 

the violet structure) between tUm /L = 98.84 and 98.92, and the rest are torn from the edges of the cyan 

structure.  

These observations can be summarized as follows. In spatial mixing layers with higher , large 

downstream structures feed on the vorticity from either smaller upstream structures (higher the , higher 

the d/dx and larger the disparity in size between interacting structures, as seen in Figs. 9.6 and 9.7) or 

disorganized background vorticity. (The disorganized clusters are ejected during violent mergers or torn 

from outer parts of large structures during interactions with neighboring structures). A combination of 

these two processes leads to continuous, nearly linear growth in size of many of the structures over a 

substantial part of their lifetimes.   This can be illustrated via the cartoon shown in Fig. 9.10. This finding 

is indeed consistent with what is well known from two-vortex merger studies (e.g. Yasuda & Flierl, 

1995), that when one vortex is much larger or stronger than the other, the former tends to filament the 

smaller vortex and absorbs the vorticity, thus giving it an apparent continuous growth.   

 

Figure 9.11. Cartoon illustrating the possible role of dissimilarity in structure size on evolution  



98 

 

This observation also suggests that whether the evolution is merger-dominated or occurs by 

continuous growth of structures depends on the size disparity between neighboring and hence the 

mechanism depends indirectly on the velocity (and also on density) ratio through the spread rate. This is 

consistent with the observation of continuous growth by DC for  = 0.63 but for density ratio of 7.2. The 

spread rate in this case is much more than the uniform density case at the same velocity ratio, and is close 

to the constant density case with  ~ 0.9.  

 

9.4. Conclusions from spatial vortex-gas simulations 

The present spatially evolving vortex-gas simulations show that the spread rate is a universal 

(concave upward) function of velocity ratio (under conditions of sufficiently long flow development for 

initial conditions to be forgotten, and the measurement zone to be sufficiently far from downstream 

boundaries and no interference from top wall). Agreement of present vortex-gas simulations with 

experiments and 3D LES (McMullan et al, 2010) over a range of velocity ratios suggests spreading by 

2D mechanism provides adequate representation of the real flow. Analysis of the evolution of structure 

sizes and locations suggests that the change in mechanism from step increase in size during mergers to 

continuous linear increase in size observed in the recent experiments of D‟ovidio & Coats (2013), are 

likely to be effects of velocity ratio. The attribution of the change to mixing transition and 3D 

mechanisms is not supported as similar results are observed in the present vortex-gas results in purely 2D 

flow.  
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Chapter 10 : Concluding remarks and outlook  

 

In part I of the thesis, we showed that the temporal vortex-gas free shear layer, a Hamiltonian 

system relevant to a class of turbulent free shear flows, has interesting features such as the emergence of 

order (in the form of large vortex clusters or „coherent structures‟) and distinct stages in its relaxation to 

an asymptotic state. Connections to statistical mechanics were made for the long-time solution including 

the final stages of the relaxation.  The long-time solution attained after 10
4
 outer times (L /U) was 

shown to be in relative equilibrium – in the sense that it involves a single structure randomly moving in x, 

but with the vortex-distribution within the structure relative to (say) the core of the moving structure 

being described by equilibrium theories. In the frame of reference of the moving structure, the vorticity-

stream function relationship was found to agree with the vortex-gas analog of the Boltzmann equilibrium 

distribution proposed by Joyce & Montgomery (1973), and the vortex distribution with an anisotropic 

truncated version of the Lundrgen-Pointin (1977) equilibrium solution for vortices in an infinite plane.  

The relaxation of the single structure to the asymptotic solution has two stages that are known in vortex-

gas statistical mechanics as well as in stellar systems as „violent‟ (Euler) and „slow‟ (finite-N) 

relaxations.   

Preceding the formation of the single structure, the dynamics are complex and more interesting, 

in part due to their relevance to evolving shear flows. Following an initial regime (I), where the solution 

was dependent on the initial condition, and preceding a regime (IIIa) of interaction among a few 

structures, there exists an intermediate asymptotic regime (II), during which the thickness of the vortex-

gas free shear layer grows linearly.  The central result of this thesis is the finding that the spread rate in 

Regime II is universal and independent of initial conditions over a wide class of initial conditions, for N 

ranging from 400 to 32000. The momentum thickness in this regime is given as                 

  .  This non-equilibrium universality is special because it is not only the universality of the exponent           

(= 1) in the above relation, but also of the pre-factor coefficient (which is 0.0166 for the momentum 

thickness). Furthermore, this universality is robust to both the initial value of the Hamiltonian as well as 

to small perturbations to the Hamiltonian. The statistics relevant to both statistical mechanics and fluid 

dynamics were shown to be self-similar in Regime II. It is important to note that, while being an analog 

of the asymptotic state in fluid dynamics, the entire duration of Regime II is O(1 L/U), which is 10
-4 

of 

the total duration of the relaxation process and one order shorter than that of the „violent‟ relaxation of 

the single structure. Hence it can justifiably be considered as „explosive relaxation‟. While the 

universality of Regime II demands a statistical-mechanical explanation, neither equilibrium theories nor 

Boltzmann-inspired vortex-gas kinetic theories are applicable in this Regime, as it is far from equilibrium 

and characterized by strong correlations arising from presence of multiple coherent structures. In spite of 

what may at first appear as gross simplification, detailed comparisons with experiments show that the 

temporal vortex-gas free shear layer is remarkably relevant to high Reynolds number turbulent free shear 

layers. The inviscid temporal vortex-gas simulations have thus enabled tackling long-standing 

controversies on issues such as the universality or otherwise of asymptotic self-preservation.  

The second part of the thesis exploits this general agreement between the vortex-gas and Navier-

Stokes free shear layers, and the former was demonstrated to be useful as an inexpensive non-linear tool 

to study connections with hydrodynamic instability theories as well for flow control applications.  

Supplemented by the spatial and viscous simulations presented in the last two chapters, the vortex gas 

has also provided new insights into the dynamics of turbulent shear flows, including the effect of spatial 

feedback on structure interaction and internal balancing of viscous and Reynolds stresses. Hence, unlike 

most other statistical-mechanical models, the vortex-gas has proved itself to be well beyond a toy model 

to study plane free turbulent free shear flows.  
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To summarize, the extensive simulations and analyses presented in this thesis reveal that the 

vortex gas is indeed a promising bridge between plane turbulent shear flows and statistical mechanics, 

and possibly opens up a new way of understanding what is considered the last unsolved problem in 

classical physics. 

 

Directions of current and future research 

The vortex-gas simulations presented in this thesis have provided some conclusive understanding and 

new insights into the dynamics of turbulent free shear layers. However, they also raise several interesting 

questions that are yet to be resolved. The following is a list of such issues, many of which are currently 

being explored and some preliminary ideas and results are presented below.  

i) Models with finite interaction range – statistical-mechanical and stability implications 

Nearest neighbor models are often used to greatly simplify N-body problems. The Ising 

model in magnetism and the hard-sphere model in molecular dynamics are classic examples. 

The nearest neighbor model is justified in such systems which have short-range interactions.   

The present vortex-gas problem on the other hand has long-range interactions. However, 

preliminary simulations show that limiting the interaction distance between two vortices by a 

length that scales with the local thickness yields interesting results (for case R4-400 in Table 

3.1), as shown in Fig.10.1. 

 

Figure 10.1. Effect of limiting maximum interaction range.  

 

The governing equations (2.1 and 2.2) are same for these cases, except that 

         when 

                                     
 

 
 

  

 
          

 
 

We perform a set of simulations with the same initial condition class and the value of 

N (= 400) as R4-400 (see Table 3.1).  After tU/l = 20, we limit the maximum interaction to 

a fraction of the local thickness, say  rinteract = Cinteract RMS. The results on the spread rate are 

plotted against rinteract/ (using  = RMS/1.77The results show that the spread rate in 

Regime II is within 10% of the universal value as long as rinteract is greater than 24It is 

interesting that the average inter-structure spacing is ~ 15  . This therefore implies that the 

nearest-neighbor interactions (not in terms of vortices, but in terms of coherent structures) 
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contribute to the bulk of the spreading in Regime II. This could greatly simplify the problem, 

both from statistical-mechanical and hydrodynamic stability points of view.  

The picture of nearest-neighbor coherent structures would imply that     could be 

modeled considering only the nearest-structure correlation as a first step towards a realistic 

vortex-gas kinetic theory that is capable of describing Regime II. Another approach under 

consideration utilizes this nearest-structure approximation in conjunction with the monopole 

approximation (discussed in Ch.6) and the vortex-collision models of P.K. Dutta (1988). 

Similarly, to consider only the nearest structure in a hydrodynamic stability framework 

would imply considering only the interactions between modes around the fundamental and 

subharmonic, and possibly incorporating the non-linear interactions responsible for the 

negative growth exponents observed in Fig. 6.11.  

 

ii) Connections between growth rate and mechanism in single-stream shear layers 

The results presented in Sec. 9.2 show that with increase in  , the spread rate is increasingly 

larger than the Galilean-transformed temporal rate.  Analysis of coherent structure interaction 

(Sec 9.3) at larger values of    showed that there is a shift of mechanism from merger-

dominated step-increase in structure size to continuous structure growth via capturing 

vorticity from smaller structures or disorganized background vorticity. The details of the 

connection between the shift in the mechanism and the increased growth of the layer are 

currently being investigated.  

 

iii) Understanding the interplay between viscous and turbulent stresses in intermediate Reynolds 

number shear layers  

Results presented in Ch.8 showed that there exists a sub-regime during which the viscous 

and Reynolds stresses adjust themselves in such a way that their sum is the universal Regime 

II stress. The detailed underlying mechanisms responsible for this observation are under 

investigation.  
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APPENDIX A: Accuracy, conserved quantities and Recurrence 

 

A1. Accuracy  

One way of assessing the accuracy of the present simulations is to observe the behavior of the statistics of 

interests for different time-steps (t) and precisions. We compute case R4-1600 listed in Table 3.1, for 

time-steps of 0.025, 0.1, 1, 4 l /U .  Results for momentum thickness are presented in Fig.A1 and A2 

and results for single and two-vortex distributions are presented in Figs. A3 and A4 respectively. Note 

that there is hardly any variation  in the statistics of interest between t = 0.025 and 1.0, the present 

simulations employ a time-step of  t = 0.1 l /U.  

 

Figure A1. Evolution of Momentum thickness for different time-steps and precisions (R4-1600) 

 

 

Figure A2. Spread rate computed from best fit over tU/l = 32 to 1280 for different time-steps and precisions 
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Figure A3. Single particle distribution function computed for simulations with different time-steps 

(R4-1600 ; tU/L = 0.8) 

 

 

 

Figure A4. Two particle correlation function computed for simulations with different time-steps  

(R4-1600 ; tU/L = 0.8 ;  y1 = y2 = 0.18 ) 
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Figure A5.  A. Robustness of evolution of thickness (RMS) to numerical scheme. B. Variation of 

Hamiltonian with time for second order Symplectic scheme C.  Variation of Hamiltonian with time for 

second order explicit (non-symplectic) scheme.  

 

Explicit schemes like the RK-4 employed in this work most often lead to a monotonic decrease 

of the Hamiltonian with time. Hence a case can be made for the use of phase space preserving symplectic 

schemes for long-time simulations, as such schemes do not lead to a monotonic change in the 

Hamiltonian but a fluctuation about its initial value.  However, symplectic schemes are often more 

expensive for any given order of accuracy. Figure A5 shows that for N = 200, a / l = 0.001 the evolution 

of thickness is nearly identical for both symplectic and nonsymplectic schemes (both second order). 

Furthermore, the Regime II spread rate observed in both schemes is in excellent agreement with the 

universal Regime II obtained in the present simulations (RK-4). Hence the additional cost of employing 

symplectic schemes does not seem to be essential for the statistical evolution of interest. 

 

A2. Conserved quantities 

For the present x-periodic system, the Hamiltonian is given by  
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Consider an infinitesimal translation by         and rotation by an infinitesimal angle   of the system 

 

The x and y displacements of the i
th
 vortex are then given by  

 

                                                                                              

 

The resulting change in the Hamiltonian is given by  

 

     
  

   
    

  

   
    

 

                                                                                 

 

Using Hamilton‟s equations (5), and substituting (A3) in (A4) we get 

A                                                      B 
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Explicit evaluation of    by substitution of (A3) in (A1) gives  

 

     
   

  
    

                                                

                                   
  

 

       

 

   

            

 

Comparing coefficients of   ,    and   in equations (A5) and (A6), we get the conservations laws for 

the centroids as  
 

  
                                                                                                                         

 
 

  
                                                                                                                         

 

and the rate of change of the second moment as 

 

  
     

    
     

 

  
   

                                                

                                   
   

 

       

 

   

 

 
                                                                                                                                                                               

Hence second moment is not conserved in the present model.  

 
Figure A6.  Conservation of    and non-conservation of     the projected centroid of the vortices in the 

domain.  

 

Further, while (A8) implies conservation of the y-centroid, there is a subtlety in the conservation of the x-

centroid. As the present system is periodic in x,      are like angular variables, and hence                           

               is conserved, but the „projected‟ centroid of the vortices in the domain,          , 

is not conserved. This is consistent with the results of the present simulations, shown in Figure A6, where 

   fluctuates between 0 and L and is close to the center of the core,       (except when xcore is near 

      or      ) , while xm is a constant. 

 

A3. Recurrence 

 We make a few brief remarks on the issue of recurrence.  While the Poincare‟ theorem suggests 

reversibility, it is well known in statistical mechanics that the recurrence times often increase 
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exponentially with N and hence can be astronomical for large-N systems (Chandrasekhar, 1943). Hence 

such a recurrence is not expected to be observed in any realistic-time calculation involving a reasonable 

value of N. However since Birkhoff and Fisher (1959) suggested that a vortex sheet (discretized using 

point vortices) will eventually unroll following the Poincare‟ theorem, we briefly explore this issue even 

though it is not entirely clear whether the theorem applies to this problem.  Further, it is unlikely that any 

numerical scheme could return a system of point vortices to a close vicinity of the initial state even if the 

Poincare theorem holds, due to non-zero numerical noise (as discussed in Sec. 2.4). So, we explore this 

issue using a weak criterion of recurrence, defined by the RMS value of y-positions of the vortices being 

within a 20 % neighborhood of the initial value.  Simulations performed with 4 to 7 vortices show (Fig. 

A7) that such a weak recurrence does occur (for single realizations) over very long timescales. For N = 6, 

average recurrence time                 , and is found to increase exponentially with N (Fig. A8).  

On extrapolation,                 for N   10
2
, which is 60 orders of magnitude longer than the 

maximum time of integration in the simulations. Further, instability ensures that such an unrolling is 

immediately followed by rolling. While we cannot be certain that the final state reached in the present 

simulations is representative of pure Hamiltonian dynamics, the above findings are not inconsistent with 

the remarks of Birkhoff and Fisher. Thus the present observation of the average equilibrium thickness 

being much larger than the initial thickness does not necessarily contradict the argument that rolling has 

to be followed by unrolling at some point of time. Instead, it only suggests that the time spent in the 

„unrolled states‟ is only a very small fraction of the total time and hence is not reflected in the statistics 

involving long-time averages.  

The present finding that recurrence is likely to be observed in only the very remote future is also noted by 

Birkhoff & Fisher, who say : “the numerical evidence indicates that effective randomization takes place 

in a few wave lengths of relative motion. (~ Unrolling ~, however, presumably takes place only in the 

very remote future or past)”.  

We may summarize our view of the Birkhoff-Fisher argument as follows.  A vortex sheet approximated 

by an array of (more than three) point vortices will become chaotic.  Our results show that the long-time 

statistical solutions agree with the Joyce-Montgomery and (an appropriate variant of) the Lundgren-

Pointin equilibrium statistical mechanical theories, which are both averages over all microstates on the 

constant-Hamiltonian surface. This implies that the vortex-gas shear layer visits every microstate 

including the initial state on the constant-Hamiltonian surface with equal probability, i.e. the system 

follows micro-canonical ensemble.  

 

 

Figure.A7. Recurrence for different N. No recurrence observed for N > 7 for           . 
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Figure.A8. Exponential increase in recurrence time with N. 
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APPENDIX B :  

Some comments on the appropriate thermodynamic limit 

Onsager did not deal explicitly with questions of the thermodynamic limit in his paper, but they 

are important for the statistical mechanics of the vortex-gas. Frohlich and Ruelle (1982) analyzed a 

neutral vortex-gas for the case in which the energy grows linearly with N when individual vortex 

strengths are held fixed. (While energy formally scales as   ,  the     terms may cancel out for the 

neutral case and thus energy may scale as    . But this need not be the case when the positive and 

negative vortices separate, see Fig B1) Frohlich and Ruelle studied the limit     with the average 

energy per particle     and the number density     (  is the area of the domain) held fixed without any 

scaling of  . They showed that in such a formulation there are no negative temperatures in the 

thermodynamic limit. Eyink and Spohn (1992) showed that for obtaining negative temperatures energies 

that scale as    must be considered.  Eyink & Sreenivasan (2006) present a review and discussion on the 

above issues, and state that a nontrivial limit with energy of      can be obtained only if           . 

This limit has often been adopted, including in some recent studies Chavanis(2001). Note that in all of 

the above mentioned studies,   is kept fixed. 

 

Figure B1. Scaling of Hamiltonian with N.  
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In the free-shear-layer problem all the vortices are of the same sign, and hence there is a well 

defined total circulation prescribed by the fluid dynamics. Hence, the natural limit is          with 

       fixed, as it recovers the continuous vorticity distribution of a temporal shear layer in a given 

domain L and with a prescribed velocity difference   . Thus both L and   , fixed by the underlying 

fluid-dynamical problem, are independent of N. 

If we also adopt the conventional fluid-dynamic definition of energy given by       , where 

   is the density of the fluid (which is independent of the properties of the vortex-gas), the energy scales 

as        and hence is N-independent and  non-extensive (in N). This leads to the temperature scaling as 

                , which is N-dependent and goes to zero in the thermodynamic limit. This is an 

expected consequence of a non-extensive energy but an extensive entropy. Adopting the fluid 

dynamically relevant limits therefore leads to `strange thermodynamics'.  

However, we must note that just as the temperature of the vortex-gas system (which could be 

negative) is not related to the temperature of the fluid (which is strictly positive), the energy of the 

vortex-gas system is not directly related to the energy of the fluid. This also implies that the density in the 

expressions for energy and temperature need not be related to the density of the fluid. Therefore, one is 

free to determine an appropriate `density' for the vortex-gas. To do this, we revisit  Hamilton's equations 

(Eqs 2.4, 2.5) and recast them in a form in which the respective quantities have the usual dimensions of 

position, momentum and energy,  

 

with positions      , momenta        and energy     , where   is a constant factor that 

provides    the units of momentum and   has units of density, so that   has the units of energy. Any 

rescaling of    and    by  -dependent factors implies that such a scaling would be sensitive to the 

particular limits chosen, and a clear discussion is not straightforward. For the Biot-Savart equations to be 

recovered,   should be set to   . Since   is a constant factor,       . This `density' does not have a 

direct physical interpretation (as it is  related to neither the number density of the vortices nor the density 

of the fluid) and only ensures that the transformed quantities in Hamilton's equations for the vortex-gas 

system have conventional dimensions. 

 But if we adopt the above definition of density in the expressions for energy and temperature, we 

find that in the fluid-dynamically relevant limit        , we have                      

      . This is an extensive energy function, consistent with standard thermodynamics. Temperature 

scales as          , which is a finite non-vanishing  -independent fixed quantity     even in the 

limit    . With this definition of `density', the fluid-dynamically relevant limits are also consistent 

with standard thermodynamics; and under these limits our simulation results when combined with the 

Joyce-Montgomery relation also point to the temperature having a linear dependence on     .  
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APPENDIX C : Effect of desingularization 

 

Hama & Burke (1960) and Moore (1971) show that an increase in the number of vortices makes 

the system more chaotic and creates smaller scales (in the perturbation of the discretized vortex sheet). 

This is understandable as the Kelvin-Helmholtz instability of a vortex sheet leads to fastest growth for the 

smallest wavelength, which in this case is the inter-vortex spacing. Hence the system of point vortices 

when used as a discretization of a vortex sheet does not lead to a smooth roll-up. Acton addressed this 

introducing a cut-off radius following Chorin and Benard (1972).  

Krasny (1986) introduced a desingularized version of the governing equations by adding a small 

positive quantity        (   in Krasny‟s notation) to the kernel  (  is proportional to the radius of spread 

of resulting vorticity field around each vortex in the units of l).  This prevents arbitrarily large velocities 

close to each vortex. Hence the governing equations of such an x-periodic array of desingularized 

vortices of are given by 

   

  
  

 

   
 

                 

                                         

 

       

                 

   

  
  

 

   
   

                

                                          

 

       

                  

 

It is important to note that the Hamiltonian of the point-vortex system is no longer conserved, but it is 

possible to define an alternate Hamiltonian (C3) that will be conserved by (C1,C2).  

     
  

  
      

 

 
      

         

 
       

         

 
   

 

 
 

 

  

 

       

 

   

                  

 

The solutions of the desingularized equations have the serious disadvantage that they cease to be a weak 

solution of the Euler equations when inter-vortex distances become comparable with  . 

In the designularized system, the vorticity field is no longer a set of delta functions, but is spread 

over a region around the center of each desingularized vortex. Hence the effective vortex sheet reprented 

by a row of such desingularized vortices (when the desingularization core is larger than the inter-vortex 

spacing) has finite thickness and hence is not unstable to small wavelength perturbations of the order of 

the inter-vortex spacing.  

Desingularization therefore „filters‟ out the high wave number instabilities and delays the onset 

of chaos in the system (but as we shall show, only to a finite time depending on the value of  ). A 

physical interpretation of this observation is the following.  A desingularized array of vortices with     

approximates a thick shear layer (as opposed to a vortex sheet), as the vorticity is no longer confined to 

points, but over blobs of finite radius. The shear layer of finite thickness is unstable only to wavelengths 

larger than certain multiple of the thickness (for a piece wise linear shear layer with width    the 

smallest unstable wavelength is around 4.9    and the most unstable being        , see Chapter 6). Thus 

when    , the perturbations with wavelength of      that arise due to discretization are no longer 

unstable.  
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Figure  C1. The initial development of the layer with different values on  . (Note that x and y are not to 

scale). Note that with larger values of  , the effective thickness (based on the velocity profile) is larger 

and hence the most unstable wavelength is longer and grows slower.   

 

In order to study the effect of desingularization, simulations of case R3 (see Table 3.1) are 

carried out for different values of the desingularization parameter   and the results are shown in Figs. C1 

and C2. It can be observed that the simulations with desingularization initially grow very slowly. This is 

because, the fast growing - short (with respect to  ) wavelength disturbances in the random initial 

condition are suppressed as shown in Fig. C2. However, this only increases the duration of Regime I, as 

once coherent structures are formed (initial size of which depends on the  , see Fig. C1), 

desingularization does not prevent chaotic interaction of coherent structures.  

For   = 0.01 L and    0.02 L, it is seen that the layer eventually transitions to the universal 

chaotic Regime II with a growth rate identical to that observed for the non-desingularized case. However, 

for          , the layer takes longer than        of 0.8  before onset of chaos and hence Regime II 

may not be very short or absent (as the onset of Regime III will begin) and is not observed within the 

extent of the simulation.  It can be seen from Fig. C2.B that the evolution of momentum thickness of the 
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different cases collapse on scaling with  . This is because,   determines the effective thickness (based on 

the mean velocity profile) of the initial layer and hence the most unstable wavelength and the size and the 

number of the coherent structures that are initially formed at the end of the first roll up. If   is of the order 

of L, only very few structures are will be formed in the periodic box and hence the layer will enter 

Regime III right away. But in the limit we are interested in, namely       for a given    , there will 

always be sufficient number of coherent structures left in the domain after the first roll-up and subsequent 

development will be dominated by chaos at the level of the coherent structures which will not be 

suppressed by desingularization. Hence the conclusions on universality of Regime II are unchanged by 

desingularization.  

 

 

Figure C2. Effect of desingularization. case R3 (Table.3.1) is repeated with different values of 

desingularization parameter (  . A. Increase in  , while delays (in terms of tU/L and tU/l) the onset of 

Regime II, has no influence on the spread rate in Regime II, and hence the observation on universality in 

the non-equilibrium evolution is unaffected on desingularizing the vortices (with any given     at 

sufficiently large   ). B. Scaling based on  . Note that                for    and      .  

 

 Figure C3 shows the evolution of a single mode perturbation in a vortex-gas shear layer of finite 

thickness (analogous to case discussed in Sec. 6.1) for different values of desingularization. It is observed 

while desingularization suppresses local regions of disorder within the structure, the linear and non-linear 

evolution of the mode remain unaffected as long as the desingularization radius is less than 20% of the 

wavelength.  

Therefore it may be concluded that the initial condition of an array of point-vortices is chosen to 

approximate a vorticity field with a well defined finite initial thickness (either by choosing a >> l or 

employing several rows of vortices as done in Ch.6), desingularization makes no difference even in the 

initial large scale evolution.  
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Figure C3. Effect of desingularization on the evolution of a single-mode in a thick vortex-gas free shear 

layer 

 

 In summary, desingularization acts as a proxy for finite thickness and hence suppresses the 

development of small scales. But as long as the domain is sufficiently large, the desingularized vortex-

gas shear layer will be unstable to sufficiently long wavelength disturbances whose evolution is 

unaffected by desingularization. The subsequent roll-up, formation of coherent structures and the 

relaxation to the universal Regime II spread rate are observed to be robust to desingularization.   
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APPENDIX D : Supplementary data for spatial shear layers 

Additional data from spatial vortex-gas simulations, not presented in Ch.9 is included here. Some of the 

following figures support statements, arguments and conclusions discussed in Ch.9 and are referred to i 

appropriate places.  

 

Effect of upstream and downstream conditions on evolution of layer 

 

Figure D1. The robustness of self-preservation spread rate to presence of doublet sheets on splitter plate 

(at  =1). 

 

 

Figure D2. The robustness of self-preservation spread rate on constant or variable rate of vortex-release 

at the end of the splitter plate (at  =1). 
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Figure D3. Effect of different downstream boundary conditions on evolution of the layer. Note that the 

use of a single vortex-sheet or a fan of vortex-sheets is used downstream, affects the spreading of the 

layer for only x/L < 0.7. However, the presence of a buffer vortex alters the spread rate for x/L > 0.2.  

 

Supplementary results on structure analysis 

 

Figure D4. Analysis for  = 1, shown in Figs. 9.7 & 9.8 for tUm/ L = 98 to 98.4 repeated for tUm/ L = 82 

to 82.4. Note the qualitatively similar results are observed, suggesting the robustness of the conclusion on 

continuous growth of structures at   = 1. 
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Figure D5. Analysis for  = 1, shown in Figs. 9.7 & 9.8 for buffer-fan model repeated for a setup with a 

single downstream vortex-sheet and without doublet. The results suggest the robustness of the conclusion 

on continuous growth of structures at   = 1 to different downstream boundary conditions. 

 

Figure D6. Analysis shown in Figs.9.7 -9. 9 for  = 0.627, 1 repeated for an intermediate  = 0.905. The 

results appear to suggest a mix of the two mechanisms.  
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Figure D7.  Effect of top wall on evolution of single-stream vortex-gas shear layer.  
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APPENDIX E : Comparison of Regime III(c) with the Stuart solution 

 

A variant of equation (4.3) was solved by Stuart (1967) for the present boundary conditions 

(periodic in x, infinite domain in y) in the context of nonlinear stability, and the solution has been 

reproduced in Sommeria et al (1991).  

 

Figure E1. Comparison with the Stuart solution.  A. Contour plot of f1 for Regime III(c) (averaged over 

      = 15000 to 27000).    B. Contour plot of the Stuart solution (Eqn. E1).  C. Comparison of vortex-

gas RIII(c) and the Stuart solutions along the x and y axes.  

 

 

 

J.T. Stuart, "On finite amplitude oscillations in laminar mixing layers." J. Fluid Mech. 29 (3), 417-440 

(1967). 
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In the present notation, the Stuart solution would be  

   
   

      

                          
                             

                   

where    is an adjustable constant and    is any integer (that represents the period of the solution in x). 

The value of    depends on the initial energy, and it was shown (Sommeria et al, 1991) that for thin 

strips of vorticity, like the one considered in case 400a,             . We take      (as there is a 

single structure in the domain) and –          (as estimated by the best fit in Fig. 4.13). The 

solution (E1) is shown in Fig.E1 and is compared with the Regime III(c) solution for the vortex gas (case 

400a, same data as shown in Figs. 4.12 - 4.14).  

It can be observed from Fig. E1 that the present numerical solution agrees very closely with the 

analytical solution of Stuart, and this taken along with the agreement observed in Figs. 4.13 and 4.14, 

suggest that Regime III(c) represents the final maximal entropy state of the system.  It is remarkable that 

a solution derived in the context of nonlinear stability of a laminar mixing layer can be tied so closely to 

the equilibrium state of a turbulent vortex-gas free shear layer and Onsager‟s statistical mechanics of 

point-vortices.  
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An ode to 

 Life, Complexity and the Pursuit of Understanding  

via the Vortex Gas 
 

 

Life is full of complexities, 

A mix of tragedies and comedies, 

The joy and sorrow; pleasure and pain, 

Love and hate, all for gain. 

  

There are friends and family, 

Queen and country, 

There are factions and nations, 

All with different denominations. 

  

Some things are sweet but some things are sour, 

There are the rich and there are the poor, 

Those who believe and others who don’t, 

Lots of events which we want to note! 

 

There are the tigers and the deer, 

Exotic places, far and near, 

The Sun and the wind that’s dry 

The stars in the clear night sky! 

  

There are also clouds – white, black and gray, 

Some bring rain which makes me say ‘Hurray!’ 

From the Galaxies to the microbes, each of us has a story, 

In this universe that’s full of mystery ! 

  

  

All of this and all of this 

Is but an interaction of particles, 

To appreciate we may fail, 

It’s all just mechanics at a microscale  

  

In order to appreciate this lore, 

Check out the vortex gas, 

It’s a bunch of vortices and nothing more, 

But you will begin to understand as you gaze. 

  

There are structures and there are braids, 

There are mergers and there are splits 

There is peace and there is violence 

The system is full of exuberance 

  

There is chaos and nothing seems trivial, 

But some things are mysteriously universal, 

All this and many more sensations, 

Are all created by simple interactions. 

         

- Saikishan Suryanarayanan 


