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Abstract

The thesis investigates the first effects of micro-scale inertia and stochastic orientation fluctua-

tions on the orientation dynamics of spheroids in shearing flows. The first chapter of the thesis

focuses on a single spheroid in a planar linear flow and the long-time orientation dynamics

of the spheroid set up by weak inertial effects is identified.The second chapter of the thesis

focuses on estimating the viscosity of a dilute suspension of spheroids in a simple shear flow.

It turns out that the inertia sets up a unique steady state orientation distribution, and therefore a

unique viscosity, for a dilute suspension of prolate spheroids of all aspect ratios, and of oblate

spheroids with aspect ratios greater than 0.14. A stochastic orientational decorrelation mech-

anism is needed to render the viscosity unique for a dilute suspension of (oblate) spheroids

with aspect ratios smaller than 0.14. Rotary Brownian motion is considered as a canonical ex-

ample for the decorrelation mechanism. Interestingly, thesteady state orientation distribution

in the presence of both inertia and rotary Brownian motion lends itself to a novel thermody-

namic interpretation and leads to the identification of the ‘Tumbling-spinning transition’ in an

anisotropic particle suspension. The ‘Tumbling-spinningtransition’ has striking similarities

to the coil-stretch transition of high molecular weight polymers in extension-dominated flows.

This interpretation is also explained in the second chapterof thesis. In the third chapter the

long-time orientation dynamics of a spheroid sedimenting in a simple shear flow is analyzed.

The fourth chapter investigates the effect of inertia on thetime period of rotation of a spheroid

in a simple shear flow, a canonical rheological flow, and a specific instance of a planar linear

flow, is also quantified.

The first chapter is concerned with understanding the effectof inertia on the motion of spheroidal

particles in a planar linear flow. A spheroid can be characterized by its orientation (as specified

by a pair of angles) and its aspect ratio (κ); with 0< κ < 1 for an oblate spheroid andκ > 1

for a prolate spheroid. The planar linear flow can be defined interms of a single parameter

λ , with −1 ≤ λ ≤ 1, and asλ increases from -1, one obtains different flows starting froma

solid-body rotation atλ =−1, the elliptic linear flows for−1< λ < 0, a simple shear flow at

λ = 0, the hyperbolic linear flows for 0< λ < 1, finally terminating in a planar extensional

flow at λ = 1. The motion of the spheroid in a planar linear flow is well understood in the
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Stokes limit, that is, when there is no inertia either in the particle or the fluid phase. In the

Stokes limit, a spheroid rotates indefinitely in any of a single parameter family of periodic or-

bits, named Jeffery orbits (after the original discoverer)providedλ is less than a critical value

that is a function of the particle aspect ratio, approachingzero in the limit of extreme aspect

ratios (κ = 0 and∞). An investigation is carried out to find the effect of weak particle inertia

at O(St) and weak fluid inertia at O(Re), whereSt andReare respectively the Stokes number

and Reynolds number based on the length of the major axis of the spheroid. The expressions

for the O(Re) and the O(St) corrections to the angular velocity in the Stokes limit areobtained

in terms of a volume integral using a reciprocal theorem. A novel analytical framework based

on a vector spheroidal harmonics formalism is used to obtainthe Stokes disturbance velocity

fields entering the reciprocal theorem integral, and the evaluation of the resulting integral in

spheroidal coordinates yields closed-form expressions for the inertial corrections. The motion

of the spheroid is characterized in terms of an inertial drift defined as the change in the orbit

constant (C, defined in such a way that it is constant for a particular Jeffery orbit) in a single

Jeffery period. Based on the inertial drift, theλ andκ values for which the final orientation of

the spheroid is uniquely determined by inertial effects alone, independent of initial conditions,

are identified. For theseλ andκ ’s, the final orientation of the spheroid is restricted to twoor-

bits; the tumbling orbit, where the orientation vector rotates in the flow-gradient plane and the

spinning orbit, where the orientation vector is always aligned to the vorticity axis, regardless

of initial orientation. For theλ andκ values other than those identified above, inertia does

not stabilize a unique orbit. A repeller orbit exists separating the unit hemisphere into two

distinct basins of attraction; with the attractor being thetumbling orbit for one basin and the

spinning orbit for the other. Thus, depending on the basin inwhich the initial orientation of

the spheroid lies, the final orientation can either be the tumbling orbit or the spinning orbit.

The second chapter is concerned with estimating the effect of inertia on the viscosity of a

dilute suspension of spheroids in a simple shear flow. The suspension viscosity is a function

of the spheroid orientation distribution. It is well known that in the Stokes limit there is no

unique steady state orientation distribution and therefore the viscosity is indeterminate. The

analysis in chapter 1 of the thesis shows that in a simple shear flow inertia leads to a unique

steady state orientation distribution for prolate spheroids and oblate spheroids of aspect ratio

larger than 0.14. In the absence of stochastic orientation fluctuations, this distribution is singu-

lar, being localized at either the tumbling or spinning orbits. The viscosity is estimated for this

suspension using this singular distribution. For a suspension of spheroids with aspect ratio less

than 0.14 the steady state viscosity continues to depend on the initial orientation distribution

via the fractions of initial orientations in the basins of attraction of the tumbling and spinning
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orbits. Therefore, an additional stochastic orientation decorrelation mechanism in the form

of rotary Brownian motion, characterized by the Peclet number (Per ), is included to obtain

the unique steady state orientation distribution. The orientation distribution in the presence of

the inertia and the rotary Brownian motion is formulated as the solution of a one-dimensional

drift-diffusion equation in the orbital coordinate (C) with the combined inertial and Brownian

drift arising as the gradient of a potential. Regarding thispotential as an effective free energy,

the steady state orientation distribution lends itself to anovel thermodynamic interpretation in

κ −C−RePer space;RePer plays the role of a inverse (non-equilibrium) temperature.The

minima of the potentials are identified as phases with the small-C and large-C minima respec-

tively named the spinning and the tumbling phases and a phasediagram is constructed in the

κ −C−RePer space. The transition between the tumbling and spinning phases with changing

RePer is regarded as a phase transition with an associated coexistence region. Interestingly,

this coexistence region continues to exist for other planarlinear flows withλ ’s close to 0,

although the region rapidly shrinks with increasing|λ |. The evolution in the two-phase re-

gion is characterized by a pronounced hysteresis and experiments where the hysteresis may

be observable are proposed. The viscosity is estimated based on the steady state distribution

and remarkably, there exists a transition from a shear-thinning behavior to a shear-thickening

behavior for the viscosity with increasing aspect ratio, with the transition leading to a discon-

tinuous jump in viscosity at an aspect ratio of about 0.013 inthe athermal limit (RePer → ∞).

The third chapter is concerned with understanding the effect of inertia on the orientation

of a spheroid sedimenting(due to gravity) in a simple shear flow. Three canonical situations

with gravity along the flow, gradient and vorticity axes of a simple shear flow are analyzed.

The attractors and repellers in the orientation space are identified for these three cases.

The fourth chapter is concerned with understanding the effect of inertia on the time period

of rotation of spheroids in a simple shear flow. A deficiency ofthe O(St/Re) analysis above

is that it does not predict a change in the time period (relative to the Jeffery value) in the

asymptotically stable orientation states - the tumbling and spinning orbits. On the other hand,

simulations have consistently observed a decrease (increase) in the time period with increas-

ing particle (fluid) inertia, respectively. To account for this discrepancy, the effect of particle

and fluid inertia to O(St2) and O(Re3/2) respectively, is analyzed, again based on a generalized

reciprocal theorem formulation. The particle inertia at O(St2) results in a decrease in the par-

ticle time period as well as in the maximum angular velocity and an increase in the minimum

angular velocity; all of these being in agreement with the aforementioned simulations. The

fluid inertial calculation is considerably more involved since the O(Re3/2) correction to the



xii

Jeffery period arises from the outer region (distances fromthe spheroid greater than the iner-

tial screening length of O(Re−1/2)). Since inertia arises in the far field, the spheroid is treated

as a time-dependent force-dipole singularity, and the calculation of the period alteration at

O(Re3/2) is performed in reciprocal space. The fluid inertia resultsin an increase the time

period, again consistent with simulation results.
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Chapter 1

Introduction

Suspensions of anisotropic particles are ubiquitous in nature (Mueller et al.2011; Caroet al.

2012) as well as in industrial systems (Lundell et al.2011; Amini et al.2014), with the parti-

cle shape varying between extremes of disk and fiber-shaped morphologies (van Olphen 1963;

Muelleret al.2011; Lundellet al.2011; Derakhshandehet al.2011; Caroet al.2012). It is im-

portant to understand the orientation dynamics of the suspended particles, subjected to a flow,

in order to estimate the transport characteristics of the suspension. For instance, blood, is a con-

centrated suspension of deformable cells in plasma, and itsrheology is sensitively dependent

on the orientation distribution of the dominant suspended constituent - red blood cells (Caro

et al. (2012)). Red blood cells are shaped like biconcave disks with a diameter of about 8µm,

and to estimate the rheological properties of blood, one must understand the orientation dy-

namics of the disks in a pulsatile flow, the typical flow in the cardiovascular system. Another

example of an anisotropic suspension is magma, which is a three phase mixture of inorganic

silicate melt, gas bubbles and anisotropic mineral crystals. The viscosity of magma deter-

mines the nature of the volcanic eruption (Mueller et al. (2011)). While the effect of bubbles

on magma rheology is known (Mangaet al. (1998);Llewellin et al. (2002)), the importance

of suspended crystals on magma rheology has only been recognized recently (Mueller et al.

(2011)). In a paper manufacturing process, one needs to understand the orientation dynamics

of cellulose fibres in the pulp suspension, subjected to a flow, in order to predict and control

the properties of the final product (Lundell et al. 2011). Reflective flakes are often used for

flow visualization purposes (Thoroddsen & Bauer(1999);Gotoet al. (2011)), and to interpret

the scattered intensity patterns that arise from the suspended flakes, it is crucial that one have

a knowledge of their orientation dynamics in the local shearing flow (Savas(1985);Gauthier

et al.(1998)). These flakes have sizes of the order micro meters and oftenhave extreme aspect

ratios. In contrast to suspensions of spheres, anisotropicparticle suspensions exhibit a rich

array of equilibrium and non-equilibrium phases owing to the additional orientational degree
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of freedom at the microstructural level (Vroege & Lekkerkerker 1992; Brown & Rennie 2001;

Michot et al. 2006; Lekkerkerker & Vroege 2012). As shown originally by Onsager (Lar-

son(1988)), this can lead to non-trivial transitions in orientational order (isotropic to nematic

phases), in turn leading to abrupt changes in transport properties with changes in volume frac-

tion.

As a first step to understand the rheology of, and orientationdynamics in, suspensions of

anisotropic particles, a detailed investigation of the orientation dynamics of a spheroid in a

planar linear flow is presented in this thesis. A spheroid is acanonical anisotropic particle,

its aspect ratio (κ) being the microstructural parameter. Although characterized by a single

microstructural parameter, the shape of the spheroid changes from a flat disk to a slender fibre,

as itsκ varies from 0 to∞, with κ = 1 being a sphere. Thus, understanding the orientation

dynamics of a spheroid of an arbitrary aspect ratio in a suspension, subjected to a flow, might

bring insights into the behaviour of particles, whose anistoropy can vary over a large range.

The particles encountered in the physical examples above, are small in size (order of microns).

So one would expect fluid inertia characterized by Reynolds number(Re), and particle iner-

tia characterized by Stokes number(St), to be weak at the length scale of the particle. For a

spheroid with a semi-major axis of length ‘L’, one can defineRe= ργ̇L2/µ andSt= ρpγ̇L2/µ,

whereρ andρp are the fluid and particle densities,µ is the fluid viscosity anḋγ, a measure of

the magnitude of the velocity gradient, characterizes the strength of the flow. In accordance

with the small particle sizes encountered in the above applications, the thesis explores in detail

the first effects of inertia in the limit of small but finiteReandSt. The flow, on the length scale

of the small particle may be approximated as a linear flow, andplanar linear flow is the most

general two-dimensional flow. Planar linear flow is characterized by a parameterλ , and de-

pending onλ , it can be any of a solid-body rotation, an elliptic linear flow, a simple shear flow,

a hyperbolic linear flow or a planar extensional flow. The parameterλ takes values from−1 to

1, with λ =−1, λ = 0 andλ = 1, corresponding to a solid body rotation, a simple shear flow

and a planar extensional flow, respectively. The suspensionis assumed to be dilute in order to

eliminate the non-trivial effects of hydrodynamic interaction, and therefore the hydrodynamic

volume fraction,nL3 << 1, wheren is the number density of the spheroids in the suspension.

The neglect of hydrodynamic interaction, allows one to focus on understanding the orientation

dynamics of a single particle, a spheroid here, in a flowing suspension.

A fundamental result of Stokesian hydrodynamics, is that anisolated non-Brownian spheroid

in planar linear flow, rotates indefinitely along any of a one-parameter family of spherical el-

lipses providedλ is less than a critical value, sayλcrit (Hinch & Leal 1972). The parameter
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is the orbital coordinateC, which takes values between 0 and∞. These orbits are originally

derived for a spheroid rotating in a simple shear flow by Jeffery (Jeffery 1922), and are epony-

mously called the Jeffery orbits. The indefinite rotation ofa spheroid along a particular Jeffery

orbit, in this limit, makes its orientation distribution atany time, depend on its initial orien-

tation. As a result, the viscosity of a dilute suspension of spheroids, which is a function of

the orientation distribution of a single spheroid, becomesindeterminate in the infinitely dilute

limit corresponding to O(nL3), nL3 being the aforementioned hydrodynamic volume.This is

unlike the case of a dilute suspension of rigid spheres, where the orientation is a degenerate

degree of freedom (in not affecting the velocity field); the O(φ )1 correction to the viscosity

can determined and is given by 5φ/2, where 5/2 is the well known Einstein coefficient (Leal

1992). The indeterminacy mentioned above for a spheroid is a consequence of Stokes flow

reversibility which leads to closed streamlines or pathlines in other situations, with profound

implications for the relevant micro-scale transport processes (Batchelor & Green 1972a,b;

Kaoet al.1977b; Subramanian & Brady 2006; Subramanian & Koch 2006a,c, 2007; Krishna-

murthy 2014).

The primary question that this thesis tries to address is as follows: Can weak inertial

effects at O(Re) and O(St) eliminate the indeterminacy associated with the Stokes limit? To

answer this question, one has to understand the orientationdynamics of a spheroid in planar

linear flows (withλ<λcrit ), in the presence of inertia. The corrections to the leadingorder

Jeffrey angular velocity at O(Re) and O(St), for an arbitrary aspect ratio spheroid, rotating in a

planar linear flow, are derived in chapter2, using a generalized reciprocal theorem formulation

(Leal (1979);Subramanian & Koch(2005);Subramanian & Koch(2006b)). To evaluate the

integral in the generalized reciprocal theorem, one needs the Stokesian disturbance velocity

field around a spheroid in a planar linear flow. While this velocity field may be obtained

using earlier results based on the method of singularities (Chwang & Wu(1974);Chwang &

Wu (1975)), herein the vector spheroidal harmonics formalism developed by Kushch and co-

workers (Kushch(1997);Kushch(1998)) is used. The formalism is based on expressing the

general solution of the Stokes equations, around an arbitrary number of spheroidal particles,

as a superposition of growing and decaying vector harmonicsin local spheroidal coordinates

defined with respect to a Cartesian system centered at each particle, and aligned with the

particle axis of symmetry. This formalism was already used for understanding the inertial and

viscoelastic effects on a single sedimenting particle in anotherwise quiescent fluid (Dabade

et al.2015). Inertia results in a drift across the closed trajectoriesin Stokes flow, and the drift

1 φ andnL3 are the physical and hydrodynamic volume fractions, and that there is no distinction between the
two in the case of spheres.
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is characterized using a multiple time scale analysis. The orbits stabilized by the inertial drift

are identified in theλ −κ plane. For the majority of (λ ,κ) combinations, the stabilized orbit is

either one confined to the flow-gradient plane of the ambient planar linear flow (the tumbling

orbit), or one where the spheroid orientation vector is aligned with the vorticity vector of the

ambient flow (the spinning orbit). However, for some (λ ,κ) combinations, depending on the

initial orientation of the spheroid, the orbit stabilized can be either the spinning or the tumbling

orbit, since both these orbits have non-trivial basins of attraction, separated by an unstable

(repeller) limit cycle, on the unit sphere of orientation. Therefore, for these combinations,

inertia alone cannot eliminate the dependency on the initial orientation.

In chapter3 the question that is addressed is finding the viscosity of a dilute suspension of

neutrally buoyant spheroids in simple shear flow. As mentioned earlier, in the Stokes limit the

viscosity is indeterminate. The analysis in chapter2 indicates that weak inertial effects, in a

simple shear flow, stabilize the tumbling orbit for neutrally buoyant prolate spheroids (κ > 1)

of any aspect ratio, and the spinning orbit for neutrally buoyant oblate spheroids(κ < 1) whose

aspect ratios are larger than 0.137. For these spheroids, the viscosity is calculated based on the

steady state orientation distribution localized at these stable orbits (as is the case in the ather-

mal non-interacting limit). For neutrally buoyant oblate spheroids whose aspect ratios are

smaller than 0.137, inertia stabilizes either the spinningor the tumbling orbit, depending on

the spheroid’s initial orientation. It is shown that if an additional decorrelation mechanism in

the form of rotary Brownian motion, characterized byPer (Per = γ̇/Dr ), whereDr is the rotary

Brownian diffusivity, is included, the dependence on the initial orientation is eliminated. The

unique steady state orientation distribution determined by the combined effect of the Brown-

ian motion and inertia is obtained by solving a convection-diffusion equation. The steady state

Jeffery-orbit distribution arising from a balance of inertia and thermal fluctuations is shown to

be of the Boltzmann equilibrium form, with a potential that depends onC, particle aspect ratio

(κ), and a dimensionless shear rate (RePer ), and therefore lends itself to a novel thermody-

namic interpretation inC−κ −RePer space. In particular, the transition of the potential from

a single to a double-well structure, below a criticalκ , is interpreted as a phase transition, and

the small-C and large-C minima identified with spinning and tumbling phases. The tumbling-

spinning phase diagrams are characterized for a range of flows bracketing simple shear flow,

and the tumbling-spinning envelope is found to be maximum inextent for simple shear. The

hysteretic dynamics within the two-phase tumbling-spinning envelope renders the rheology

sensitively dependent on the precise shear rate history; the signature in simple shear flow be-

ing a multi-valued viscosity at a given shear rate. The tumbling-spinning transition identified

here is analogous to the coil-stretch transition in the polymer physics literature (De Gennes
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1974; Hinch 1974). It should persist under more general circumstances, and has implications

for the suspension stress response in inhomogeneous shearing flows.

In chapter4, the question that is addressed is the effect of inertia on the orientation dy-

namics of a spheroid, sedimenting in simple shear flow. The effect of inertia on a spheroid

sedimenting in a quiescent fluid is already analyzed inDabadeet al. (2015). The sedimenta-

tion torque at O(Resed), whereResed= ρUsedL/µ, is the Reynolds number in sedimentation,

with Used being the sedimentation velocity, makes the spheroid sediment in a broadside-on

configuration. In the broadside-on configuration, the prolate spheroid orientation will be per-

pendicular to the translational velocity, and the oblate spheroid orientation will be aligned to

the translational velocity. The angular velocity of a spheroid sedimenting in a simple shear

flow is obtained again using a reciprocal theorem. The strength of the sedimentation to that

due to inertial drift is characterized by the non-dimensional numbersResed/ReandSt/Re. The

orientation dynamics of a spheroid is analyzed in detail forthree canonical cases, where the

sedimenting force is aligned with any of the gradient, vorticity and flow axes of the simple

shear flow .

In chapter5, the question that is addressed is the effect of inertia, on the time period of

rotation of a spheroid rotating in the orbits that are stabilized by the O(Re) and O(St) drifts

in simple shear flow. It turns out that in the stabilized orbits, the O(Re) and O(St) corrections

to the angular velocity derived in chapter2, do not alter the time period of rotation from its

leading order Jeffery value.Mao & Alexeev(2014) have investigated the effect of inertia on

the time period of rotation of spheroids of different aspectratios using the lattice Boltzmann

method, and concluded that the effect of fluid inertia is to increase the time period from its

leading order value, and that of particle inertia is to decrease it; this numerical investigation is,

however, restricted to Re’s of order unity, and the scalingsfor smallReandStare unclear. The

O(Re3/2) and O(St2) corrections to the time period of rotation are calculated in this chapter

for a spheroid of an arbitrary aspect ratio, rotating in its long-time orbit (either the tumbling

or spinning mode) in simple shear flow. The calculation of theO(St2) correction is straight-

forward since it is regular in nature. The time period correction at O(Re3/2) has a singular

origin, and arises from fluid inertial effects in the outer region (distances from the spheroid of

order the inertial screening length of O(LRe−
1
2 )) where the leading order Stokes approxima-

tion ceases to be valid. Since the correction comes from the effects of inertia in the far field,

the rotating spheroid is approximated as a time-dependent point-force-dipole singularity. This

allows for the relevant reciprocal theorem integral to be evaluated in Fourier space. It is shown

that fluid inertia at O(Re3/2) leads to an increase in the time period of rotation comparedto
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that in the Stokes limit, and particle inertia at O(St2) leads to a decrease of the same, consistent

with the results of recent numerical simulations.



Chapter 2

The orientation dynamics of a spheroid in

planar linear flow

2.1 Introduction

In this chapter we investigate the effect of inertia on the orientation dynamics of a spheroid

in planar linear flow. A spheroid is the simplest shape that can be used to model anisotropic

particles, and is characterized by its orientation (ppp) and aspect ratio (κ). As the aspect ratio

of the spheroid increases from 0 to∞ its shape changes from thin disk to slender fiber. Planar

linear flows form a one-parameter family characterized by a parameterλ , and depending on

λ , the flow can be any of a solid body rotation, the elliptic linear flows, a simple shear flow,

the hyperbolic linear flows or an extensional flow. The parameter λ can take any value from

−1 to 1, and with increasingλ , the streamlines of the planar linear flow transition from being

closed for solid body rotation and the elliptic linear flows,to straight lines for the simple shear

flow, and to open streamlines for the hyperbolic linear and extensional flows (Bentley & Leal

1986; Subramanian & Koch 2006c). The effect of inertia on the streamline topology plays a

significant role in determining the transport properties ofmany disperse multiphase systems

(Subramanian & Koch 2006a,c, 2007; Krishnamurthy 2014). Planar linear flows can be easily

generated in an experiment(Bentley & Leal 1986; Lee et al. 2007), the device used being a

four roll mill, developed originally by G.I Taylor. The orientation dynamics of a non-Brownian

spheroid in planar linear flow is well known in the Stokes limit, that is, when there is no inertia

in the particle as well as the surrounding fluid. In this limit, the spheroid rotates in any of a

one parameter family of closed orbits, whenλ is less than a critical value, sayλcrit ,(Hinch &

Leal 1972), and the orbit in which the spheroid rotates is determined by its initial orientation.

The orbits are spherical ellipses, as shown byJeffery(1922), and are eponymously known as
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Jeffery orbits. Whenλ ≥ λcrit , the trajectories are not closed; the open trajectories connect a

network of six fixed points on the unit sphere. The first effects of fluid and particle inertia at

O(Re) and O(St) on the orientation dynamics of the spheroid rotating in a planar linear flow is

analyzed in detail in this chapter. HereReis the Reynolds number,Re= ρ f γ̇L2/µ, andSt is

the Stokes number,St= ρpγ̇L2/µ, whereρp andρ f are the particle and the fluid densities,γ̇
is the shear rate characterizing the ambient planar linear flow, µ is the fluid viscosity andL is

the the length of the semi-major axis of the spheroid.

Jeffery (1922) himself had hypothesized that in simple shear flow, weak inertial effects

would eventually move the particle to an orbit of minimum dissipation. These correspond to

the log-rolling and tumbling orbits for prolate and oblate spheroids, respectively. Initial ex-

perimental investigations (Taylor (1923),Trevelyan & Mason(1951)) were inconclusive. The

earliest analytical investigation which studied the effect of weak fluid inertia on a nearly spher-

ical particle in simple shear flow was that ofSaffman(1956), and appeared to confirm Jeffery’s

hypothesis, although no details of the analysis were given.In the same paper, the author con-

cluded that particle inertia does not lead to any drift. In contrast,Karnis et al. (1966), in

experiments with disks and rods in Couette flow, observed theparticles to migrate towards or-

bits of maximum energy dissipation. Later,Harper & Chang(1968) analyzed the motion of a

dumbbell-shaped particle, in simple shear flow, in the limitwhen the inter- sphere separation is

much greater than the inertial screening length (ofO(aRe−
1
2 ), a being the sphere radius). The

torque leading to the drift was regarded as arising from inertial lift forces (Saffman(1965))

acting independently on the each sphere, and as a result, thedumbbell was found to move

towards a tumbling mode. However, as argued inSubramanian & Koch(2005), use of the

Saffman lift-force is inconsistent with the limit considered by the authors. There have been

more recent investigations for the inertial drift in simpleshear flow, based on a reciprocal

theorem formulation, that are either limited to particles with large aspect ratios (Subramanian

& Koch (2005)), with the attendant simplifications arising from viscousslender body the-

ory (Batchelor(1970a)), or to particles with aspect ratios near unity which allowfor a regular

perturbation expansion about a sphere (Subramanian & Koch(2006b)). For nearly spherical

axisymmetric particles,Subramanian & Koch(2006b) conclude that the effect of fluid inertia

is in accordance with Jeffery’s hypothesis. Particle inertia was found to cause prolate and

oblate near-spheres to drift towards tumbling and spinningmodes, respectively. For slender

fibers,Subramanian & Koch(2005) found a fluid inertial drift towards the tumbling mode, a

decrease in the speed of rotation with increasingRe, and a relatively modest criticalReabove

which the particle ceases to rotate. It was also argued therein that the effects of particle inertia

would be asymptotically small for large aspect ratios. Recently, the effect of particle inertia
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on the orientation of axisymmetric particles of arbitrary aspect ratios in planar linear flow, to

O(St), has been examined byEinarssonet al. (2014). In this work, the O(St) correction to the

leading order Jeffery angular velocity in a general linear flow is presented in an invariant form,

and it concludes that in the particular case of simple shear flow, prolate and oblate spheroids

drift towards the tumbling and spinning modes, respectively, consistent with the near-sphere

analysis ofSubramanian & Koch(2006b). However, they do not do a detailed investigation

of the effect of particle inertia on the orientation of a spheroid in a planar linear flow. InCan-

delieret al. (2015) the effect of fluid inertia on the orientation dynamics of a nearly spherical

axisymmetric particle in a planar linear flow is investigated. The angular velocity at O(Re) is

derived for the nearly spherical axisymmetric particle therein. However they do not examine

the orientation dynamics of the particle for allλ ’s. They focus only on the orientation dynam-

ics in three cases, that is the solid body rotation, simple shear flow and extensional flow. In

the particular case of extensional flow, the inertia does notalter the location of the fixed points.

However, it alters the rate of approach to or divergence froma fixed points.Einarssonet al.

(2015a) andEinarssonet al.(2015b) have looked at the effect of both particle and fluid inertia,

respectively, on spheroids of an arbitrary aspect ratio in asimple shear flow, and we comment

on this effort in the conclusions section.

There have been several recent numerical investigations that examine the orientation dy-

namics of anisotropic particles for the specific case of simple shear flow. These may be

conveniently divided into those that analyze the orientational motion of neutrally buoyant

spheroids (Re= St), over a wide range ofRe, via (mainly) Lattice Boltzmann simulations

(Aidun et al.(1998);Ding & Aidun (2000);Qi & Luo (2003);Huanget al.(2012);Mao & Alex-

eev(2014)) and via the distributed Lagrangian multiplier based fictitious domain method (Yu

et al. (2007)), and those that examine the orientation dynamics of massive spheroids and tri-

axial ellipsoids in shear flow in the absence of fluid inertia,but over a wide range ofSt, via

a numerical integration of the governing ODE’s (Lundell & Carlsson(2010);Lundell & Carls-

son(2011);Challabotlaet al. (2015)). One of the main conclusions of the second group of

investigations is a rather sharp transition, across a narrow range inSt, from a small-St to a

large-St dynamics. In the former regime, as would be expected, the inertial drift leads to a

spiraling trajectory for the orientation vector with each turn of the spiral closely resembling a

Jeffery orbit. In the latter regime, the drift is again asymptotically slow but has a very different

character, akin to the classical Euler top (Goldstein(1962)) with a superposed secular drift,

that is outside the scope of the current investigation. The first group of investigations above,

culminating in the recent effort ofHuanget al. (2012), has identified a series of transitions

in the rotation mode as a function ofRefor both prolate and oblate spheroids. With increas-



10 The orientation dynamics of a spheroid in planar linear flow

ing Re, the sequence of rotation modes are tumbling, log-rolling,inclined rolling, precession

and nutation around an inclined axis, and finally, a stationary state at the highestRe’s (Huang

et al. (2012)), for a prolate spheroid. For an oblate spheroid, this sequence is simpler, con-

sisting of a low-Re, spinning mode followed by an inclined spinning mode, and a stationary

state at the highestRey’s. The general focus of these simulation efforts has been more on the

transition in rotations, and less on the dependence of the period of rotation onRe; although,

it is clear that, over the lower range ofRe’s, the period increases monotonically due to the

onset of fluid inertial effects. The work byMao & Alexeev(2014) is an exception in this

regard, and the authors find that the effects of particle and fluid inertia are, respectively, to

decrease and increase the time period of rotation from the inertialess Jeffrey value. Note that,

in two dimensions, increasingRehad already been shown to eventually arrest rotation of an

elliptic cylinder (Ding & Aidun (2000)). In three dimensions, for sufficiently slender bodies,

such an arrest has been predicted to occur at a fairly modestReof O(κ−1 lnκ), κ being the

large aspect ratio (Subramanian & Koch(2005)). As is the case for numerical investigations,

the above efforts for neutrally buoyant spheroids (and, to alesser extent, those for massive

spheroids) are limited in the number of aspect ratios examined and in terms of analyzing the

detailed dependence of the nature of the final steady or time-periodic state on the particular

initial orientation. For instance, exceptingMao & Alexeev(2014), all other efforts only look

at prolate and oblate spheroids with aspect ratios of 2 and 0.5, respectively. Further, the nu-

merical simulations of neutrally buoyant spheroids are necessarily limited to wall-bounded

domains with periodic boundary conditions in the flow and vorticity directions. The effect of

the wall confinement on the aforementioned transitions is not small, and the effects of period-

icity are uncertain. There is also some disagreement, between different efforts, with regard to

the detailed sequence of transitions, and the precise estimates of the associated criticalRe’s.

This appears partly due to the differing nature of the numerical methods, and partly due to

the different initial orientations examined in different investigations. The analysis given here

will serve as a very useful point of validation for any numerical effort. Although restricted to

Re,St≪ 1, the qualitative nature of the orientation dynamics is expected to conform to predic-

tions even whenRe,St∼ O(1). In sharp contrast to the above numerical investigations and the

earlier theoretical efforts, we cover the entire range of aspect ratios for both prolate and oblate

spheroids, and show that in simple shear flow, for sufficiently thin oblate spheroids (aspect

ratios smaller than about 0.14 which have not been examined in any of the above simulations),

the long-time orientation dynamics is a function of the initial orientation, with the unit sphere

being divided into distinct basins of attraction corresponding to the tumbling and spinning

modes. For the dilute regime of relevance here, the dependence on initial conditions for the

said aspect ratios is expected to be eliminated, over much longer times, on account of weak
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thermal or hydrodynamically induced orientation fluctuations. The case of weak Brownian

motion is analyzed here in some detail.

Very recently, there have been a pair of numerical investigations of both neutrally and non-

neutrally buoyant prolate spheroids, again using variantsof the Lattice Boltzmann method.

Rosenet al. (2014) examined a neutrally buoyant prolate spheroid with aspectratio 4 (in con-

trast to the aspect ratio of 2 considered in virtually all of the aforementioned numerical efforts)

in simple shear flow with increasingRe. A sequence of rotational states, similar to that found

earlier byHuanget al. (2012) for a prolate spheroid of aspect ratio 2, was found, although the

transition Reynolds numbers differed in magnitude (lower for the higher aspect ratio). Impor-

tantly, the authors interpreted the transitions from one rotational state to the other in terms of

the analogous bifurcations of the fixed points of a model two-dimensional two-parameter vec-

tor field. This dynamical systems perspective is crucial to understand the underlying system

symmetries. For instance, the analogy with the model dynamical system naturally explains the

presence of two possible inclined log-rolling and precessing modes, symmetrically disposed

about the ambient vorticity axis; as to which one is actuallyobserved in a simulation depends

on the initial orientation. The authors also observed the tumbling mode of the spheroid to co-

exist with other rotational states at higherRe, until the tumbling period diverged at a critical

Reynolds number, via a saddle-node bifurcation, in a mannersimilar to that found earlier by

one of the authors for two-dimensional elliptic cylinders (Ding & Aidun (2000)). Rosenet al.

(2015) have extended the study ofRosenet al.(2014) to non-neutrally buoyant spheroids, and

examine in detail the effects of varying particle inertia and aspect ratio (prolate spheroids with

aspect ratios ranging from 2 to 6) on the different transition Reynolds numbers (tumbling→
tumbling/log-rolling, tumbling/log-rolling→ tumbling/inclined log-rolling, etc).

The chapter is organized as follows. In section2.2, a reciprocal theorem formulation (Leal

(1979);Subramanian & Koch(2005);Subramanian & Koch(2006b)) is used to obtain the ex-

pression for the angular velocity of a spheroid in planar linear flow, accounting for both fluid

and particle inertia. The analysis of particle inertia is a fairly straightforward exercise, involv-

ing a regular expansion of the angular velocity for smallStwith the leading-order term being

the Jeffery angular velocity. The analysis of even weak fluidinertia is a difficult exercise in

general, but it is shown that theO(Re) correction has a regular character with its calculation

requiring only a knowledge of the Stokes velocity fields. Thus, in section2.3, we derive an

analytical expression for the disturbance velocity field due to a freely rotating spheroid in

planar linear flow, atRe= 0, based on a vector spheroidal harmonics formalism developed

originally by Kushch and co-workers in the context of elastic composites (Kushch & Sangani
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(2003);Kushch(1997);Kushch(1998)). The general velocity field is expressed in spheroidal

coordinates as a sum of five contributions, each corresponding to a simpler canonical linear

flow, the relative amplitudes of these component flows being determined by the instantaneous

orientation of the spheroid. In section2.4 the orientation dynamics of spheroid in the Stokes

limit is discussed. Sections2.5and2.6, respectively, analyze theO(St) and theO(Re) inertial

drift for prolate and oblate spheroids with a detailed characterization of the bifurcation in the

orientation dynamics in aλ − κ plane. In these sections, we use an analytical approxima-

tion to investigate the orientation dynamics, based on an orbital drift interpretation, thereby

eliminating the need to numerically integrate the differential equations corresponding to the

angular velocities. Section2.7examines the drift, arising from both particle and fluid inertia,

for neutrally buoyant prolate and oblate spheroids. The formal derivation of the analytical ap-

proximation mentioned above using a multiple time scale analysis is presented in section2.8.

Further, we also discuss the limitation of the drift analysis for extreme aspect ratio particles

(slender fibres and flat disks) in this section. In section2.9, we summarize the results.

2.2 Formulation for the inertial drift: The generalized re-

ciprocal theorem

The velocity and stress fields in two different problems, theproblem of interest and a test prob-

lem, corresponding to two different flow configurations, past the same particle can be related

through a generalized reciprocal theorem (Leal (1979);Subramanian & Koch(2005);Subra-

manian & Koch(2006b)). The two problems are defined based on a dynamical quantitythat

needs to be evaluated, which is an unknown in the problem of interest. The test problem is

usually chosen to be one in which the velocity and stress fields are known a priori. In the

present case, the quantity of interest is the correction to the angular velocity of a neutrally

buoyant spheroid suspended in a Newtonian fluid undergoing aplanar linear flow with the

inertial acceleration, both of the particle and that of the fluid, being taken into account. The

disturbance velocity and stress fields in the aforementioned problem of interest are denoted by

uuu′(1) andσσσ ′(1). The disturbance fields are related to the total velocity andstress fields in the

problem byuuu′(1) = uuu(1)−ΓΓΓ ··· xxx andσσσ ′(1) = σσσ (1)−σσσ (∞) = σσσ (1)+ p∞III −2EEE. Here,ΓΓΓ ···xxx is the

ambient planar linear flow in non-dimensional form defined with the origin at the center of

the spheroid. The transpose of the non-dimensional velocity (ambient) gradient tensor and the

rate-of strain tensor in a space-fixed coordinate system (X′Y′Z′, with unit vector triplet 111′x,111
′
y

and 111′z ) are given byΓΓΓ = 111′x111
′
y+λ111′y111

′
x andEEE = (111′x111

′
y+111′y111

′
x)(λ +1)/2 respectively. The

parameterλ characterizes the family of planar linear flows with (1-λ )/(1+λ ) denoting the rate
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Fig. 2.1 The stream lines in the spaced-fixed coordinate system for (a) solid body rotation (b)
elliptic flow (c) hyperbolic flow (d) extensional flow and (e) simple shear flow.

of vorticity to extension in the flow. Asλ increases from -1, one obtains different flows start-

ing from a solid-body rotation atλ = −1, the elliptic linear flows for−1 < λ < 0, a simple

shear flow atλ = 0, the hyperbolic linear flows for 0< λ < 1, finally terminating in a planar

extensional flow atλ=1. The ambient streamline patterns for these flows are shownin figure

2.1. As λ increases from -1 to 1, there is a transition from a closed (figure2.1(a) and (b)) to

an open streamline pattern (figure2.1(c) and (d)) with the streamlines forλ = 0 alone (figure

2.1(e)) being straight lines. The axes of the space-fixed coordinate systemX′, Y′ andZ′ are

defined such that they coincide with the flow, the gradient andthe vorticity directions of the

simple shear flow (λ = 0), respectively (figure2.2). Above,p∞ is the pressure field required to

maintain the ambient linear flow for finiteRe. The ambient pressure (p∞) is obtained by equat-

ing its gradient to the inertial acceleration, whence one findsp∞ =−Rexxx···ΓΓΓ ···ΓΓΓ ···xxx/2. Note that

p∞=0 for simple shear flow. The test problem, with its velocity and stress fields denoted by

uuu(2) andσσσ (2) respectively, corresponds to the Stokesian rotation of a spheroid, with the same

instantaneous orientation as that in the problem of interest, in an otherwise quiescent ambient.

The reciprocal theorem then yields the following identity:

ˆ

S
uuu′(1) ···σσσ (2) ···nnndS−

ˆ

S
uuu(2) ···σσσ ′(1) ···nnndS= Re

ˆ

V
∇∇∇ ···σσσ ′(1) ···uuu(2)dV, (2.1)

wherennn is the unit normal into the fluid domainV andS includes all bounding surfaces. Here,

Reis a non-dimensional measure of fluid inertia in relation to viscous forces, and is defined as

Re= γ̇L2/ν, whereγ̇ is the ambient shear rate,L is taken to be the spheroid semi-major axis,
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ν = µ/ρ f is the kinematic viscosity of the suspending fluid withµ andρ f being its viscosity

and density, respectively. The velocity fieldsuuu′(1) anduuu(2) decay sufficiently rapidly for the

surface integrals at infinity to be neglected, and the bounding surfaceS in (2.1) reduces to that

of the spheroid (Sp). The divergence of the stress∇∇∇ ···σσσ ′(1) in (2.1) is equal to the inertial ac-

celerationDuuu′(1)
Dt , and may be written in terms ofΓΓΓ anduuu′(1). The no-slip boundary conditions

in the two problems imply that, onSp, uuu′(1) = ΩΩΩ1∧xxx−ΓΓΓ ···xxx anduuu(2) = ΩΩΩ2∧xxx. In this chapter,

we determineΩΩΩ1 to O(Re), and toO(St), whereSt= ρpγ̇L2/µ is a dimensionless measure of

particle inertia,ρp being the particle density. The relative importance of particle and fluid in-

ertia is determined by the ratioSt/Re= ρp/ρ f . Thus, for a gas-solid system we haveSt≫ Re,

but for solid-liquid systemsSt≈ Re; for neutrally buoyant particles in particular,St= Re.

Accounting for the boundary conditions above, the surface integrals in (2.1) may now be

expressed as:

ˆ

Sp

uuu(2) ···σσσ ′(1) ···nnndS=ΩΩΩ2 ···LLL 1−ΩΩΩ2 ···
ˆ

Sp

xxx× (σσσ ∞ ···nnn)dS, (2.2)

=StΩΩΩ2 ···
d
dt
(III p ···ΩΩΩ1)−ΩΩΩ2 ···

ˆ

Sp

xxx× (σσσ ∞ ···nnn)dS, (2.3)

=StΩΩΩ2 ···
d
dt
(III p ···ΩΩΩ1)+ΩΩΩ2 ···

ˆ

Sp

(xxx×nnn) p∞ dS, (2.4)

ˆ

Sp

uuu′(1) ···σσσ (2) ···nnndS=
ˆ

Sp

nnn ··· (ΩΩΩ1∧xxx−ΓΓΓ ···xxx) ···σσσ (2)dS, (2.5)

=ΩΩΩ1 ···LLL 2−ΓΓΓ :
ˆ

Sp

xxx(σσσ (2)···nnn)dS, (2.6)

where we have assumed the absence of any external torque in the problem of interest. As a

result, the hydrodynamic torque(LLL 1) must equal the angular acceleration, andIII p above is the

moment of inertia tensor of the spheroid. For an inertialessparticle, the torque-free condition

would meanLLL 1 = 0. In (2.6), LLL 2 is the hydrodynamic torque acting on the spheroid in the

test problem. The identity (2.1) now takes the form:

ΩΩΩ1 ···LLL 2 =ΓΓΓ :
ˆ

Sp

xxx(σσσ (2)···nnn)dS+St

[
d
dt
(III p ···ΩΩΩ1)

]
···ΩΩΩ2+Re

ˆ

V
∇∇∇ ···σσσ ′(1) ···uuu(2)dV

+ΩΩΩ2 ···
ˆ

Sp

(xxx×nnn) p∞ dS. (2.7)
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The non-dimensional equations of motion and the continuityequation for the problem of in-

terest,(σσσ (1),uuu(1)), are given by:

Re

[
∂uuu(1)

∂ t
+uuu(1) ···∇∇∇uuu(1)

]
= −∇∇∇p(1)+∇2uuu(1), (2.8)

∇∇∇ ···uuu(1) =0. (2.9)

with

uuu(1) =ΩΩΩ1∧xxx for xxxε Sp, (2.10)

uuu(1) →ΓΓΓ ···xxx for xxx→ ∞. (2.11)

In terms of the disturbance field used in the reciprocal theorem formulation above, we have:

Re

[
∂uuu′(1)

∂ t
+(ΓΓΓ ···xxx) ···∇∇∇uuu′(1)+ΓΓΓ ···uuu′(1)+uuu′(1)···∇∇∇uuu′(1)

]
=−∇∇∇p′(1)+∇2uuu′(1), (2.12)

∇∇∇ ···uuu′(1) = 0, (2.13)

with

uuu′(1) =ΩΩΩ1∧xxx−ΓΓΓ ···xxx for xxxε Sp, (2.14)

uuu′(1) →0 for xxx→ ∞. (2.15)

The test problem,(σσσ (2),uuu(2)), in (2.1), is defined by

−∇∇∇p(2)+∇2uuu(2) =0, (2.16)

∇∇∇ ·uuu(2) =0, (2.17)

with

uuu(2) = ΩΩΩ2∧xxx for xxxε Sp, (2.18)

uuu(2) → 0 for xxx→ ∞. (2.19)

For St= 0, ΩΩΩ2 may be chosen orthogonal to the spheroidal symmetry axis since the axial

rotation of the spheroid does not couple to a change in its orientation. An inertialess spheroid,

as it rotates along a Jeffery orbit, spins at a rate commensurate with the ambient vorticity vec-

tor projected along its axis. However, with particle inertia, the presence of gyroscopic forces
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implies that orientation and spin dynamics are coupled, andthe test problem must therefore

include both the axial and transverse rotation problems (Subramanian & Koch 2006b).

Using the form of the inertial acceleration in (2.12) and the ambient pressure given above

(2.1), (2.7) may be rewritten as:

ΩΩΩ1 ···LLL 2 =ΓΓΓ :
ˆ

Sp

xxx(σσσ (2) ···nnn)dS+St

[
d
dt
(III p ···ΩΩΩ1)

]
···ΩΩΩ2−ReΩΩΩ2 ···

ˆ

Sp

(xxx×nnn)
xxx ···ΓΓΓ ···ΓΓΓ ···xxx

2
dS

+Re
ˆ

V

[
∂uuu′(1)

∂ t
+(ΓΓΓ ···xxx) ···∇∇∇uuu′(1)+ΓΓΓ ···uuu′(1)+uuu′(1)···∇∇∇uuu′(1)

]
···uuu(2)dV. (2.20)

Further, noting that the velocity field in the test problem islinear inΩΩΩ2, one may writeuuu(2) =

UUU (2) ···ΩΩΩ2, LLL 2 = LLL(2) ···ΩΩΩ2 andσσσ (2) = ΣΣΣ(2) ···ΩΩΩ2, whereUUU (2) andLLL(2) are second-order tensors,

andΣΣΣ(2) is a third-order tensor, only dependent only on the geometryof the spheroidal particle,

and are known in closed form as a function of the aspect ratio (see section2.3; also seeDabade

et al. (2015)). Accounting forΩΩΩ2 being arbitrary, (2.20) takes the form:

ΩΩΩ1 ···LLL(2) =ΓΓΓ :
ˆ

Sp

xxx(ΣΣΣ(2) ···nnn)dS+St
d
dt
(III p ···ΩΩΩ1)−Re

ˆ

Sp

(xxx×nnn)
xxx ···ΓΓΓ ···ΓΓΓ ···xxx

2
dS

+Re
ˆ

V

[
∂uuu′(1)

∂ t
+(ΓΓΓ ···xxx) ···∇∇∇uuu′(1)+ΓΓΓ ···uuu′(1)+uuu′(1)···∇∇∇uuu′(1)

]
···UUU (2)dV, (2.21)

valid for arbitraryReandSt. In section2.3, we obtain expressions for the disturbance fields

that appear in (2.21), using a spheroidal harmonics formalism, in a body-fixed coordinate

system aligned with the spheroid symmetry axis. As a result,it becomes convenient to eval-

uate the unsteady acceleration involved in the last integral in the right-hand side of (2.21) in

a coordinate system that rotates with the spheroid (XYZ in figure 2.2), but with theY axis

constrained to lie in the flow-gradient plane. The constraint implies that while the axes of

this coordinate system section rotate with the spheroid, the resulting spin about the spheroid

axis (Z) differs from the actual rate of spin. Using the relation between the time derivatives in



2.2 Formulation for the inertial drift: The generalized reciprocal theorem 17

the two coordinate systems, we have:

∂uuu′(1)

∂ t
+uuu′(1)···∇∇∇uuu′(1) =

duuu′(1)

dt
(2.22)

=

(
duuu′(1)

dt

)

r
+ΩΩΩb∧uuu′(1), (2.23)

=

(
∂uuu′(1)

∂ t

)

r
+uuu(1)r ···∇∇∇uuu′(1)+ΩΩΩb∧uuu′(1), (2.24)

whereΩΩΩb is the angular velocity of the body-fixed coordinate system,and we have used

that the total time derivative in the rotating coordinate system involves calculating the rate

of change for an element that moves with the velocity in the rotating coordinate system, which

is given in terms of the original disturbance field asuuu(1)r = uuu′(1)−ΩΩΩb∧xxx. Using this relation,

(2.24) takes the form:

∂uuu′(1)

∂ t
+uuu′(1)···∇∇∇uuu′(1) =

(
∂uuu′(1)

∂ t

)

r
+uuu′(1)···∇∇∇uuu′(1)+ΩΩΩb∧uuu′(1)− (ΩΩΩb∧xxx)···∇∇∇uuu′(1), (2.25)

where the third term arises from the usual rate of change of the rotating unit vector triad relative

to a space-fixed coordinate system, while the fourth term denotes the rate of change due to the

spatially inhomogeneous disturbance velocity field being swept past a space-fixed point with

velocityΩΩΩb∧xxx. Using (2.25) in (2.21), we have the following form for the reciprocal theorem

identity:

ΩΩΩ1 ···LLL(2) =ΓΓΓ :
ˆ

Sp

xxx(ΣΣΣ(2) ···nnn)dS+St
d
dt
(III p ···ΩΩΩ1)−Re

ˆ

Sp

(xxx×nnn)
xxx···ΓΓΓ ···ΓΓΓ ···xxx

2
dS

+Re
ˆ

V

[(
∂uuu′(1)

∂ t

)

r
+(ΓΓΓ ···xxx) ···∇∇∇uuu′(1)+ΓΓΓ ···uuu′(1)+uuu′(1)···∇∇∇uuu′(1)+ΩΩΩb∧uuu′(1)

−(ΩΩΩb∧xxx).∇∇∇uuu′(1)
]
···UUU (2)dV, (2.26)

which will be used in conjunction with the expressions for the disturbance velocity fields de-

rived in section2.3.

In order to estimate theO(Re) correction toΩΩΩ1, it is sufficient to use the leading-order

Jeffery approximation forΩΩΩb in the volume integral in (2.26), since the neglected terms of

O(ReSt) andO(Re2) are asymptotically smaller than those retained. This leading-order angu-
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lar velocity, obtained from neglecting the inertial contributions in (2.26), is given by:

ΩΩΩ je f f ···LLL(2) =ΓΓΓ :
ˆ

Sp

xxx(ΣΣΣ(2) ···nnn)dS. (2.27)

The components ofΩΩΩ je f f orthogonal toppp, obtained from (2.27), lead to the well-known Jef-

fery orbit equations for a spheroid which, in non-dimensional form, are given by (Kim &

Karrila (1991);Leal & Hinch(1971),Hinch & Leal (1972)):

ṗpp je f f = ωωω ∧ ppp+
κ2−1
κ2+1

[EEE ··· ppp− ppp(EEE : pppppp)], (2.28)

whereṗpp je f f = ΩΩΩ je f f∧ppp, ωωω = 1
2 εεε :(ΓΓΓ−ΓΓΓ†), with ΓΓΓ as defined before, is the ambient vorticity

vector andκ is the spheroid aspect ratio; ifb be the semi-minor axis,κ = L/b andb/L for

prolate and oblate spheroids, respectively. Since the spheroid spins at a rate commensurate

with the projected ambient vorticity, we haveΩΩΩ je f f ··· ppp = 1
2 ωωω ··· ppp. The angular velocity in

(2.28) may be written in terms of spherical coordinates (with the ambient vorticity direction as

the polar axis) as:

φ̇ j =−
(

1−λ
2

)
+

(
1+λ

2

)
κ2−1
κ2+1

cos2φ j , (2.29)

θ̇ j =

(
1+λ

4

)
κ2−1
κ2+1

sin2θ j sin2φ j , (2.30)

whereθ j is the angle between the symmetry axis of the spheroid and thedirection (Z′) of

ambient vorticity andφ j is the dihedral angle between the flow-vorticity plane (X′Z′) and the

orientation-vorticity plane (ZZ′) - see figure2.2. As mentioned earlier, for simplifying the cal-

culation, we restrict theY axis of the body-aligned coordinate system to the flow-gradient

plane. The unit vectors of the body-aligned coordinate system XYZ can be expressed in

terms of the unit vectors of the space-fixed coordinate system X′Y′Z′ (see figure2.2) as 111x

= cosθ j cosφ j111
′
x + cosθ j sinφ j111

′
y -sinθ j111

′
z, 111y = −sinφ j111

′
x + cosφ j111

′
y and 111z = sinθ j cosφ j111

′
x

+ sinθ j sinφ j111
′
y +cosθ j111

′
z. Thus,ΩΩΩb = ΩΩΩt

je f f =−φ̇ j sinθ j 111x+ θ̇ j 111y+ φ̇ j cosθ j 111z with φ j and

θ j satisfying the Jeffery equations above; the subscript′t ′ emphasizes the difference in the

spin component ofΩΩΩb compared toΩΩΩ je f f ··· ppp.

To determineΩΩΩ1 to O(Re), one may also use the Stokes approximation (uuu′(1)s ) for the ve-

locity field uuu′(1) in (2.26). That this approximation leads to a convergent integral may be seen

by noting that, for a linear flow atRe= 0, we haveuuu′(1)s ∼ O(1/r2) for r ≫ L, and from (2.8),

it is then seen thatDuuu′(1)s
Dt ∼ O(1/r2) for larger. Sinceuuu(2) ∼ O(1/r2) for r ≫ L, theO(Re)
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Fig. 2.2 The body-fixed and space-fixed coordinate systems.

integrand based on the Stokes approximation isO(1/r4) for r ≫ L, implying convergence. As

for the case of sedimentation in a quiescent fluid (Dabadeet al.2015), this points to the regular

nature of theO(Re) correction with the dominant contribution to theO(Re) torque arising due

to fluid inertial forces acting within a volume of order the size of the particle itself. It may be

shown that the next correction to the angular velocity isO(Re
3
2 ), and is singular in character,

arising from the effects of inertia acting on length scales of O(Re−
1
2). The non-uniformity of

the Stokes approximation must be accounted for at this order(Subramanianet al. 2011). As

will be seen later, while theO(Re) correction evaluated here is sufficient to account for an

inertial drift across Jeffery orbits, the effects of inertia on the Jeffery period, observed in re-

cent simulations (Mao & Alexeev 2014), where the spheroid rotation in either the tumbling or

spinning mode is observed to slow down with increasingRe, requires an analysis of the next

correction atO(Re
3
2 ), and this is reported in chapter5.

To O(Re), (2.26) may now be written as:

ΩΩΩ1···LLL(2)−St
d
dt
(III p ···ΩΩΩ1) =ΓΓΓ :

ˆ

Sp

xxx(ΣΣΣ(2) ···nnn)dS−Re
ˆ

Sp

(xxx×nnn)
xxx···ΓΓΓ ···ΓΓΓ ···xxx

2
dS

+Re
ˆ

V

[
∂uuu′(1)s

∂ t
+(ΓΓΓ ···xxx) ···∇∇∇uuu′(1)s +ΓΓΓ ···uuu′(1)s +uuu′(1)s ···∇∇∇uuu′(1)s +ΩΩΩt

je f f ∧uuu′(1)s −

(ΩΩΩt
je f f ∧xxx).∇∇∇uuu′(1)s

]
···UUU (2)dV, (2.31)
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which is the final form on which subsequent calculations are based on. Note thatSt in (2.31) is

still arbitrary. The operator on the left-hand-side, when considered alone, governs the rotations

of an axisymmetric free body arising from a balance of centrifugal and gyroscopic forces.

These are known from classical mechanics (theEuler top), and correspond to the limitSt→
∞ (Goldstein 1962). Herein, we assumeSt to be small, and only consider the effects of weak

particle inertia toO(St) and toO(St2) in chapter5. The surface integral on the right-hand-side

must lead to the well-known Jeffery orbits (Jeffery 1922) in the inertialess limit, while the

second term, is the contribution from the ambient pressure,and the third term, the volume

integral, captures fluid inertial effects toO(Re). The analysis of the leading-order effects of

fluid inertia therefore requires the Stokes disturbance velocity field (uuu′(1)s ) due to a torque-free

spheroid, of an arbitrary orientation, in an ambient linearshear flow.

2.3 Solutions to the Stokes equation in spheroidal coordi-

nates

The reciprocal theorem formulation in its final form, (2.31), requires the Stokes disturbance

velocity field due to a torque-free spheroidal particle in a planar linear flow (uuu′(s)) and that

due to a rotating spheroid in a quiescent fluid (uuu(2)). The integral in the reciprocal theorem is

evaluated in a body-aligned coordinate system (XYZ). The transpose of the ambient velocity

gradient tensor,ΓΓΓ, when expressed in the body-aligned coordinate system, becomes:

ΓΓΓ =(1+λ )cos2 θ j sinφ j cosφ j111x111x+cosθ j(cos2 φ j −λ sin2φ j)111x111y

+(1+λ )sinθ j cosθ j sinφ j cosφ j(111x111z+111z111x)+cosθ j(λ cos2 φ j −sin2φ j)111y111x

− (1+λ )cosφ j sinφ j111y111y+sinθ j(λ cos2φ j −sin2 φ j)111y111z

+sinθ j(cos2 φ j −λ sin2 φ j)111z111y+(1+λ )sin2θ j sinφ j cosφ j111z111z. (2.32)

The velocity gradient tensor can be split into a rate-of-strain tensor and vorticity tensor.

In the Stokes limit, a torque-free spheroid does not generate a disturbance velocity field in

response to the ambient vorticity. The disturbance field in response to the flow is driven by the

rate-of-strain tensor (denoted byEEE) alone, which is given by :
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EEE =(1+λ )
(

cos2 θ j sinφ j cosφ j111x111x+
1
2

cosθ j(cos2 φ j −sin2 φ j)(111x111y+111y111x)

+sinθ j cosθ j sinφ j cosφ j(111x111z+111z111x)−cosφ j sinφ j111y111y+
1
2

sinθ j(cos2 φ j −sin2 φ j)

(111y111z+111z111y)+sin2 θ j sinφ j cosφ j111z111z
)
, (2.33)

in the body-aligned coordinate system. Note thatEEE for a planar linear flow is simply(1+λ )
timesEEE for the simple shear flow (λ = 0). The velocity disturbance field for an arbitrarily

oriented spheroid in response to the ambient rate of strain tensor can be written as a response

to five canonical component linear flows, whose matrix representation is given by:

(1+λ )




cos2 θ j sinφ j cosφ j
1
2 cosθ j(cos2 φ j −sin2 φ j) sinθ j cosθ j sinφ j cosφ j

1
2 cosθ j(cos2φ j −sin2φ j) −cosφ j sinφ j

1
2 sinθ j(cos2 φ j −sin2 φ j)

sinθ j cosθ j sinφ j cosφ j
1
2 sinθ j(cos2 φ j −sin2φ j) sin2θ j sinφ j cosφ j




=(1+λ )




−1
2 sin2 θ j sinφ j cosφ j 0 0

0 −1
2 sin2θ j sinφ j cosφ j 0

0 0 sin2θ j sinφ j cosφ j




+(1+λ )




1
2(cos2θ j +1)sinφ j cosφ j 0 0

0 −1
2(cos2 θ j +1)sinφ j cosφ j 0

0 0 0




+(1+λ )




0 1
2 cosθ j(cos2 φ j −sin2 φ j) 0

1
2 cosθ j(cos2φ j −sin2 φ j) 0 0

0 0 0
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+(1+λ )




0 0 sinθ j cosθ j sinφ j cosφ j

0 0 0

sinθ j cosθ j sinφ j cosφ j 0 0




+(1+λ )




0 0 0

0 0 1
2 sin2 θ j(cos2 φ j −sin2 φ j)

0 1
2 sin2θ j(cos2φ j −sin2φ j) 0


 . (2.34)

The five component matrices above correspond, respectively, to an axisymmetric extensional

flow (uni-axial or bi-axial depending on the sign of sinφ j cosφ j ) along the spheroidal axis (Z)

of symmetry with an amplitude proportional to sin2θ j cosφ j sinφ j ; a pair of extensional flows

in the plane (XY) transverse to the axis of symmetry, one of them being obtained from the other

via a 45o rotation about the symmetry axis, and with amplitudes proportional to 1
2(cos2θ j +

1)sinφ j cosφ j and 1
2 cosθ j(cos2 φ j − sin2φ j); and a pair of longitudinal extensional flows in

planes containing the axis of symmetry (theXZ andYZ planes) and with amplitudes propor-

tional to sinθ j cosθ j sinφ j cosφ j and 1
2 sin2θ j(cos2φ j −sin2φ j).

Denoting the disturbance fields corresponding to the five component linear flows asuuu1s−
uuu5s, we haveuuu′(1)s = ∑5

i=1uuuis, with uuu1s corresponding to the axisymmetric extension,uuu2s,uuu3s

corresponding to the two planar extensions, anduuu4s,uuu5s corresponding to the pair of longitudi-

nal extensions above. While the expressions for these component Stokesian velocity fields may

be obtained using earlier results based on the method of singularities (Chwang & Wu 1974,

1975), herein we use the vector spheroidal harmonics formalism developed by Kushch and co-

workers (Kushch 1997, 1998). The reasons for this choice have been outlined inDabadeet al.

(2015), where the formalism was used for a single sedimenting particle in an otherwise quies-

cent fluid. Since the structure of the formalism, and a comparison with a similar expansion of

the velocity field in terms of spherical harmonics, originally given by Lamb [for instance, see

Chapter 4Kim & Karrila (1991)], has already been explained in some detail inDabadeet al.

(2015), we will be brief here. The formalism is based on expressingthe general solution of

the Stokes equations, around an arbitrary number of spheroidal particles, as a superposition of

growing and decaying vector harmonics in local spheroidal coordinates defined with respect

to a Cartesian system centered at each particle, and alignedwith the particle axis of symmetry.

For a prolate spheroid, the spheroidal coordinates (ξ ,η,φ ) are related to Cartesian coordinates

(x,y,z) asx+ iy = dξ̄ η̄exp(iφ) andz= dξ η, with ξ̄ =
√

(ξ 2−1) andη̄ =
√
(1−η2), where

d is the inter focal distance. Here, the constantξ -surfaces denote a family of con-focal prolate

spheroids with the inter-foci distance being equal to 2d; ξ0 denotes the surface of the particle
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and is also equal to the inverse of the eccentricity of the spheroid. The constantη-surfaces rep-

resent a family of confocal two-sheeted hyperboloids, while the constantφ -surfaces are planes

passing through the axis of symmetry. The disturbance field due to a single particle in an infi-

nite viscous ambient must involve only decaying spheroidalharmonics, and may therefore be

written in the form:

uuu(xxx) =
3

∑
i=1

∞

∑
t=0

t

∑
s=−t

A(i)
ts SSS(i)ts (rrr,d), (2.35)

where the decaying (singular) partial vectorial solutionsare given by:

S(1)
ts = e1Fs−1

t+1 −e2Fs+1
t+1 +1zF

s
t+1, (2.36)

S(2)
ts =

1
t

[
e1(t +s)Fs−1

t +e2(t −s)Fs+1
t +1zsFs

t

]
, (2.37)

S(3)
ts = e1

{
−(x− iy)D2Fs−1

t−1 − (ξ 2
0 −1)dD1Fs

t +(t +s−1)(t+s)β−(t+1)F
s−1
t−1

}

+e2
{
(x+ iy)D1Fs+1

t−1 − (ξ 2
0 −1)dD2Fs

t − (t −s−1)(t−s)β−(t+1)F
s+1
t−1

}

+1z
[
zD3Fs

t−1−ξ 2
0 dD3Fs

t −C−(t+1),sF
s
t−1

]
, (2.38)

with S(i)
ts → 000 for rrr → ∞. Here, βt =

t+3
(t+1)(2t+3) , Ct,s = (t + s+ 1)(t − s+ 1)βt with t =

0,1, ...; |s| ≤ t; further,e1 = (1x+ i1y)/2,e2 = (1x− i1y)/2, with1z, as before, being directed

along the axis of symmetry of the spheroidal coordinate system. TheDi ’s denote differential

operators withD1 = (∂/∂x− i∂/∂y), D2 = (∂/∂x+ i∂/∂y), andD3 = (∂/∂z). In (2.36)-

(2.38), the functionsFs
t ≡ Fs

t (r ,d) are the singular solid spheroidal harmonics of the form

Fs
t = Qs

t (ξ )Ys
t (η,φ) with Ys

t (η,φ) = Ps
t (η)exp(isφ) being the familiar scalar surface harmon-

ics, andPs
t andQs

t being the associated Legendre functions of the first and second kind, respec-

tively (Morse & Feshbach 1953). The analogs of all of the above expressions, for an oblate

spheroid, can be derived from using the transformationξ ↔ iξ̄ andd ↔ −id (Dabadeet al.

(2015)). The aspect ratio can be expressed in terms ofξ0 asκ = ξ0/
√

ξ 2
0 −1 (=

√
ξ 2

0 −1/ξ0)

for prolate (oblate) spheroid.

Now, theSSS(1)ts ’s andSSS(2)ts ’s are harmonic functions, while theSSS(3)ts ’s satisfy the biharmonic

equation, and are therefore the only vectorial solutions associated with a non-trivial pressure

field. The indext in SSS(i)ts is a measure of the rapidity of decay of the velocity disturbance field

for larger, with limr→∞ uuu(xxx) ∝ r−t , this arising from the large-ξ behavior of theQs
t ’s. Since

theSSS(3)ts ’s alone include the fundamental singularities of the Stokes equations, in light of the

large-r behavior indicated above, one expects theSSS(3)1s ’s to be relevant to the translation prob-

lem whereuuu(xxx) ∝ 1/r; and theSSS(3)2s ’s to come into play for both transverse rotations and the

disturbance fields in an ambient linear flow, for all of whichuuu(xxx) ∝ 1/r2 - see (2.39)-(2.47)
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and (2.59)-(2.61) below. Note that axial rotation is an exception in that it does not generate

a pressure field and the velocity disturbance in this case is harmonic, being proportional to

SSS(2)20 (see (2.68)). The second indexs in all these cases denotes the variation of the velocity

field as a function of the azimuthal angle in the plane transverse to the symmetry axis, with

s= 0 corresponding to an axisymmetric exterior field; for instance, the disturbance velocity

field in an ambient axisymmetric extensional flow must involveSSS(3)20 .

For a prolate spheroid, use of the surface boundary condition at ξ = ξ0 leads to the fol-

lowing expressions, in terms of theSSS(3)ts ’s, for the disturbance velocity and pressure fields

corresponding to the five canonical linear flows above:

uuu1s =
−dξ̄0(1+λ )

(Q1
1(ξ0)−ξ0Q1

2(ξ0))
(sin2 θ j sinφ j cosφ j)SSS

(3)
20 , (2.39)

p1s =,
−2dξ̄0(1+λ )

(Q1
1(ξ0)−ξ0Q1

2(ξ0))
(sin2θ j sinφ j cosφ j)D3F0

1 , (2.40)

uuu2s = − dξ̄0(1+λ )
(3Q1

1(ξ0)−ξ0Q1
2(ξ0))

[sinφ j cosφ j(1+cos2 θ j)](SSS
(3)
22 +SSS(3)2,−2), (2.41)

p2s = − 2dξ̄0(1+λ )
(3Q1

1(ξ0)−ξ0Q1
2(ξ0))

[sinφ j cosφ j(1+cos2 θ j)](D3F2
1 +D3F−2

1 ), (2.42)

uuu3s =
idξ̄0(1+λ )

(3Q1
1(ξ0)−ξ0Q1

2(ξ0))
[cosθ j cos2φ j ](SSS

(3)
22 −SSS(3)2,−2), (2.43)

p3s =
2idξ̄0(1+λ )

(3Q1
1(ξ0)−ξ0Q1

2(ξ0))
[cosθ j cos2φ j ](D3F2

1 −D3F−2
1 ), (2.44)

uuu4s =
2dξ0ξ̄0(1+λ )

Q1
2(ξ0)(2ξ 2

0 −1)
(sinθ j cosθ j sinφ j cosφ j)(SSS

(3)
21 −SSS(3)2,−1), (2.45)

p4s =
4dξ0ξ̄0(1+λ )

Q1
2(ξ0)(2ξ 2

0 −1)
(sinθ j cosθ j sinφ j cosφ j)(D3F1

1 −D3F−1
1 ), (2.46)

uuu5s = − idξ0ξ̄0(1+λ )
Q1

2(ξ0)(2ξ 2
0 −1)

[sinθ j(cos2 φ j −sin2 φ j)](SSS
(3)
21 +SSS(3)2,−1), (2.47)

p5s = − 2idξ0ξ̄0(1+λ )
Q1

2(ξ0)(2ξ 2
0 −1)

[sinθ j(cos2 φ j −sin2 φ j)](D3F1
1 +D3F−1

1 ). (2.48)
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On substitution of the expressions for theSSS(3)ts ’s and Fs
t ’s, given in (2.38), the disturbance

velocity fields take the following forms:

uuu1s =− dξ̄0(1+λ )
(Q1

1(ξ0)−ξ0Q1
2(ξ0))

(sin2θ j sinφ j cosφ j)

[
xxx

∂
∂z

(P0
1Q0

1)−111zdξ 2
0

∂
∂z

(P0
2Q0

2)

−dξ̄ 2
0

(
111x

∂
∂x

+111y
∂
∂y

)
(P0

2Q0
2)

]
, (2.49)

p1s =− 2dξ̄0(1+λ )
(Q1

1(ξ0)−ξ0Q1
2(ξ0))

(sin2 θ j sinφ j cosφ j)
∂
∂z

(P0
1Q0

1), (2.50)

uuu2s =
dξ̄0(1+λ )

(ξ0Q1
2(ξ0)−3Q1

1(ξ0))
(1+cos2 θ j)sinφ j cosφ j

[
xxx

{
∂
∂y

(P1
1Q1

1sinφ)− ∂
∂x

(P1
1Q1

1cosφ)
}

−dξ̄ 2
0

12

(
111x

∂
∂x

+111y
∂
∂y

)
(P2

2Q2
2cos2φ)− dξ 2

0

12
111z

∂
∂z

(P2
2Q2

2cos2φ)

]
, (2.51)

p2s =
2dξ̄0(1+λ )

(ξ0Q1
2(ξ0)−3Q1

1(ξ0))
(1+cos2θ j)sinφ j cosφ j

[
∂
∂y

(P1
1Q1

1sinφ)− ∂
∂x

(P1
1Q1

1cosφ)
]
,

(2.52)

uuu3s =
dξ̄0(1+λ )

(3Q1
1(ξ0)−ξ0Q1

2(ξ0))
cosθ j(cos2 φ j −sin2 φ j)

[
xxx

{
∂
∂x

(P1
1Q1

1sinφ)+
∂
∂y

(P1
1Q1

1cosφ)
}

+
dξ̄ 2

0

12

(
111x

∂
∂x

+111y
∂
∂y

)
(P2

2Q2
2sin2φ)+

dξ 2
0

12
111z

∂
∂z

(P2
2 Q2

2sin2φ)

]
, (2.53)

p3s =
2dξ̄0(1+λ )

(3Q1
1(ξ0)−ξ0Q1

2(ξ0))
cosθ j(cos2 φ j −sin2 φ j)

[
∂
∂x

(P1
1Q1

1sinφ)+
∂
∂y

(P1
1Q1

1cosφ)
]
,

(2.54)

uuu4s=
2dξ0ξ̄0(1+λ )

Q1
2(ξ0)(2ξ 2

0 −1)
(sinθ j cosθ j sinφ j cosφ j)

[
rrr

∂
∂z

(P1
1Q1

1cosφ)− dξ 2
0

3
111z

∂
∂z

(P1
2Q1

2cosφ)

−dξ̄ 2
0

3

(
111x

∂
∂x

+111y
∂
∂y

)
(P1

2Q1
2cosφ)

]
, (2.55)

p4s =
4dξ0ξ̄0(1+λ )

Q1
2(ξ0)(2ξ 2

0 −1)
(sinθ j cosθ j sinφ j cosφ j)

∂
∂z

(P1
1Q1

1cosφ), (2.56)
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uuu5s =
dξ0ξ̄0(1+λ )

Q1
2(ξ0)(2ξ 2

0 −1)
sinθ j(cos2φ j −sin2 φ j)

[
rrr

∂
∂z

(P1
1Q1

1sinφ)− dξ 2
0

3
111z

∂
∂z

(P1
2Q1

2sinφ)

−dξ̄ 2
0

3

(
111x

∂
∂x

+111y
∂
∂y

)
(P1

2Q1
2sinφ)

]
, (2.57)

p5s =
2dξ0ξ̄0(1+λ )

Q1
2(ξ0)(2ξ 2

0 −1)
sinθ j(cos2φ j −sin2 φ j)

∂
∂z

(P1
1Q1

1sinφ). (2.58)

As shown byDabadeet al.(2015), the test velocity fields in (2.31), corresponding to transverse

rotations about thex andy axes, are given by:

uuu(2)sx =
id(2ξ 2

0 −1)

2Q0
1(ξ0)ξ0− ξ̄0Q1

1(ξ0)

(
S(2)

1,1−S(2)
1,−1

)
+

id(ξ0Q1
1(ξ0)+2ξ̄0Q0

1(ξ0))

Q1
2(ξ0)(2Q0

1(ξ0)ξ0− ξ̄0Q1
1(ξ0))

(
S(3)

2,1+S(3)
2,−1

)
,

(2.59)

= − d(2ξ 2
0 −1)

(2ξ0Q0
1(ξ0)− ξ̄0Q1

1(ξ0))
(2P0

1Q0
1111y+P1

1 Q1
1sinφ111z)

− d

(2ξ0Q0
1(ξ0)− ξ̄0Q1

1(ξ0))

[
rrr

∂
∂z

(P1
1Q1

1sinφ)− dξ 2
0

3
111z

∂
∂z

(P1
2Q1

2sinφ)

−dξ̄ 2
0

3

(
111x

∂
∂x

+111y
∂
∂y

)
(P1

2Q1
2sinφ)

]
, (2.60)

uuu(2)sy =
d(2ξ 2

0 −1)

(2ξ0Q0
1(ξ0)− ξ̄0Q1

1(ξ0))

(
S(2)

1,1+S(2)
1,−1

)
+

d(ξ0Q1
1(ξ0)+2ξ̄0Q0

1(ξ0))

Q1
2(ξ0)(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

(
S(3)

2,1−S(3)
2,−1

)
,

(2.61)

=
d(2ξ 2

0 −1)

(2ξ0Q0
1(ξ0)− ξ̄0Q1

1(ξ0))
(2P0

1Q0
1111x+P1

1 Q1
1cosφ111z)

+
d

(2ξ0Q0
1(ξ0)− ξ̄0Q1

1(ξ0))

[
rrr

∂
∂z

(P1
1Q1

1cosφ)− dξ 2
0

3
111z

∂
∂z

(P1
2Q1

2cosφ)

−dξ̄ 2
0

3

(
111x

∂
∂x

+111y
∂
∂y

)
(P1

2Q1
2cosφ)

]
, (2.62)
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respectively, with the corresponding pressure fields beinggiven by:

p(2)sx =
2id(ξ0Q1

1(ξ0)+2ξ̄0Q0
1(ξ0))

Q1
2(ξ0)(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

(D1
2+D−1

2 ), (2.63)

= − 2d(ξ0Q1
1(ξ0)+2ξ̄0Q0

1(ξ0))

Q1
2(ξ0)(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

∂
∂z

(P1
1Q1

1sinφ), (2.64)

p(2)sy =
2(ξ0Q1

1(ξ0)+2ξ̄0Q0
1(ξ0))

Q1
2(ξ0)(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

(D1
2−D−1

2 ), (2.65)

=
2d(ξ0Q1

1(ξ0)+2ξ̄0Q0
1(ξ0))

Q1
2(ξ0)(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

∂
∂z

(P1
1Q1

1cosφ), (2.66)

whereDs
t = dD3Fs

t . The test velocity field corresponding to rotation about thez axis is given

by:

uuu(2)sz =
2idξ̄0

Q1
1(ξ0)

SSS(2)10 , (2.67)

=
dξ̄0

Q1
1(ξ0)

(−sinφ111x+cosφ111y)(P
1
1Q1

1), (2.68)

with p(2)sz = 0, there being no associated pressure field with axial rotation. The magnitudes of

the torque for axial and transverse rotations are given by 8πXC and 8πYC respectively, with

XC =
4(ξ 2

0−1)
3ξ 3

0(2ξ0−2(ξ 2
0−1)coth−1 ξ0)

andYC =
4(2ξ 2

0−1)
3ξ 3

0(2(ξ 2
0+1)coth−1ξ0−2ξ0)

. The second-order tensors

characterizing the test problem that appear in (2.31) are therefore given byUUU (2) = uuu(2)sx 111x+

uuu(2)sy 111y+uuu(2)sz 111z andLLL(2) =−8π(XCpppppp+YC(III − pppppp)) with ppp= 111z. The test torque tensor,LLL(2)

in (2.76), is defined in the end of section2.3. The non-dimensional moment of inertia tensor,

III p, is given by4π
15ξ̄ 2

0

[
2ξ̄ 2

0
ξ 4

0
pppppp+

(2ξ 2
0−1)
ξ 4

0
(III−pppppp)

]
and 4π

15ξ̄0

[
2
ξ0

pppppp+
(2ξ 2

0−1)
ξ 3

0
(III−pppppp)

]
for prolate

and oblate spheroids, respectively.

2.4 Stokes limit and the equivalent aspect ratio

In this section we will focus on the trajectories of the orientation of a spheroid in a planar

linear flow in the Stokes limit. The rate of change of anglesθ j and φ j in this limit are

given in (2.29) and (2.30). These angular velocities can be recovered from (2.31) by evalu-

ating the integral in the limit ofRe= 0 andSt= 0, and noting thatΣΣΣ(2) ··· 111ξ = −PPP(2)111ξ +

2

[
ξ̄

d(ξ 2−η2)
1
2

∂
∂ξ UUU (2)+ 1

2111ξ ∧ (∇∇∇∧UUU (2))

]
, wherePPP(2) is the pressure corresponding to the trans-

verse rotations. It can be shown that for a given aspect ratio, the trajectories are closed orbits
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on a unit sphere only till a particularλ sayλcrit (seeHinch & Leal (1972)). This is expected

because the vortical component of the flow responsible for the existence of closed orbits de-

creases with increasingλ (figure2.1(a)-(e)) and atλ = λcrit , becomes sufficiently small com-

pared to the extensional component, and as a result closed orbits ceases to exist forλ > λcrit .

It can be noted thatλcrit is always positive implying that the critical flow separating open and

closed trajectories on the unit sphere is always a hyperbolic linear flow. One findsλcrit = 1/κ2

andκ2 respectively for prolate and oblate spheroids of aspect ratio κ . Note thatλcrit → 0 for

infinitely thin fibers and disks, implying that the critical flow asymptotes to a simple shear

for extreme aspect ratios. This is consistent with the fact that the orientation of an infinitely

slender fibre and the normal to a flat disk evolve in an affine manner, merely following the

ambient streamlines (projected onto the unit sphere). In figure 2.3, λcrit is plotted as a func-

tion of κ . As indicated, the trajectories for the spheroid orientation are closed, when (λ , κ) is

belowλcrit curve. There are six fixed points on the unit sphere forλ>λcrit ; pairs of unstable

and stable nodes, and a third pair of saddle points on theZ′ axis ( the indices of these fixed

points add to the Euler characteristic, as must be the case).Almost all the trajectories end in

the two stable fixed points. The stable fixed points and the closed orbits for both prolate and

oblate spheroids are also shown in the relevant regions of figure2.3. As will be shown in later

sections, in the region below theλcrit curve in figure2.3, weak inertia will result in a drift

across the closed orbits, and the long-time orientation distribution can be drastically different

from that implied by Stokesian dynamics which predicts a continued dependence on the ini-

tial orientation distribution for all times. For the regionabove theλcrit curve, weak inertia can

only alter the location of the fixed points by O(Re) or O(St). Therefore this region in theλ −κ
plane is not analyzed in detail. Note that the correction to the angular velocities at O(Re) and

O(St) presented in the next two sections are, however, valid for all regions in theλ −κ plane.

It has been shown that in the Stokes limit, the closed trajectories of the spheroid orientation

vector in a planar linear flow (λ < λcrit ), are the same as the trajectories (Jeffery(1922)) of

an equivalent spheroid in a simple shear flow of strength(1−λ ) (Hinch & Leal 1972; Prager

1957; Bretherton 1962). The aspect ratio of this latter spheroid is a function ofλ andκ , and

is given by:

κeq=

√
(κ2+1)(1−λ )+(κ2−1)(1+λ )
(κ2+1)(1−λ )− (κ2−1)(1+λ )

. (2.69)
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Fig. 2.3 The criticalλ curve in theλ −κ plane. The blue curve corresponds to the criticalλ
curve which separates the region of closed orbits from the region of open trajectories in the
λ −κ plane. Typical trajectory topologies, that is the trace of the orientation vector on a unit
sphere centered at the origin starting from various initialconditions, are shown in the inset
plots as blue (closed) and red (open and moving towards fixed point) curves for regions above
and below theλcrit curve. The two stable fixed points for both prolate and oblatespheroids in
the open trajectory region are also indicated.
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Fig. 2.4 The trajectories of a spheroid of aspect ratio 0.2 ina simple shear flow. The table
shows some combinations ofκ andλ for which the equivalent aspect ratio is 0.2

This means that the angular velocities of a spheroid in a planar linear flow given in (2.29)

and (2.30) are (1-λ ) times the angular velocities of a spheroid ofκ = κeq in simple shear flow.

For simple shear flow (λ=0), of course,κeq is same asκ . From (2.69), κeq varies from 1 to

∞(0) for prolate(oblate) as theλ increases from -1 toλcrit . In figure2.4 we have shown the

orbits of a spheroid with aspect ratioκeq= 0.2 in a simple shear flow and have listed some

combinations ofκ andλ which results in an equivalent aspect ratio of 0.2. Thus, theclosed

trajectories in a planar linear flow are Jeffery orbits of theaforementioned equivalent spheroid.

This would also mean that spheroids of different aspect ratios can have the same trajectories

for different flows. In particular, a spheroid of an arbitrary aspect ratio describes the nearly

meridional trajectories similar to a slender fibre (for prolate) or a flat disk (for oblate) for

λ → λcrit .

In the following sections, we interpret the weak inertial effects in terms of a drift across

the trajectories described above in a non-orthogonal orbital coordinate system (C,τ)(Leal &

Hinch (1971)). The constantC lines coincide with the Jeffery orbits of the planar linear flow

for the spheroid under consideration, while the constantτ lines are same as the constant-φ
contours (on the unit sphere). The orbital coordinates are related toθ j andφ j in terms of the

equivalent aspect ratioκeq:
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C= tanθ j

√
(κ2

eqsin2φ j +cos2 φ j)

κeq
, (2.70)

τ = tan−1
(

1
κeqtanφ j

)
. (2.71)

Here,C varies from 0 to∞, with C= 0 (called a spinning orbit) being the trajectory where the

spheroid is aligned withZ′ axis (vorticity axis) andC= ∞ (called a tumbling orbit) being the

trajectory where the spheroid orientation vector traverses a unit circle in theX′-Y′ plane (flow-

gradient plane). The angular velocities of the spheroid in the tumbling and spinning orbits

are respectively, perpendicular and parallel to the orientation vector. The intermediate finite-C

orbits are three-dimensional precessional orbits. For anyfixedC, the orbit phaseτ varies from

0 to 2π and is defined such that the rate of change of orientation in theτ coordinate is constant

(despiteφ j changing at a variable rate). The equations for the rates of change take a simple

form in the orbital coordinate system, and are given by:

dC
dt

= 0, (2.72)

dτ
dt

=
(1−λ )κeq

(κ2
eq+1)

. (2.73)

Evidently, the orbital coordinateC of the spheroid does not change in the Stokes limit. Note

that the above equations are valid for−1< λ < λcrit . In the limit of λ →−1, that is the trivial

case of solid-body rotation,κeq is 1, and the orbits are merely circles transverse to the ambient

vorticity. In the limit of λ → λcrit , κeq→ ∞ (0) for prolate (oblate) spheroid, and the angular

velocity dτ/dt → 0, consistent with the fact that the rotation of the spheroidhas to arrest at

λ = λcrit .

2.5 The effect of particle inertia: massive spheroids (Re=0

and St ≪ 1)

In this section we investigate the effect of the particle inertia on the orientation dynamics of

a spheroid in a planar linear flow. We calculate the O(St) correction to the angular velocity

using (2.31) by settingRe= 0, whence (2.31) reduces to:
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ΩΩΩ1···LLL2 =ΓΓΓ :
ˆ

Sp

xxx(ΣΣΣ(2) ···nnn)dS+St
d
dt
(III p ···ΩΩΩ1). (2.74)

The second term on the right-hand side above gives the correction due to the particle an-

gular acceleration. As mentioned earlier, it is convenientto evaluate the correction in the

body-aligned coordinate system (XYZ in figure2.2), which rotates withΩΩΩttt
je f f . The rate

of change in the space-fixed coordinate system is related to the rate of change in XYZ as
d
dt(.) =

(
d
dt(.)

)
b+ΩΩΩttt

je f f ∧ (.), the subscript ‘b’ denoting theXYZ system. Noting that the

moment of inertia tensor is a constant inXYZ, (2.74) takes the form:

ΩΩΩ1···LLL(2) =ΓΓΓ :
ˆ

Sp

xxx(ΣΣΣ(2) ···nnn)dS+St

[
III p ···
(

dΩΩΩ1

dt

)

b
+ΩΩΩttt

je f f ∧ (III p ···ΩΩΩ1)

]
. (2.75)

Using a regular expansion of the formΩΩΩ1 = ΩΩΩ je f f +StΩΩΩ(1)
1St+O(St2) for the particle angular

velocity, one obtains:

ΩΩΩ(1)
1St···LLL(2) = III p···

dΩΩΩ je f f

dt je f f
+ΩΩΩttt

je f f ∧ (III p ···ΩΩΩ je f f), (2.76)

at O(St). In (2.76), to leading order,(d/dt)b is replaced by(d/dt) je f f , where the latter de-

notes the rate of change along the closed orbit in the Stokes limit, given by (2.29) and (2.30)

in terms ofθ j andφ j . The rates of change ofφ j andθ j , atO(St), can be obtained from (2.76),

φ̇ jSt =−Ω(1)x
1St /sinθ j andθ̇ jSt = Ω(1)y

1St and are given by:

(
dθ j

dt

)

St
= sinθ j cosθ j

[
F p

1 (ξ0,λ )+F p
2 (ξ0,λ )cos2φ j +F p

3 (ξ0,λ )cos2θ j +F p
4 (ξ0,λ )cos4φ j

+F p
5 (ξ0,λ )cos(2θ j −4φ j)+F p

6 (ξ0,λ )cos(2θ j +4φ j)
]
, (2.77)

(
dφ j

dt

)

St
=sinφ j cosφ j

[
Gp

1(ξ0,λ )+Gp
2(ξ0,λ )cos2θ j +Gp

3(ξ0,λ )cos2φ j

+Gp
4(ξ0,λ )cos2θ j cos2φ j

]
. (2.78)
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The functions ofκ andλ that appear above for a prolate spheroid are given by:

F p
1 (ξ0,λ ) =

(
−1+ξ 2

0

)(
−3+2λ −3λ 2+4(−1+λ )2ξ 2

0

)(
−ξ0+coth−1 ξ0

(
1+ξ 2

0

))

160ξ0
(
1−2ξ 2

0

)
2

,

(2.79)

F p
2 (ξ0,λ ) =−

(
−1+λ 2

)(
−1+ξ 2

0

)
2
(
−ξ0+coth−1 ξ0

(
1+ξ 2

0

))

40ξ0
(
1−2ξ 2

0

)
2

, (2.80)

F p
3 (ξ0,λ ) =F p

4 (ξ0,λ ) =−(1+λ )2
(
−1+ξ 2

0

)(
−ξ0+coth−1 ξ0

(
1+ξ 2

0

))

160ξ0
(
1−2ξ 2

0

)
2

, (2.81)

F p
5 (ξ0,λ ) =F p

6 (ξ0,λ ) =
(1+λ )2

(
−1+ξ 2

0

)(
−ξ0+coth−1 ξ0

(
1+ξ 2

0

))

320ξ0
(
1−2ξ 2

0

)
2

, (2.82)

Gp
1(ξ0,λ ) =

(
−1+λ 2

)(
2−5ξ 2

0 +3ξ 4
0

)(
−ξ0+coth−1ξ0

(
1+ξ 2

0

))

40ξ0
(
1−2ξ 2

0

)
2

, (2.83)

Gp
2(ξ0,λ ) =−

(
−1+λ 2

)
ξ0
(
−1+ξ 2

0

)(
−ξ0+coth−1ξ0

(
1+ξ 2

0

))

40
(
1−2ξ 2

0

)
2

(2.84)

Gp
3(ξ0,λ ) =−Gp

4(ξ0,λ ) =
(1+λ )2

(
−1+ξ 2

0

)(
−ξ0+coth−1 ξ0

(
1+ξ 2

0

))

40ξ0
(
1−2ξ 2

0

)
2

. (2.85)

The functions for an oblate spheroid can be obtained using the transformationξ0 ↔ iξ̄0 and

d ↔ −id, on the dimensional angular velocity, having accounted forthe aspect-ratio depen-

dence that occurs in the relevant non-dimensional parameter - Sthere andRein section2.6).

Einarssonet al.(2014) had derived the O(St) correction to the angular velocities for a spheroid

in a planar linear flow in an invariant form and the expressions in (2.78)and (2.77) match with

those. However they restrict their analysis to finding the orbit that is stabilized at long-times

for the particular case of simple shear flow (λ = 0).

In the analysis that follows, we investigate the effect of the inertial angular velocity cor-

rections given in (2.77) and (2.78) on the trajectory of the orientation vector for all (λ , κ)

combinations below theλcrit -curve in figure2.3. There are two approaches for carrying out

this investigation. The first, brute-force, approach is to numerically integrate the differential

equations governingθ j andφ j , obtained by adding the angular velocities given in (2.78) and

(2.77) and the corresponding leading order angular velocities given in equations (2.29) and
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Fig. 2.5 (a) The O(St) inertial trajectory (black) is plotted on a unit sphere. For the purpose
of illustation a Stokes number is chosen to be 1. The orientation drifts towards the tumbling
orbit (red curve). The blue curves on the unit sphere in (a) and (b) are the Jeffery orbits.

(2.30), to obtain the trajectory on the unit sphere. The trajectory obtained in the manner de-

scribed above, starting from a particular initial condition (St= 1, θ j0=0.5,φ j0 = π) is shown

in figure2.5(a) for a prolate spheroid of aspect ratio 2 in an elliptic flowwith λ =−0.2. The

Jeffery orbits, for the same set of parameters are plotted infigure2.5(b) for purposes of com-

parison. As is evident, the orientation of the spheroid drifts towards the tumbling orbit (red

curve on the unit sphere in figure2.5(a)). To repeat this exercise for the whole (κ-λ ) plane

below theλcrit - curve in figure2.3, and for all possible initial orientation on the unit sphere, is

cumbersome and is not pursued further.

In the second approach, the orbital drift across the closed trajectories in the Stokes limit

is calculated using (2.77) and (2.78). The orbital drift (dC
dt ) can be obtained by differentiating

(2.70) and is given by:

dC
dt

=
C

sinθ j cosθ j

dθ j

dt
+

C(κ2
eq−1)cosφ j sinφ j

κ2
eqsin2 φ j +cos2 φ j

dφ j

dt
. (2.86)

The drift takes the form:

dC
dt

=StC

[
1

sinθ j cosθ j

(
dθ j

dt

)

St
+

(κ2
eq−1)cosφ j sinφ j

κ2
eqsin2φ j +cos2 φ j

(
dφ j

dt

)

St

]
, (2.87)
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where(dθ j
dt )Stand(dφ j

dt )Stare given by (2.77) and (2.78). As expected, the drift is O(St), since

dC/dt = 0 at leading order. The O(St) drift leads to an inertial trajectory where the spheroid

orientation vector spirals towards the flow-gradient plane. ForSt<< 1, this spiralling is tight,

with each turn of the spiral closely approximating a Jefferyorbit (see figure2.5 (a)). The

orbital drift can then be conveniently characterized by thepitch of the spiral measured in units

of C. This pitch,∆C, defined at leading order as the change inC during a single Jeffery period

(Tje f f=2π(κ2
eq+1)/κeq), is given by:

∆Cp =

ˆ Tje f f

0

dC
dt

dt, (2.88)

=(
dτ
dt

)−1
ˆ 2π

0

dC
dt

dτ, (2.89)

=St
κ2

eq+1

(1−λ )κeq

ˆ 2π

0
C

(
1

sinθ j cosθ j

(
dθ j

dt

)

St
+

(κ2
eq−1)cosφ j sinφ j

κ2
eqsin2φ j +cos2 φ j

(
dφ j

dt

)

St

)
dτ.

(2.90)

where the subscript ‘p’ denotes particle inertia. Theτ-integrals in (2.90) are to be evaluated

for fixedC, implying closeness of the inertial spiralling trajectoryat a given point to a Jeffrey

orbit passing through the same point. Using (2.77) and (2.78):

∆Cp =StC
κ2

eq+1

(1−λ )κeq

{
ˆ 2π

0

[
F p

1 (ξ0,λ )+F p
2 (ξ0,λ )cos2φ j +F p

3 (ξ0,λ )cos2θ j +F p
4 (ξ0,λ )cos4φ j

+F p
5 (ξ0,λ )cos(2θ j −4φ j)+F p

6 (ξ0,λ )cos(2θ j +4φ j)

]
dτ +

ˆ 2π

0

(κ2
eq−1)cos2φ j sin2 φ j

κ2
eqsin2φ j +cos2 φ j[

Gp
1(ξ0,λ )+Gp

2(ξ0,λ )cos2θ j+Gp
3(ξ0,λ )cos2φ j+Gp

4(ξ0,λ )cos2θ j cos2φ j

]
dτ
}
.

(2.91)

This may in turn be written as:
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∆Cp =StC
κ2

eq+1

(1−λ )κeq

{[
I1F p

1 (ξ0,λ )+ I2F p
2 (ξ0,λ )+ I3F p

3 (ξ0,λ )+ I4F p
4 (ξ0,λ )+ I5F p

5 (ξ0,λ )

+I6F p
6 (ξ0,λ )

]
+

[
J1Gp

1(ξ0,λ )+J2Gp
2(ξ0,λ )+J3Gp

3(ξ0,λ )+J4Gp
4(ξ0,λ )

]}
,

(2.92)

where theIi ’s and theJi ’s result from integrating the corresponding trigonometric functions in

(2.91) over τ. The trigonometric functions are related toC andτ through (2.70) and (2.71).

The expressions forI1− J4 as functions ofC andκeq are given in AppendixA. The orbital

drift approximation in (2.92) has reduced the need to consider all possible initial conditions in

the brute force mentioned earlier, to a one dimensional examination of all possibleC’s. The

average change, however, should be much less thanC, therefore the above analysis implies
∆C
C << 1. It can be seen from (2.92) that this condition breaks down for whenSt∼ κeq(1/κeq)

(Fi ’s andGi ’s are O(1) numbers in this limit) that is for extreme values of equivalent aspect

ratios that isκeq<< 1(κeq>> 1) for oblate (prolate) spheroid. This would mean that closeto

λ = λcrit curve in figure2.3, the average drift approximation is valid whenRe< κeq, and this

is one of the limitations of the orbital drift approximationand we discuss those, in the context

of a formal multiple scales analysis, in section2.8.

The orbital drift in (2.92) is a function ofC, the flow parameterλ as well as the aspect

ratio (throughξ0 which is the inverse of the eccentricity of the spheroid). Itis shown later

in section2.8 that the orbital drift interpretation, motivated here using physical arguments,

emerges naturally as the leading order term in the frameworkof a multiple time scales analysis.

The drift is positive for a prolate spheroid of any aspect ratio in a planar linear flow with

a nonpositiveλ (all elliptic linear flows including the limiting case of solid body rotation

and simple shear flow). In particular forλ = −1, one expects the particle inertia to cause

the prolate spheroid centrifuge out towards the tumbling orbit. The long-time orientation

dynamics of a prolate spheroid in a flow withλ ≤ 0 approach therefore that of the tumbling

orbit. This is noted in the fourth quadrant of theλ −κ plane in figure2.6(a). In a hyperbolic

flow (0 < λ < λcrit ), the tumbling orbit continues to be the long-time orientation limit for

a prolate spheroid withκ approximately 30. However, if the aspect ratio of the spheroid

is smaller than 30, the orbit that is stabilized at long-times is the tumbling orbit, only till a

particularλ1(κ) (0 < λ1 < λcrit ), indicated by the red curve in the first quadrant of figure

2.6(a). For these aspect ratios, ifλ characterizing the flow is larger thanλ1, a repeller (a

Jeffery orbit at the order of approximation considered) exists on the unit hemisphere dividing
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it into two distinct basins of attraction; with the attractor being the tumbling orbit for one basin

and the spinning orbit for the other. The shaded region in figure2.6(a) corresponds to all those

λ values for which two distinct basins of attraction exist on the unit hemisphere. Eventually,

with increasingλ , the spinning orbit becomes the sole attractor at a particularλ2(κ)(λ1 < λ2)

indicated by the magenta curve in the zoomed plot in figure2.6(b), and this remains so for the

narrow range ofλ ’s in the intervalλ2(κ)< λ < λcrit .

In figure 2.6(c), the orbital drift∆Cp is plotted againstC/(C+1) for a particular aspect

ratio, κ = 2, for differentλ ’s. The drift is positive for allλ ’s belowλ ≈ 0.13(λ1 for κ = 2),

and the long-time orientation dynamics approaches the tumbling orbit. As λ becomes larger

than 0.13, the sign of the drift changes across a criticalC (Jeffery orbit withC = C∗, say).

This Jeffery orbit acts as a repeller. It emerges from the spinning orbit at aroundλ = 0.13

(λ1), and with increasingλ , moves towards the tumbling orbit, eventually coinciding with it

at λ ≈ 0.20(λ2) . The repeller orbits forκ = 2 at variousλ ’s are plotted on the unit sphere in

figures2.6(d) (e) and (f).

The long-time orientation dynamics of an oblate spheroid issimpler compared to that of

the prolate spheroid discussed above. An oblate spheroid drifts towards the spinning orbit

irrespective of its initial orientation and aspect ratio inany planar linear flow withλ (< λcrit ).

In figure 2.7(b), the orbital drift is plotted againstC/(C+ 1) for variousλ ’s for an oblate

spheroid of aspect ratio 0.1 and is negative irrespective ofC andλ .

It is important to understand the effect of particle inertiaon a spheroid rotating in a simple

shear flow to understand the rheological properties of a suspension, which is presented in detail

in chapter3. The drift for a prolate spheroid is plotted as a function of the normalized orbit

constant,C/(C+1) in figure2.8for various aspect ratios. The drift is evidently zero forC= 0

andC= ∞ [C/(C+1)= 1] on account of symmetry, but is positive for all other values of C and

for all aspect ratios. Thus, a massive prolate spheroid always drifts towards the tumbling mode.

In the near-sphere limit (ξ0 →∞), ∆Cp ≈StπC
30ξ−2

0 , as is expected on account of the drift being

proportional to the square of the eccentricity (e= 1/ξ0). In the limit of a slender fiber (ξ0 → 1),

one finds∆Cp ≈−Stπ
√

2C
5 (ξ0−1)

3
2 ln(ξ0−1). A leading-order estimate from the non-aligned

phase of a rotating fiber comes out to be larger ofO[(ξ0−1) ln(ξ0−1)]. This estimate arises

from transverse moments of inertia ofO(ξ0−1) driving a drift against a resistive torque of

O[ln(ξ0−1)]−1 predicted by slender body theory; the next correction in thenon-aligned phase

is O[(ξ0−1)2 ln(ξ0−1)]. The actual estimate ofO[(ξ0−1)
3
2 ln(ξ0−1)] above must therefore

involve the dominant flow-aligned phase of the fiber. These near-sphere and slender fiber
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Fig. 2.6 (a) The orbit stabilized at long-times due to particle inertia are identified for all combi-
nations ofλ -κ below theλcrit curve (blue curve). Red curve denotes the(λ , κ) value at which
the repeller emerges from spinning. The shaded region denote the combinations of(λ , κ) for
which there is a repeller on the unit hemisphere. (b) The zoomed view of the shaded region.
(c) The orbital drift is plotted againstCC+1 for a prolate spheroid of aspect ratio 2. TheC over
which drift changes sign correspond to the repeller (C∗) location. The repeller orbit (red) is
plotted for the prolate spheroid of aspect ratio 2 and forλ ’s (d) 0.13 (e) 0.19 and (f) 0.208.
The blue orbit in (d),(e) and (f) corresponds to the tumblingorbit.
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Fig. 2.7 (a) The orbit stabilized at long-times due to particle inertia are indicated. (b) The
orbital drift is plotted againstCC+1 for an oblate spheroid of aspect ratio 0.1. The drift does not
change sign for an oblate spheroid.

scalings, together with a normalizing factor of(C2+1)−1, are accounted for in figure2.8 in

order to render the∆Cp curve, in the relevant asymptotic limit, a finite one for allC.

The normalized∆Cp for a massive oblate spheroid in simple shear flow is plotted as a

function ofC/(C+1) in figure2.9, and is negative for allC’s and aspect ratios, implying that

the spheroid would asymptote to a steady spinning mode starting from any initial orientation.

In the near-sphere limit,∆Cp is just negative of that for a prolate spheroid. In contrast to a

prolate spheroid, however, a normalization based on this near-sphere scaling ofO(ξ−2
0 ) alone

suffices for plotting∆Cp, since the inertial drift remains finite in the flat-disk limit - limξ0→1

∆Cp ≈ −π2 (C2+1)
1
2−1

20C . The moments of inertia of a thin oblate spheroid are onlyO(ξ0−1)
1
2 ,

but their smallness appears to be compensated by the long,O(ξ0−1)−
1
2 , period available for

inertia to act, leading to∆Cp beingO(1) for ξ0 → 1. Note that the∆Cp curve for any oblate

spheroid crosses that of a near-sphere, with this cross-over point moving in fromC/(C+1)=1

to a limiting value of about 0.75 for a flat disk. Thus, for sufficiently thin spheroids, the inertial

drift increases in magnitude below this cross-overC, while decreasing for greaterC’s.

2.6 The effect of fluid inertia (St=0 andRe ≪ 1)

In this section we investigate the effect of fluid inertia on the orientation dynamics of a

spheroid in a planar linear flow. The rates of change, ofφ̇ j and θ̇ j , at O(Re), is obtained
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Fig. 2.8 The drift due to the particle inertia in simple shearflow, as characterized by the
normalized change in the orbit constant in a single Jeffery period, St−1 ∆Cp

(C2+1)
, plotted as a

function of C
C+1, for a prolate spheroid;C

C+1 = 0 and C
C+1 = 1 correspond to the log-rolling

and tumbling modes. The upper plot uses the additional normalization factor ofξ 2
0 , so the

drift remains finite in the near-sphere limit (ξ0 → ∞). The lower plot uses the normalisation
factor((ξ0−1)3/2 log(ξ0−1))−1, to make the drift finite in the slender fiber limit (ξ0 → 1).
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Fig. 2.9 The drift due to the particle inertia in simple shearflow, as characterized by the
normalized change in the orbit constant in a single Jeffery period, St−1 ∆Cp

(C2+1)
, plotted as a

function of C
C+1, for an oblate spheroid;CC+1 = 0 and C

C+1 = 1 correspond to the spinning and
the tumbling modes.

by evaluating the integrals proportional toRein the right hand side of (2.31), using the veloc-

ity fields given in section2.3. The rates of change are given by :

(
dθ j

dt

)

Re
= sinθ j cosθ j

[
F f

1 (ξ0,λ )+F f
2 (ξ0,λ )cos2φ j +F f

3 (ξ0,λ )cos2θ j +F f
4 (ξ0,λ )cos4φ j

+F f
5 (ξ0,λ )cos(2θ j −4φ j)+F f

6 (ξ0,λ )cos(2θ j +4φ j)
]
, (2.93)

(
dφ j

dt

)

Re
=sinφ j cosφ j

[
Gf

1(ξ0,λ )+Gf
2(ξ0,λ )cos2θ j +Gf

3(ξ0,λ )cos2φ j

+Gf
4(ξ0,λ )cos(2θ j)cos(2φ j)

]
. (2.94)
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The aspect ratio andλ dependent functions for a prolate spheroid are given by:

F f
1 (ξ0,λ ) =(1+λ )2F f

1 (ξ0,0)+
λ
(
ξ0−ξ 3

0 +
(
−1+ξ 4

0

)
coth−1ξ0

)

20ξ0
(
−1+2ξ 2

0

) , (2.95)

F f
2 (ξ0,λ ) =(1−λ 2)F f

2 (ξ0,0), (2.96)

F f
3 (ξ0,λ ) =(λ +1)2F f

3 (ξ0,0), (2.97)

F f
4 (ξ0,λ ) =(λ +1)2F f

4 (ξ0,0), (2.98)

F f
5 (ξ0,λ ) =F f

6 (ξ0,λ ) = (λ +1)2F f
5 (ξ0,0), (2.99)

Gf
1(ξ0,λ ) =(1−λ 2)Gf

1(ξ0,0), (2.100)

Gf
2(ξ0,λ ) =(1−λ 2)Gf

2(ξ0,0), (2.101)

Gf
3(ξ0,λ ) =(λ +1)2Gf

3(ξ0,0), (2.102)

Gf
4(ξ0,λ ) =(λ +1)2Gf

4(ξ0,0), (2.103)

whereF f
i (ξ0,0) andGf

i (ξ0,0) are those corresponding to simple shear flow given by:

F f
1 (ξ0,0) =(ξ 2

0 (−648ξ 12
0 +1350ξ 10

0 −5571ξ 8
0 +11841ξ 6

0 −9269ξ 4
0 +2263ξ 2

0 +6)

−27ξ 2
0 (24ξ 8

0 −14ξ 6
0 −19ξ 4

0 +16ξ 2
0 −3)ξ̄0

8coth−1(ξ0)
4

+9ξ0(288ξ 12
0 −564ξ 10

0 −20ξ 8
0 +799ξ 6

0 −743ξ 4
0 +261ξ 2

0 −29)ξ̄0
4coth−1(ξ0)

3

+ξ0(2592ξ 14
0 −7020ξ 12

0 +13932ξ 10
0 −21123ξ 8

0 +14255ξ 6
0 −577ξ 4

0 −2711ξ 2
0

+652)coth−1 ξ0−3(1296ξ 16
0 −4320ξ 14

0 +5346ξ 12
0 −1477ξ 10

0 −4260ξ 8
0

+6116ξ 6
0 −3492ξ 4

0 +849ξ 2
0 −58)coth−1(ξ0)

2)

(480ξ 2
0 (−1+2ξ 2

0 )
3(−3ξ 2

0 +3ξ̄0
2ξ0coth−1 ξ0+2)(−3ξ 3

0 +5ξ0+3ξ̄0
4coth−1ξ0)

((3ξ 2
0 −1)coth−1 ξ0−3ξ0))

−1 (2.104)

F f
2 (ξ0,0) =−(ξ̄0

2
(−9ξ 9

0 +30ξ 7
0 −115ξ 5

0 +90ξ 3
0 −12ξ0+9ξ̄0

8
(ξ 2

0 +1)ξ 2
0 coth−1(ξ0)

3

−3ξ̄0
4
(9ξ 6

0 −10ξ 4
0 −17ξ 2

0 +14)ξ0coth−1(ξ0)
2

+(27ξ 10
0 −87ξ 8

0 +133ξ 6
0 −33ξ 4

0 −52ξ 2
0 +12)coth−1ξ0))

(40(ξ0−2ξ 3
0 )

2(−3ξ 2
0 +3ξ̄0

2ξ0coth−1 ξ0+2)(−3ξ 3
0 +5ξ0+3ξ̄0

4coth−1 ξ0))
−1

(2.105)
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F f
3 (ξ0,0) =− (ξ 2

0 (378ξ 10
0 +801ξ 8

0 −4731ξ 6
0 +5551ξ 4

0 −2369ξ 2
0 +342)

−27ξ 2
0 (6ξ 6

0 +ξ 4
0 −4ξ 2

0 +1)ξ̄0
8
coth−1(ξ0)

4+9ξ0(12ξ 10
0 +28ξ 8

0 −201ξ 6
0

+273ξ 4
0 −147ξ 2

0 +27)ξ̄0
4coth−1(ξ0)

3+(−972ξ 13
0 −324ξ 11

0 +7365ξ 9
0

−10409ξ 7
0 +5143ξ 5

0 −847ξ 3
0 +44ξ0)coth−1ξ0+3(216ξ 14

0 −378ξ 12
0

+109ξ 10
0 −412ξ 8

0 +1204ξ 6
0 −1028ξ 4

0 +311ξ 2
0 −22)coth−1(ξ0)

2)

(480ξ 2
0 (−1+2ξ 2

0 )
3(−3ξ 2

0 +3ξ̄0
2ξ0coth−1 ξ0+2)(−3ξ 3

0 +5ξ0+3ξ̄0
4coth−1ξ0)

((3ξ 2
0 −1)coth−1 ξ0−3ξ0))

−1 (2.106)

F f
4 (ξ0,0) =−2F f

5 (ξ0,0) =−2F f
6 (ξ0,0) = F f

3 (ξ0,0) (2.107)

Gf
1(ξ0,0) =(ξ 2

0 (81ξ 10
0 −414ξ 8

0 +1074ξ 6
0 −1162ξ 4

0 +479ξ 2
0 −54)+9ξ 2

0(9ξ 6
0 −7ξ 2

0 +2)

ξ̄0
8
coth−1(ξ0)

4−3ξ0(108ξ 10
0 −246ξ 8

0 +69ξ 6
0 +167ξ 4

0 −129ξ 2
0 +23)ξ̄0

4coth−1(ξ0)
3

+(−324ξ 13
0 +1566ξ 11

0 −3309ξ 9
0 +3133ξ 7

0 −1023ξ 5
0 −79ξ 3

0 +36ξ0)coth−1ξ0

+(486ξ 14
0 −2214ξ 12

0 +3819ξ 10
0 −2568ξ 8

0 −222ξ 6
0 +1036ξ 4

0 −355ξ 2
0 +18)

coth−1(ξ0)
2)(40(ξ0−2ξ 3

0 )
2(−3ξ 2

0 +3ξ̄0
2ξ0coth−1ξ0+2)(−3ξ 3

0 +5ξ0

+3ξ̄0
4coth−1ξ0)((3ξ 2

0 −1)coth−1 ξ0−3ξ0))
−1 (2.108)

Gf
2(ξ0,0) =(−ξ 2

0 (27ξ 10
0 −180ξ 8

0 +204ξ 6
0 +68ξ 4

0 −133ξ 2
0 +18)−9ξ 4

0(3ξ 4
0 +2ξ 2

0 −1)ξ̄0
8

coth−1(ξ0)
4+3ξ0(36ξ 10

0 −78ξ 8
0 +73ξ 6

0 −69ξ 4
0 +35ξ 2

0 −5)ξ̄0
4
coth−1(ξ0)

3

+ξ0(108ξ 12
0 −630ξ 10

0 +1041ξ 8
0 −617ξ 6

0 +115ξ 4
0 −29ξ 2

0 +12)coth−1 ξ0

+(−162ξ 14
0 +810ξ 12

0 −1551ξ 10
0 +1600ξ 8

0 −1054ξ 6
0 +448ξ 4

0 −97ξ 2
0+

6)coth−1(ξ0)
2)(40(ξ0−2ξ 3

0 )
2(−3ξ 2

0 +3ξ̄0
2ξ0coth−1ξ0+2)(−3ξ 3

0 +5ξ0

+3ξ̄0
4coth−1 ξ0)((3ξ 2

0 −1)coth−1ξ0−3ξ0))
−1 (2.109)
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G3f (ξ0,0) =(ξ 2
0 (378ξ 10

0 +801ξ 8
0 −4731ξ 6

0 +5551ξ 4
0 −2369ξ 2

0 +342)−27ξ 2
0(6ξ 6

0 +ξ 4
0 −4ξ 2

0

+1)ξ̄0
8coth−1(ξ0)

4+9ξ0(12ξ 10
0 +28ξ 8

0 −201ξ 6
0 +273ξ 4

0 −147ξ 2
0 +27)ξ̄0

4

coth−1(ξ0)
3+(−972ξ 13

0 −324ξ 11
0 +7365ξ 9

0 −10409ξ 7
0 +5143ξ 5

0 −847ξ 3
0

+44ξ0)coth−1 ξ0+3(216ξ 14
0 −378ξ 12

0 +109ξ 10
0 −412ξ 8

0 +1204ξ 6
0 −1028ξ 4

0

+311ξ 2
0 −22)coth−1(ξ0)

2
)(120ξ 2

0(2ξ 2
0 −1)3(−3ξ 2

0 +3ξ̄0
2ξ0coth−1ξ0+2)

(−3ξ 3
0 +5ξ0+3ξ̄0

4
coth−1 ξ0)((3ξ 2

0 −1)coth−1ξ0−3ξ0))
−1 (2.110)

Gf
4(ξ0,0) =−Gf

3(ξ0,0) (2.111)

The near sphere limits of the above functions (ξ0 → ∞,) are given by:

F f
1 (ξ0,0)≈

11

280ξ0
2 , F f

2 (ξ0,0)≈− 37

840ξ0
2 , F f

3 (ξ0,0)≈− 163

31360ξ0
4 (2.112)

1
71

Gf
1(ξ0,0) =

1
3

Gf
2(ξ0,0)≈

1

840ξ 2
0

, Gf
3(ξ0,0)≈

163

7840ξ 4
0

, (2.113)

and the slender fibre limits (ξ0 → 1) are given by:

F f
1 (ξ0,0) =−F f

3 (ξ0,0)≈− 7
240[log(ξ0−1)− log2+3]

, (2.114)

F f
2 (ξ0,0)≈− 2

5
(ξ0−1), (2.115)

Gf
1(ξ0,0) =−Gf

2(ξ0,0) =−3
7

Gf
3(ξ0)≈

1
20[log(ξ0−1)− log2+3]

. (2.116)

The second term in (2.95) is the contribution due to the ambient pressure field, and vanishes

for a simple shear flow. The functions for an oblate spheroid can be obtained using the prolate-

oblate transformation mentioned in sections2.3 and2.5. The analytical approach introduced

in section2.5 is used to evaluate the orbital drift due to the fluid inertia and the drift is given

by :

∆Cf =ReC
κ2

eq+1

(1−λ )κeq

{[
I1F f

1 (ξ0,λ )+ I2F f
2 (ξ0,λ )+ I3F f

3 (ξ0,λ )+ I4F f
4 (ξ0,λ )+ I5F f

5 (ξ0,λ )

+I6F f
6 (ξ0,λ )

]
+

[
J1Gf

1(ξ0,λ )+J2Gf
2(ξ0,λ )+J3Gf

3(ξ0,λ )+J4Gf
4(ξ0,λ )

]}
,

(2.117)
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with I ’s andJ’s given in appendixA. Note thatI ’s andJ’s are same as that seen in section2.5.

The sign of the fluid inertial drift varies in a non-trivial manner withλ . The orbits stabi-

lized by fluid inertia, for long times, for allλ ’s below theλcrit curve in figure2.3are indicated

in figure2.10(a). For a prolate spheroid of any aspect ratio, in solid bodyrotation (λ = −1),

the orbital drift is negative for allC’s and the spheroid drifts towards the spinning orbit. This is

expected, because in solid body rotation, the pressure gradient set up by inertial forces results

in an inward centrifugal buoyancy, which stabilizes the spinning orbit. The spinning orbit

continues to be the stable orbit for allλ ’s less than a particularλ that is a function of aspect

ratio, and denoted byλ3(κ)( < 0), indicated by the magenta curve in the fourth quadrant in

figure 2.10(a)). At λ = λ3, a repeller emerges from the tumbling orbit, splitting the orienta-

tion space on a unit hemisphere, for largerλ ’s into two distinct basins of attraction, with the

attractors being the tumbling and the spinning orbits. The repeller moves towards the spinning

orbit with increasingλ , and eventually merges with the spinning orbit at a secondλ denoted

by λ4(κ)(< 0 and indicated by the red curve in the fourth quadrant in figure 2.10(a)). The

shaded region in figure2.10(a) indicates the (λ , κ) combinations for which the fluid inertial

drift changes sign, across a certain Jeffery orbit (the repeller), leading to two distinct basins

of attraction. On the either side of this region, that is forλ ’s in the rangeλ4 < λ < λcrit and

−1 < λ < λ3, the tumbling and spinning orbits, respectively, remain the sole attractors. In

figure2.10(b), the orbital drift is plotted againstC/(C+1) for a spheroid of aspect ratio 2 as

an example to illustrate the above mentioned bifurcation. The shifting of the repeller location

from tumbling to spinning as one traverses the shaded bifurcation region(λ3 < λ < λ4) in fig-

ure2.10(a), can be seen in the magnified view in figure2.10(c).

An oblate spheroid drifts from any initial orientation towards the tumbling orbit forλ =

−1, again driven by centrifugal buoyancy. However, there exists a range ofλ ’s, for which

there are two distinct basins of attraction separated by a repeller on a unit hemisphere. This

range is indicated by the shaded region, bounded by the curves λ3(κ) andλ4(κ), in the third

quadrant in figure2.11(a)). However, unlike the prolate spheroid, the repeller inthis case first

emerges from the spinning orbit atλ=λ3(red curve in the third quadrant of figure2.11 (a))

and shifts towards the tumbling orbit with increasingλ , finally merging with it whenλ=λ4

(magenta curve in the third quadrant of2.11(a). If the aspect ratio of the spheroid is less than

approximately 0.32, there exists a second bifurcation region aboveλ > λ4(indicated by the

shaded region nearλ = 0 in figure2.11(a)). In this region, the repeller (sayC∗) first emerges

from the tumbling orbit atλ = λ5 and flat out to increasingly thin ellipses centered around

the gradient-vorticity plane asλ → λcrit . At λ = λcrit , the repeller reduce to an arc on the
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Fig. 2.10 (a) The orbits that are stabilized at long-times are identified for all combinations
of λ -κ below theλcrit curve(blue). The shaded region corresponds to the combinations of
(λ , κ) for which there are two distinct basins of attraction separated by a repeller. The red and
magenta curves corresponds to all combinations of(λ , κ) for which the repeller coincide with
the spinning orbit and the tumbling orbit respectively. (b)The drift is plotted againstCC+1 for
a prolate spheroid of aspect ratio 2.(c) Zoomed view of (b) .
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Fig. 2.11 (a) The orbits that are stabilized at long-times are identified for all combinations of
λ -κ below theλcrit curve(blue).(b) The drift is plotted againstCC+1 for an oblate spheroid of
aspect ratio 0.1. (c) and (d) The zoomed view of (b) to show theshifting of the repeller in the
two bifurcation regions identified in (a).
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great circle in which the gradient-vorticity plane intersects the unit sphere. This is because

C∗ is finite in the limit of κeq → 0 (λ− > λcrit ), and therefore the angular extent of the arc

is θ j = tan−1C∗ (see2.70). In figure2.11(b), the orbital drift is plotted for an aspect ratio

of 0.1 to show the above mentioned bifurcations. The shifting of the repeller location in the

shaded bifurcation region (λ3 < λ < λ4) in the third quadrant of figure2.11(a) is plotted in

figure2.11(c) and the shifting in the shaded region corresponding toλ > λ5 is plotted in figure

2.11(d) and the angle of extent of the arc asλ → λcrit is 1630.

In the particular case of simple shear flow, the normalized change in the drift constant (∆Cf )

is plotted for a prolate spheroid as a function ofC in figure2.12for various aspect ratios.∆Cf

is positive for all aspect ratios and for all values ofC. Fluid inertia in simple shear flow there-

fore causes a prolate spheroid to drift towards the tumblingmode starting from an arbitrary

initial orientation. For a near-sphere,∆Cf reduces to:

lim
ξ0→∞

∆Cf =
11πC

70ξ 2
0

, (2.118)

at leading order and, for a slender fiber, one obtains:

lim
ξ0→1

∆Cf =−
√

2πC

15(ξ0−1)
1
2 ln(ξ0−1)

. (2.119)

These expressions motivate the normalizations used in figure 2.12. The factorξ 2
0 in the near-

sphere limit is identical to that for particle inertia, as would be expected since an inertial drift

in either case would scale with the square of the eccentricity. In the limit of a slender fiber, the

inertial terms may be linearized at leading order, being proportional to the leading order Stokes

disturbance field ofO[ln(ξ0−1)]−1 associated with the axisymmetric extensional component

of the simple shear (given by (2.39) in section2.3). The resulting inertial angular velocity is

Re.O[ln(ξ0−1)]−1. Over theO(ξ0−1)−
1
2 Jeffery period, this leads to an angular displacement

and a∆Cf of O[(ξ0− 1)−
1
2/ ln(ξ0− 1)] as in (2.119). Recall from section2.5 that ∆Cp ∼

(ξ0−1)3/2 ln(ξ0−1), so∆Cf ≫ ∆Cp, and fluid inertia is dominant forξ0 → 1. In other words,

one requires an asymptotically large density ratio ofSt/Re∼ O[1/((ξ0−1) ln(ξ0−1))]2 for

particle inertia to influence the inertial drift of a slenderfiber.

The functions,F f
i (ξ0,0) andGf

i (ξ0,0), for an oblate spheroid are obtained from those for

a prolate spheroid in the usual manner. The flat disk limits ofthe resulting functions are given
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Fig. 2.12 The drift due to fluid inertia, as characterized by the normalized change in the orbit
constant in a single Jeffery period,Re−1 ∆Cf

(C2+1) , plotted as a function of C
C+1, for a prolate

spheroid in simple shear flow;CC+1 = 0 and C
C+1 =1 correspond to the log-rolling and tumbling

modes. The upper plot uses the additional normalization factor of ξ 2
0 , so the drift remains

finite in the near-sphere limit (ξ0 → ∞). The lower plot uses the normalisation factor(ξ0−
1)

1
2 ln(ξ0−1), to render the drift finite in the slender fiber limit (ξ0 → 1).
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by

F f
1 (ξ0,0)≈− 29

480
, F f

2 (ξ0,0)≈− 1
20

, F f
3 (ξ0,0)≈− 11

480
, (2.120)

Gf
1(ξ0,0)≈

3
40

, Gf
2(ξ0,0)≈

1
40

, Gf
3(ξ0,0)≈

11
120

. (2.121)

The∆Cf for an oblate spheroid in simple shear flow is plotted againstC in figure2.13. In

contrast to the particle inertia case (see figure2.9), the near-sphere normalization alone is not

sufficient for an oblate spheroid. The inertial angular velocity approaches a finiteO(Re) value

independent of aspect ratio in the flat-disk limit, and this leads to∆Cf ∼ Re.O(ξ0 − 1)−
1
2

for ξ0 → 1 owing to the diverging Jeffery period . The differing scalings for particle and

fluid inertia imply that the density ratioSt/Remust become asymptotically large, ofO(ξ0−
1)−

1
2 (although still far smaller than the corresponding prolateestimate), before particle inertia

can begin to exert an influence on the orientation distribution of flat disks. Figure2.13includes

separate plots of∆Cf with the near-sphere and the flat-disk normalizations. Fromthe plots in

figure 2.13, it can be seen that∆Cf is not single-signed as predicted in figure2.11. Now,

∆Cf must certainly be negative, for all values ofC, for a near-sphere, as is implied by the

prolate-oblate transformation and a∆Cf of O(ξ−2
0 ). This remains true for aspect ratios greater

than about 0.142(ξ0 ≈ 1.01), and such oblate spheroids drift towards a steady spinning mode

starting from any initial orientation. For aspect ratios smaller than this critical value, the∆Cf

curves cross theC-axis, so the drift becomes positive beyond a critical valueof C (say,C∗). C∗

is a function ofξ0, and equals∞ for an oblate spheroid with the critical aspect ratio (0.142),

decreasing to
√

35 in the limitξ0 → 1. For a flat disk,∆Cf is given by:

lim
ξ0→1

∆Cf =
π(7+C2−7(1+C2)

1
2)

15
√

2C(ξ0−1)
1
2

.=
π(

√
1+C2−1)(

√
1+C2−

√
1+C∗2)

15
√

2C(ξ0−1)
1
2

(2.122)

The movement ofC∗ towards its limiting value in the range 1< ξ0 < 1.01 is highlighted by

the magnified view in figure2.13. As the aspect ratio decreases below 0.142, a repeller (which

is a Jeffery orbit at this order of approximation) emerges from the tumbling orbit, separating

the unit hemisphere into distinct basins of attraction. Theregion on the unit hemisphere be-

tween the repeller and the tumbling orbits, corresponds nowto orientations that asymptote

towards a tumbling mode, while the region around the vorticity axis enclosed by the repeller

corresponds to orientations that asymptote towards a steady spinning mode. With decreasing

aspect ratio, the repeller flatten out into increasingly thin ellipses centered about the gradient-

vorticity plane. Eventually, in the flat disk limit, the repeller reduce to an arc (with an angular

extent of about 161o), on the great circle in which the gradient-vorticity planeintersects the
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unit sphere. As a result, a flat disk, like a prolate spheroid,approaches a tumbling mode

from almost any initial orientation (except for a set of measure zero corresponding to the re-

peller). This happens despite the movement ofC∗ towards a finite limiting value (from∞ to√
35) for ξ0 → 1. This is because, for sufficiently thin oblate spheroids, the orbit constant is

appropriately defined asC = tanθ j cosφ j/κ = tanθ j cosφ jξ0/(ξ 2
0 −1)1/2, so that for a given

Jeffery orbit to remain bounded away from the gradient-vorticity plane asκ → 0 (ξ0 → 1),C

must diverge as 1/κ (1/
√

ξ 2
0 −1); in other words, Jeffery orbits corresponding to any finite

C in the flat disk limit (including theC∗ =
√

35, the zero-crossing of the∆Cf curve for a flat

disk) must collapse onto the gradient-vorticity plane (theangular extent of the resulting arc

is C/
√

1+C2, and withC = C∗, this gives 161o as mentioned above). To illustrate the ap-

proach of the∆Cf zero-crossing towardsC= 0 for a flat disk, the fluid inertial drift is plotted

against the re-scaled orbital coordinateC(ξ 2
0−1)1/2

1+C(ξ 2
0−1)1/2 in figure2.14. Figure2.15illustrates the

repelling (Jeffery) orbits starting from the equator of theunit sphere (C = ∞), and moving to-

wards smallerC’s with decreasing aspect ratio. Figure2.16shows the nature of the finite-Re

spiralling trajectories of the orientation vector on either side of the repeller. solutions, at the

critical aspect ratio, renders the tumbling orbit unstable, and the system migrates to a distant

equilibrium (the spinning mode). In the vicinity of the critical aspect ratio, the repeller loca-

tions are given by 1/C∗ =±1.48(ξ0−0.142)
1
2 .

2.7 The effect of fluid inertia on neutrally buoyant spheroids

(Re=St )

The inertial drifts presented in the earlier sections applyto certain limiting scenarios. Drift in

section2.5 is important for massive spheroids that occur in gas-solid systems, where as the

drift in section2.6is important for hollow spheroids in an inertial ambient. From a rheological

perspective, which we discuss in chapter3, one would want to know the effect of weak inertia

on a neutrally buoyant spheroid (ρp = ρ f , Re= St). In this section we investigate the effect

of the combined fluid and particle inertial drift, withRe= St, on the orientation of a neutrally

buoyant spheroid in a planar linear flow.

The drifts given in (2.92) and (2.117) are summed up to obtain the drift for a neutrally

buoyant spheroid. The orbits stabilized by the combined drift at long-times are indicated in

figure2.17. For a prolate spheroid irrespective ofλ (< λcrit ) andκ , the orbit is the tumbling

orbit. For an oblate spheroid, for a given aspect ratio thereexist a criticalλ (λ5(κ)) below
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Fig. 2.13 The drift due to fluid inertia, as characterized by the normalized change in the orbit
constant in a single Jeffery period,Re−1 ∆Cf

(C2+1)
, plotted as a function of C

C+1, for an oblate

spheroid in simple shear flow;CC+1 = 0 and C
C+1 = 1 correspond to the spinning and the

tumbling modes. The upper plot uses the additional normalization factor ofξ 2
0 , so the drift

remains finite in the near-sphere limit (ξ0 → ∞). The middle plot uses the normalisation factor
(ξ0−1)

1
2 , to render the drift finite in the flat disk limit (ξ0→ 1). The lower plot is the magnified

view highlighting the shift in the repeller location with changingξ0.
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Fig. 2.14 The drift for the oblate spheroid in simple shear flow is plotted against a rescaled
orbital coordinate in the right figure. The cross-over pointshifts towards zero with decreasing
aspect ratio. The magnified view is shown to the left.

Fig. 2.15 The repeller orbit location for various aspect ratios. As the aspect ratios decreases
below 0.142 (ξ0 = 1.01) a repeller orbit(denoted by thick black lines) emerges from C/C+1
=1(the tumbling orbit). With further decrease in the aspectratio, the repeller progressively
shrinks, collapsing into the vicinity of the gradient-vorticity plane in the flat-disk limit.



54 The orientation dynamics of a spheroid in planar linear flow

Fig. 2.16 The nature of the spiralling trajectories on either side of the repeller is shown for a
pair of aspect ratios. For the purpose of illustration, a large Reynolds number (Re= 0.8) is
chosen.

which the steady state is the spinning orbit, withλ5(κ) approachingλcrit as the aspect ratio

increases to about 0.32. Forκ < 0.32 andλ5(κ) < λ < λcrit , there exists a repeller as seen

in the earlier sections, and the (λ ,κ) combinations in this range are indicated by the shaded

region in figure2.17. It is interesting to compare figures2.17 , 2.11( a) and2.7(a). In the

rangeλ3(κ) < λ < λ4(κ), the bifurcation regions which existed due to the fluid inertial drift

alone, vanish for the neutrally buoyant spheroids, since the drift due to particle inertia tend

to be stronger than fluid inertial drift when the ambient vortical component dominates the

extensional component. However if theλ ’s are closer to simple shear than solid-body rotation,

that is in the rangeλ5(κ)< λ < λcrit , the drift due to fluid inertia dominates that due to particle

inertia, and therefore the bifurcation region in this range, in figure2.11(a), is not altered much.

In the case of solid body rotation, the drift on a neutrally buoyant spheroid is zero for both

prolate and oblate spheroids, as must be the case, owing to the exact compensation between

the centrifugal buoyancy and the centrifugal force on the particle.

For the particular case of simple shear flow, the drifts for prolate and oblate spheroids

are plotted against the normalized orbit constant in figures2.18and2.19, respectively. These

curves closely resemble those in figures2.12and2.13, showing that fluid inertia dominates

the inertia of the particle for most aspect ratios. Accordingly, the critical aspect ratio at which

(∆Cf +∆Cp) first changes sign (forC → ∞) is only slightly altered from the original value,

0.142, for hollow oblate spheroids (fluid inertia acting alone), to 0.137 for a neutrally buoyant

oblate spheroid.
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Fig. 2.17 The orbits stabilized for a neutrally buoyant spheroid by the combined particle and
fluid inertial drifts.

2.8 Multiple time scale analysis

The orbital drifts in (2.92) and (2.117) were derived from (2.86) based on an assumption that

C remains constant over each turn of the finite-Re trajectory that is an inertial spiral (an exam-

ple of such a spiralling trajectory was shown in figure2.5). As mentioned in section2.5, for

Re,St<< 1, the advantage of such an approximation is that it reduces the need to numerically

integrate the differential equations governingθ j andφ j over initial orientations spanning the

entire unit sphere, to the determination of∆Cf (or ∆Cp) as a function ofC. In this section, we

derive the expression for the orbital drift formally using amultiple time scale analysis, and

substantiate the above physically motivated characterization of inertial effects. This allows

us to discuss the limitations of the orbital drift approximation, particularly for extreme aspect

ratios (slender fibres and flat disks).

The inertial drift occurs on a slow time scale (t2 ∼ Re−1γ̇−1 or St−1γ̇−1 ) compared to

the leading order Stokesian convection time scale (t1 ∼ γ̇−1). The orbital coordinate of the

spheroid can then be written as a two time scale series,C = C0(t1, t2) +Re(orSt)C1(t1, t2),

whereC0 will turn out to be the average drift at leading order, andC1 is the fluctuation about

the average. The distinction between the fast and the slow time scales arises from the fact that

there can be no secular growth on thet1- scale. As is the case in this formalism, this is enforced
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Fig. 2.18 The drift due to fluid and particle inertia for a prolate (neutrally buoyant) spheroid in
simple shear flow, as characterized by the normalized changein the orbit constant in a single
Jeffery period,Re−1∆Cf+∆Cp

(C2+1)
, plotted as a function ofC

C+1; C
C+1 = 0 and C

C+1 = 1 correspond
to the log-rolling and tumbling modes. The upper plot uses the additional normalization factor
of ξ 2

0 , so that the drift remains finite in the near-sphere limit (ξ0 → ∞), while the second plot
uses the normalization factor(ξ0−1)1/2 log(ξ0−1) such that the drift remains finite in the
slender rod limit (ξ0 → 1). The contribution due to fluid inertia dominates particleinertia for
all aspect ratios.
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Fig. 2.19 The drift due to fluid and particle inertia for an oblate (neutrally buoyant) spheroid in
simple shear flow, as characterized by the normalized changein the orbit constant in a single
Jeffery period,Re−1∆Cp+∆Cf

(C2+1) , plotted as a function ofC
C+1; C

C+1 = 0 and C
C+1 = 1 correspond

to the spinning and tumbling modes. The plot uses the additional normalization factor ofξ 2
0 ,

so the drift remains finite in the near-sphere limit (ξ0 → ∞).

by the condition thatC be a periodic function oft1, with periodTje f f (=2π(κ2
eq+1)/κeq), for

t2 fixed. We will focus our analysis on the fluid inertial drift, although the analysis holds good

for the particle inertial drift too. Denoting the right-hand side of (2.86) asReH(C,τ,ξ0), with

dθ j/dt anddφ j/dt given in (2.93) and (2.94), and noting thatτ = κeqt1/(κ2
eq+1), (2.86) can

be rewritten asdC/dt = ReH(C,κeqt1/(κ2
eq+1),ξ0). Substituting the series forC above, and

using the usual splitting of the time derivative into fast and slow components,ddt =
d

dt1
+Re d

dt2
,

as part of the multiple scale formalism (Subramanian & Brady 2004; Bender & Orszag 1999),

one gets:

dC0

dt1
= 0, (2.123)

at leading order and

dC1

dt1
+

dC0

dt2
= H(C,κeqt1/(κ2

eq+1),ξ0), (2.124)

at O(Re). The average orbital driftC0, which is the solution to the leading order equation in

(2.123) is therefore independent oft1, C0(t1, t2) =C0(t2). To evaluate both the dependence of

C0 on t2, and the fluctuationC1, one can integrate (2.124) over the time period, and noting that
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the integral of the first term on the left-hand side of (2.124) evaluates to zero, one gets:

dC0

dt2
=

1
Tje f f

ˆ Tje f f

0
H(C0,κeqt1/(κ2

eq+1),ξ0)dt1 =
1

2π

ˆ 2π

0
H(C0,τ,ξ0)dτ =

∆Cf

ReTje f f
,

(2.125)

where∆Cf is the average change inC over a Jeffery time period, which was already evaluated

in (2.117). Using (2.125) in (2.124) one getsC1 as:

C1 =
Tje f f

2π

(
ˆ τ

0
H(C0,τ ′,ξ0)dτ ′− τ∆Cf

ReTje f f

)
, . (2.126)

Thus, the multiple scale analysis allows one to fit∆Cf into a differential equation forC, thereby

allowing one to track the leading order evolution ofC with time. In figure2.20, we have plotted

theC coordinate of spheroids with two aspect ratios, rotating ina simple shear flow (κ = κeq),

as a function of time as well asφ , starting from (C = 10, τ=π/2) using two methods; the

first by numerically integrating (2.93) and (2.94), and then evaluatingC(t) using its definition

(2.70) in terms ofθ j(t) andφ j(t), and the second using the orbital drift obtained from the

multiple scale analysis presented above. In figures2.20a and c, it can be seen that the results

from two methods compare well (the blue and green curve matchalmost exactly). Figures

2.20(b) and (d) are plotted to identify the phases at which the drift is maximum. It can be

seen that for the O(1) aspect ratio spheroid in figure2.20(d), the drift in the aligned and

nonaligned phases are of the same order. However, for the extreme aspect ratio spheroid in

figure 2.20(b), the maximum drift occurs closer to the aligned phase. This is expected and

can be seen from a simple scaling analysis. ThedC/dt in (2.86) is orderReCin the extreme

aspect ratio limit (κeq → 0 or ∞). The rotation is however nonuniform, and therefore the

spheroid spends O(1) time in the non-aligned phase and O(κeq)(O(1/κeq)) time in the aligned

phase if it is oblate (prolate) spheroid. Thus,∆Cnonaligned/∆Caligned is O(κeq) (O(1/κeq)) for

oblate (prolate) spheroid, making the change inC much larger in the aligned phase compared

to the non-aligned phase for extreme aspect ratios. As explained earlier in section2.5, the

prediction from the multiple scale analysis should eventually break down whenReor St∼ κeq

for an oblate spheroid. The cases plotted in figure2.20are forRe= 0.01, and they satisfy

the restrictionRe< κeq mentioned above. The relaxation of this restriction however leads to

a breakdown of the average drift analysis. To illustrate thebreakdown, in figure2.21we have

plotted theC coordinate of a spheroid rotating in a simple shear flow (κ = κeq) for different

Re’s as a function ofφ j , starting from (C = 10, τ = π/2). It can be seen from the figure that

the sum of the orbital drift approximation (C0) and the fluctuation (C1) fails to capture the

actual variation inC with increasing ratio ofRe/κeq= R̃e. In what follows we discuss a way
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Fig. 2.20 The orbital coordinateC starting fromC = 10 andτ = 0, estimated from 1) the
orbital drift alone (red), 2) the orbital drift together with the fluctuations (green) and 3) theC
obtained from numerical integrating the governing equations of θ j andφ j (blue) are plotted
against time for spheroids of aspect ratios 0.02 and 0.5 rotating in a simple shear flow in (a)
and (c) respectively. The orbital coordinate is plotted against φ j for the same aspect ratios in
(b) and (d).
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to capture this actual variation for an oblate spheroid, primarily because it has an interesting

bifurcation in the orientation dynamics in the extreme aspect ratio limit, as already seen in

section2.17, although an analogous analysis can be performed for a prolate spheroid, the

extreme aspect ratio analysis for an oblate spheroid will help in determining the location of

the repeller well beyond the regime accessible to an orbitaldrift interpretation.

For an extreme aspect ratio spheroid, the maximum change inC occurs during the aligned

phase, and therefore a boundary layer analysis allows one tocapture the actual variation for

O(1) values of̃Re. One can write the net change inC as:

ˆ −2π

0

dC
dφ j

dφ j =

ˆ −2π

0

dC
dt

dφ j
dt +Re

dφ j
dt |Re

dφ j , (2.127)

wheredφ j
dt ,dC

dt and dφ j
dt |Re are given in (2.29), (2.86), and (2.94) respectively. Now in the limit

of κeq→ 0(equivalentlyλ → 1/κ2), (2.29) is proportional to cos2φ j and (2.86) is proportional

to cosφ j , making the integrand in (2.127) proportional to 1/cos2φ j and therefore divergent at

φ j = −π/2 andφ j = −3π/2. These divergences suggest that the contribution to the integral

comes from the aligned phase as expected from figure2.21(e), and one can therefore rewrite

(2.127) as:

ˆ −π

0

dC
dφ j

=

ˆ −π

0

(
dC
dφ j

− lim
φ j→− π

2

dC
dφ j

)
dφ j +

ˆ −2π

−π

(
dC
dφ j

− lim
φ j→− 3π

2

dC
dφ j

)
dφ j

+

ˆ −π

0
lim

φ j→− π
2

dC
dφ j

dφ j +

ˆ −2π

−π
lim

φ j→− 3π
2

dC
dφ j

dφ j (2.128)

where we have isolated the divergences at−π/2 and−3π/2. Using a rescaled coordinate

defined aŝφ = (φ j +π/2)/κ , one can rewrite divergent integral at−π/2 as:

ˆ −π

0




dC
dt

dφ j
dt +Re

dφ j
dt

∣∣∣
Re

∣∣∣∣∣∣
limφ j→− π

2


dφ j =

ˆ −∞

∞

CR̃eF̃ −CR̃eF̃ φ̂2

1+φ̂2

−(1+ φ̂2)− R̃eG̃φ̂
dφ̂ = ∆Cjump, (2.129)

whereF̃ = limλ→ 1
κ2
(F f

1 −F f
2 −F f

3 +F f
4 −2F f

5 ) andG̃= limλ→ 1
κ2
(Gf

1−Gf
2−Gf

3+Gf
4), where

F f ’s andGf ’s are defined in section2.5. One could write the divergence atφ j →−3π/2 also in

a similar manner. The jump inC close to the aligned phase obtained from (2.128) and (2.129),

is plotted against the rescaled coordinate in figure2.22for a spheroid in a simple shear flow.

This jump (green) predicts the total change inC (blue curve) near the aligned phase, obtained
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Fig. 2.21 The orbital coordinateC starting fromC = 10 andτ = 0, estimated from 1) the
orbital drift alone (red), 2) the orbital drift together with the fluctuations (green) and 3) theC
obtained from numerical integrating the governing equations of θ j andφ j (blue) are plotted
for variousRe’s in (a), (c) and (e). The plots on the right side (b),(d) and (f) are zoomed views
of the plot to its left.
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Fig. 2.22 The orbital coordinate is plotted against the rescaled boundary layer variable for a
spheroid in simple shear flow. The average drift approximation, numerical integration result
and the prediction from the boundary layer analysis are shown in red, blue and green color
respectively.

from numerically solving the differential equations for the angular velocities; note that the

orbital drift approximation breaks down for these parameters (Re= 0.1, κ = .01,R̃e= 10).

The bifurcation region shown in figure2.17was estimated on the basis of the orbital drift

approximation. As we have seen above, the orbital drift neednot be a good approximation to

the numerical solution of the differential equations forO(1) R̃e. In such cases, one would want

to check the actual repeller location with that predicted bythe orbital drift approximation. In

figure2.23, we have shown the shift in the repeller location for variousvalues ofRein three

planar linear flows. It is clear from the figure that despite being unable to predict the actual

drift, the average drift approximation predicts the repeller location with reasonable accuracy

down to an O(1)̃Re. The plots show an eventual deviation for largerR̃e.

2.9 Conclusions and future work

In this chapter we have analyzed the effect of particle and fluid inertia on the orientation dy-

namics of a spheroid in a planar linear flow. The corrections to the leading order angular

velocity at O(St) are given in (2.77) and (2.78) . The corrections at O(Re) are given in (2.93)

and (2.94). We have used an average drift approximation to analyze thesolution of the differ-

ential equations governing the rates of change of orientation. The average drift is interpreted
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Fig. 2.23 The repeller locationC∗ is plotted against aspect ratio for variousRe’s, for planar
linear flows characterized by (a)λ = 0,(b) λ = 0.00009 and (c)λ = 0.0025. The minimum
value ofR̃ein each of the cases are (a)12 (b)13 and (c)21.
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in terms of the orbital coordinate defined in (2.70). The average drift for the particle and

fluid inertia are given in (2.92) and (2.117). The orbits stabilized by particle and fluid inertia

are identified in theλ −κ plane in figures2.6, 2.7 and figures2.10, 2.11respectively. The

shaded regions in these figures correspond to theλ −κ combinations for which a bifurcation

in the orientation dynamics leads to the existence of a repeller on the unit-hemisphere which

divides the orientation space into two basins of attraction, with attractors being the tumbling

and spinning orbits respectively. Typical examples of the repeller are shown in2.6(d),(e) and

(f). The orbits stabilized by inertia for a neutrally buoyant spheroid are identified in figure

2.17. In the neutrally buoyant case, the bifurcation region exist only for oblate spheroids. For

the spheroids in this region inertia does not stabilize an unique orbit. Fot the particular case

of simple shear flow the aforementioned repeller exists for neutrally buoyant oblate spheroids

whose aspect ratios are smaller than 0.137.

Finally, we note that a very recent work (Einarssonet al. (2015a,b)) has also investigated

the effect of weak fluid inertia on spheroidal particles of arbitrary aspect ratio in a simple shear

flow. The reciprocal theorem volume integral for the rate of change of the orientation vector

of the spheroid is written in a general tensorial form, and isevaluated after applying symme-

try arguments to reduce it to a set of four scalar integrals. The functions of aspect ratio that

multiply the trigonometric functions in the expressions for the inertial angular velocity contri-

butions are not given in closed form; rather, they are plotted as a function of the aspect ratio.

The authors investigate the stability of the spinning and the tumbling modes for both prolate

and oblate spheroids and arrive at the same conclusions as the present work with respect to

the stability of the tumbling and log-rolling/spinning modes in simple shear flow. Importantly,

however the authors have not interpreted their results in terms of the physically significant

orbital drift and the consequences for rheology given in chapter3 are not explored.



Chapter 3

The effect of inertia on the rheology of a

dilute suspension of spheroids

3.1 Introduction

This chapter is concerned with the theoretical determination of the viscosity of a dilute non-

interacting suspension of non-Brownian anisotropic particles as a function of the particle vol-

ume fraction, a classical problem in microhydrodynamics (Batchelor(1977)). The relevant

volume fraction here is the hydrodynamic one,nL3, wheren is the particle number density

andL is the largest characteristic dimension of an individual particle; nL3 ≪ 1 implies hy-

drodynamic diluteness. We consider the simplest geometry for a non-spherical particle, that

of a spheroid, wherein the deviation from sphericity is characterized by a single parameter,

the particle aspect ratio, and in which caseL would be the semi-major axis (see chapter2).

The analogous problem for spheres was first analysed by Einstein in 1906 (Leal (1992)) who

showed that a suspension of rigid spheres, in the dilute non-interacting limit, behaves as a

Newtonian fluid with an effective viscosity that is enhancedrelative to that of the suspending

fluid by a factor5
2 φ , φ (≪ 1) being the volume fraction, and the factor5

2 often referred to

as the Einstein coefficient. The determination of the analogof the Einstein coefficient for a

suspension of spheroids, a dimensionless function of the spheroid aspect ratio that multiplies

nL3, turns out to be considerably more involved. Stokesian hydrodynamics alone does not, in

fact, provide for a unique answer in this regard.

In order to better understand the above difficulty, one may again examine a suspension of

spheres where a similar difficulty occurs in determining theO(φ2) correction to the effective

viscosity. This calculation, which includes the first effects of hydrodynamic interactions, was
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accomplished much later (than Einstein) by Batchelor and Green in 1972 (Batchelor & Green

(1972b);Batchelor & Green(1972a)). The difficulty in the pair-problem arises because a naive

summation of the long-ranged pair interactions in the suspension viscosity problem, and in

other related ones that include the determination of the hindered settling velocity (Batchelor

(1972)) and the permeability of a dilute fixed bed (Hinch (1977)), leads to either divergent or

conditionally convergent integrals, and only in the 1970’swas it shown that appropriate renor-

malizations were needed to sensibly characterize the effects of hydrodynamic interactions on

the bulk characteristics of Stokesian suspensions. For thesuspension viscosity problem in

particular, even after the renormalization, the notion of the particulate phase modifying the

shear viscosity to O(φ2), and thence, of a Newtonian rheology for a Stokesian suspension at

this order, was found to be crucially dependent on the topology of the pair-sphere trajectories.

This is due to the occurrence of closed pair-pathlines, and the resulting indeterminacy of the

pair-distribution function on such trajectories in the purely hydrodynamic limit (Batchelor &

Green(1972a)). The occurrence of closed particle (Kao et al. (1977a)) or fluid trajectories

(Subramanian & Koch(2006a);Subramanian & Koch(2006c);Subramanian & Koch(2007))

in Stokes flows is not uncommon, the underlying reason being the principle of reversibility as-

sociated with the quasi-steady Stokes equations. The aboveindeterminacy associated with the

pair probability on closed pair-particle pathlines prevents a straightforward determination of

the stress tensor, at O(φ2), for a range of linear flows that includes the rheologicallyimportant

case of simple shear flow(Kao et al. (1977a)). Any calculation of the O(φ2) contribution in

such flows must therefore appeal to physics outside of Stokesian hydrodynamics in the dilute

regime such as three-particle interactions, weak particle(Subramanian & Brady(2006)) or

fluid inertia (Morris et al. (2007)) or weak Brownian motion (Morris & Brady (1997)).

For a suspension of spheroids, the aforementioned rheological indeterminacy is already

present at O(nL3), that is, even in the absence of hydrodynamic interactions. The aspect-ratio-

dependent analog of the Einstein coefficient depends only onthe single particle orientation

distribution in the dilute limit (owing to the absence of positional correlations at this order),

and the latter is indeterminate. As we have seen in chapter2, an isolated spheroid in simple

shear flow (and over a range of planar linear flows) rotates along any of a one-parameter fam-

ily of closed orbits, now known as Jeffery orbits (Jeffery 1922). The existence of such closed

orbits on the unit sphere of orientations leads to the indeterminacy above. In the convective

limit, that is in the absence of any inter-particle interactions, the orientation probability density

may be conveniently written in the formg(C,τ) f (C) (Leal & Hinch(1971)). The coordinates

(C,τ) form a non-orthogonal system on the unit sphere that characterizes the particle motion

along Jeffery orbits(see chapter2), with C being an orbit constant that ranges from 0 to∞ and
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τ being the phase that changes at a constant aspect-ratio-dependent rate along a given orbit.

The first factor in the orientation probability density,g(C,τ), determines the distribution of

orientations along a Jeffery orbit, while the second factor, f (C), determines the distribution of

orientations across the various Jeffery orbits. Strictly speaking, neither of these two compo-

nents is uniquely determined in the convective limit in the absence of inter-particle interactions.

A tiny polydispersity in the particle aspect ratio, however, is sufficient for the orientation dis-

tribution along a single Jeffery orbit to converge to a unique steady distribution given by the

inverse rate of change of the azimuthal angle as found by Jeffery, and is a function of the

particle aspect ratio (Okagawaet al. (1973a);Okagawaet al. (1973b)). On the other hand, the

function f (C) is, by definition, unchanged by particle motion along Jeffery orbits, and there-

fore preserves its functional form in the absence of interactions. As a result, one predicts a

sensitive dependence of the rheology of a dilute non-interacting suspension of non-Brownian

spheroids on the initial orientation distribution! As for spherical particle suspensions, earlier

authors have appealed to mechanisms like Brownian motion (Leal & Hinch (1971);Hinch &

Leal (1972)),viscoelasticity (Leal (1975)), fluid and particle inertia (Subramanian & Koch

(2005);Subramanian & Koch(2006b)), and pair-hydrodynamic interactions in the limit of

large aspect ratios (Okagawaet al. (1973a);Rahnamaet al. (1995)), to obtain a drift across

Jeffery orbits in an effort to endow the suspension with a finite memory, and thereby, arrive

at a unique steady state distribution across Jeffery orbits. The aforementioned efforts that

consider inertia, viscoelasticity or hydrodynamic interactions are restricted to limiting particle

geometries(large or near-unity aspect ratios)

In chapter2, we have seen that weak inertial effects, at O(Re) (Re<< 1), stabilize a unique

orbit for a neutrally buoyant spheroid rotating in a simple shear flow, provided its aspect ratio

is larger than 0.137. The unique orbit is the tumbling orbit for a prolate spheroid of any aspect

ratio and it is the spinning orbit for an oblate spheroid whose aspect ratio is larger than 0.137

(see chapter2). Hence, for the above mentioned range of aspect ratios, thedistribution across

Jeffery orbits are delta functions peaked either atθ j = π/2 or θ j = 0, where the polar angle

θ j is defined in figure2.2. The viscosity of a suspension of spheroids mentioned abovecan

be readily evaluated from the unique delta function orbit distribution. For neutrally buoyant

oblate spheroids with aspect ratios smaller than 0.137, depending on the initial condition, iner-

tia stabilizes either the tumbling or the spinning orbit. For these spheroids, as shown in chapter

2, a repeller exists on the unit hemisphere separating the orientation space into two distinct

basins of attractions with the attractors being the tumbling and spinning orbits(see figure2.15

for a typical example of such a repeller). For a suspension ofsuch spheroids, this would mean

that the distribution is given by a couple of delta functionspeaked atθ j = 0 andθ j = π/2, and



68 The effect of inertia on the rheology of a dilute suspension of spheroids

the relative amplitudes of these delta functions are determined by the initial distribution of

orientations. The steady-state partitioning of orientations between these two orbits is uniquely

determined only when physical effects other than inertia are included. In order to render the

viscosity of the suspension unique, we consider stochasticorientation fluctuations in the form

of rotary Brownian motion as an example of such a physical effect. The importance of rotary

Brownian motion in relation to rotation by shear flow is characterized by the rotary Peclet

number (Per ), defined asγ̇
Dr

, whereDr is the rotary diffusivity of the spheroid. Interestingly,

the distribution that is set up across the Jeffery orbits dueto rotary Brownian motion and iner-

tia is of the Boltzmann form and is dependent on the nondimenstional parameterRePer . This

allows for an equivalent thermodynamic interpretation of the unique steady state orientation

distribution. The original pair of Jeffery orbits, smearedout by thermal fluctuations, may

be regarded as tumbling and spinning phases, and comprise the small and large-C branches

of a two-phase envelope ending in a critical point. The transition between the tumbling and

spinning phases is interpreted as a phase transition and we call it a ‘tumbling-spinning tran-

sition’. The three-dimensional parameter space, with the parameters beingRePer , κ andC,

characterizing this tumbling-spinning transition has a one-to-one correspondence with the fa-

miliar thermodynamic description of the one-component phase transition. Specifically,κ and

C are analogous to the pressure and specific volume, respectively, while an appropriate non-

dimensional shear rate plays the role of an inverse non-equilibrium temperature. One can also

draw an analogy between the famous coil-stretch transition(De Gennes 1974; Hinch 1974)

and the tumbling-spinning transition, with the transitions in both cases endowing the system,

suspension in here and polymer solution in case of coil-stretch transition, with a memory that

exceeds the nominal microstructural relaxation time.

This chapter is divided into different sections as follows.In section3.2, we express the

viscosity as an integral which gives the average of the stresslet over the steady state orien-

tation distribution. Note that this is the hydrodynamic stress; the direct Brownian stress is

negligible in the limit examined (Per >> 1). For prolate spheroids of any aspect ratio and

oblate spheroids whose aspect ratios are larger than 0.137,inertial effects at O(Re) alone set

up the unique steady state distribution and we present the viscosity of a suspension of such

spheroids in section3.3. For oblate spheroids whose aspect ratios are smaller than 0.137, we

calculate the steady state distribution set up by rotary Brownian motion at O(Pe−1
r ) and inertia

at O(Re) in section3.4.1. The thermodynamic interpretation of the ‘tumbling-spinning tran-

sition’ based on the steady state distribution determined in section3.4.2, and the associated

three dimensional phase diagram including the two-phase ‘tumbling-spinning’ envelope is de-

veloped in this section, first for the simple shear flow. Next,we examine the phase diagrams
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for the class of planar linear flows investigated in chapter2, and that have closed orbits in

the Stokes limit. The two-phase envelope is the largest in extent for simple shear flow, and

rapidly diminishes in extent on either side ( that is with increase in extension or vorticity). In

section3.4.3, we return to the case of simple shear flow and analyze the time-dependent ori-

entation distribution for different initial conditions, and show that the finite-time evolution in

the two-phase envelope is characterized by a pronounced hysteresis, leading to the suspension

viscosity being sensitively dependent on the precise shearhistory. We summarize our findings

in section3.5, where we also argue that the tumbling-spinning hysteresischaracterized here

should be observable in more general circumstances.

3.2 Formulation for the viscosity

In this section, we formulate the integral for estimating the shear viscosity of a dilute suspen-

sion of neutrally buoyant spheroidal particles. The contribution of the particulate phase to

the averaged suspension stress may be written as〈σ p
i j 〉 = n〈Si j 〉 where, in the dilute limit, the

stresslet,Si j , is that associated with an isolated torque-free spheroid immersed in an ambient

simple shear flow. Note that the stress above is due to hydrodynamics alone. The Brownian

stress is negligible in the nearly athermal limit of interest. This stresslet is a function of the

instantaneous spheroid orientationppp, and the angled brackets therefore denote an average over

the relevant orientation probability density. Thus,〈Si j 〉 is given by:

〈Si j 〉=
ˆ

Ω(ppp)dppp
ˆ

Sp

1
2
[σikx jnk+σ jkxink−

2
3

δi j (σlkxl nk)]dA, (3.1)

whereSp denotes the surface of the spheroid, andΩ(ppp) is the orientation distribution of an

isolated spheroid in an ambient simple shear flow. For finiteRe(= St), as originally shown

by (Batchelor(1970b)), the suspension stress contains additional terms involving both the par-

ticle phase acceleration and the fluid phase velocity fluctuations, and these have been shown

to lead to a non-Newtonian rheology, even for suspensions ofspherical inclusions (Lin et al.

(1970a),Subramanianet al. (2011)). However, these effects scale withRe, and become van-

ishingly small forRe→ 0. Thus, for small but finiteRe, the dominant effect of inertia is

an indirect one in terms of determining the steady state orientation probability density (and

thereby, the shear viscosity). In the Stokes limit, as notedin chapter2, a spheroid continues to

rotate in a Jeffery orbit corresponding to its initial orientation. As a result,Ω(ppp) and therefore

the particle contribution to the stress given in (3.1), depends on the initial orientation distribu-

tion of the spheroid. As seen in chapter2, weak inertial effects lead to a drift which stabilizes

a unique orbit for spheroids of aspect ratio larger than 0.137. The steady-state orientation
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distribution corresponding to this unique orbit is set up onan asymptotically long time scale

which is given byO(Re−1). For oblate spheroids with aspect ratio smaller than 0.137,the drift

stabilizes either the spinning orbit or the tumbling orbit,depending on the initial orientation.

As mentioned in section3.1, we need an additional orientational decorrelation mechanism in

this case to make the steady state distribution unique. We consider rotary Brownian motion

as a canonical example of the decorrelation mechanism, and Brownian motion together with

the inertial drift result in a unique steady state orientation distribution for the spheroid. This

unique steady state distribution is set up on an exponentially long time scale (∝ exp[RePer ]).

The instantaneous stresslet in (3.1) is a function ofppp and may be written down from

symmetry arguments as:

Si j (ppp) =
3
2

D(p/o)
1 (ξ0)(Ekl pkpl )(pi p j−

1
3

δi j )+D(p/o)
2 (ξ0)[(δik−pi pk)Ekl pl p j +(δ jk−p j pk)

Ekl pl pi ]+D(p/o)
3 (ξ0)[(δik−pi pk)Ekl(δ jl −pl p j)+

1
2
(Ekl pkpl )(δi j−pi p j)], (3.2)

where the coefficientsD(p/o)
1 , D(p/o)

2 andD(p/o)
3 , respectively, denote the aspect-ratio-dependent

strength of the stresslet singularities (recall thatξ0 is the inverse of eccentricity of the spheroid

andEEE is the rate of strain tensor of the simple shear flow) corresponding to the component

flows (axisymmetric, longitudinal and transverse planar extensions, see section2.3) that make

up the ambient simple shear in the body-fixed reference frame(XYZ in figure 2.2) for prolate

(p) and oblate (o) spheroids. The number of coefficients (three) is fewer thanthe number of

component flows (five), since the axisymmetry of the spheroidimplies identical responses to

the two longitudinal (uuu4s anduuu5s) and transverse planar extensional flows (uuu2s anduuu3s), which

combine to give the terms proportional toD2 andD3, respectively, in (3.2). For the limiting

case of a sphere,D(p/o)
1 =D(p/o)

2 =D(p/o)
3 = 20π

3 , and (3.2) takes the familiar formSi j =
20π

3 Ei j

which yields the Einstein coefficient. FromKim & Karrila (1991), the expressions for the co-

efficients, translated to our notation, are given by:

D(p)
1 (ξ0) =

16π
9ξ 3

0 [(3ξ 2
0 −1)coth−1 ξ0−3ξ0]

, (3.3)

D(p)
2 (ξ0) =

16πξ̄ 2
0

[3ξ 2
0(1−2ξ 2

0 )(2−3ξ 2
0 +3ξ0ξ̄ 2

0 coth−1ξ0)]
, (3.4)

D(p)
3 (ξ0) =

32πξ̄ 2
0

3ξ 3
0 (5ξ0−3ξ 3

0 +3ξ̄ 4
0 coth−1ξ0)

, (3.5)

(3.6)
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D(o)
1 (ξ0) =

16π
9ξ 3

0 [(3ξ 2
0 −2)cot−1 ξ̄0−3ξ̄0]

, (3.7)

D(o)
2 (ξ0) =

16πξ̄0

[3ξ0(1−2ξ 2
0 )(1−3ξ 2

0 +3ξ 2
0 ξ̄0cot−1 ξ̄0)]

, (3.8)

D(o)
3 (ξ0) =

32π
3ξ0(−(2+3ξ 2

0 )ξ̄0+3ξ 4
0 cot−1 ξ̄0)

. (3.9)

The above expressions may also be obtained from the far-fieldlimit (for ξ → ∞) of each of the

component velocity fields (uuu1s−uuu5s), of the form (EEEi :xxxxxx)xxx
r5 , EEEi (i = 1−5) being the component

rate-of-strain tensor (see section2.3), with the constant of proportionality, a function ofξ0,

giving theξ0-dependent stresslet coefficient.

The excess stress in a dilute suspension is therefore given by:

σσσ p =nEkl

ˆ

{
3D(p/o)

1 (ξ0)

2
pkpl (pi p j−

1
3

δi j )+D(p/o)
2 (ξ0)[(δik−pi pk)pl p j +(δ jk−p j pk)pl pi ]

+D(p/o)
3 (ξ0)[(δik−pi pk)(δ jl −pl p j)+

1
2

pkpl (δi j−pi p j)]

}
Ω(ppp)dppp. (3.10)

The orientation distributionΩ(ppp) needed in (3.10) is governed by the convection-diffusion

equation given by:
∂Ω
∂ t

+∇∇∇ppp.[(ṗppje f f +Reṗppi)Ω] =
1

Per
∇2

pppΩ, (3.11)

whereṗpp je f f and ṗppi are respectively, the rate of change of orientation vector due to the angular

velocity at the leading order given in (2.29and2.30) and that due to the inertial correction to

the angular velocity given in (2.77,2.78,2.93& 2.94). The term on the right-hand side above is

the diffusion in the orientation space due to rotary Brownian motion. In both the non-Brownian

case (spheroids withκ > 0.137) this term is zero. In the Brownian(spheroids withκ < 0.137)

and the non-Brownian cases, it will be seen in the next two sections thatΩ(ppp) can be written in

a separable formΩ(ppp)= f (C)g(C,τ), where f (C) andg(C,τ) are the distributions across and

along the Jeffery orbits respectively. The distribution across the orbits in the non-Brownian

case can be determined by weak inertial effects alone and is adelta function peaked either

at C = 0 orC = ∞. The distribution across the orbit is set up by inertia together with rotary

Brownian motion in the Brownian case. While solving (3.11), an assumption is made that

there is an aspect ratio polydispersity in the suspension (as is always the case in experiments),

and it will be shown that the distribution along the orbitg(C,τ) is set up by the polydispersity

on shorter time scales. In sections3.3 and 3.4, (3.11) is solved in the asymptotic regime

where the time scales governing the orientation distribution along and across orbits is well
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separated. The solutions are used to evaluate (3.10) for the non-Brownian and the Brownian

cases, respectively.

3.3 Rheology non-Brownian case

3.3.1 Derivation of orientation distribution

In this section, we derive the orientation distributionΩ(ppp) set up by the inertial drift required

to evaluate the integral in (3.10) for the non-Brownian case. The orientation distribution set

up by the inertial drift alone, is relevant for prolate spheroids of any aspect ratio and oblate

spheroids, whose aspect ratio is larger than 0.137. In the absence of Brownian motion, (3.11)

can be rewritten as:
∂Ω
∂ t

+∇∇∇ppp.(ṗpp je f fΩ) =−Re∇∇∇ppp.( ṗppiΩ). (3.12)

There are two time scales in the problem; the first of O(γ̇−1) corresponds to the Stokesian

convection due to the imposed shear and the second corresponds to the slower drift due to

fluid inertia, and is of O(̇γ−1Re−1). For Re<< 1, the solution of (3.12) is obtained using a

multiple scales analysis. Defining the non-dimensional fast and slow time scales ast1 and

t2 respectively, witht1 = t andt2 = Ret, and writingΩ = Ω0(C,τ, t1, t2)+ReΩ1(C,τ, t1, t2),
(3.12) takes the form:

∂Ω0

∂ t1
+∇∇∇ppp.[ṗpp je f fΩ0] = 0, (3.13)

at leading order, and

∂Ω1

∂ t1
+∇∇∇ppp.[ṗpp je f fΩ1] =−∇∇∇ppp.[ ṗppiΩ0]−

∂Ω0

∂ t2
, (3.14)

at O(Re). The O(Re) term in the expansion forΩ is the direct effect of inertia which is, of

course, small. The O(1) term is the indirect effect, via the alteration of the orbit constant dis-

tribution at leading order, for long times.

The rate of change of orientatioṅppp je f f in (3.13) takes the form hτ
κ+1/κ τ̂ττ in the (C,τ) orbital

coordinate system. Here,hτ is the metric factor for theτ coordinate, and̂τττ is the unit vector

in theτ direction in the orbital coordinate system (see AppendixB). The divergence operator

in the (C,τ) orbital coordinate system given in (B.6) is used to simplify (3.13) which gives:

∂Ω0

∂ t1
+

1
hChτ sinα

∂
∂τ

(
Ω0hchτ sinα

κ +1/κ

)
= 0, (3.15)
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The first-order hyperbolic equation above admits an infinitenumber of solutions, each corre-

sponding to a particular initial orientation distribution, and with all of them, except one, being

time dependent. However, as is shown below, if there is a tinypolydispersity in the particle as-

pect ratios (as is invariably the case in experiments) all the time dependent solutions approach

the steady one at an exponential rate on a time scale inversely proportional to the polydis-

persity. To see this, we assume that the probability densityfor the spheroid aspect ratios is

given byh(κ ;κ̄,σ), with meanκ̄ and standard deviationσ . The assumption of a tiny polydis-

persity implies that the variance ofh(κ ;κ̄,σ) given byσ2 =
´

(κ − κ̄)2h(κ ; κ̄,σ)dκ satisfies

σ2 << κ̄2. Defining f1 = Ω0hchτ sinα, (3.15) can be rewritten as:

∂ f1
∂ t

+

(
κ

κ2+1

)
∂ f1
∂τ

= 0. (3.16)

Note thatκ in the above equation is a random variable and thereforef1, which is the proba-

bility density for spheroids of a given aspect ratioκ , is also a random variable. Defining a

new variableτ0 = τ − κ̄
κ̄2+1t1, whereτ0 denotes the (fictitious) initial phase calculated from

the current phase (of a spheroid of aspect ratioκ) using the Jeffery angular velocity of the

spheroid of mean aspect ratio. Rewriting (3.16) in terms ofτ0 leads to:

∂ f1
∂ t1

+

(
κ

κ2+1
− κ̄

κ̄2+1

)
∂ f1
∂τ0

= 0. (3.17)

The solution to the equation above is given byf1=g(C,τ0 −
(

κ
κ2+1 −

κ̄
κ̄2+1

)
t1)=g(C,τ1 +

κ̄
κ̄2+1

t1), whereτ1=τ0−
(

κ
κ2+1

)
t1 and the functiong is specified by the initial condition. For

κ = κ̄ , the equation reduces to∂ f1
∂ t1

= 0, and the solution is thereforef1 = g(C,τ0); that is if

the initial distributionh(κ ; κ̄,σ) = δ (κ̄), then the solution forf1 merely reflects the fact that

the initial distribution of both orbit constantsC and phase anglesτ0 is preserved for all times.

However whenh(κ ; κ̄,σ) is not aδ function, the initial distribution is not preserved and the

measurable distribution would then be the average off1 which is defined as:

f̄1 =
ˆ

f1h(κ ; κ̄,σ)dκ . (3.18)

The average of (3.17) gives the governing equation for̄f1:

ˆ

∂ f1
∂ t1

h(κ ; κ̄,σ)dk+
ˆ

(
κ

κ2+1
− κ̄

κ̄2+1

)
∂ f1
∂τ0

h(κ ; κ̄ ,σ)dk= 0. (3.19)

In the analysis that follows, we will show that̄f1, at long times, converges to a time-independent

distribution. The first term on the left-hand side of (3.19) is ∂ f̄1
∂ t1

. Expanding the bracketed term
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on the left-hand side of (3.19) aboutκ = κ̄ and definingA = (1−κ̄2)
(1+κ̄2)2

andB = κ̄3−3κ̄
(1+κ̄2)3

the sec-

ond integral in (3.19) becomes:

ˆ 1

0

(
κ

κ2+1
− κ̄

κ̄2+1

)
∂ f1
∂τ0

h(κ ; κ̄,σ)dk=
ˆ 1

0
(A(κ − κ̄)+B(κ − κ̄)2)

(
∂ f1
∂τ0

∣∣∣∣
κ=κ̄

+(κ − κ̄)
∂

∂κ

(
∂ f1
∂τ0

)∣∣∣∣
κ=κ̄

)
h(κ ; κ̄,σ)dk. (3.20)

The solution of (3.17) shows thatf1 is an explicit function ofτ1. Therefore∂ f1
∂τ0

is an explicit

function ofτ1. ∂
∂κ can be transformed to∂∂τ0

as:

∂
∂κ

=
∂τ1

∂κ
∂

∂τ1
=

κ2−1
(1+κ2)2t1

∂
∂τ1

=
κ2−1

(1+κ2)2t1
∂

∂τ0
. (3.21)

Substituting (3.21) in the rhs of (3.20) one obtains:

ˆ 1

0

(
κ

κ2+1
− κ̄

κ̄2+1

)
∂ f1
∂τ0

h(κ ; κ̄,σ)dk=
ˆ 1

0
(A(κ − κ̄)+B(κ − κ̄)2)

(
∂ f1
∂τ0

∣∣∣∣
κ=κ̄

−At1(κ − κ̄)
∂

∂τ0

(
∂ f1
∂τ0

)∣∣∣∣
κ=κ̄

)
h(κ ; κ̄,σ)dk, (3.22)

where we have replacedκ by κ̄ in the relevant terms to the required order of approximation.

Usingσ2 =
´ 1

0 (κ − κ̄)2h(κ ; κ̄,σ)dkand neglecting higher order corrections, (3.22) becomes:

ˆ 1

0

(
κ

κ2+1
− κ̄

κ̄2+1

)
∂ f1
∂τ0

h(κ ; κ̄,σ)dk=

(
−A2t1σ2 ∂

∂τ0

(
∂ f1
∂τ0

)∣∣∣∣
κ=κ̄

+Bσ2∂ f1
∂τ0

∣∣∣∣
κ=κ̄

)
.

(3.23)

To O(σ2), the derivatives in (3.23) may be replaced by the corresponding derivatives off̄1,

and one obtains the following equation for̄f1:

∂ f̄1
∂ t1

+Bσ2∂ f̄1
∂τ0

= A2 t1σ2 ∂
∂τ0

(
∂ f̄1
∂τ0

)
. (3.24)

Defining a new variablêτ0 = τ0 - Bσ2t1, the equation above can be written as

∂ f̄1
∂ t1

= A2 t1σ2 ∂
∂ τ̂0

(
∂ f̄1
∂ τ̂0

)
(3.25)

=⇒ ∂ f̄1
∂ t2

1

= D
∂

∂ τ̂0

(
∂ f̄1
∂ τ̂0

)
. (3.26)
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The governing equation for̄f1 is a one-dimensional diffusion equation in a finite domain with

the diffusion constantD= A2σ2/2 = (1−κ̄2)2

(1+κ̄2)4
σ2/2. The normalization condition on̄Ω0, which

is given by
´

Ω̄0hChτ sinα dCdτ=1 , results in the following restriction on̄f1:

ˆ ∞

0

ˆ 2π

0
f̄1dCdτ = 1. (3.27)

The no-flux condition leads to:

∂ f̄1
∂C

= 0 atC=0 and∞. (3.28)

The solution for (3.26) can be found in terms of an eigenfunction expansion using separation

of variables:

f̄1 =
∞

∑
n=0

e−n2Dt2
1(Ancosnτ̂0+Bnsinnτ̂0). (3.29)

Applying the boundary and the normalisation condtion one gets

ˆ ∞

0
A0dC=

1
2π

(3.30)

and
∂A0

∂C
= 0 atC=0 and∞. (3.31)

The n = 0 term in the summation in (3.29), together with (3.30) and (3.31) gives the time-

independent solution to (3.13) as:

Ω̄0 =
A0

hChτ sinα
. (3.32)

In (3.32), A0 is a function ofC alone and therefore captures the orientation distributionacross

the Jeffery orbits. The termhChτ sinαdCdτ is the differential area element in theC− τ co-

ordinate system, and ensures thatΩ̄0 satisfies the normalization condition above. The above

expression forΩ̄0 clearly shows that the polydispersity stabilizes a unique time independent

distribution along the orbit, and the distribution is precisely the inverse of the Jeffery angular

velocity.

It is clear from (3.32) thatΩ̄0 is of the form f (C)g(C,τ), wheref (C) is the distribution across
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orbits andg(C,τ) is the distribution along the orbit, withf (C) = A0 andg(C,τ) = 1
hChτ sinα .

If there were no inertia,f (C) would be determined by the initial condition. The long-time

orientation orbit stabilized by inertia, for a neutrally buoyant prolate spheroid is the tumbling

orbit, and thereforef (C) takes the formδ (1/C)
2π in theC− τ orbital coordinate system. For a

neutrally buoyant oblate spheroid, whose aspect ratio is larger than 0.137, the long-time ori-

entation orbit stabilized by inertia is the spinning orbit,and f (C) takes the formδ (C)
2π in the

orbital coordinate system. In terms of the polar and azimuthal angles,Ω̄0 then takes form:

Ω̄0(ppp) =
κδ (θ j − π

2)

2π sinθ j
(
κ2sin2 φ j +cos2φ j

) , (3.33)

for the tumbling spheroid, and

Ω̄0(ppp) =
δ (θ j)

2π sinθ j
, (3.34)

for the spinning spheroid. Note that the above expressions are written in the spherical coordi-

nate system using the relations given in appendixB.

For oblate spheroids of aspect ratio less than 0.137, inclusion of weak inertial effects does

make the functional form of the steady-state orientation distribution determinate, which is

given by a couple of delta functions peaked atθ j = 0 andθ j = π/2. However, in a suspen-

sion of such spheroids, the ratio of the amplitudes of these delta functions is determined by

the initial distribution of spheroids in the suspension, and the orientation distribution of the

spheroids in the suspension is given by:

Ω̄0(ppp) =
A1(C∗)δ (θ j)

2π sinθ j
+

κ [A2(C∗)δ (θ j − π
2)]

2π sinθ j
(
κ2cos2φ j +sin2 φ j

) , (3.35)

where the constantsA1 andA2, in addition to depending onC∗ (and thereby on the aspect

ratio), are functions of the initial orientation distribution. This dependence arises because the

relative proportions of oblate spheroids asymptoting to the tumbling and spinning modes de-

pend on the number of particles located on the either side of the repeller (the Jeffery orbit with

C =C∗(ξ0), see figure2.15) on the unit sphere at the initial instant. Thus, for non-Brownian

neutrally buoyant oblate spheroids in the range of aspect ratios (0,0.137), the inertial suspen-

sion rheology, at leading order, still depends on the initial state of the dilute suspension. Using

the orientation distribution given in (3.33) (3.34) and (3.35), we calculate the viscosity of a

dilute suspension of spheroids in the presence of inertia, in the next section.
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3.3.2 Rheology of non-Brownian suspensions of inertial spheroids

In this section, the viscosity of a dilute suspension of spheroids in the presence of inertia

alone is calculated by evaluating the integral in (3.10), using the distributions derived in (3.33)

(3.34) and (3.35). For a dilute suspension of prolate spheroids, the distribution given in (3.33)

is substituted in (3.10), with ppp = cosφ j111
′
x+ sinφ j111

′
y (primed unit vectors are defined in the

space-fixed coordinate system see figure2.2), to obtain the particle contribution to the stress,

which is given by:

〈σ p
i j 〉= n

[
D(p)

2 (ξ0)+

(
3
2

D(p)
1 (ξ0)−2D(p)

2 (ξ0)+
D(p)

3 (ξ0)

2

)
ξ0 ξ̄0(

ξ0+ ξ̄0
)2+

]
Ei j . (3.36)

The rheology is evidently Newtonian. In terms of an effective viscosityµe f f, we have from

(3.36) that (µe f f − µ)/[(nL3)µ] = 1
2(D

(p)
2 (ξ0)+ (3

2D(p)
1 (ξ0)− 2D(p)

2 (ξ0)+
D(p)

3 (ξ0)
2 ) ξ0 ξ̄0

(ξ0+ξ̄0)
2 )

for a suspension of prolate spheroids at small but finiteRe. The left-hand-side plot in figure

3.1 shows this intrinsic viscosity coefficient as a function of the spheroid eccentricity. It is

seen to vary from a value corresponding to the Einstein coefficient (the value near 10 comes

from the factor 4π/3 involved in the spherical volume fraction) for a near-sphere to a vanish-

ingly small contribution for a slender spheroid. This happens due to a change in the scaling of

(µe f f −µ)/µ from O(nL3) in the near-sphere limit toO(nL2b)/ lnκ in the slender fiber limit;

from (3.36), limξ0→∞(µe f f−µ)/µ = 10π
3 nL3 and limξ0→1(µe f f−µ)/µ = 2π

3lnκ nL2b. For large

aspect ratios (κ → ∞), the dominant contribution to the averaged stresslet is from non-aligned

fibers with the probability of such orientations only beingO(κ−1). From viscous slender body

theory, the stresslet for a non-aligned fiber arises from a linear force density ofO[µγ̇L/ lnκ ]
acting with a moment arm ofO(L) over the length of the spheroid, and isO[µγ̇L3/ lnκ ]. The

resulting (dimensional) stress isO(n).O(κ−1).O[µγ̇L3/ lnκ ], leading to an effective viscosity

(µe f f − µ)/µ of O[nL2b/ lnκ ]. The stresslet for flow-aligned fibers is smaller than the non-

aligned contribution byO(κ−2 lnκ), and only contributes to a small correction ofO(nLb2)

to the above estimate. The right-hand side plot in figure3.1 uses the slender fiber scaling

above to obtain a finite viscosity coefficient in the slender fiber limit; note that the near-sphere

asymptote is zero in these units owing to the additional logarithmic factor involved. The scal-

ing of the intrinsic viscosity with aspect ratio, in the slender fiber limit, is controlled by the

anisotropy of orientations within a given Jeffery orbit, and thus, Leal and Hinch’s (Leal &

Hinch (1971)) original calculation, involving the effect of weak Brownian diffusion in setting

up a steady smooth distribution across Jeffery orbits, alsoleads to a viscosity coefficient of

O[nL2b/ lnκ ] for large aspect ratios, albeit with a differentO(1) coefficient.
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Fig. 3.1 The intrinsic viscosity coefficient as a function ofeccentricity for a dilute suspension
of neutrally buoyant prolate spheroids.

For oblate spheroids with aspect ratios greater than 0.137,ppp= 111′z, and only the two transverse

planar extensions in (2.34) contribute to the rheology. Using (3.34), (3.10) reduces to:

〈σ p
i j 〉= nD(o)

3 (ξ0)Ei j 1.01< ξ0 < ∞, (3.37)

For oblate spheroids with aspect ratios smaller than 0.137, (3.35) is substituted in (3.10) to

obtain:

〈σ p
i j 〉= n

[
D(o)

3 (ξ0)A1+

(
D(o)

2 (ξ0)+

(
3
2

D(o)
1 (ξ0)−2D(o)

2 (ξ0)+
D(o)

3 (ξ0)

2

)
ξ0 ξ̄0

(ξ0+ ξ̄0)2

)

(1−A1)

]
Ei j 1< ξ0 < 1.01. (3.38)

The area within a Jeffery orbit, with an orbit constantC, is given by 2π −4κ(1+C2)−
1
2 Π[1−

κ2,−C2(κ2−1)
1+C2 ], and normalizing by the area of the unit hemisphere, one obtains A1 = 1−

2κ
π (1+C2)−

1
2 Π[1−κ2,−C2(κ2−1)

1+C2 ] andA2 = 1−A1 for an initially isotropic orientation dis-

tribution,Π(x,y) being the complete elliptic function of the third kind (Gradshteyn & Ryzhik

(2007)). The intrinsic viscosity coefficient,(µe f f − µ)/[(nL3)µ] for a suspension of oblate

spheroids, over the entire range of eccentricities, is plotted on the left in figure3.2. There is a

kink (a discontinuity in slope) in the curve ate≈ 0.99 due to the oblate spheroids transition-

ing from a pure spinning mode to a weighted combination of spinning and tumbling modes.

The part of the viscosity curve fore> 0.9905 (aspect ratios smaller than 0.137) is plotted

as a discrete sequence of points because the relative proportions of spinning and tumbling
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spheroids in this range of aspect ratios is a function of the repeller locationC∗, and this is

found numerically from the zero-crossing in a plot of∆C againstC/(C+1) for a particular

aspect ratio (similar to figure2.13). The right-hand side plot shows a magnified view of the

aforementioned kink. Here, the curve corresponding to the pure spinning mode is continued

until e= 1 to emphasize the transition from spinning oblate spheroids, of aspect ratio 0.137, at

e= 0.9905, to tumbling flat disks ate= 1. Note that the spinning-mode curve would terminate

in a finite coefficient ate= 1, since the viscosity coefficient for spinning disks isO(nL3) as for

spheres. The bifurcation ate= 0.9905, however, implies that the viscosity coefficient ate= 1,

arises almost entirely from tumbling flat disks, and is asymptotically smaller thanO(nL3). The

appropriate scale in the flat-disk limit may be obtained by noting that the averaged stresslet

arises from the combination of anO(µγ̇L3) stresslet associated with anO(κ) fraction of spin-

ning disks, and a comparableO(µγ̇bL2) stresslet associated with disks that tumble in the

flow-gradient plane (unlike the prolate case, both aligned and non-aligned flat disks end up

contributing, at the same order, to the tumbling stress component). This leads to an effective

viscosityµe f f −µ ∼ O(nbL2)µ in the flat-disk limit. Figure3.3 plots(µe f f −µ)/[(nbL2)µ]
as a function of the spheroid eccentricity which leads to a finite value in the flat-disk limit;

the spinning-mode coefficient diverges asO(ξ0−1)−
1
2 with this normalization. The viscos-

ity coefficient for sufficiently thin oblate spheroids is again controlled by the anisotropy of

orientations within a given Jeffery orbit, and the effects of weak Brownian motion, although

resulting in a different distribution across Jeffery orbits, lead to a similar scale in the flat-disk

limit (Leal & Hinch(1971)).

Apart from the kink ate= 0.9905 discussed above, there are two points worth noting in fig-

ure3.3. The first is that the intrinsic viscosity curve correspondsto a steady state orientation

distribution. Within the framework of an orbital drift, thetime required to attain such a steady

state diverges in the flat-disk limit owing to the diverging Jeffery period; recall that the Jeffery

period is 2π κ2+1
κ and isO(κ−1) for κ → 0. Note, however, that the orbital drift interpretation,

that assumes the inertial trajectory to be a tightly wound spiral, becomes increasingly restric-

tive for both large and small aspect ratios (see section2.8). Notwithstanding this restriction,

the viscosity coefficient, plotted for any finite time, will deviate from the steady-state plot for

sufficiently thin oblate spheroids, asymptoting to a (frozen-in-time) isotropic orientation dis-

tribution ate= 1. For longer times, this deviation from the steady-state curve will occur at

progressively smaller aspect ratios. The second feature isthe difference between the value of

the intrinsic viscosity coefficient ate= 1, and that corresponding to a suspension consisting

only of tumbling flat disks (indicated by the horizontal dashed line in the right-hand side of

the figure ). This jump comes from the implicit assumption of an infinite suspension for which
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Fig. 3.2 The intrinsic viscosity coefficient as a function ofeccentricity for a dilute suspension
of neutrally buoyant oblate spheroids. An initial isotropic orientation distribution is assumed
while calculating the viscosity for aspect ratios less thanthe critical aspect ratio (0.137). The
dotted line denotes the viscosity coefficient for these viscosity ratios. The plot on the right is
a magnified view of the viscosity coefficient transitioning from the spinning to the tumbling
asymptote close to the flat-disk limit.

a statistical description, in terms of an orientation probability density, is appropriate. For any

finite-sized system, there will be a small enough aspect ratio when the area within the Jeffery

repeller, corresponding toC∗ =
√

35, is small enough that the number of spheroid orientations

in this tiny region of the unit sphere is of order unity, and a probabilistic description is no

longer valid. Below such an aspect ratio, the viscosity coefficient will approach the lower

value corresponding to the pure tumbling mode (again ofO(nbL2)). Said differently, the jump

in the viscosity coefficient ate= 1 is an artifact of the thermodynamic (infinite system size)

limit.

3.4 Rheology- Brownian case

3.4.1 Derivation of orientation distribution

In this section, we derive the orientation distributionΩ(ppp) which is set up by the combined

effect of inertial drift and the rotary Brownian motion. Theorientation distribution is relevant

for thin oblate spheroids, whose aspect ratio is smaller than 0.137. As in the non-Brownian

case, there are two time scales in the problem; the first one due to the Stokesian convection and

is of O(γ̇−1) and the second time scale being the inertial time scale and is of O(Reγ̇−1) (the

parameterRePer is assumed arbitrary, so that Brownian motion, formally, occurs on a time
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Fig. 3.3 The intrinsic viscosity coefficient as a function ofeccentricity for a dilute suspension
of neutrally buoyant oblate spheroids presented in figure3.2, is now appropriately re-scaled in
the flat-disk limit.

scale comparable to the inertial drift; as is shown later, the actual time scale might be much

larger in the limitRePer >> 1). The multiple scale analysis proceeds in a similar mannerto

the non-Brownian case, with the leading order equation sameas (3.13), and the equation at

O(Re) takes the form:

∂Ω1

∂ t1
+∇∇∇ppp.[ṗpp je f fΩ1] =

1
RePer

∇2
pppΩ0−∇∇∇ppp.[ ṗppiΩ0]−

∂Ω0

∂ t2
. (3.39)

Compared to (3.14), the above equation has an additional term on the right-hand side due to

the rotary Brownian motion. Since (3.39) is an inhomogeneous version of (3.13), one needs to

find the Green’s function of (3.13), to solve (3.39). Recall that after accounting for the effects

of phase mixing due to polydispersity, the averaged versionof (3.13) is shown to be (3.26),

in section3.3.1, and therefore, solving (3.39) requires the Greens function of (3.26). This

Green’s function is the solution of:

∂ f̄1
∂ t2

1

−D
∂

∂ τ̂0

(
∂ f̄1
∂ τ̂0

)
= δ (t2

1 − t ′21 )δ (τ̂0− τ̂ ′0). (3.40)

The Greens function is given by :

G(τ̂0− τ̂ ′0, t
2
1 − t ′21 ) =

∞

∑
n=0

e−n2D(t2
1−t ′21 )

π
(
cosn

(
τ0− τ ′0−Bσ2(t1− t ′1)

))
. (3.41)
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Using the Green’s function given above, the solution forΩ̄1 in (3.39) can be formally written

as:

Ω̄1 =
1

hChτ sinα

ˆ t2
1

0
dt′21

ˆ 2π

0
G(τ̂0− τ̂ ′0, t

2
1 − t ′21 )

{(
1

RePer
∇2

pppΩ̄0−∇∇∇ppp.[ ṗppiΩ̄0]−
∂ Ω̄0

∂ t2

)

hChτ sinα
}

dτ̂ ′0.

(3.42)

For times much longer than 1/D1/2, neglecting exponentially small corrections, one may ob-

tain the leading order estimate of (3.42) by using the time-independent form for̄Ω0, given in

(3.32), and further, retaining only the time-independent terms in the Green’s function in (3.42).

As result,Ω̄1, for long times, is given by:

Ω̄1 =
1

hChτ sinα
t2
1

ˆ 2π

0

1
π

{(
1

RePer
∇2

ppp

(
A0

hChτ sinα

)
−∇∇∇ppp.

[
ṗppi

(
A0

hChτ sinα

)]

− ∂
∂ t2

(
A0

hChτ sinα

))
hChτ sinα

}
dτ̂ ′0. (3.43)

Clearly,Ω̄1 grows as O(t2
1) for long times. In order to avoid this aphysical secular growth, one

must have:

ˆ 2π

0

1
π

{(
1

RePer
∇2

ppp

(
A0

hChτ sinα

)
−∇∇∇ppp.

[
ṗppi

(
A0

hChτ sinα

)]

− ∂
∂ t2

(
A0

hChτ sinα

))
hChτ sinα

}
dτ̂ ′0 = 0. (3.44)

DenotingA0 as f , the third term in (3.44) becomes:

ˆ 2π

0
− ∂

∂ t2

(
f

hChτ sinα

)
hChτ sinαdτ =−2π

∂ f
∂ t2

. (3.45)

Note that in (3.45), we have changed the variableτ̂ ′0 to τ using the relationτ̂ ′0=τ-Bσ2t1-
κ̄2

κ̄2+1t1 (see above (3.25)). The fluid inertial correction to the angular velocity is given by

ṗppi = uCCĈCC+uCτ τ̂ττ. The component alonĝCCC, uCC , is responsible for the drift across Jeffery

orbits (proportional todC
dt given in (2.86)). The divergence operator in (B.6) is then used to

simplify the second term in (3.44). Noting that theτ derivative integrates to zero over (0 to
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2π), the second term simplifies as:

ˆ 2π

0

(
−∇p.

(
ṗppi

(
f

hChτ sinα

)))
hChτ sinαdτ =

ˆ 2π

0

(
− ∂

∂C

(
hτ sinα uCC

(
f

hChτ sinα

)))
dτ

=

ˆ 2π

0
− ∂

∂C

(
uCC

hC
f

)
dτ =− ∂

∂C
(2π∆Ci f ), (3.46)

where∆Ci =
´ 2π

0
uCC

2πhC
dτ is given in (∆Ci =

κ2+1
κ ∆C, ∆C is given in (2.90) and (2.117) chapter

2).

The first term in (3.44) is simplified using the Laplacian, derivable from the gradient and

divergence operators in sectionB, and the term reduces to:

ˆ 2π

0

(
1

RePer
∇2

p

(
f

hChτ sinα

))
hChτ sinαdτ =

ˆ 2π

0

1
RePer

∂
∂C




 1

hC sin2 α

∂
(

f
hChτ sinα

)

∂C

− cotα
hτ sinα

∂
(

f
hChτ sinα

)

∂τ


hτ sinα


dτ =

π
RePer

∂
∂C

(
d f
dC

χ1+
f
C

χ2

)
,

(3.47)

whereχ1(C;κ) =
(

κ2+1
κ2 + C2

(
7
2 +

1
4κ2 +

κ2

4

)
+C4(κ2+1)

)
andχ2 =

(
−κ2+1

κ2 +

C2
(

6−
(

7
2 +

1
4κ2 +

κ2

4

))
+ 2C4(κ2+1)

)
. The final equation for the evolution off , the dis-

tribution across Jefferys orbits, can be obtained by substituting (3.45),(3.46) and (3.47) in

(3.44) and is given by

∂ f
∂ t2

+
∂

∂C
(∆Ci f ) =

1
2RePer

∂
∂C

(
d f
dC

χ1+
f
C

χ2

)
. (3.48)

The orientation distribution in the presence of Brownian motion therefore takes the form:

Ω̄0 =
f (C)

hChτ sinα
, (3.49)

where f (C) is governed by (3.48). The steady state solution forf (C) is given by:

fs(C) = Nexp

[
−RePer

ˆ C
( χ2

RePerC′ −2∆Ci(C′;κ)
χ1

)
dC′
]
, (3.50)
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whereN is a normalization constant. To calculate the steady state viscosity in the Brownian

case, one would want to substitute (3.49) together with (3.50) in (3.10) and evaluate the in-

tegral. This calculation is done in section3.4.3. It is of interest to note thatfs(C) in (3.50)

is a distribution of the Boltzmann form. Thus,(RePer)−1 in (3.50) is the kT-equivalent, and

the function ofC multiplying it may be interpreted as an effective potentialU(C;κ ,RePer).

Inertia and Brownian motion cause any initial Jeffery-orbit distribution to slide down to the

potential minima, this tendency being balanced by theO(RePer)−1 diffusive fluctuations inC

due to Brownian motion alone. Before presenting the viscosity estimation for the Brownian

case, we will first focus on understanding the nature of the potential in the next section.

3.4.2 Thermodynamic Interpretation: The ‘tumbling-spinning transition’

In this section, we will try to develop an understanding of the potentialU(C;κ ,RePer), that

governs the steady state distribution given in (3.50), from a thermodynamic point of view. It

is evident from the Boltzmann form in (3.50) that 1/RePer is like the temperature. One can

develop a one-one to analogy between the parameters in the potential above; that isC, κ and

RePer , respectively, with specific volume, pressure and temperature which are the parameters

in the free energy for a single component system. The steady state distribution peaks at the

minima of the potential and these peaks can be interpreted asphases. This is analogous to

defining the liquid and gas phases as the minima of the Gibss free energy in the case of a

one component system in thermodynamics. Depending onRePer , the nature of the potential

changes with increasing aspect ratio, from a single welled potential peaked closed to tumbling,

to a double welled potential, and eventually to a single welled potential peaked close to spin-

ning, and therefore to identify the phases it is important totrack the minima of the potential.

The loci of the potential extrema in theκ−C plane, for variousRePer , are plotted in figure3.4a.

In the limit RePer ≪ 1, Per ≫ 1, when Brownian motion alone controls the distribution

across Jeffery orbits,U(C;κ ,RePer) always has a single minimum that moves to progressively

largerC’s with decreasingκ . This corresponds toRePer =0 curve in figure3.4a. For the oblate

spheroids of interest withκ < 1, the potential minimum lies in the vicinity of the tumbling

mode, and the correspondingfs(C) was originally derived inLeal & Hinch(1971). The emer-

gence of an inertial drift with increasingRePer leads to a broadening of the minimum until, for

sufficiently largeRePer , U(C;κ ,RePer) transitions to a double-welled structure below a criti-

cal κ , with a pair of minima separated by an intermediate maximum.This transition is due to

the bi-directional nature of the inertial drift. The critical κ is a function ofRePer , approaching

a maximum of 0.137 in the deterministic limit (RePer → ∞) with the pair of minima asymp-

toting to the spinning (C = 0) and tumbling (C = ∞) modes, and the intermediate maximum
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approaching theκ-dependent repeller in figure (see figure2.15). Note that at a givenRePer ,

if the potential at a particular aspect ratio has a double welled structure, then the constantκ
line(horizontal) should cross the constant-RePer curve at three points in (see figure3.4a); in

other words, the constantRePer curve is a multivalued(κ) locus.

For a given multivalued locus in figure3.4a, a horizontal dashed line is drawn at theκ
for which the two potential minima have equal magnitudes, inanalogy with thermodynamic

tie-lines. The shifting of the deeper minimum of the potential across the tie-line for a par-

ticular RePer of 70000 is shown in3.4b. The small-C and large-C minima that the tie line

connects may be identified, respectively, with ‘spinning’ and ‘tumbling’ phases that co-exist

at the particularκ and RePer . This leads to a phase diagram with a two-phase (tumbling-

spinning) envelope that ends in a critical point,(κ ,C,RePer) ≡ (0.0665,3.1,1150). The pro-

jections of the phase diagram in theκ −C andRePer −C planes are shown in figures3.4c and

3.4d, respectively. The constantRePer loci in figure3.4c may be regarded as isotherms, the

non-dimensional inverse shear rate squared,(RePer)−1, being the non-equilibrium tempera-

ture equivalent. Tie-lines in both figures replace the intermediate non-monotonic (and, in the

one-component case, thermodynamically inaccessible) portion of the isotherms in the range

1150< RePer < ∞. The phase diagrams in figures3.4a,c and d arise from a one-dimensional

description of the orientation dynamics along theC-coordinate, and forκ ≪ 1, this requires

Per ≫ κ−3(Hinch & Leal 1972). Interestingly, the phase diagram in figure3.4a includes,

on one hand, the infinite-temperature isotherm calculated in Leal & Hinch (1971); on the

other hand, the two-phase envelope in figure3.4c is bounded below by the zero-temperature

isotherm atκ = 0.0126. This piecewise linear isotherm is defined byC = 0,κ > 0.0126;

0 < C < ∞,κ = 0.0126;C = ∞,κ < 0.0126, and implies a discontinuous transition from a

suspension of spinning spheroids to tumbling ones acrossκ = 0.0126 in the limitRePer → ∞.

Thus in the limit ofRePer → ∞, the distribution across orbitsfs(C), is a delta function peaked

at spinning forκ > 0.0126 and at tumbling forκ < 0.0126.

The regions where the reduced description loses validity are shown in figures3.4e and

3.4f (dashed red curves), and occupy only a small fraction of theparameter-plane for small

Re. WhenPer is O(κ−3) or smaller, Brownian rotations affect the orientation distribution both

across and along Jeffery orbits, close to the gradient-vorticity plane, and a reduced description

requires first determining the full distribution on the unitsphere.

The tumbling-spinning transition identified above has a striking similarity to the coil-stretch

transition of high molecular weight polymers in extension-dominated flows(De Gennes 1974;
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Fig. 3.4 (a) shows the extrema loci, together with dashed tielines, for variousRePer . (b) shows
the nature of the potential(U ) above and below the tie line for anRePer of 70000. (c) and (d)
show the envelope of the two phase region in theκ-C andRePer -C planes respectively. (e)
and (f) delineate the regime of validity of the reduced one-dimensional description for two
different Re’s.
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Hinch 1974). Intra-chain hydrodynamic interactions sharpen the transition from the coiled to

the stretched configuration, with increasing flow strength (characterized by a Deborah number

De= γ̇τr , τr being the longest relaxation time), so as to render it discontinuous. The discon-

tinuous transition implies a hysteresis, and coiled and stretched states (produced by varying

deformation histories) can co-exist at a givenDe for times much longer thanτr(Schroederet al.

2004). These states may be identified with the aforementioned tumbling and spinning phases,

respectively, with the average polymer extension in a coarse-grained description playing the

role of C, De being the analog ofκ , and the polymer molecular weight being equivalent to

RePer . The co-existence of multiple conformations has been verified in single-molecule exper-

iments(Schroederet al.2003), and the approach in select scenarios, to a bi-modal equilibrium,

has been verified in simulations(Beck & Shaqfeh 2006). A tentative phase diagram in the

extension−Deplane, the analog of figure3.4a, appears inSchroederet al. (2003).

The hysteretic orientation dynamics of thin oblate spheroids is better understood in the three-

dimensionalκ−C−RePer space in figure3.5. The region of multiple extrema in figure3.4a

now defines a bi-nodal volume and the superposition of the shaded regions defines a smaller

spinodal volume confined between the inflection-point loci of the double-welled potentials.

Unlike the thermodynamic case, there is no equation of statethat constrainsκ to be a certain

function ofRePer andC, and all points within the hysteretic bi-nodal volume remain accessi-

ble (this remains true for the polymeric case). The bi-nodalvolume shrinks with decreasing

RePer , and vanishes atRePer of 1150.

In chapter2, it was shown that for neutrally buoyant oblate spheroids, the bifurcation

region exists in planar linear flows close to simple shear flow(λ ’s corresponding to the shaded

region in figure2.17). For variousλ ’s in the shaded region of figure2.17, the phase diagrams

are plotted in figure3.6. The phase diagrams for positiveλ ’s are bounded below byκmin=
√

λ ,

the smallest aspect ratio at which the orbits of the spheroidare closed in the Stokes limit.

Whenλ is positive, for a givenRePer , the upper limit of the range of aspect ratios for which

the potential is bi-stable, increases, with increasingλ from κ = 0.14 for λ = 0 and reaches

aroundκ = 0.2 for λ = 0.03. However, this rate of increase is slow compared to that ofthe

lower boundκmin. Whenλ is negative, the upper limit decreases with decreasingλ . There

are no lower bounds for the phase diagram in the case of negative λ ’s. Thus, the hysteretic

region encountered in the simple shear flow case in figure3.4, quickly shrinks on either side

with increasing|λ |.
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Fig. 3.5 The three-dimensional phase diagram in (κ-C-RePer ) coordinates. The tumbling-
spinning envelope ending in a critical point is shown as red-dashed lines.
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Fig. 3.6 The phase diagrams are plotted for variousλ ’s.
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3.4.3 The rheology of a suspension of oblate spheroids with aspect ratio

less than0.137: the role of weak Brownian motion

In this section we calculate the viscosity of a dilute suspension of oblate spheroids with

κ < 0.137. We explore both the steady state rheology as a function of the (non-dimensional)

shear rate, and the time-dependent evolution of the viscosity from its initial value (correspond-

ing to a chosen orbit constant distribution) for points in the κ −RePer −C parameter space

that lie within the tumbling-spinning envelope.

At long times as shown in the previous sections the distribution takes the formΩ̄0 =
fs(C)

hChτ sinα , with fs(C) defined in (3.4). The evolution tofs(C) however is governed by (3.48)

and one has to solve this equation numerically to understandthe transient dynamics. This evo-

lution has a non-trivial character within the tumbling-spinning envelope owing to the bistable

nature of the potential. As seen in figure3.5, one can identify spinodal and binodal regions

in the region of three dimensional parameter space corresponding to tumbling-spinning enve-

lope. The evolution of the distribution can accordingly be classified into spinodal and binodal

(nucleation-growth) routes. The analog of spinodal dynamics corresponds to the evolution of

f (C) from an initial condition (f0(C)) peaked close to the potential maximum, while the ana-

log of the nucleation-growth route ensues for an initial condition peaked outside the inflection-

point interval. The narrow Gaussians are the only initial conditions that occurs in thermody-

namical systems, in which case the fluctuations are O(N−1/2), and the spinodal-binodal clas-

sification is relevant to all initial conditions. This is notthe case here. Figure3.7a shows the

rapid evolution forRePer =3×105, starting from a narrow Gaussian at the potential maximum,

into a bimodal distribution peaked at the potential minima.In figure3.7b, for an initial Gaus-

sian adjacent to the small-C potential minimum, the distribution now remains unimodal,and a

second peak is ‘nucleated’ at much later times via a barrier-hopping process. Kramer’s theory

gives the barrier hopping scale as 4πRePer
χ1|Cmax( f ′′|Cmaxf ′′|Cmin)

1/2 eRePer∆UChandrasekhar(1943), where

∆U is the magnitude of the difference in the potential between the lowest minimum (Cmin) and

the central maximum (Cmax) of the bi-stable potential. The time-dependent viscosities can be

evaluated from3.10, using thef (C) at each instant and is plotted for aforementioned evolu-

tions are shown in figure3.7c (Dwivedi 2016). The viscosity for the spinodal case evolves

quickly to begin with on account of peak splitting; this contrasts with the slow evolution of the

bi-nodal viscosity via the barrier hopping process. As is evident at finite times, the viscosity

of the suspension is therefore going to be strongly dependent on the initial orientation distri-

bution, making the suspension hystertic.

Although a narrow Gaussian has been used to illustrate the spinodal and binodal routes to
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Fig. 3.7 The evolutions starting from localized Gaussians (magenta) peaked at the maximum
(a) and adjacent to the small-C minimum (b) of the potential (red), respectively;κ = 0.016,
RePer = 3×105. The fs(C) in each case is shown as a blue curve. The dashed line corresponds
to the instant ((a) 6.5× 10−4 D−1

r and (b) 6.1× 10−3 D−1
r ) at which a tumbling peak first

appears. (c) corresponding evolutions of the scaled viscosities, (a) black and (b)red (η0 and
ηs are the initial and steady state values).
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Fig. 3.8 (a) Intrinsic viscosity evolutions for the quenches identified in the text (inset shows the
evolution for step 2 of the second quench) (b) The quasi-steady state orientation distributions
at RePer = 2×105. The second quench leads to a greater fraction of spinning spheroids, and
therefore, a higher viscosity.
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equilibrium above, generating a localized orbit-constantdistribution in an experiment requires

the application of an external field (Okagawa & Mason 1974; Enniset al. 1978). From an

experimental point of view, an isotropic orientation distribution is readily generated by initial

mixing. For anf0(C) corresponding to this well-mixed state (recall thatf0(C) is the complete

elliptic integral, see section3.3.2), a signature of the hysteresis is the sensitive dependence

of the viscosity in the bi-nodal volume to the precise shear rate history. To illustrate this de-

pendence, we consider a pair of ‘quenches’ applied to an isotropic suspension of spheroids

with κ = 0.04 1. In the first single-step quench, the suspension is sheared at an RePer of

2×105. In the second quench, the suspension is first sheared at anRePer of 25000 until a

steady state (achieved at a timeteq), andRePer is then increased to the aforementioned value

of 2×105. The evolution of the viscosities is plotted in figure3.8a. In the first quench, the

distribution, and thence, the viscosity settles down to a quasi-steady state arising from the

partitioning of f0(C) across the potential maximum, followed by local equilibration in the

spinning and tumbling wells. In the second quench, the viscosity evolves quickly to its steady

state value in the first step owing to the lowerRePer ; in the second step, it evolves to a differ-

ent quasi-steady state that corresponds to a partitioning of the steady state forRePer = 25000.

The true steady states are inaccessible for both the first quench, and the second step of the sec-

ond quench, owing to the exceedingly large barrier-hoppingtimes. The pair of quasi-steady

states, atRePer = 2×105, are shown in figure3.8b, and represent a viscosity contrast of ap-

proximately 3.8. Note that far higher viscosity contrasts are obtainable from ‘spin-rich’ initial

conditions, but as indicated earlier, these require the imposition of external electric or mag-

netic fields .

At times larger than the barrier hopping time mentioned above, the viscosity asymptotes

to a value independent of its shear history, and we now focus on this long-time rheology. In

the limit of RePer → ∞, the distribution across orbitsfs(C) is a delta function peaked at the

spinning forκ >0.0126, and peaked at the tumbling forκ <0.0126. In figure3.9, the viscosity

coefficient scaled with O(nL2b) is plotted against eccentricity. It is obtained by averaging

the stresslet using the orientation distribution given in (3.34) for κ > .0126, and (3.33) for

κ < .0126. Note that the aforementioned critical aspect ratio differs from the critical value

of 0.137 found in the absence of Brownian motion (RePer = ∞), implying the singular role

of Brownian motion; the viscosity coefficient now varies smoothly across the earlier critical

value. A relevant question one could ask is about the variation of the steady shear viscosity

as a function of suitable non-dimensional shear rate for different aspect ratio spheroid and

1The quenches discussed may be achieved in an experiment in a time of approximately 3 hours, by shearing
oblate spheroids of withL ∼ 10 microns in an aqueous medium with the maximum shear rate needed to achieve
RePer = 2×105, being 900s−1.
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Fig. 3.9 The intrinsic viscosity for a suspension of Brownian oblate spheroids is plotted as a
function of the aspect ratio. The right figure shows the jump from the spinning to the tumbling
value at the critical aspect ratio of .0126.

not merely the viscosity values corresponding to the infinite shear rate limit reported above

. The detailed review byBrenner(1974) describes the variation of the intrinsic viscosity

coefficient for a non-interacting suspension of Brownian spheroids, as a function ofPer , in

the inertialess limit (see figures 7 and 10 therein). As expected, for a general complex fluid

with an isotropic microstructure at equilibrium, the imposition of shear and the resulting flow-

alignment of the spheroidal particles leads to a shear-thinning rheology. More specifically,

for a spheroid of a given aspect ratio, either prolate or oblate,
µe f f−µ

µ decreases from a zero-

shear-rate plateau ofO(nL3), arising from a combination of the hydrodynamic and Brownian

stress contributions for a nearly isotropic orientation distribution, to a smallerO(nL2b) high-

shear plateau, arising solely from the hydrodynamic stresscontribution associated with a flow-

aligned orientation distribution. The high-shear plateauvalues were first calculated byHinch

& Leal (1972), numerically for arbitrary aspect ratio spheroids (seeKim & Karrila (1991)),

and analytically in the slender fiber and flat disk limits. These plateaus correspond to the

limit Per ≫ 1,RePer = 0 for spheroids with aspect ratios of order unity. For extreme aspect

ratios, a more stringent requirement arises from the neglect of Brownian motion even close

to the flow-vorticity (gradient-vorticity) plane for slender fibers (flat disks) given byPer ≫
κ3(κ−3),RePer = 0 (Hinch & Leal (1972)). The analysis here helps extend the behavior of

the intrinsic viscosity coefficient beyond the ‘Leal-Hinch’ plateaus, as a function ofRePer , up

until the point whereRe∼ O(1),RePer →∞. Said differently, the shear-thinning rheology of a

dilute inertialess suspension of spheroids is known up until a Per where a limiting Newtonian

plateau results from Brownian motion only determining the distribution of orientations across

Jeffery orbits. The viscosity versus shear rate curves given below, both the schematic and the
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actual numerical calculations, start from this point and determine the non-Newtonian rheology

at higherRePer due to the distribution given by (3.50).

The behavior of the vicosity for oblate spheroids with shearrate depends on the whether

the aspect ratio is above or below 0.0126. In the former case, a shear-thickening rheology

results for sufficiently largeRePer , while for the latter case, the suspension continues to shear

thin even with the onset of inertia. Accordingly, figure3.10 shows the viscosity v/s shear

curves, corresponding to the two aspect-ratio groups, separating out in the limitRePer → ∞,

this being consistent with a jump in the shear viscosity in this limit as seen mentioned earlier.

The actual plots of the intrinsic viscosity coefficient plotted againstRePer are shown attached

to the schematics in figures3.10 and3.11. These reveal the scenario for oblate spheroids,

with aspect ratios greater than 0.0126, to be a little more complicated than that shown in the

schematic, owing to the suspension first shear thinning substantially with increasingRePer , for

aspect ratios just above the critical value, before eventually shear thickening for sufficiently

largeRePer . This non-monotonicity arises because of an initial Brownian peak close to tum-

bling, and the transition from this to a spinning peak with increasingRePer ; the transition

involves a sharpening of the tumbling peak (leading to shearthinning) prior to the develop-

ment of a spinning peak. A similar calculation for oblate spheroids with smaller aspect ratios

shows a monotonic shear-thinning; the viscosity coefficient here is plotted againstRePerκ2,

this being the actual ratio of drift to diffusion forκ ≪ 1.

As shown in figure3.11, accounting for a non-zeroRePer will always lead to a shear-

thickening rheology(relative to the Leal-Hinch plateau) for prolate spheroids owing to the drift

towards the maximum dissipation (tumbling)orbit. Note that the inertial high-shear plateaus

for a prolate spheroid are asymptotically small in relationto the zero-shear plateaus for large

aspect ratios, becoming comparable (and even exceeding) only for nearly spherical particles.

In contrast, for the oblate case, the inertial plateaus significantly exceed the zero-shear values

even for small aspect ratios, implying that inertia leads toan overall shear thickening behavior

of the suspension for most aspect ratios. For higher shear rates,Rewould be of order unity

or larger, and the rheology will begin to be influenced by the finite-Rebifurcations that have

been identified in numerical simulations. Depending onReas well as the aspect ratio, the sus-

pension can exhibit shear thickening as well as shear thinning behaviour (Rosenet al.(2015)).

It is important to note that the presence of multiple attractors at finite Re would again point to

the role of stochastic orientation fluctuations in establishing a steady state rheology.
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Fig. 3.10 The middle plot is a schematic of the expected variation of intrinsic viscosity for a
suspension of Brownian oblate spheroids. The upper plot shows the variation of the viscosity,
scaled withnd3ξ 3

0 , with RePer for aspect ratios greater than the critical aspect ratio of 0.0126.
The lower plot shows the variation of the viscosity, scaled with nd3ξ 2

0 ξ̄0, with RePer for aspect
ratios smaller than the critical aspect ratio of 0.0126. An aspect ratio greater than the critical
aspect ratio is also included in the lower plot. The dotted lines in both the upper and the middle
plots are theRePer = ∞ asymptotes.
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Fig. 3.11 The upper plot is a schematic of the expected variation of intrinsic viscosity for a
suspension of Brownian prolate spheroids. The lower plot shows the variation of the viscos-
ity, scaled withnd3ξ 2

0 ξ̄0, with RePer . The dotted lines in the lower plot are theRePer = ∞
asymptotes.
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3.5 Conclusions

Inertia eliminates the rheological degeneracy, associated with the existence of Jeffery orbits

in the Stokes limit, although the manner of elimination depends on the aspect ratio for oblate

spheroids. For neutrally buoyant prolate spheroids, and for neutrally buoyant oblate spheroids

with aspect ratios greater than 0.137, the inertial drift leads to a singular orientation distri-

bution localized at either the tumbling or the spinning modedepending on whether∆C is

positive (prolate) or negative (oblate). In section3.3, we calculate the associated intrinsic vis-

cosity coefficients, in the absence of Brownian motion, as a function of the particle aspect

ratio (see (3.36) and (3.37) for prolate and oblate spheroids, respectively) arising from the

aforementioned singular distribution. Weak Brownian motion only leads to asymptotically

small corrections to this estimate. In contrast, for oblatespheroids with aspect ratios less than

0.137, the inertial drift acting alone leads to an initial-condition-dependent rheology, and it

is only with the inclusion of weak Brownian motion that a unique steady state rheology re-

sults. In section3.3, we calculate the initial condition-dependent intrinsic viscosity for the

non-Brownian case for an initial isotropic orientation distribution (see (3.38)). In section3.4,

we analyze in some detail the steady state distribution across Jeffery orbits in the presence of

weak Brownian motion, the inclusion of which implies a dependence of the steady-state rhe-

ology on the parameterRePer . Interestingly, the steady state Jeffery-orbit distribution may be

interpreted in terms of a one-dimensional drift-diffusionequilibrium along the orbit constant

coordinate withRePer governing the relative magnitudes of the convective and diffusive fluxes

in orientation space. This distribution has a bi-modal character, with peaks corresponding to

the tumbling and spinning modes, for sufficiently largeRePer . For any finiteRePer , the shear

viscosity varies smoothly with changing aspect ratio of theoblate spheroid, but in the limit

RePer → ∞, the shear viscosity must exhibit a jump across a much smaller (in relation to the

non-Brownian value of 0.14) critical aspect ratio of 0.0126 owing to a transition in the (limit-

ing) orientation distribution from a delta function localized atC= 0 (the spinning mode) to one

localized at the tumbling mode (C = ∞). As mentioned in section3.2, we calculate here only

the leading-order (indirect) effect of inertia on the suspension rheology. For prolate spheroids,

and oblate spheroids with aspect ratios greater than 0.137,the direct effects of inertia enter at

O(Re). Interestingly for oblate spheroids with aspect ratios less than 0.137, the next correction

to the drift occurs atO(Re
3
2) and this implies a largerO(Re

1
2 ) correction to the leading order

rheology.

Inertia and Brownian motion are somewhat incompatible in terms of the relevant particle

size ranges. Thus, the convergence to a unique long-time equilibrium, consistent with the

thermodynamic picture in figure3.4, may require unrealistically long times, especially for
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spheroids large enough for the inertial drift to be significant. The rheological signature of the

hysteresis - a multi-valued shear viscosity at a given shearrate (RePer ), as in figure3.8, should,

however, be measurable. The phase transition and the associated hysteresis discussed in sec-

tion 3.4arises due to the combined effect of a bi-stable potential induced by non-linearity and

stochasticity; the bi-directionality of the inertial drift, in fact, persists at finiteRe (Meibohm

et al. 2016). Other sources of non-linearity and stochasticity shouldlead to similar behavior.

Athermal orientation fluctuations arising from hydrodynamic interactions should control the

tumbling-spinning transition at higher volume fractions (nL3). Each such interaction changes

C by a finite amount, and the resulting relaxation is non-localin orientation space, being gov-

erned by a Boltzmann equation:

∂ f
∂ t

+Re
∂

∂C
(∆Ci f )= nL3

ˆ

dC′
ˆ

drrr⊥y
ˆ

dĈdĈ′[ f (Ĉ) f (Ĉ′)K (Ĉ,Ĉ′|C,C′; rrr⊥)− f (C) f (C′)],

(3.51)

for smallnL3 when pair-interactions drive the fluctuations. The scattering kernelK in (3.51)

relates the pre- ([Ĉ,Ĉ′]) and post- ([C,C′]) interaction orbit-constant-pairs, anddrrr⊥ denotes the

differential interaction cross-section. Note thatRe(nL3)−1 in (3.51) is the analog ofRePer in

(3.48). Although an analysis based on (3.51) is difficult due toK not being known, this might

nevertheless be the most convenient experimental route with the hysteretic time scale capable

of being tuned to modest values by varying the volume fraction, rendering both short-time dy-

namics and long-time orientational equilibria observable. Fluid viscoelasticity either in steady

(Leal 1975) or large-amplitude oscillatory shear (Harlen & Koch 1997; Leahyet al.2013) is

an alternate (experimentally) more accessible source of non-linearity, and the ratio of normal

stress differences (besidesDe) (Dabadeet al. 2015) may allow one to additionally tune the

nature of the non-linear drift.

The tumbling-spinning transition highlights an interesting connection between suspension

rheology and polymer physics. Much like the coil-stretch transition for polymer solutions

(Shaqfeh 2005; Larson 2005), the tumbling-spinning transition endows an inertial suspension

of thin oblate spheroids with a memory that far exceeds the nominal microstructural relax-

ation times. This memory is likely to significantly influencethe suspension stress response in

inhomogeneous shearing flows, since the viscosities corresponding to different (Lagrangian)

shear rate histories can differ by a large amount owing to thelarge difference in the dissipa-

tion associated with spinning and tumbling spheroids. Non-hydrodynamic forces, including

Brownian motion, have been known to play a subtle role in determining the strong-shear rheol-

ogy of spherical particle suspensions at high volume fractions (Brady & Morris 1997; Cheng
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et al. 2011). In contrast, the tumbling-spinning transition points tothe subtle role played

by Brownian motion in determining the rheology of anisotropic particle suspensions at much

lower volume fractions. Furthermore, in being a simpler system with far fewer degrees of free-

dom when compared to high molecular weight polymers, a sheared suspension of anisotropic

particles may serve as a model system for the study of hysteretic dynamics in complex fluid

systems.





Chapter 4

The orientation dynamics of a spheroid

sedimenting in a simple shear flow

4.1 Introduction

In this chapter we discuss the effect of inertia on a spheroidof arbitrary aspect ratio sediment-

ing in a simple shear flow. It is well known that in the Stokes limit, a translating spheroid does

not rotate in a Newtonian fluid (Leal 1992). In a recent effort (Dabadeet al.2015), the effects

of weak inertia as well as viscoelasticity on the orientation of a spheroid sedimenting in a

quiescent fluid was investigated. The authors have estimated the torque acting on a translating

spheroid at O(Resed), as well as at O(De), using a generalized reciprocal theorem formulation.

Here,Resed is the Reynolds number in the sedimentation defined asρUsedL/µ, whereUsed is

the translational velocity of spheroid,L is the semi-major axis of the spheroid,µ andρ are the

viscosity and the density of the fluid. The non-dimensional numberDe, characterizes the time

scale of the dominant relaxation process of the fluid microstructure, and is given byUsedτr/L,

whereτr is the microstructural relaxation time of the fluid. The limit of De<< 1 considered

allows for modelling of viscoelastic effects in terms of a second-order fluid constitutive equa-

tion. The torque was obtained as an integral using the generalized reciprocal theorem, and the

integral was evaluated using the spheroidal harmonics formalism, which was used earlier in

chapter2. They find that the effect of inertia at O(Resed) results in a torque which makes the

spheroid sediment with a broadside-on configuration. In thebroadside-on configuration, the

orientation of a prolate spheroid will be perpendicular to its translational velocity, whereas that

of an oblate spheroid will be aligned to its velocity. Depending on the ratio of normal stress

differences in the second-order fluid, the effect of viscoelasticity results in a torque, which

makes the spheroid sediment either in a broadside-on configuration or in a longside-on config-
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uration. In the latter configuration, the orientation is aligned with the translational velocity for

a prolate spheroid, and is perpendicular to the velocity foran oblate spheroid. The effect of

simple shear flow on the orientation dynamics of the spheroidis already discussed in chapter2.

Understanding the orientation dynamics of a spheroid (or, more generally, anisotropic par-

ticles) sedimenting in a shear flow is important in many physical applications. For instance,

the orientation of the suspended ice-crystals determine the scattering properties of a cirrus

cloud and, thereby affecting the cloud radiation forcing (Liou 1986), which in turn plays a

crucial role in the earth-atmosphere radiation budget. Typical ice crystals are small in size

(Auer Jr & Veal 1970) and are subjected to both forces and torques due to gravity and shear

flow due to the turbulence in the cloud, the turbulence being arandom linear flow at the length

scales of the sub-kolmogorov ice crystals. As a first step towards analyzing the scenario, in

this chapter, we determine the inertial torque under the combined effects of sedimentation and

a simple shear flow.

This chapter is organized as follows. In section4.2we determine the angular velocity of a

spheroid sedimenting in a shear flow using a generalized reciprocal theorem. The derivation

follows that seen in chapter 1, except for an additional termdue to sedimentation. This term

is related to the inertial torque acting on a translating spheroid that has already been derived

in Dabadeet al. (2015). A non-dimensional parameter,Resed/Re, characterizes the strength

of this term relative to the torque due to fluid inertial effects in the shear flow. Here,Re is

the Reynolds number in the shear flow, defined asRe= ργ̇L2/µ, whereγ̇ is the shear rate.

The angular velocity is also a function of another non-dimensional parameter,St/Re, which

characterizes the strength of the torque due to particle inertial effects relative to that due to

fluid inertial effects. Here,St is the Stokes number,St= ρpγ̇L2/µ, whereρp is the particle

density. Recall that in chapter2, it was shown that for a neutrally buoyant spheroid in simple

shear flow, the fluid inertial drift dominates the particle inertial drift. So for the particle inertial

torque to be important,St/Reshould be large. The reciprocal theorem formulation gives the

angular velocity of a spheroid sedimenting due to a constantforce, aligned arbitrarily with

respect to the ambient simple shear flow, and the angular velocity is presented in section4.3.

To orderRe, the results for sedimentation and shear flow may be superposed. It is simpler to

analyze the orientation dynamics of the spheroid in three canonical cases, these being defined

by the direction of the sedimenting force. The three canonical directions are the vorticity, the

flow and the gradient directions of the simple shear flow, and the orientation dynamics in these

three cases is analyzed in sections4.4, 4.5and4.6. It turns out that for O(1) values ofSt/Re,

when the force is along the flow or the gradient direction, theinertial drift due to sedimentation
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and that due to the shear flow stabilize different orbits; they stabilize the same orbit when the

force is along the vorticity. Depending on the non-dimensional parameters mentioned above,

the competing effects of sedimentation and inertial effects in shear flow may result in the

emergence of a repeller, that divides the orientation spaceinto two basins of attraction, for

spheroids, with no repeller atResed/Re= 0 andSt/Reof O(1). The limitations of the analysis

are discussed in section4.7. The results are summarized in section4.8.

4.2 Formulation for inertial drift: The generalized recipr o-

cal theorem

The expression for the angular velocity of a spheroid sedimenting in a simple shear flow is

derived using the reciprocal theorem discussed in chapter2. The problem of interest here is

a spheroid sedimenting in a simple shear flow due to a force 111g aligned arbitrary with respect

to the simple shear flow. The simple shear flow is defined asuuu= ΓΓΓ ··· xxx, with ΓΓΓ = 111′x111
′
y being

the transpose of the non-dimensional velocity gradient tensor. The test problem is again a

spheroid rotating in a quiescent fluid, similar to the test problem defined in chapter2. The

velocity and stress fields in the problem of interest are denoted byuuu(1) andσσσ (1) and that in

the test problem are denoted byuuu(2) and σσσ (2). The velocity and stress are scaled withγ̇L

andµγ̇ L, whereL is the semi-major axis of the spheroid,µ is the viscosity of the fluid and

γ̇ is the shear rate. Note that the scaling has been done using the shear rate in the simple

shear flow and not the translational velocity in the sedimentation. Due to sedimentation, a

spheroid may move across the streamlines of the simple shearflow, and therefore, the velocity

corresponding to the streamline passing through its centroid (XXXcen), changes with time. The

velocity and stress fields defined above for the problem of interest are defined in a coordinate

system that is translating with the centroid streamline velocity, given byΓΓΓ ···XXXcen. In the same

coordinate system, the disturbance velocity and stress fields in the problem of interest are

denoted byuuu′(1) andσσσ ′(1), and are related to the full velocity field asuuu′(1) = uuu(1)−ΓΓΓ ··· x and

σσσ ′(1) = σσσ (1)−σσσ ∞, whereσσσ ∞ is the viscous stress due to the ambient simple shear flow. The

boundary condition on the surface of the spheroid in the testproblem is given byuuu(2)= ΩΩΩ2×xxx,

whereΩΩΩ2 is the angular velocity of the spheroid in this problem. The boundary condition

on the surface of the spheroid in the problem of interest is given byuuu′(1)= UUUsed + ΩΩΩ1× xxx -

ΓΓΓ ··· xxx, whereΩΩΩ1 andUUUsed are the angular and translational velocities of the spheroid in the

translating coordinate system. Noting that the spheroid inthe test problem is force free, the



104 The orientation dynamics of a spheroid sedimenting in a simple shear flow

reciprocal theorem gives the angular velocity as:

ΩΩΩ1.LLL 2 =

ˆ

Sp

σσσ (2) ::: (ΓΓΓ...xxx) ···nnndS+ΩΩΩ2 ···
(

St
d
dt

III ...ΩΩΩ111

)
+

ˆ

V
uuu(2) ···∇∇∇ ···σσσ ′(1)dV. (4.1)

The surface integral above is done over the surface of the spheroid (Sp) and the volume integral

is done over the infinite fluid volume outside the spheroid (V). The torque acting on the

spheroid in the test problem is denoted byLLL 2, and given byLLL 2 = −8π(XCpppppp+YC(III −
pppppp)) ···ΩΩΩ2 , whereXC = 4

(
ξ 2

0 −1
)
/ (3ξ 3

0

(
2ξ0−2

(
ξ 2

0 −1
)

coth−1 ξ0
)
) andYC = 4(2ξ 2

0 −
1)/(3ξ 3

0(2(ξ
2
0 +1)coth−1 ξ0−2ξ0)) for a prolate spheroid (Kim & Karrila (1991)). Here,ppp

is the orientation vector of the spheroid. The reciprocal theorem in (4.1) contains the angular

velocity in the test problem (ΩΩΩ2), and as in chapter2, one defines new tensors such asLLL 2 =

LLL2 ···ΩΩΩ2, uuu(2) = UUU (2) ···ΩΩΩ2 andσσσ (2) = ΣΣΣ(2) ···ΩΩΩ2 to render the reciprocal theorem statement in

(4.1) independent ofΩΩΩ2. The reciprocal theorem in terms of these tensors take the form:

ΩΩΩ1.LLL2 = ΓΓΓ :
ˆ

SSSp

xxx(ΣΣΣ(2) ···nnn)dS+St
d
dt

III ...ΩΩΩ111+

ˆ

V
UUU (2) ···∇∇∇ ···σσσ ′(1)dV. (4.2)

The divergence of stress in the third term may be obtained from the equation governing the

disturbance velocity fielduuu′(1), which is derived by subtracting the equation governing the

ambient simple shear from that governing the full velocity field uuu(1), and is given by:

∇∇∇2uuu′(1)−∇∇∇p′ =∇∇∇ ···σσσ ′(1) = Re

(
∂uuu′(1)

∂ t
+uuu′(1) ···∇∇∇uuu′(1)+(ΓΓΓ...xxx) ···∇∇∇uuu′(1)+ΓΓΓ ···uuu′(1)

)

−Re
d
dt
(ΓΓΓ ···XXXcen)

=Re

(
∂uuu′(1)

∂ t
+uuu′(1) ···∇∇∇uuu′(1)+(ΓΓΓ...xxx) ···∇∇∇uuu′(1)+ΓΓΓ ···uuu′(1)

)
−Re(111′y ···UUUsed)111

′
x

(4.3)

The last term in the equation above, is the fictious force due to the acceleration of the trans-

lating coordinate system. The acceleration is determined by the component of the translation

velocity along the gradient axis. The inertial drift under the combined effects of sedimentation

and shear occurs at O(Re), and at this order,uuu′(1) can be replaced by the Stokes velocity field,

uuu′(1)s . The Stokes velocity field,uuu′(1)s , can be written as a sum of the disturbance velocity field

in sedimentation (uuu′(sedγ̇)) and that in shear (uuu′(shear)) as follows:

uuu′(1)S = uuu′(shear)
+uuu′(sedγ̇)

. (4.4)
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In the equation above,̇γ in the superscript of the sedimentation velocity field indicates that it is

scaled withγ̇L instead ofUsed. Substituting (4.4) in (4.3), one can rewrite the volume integral

in (4.2) as:

ˆ

V
UUU (2) ···∇∇∇ ···σσσ ′(1)dV = Re

ˆ

V
UUU (2) ···

(
∂uuu′(shear)

∂ t
+uuu′(shear) ···∇∇∇uuu′(shear)

+(ΓΓΓ...xxx) ···∇∇∇uuu′(shear)

+ΓΓΓ ···uuu′(shear)
)

dV+Re
ˆ

V
UUU (2) ···

(
∂uuu′(sedγ̇)

∂ t
+uuu′(sedγ̇) ···∇∇∇uuu′(sedγ̇)

+(ΓΓΓ...xxx) ···∇∇∇uuu′(sedγ̇)

+ΓΓΓ ···uuu′(sedγ̇)
)

dV+Re
ˆ

V
UUU (2) ···

(
uuu′(shear) ···∇∇∇uuu′(sedγ̇)

+uuu′(sedγ̇) ···∇∇∇uuu′(shear)
)

dV

−Re
ˆ

V
UUU (2) ···111′x(111′y ···UUUsed)dV. (4.5)

The velocityUUUsed is related to the sedimenting force 111g asUUUsed= Used(
1

6π 111g ···( 1
XA

pppppp+ 1
YA
(III −

pppppp))), whereXA andYA are the axisymmetric and transverse translation coefficients given

by XA = 8/(3ξ0(−2ξ0+(1+ξ 2
0 ) log((ξ0+1)/(ξ0−1))) andYA = −16/(3ξ0(−2ξ0+(−3+

ξ 2
0 ) log((ξ0+1)/(ξ0−1)))) for a prolate spheroid (Kim & Karrila 1991). The coefficients for

an oblate spheroid can be obtained from those of a prolate spheroid by using the transformation

defined in chapter2, or alternatively, fromKim & Karrila (1991). Noting that 111′x(111
′
y ···UUUsed)

is independent ofxxx, andUUU (2) is an odd function ofxxx, it can be seen that the integral in the

last term of (4.5) will vanish. Further noting thatuuu′(shear) anduuu′(sedγ̇) are respectively odd

and even functions ofxxx, it can be seen that the integral involving the cross terms in(4.5) also

vanishes, and the above equation reduces to:

ˆ

V
UUU (2) ···∇∇∇ ···σσσ ′(1)dV = Re

ˆ

V
UUU (2) ···

(
∂uuu′(shear)

∂ t
+uuu′(shear) ···∇∇∇uuu′(shear)

+(ΓΓΓ...xxx) ···∇∇∇uuu′(shear)

+ΓΓΓ ···uuu′(shear)
)

dV+Re
ˆ

V
UUU (2) ···

(
∂uuu′(sedγ̇)

∂ t
+uuu′(sedγ̇) ···∇∇∇uuu′(sedγ̇)

)
dV. (4.6)

The disturbance velocity field in sedimentation, scaled with Used, is related to the one scaled

with γ̇, in the equation above, throughuuu′(sedγ̇) = (Resed/Re)uuu′(sed). The disturbance veloc-

ity field as well as time in the second integral above can be rescaled with the dimensional
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quantitiesUsedandL/Used (t =(Re/Resed)tsed) to give:

ˆ

V
UUU (2) ···∇∇∇ ···σσσ ′(1)dV = Re

ˆ

V
UUU (2) ···

(
∂uuu′(shear)

∂ t
+uuu′(shear) ···∇∇∇uuu′(shear)

+(ΓΓΓ...xxx) ···∇∇∇uuu′(shear)

+ΓΓΓ ···uuu′(shear)
)

dV+
Resed

Re

ˆ

V
ResedUUU

(2) ···
(

∂uuu′(sed)

∂ tsed
+uuu′(sed) ···∇∇∇uuu′(sed)

)
dV. (4.7)

In Dabadeet al. (2015), the second integral on the right-hand side above is shown to be equal

to the negative of the torque acting on a sedimenting spheroid (LLLsed) contracted with the sec-

ond order tensorUUU (2). The torque is given byLLLsed= −ResedF(ξ0)(UUUsed× ppp)(UUUsed··· ppp) =

−ResedF(ξ0)(111g × ppp)(111g ··· ppp)/(36π2XAYA). The functionF(ξ0) is negative for a prolate

spheroid and is positive for an oblate spheroid, so the torque acts in a way to makeppp per-

pendicular to 111g for a prolate spheroid and makeppp align with 111g for an oblate spheroid. After

substituting the sedimentation torque in the second integral in (4.7) one can rewrite (4.2) as:

ΩΩΩ1.LLL 2 =ΓΓΓ :
ˆ

SSSp

xxx(ΣΣΣ(2) ···nnn)dS+UUU (2) ···
(

St
d
dt

III ...ΩΩΩ111

)
+Re

ˆ

V
UUU (2) ···

(
∂uuu′(shear)

∂ t

+uuu′(shear) ···∇∇∇uuu′(shear)
+(ΓΓΓ...xxx) ···∇∇∇uuu′(shear)

+ΓΓΓ ···uuu′(shear)
)

dV

+
Re2

sed

36Reπ2XAYA
UUU (2).(F(ξ0)(111g× ppp)(111g.ppp)) (4.8)

Note that the first three terms in the above reciprocal theorem are the same as those seen in

chapter2 for simple shear flow alone. The last term on the right-hand side of (4.8) is the

contribution due to the sedimentation. The reciprocal theorem above is simplified for a force

aligned in an arbitrary direction with respect to the simpleshear flow in the next section.

4.3 Sedimentation along an arbitrary direction with respect

to flow

As in chapter2, we evaluate the reciprocal theorem in a body aligned coordinate system de-

fined by the unit vectors 111x = cosθ j cosφ j111
′
x + cosθ j sinφ j111

′
y − sinθ j111

′
z, 111y = −sinφ j111

′
x +

cosφ j111
′
y and 111z = sinθ j cosφ j111

′
x+ sinθ j sinφ j111

′
y+ cosθ j111

′
z (see figure2.2). The angular ve-

locity ΩΩΩ1 can be expanded asΩΩΩ1= ΩΩΩ je f f+ ReΩΩΩRe. Defining 111g = 1x
g111x+ 1y

g111y+ 1z
g111z and
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Fig. 4.1Fsedplotted against eccentricity for (a) prolate spheroid (b) oblate spheroid. It diverges
as logκ for prolate spheroid as eccentricity goes to 1 and is a constant for oblate spheroid, in
this limit.

ΩΩΩRe=−φ̇ j sinθ j111x+ θ̇ j111y+ φ̇ j cosθ j111z, and substituting in (4.8) one gets at O(Re):

φ̇ j =
St
Re

φ̇ j
part

+ φ̇ j
f luid

+

(
Resed

Re

)2 Fsed(ξ0)

sinθ j
1y

g1z
g, (4.9)

θ̇ j =
St
Re

θ̇ j
part

+ θ̇ j
f luid

+

(
Resed

Re

)2

Fsed(ξ0)1x
g1z

g, (4.10)

where

Fsed(ξ0) =
F(ξ0)

288π3XAYAYc
. (4.11)

The angular velocitieṡθ j
part

, φ̇ j
part

, θ̇ j
f luid

andφ̇ j
f luid

in (4.9-4.10) are defined in equations

(2.77) (2.78), (2.93) and (2.94) respectively. The angular dependence of these terms are there-

fore known. The third term on the right-hand side of each of (4.9) and (4.10) is due to sed-

imentation. The angular dependence of these terms would depend on the orientation of the

sedimenting force, while the amplitude would depend onFsed(ξ0), which is plotted for prolate

and oblate spheroids in figures4.1a and b. The function asymptotes to a constant for flat disk

(κ → 0) and that for a slender fibre (κ → ∞) diverges as logκ .

As seen in chapter2, there are two approaches to understand the orientation dynamics of

the spheroid. The first brute-force approach is to numerically integrate the set of differential

equations governingθ j andφ j , obtained by adding the angular velocities given in (4.9) and

(4.10) and the corresponding leading order angular velocities given in equations (2.29) and
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(2.30), to obtain the trajectories on the unit sphere. However, doing the numerical integration

for various combinations of nondimensional parameters (St/Re, Reshear/Reandκ), and for

all possible initial orientation on the unit sphere, is cumbersome, and is not pursued further

here. Since the correction to the angular velocities are small, one would expect the orbit of

a spheroid to be approximately equal to a Jeffery orbit during a period of rotation. Therefore

we approximateC, the orbital coordinate of the spheroid defined in chapter2, as a constant

over a period of rotation. The change inC during a single Jeffery period in the presence of

sedimentation and inertia, defined as∆Css, can be derived in a manner similar to that in chapter

2 and is given by:

∆Css=

ˆ Tje f f

0

dC
dt

dt, (4.12)

=(
dτ
dt

)−1
ˆ 2π

0

dC
dt

dτ, (4.13)

=Re
κ2+1

κ

ˆ 2π

0
C

(
1

sinθ j cosθ j

(
dθ j

dt

)
+

(κ2−1)cosφ j sinφ j

κ2sin2 φ j +cos2φ j

(
dφ j

dt

))
dτ,

(4.14)

with dφ j
dt and dθ j

dt defined in (4.9) and (4.10). Characterizing the trajectories corresponding to

all possible initial orientations is equivalent to examining∆Css over the entire range ofC’s.

To evaluate the drift above, one needs to know the orientation of the sedimenting force.

To begin with, we consider the force to be aligned with any of the the vorticity, the gradient

and the flow axes of the simple shear flow. The response of a spheroid to an arbitrarly aligned

force can be easily obtained from the three cases mentioned above. The drifts are presented

for these three cases in the next three sections. It turns outthat the drift is of the same form as

we have encountered in chapter2 and is given by:

∆Css= ReC
κ2+1

κ

{[
I1Fs

1(ξ0,
Resed

Re
,

St
Re

)+ I2Fs
2(ξ0,

Resed

Re
,

St
Re

)+ I3Fs
3(ξ0,

Resed

Re
,

St
Re

)

+I4Fs
4(ξ0,

Resed

Re
,

St
Re

)+ I5Fs
5(ξ0,

Resed

Re
,

St
Re

)+ I6Fs
6(ξ0,

Resed

Re
,

St
Re

)

]
+

[
J1Gs

1(ξ0,
Resed

Re
,

St
Re

)

+J2Gs
2(ξ0,

Resed

Re
,

St
Re

)+J3Gs
3(ξ0,

Resed

Re
,

St
Re

)+J4Gs
4(ξ0,

Resed

Re
,

St
Re

)

]}
, (4.15)

with functionsFs
i andGs

i are defined for the three cases mentioned above, in sections that

follow, andI ’s andJ’s defined in AppendixA. WhenResed/Re= 0, these functions take the

form Fs
i = St

ReF
p

i +F f
i andGs

i =
St
ReG

p
i +Gf

i , and these are defined in chapter2. We analyze
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the drift for the simplest case in which the sedimentation force is aligned with the vorticity

axis in section4.4, followed by the case in which it is aligned with the flow axis in section4.5,

and finally the case in which it is aligned with the gradient axis, in section4.6.

4.4 Sedimentation along vorticity axis

In this section we analyze the orientation dynamics of a spheroid rotating in a simple shear

flow but subjected to a force aligned with the vorticity axis.In this alignment, the sedimenta-

tion force will try to push the orientation vector of a prolate spheroid towards the flow-gradient

plane, and that of an oblate spheroid towards the vorticity axis. Thus, the drift due to sedimen-

tation should be positive for a prolate spheroid and negative for an oblate spheroid. The force,

when expressed in the body aligned coordinate system, takesthe form:

FFF =−sinθ j111x+cosθ j111z (4.16)

For a spheroid, the angular velocities given in (4.9)-(4.10) take the form:

φ̇ j =
St
Re

φ̇ j
part

+ φ̇ j
f luid

, (4.17)

θ̇ j =
St
Re

θ̇ j
part

+ θ̇ j
f luid −

(
Resed

Re

)2

Fsedsinθ j cosθ j . (4.18)

Thus, the contribution due to sedimentation only affectsθ̇ j . From figure4.1 it can be noted

that Fsed is negative for a prolate spheroid and positive for an oblatespheroid and therefore

sedimentation pushes a prolate spheroid towards the tumbling and an oblate one towards the

spinning orbit. The drift takes the form in (4.15) with functions therein given by:

Fs
i =

St
Re

F p
i +F f

i ,(i = 2, ..6), (4.19)

Gs
i =

St
Re

Gp
i +Gf

i (i = 1, ..4), (4.20)

Fs
1 =

St
Re

F p
1 +F f

1 −
(

Resed

Re

)2

Fsed. (4.21)

For O(1) values ofSt/Re, the drift due to particle inertia is small compared to that due to fluid

inertia, as seen in chapter2. We analyze the drift due to (4.17-4.18) for St/Re= 2. For this

St/Re, and in the absence of sedimentation (Resed/Re= 0), a repeller exists only for oblate

spheroids whose aspect ratios are less than 0.131. For various values of the nondimensional

parameterResed/Re, the drift is plotted for prolate spheroids of aspect ratios70.7(ξ0 = 1.001)
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Fig. 4.2 The drift is plotted for prolate spheroids of aspectratio (a) 70.7 and (b) 2.4 sedimenting
due to a force along the vorticity axis. The drift is positivefor Resed/Re= 0 and remains
positive for all values ofResed/Re.

and 2.4(ξ0 = 1.1) in figure4.2, and for oblate spheroids of aspect ratios 0.014(ξ0 = 1.0001),

0.044(ξ0 = 1.001) and 0.3(ξ0 = 1.051) in figure4.3. When the nondimensional parameter

Resed/Re is zero, the inertial effects stabilize the tumbling orbit for a prolate spheroid. As

explained above, sedimentation also results in a drift towards the tumbling orbit. Thus, the

drift due to the combined effect of sedimentation and shear,increases withResed/Reas shown

in figure4.2. For oblate spheroids with aspect ratios larger than 0.131(see figure4.3e) the sole

attractor is the spinning orbit atResed/Re= 0. Similar to prolate, sedimentation only results

in an increase in the drift rate, with increasing value of thenon-dimensional parameter . For

oblate spheroids of aspect ratio less than 0.131, a repeller exists dividing the orientation space

into two distinct basins of attraction atResed/Re= 0 (see4.3 a and c,). In these figures, the

repeller locations correspond to theC location at which the drift changes its sign. AsResed/Re

increases, the repeller shift towards the tumbling orbit, and at a criticalResed/Re(marked in

red color), merges with the tumbling orbit making the spinning orbit the sole attractor for the

whole orientation space.

4.5 Sedimentation along flow axis

In this section we analyze the orientation dynamics of a spheroid rotating in a simple shear flow

but subjected to a force aligned with the flow axis. In this alignment, the sedimentation force

will try to push the orientation vector of a prolate spheroidtowards the gradient-vorticity plane

and that of an oblate spheroid towards the flow axis. One wouldthen expect sedimentation to

affect bothθ̇ j andφ̇ j . The force when expressed in the body aligned coordinate system takes
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Fig. 4.3 The drift is plotted for oblate spheroids of aspect ratio (a) 0.014 (c).044 and (e) 0.3
sedimenting due to a force along the vorticity axis. The zoomed view of (a) and (c) are shown
in (b) and (d). The repeller moves towards the tumbling orbitwith increasingResed/Re for
both aspect ratios.
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the form:

FFF = cosθ j cosφ j111x−sinφ j111y+sinθ j cosφ j111z. (4.22)

The angular velocities of the spheroid take the form:

φ̇ j =
St
Re

φ̇ j
part

+ φ̇ j
f luid −

(
Resed

Re

)2

Fsedsinφ j cosφ j (4.23)

θ̇ j =
St
Re

θ̇ j
part

+ θ̇ j
f luid

+

(
Resed

Re

)2

Fsedsinθ j cosθ j cos2 φ j . (4.24)

The drift takes the form in (4.15) with the functions therein defined as:

Fs
i =

St
Re

F p
i +F f

i (i = 3, ..6), (4.25)

Gs
i =

St
Re

Gp
i +Gf

i (i = 2, ..4), (4.26)

Fs
1 =

St
Re

F p
1 +F f

1 +(1/2)Fsed, (4.27)

Fs
2 =

St
Re

F p
2 +F f

2 +(1/2)Fsed, (4.28)

Gs
1 =

St
Re

Gp
i +Gf

i −
(

Resed

Re

)2

Fsed. (4.29)

The contribution due to sedimentation pushes a prolate spheroid towards the spinning and an

oblate one towards the tumbling orbit. We fixSt/Re= 2, similar to the vorticity case analyzed

in the previous section.The drift is plotted for various values of the nondimensional parameter,

Resed/Re, for prolate spheroids of aspect ratios 70.7(ξ0 = 1.001) and 2.4(ξ0 = 1.1) in figure

4.4, and for oblate spheroids of aspect ratios 0.014(ξ0 = 1.0001) and 0.3(ξ0 = 1.051) in figure

4.5. The prolate spheroid has only a single attractor atResed/Re= 0 which is the tumbling

orbit. With increasingResed/Re, at first a repeller emerges from the spinning orbit (green

curves) and then moves towards the tumbling orbit, eventually coinciding with it (red curves).

The spinning orbit remains the sole attractor forResed/Revalues larger than that corresponding

to the red curve. For an oblate spheroid of aspect ratio less than 0.131 (see figure4.5 a), the

repeller present atResed/Re= 0 shifts towards the spinning orbit with increasingResed/Re,

and eventually coincides with the spinning orbit(red curve). ForResed/Relarger than the one

corresponding to that of the red curve, the tumbling orbit remains the sole attractor. For oblate

spheroids of aspect ratio larger than 0.131 (see figure4.5 c), the spinning orbit is the sole

attractor atResed/Re= 0. However with increasingResed/Re, a repeller emerges from the
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Fig. 4.4 The drift is plotted for prolate spheroids of aspectratio (a)70.7 and (b)2.4 sedimenting
due to a force along the flow axis.

tumbling orbit (green curve), and then moves towards the spinning orbit eventually coinciding

with it (red), making the tumbling orbit the sole attractor for largerResed/Revalues.

4.6 Sedimentation along gradient axis

In this section we analyze the orientation dynamics of a spheroid rotating in a simple shear flow

but subjected to a force aligned with the gradient axis. In this alignment, the sedimentation

force will try to push the orientation vector of a prolate spheroid towards the flow-vorticity

plane and that of an oblate spheroid towards the gradient axis. The force when expressed in

the body aligned coordinate system takes the form:

FFF = cosθ j sinφ j111x+cosφ j111y+sinθ j sinφ j111z. (4.30)

The angular velocities of the spheroid take the form:

φ̇ j =
St
Re

φ̇ j
part

+ φ̇ j
f luid

+

(
Resed

Re

)2

Fsedsinφ j cosφ j (4.31)

θ̇ j =
St
Re

θ̇ j
part

+ θ̇ j
f luid

+

(
Resed

Re

)2

Fsedsinθ j cosθ j sin2 φ j . (4.32)

The drift takes the form in (4.15) with functions given by :
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Fig. 4.5 The drift is plotted for oblate spheroids of aspect ratio (a)0.014 and (c)0.3 sedimenting
due to a force along the flow axis. The zoomed views of (a) and (c) are shown in (b) and (d).
The repeller moves towards the spinning orbit with increasingResed/Refor both aspect ratios.
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Fig. 4.6 The drift is plotted for prolate spheroids of aspectratio (a)70.7 and (b)2.4 sedimenting
due to a force along the gradient axis. The zoomed views of (a)and (c) are shown in (b) and
(d).
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Fs
i =

St
Re

F p
i +F f

i (i = 3, ..6), (4.33)

Gs
i =

St
Re

Gp
i +Gf

i (i = 2, ..4), (4.34)

Fs
1 =

St
Re

F p
1 +F f

1 +(1/2)Fsed, (4.35)

Fs
2 =

St
Re

F p
2 +F f

2 − (1/2)Fsed, (4.36)

Gs
1 =

St
Re

Gp
i +Gf

i +

(
Resed

Re

)2

Fsed. (4.37)

The contribution due to sedimentation pushes a prolate spheroid towards the spinning orbit,

and an oblate one towards the tumbling orbit. Again we fixSt/Re= 2. The drift is plotted

for various values of the nondimensional parameter,Resed/Re, for prolate spheroids of aspect

ratios 70.7(ξ0 = 1.001) and 2.4(ξ0 = 1.1) in figure 4.6, and for oblate spheroids of aspect

ratios 0.014(ξ0 = 1.0001) and 0.3(ξ0 = 1.051) in figure4.7. The prolate spheroid has only a

single attractor atResed/Re= 0 which is the tumbling orbit. Like the flow aligned case seen

in the previous section, with increasingResed/Re, at first a repeller emerges from the spinning

orbit (green curves), and then moves towards the tumbling orbit, eventually coinciding with

it (red curves), and the spinning orbit remains the sole attractor thereafter. For an oblate

spheroid with aspect ratio less than 0.131 (figure4.7 a), the repeller present atResed/Re= 0

shifts towards the spinning orbit with increasingResed/Reand eventually coincides with the

spinning orbit(red curves). For oblate spheroids of aspectratio larger than 0.131 (figure4.7

c), the spinning orbit is the sole attractor atResed/Re= 0. However with increasingResed/Re,

a repeller emerges from the tumbling orbit (green curve) andthen eventually move towards

the spinning orbit and eventually coinciding with it (red),making the tumbling orbit the sole

attractor for largerResed/Revalues.

4.7 Limitations of drift analysis

In this section we look at the limitation of the average driftanalysis presented in previous

sections. The drift analysis is based on the approximation that the initial orbital coordinate

C of a spheroid is constant over a time period of rotation. As already seen in chapter2, this

approximation can be formally derived from a multiple scaleanalysis. The average drift anal-

ysis eliminates the need to numerically integrate the angular velocities for initial conditions

ranging over the entire unit sphere for understanding the orientation dynamics of the spheroid.

However, this analysis has certain limitations and we discuss them below. We will rewrite
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Fig. 4.7 The drift is plotted for oblate spheroids of aspect ratio (a)0.014 and (c)0.3 sedimenting
due to a force along the gradient axis. The zoomed views of (a)and (c) are shown in (b) and
(d). The repeller moves towards the spinning orbit with increasingResed/Refor both aspect
ratios.
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(4.15) as follows:

∆Css= ∆Cp+∆Cf +ReC
κ2+1

κ

(
Resed

Re

)2

(I1Fs
1 + I2Fs

2 +J1Gs
1) , (4.38)

whereFs
1 , Fs

2 andGs
1 are defined in previous sections for the three canonical cases. In (4.38),

∆Cp and∆Cf are the contributions to drift due to particle and fluid inertia presented in chapter

2, and the third term is the contribution due to sedimentation. The contribution due to par-

ticle and fluid inertia comes at O(St) and O(Re) whereas that due to sedimentation comes at

O(Re2
sed/Re), and the latter contribution is proportional toC. The analytical approximation

would be valid when the constraint∆Css/C<< 1 is satisfied. For neutrally buoyant spheroids

of O(1) aspect ratios this would impose the conditionRe2
sed< ReandRe< 1. ProvidedReis

sufficiently small, this restriction onResed is satisfied for the spheroids of O(1) aspect ratios

analyzed in earlier sections.

To illustrate that the average drift analysis and the drift obtained from numerical integration

of the angular velocities compare well, we have plotted the drift predicted using both methods

in figure 4.8 for an oblate spheroid subjected to a sedimentation force along the gradient

direction. The oblate spheroid is of an aspect ratio 0.3 (ξ0 = 1.05), and the average drift

analysis predicts that, for anResed
Re of 12.04, a repeller exists atC = 1.85, and therefore, the

drift is negative forC < 1.85 and positiveC > 1.85 (see figure4.7c). In figure4.8, the drifts

are plotted against|φ j |, with the red curve corresponding to the change inC predicted by the

average drift analysis, and the blue curve corresponding tothat obtained from the numerical

integration of angular velocities. The initialC value is aboveC = 1.85 in figure4.8 a, and

belowC=1.85 in figure4.8b. As is evident, the average drift analysis is a good approximation

for the average of the drift from numerical integration, andthe repeller location predicted by

the average drift analysis is also consistent with that observed from the numerical integration.

In the case of oblate spheroids of extreme aspect ratios (κ → 0), the sedimentation contri-

bution in (4.38) is proportional toCRe2sed/(Reκ) and the inertial contributions are proportional

to ReC/κ . Note thatFsed for an oblate spheroid is a constant in the limit ofκ → 0 as seen in

figure4.1b and thereforeFs
1 ,F

s
2 andGs

1 in (4.38) are also constants. The drift analysis is valid

whenRe< κ andRe2
sed< Re. Recall that in chapter2, we had already seen that the constraint

Re< κ is necessary for the validity of the average inertial drift.Provided this constraint is

met, the range ofResed for which the drift analysis is valid would be given byResed less than

approximately 20
√

Re, which is satisfied in the cases considered in previous section (the max-

imum value ofResed/Rewhere a significant change in the repeller behaviour occurs is 11.49).
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Fig. 4.8 The drift is plotted against angular coordinateφ j for an oblate spheroid of aspect ratio
0.3. The prediction from the average drift analysis (red) and the numerical integration (blue)
are plotted starting fromCs on the either side of the repeller.

In the case of prolate spheroid of extreme aspect ratios (κ → ∞), the sedimentation contribu-

tion in ∆Css is proportional toCκ logκRe2
sed/Reand the inertial contribution is proportional

to ReCκ . Note thatFsed diverges as O(logκ) in the limit of κ → ∞ as seen in figure4.1a and

thereforeFs
1 ,F

s
2 andGs

1 in (4.38) also diverge as logκ . So for the drift analysis to be valid,

one getsRe< κ andResed less than approximately 22.45
√

Re/(κ logκ) which is satisfied in

the cases considered in previous section (the maximum valueof Resed/Rewhere a significant

change in the repeller behaviour occurs is 1.57).

4.8 Conclusions

In this chapter we have investigated the effects of sedimentation on a spheroid rotating in a

simple shear flow. The inertial effects on the orientation dynamics of a spheroid in the absence

of sedimentation is already analyzed in chapter2. A reciprocal theorem formulation was used

to obtain the angular velocity of the spheroid in the presence of sedimentation. The angular

velocities of the spheroid, while sedimenting due to a forcealigned arbitrarily with respect to

the simple shear flow, are given in equations (4.9) and (4.10). The angular velocities for the

canonical cases of the force being aligned with vorticity, flow and gradient axes are analyzed

in sections4.4-4.6. For O(1) valuesSt/Re, it is found that the drift due to sedimentation

opposes that due to inertial effects in the simple shear flow,when the force is aligned with the

gradient or the flow axes, and it complements each other when the force is aligned with the

vorticity. The limitations of the drift analysis are discussed in section4.7. It is shown that

the average drift analysis is reasonably good in predictingthe repeller locations as well as the

final stabilized orbits in the cases considered here.





Chapter 5

The time period of rotation of a spheroid

in simple shear flow

5.1 Introduction

In the Stokes limit, it is well known that in simple shear flow aspheroid rotates in any of a one

parameter family of orbits (Jeffery 1922), eponymously called the Jeffery orbits. The generic

Jeffery orbit is a spherical ellipse corresponding to a time-dependent three-dimensional preces-

sional motion of the orientation vector about the vorticityaxis. The limiting members of the

aforementioned family are the tumbling orbit, a great circle in the flow-gradient plane, and the

spinning orbit, where the angular velocity vector is time independent and aligned with ambient

vorticity(see figures5.1 (a) and (b)). In the Stokes limit a spheroid will continue to rotate in

a Jeffery orbit determined by its initial orientation for all time. It was shown in chapter2 that

weak inertia in the suspending fluid and that of the particle,at O(Re) and O(St), respectively,

stabilize either the spinning or the tumbling orbit. Here,ReandSt are the Reynolds and the

Stokes numbers withRe= γ̇L2ρ/µ andSt= γ̇L2ρp/µ, whereγ̇ is the shear rate corresponding

to the ambient flow,L is the length of the semi-major axis of the spheroid,µ is the viscosity of

the fluid, andρ andρp are the densities of the fluid and particle respectively. Thetime period

of rotation at leading order is given byTje f f = 2πγ̇−1(κ +1/κ) in the tumbling orbit and 4π
in the spinning orbit. Here,κ = L/b(b/L) is the aspect ratio of the prolate(oblate) spheroid,

with b being the semi-minor axis of the spheroid. A recent simulation (Mao & Alexeev 2014)

has shown that, fluid inertia increases the time period of rotation in the stable orbits from its

leading order Jeffrey value, although the simulation had largely exploredRe’s of order unity;

the smallReregime, characterizing the first effects of inertia has not been systematically in-

vestigated. This simulation has also shown that the time period of rotation in the stable orbits
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decreases from its Jeffery value in the presence of particleinertia. In this chapter, we will

investigate the effect of inertia on the time period of rotation in the stable orbits. To begin

with, the effects of inertia at O(Re) and O(St) on the time period are investigated based on the

angular velocities derived in chapter2, and it is shown that the inertia at these orders do not

alter the time period from its leading order value. It turns out that the time period gets altered

due to corrections at O(Re3/2) and O(St2).

The estimation of the O(St2) correction to the angular velocity of a spheroid in a simple

shear flow is straightforward due to the regular nature of theproblem. In a simple shear flow,

the O(Re3/2) correction arises due to the fluid inertial effects in the regions of order and be-

yond the inertial screening length defined asLRe−1/2 (Re<< 1). In this so-called outer region,

the Stokes approximation breaks down and the inertial forces balance the viscous forces. The

aforementioned inertial screening length can be obtained from this precise balance as follows:

the Stokes disturbance field due to a spheroid in simple shearflow decays as 1/r2. Here,r

is the distance from the center of the spheroid. The inertialterm would scale asRe/r2 and

the viscous term would scale as 1/r4 and the balancing of these terms would giver ∼ Re−1/2.

To calculate the effects of fluid inertia based on an analysisof the outer region is non-trivial.

Saffman(1965) had estimated the lift force on a translating sphere ‘slipping’ past an ambient

simple shear flow using an analysis based on the outer region.The Fourier space analysis in

Saffman(1965) was originally used inChildress(1964) in the context of estimating the cor-

rection to the well known Stokes’ drag formula for a sphere. In the rheological context,Lin

et al. (1970b) (also seeStoneet al. (2000)) analyzed the effects of fluid inertia at O(Re3/2)

in order to characterize the O(φ ) rheology of a dilute suspension of rigid neutrally buoyant

spheroids; Here,φ is the volume fraction of the suspended spheres. Specifically in Lin et al.

(1970b), a matched asymptotics expansion was used to estimate the O(φRe3/2) correction to

the viscosity of a suspension of rigid spheres, which contributes to a shear thickening rheology.

Stoneet al. (2000) redid the calculation using a concise Fourier-space formulation based on

the reciprocal theorem by treating the sphere as a force-dipole singularity. The concise for-

mulation was used bySubramanianet al. (2011) to characterize the complete non-Newtonian

rheology of an emulsion to O(φRe3/2), for arbitrary ratios of the viscosity of the disperse

(drop) phase to the continuous phase. Note that in all the above mentioned cases, the leading

order disturbance velocity field due to the particle is steady on account of its spherical shape.

The steady disturbance velocity field around the spherical particle also allows one to calculate

the correction to the angular velocity at O(Re3/2) (Stoneet al.2000; Subramanianet al.2011)

and is shown to be−0.054Re3/2, so that inertia slows down the rotation of the sphere. In the

case of a sphere one can easily see that the angular velocity correction at O(Re) in a simple

shear flow is zero. This is because the correction is quadratic in the shear rate, and it being
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a pseudo vector, should be proportional toωωω ···EEE, whereEEE andωωω are the rate-of-strain tensor

and the vorticity vector in the simple shear flow, respectively. Vorticity is perpendicular to the

flow-gradient plane of the simple shear flow and therefore,ωωω ···EEE = 0.

The disturbance velocity field for a spheroid in a spinning orbit is steady, and therefore

the scaling of the inertial correction to the angular velocity would again be similar to that of a

sphere. The detailed calculation can be easily seen from theO(Re3/2) Fourier space formula-

tion as shown in a later section; although, in a recent work (Meibohmet al.2016), the O(Re3/2)

correction for a spheroid in a spinning orbit, has been estimated using the traditional matched

asymptotic expansions approach. In the tumbling orbit, however, the disturbance velocity field

due to the spheroid is unsteady, and the torque-free spheroid acts as a time-dependent force

dipole singularity in the outer region. This dependence, when represented in frequency space,

is an infinite Fourier series and this makes the evaluation ofO(Re3/2) correction to the angular

velocity difficult. However, as shown in a later section, if one has to only evaluate correction

to time period at O(Re3/2), one only needs the Jeffrey averaged angular velocity correction,

and the relevant infinite series truncates to three terms, allowing one to determine the correc-

tion. The correctness of the O(Re3/2) correction to the angular velocity for a sphere mentioned

above, and the associated increase in time period was also confirmed in a numerical investiga-

tion byMikulencak & Morris(2004). They have extended the results for the inertial correction

to O(1)Re. More recently,Mao & Alexeev(2014) have investigated the effect of inertia on

the time period of rotation of spheroids of different aspectratios using the lattice Boltzmann

method. This work concluded that the time period of rotationincreases with Reynolds number,

but they find the scaling for the inertial correction to be O(Re) for small Reynolds numbers.

However based on the O(Re) correction of the angular velocity derived in chapter2, it can be

easily seen that the correction to the time period at this order is zero. The accurate estimation

of the O(Re3/2) inertial correction, in a numerical effort, is not easy, since the correction orig-

inates in the outer region, and demands that the outer boundary for the computational domain

be much farther than the (large) inertial screening length.

This paper is organized as follows. In section5.2we derive the expression for the inertial

correction to angular velocity using a reciprocal theorem formulation. We express the recip-

rocal theorem in Fourier space similar toStoneet al. (2000) andSubramanianet al. (2011).

In section5.3, we summarize the Stokesian scenario and investigate the effects of O(Re) and

O(St) correction to the angular velocities, derived in chapter2, on the time period . It is shown

that that the time period correction vanishes at O(Re) and O(St) in the stabilized (spinning or

tumbling) orbits. The calculation of the O(St2) correction to the time period is presented in
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section5.4. We investigate the effect of fluid inertia on the time periodfor the simpler case of

the spinning spheroid in section5.5, and show that the Fourier space integral for the O(Re3/2)

angular velocity correction reduces to that of the sphere asgiven in Stoneet al. (2000). A

numerical evaluation of this integral yields the spinning correction over the relevant range of

aspect ratios. As mentioned above, this is expected since a spinning spheroid acts as a time-

independent force-dipole singularity. In section5.6, we evaluate the reciprocal theorem inte-

gral for the difficult case of the tumbling orbit, the difficulty arising from the time-dependent

nature of the force-dipole singularity. However, as shown therein, for the time period correc-

tion one can reduce the reciprocal theorem integral to the sum of a three-dimensional integral

and a four-dimensional integral. These integrals are evaluated numerically and the results are

presented in section5.7. We summarize our findings in section5.8.

5.2 Formulation for the time period: The reciprocal theo-

rem

In this section, we derive the formal expression for the correction to the time period of rotation

of a spheroid, in a simple shear flow, for smallRe. The time period is related to the angular

velocity of the spheroid, and the latter can be evaluated using a generalized reciprocal theorem

formulation. The reciprocal theorem relates the velocity and stress fields of two problems,

the first one being the problem of interest and the second one being a simpler test problem

with a known solution. The flow physics in the two problems canbe different, however the

configuration, size and shape of the particle, a spheroid here in an unbounded fluid domain,

are the same (Leal (1979);Subramanian & Koch(2005);Subramanian & Koch(2006b) and

chapter2). The problem of interest here is a torque-free spheroid rotating in a simple shear

flow, accounting for the inertial acceleration of the fluid inan unbounded domain; the objective

is to relate its angular velocity,ΩΩΩ1, to the time period of rotation, to O(Re3/2) and O(St2), and

determine the latter. The test problem corresponds to the Stokesian rotation of a spheroid in

a quiescent ambient with an angular velocityΩΩΩ2, and with the same instantaneous orientation

as that of the spheroid in the problem of interest. The velocity and stress fields in the problem

of interest are denoted byuuu(1) andσσσ (1), and those in the test problem areuuu(2) andσσσ (2). The

reciprocal theorem is formulated in terms of the scaled disturbance fields (both stress and

velocity) in the problem of interest which are given byσσσ ′(1)=σσσ (1)−2EEE anduuu′(1)=uuu(1)−ΓΓΓ ···xxx,

whereΓΓΓ ···xxx is the ambient simple shear defined in a coordinate system, whose origin is at the

center of the spheroid. The space-fixed coordinate system has itsX, Y andZ along the flow,

gradient and vorticity directions, respectively, of the ambient simple shear (see figure5.1(a)),
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Fig. 5.1 (a) The orientation vector (red) defined by the angles θ j andφ j in the space-fixed
coordinate system XYZ. The X,Y and Z axes correspond to the flow, the gradient and the
vorticity directions of the simple shear flow.(b) Jeffery orbits (blue) for an oblate spheroid
of aspect ratio 0.05 for different initial conditions. The limiting Jeffery orbits that is the
tumbling and spinning orbits are indicated. (c) The repeller orbit (red) for an oblate spheroid
of aspect ratio 0.05 which divides the unit hemisphere into two distinct basins of attractions.
The trajectories of the spheroid due to fluid inertial drift at O(Re), starting from either side
of the repeller, and ending at the attractors of the corresponding basins, are shown as purple
and green curves. Note that the notation of the unit vectors and the definition of body-fixed
coordinate system are different from chapter2

with the unit vectors in the X, Y and Z directions being 1111, 1112 and 1113 respectively. Note that

the notation of the unit vectors and the definition of body-fixed coordinate system are different

from chapter2. The disturbance velocity and stress fields are scaled withγ̇L andµγ̇L. Thus,

ΓΓΓ = 11111112 andEEE = 1
2(11111112+11121111) are the transpose of the non-dimensional velocity gradient

and the rate-of-strain tensors, respectively. The expression for the inertial angular velocity, has

already been derived in (2.20), using a reciprocal theorem formulation and takes the following

form in non-dimensional terms forλ = 0:

ΩΩΩ1 ···LLL 2 =ΓΓΓ :
ˆ

Sp

xxx(σσσ (2) ···nnn)dS+St

[
d
dt
(III p ···ΩΩΩ1)

]
···ΩΩΩ2

+Re
ˆ

V

[
∂uuu′(1)

∂ t
+(ΓΓΓ ···xxx) ···∇∇∇uuu′(1)+ΓΓΓ ···uuu′(1)+uuu′(1)···∇∇∇uuu′(1)

]
···uuu(2)dV, (5.1)

where,ΩΩΩ1 andLLL 2 are, respectively, the angular velocity of the spheroid in the problem

of interest and the torque acting on the spheroid in the test problem. The latter is given by

LLL 2 =−8π(XCpppppp+YC(III − pppppp)) ···ΩΩΩ2, ppp here being the orientation vector of the spheroid, and

the torque coefficients being given byXC = 4
(
ξ 2

0 −1
)
/ (3ξ 3

0

(
2ξ0−2

(
ξ 2

0 −1
)

coth−1ξ0
)
)
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andYC = 4
(
2ξ 2

0 −1
)
/(3ξ 3

0

(
2
(
ξ 2

0 +1
)

coth−1 ξ0−2ξ0
)
) for a prolate spheroid (Kim & Kar-

rila (1991)), whereξ0 is the inverse of the eccentricity of the spheroid (ξ0 = 1/
√

1−1/κ2 for

a prolate spheroid). The expressions forXC andYC, for an oblate spheroid, can be obtained

by using the transformationξ0 = i
√

ξ 2
0 −1 andd = −id (d is the interfocal distance of the

spheroid) in the dimensional forms of the prolate torque coefficients (ξ0 = 1/
√

1−κ2, for an

oblate spheroid). The volume integral on the right-hand side of (5.1) gives the contribution to

the angular velocity due to fluid inertia, the domain of integration being the unbounded fluid

volume outside the spheroid. The leading order contribution due to fluid inertia, at O(Re), can

be obtained by replacinguuu′(1) with the disturbance velocity field in the Stokes limit(uuu′(s)) in

the integral. The resulting integral is convergent, implying the regular nature of the O(Re) cor-

rection. This correction has been evaluated in section2.6, and it stabilizes certain Stokesian

orbits of the spheroid. Specifically, while atRe= 0 andSt= 0, the spheroid may rotate in

any of a one-parameter family of precessional orbits known as Jeffery orbits (Jeffery 1922),

for finite Re(or St), only the limiting members of this family (the tumbling andthe spinning

modes; see figure5.1(b)) are rendered stable by the O(Re) (O(St)) orbit drift induced by iner-

tia. As shown later in section5.3, the O(Re) and O(St) corrections to the angular velocity of a

spheroid rotating in either of the asymptotic states above,does not change the time period of

rotation from its leading order value given, in non-dimensional terms byTje f f = 2π(κ2+1)/κ
(= 4π) for the tumbling (spinning) orbit. However, as mentioned in section5.1, numerical sim-

ulations have observed a change in the time period in presence of fluid inertia(Mao & Alexeev

2014), although the scaling for this change has not been rigorously characterized in the limit

Re,St<< 1. Thus there is the need to calculate the next correction to the angular velocity. As

shown later in this section, this comes at O(Re3/2) for fluid inertia, and at O(St2) for particle

inertia (see section5.4).

To calculate the next correction due to fluid inertia, we willfirst examine the assumptions

made while replacinguuu′(1) with uuu′(s) to obtain the O(Re) correction. The equation governing

uuu′(1) is given by:

∇∇∇2uuu′(1)−∇∇∇p= Re

(
∂uuu′(1)

∂ t
+uuu′(1).∇∇∇uuu′(1)+(ΓΓΓ.xxx) ···∇uuu′(1)+ΓΓΓ.uuu′(1)

)
(5.2)

The equation above, is obtained by taking the difference of the governing equations for the

full velocity field uuu(1) and the ambientΓΓΓ ··· xxx. Neglecting the inertial terms proportional toRe

in (5.2), one gets the Stokes equation, whose solution is denoted byuuu′(s). It is well known that

uuu′(s) is not a uniformly valid approximation for the velocity fieldthroughout the unbounded

domain outside the spheroid. To see this, we compare the magnitudes of the viscous and
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the inertial terms in (5.2). The Stokes solutionuuu′(s) decays as 1/r2, wherer is the distance

away from the spheroid, and therefore the viscous terms on the left-hand side of (5.2) decay

as 1/r4 as r → ∞. The inertial terms on the right-hand side decays as 1/r2, and cannot be

neglected whenr ≈ Re−1/2, the inertial screening length, and the Stokes solution ceases to be

a good approximation to the disturbance velocity field at distances of order and beyond this

length. The region around the sphere can therefore be divided into two, depending on whether

the inertial terms can be neglected compared to the viscous terms; the inner region (r ∼ 1)

and the outer region (r ∼ O(Re−1/2)). The Stokes velocity field is a good approximation

to the actual disturbance velocity field only in the inner region. The leading order velocity

field in the outer region should, however, be obtained by solving (5.2). The velocity fields

in the inner and outer regions, however, reduce to the same functional form in a matching

region (1<< r << Re−1/2). To calculate theO(Re3/2) correction to the angular velocity,

the velocity field in the integrand on the right-hand-side of(5.1) is written, formally, as the

following uniformly valid expansion(Hinch(1991)):

uuu′(1) = uuuinner+uuuouter−uuumatch. (5.3)

In (5.3), uuuinner is the velocity field in the inner region, and isuuu′(s) at leading order,uuuouter

is the velocity field in the outer region being governed by linearized version of (5.2). In the

matching region, bothuuuinner anduuuouter reduce touuumatch. Next, defininguuuf = uuuouter−uuumatch,

the reciprocal theorem in (5.1) becomes

ΩΩΩ1 ···LLL 2 =ΓΓΓ :
ˆ

Sp

xxx(σσσ (2) ···nnn)dS+St

[
d
dt
(III p ···ΩΩΩ1)

]
···ΩΩΩ2

+Re
ˆ

V

[
∂uuuinner

∂ t
+(ΓΓΓ ···xxx) ···∇∇∇uuuinner+ΓΓΓ ···uuuinner+uuuinner···∇∇∇uuuinner

]
···uuu(2)dV

+Re
ˆ

V

[
∂uuuf

∂ t
+(ΓΓΓ ···xxx) ···∇∇∇uuuf +ΓΓΓ ···uuuf +uuuf ···∇∇∇uuuf

]
···uuu(2)dV

+Re
ˆ

V

[
uuuf ···∇∇∇uuuinner+uuuinner···∇∇∇uuuf

]
···uuu(2)dV (5.4)

In the inner region,uuuf is zero at leading order and in the outer region the nonlinearcross

terms,uuuf ···∇∇∇uuuinner anduuuinner···∇∇∇uuuf , decay faster than the linear terms, and therefore the inte-

grals involving the cross terms in (5.4) contribute at a higher order. The second term on the

right-hand side in (5.4) gives the O(Re) correction to the angular velocity (ΩΩΩ1), arising from

the inner region, and is evaluated in chapter2. The third term on the right-hand side is the

contribution to the angular velocity from the outer region.To explicitly see the scaling with

respect toRefor this contribution, the velocity fields in the third term are written in terms of
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a rescaled coordinate defined asρ = Re1/2r. The rescaled coordinate is of O(1) whenr is of

order the inertial screening length, and is therefore the coordinate appropriate for the outer re-

gion. The radial vector and the differential volume can be expressed in the outer coordinate as

ρρρ = Re1/2xxx , dVρ = Re3/2dV. Since the spheroid acts as a force-dipole singularity forr >> L,

the disturbance velocity fields in the problem of interest aswell as the test problem decay as

1/r2 whenL << r << Re−1/2, and can be written asuuufρ = Re−1uuuf anduuu(2ρ ) = Re−1uuu(2).

Note thatuuufρ = (uuuouterρ −uuumatchρ), the superscriptρ in the outer and matching velocity fields

indicate that they are now expressed in the outer coordinateρ . The reciprocal theorem in (5.4),

with the third term expressed in terms of the rescaled outer coordinate, is given by:

ΩΩΩ1 ···LLL 2 =ΓΓΓ :
ˆ

Sp

xxx(σσσ (2) ···nnn)dS+St

[
d
dt
(III p ···ΩΩΩ1)

]
···ΩΩΩ2

+Re
ˆ

V

[
∂uuuinner

∂ t
+(ΓΓΓ ···xxx) ···∇∇∇uuuinner+ΓΓΓ ···uuuinner+uuuinner···∇∇∇uuuinner

]
···uuu(2)dV.

+Re
3
2

ˆ

Vρ

[
∂uuufρ

∂ t
+(ΓΓΓ ···ρρρ) ···∇∇∇uuufρ +ΓΓΓ ···uuufρ

]
···uuu(2ρ )dVρ . (5.5)

Note that the nonlinear termuuuf ···∇∇∇uuuf in (5.4), when expressed in terms of the outer coordinate,

contributes at a higher order, and is neglected in the secondintegral in (5.5). It is evident from

(5.5) that the correction from the outer region comes at O(Re3/2). The volume of the spheroid

expressed in outer variables is O(Re3/2), and its omission only leads to an error of O(Re3). This

is equivalent to treating the spheroid as an equivalent point force-dipole singularity. Thus, the

outer integral in (5.5) may be extended right until the origin, and the resulting calculation is

then more conveniently done in Fourier space. The convolution theorem (Arfken et al.(2011))

is applied to the O(Re3/2) integral in (5.5) to obtain:

ˆ

Vρ

[
∂uuufρ

∂ t
+(ΓΓΓ ···ρρρ) ···∇∇∇uuufρ +ΓΓΓ ···uuufρ

]
···uuu(2ρ )dVρ =

ˆ

[
∂ ûuuf

∂ t
− (ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

f +ΓΓΓ ··· ûuuf
]

···ûuu(2)(−kkk)dkkk. (5.6)

where the hatted variables above, denote the Fourier transform which is defined aŝf (kkk) =
´

f (rrr)e−i2πkkk···rrrdrrr. In (5.6), ûuu(2)(−kkk) andûuuf (kkk) are the Fourier transforms of the test velocity

field uuu(2ρ ) and the velocity field in the problem of interestuuufρ . Note that the ambient simple

shear flow takes the form̂uuu2 =−k11112 in Fourier space. Here,k1 is the component of the wave

vectorkkk in theX direction(see figure5.1(a)).
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To evaluate (5.6), we need to find the Fourier transforms ofuuu(2ρ ) anduuufρ . The governing

equation foruuu(2ρ ) is:

∇∇∇2uuu(2ρ)−∇∇∇p(2ρ) = SSS(2) ··· ∂δ (ρρρ)
∂ρρρ

, (5.7)

whereSSS(2) is the time-dependent force-dipole singularity corresponding to a spheroid rotating

in a quiescent fluid. The singularity,SSS(2), is given by:

SSS(2) = B1((ΩΩΩ(2)∧ ppp)ppp+ ppp(ΩΩΩ(2)∧ ppp))+B2((ΩΩΩ(2) ··· ppp)εεε ··· ppp)+B3(εεε ···ΩΩΩ(2)), (5.8)

where ppp is the spheroid orientation vector and the constantsB1, B2 and B3 for a prolate

spheroid are given by:

B1 =
8π

ξ 3
0

(
−3ξ0+3coth−1ξ0

(
1+ξ 2

0

)) , (5.9)

B2 =
8π
(
2+3ξ0

(
−coth−1ξ0+ξ0

(
−1+ξ0coth−1ξ0

)))

3ξ 2
0

(
−coth−1 [ξ0]2+ξ 2

0 (−1+ξ0coth−1ξ0)2
) , (5.10)

B3 =
8π
(
1−2ξ 2

0

)

ξ 3
0

(
−3ξ0+3coth−1ξ0

(
1+ξ 2

0

)) . (5.11)

The terms proportional to constantsB2 andB3 correspond to rotlet singularities and the one

multiplying B1 corresponds to the stresslet singularity induced by the rotating spheroid. In

the limit ξ0 → ∞, that is for a sphere,B3 = −4π and B1 and B2 are O(1/ξ 2
0 ), consistent

with a rotating sphere acting as a pure rotlet singularity. As before, the constants for an

oblate spheroid can either be obtained using the transformation, ξ0 = i
√

ξ 2
0 −1 andd =−id,

mentioned below (5.1) (alternatively, seeKim & Karrila (1991)). The Fourier transform of

(5.7) gives:

ûuu(2)(−kkk) =
iSSS(2) ···kkk
2πk2 ···

(
III − kkkkkk

k2

)
. (5.12)

To evaluatêuuuf , we need to find the equation governinguuufρ , which can be derived from the

equations governinguuuouterρ anduuumatchρ given by:

∇∇∇2uuuouterρ −∇∇∇pouterρ = SSS··· ∂δ (ρρρ)
∂ρρρ

+

(
∂uuuouterρ

∂ t
+(ΓΓΓ.xxx) ···∇uuuouterρ +ΓΓΓ.uuuouterρ

)
, (5.13)
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and

∇∇∇2uuumatchρ −∇∇∇pmatchρ = SSS··· ∂δ (ρρρ)
∂ρρρ

(5.14)

respectively. Here, to the order of approximation desired,SSSis the time-dependent force-dipole

singularity corresponding to a torque-free spheroid in a simple shear flow. AtRe= 0,SSSis given

by

SSS= A1
3
2
(EEE : pppppp)

(
pppppp− III

3

)
+A2((III − pppppp) ···EEE ··· pppppp+ pppppp ···EEE ··· (III − pppppp))

+A3

(
(III − pppppp) ···EEE ··· (III − pppppp)+(III − pppppp)

(EEE : pppppp)
2

)
. (5.15)

To understandSSS in more detail, we note that the Stokesian disturbance field induced in an

ambient linear flow can be split into 5 component flows corresponding to the five degrees of

freedom of the rate of strain tensor (see section2.3). These may conveniently regarded as an

axisymmetric flow, two planar extensional flows in both the longitudinal plane (containingppp)

and transverse plane (orthogonal toppp), respectively, with the component amplitude dependent

on the spheroid orientation. Due to its axisymmetry, a spheroid responds identically to the two

extensions in the longitudinal and the transverse planes. Therefore, the force-dipole singularity

can be written as a sum of only three stresslets as given in (5.15), with the terms proportional

to A1, A2 andA3 being the stresslets induced by the axisymmetric extension, the longitudinal

and the transverse planar extensional flows, respectively.The constants for a prolate spheroid

(Kim & Karrila (1991)) are :

A1 =− 16π
9ξ 3

0

(
−3ξ0+ coth−1ξ0

(
−1+3ξ 2

0

)) , (5.16)

A2 =
16π

(
−1+ξ 2

0

)

3ξ 2
0

(
−1+2ξ 2

0

)(
2−3ξ 2

0 +3coth−1ξ0ξ0
(
−1+ξ 2

0

)) , (5.17)

A3 =− 32π
(
−1+ξ 2

0

)

3ξ 3
0

(
5ξ0−3ξ 3

0 +3coth−1ξ0
(
−1+ξ 2

0

)
2
) . (5.18)

In the limit ξ0 → ∞, that is for a sphere, all three constants equal−20π/3, makingSSS∞ =

−(20π/3)EEE corresponding to the well-known stresslet singularity of afreely rotating sphere

(nSSS∞ yields the well known Einstein coefficient). The equation governinguuuf ρ is derived using
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(5.13) and (5.14) and is given by:

∇∇∇2uuuf ρ −∇∇∇pf ρ =
∂uuuf ρ

∂ t
+(ΓΓΓ.xxx) ···∇uuuf ρ +ΓΓΓ.uuuf ρ +

∂uuumatchρ

∂ t
+(ΓΓΓ.xxx) ···∇uuumatchρ

+ΓΓΓ.uuumatchρ . (5.19)

The bracketed term on the right-hand side of (5.6) is obtained by taking the Fourier transform

of (5.19) and is given by

∂ ûuuf

∂ t
− (ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

f +ΓΓΓ ··· ûuuf =−4π2k2ûuuf − i2πkkkp̂f −
(

∂ ûuumatch

∂ t

−(ΓΓΓ† ···kkk) ···∇∇∇kkkûuu
match+ΓΓΓ ··· ûuumatch

)
. (5.20)

Substituting (5.12) and (5.20) in (5.6), the reciprocal theorem relation in (5.5) becomes

ΩΩΩ1 ···LLL 2 =ΓΓΓ :
ˆ

Sp

xxx(σσσ (2) ···nnn)dS+St

[
d
dt
(III p ···ΩΩΩ1)

]
···ΩΩΩ2

+Re
ˆ

V

[
∂uuuinner

∂ t
+(ΓΓΓ ···xxx) ···∇∇∇uuuinner+ΓΓΓ ···uuuinner+uuuinner···∇∇∇uuuinner

]
···uuu(2)dV

−Re
3
2

ˆ

[
4π2k2ûuuf +

∂ ûuumatch

∂ t
− (ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

match+ΓΓΓ ··· ûuumatch

]

···
(

iSSS(2) ···kkk
2πk2 ···

(
III − kkkkkk

k2

))
dkkk. (5.21)

Note that the term containing the Fourier transform of the pressure in (5.20), which is propor-

tional tokkk, vanishes when contracted with the Fourier transformed test velocity field, and has

therefore been omitted in (5.21). For the test problem, we define two second order tensors

LLL2 andUUU2, and two third order tensorsΣΣΣ(2) andSSS2t such thatLLL 2=LLL2 ···ΩΩΩ2, uuu(2)= UUU2 ···ΩΩΩ2 ,

σσσ (2) = ΣΣΣ(2) ···ΩΩΩ2 andSSS(2) = SSS2t ···ΩΩΩ2. In terms of these newly defined tensors the relation (5.21)

becomes independent of the angular velocity of the test spheroid (ΩΩΩ2). The correction to the

angular velocity in the problem of interest (ΩΩΩ1), due to particle inertia to any order inStcan be

obtained by equating the left-hand side of (5.21) with the second term on its right-hand side.

The O(St) correction is already evaluated in section2.5. The next correction comes at O(St2)

and is evaluated in section5.4. To evaluate the fluid inertial correction toΩΩΩ1, it is expanded

asΩΩΩ je f f +ReΩΩΩc1+Re3/2 ΩΩΩc2 and substituting the expansion as well as the newly defined
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tensors in (5.21) leads to

ΩΩΩ je f f ···LLL2 =ΓΓΓ :
ˆ

Sp

xxx(ΣΣΣ(2) ···nnn)dS, (5.22)

ΩΩΩc1 ···LLL2 =

ˆ

V

[
∂uuuinner

∂ t
+(ΓΓΓ ···xxx) ···∇∇∇uuuinner+ΓΓΓ ···uuuinner+uuuinner···∇∇∇uuuinner

]
···UUU2dV, (5.23)

and

ΩΩΩc2 ···LLL2 =−
ˆ

[
4π2k2ûuuf +

∂ ûuumatch

∂ t
− (ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

match+ΓΓΓ ··· ûuumatch

]

···
(

iSSS(2t) ···kkk
2πk2 ···

(
III − kkkkkk

k2

))
dkkk (5.24)

at successive orders. The detailed expression foruuuinner, obtained using a spheroidal harmonics

formalism, was used to evaluateΩΩΩc1 in chapter2. The Fourier transformed matching velocity

field (ûuumatch) in (5.24) is obtained by taking the Fourier transform of (5.14), and given by:

ûuumatch(kkk) =− iSSS···kkk
2πk2 ···

(
III − kkkkkk

k2

)
, (5.25)

with SSS given by (5.15). To evaluate the integral in (5.24), one also needŝuuuf , which can be

obtained by solving (5.20). This is a rather elaborate calculation, and is presented in sections

5.5and5.6.

5.3 Summary: Time period at leading order and at O(Re)

The leading order angular velocityΩΩΩ je f f in (5.22) may be expressed in terms of the rates of

change of the polar and azimuthal anglesθ j andφ j (Jeffery(1922)), defined in figure5.1(a),

and these are given by:

φ̇ je f f =− 1
2
+

κ2−1
2(κ2+1)

cos2φ j , (5.26)

θ̇ je f f =
κ2−1

4(κ2+1)
sin2θ j sin2φ j . (5.27)

The angular velocity also has an additional spin component along the orientation vector de-

fined asψ̇ = −cosθ j/2− φ̇ je f f cosθ j . As is well known, the solution of (5.26) and (5.27)
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shows that the spheroid rotates in any of a one-parameter family of closed orbits (figure5.1(b)),

the particular orbit being determined by its initial orientation. The parameter is the orbit con-

stantC, that takes values from 0 to∞. The orbital or the natural coordinates (C,τ) were

originally introduced byLeal & Hinch (1971), with the constant-C lines being Jeffery orbits,

and the constant-τ lines (τ being the phase change along an orbit) being the constant-φ planes

projected onto the unit sphere (see chapter2). In these coordinates, the aforementioned rates

of change take on a much simpler form:dC/dt = 0 anddτ/dt = κ/(κ2+1). If the spheroid

is initially aligned with the vorticity axis, it will continue to spin in that orientation. This par-

ticular orbit withC = 0 is called a log-rolling (spinning) orbit for a prolate (oblate) spheroid.

At leading order, the angular velocity of the spinning spheroid is a constant and is equal to

−(1/2)1113. The disturbance velocity field is steady in this orbit, justlike a sphere, and the time

period of rotation is 4π . If the initial orientation of the spheroid is in the flow-gradient plane,

the orbit would be a unit circle in this plane and is called a tumbling orbit. The rotation in

a Jeffery orbit is not uniform for any orbits other than the log-rolling (spinning) orbit. The

disturbance velocity field due to a spheroid in these orbits,including the tumbling one in par-

ticular, is unsteady. The time period characterizing this changing orientation can be defined

based oṅφ je f f , and is given byTje f f = 2π κ2+1
κ . Note that the period is the same for all orbits

becausėφ je f f is independent ofθ j .

As mentioned in section5.2, the correction to the angular velocity at O(Re), ΩΩΩc1, given in

(5.23) is evaluated in section2.6. The angular velocity components expressed in terms of the

angles defined above are of the form:

˙θc1 = sinθ j cosθ j

[
F f

1 (ξ0)+F f
2 (ξ0)cos2φ j +F f

3 (ξ0)cos2θ j +F f
4 (ξ0)cos4φ j

+F f
5 (ξ0)cos(2θ j −4φ j)+F f

6 (ξ0)cos(2θ j +4φ j)
]
, (5.28)

φ̇c1 =sinφ j cosφ j

[
Gf

1(ξ0)+Gf
2(ξ0)cos2θ j +Gf

3(ξ0)cos2φ j +Gf
4(ξ0)cos(2θ j)cos(2φ j)

]
.

(5.29)

The functionsF f
i ’s andGf

i ’s are defined for a prolate spheroid in (2.95-2.103) with λ = 0,

the corresponding functions for an oblate spheroid being obtained using the transformation

defined in section5.2. The angular velocity components at O(St) is also of the same form as

given in (5.28-5.29), but with the functionsF f
i ’s andGf

i ’s replaced withF p
i ’s andGp

i ’s, respec-

tively, and these functions are defined in (2.79-2.85) with λ = 0. The rates of change defined

in (5.28) and (5.29), lead to a drift across Jeffery orbits. The orbital drift, defined as the aver-

age change inC over one complete rotation of the spheroid, can be obtained from a multiple
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time scale analysis and has been used to analyze the effect ofinertia at O(Re) (Subramanian &

Koch(2005, 2006b) and chapter2). It has been found that on time scales of O(Re−1), a prolate

spheroid of any aspect ratio settles into the tumbling orbit, and an oblate spheroid with aspect

ratioκ in the range 0.142< κ < 1 asymptotes to the spinning orbit. For oblate spheroids with

κ < 0.142, a repeller exists on the unit sphere (see red curve in figure 5.1 (c)), dividing the

orientation hemisphere into two basins of attraction with the attractors being the spinning and

the tumbling orbits, and, in the absence of stochastic fluctuations, the spheroid can settle into

either of these depending on its initial orientation. The angular velocity corrections at O(St)

result in a drift which stabilizes the tumbling(spinning) orbit for prolate(oblate) spheroids. In

the analysis below, we focus on the effect of inertia on the time periods of rotation, of both

prolate and oblate spheroids, in the orbits into which they settle at long times due to the O(Re)

and O(St) drifts.

The correction to the spinning time period at O(Re) is zero. The regular nature of the O(Re)

correction implies that the alteration of the time period atthis order is related to the symme-

try of the inertial acceleration of the Stokes velocity field. The latter is symmetric about two

planes; these being formed by the ambient vorticity with theextensional and compressional

axes of the simple shear. The resulting acceleration field isantisymmetric. This antisymmetry

together with the regular nature of O(Re) correction, makes the correction to angular velocity

at this order zero and therefore the time period is unaltered. This can also be seen by noting

that due to the regular nature of the inertial correction, the angular velocity must be quadratic

in the velocity gradient tensor. Being a pseudo-vector it should therefore be proportional to

ωωω ···EEE (note thatppp is coincident withωωω), which is zero for a simple shear flow, since vorticity

ωωω is perpendicular to the components of the rate of strain tensor EEE. The O(St) correction to

the spinning time period is also zero. This is because, the leading order angular acceleration

is 0 for a spinning spheroid, and therefore, the particle inertia cannot affect the rate of rotation

of the spheroid.

In the tumbling orbit,φ̇ j is not a constant, and depends onppp, further, the latter is not

coincident withωωω . The time period for a spheroid rotating in the tumbling orbit is given by:

∆T tumb=

ˆ −π

π

dφ j

φ̇ je f f + Reφ̇c1+ Re3/2 φ̇c2
=

ˆ −π

π

dφ j

φ̇ je f f
−Re

ˆ −π

π

φ̇c1dφ j

φ̇2
je f f

+O(Re3/2),

(5.30)

where the expansion is valid forκ ∼ O(1), whenφ̇c1Re<< φ̇ je f f . The leading order integral

on the right-hand side above, evaluates to 2π(κ2+1)/k, which is of course, the Jeffery period.
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The O(Re) integral in the above equation, evaluates to zero after substituting forφ̇ je f f andφ̇c1

from (5.26) and (5.29), respectively. The O(St) correction to time period in the tumbling orbit

can be shown to be zero in a manner similar to that for the fluid inertial correction above. This

follows from the identical angular dependence of the rates of change of orientation at O(St)

and O(Re).

The correction to the time period due to fluid inertia therefore arises at O(Re3/2) for both

the tumbling and the spinning orbits. As mentioned in the introduction, the O(Re3/2) cor-

rection for a rigid sphere is evaluated in (Stoneet al. 2000; Subramanianet al. 2011). The

evaluation of the correction for a spheroid in the spinning orbit is simpler in that it closely

resembles the calculation for a sphere, and this simpler calculation is presented in section5.5.

The correction for a spheroid in the tumbling orbit, which ismore involved, in having to ac-

count for the unsteadiness of the disturbance velocity field, is presented in section5.6. The

correction due to particle inertia at O(St2) is presented in section5.4.

5.4 Evaluation: Time period - particle inertia

The correction to the time period for an inertial spheroid atO(St2) is evaluated in this section.

In the spinning orbit, theO(St2) correction to the angular velocity is zero due to the absence

of angular acceleration at O(St). Recall that angular velocity correction at O(St) is 0. In what

follows, we determine the correction to the Jeffery period for a tumbling prolate spheroid.

Using φ̇ j = φ̇ je f f +St
(

dφ j
dt

)
St
+St2

(
dφ j
dt

)
St2

, theO(St2) correction to the period of rotation

comes out to be:

∆TSt2 = St2
´ −π

π

[
1

φ̇3
je f f

(
dφ j
dt

)2

St
− 1

φ̇2
je f f

(
dφ j
dt

)
St2

]
. (5.31)

where
(

dφ j
dt

)
St

is given by (2.78). The correction to the angular velocity can be easily obtained

by expandingΩΩΩ1 in (5.21), with Re= 0, to O(St2). The correction for the angular velocity at

O(St2), ΩΩΩ(1)
St2

, takes the form:

ΩΩΩ(1)
St2

···LLL(2) = III p···
(

dΩΩΩ je f f

dt1
+

dΩΩΩ(1)
1St

dt je f f

)
+ΩΩΩt

je f f∧(III p ···ΩΩΩ(1)
1St)+ΩΩΩt

St∧(III p ···ΩΩΩ je f f), (5.32)

whered/dt1 denotes the correction to the leading order rate of change,d/dt je f f (defined in

section2.5), due to the O(St) deviation from a Jeffery orbit. In (5.32), ΩΩΩt
St, is the O(St)

correction to the angular velocity of the body aligned coordinate system. For the tumbling
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orbit, simplifying (5.32) gives:

(
dφ j

dt

)

St2
= H p

1 (ξ0)cos2φ j +H p
2 (ξ0)cos4φ j +H p

3 (ξ0)cos6φ j , (5.33)

where

H p
1 (ξ0) =− (16ξ 4

0 −16ξ 2
0 +5)(ξ̄0

2ξ0+(1−ξ 4
0 )coth−1 ξ0)

2

3200ξ 2
0

(
2ξ 2

0 −1
)

3
, (5.34)

H p
2 (ξ0) =

(ξ̄0
2ξ0+(1−ξ 4

0 )coth−1ξ0)
2

400
(
ξ0−2ξ 3

0

)
2

, (5.35)

H p
3 (ξ0) =− 3(ξ̄0

2ξ0+(1−ξ 4
0 )coth−1ξ0)

2

3200ξ 2
0

(
2ξ 2

0 −1
)

3
. (5.36)

Using (5.33)-(5.36) in (5.31), the change induced by particle inertia in the period of rota-

tion of a tumbling prolate spheroid is given by:

∆TSt2 = St2
π [2ξ0(ξ̄0−ξ0)+1][(1−ξ 4

0)coth−1ξ0+ξ 3
0 −ξ0]

2

100ξ 2
0(2ξ 2

0 −1)
. (5.37)

At O(St), the inertial persistence leads to a shift in the locations of the angular veloc-

ity extrema relative to those for the original Jeffery orbit. The angular displacements are

of O(Ω(φm)τp), τp = I/L(2) being the inertial relaxation time that governs the persistence

of the angular velocity. Here,Ω(φm) is the angular speed at the extremum,I is the (non-

dimensional) equatorial moment of inertia relevant to the tumbling mode whileL(2) is the

aspect-ratio scale for the test-torque coefficient. In the near-sphere limit, the angular displace-

ments areO(St) for both the maxima and minima, while for the slender fiber limit, the test-

torque coefficient isO[ln(ξ0−1)]−1, and these displacements areO[St(ξ0−1). ln(ξ0−1)] and

O[St(ξ0−1)2. ln(ξ0−1)] for the maxima (φm = π
2 ,

3π
2 ) and minima (φm = 0,π), respectively.

This O(St) alteration in the angular velocity profile does not, however, change the period due

to the anti-symmetry of the angular acceleration profiles inthe compressional and extensional

quadrants of the Jeffery orbit. AtO(St2), this antisymmetry is broken with the result that the

decrease in the traversal time of the extensional quadrantsis greater than the corresponding

increase in the compressional ones, leading to a net decrease in the period of rotation. For

a near-sphere, this reduction in period is smaller than expected owing to a cancellation at

O(St2ξ−2
0 ); (5.37) gives -St2 π

450ξ 4
0
. For a slender fiber, the changes in angular velocity over

the meridional portion of the trajectory (the non-aligned phase) govern the reduction in period.

The O(St) angular acceleration of a non-aligned slender fiber combines with a moment of
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Fig. 5.2 TheO(St2) corrections to the time period and the angular velocity extrema, as a
function ofξ0, for a prolate spheroid in the tumbling mode

inertia ofO(ξ0−1), leading to a change in angular velocity ofSt(ξ0−1) ln(ξ0−1). An analo-

gous argument implies that the change in angular velocity atO(St2) isSt2(ξ0−1)2[ln(ξ0−1)]2,

which then gives the aspect-ratio-scaling for the reduction in the period; the limiting form of

(5.37) gives−St2 π
25(ξ0−1)2[ln(ξ0−1)]2.

It turns out that the minimum and maximum angular velocitiesin the tumbling mode are

unaltered atO(St). Starting from (5.33), one obtains the following expressions, toO(St2), for

the angular velocity extrema:

Ωmax= − ξ 2
0

2ξ 2
0 −1

+St2
ξ 2

0 [−ξ 3
0 +ξ0+(ξ 4

0 −1)coth−1 ξ0]
2

400(2ξ 2
0 −1)3

, (5.38)

Ωmin= − ξ̄0
2

2ξ 2
0 −1

−St2
ξ̄ 8

0 [ξ0− (ξ 2
0 +1)coth−1 ξ0]

2

400ξ 2
0 (2ξ 2

0 −1)3
. (5.39)

The corrections to the time period, maximum and minimum angular velocities are plotted as

a function of the prolate spheroid eccentricity (e= 1
ξ0

) in figure5.2. The effect of particle in-

ertia is to make the angular velocity extrema approach each other, consistent with the general

notion of an inertial resistance to angular acceleration (for largeSt, the particle begins to rotate

with a constant angular velocity of 4π in the flow-gradient plane (Lundell (2011))). Although

the changes in the maxima and minima are of opposite signs, the correction to time period is

negative for allξ0, implying that the time period decreases atO(St2). This decrease is consis-
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tent with consistent with recent simulations (Mao & Alexeev(2014)), although a quantitative

comparison is not possible due to the simulations being carried out for much largerSt.

5.5 Evaluation: Time period - spinning orbit

In this section we focus on the effect of fluid inertia on spinning spheroids. The spinning mode

is the only steady state orbit for oblate spheroids with aspect ratios larger than 0.142, and one

of two steady state orbits for oblate spheroids with aspect ratio less than 0.142. As explained

in section5.3, there is no correction to angular velocity at O(Re). Noting that the leading order

angular velocity in spinning is−(1/2)1113, and defining the correction to the angular velocity at

O(Re3/2) asψ̇c21113, ψ̇c2 being independent of the spin angleψ due to symmetry, the O(Re3/2)

correction can be written as:

∆T spin
c2 = 8πRe3/2ψ̇c2, (5.40)

ψ̇c2 can be obtained by contracting (5.24) with 1113 and is given by:

ψ̇c2 =
1

8πXC

ˆ [
4π2k2ûuuf − (ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

match+ΓΓΓ ··· ûuumatch
]

···
{

i (SSS(2t) ···kkk) ···1113

2πk2 ···
(

III − kkkkkk
k2

)}
dkkk, (5.41)

where all the terms in the integrand are evaluated atθ j = 0, corresponding to the spinning orbit,

andXC is the axisymmetric torque coefficient defined in section5.2. The Fourier transforms

of the velocity fieldsûuumatch and ûuuf are now independent of time. The integral for the time

period in (5.40) then becomes:

∆T spin
c2 =−Re3/2

XC

ˆ [
−4π2k2ûuuf +(ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

match−ΓΓΓ ··· ûuumatch
]

···
{

i (SSS(2t) ···kkk) ···1113

2πk2 ···
(

III − kkkkkk
k2

)}
dkkk. (5.42)

The term within braces above, is independent of time and can be written as:

i (SSS(2t) ···kkk) ···1113

2πk2 ···
(

III − kkkkkk
k2

)
= TTTspin

111 =
i(B2+B3)

2k2π
(k21111−k11112) (5.43)
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using (5.8). For a sphereB2+B3 above reduces to−4π , which is equal to half the torque

exerted by a sphere rotating with a unit non-dimensional angular velocity.

The singularitySSS in the actual problem takes the formSSS= A3EEE, and thereforêuuumatch is

− iA3EEE···kkk
2πk2 ···

(
III − kkkkkk

k2

)
from (5.25), which is same as the Fourier transformed stresslet velocity

field for a sphere(A3 = −20π/3), except for aξ0 dependent coefficient. The inertial terms in

(5.42) involving ûuumatchtake the form:

(ΓΓΓ† ···kkk) ···∇∇∇kkkûuu
match−ΓΓΓ ··· ûuumatch= RRRspin

1 , (5.44)

whereRRRspin
1 is given by:

RRRspin
1 =

A3

2k6π
(ik3

1

(
k2−4k2

2

)
1111 + ik2

1k2
(
3k2−4k2

2

)
1112 + ik2

1

(
k2−4k2

2

)
k31113). (5.45)

The Fourier transform of the velocity fielduuuf in (5.42) is governed by (5.20). After eliminating

the pressure term, (5.20) reduces, for the spinning case, to:

− (ΓΓΓ† ···kkk) ···∇∇∇kkkûuu
f +ΓΓΓ ··· ûuuf ···

(
III −2

kkkkkk
k2

)
+4π2k2ûuuf = RRRspin

1 ···
(

III − kkkkkk
k2

)
= QQQspin

=
A3

k6π
(−ik3

1k2
2A31111+ ik2

1k2
(
k2

1+k2
3

)
1112− ik2

1k2
2k31113). (5.46)

The equation governinĝuuuf above can be written in terms of its components in the space-

fixed coordinate system as:

∂ ûf
1

∂k2
−4π2k2 ûf

1

k1
−
(

1− 2k2
1

k2

)
ûf

2

k1
=−Qspin

1

k1
, (5.47)

∂ ûf
2

∂k2
−4π2k2 ûf

2

k1
+

(
2k1k2

k2

)
ûf

2

k1
=−Qspin

2

k1
, (5.48)

∂ ûf
3

∂k2
−4π2k2 ûf

3

k1
+

(
2k1k3

k2

)
ûf

2

k1
=−Qspin

3

k1
, (5.49)

where subscripts 1, 2 and 3 denote the components alongX, Y andZ axes of the space-fixed

coordinate system. While the components along the flow ( ˆuf
1) and the vorticity ( ˆuf

3) axes are

coupled to the component along the gradient axis ( ˆuf
2), the equation governing the latter is

independent of the other two, and is therefore solved first. In (5.47)-(5.49), one can identify

a simple shear flow in Fourier space, given byûuu∗∞(kkk) = −k11112. This simple shear flow is

orthogonal to the one in physical space (uuu∞(xxx) = x21111). The orthogonality arises because the
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Fig. 5.3 The red lines denote the wave fronts.kkk is the wave vector which gets turned due to
a simple shear flow of the formuuu∞(xxx) = x21111. This is equivalent to a convection by a simple
shear flow of the form̂uuu∗∞(kkk) =−k11112 in the Fourier space.

wavevector is oriented normal to the wave fronts, the latterbeing turned by the simple shear

flow in physical space (see figure5.3). The components of the Fourier transformed velocity

field are convected by the Fourier space simple shear flow withthe streamlines of this flow

being defined byk′2 = k2+k1s, wheres is a time-like variable. This convection has the effect

thatûuuf (kkk), of a givenkkk, has contributions from all wavevectors turned ontokkk from orientations

further upstream. The viscous term, proportional to 4π2k2 in (5.47-5.49) causes an exponential

decay in amplitude which is proportional to the square of thechanging wavevector during this

‘turning’ period. Thus, the solutions for the individual components ˆuf β
2 , ûf

1 andûf
3 are written

in terms of integrals overs as follows:

ûf
2(kkk) =

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)(
1
k2

)
ik2

1(k2+k1s)
(
k2

1+k2
3

)
A3

k′4π
ds, (5.50)

ûf
1(kkk) =

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)(
− ik3

1(k2+k1s)2A3

k′6π
−
(

1− 2k2
1

k′2

)
ûf

2(kkk
′′′)
)

ds, (5.51)

and

ûf
3(kkk) =

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)(
− ik2

1(k2+k1s)2k3A3

k′6π
+

2k1k3

k′2
ûf

2(kkk
′′′)
)

ds, (5.52)

where the components in the flow and vorticity directions arecoupled to the component in

the gradient direction through the term ˆuf
2(kkk

′′′). Here,kkk′′′ = (k11111 + (k2+k1s)1112 + k31113) and
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k′ = |kkk′′′|,andûf
2(kkk

′′′) in (5.51) and (5.52) is given by:

ûf
2(kkk

′′′) =
ˆ ∞

0
e
−4π2

(
k′2s′+k1(k2+k1s)s′2+

k2
1s′3
3

)(
1

k′2

)
ik2

1k′′2
(
k2

1+k2
3

)
A3

k′′4π
ds′, (5.53)

wherekkk′′′′′′ = (k11111 + (k2+ k1(s+ s′))1112 + k31113), k′′ = |kkk′′′′′′| andk′′2 = (k2+ k1(s+ s′)). Thus,

the expressions for components in the flow and vorticity direction given in (5.50) and (5.52)

include a one-dimensional and a two-dimensional integral whereas that for the component in

the gradient direction given in (5.51) consists of only a one-dimensional integral. The Fourier

transform of the test velocity field given in (5.43) and the inertial terms given in (5.44)-(5.45)

and (5.50)-(5.52) are now substituted in (5.42) to obtain:

∆T spin
c2 =−Re3/2

Xc

ˆ [
−4π2k2(ûf

11111+ ûf
21112+ ûf

31113)+RRRspin
1

]
···TTTspin

1 dkkk. (5.54)

The different terms in the integral above can be expressed ina spherical coordinate system

with k1 = ksinθ cosφ , k2 = ksinθ sinφ , k3 = kcosθ anddkkk= k2sinθdkdθdφ as :

ˆ

(−4π2k2 ûf
1(kkk)1111 ··· TTTspin

1 )dkkk=
ˆ 2π

0

ˆ π

0

ˆ ∞

0
4π2

{
k2 ik3

1k′22 A3

k′6π
[

i(B2+B3)k2

2k2π

]}
ˆ ∞

0
k2e

−4π2
(

k2s+k1k2s2+
k2
1s3

3

)

dkdssinθ dθ dφ

+

ˆ 2π

0

ˆ π

0

ˆ ∞

0

ˆ ∞

0

{
4π2k2

[
i(B2+B3)k2

2k2π

](
1− 2k2

1

k′2

)
ik2

1k′′2(k
2
1+k2

3)A3

k′′4k′2π

}

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)

e
−4π2

(
k′2s′+k1k′2s′2+

k2
1s′3
3

)

k2dkds′dssinθ dθ dφ , (5.55)

ˆ

(−4π2k2 ûf
2(kkk)1112 ··· TTTspin

1 )dkkk=−
ˆ

4π2
{[−i(B2+B3)k1

2k2π

]

ik2
1(k2+k1s)

(
k2

1+k2
3

)
A3

k2k′4π

}
ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)

k2dkdssinθ dθ dφ , (5.56)

ˆ

(−4π2k2 ûf
3(kkk)1113 ··· TTTspin

1 )dkkk= 0, (5.57)
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and

ˆ

RRRspin
1 ···TTTspin

1 dkkk=
ˆ 2π

0

ˆ π

0

ˆ ∞

0

{
−A3k3

1(k
2−4k2

2)

πk6

(B2+B3)k2

4π

+
A3k2

1k2(3k2−4k2
2)

k6π
(B2+B3)k1

4π

}
dksinθdθdφ , (5.58)

where we have retained the notationk1, k2 andk3 for brevity and the terms grouped within the

braces are such that they are independent ofk. The test velocity field has no component along

the vorticity axis and therefore the contribution to (5.54) due to the term proportional to ˆuf
3 is

zero.

The right-hand side of (5.55) is sum of a 4-dimensional and a 5-dimensional integral

whereas that of (5.56) is a single 4-dimensional integral. In the 4 dimensional integrals, the

integration overk gives a term proportional to 1/s3/2, which is a divergent term in the inte-

gration over ‘s’, as s→ 0. Thus the integral overk is divergent ask → ∞ whens= 0. The

three dimensional integral in the rhs of (5.58) also diverges in the limitk → ∞. Although,

individually, the above mentioned integrals are divergentin the said limit, the sum is neverthe-

less convergent. This divergence arises because while deriving the expression for the angular

velocity in (5.21), we had rewritten the three terms proportional to ˆuf in (5.6), as a sum of a

term proportional to ˆuf and three terms proportional to ˆumatch, and each of these four terms

are divergent in the limit ofk → ∞. Noting that
´ ∞

0 4π2k2exp(−4π2k2s)ds= 1 for s 6= 0 and

is divergent ass→ 0, we isolate the divergence in (5.58) by introducing an additional integral

over the dummy variable ‘s’ as shown below:

ˆ

RRRspin
1 ···TTTspin

1 dkkk=
ˆ 2π

0

ˆ π

0

ˆ ∞

0

{−A3k3
1(k

2−4k2
2)

πk6

(B2+B3)k2

4π

+
A3k2

1k2(3k2−4k2
2)

k6π
(B2+B3)k1

4π

}
ˆ ∞

0
4π2k2e−4π2k2sdsdksinθdθdφ . (5.59)

Thek integrals in the above equation can be readily evaluated andis given by
´ ∞

0 k2e−4π2k2sdk=

1/(32π5/2s3/2) and (5.59) takes the form:

ˆ

RRRspin
1 ···TTTspin

1 dkkk=
ˆ 2π

0

ˆ π

0

ˆ ∞

0

{−A3k3
1(k

2−4k2
2)

πk6

(B2+B3)k2

4π

+
A3k2

1k2(3k2−4k2
2)

k6π
(B2+B3)k1

4π

}
1√

πs3/2
dssinθdθdφ . (5.60)
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The integration overk in the 4-dimensional integrals in (5.55) and (5.56) gives:

ˆ ∞

0
k2e

−4π2
(

k2s+k1k2s2+
k2
1s3

3

)

dk=
ˆ ∞

0
k2e−4π2k2(s+sin2θ cosφ sinφs2+sin2θ cos2φs3/3)dk

=
1

32π5/2(s+sin2 θ cosφ sinφs2+sin2 θ cos2 φs3/3)3/2
.

(5.61)

The integration overk in the 5-dimensional integral in (5.55) gives:

ˆ ∞

0
k2e

−4π2
(

k2s+k1k2s2+
k2
1s3

3

)

e
−4π2

(
k′2s′+k1k′2s′2+

k2
1s′3
3

)

dk=
ˆ

k2

e−4π2k2 s′
12(3(4+s2−s2cos2θ+2ssin2θ (scos2φ+2sin2φ))+4cosφ sin2 θs′(3sinφ+cosφ(3s+s′)))

e−4π2k2(s+sin2θ cosφ sinφs2+sin2θ cos2φs3/3)dk=
1

32π5/2( f exp(s,s′,θ ,φ))3/2
, (5.62)

where f exp is the function that multiplies ‘−4π2k2’ in the exponent of the integrand. Note that

there is no divergence for the five dimensional integral in the limit of s→ 0 or s′ → 0. The

integration overk for the four-dimensional integrals given in (5.55) and (5.56) are substituted

from (5.61), and the sum of the resulting three-dimensional integral together with the matching

term contribution given in (5.60) is convergent in the limit ofs→ 0. This sum, which is a

three-dimensional integral (overs, θ , φ ), and the four-dimensional (overs, s′, θ , φ ) integral

obtained from the five-dimensional ones in (5.55) and (5.56), after substituting from (5.62),

are evaluated numerically using Gaussian quadrature to give the time period correction as:

∆T spin
c2 = Re3/2A3(B2+B3)

XC
0.00516. (5.63)

The angular velocity correction at O(Re3/2) can be obtained by using (5.40) and is given by
1

8π ∆T spin
c2 . For an oblate spheroid,A3(B2+B3)/Xc=128π2/(9 ArcCscξ0 ξ 5

0 −6ξ0

√
−1+ξ 2

0 −

9ξ 3
0

√
−1+ξ 2

0 ). For a sphere, the angular velocity reduces to that obtainedby (Stoneet al.

2000; Subramanianet al.2011).

5.6 Evaluation: Time period - tumbling orbit

In this section we focus on the tumbling orbit which is the long-time orbit for prolate spheroids

of any aspect ratio and for oblate spheroids with aspect ratios less than 0.142. The integral
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for the O(Re3/2) correction to the tumbling time period can be obtained in a similar manner to

that derived in (5.30) and is given by:

∆T tumb
c2 =−Re3/2

ˆ −π

π

φ̇c2dφ j

φ̇2
je f f

=−Re3/2
ˆ Tje f f

0

φ̇c2dt

φ̇ je f f
. (5.64)

In (5.64) above, we have changed the variable of integration back to time based ondφ j/dt =

φ̇ je f f since the error associated with this change of variable affects the time period only at

O(Re3/2). The angular velocity of a spheroid in a tumbling orbit can be expressed in terms of

φ̇ j alone due to symmetry, and therefore,φ̇c2 may be obtained by contracting (5.24) with 1113

which gives:

φ̇c2 =
1

8πYC

ˆ

[
4π2k2ûuuf +

∂ ûuumatch

∂ t
− (ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

match+ΓΓΓ ··· ûuumatch

]

···
{

i (SSS(2t) ···kkk) ···1113

2πk2 ···
(

III − kkkkkk
k2

)}
dkkk, (5.65)

where all the terms in the integrand are evaluated atθ j = π/2, corresponding to the tumbling

orbit, andYc is the transverse torque coefficient defined in section5.2. The angular velocity

given in (5.65) is substituted in (5.64) to obtain the O(Re3/2) correction to the time period in

the form:

∆T tumb
c2 =

Re3/2

8πYc

ˆ ˆ Tje f f

0

[
−4π2k2ûuuf −∂ ûuumatch

∂ t
+(ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

match−ΓΓΓ ··· ûuumatch

]

···
{

i (SSS(2t) ···kkk) ···1113

2πk2 φ̇ je f f
···
(

III − kkkkkk
k2

)}
dtdkkk. (5.66)

The integral above is evaluated in the space-fixed coordinate system [XYZ in figure 5.1

(a)] and the details are presented in sections5.6.1- 5.6.4below. The assumptions used when

deriving the reciprocal theorem restricts the orientationof the spheroid in the test problem to

be the same as that of the spheroid in the problem of interest.Therefore, in the tumbling orbit,

the velocity field is unsteady in the test problem too. The singularities corresponding to both

the problems are time-dependent point-force-dipole singularities, the time dependence arising

from the motion ofppp along the tumbling orbit. The time dependentppp determinesSSS(2t), SSS, and

thenceûuumatch and ûuuf . Thus, the term involving the test velocity field given within braces in

(5.66), and the inertial terms in the problem of interest given in square brackets, are functions

of time. The unsteadiness makes the evaluation of time period nontrivial when compared to
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the analysis done for the spinning in section5.5.

To evaluate the integral in (5.66), in section5.6.1, the term within braces is expressed in

the aforementioned coordinate system as a Fourier time series which involves a combination

of three Fourier modes, the mode independent of time that is already present for a sphere

and modes proportional to cos(4πt/Tje f f) and sin(4πt/Tje f f), Tje f f being the Jeffrey period.

Note that the combinationSSS(2t)/φ̇ je f f is crucial to a finite Fourier time series, and therefore

correction to time period can be evaluated. If this combination was not there, for instance,

while evaluating the correction to angular velocity in (5.65), the time dependence ofSSS(2t)

would have led to an infinite Fourier series in time, in turn preventing an exact calculation

of the O(Re3/2) correction to the angular velocity. Note that the two time dependent modes

have a frequency which is twice the Jeffrey frequency definedasωg = 2π/Tje f f . Physically,

this is due to the fore-aft symmetry of the particle which leads to the same disturbance field

in the test problem, ifppp is replaced with−ppp. In (5.66) since one is only interested in the

integration over a time period, only the terms corresponding to these three Fourier modes, in

the Fourier expansion of the inertial acceleration terms, will lead to non-zero contributions.

The expansions for the inertial terms involvingûuumatchare done in section5.6.2, and those for

the inertial term proportional tôuuuf is done in section5.6.3. The details of the evaluation of

the integral are presented in section5.6.4.

5.6.1 Expression for the term proportional to the singularity in the test

problem

In the tumbling orbit, the orientation vectorppp is of the form cosφ j1111+sinφ j1112, whereφ j is

now a function of time given by tanφ j = 1/(κ tan(ωgt)), which is obtained from the solution

of the Jefferys equations in (5.26) and (5.27). This relation is used for both the orientation

in the test problem, and that in the problem of interest. The term corresponding to the test

velocity field in braces, in (5.66), simplifies to :

i (SSS(2t) ···kkk) ···1113

2πk2φ̇ je f f
···
(

III − kkkkkk
k2

)
=−TTT111

(κ2+1)2

2κ2 +TTT222
(1−κ4)

2κ2 +

(
TTT111

(κ4−1)
2κ2 +TTT222

(κ2+1)2

2κ2

)

cos(2ωgt)−TTT333
κ2+1

κ
sin(2ωgt),

= TTTtumb
111 +TTTtumb

222 cos(2ωgt)+TTTtumb
333 sin(2ωgt), (5.67)
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with ωg = 2π/Tje f f . In 5.67, TTT111, TTT222 , TTT333, TTTtumb
111 , TTTtumb

222 andTTTtumb
333 above, are given by:

TTT111 =

(
ik2

2k2π
1111−

ik1

2k2π
1112

)
B3, (5.68)

TTT222 =

(
i(k2−2k2

1)k2

2k4π
1111+

ik1(k2−2k2
2)

2k4π
1112−

ik1k2k3

k4π
1113

)
B1, (5.69)

TTT333 =

(
− i(k2−k2

1+k2
2)k1

2k4π
1111+

ik2(k2+k2
1−k2

2)

2k4π
1112+

i(k2
1−k2

2)k3

2k4π
1113

)
B1, (5.70)

TTTtumb
111 =−TTT111

(κ2+1)2

2κ2 +TTT222
(1−κ4)

2κ2 , (5.71)

TTTtumb
222 = TTT111

(κ4−1)
2κ2 +TTT222

(κ2+1)2

2κ2 , (5.72)

TTTtumb
333 =−TTT333

κ2+1
κ

. (5.73)

The constantsB1 andB3 above are defined in (5.9) and (5.11) for a prolate spheroid. In the

tumbling mode, one need not consider the axial spin singularity corresponding toB2, since

the orientation vector is perpendicular to the angular velocity, and thus, (5.67) is independent

of B2. As is evident in (5.67), there are only three Fourier modes for an arbitrary aspect

ratio spheroid. In the limiting case of a sphere (κ → 1), B1 → 0, and thereforeTTTtumb
222 , TTTtumb

333

→ 0, and only the time-independent mode survives. In the limitof a flat disk (κ → 0), B1 =

B3 = −16/3, andTTTtumb
333 is O(κ) smaller than bothTTTtumb

111 and TTTtumb
222 , and can therefore be

neglected. So, for a flat disk, (5.67) scales as O(1/κ2). In the limit of a slender fiber (κ → ∞),

B1 = −B3 = 4π/(3logκ), consistent with viscous slender body theory, andTTTtumb
333 is O(1/κ)

smaller than bothTTTtumb
111 andTTTtumb

222 and can again be neglected. So for a slender fiber (5.67)

scales as O(κ2/ logκ). The scaling for∆Ttumb
c2 , for these extreme aspect ratio particles is

further analyzed in section5.6.5.

5.6.2 Expression for the inertial terms withûuumatch

In this section we expand the three terms involvingûuumatch, in the integrand in (5.66), as a

Fourier Series. The general Fourier expansion of the terms involvingûuumatchcontains an infinite

number of terms, but one needs to retain only terms corresponding to the three modes in (5.67).

As for the test velocity field, the expression forûuumatch given in (5.25) now depends on time

through the singularitySSS. Hence, we expandSSSas a Fourier series in time and retain only the
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aforementioned terms. This truncated expansion takes the form:

SSS=−2A112sin(2ωgt)11111111+(A120+2A122cos(2ωgt))(11111112+11121111)

−2A222sin(2ωgt)11121112−2A332sin(2ωgt)11131113, (5.74)

where

A112=−
(

3A1

2
−2A2+

A3

2

)
κ2

(1+κ)3 −
(

A2−
A3+A1

2

)
κ

(1+κ)2 , (5.75)

A120=

(
A2

2
+

(
3A1

2
−2A2+

A3

2

)
κ

2(1+κ)2

)
, (5.76)

A122=−
(

3A1

2
−2A2+

A3

2

)
κ(1−κ)
2(1+κ)3 , (5.77)

A222=−
(

3A1

2
−2A2+

A3

2

)
κ

(1+κ)3 −
(

A2−
A3+A1

2

)
κ

(1+κ)2 , (5.78)

A332=

(
A1−A3

2

)
κ

(1+κ)2 , (5.79)

where theAi ’s are defined in (5.16)-(5.18). In deriving (5.74), we have again used the relation

betweenφ j andt obtained from the Jefferys solution (see section5.6.1). For a sphere (κ →
1), A1 = A2 = A3 = −20π/3 and thereforeSSS in (5.74) reduces to−10π/3(11111112+11121111) =

−(20π/3)EEE. For a flat disk (κ → 0), 2A1 = A3 =−64/9 andA2 is −8πκ/3, therefore (5.74)

is O(κ). For a slender fiber (κ → ∞), A1 =−8π/(9logκ), A2 andA3 are O(1/κ2) and (5.74)

is therefore O(1/(κ logκ)).

Using (5.25) and (5.74), the truncated Fourier expansion of the terms involvingûuumatch, to

be used in (5.66), is obtained as:

(ΓΓΓ† ···kkk) ···∇∇∇kkkûuu
match−∂ ûuumatch

∂ t
−ΓΓΓ ··· ûuumatch= RRRtumb

1 +RRRtumb
2 cos(2ωgt)+RRRtumb

3 sin(2ωgt),

(5.80)

whereRRRtumb
1 , RRRtumb

2 andRRRtumb
3 are functions ofk1,k2,k3, ωg andAi jk ’s are defined in (5.75)-

(5.79), and are given by:

RRRtumb
1 =

iA120k3
1

(
k2−4k2

2

)

k6π
1111 +

iA120k2
1k2
(
3k2−4k2

2

)

k6π
1112 +

iA120k2
1

(
k2−4k2

2

)
k3

k6π
1113,

(5.81)
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RRRtumb
2 =

2ik1
(
A122k2

1

(
k2−4k2

2

)
+ωgk2

(
A112

(
−k2+k2

1

)
+A222k2

2+A332k2
3

))

k6π
1111

+
2ik2

(
A122k2

1

(
3k2−4k2

2

)
+ωgk2

(
A112k2

1+A222
(
−k2+k2

2

)
+A332k2

3

))

k6π
1112

+
2ik3

(
A122k2

1

(
k2−4k2

2

)
+ωgk2

(
A112k2

1+A222k2
2+A332

(
−k2+k2

3

)))

k6π
1113 (5.82)

RRRtumb
3 =

(
−2iωgA122

(
k2−2k2

1

)
k2

k4π
+

iA112k2
1

(
−k2+4k2

1

)
k2

k6π
+

iA222k2
(
−k2

(
k2+2k2

1

)
+
(
k2+4k2

1

)
k2

2

)

k6π

+
iA332

(
k2+4k2

1

)
k2k2

3

k6π

)
1111 +

(
−2iωgA122k1

(
k2−2k2

2

)

k4π
+

iA112k3
1

(
−k2+4k2

2

)

k6π

− iA222k1(k−k2)(k+k2)
(
−k2+4k2

2

)

k6π
− iA332k1

(
k2−4k2

2

)
k2

3

k6π

)
1112

+

(
4iωgA122k1k2k3

k4π
+

4iA112k3
1k2k3

k6π
+

2iA222k1k2
(
−k2+2k2

2

)
k3

k6π

+
2iA332k1k2k3

(
−k2+2k2

3

)

k6π

)
1113. (5.83)

For a sphere only the time independent mode survives in (5.80). In the limit of extreme aspect

ratios , that is, a fiber or a flat disk one needs to consider onlythe first two terms in (5.80),

since the test singularity has only those two modes, as seen in the last subsection.

5.6.3 Expression for the inertial term with ûuuf

In this section we expand the lone term proportional toûuuf in the integrand in (5.66) as a

Fourier Series. As in the previous section, we need to only find the coefficients of the three

modes present in (5.67). To begin with, (5.20) is contracted with(III −kkkkkk/k2) to eliminate the

pressure, leading to the following governing equation forûuuf :

∂ ûuuf

∂ t
− (ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

f +ΓΓΓ ··· ûuuf ···
(

III −2
kkkkkk
k2

)
+4π2k2ûuuf =−

(
∂ ûuumatch

∂ t

−(ΓΓΓ† ···kkk) ···∇∇∇ûuumatch+ΓΓΓ ··· ûuumatch
)
···
(

III − kkkkkk
k2

)
(5.84)
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The expression on the right-hand side above is evaluated using (5.80) to give:

∂ ûuuf

∂ t
− (ΓΓΓ† ···kkk) ···∇∇∇ûuuf +ΓΓΓ ··· ûuuf ···

(
III −2

kkkkkk
k2

)
+4π2k2ûuuf

= (RRRtumb
1 +RRRtumb

2 cos(2ωgt)+RRRtumb
3 sin(2ωgt)) ···

(
III − kkkkkk

k2

)

= ∑
β∈{0,2,−2}

QQQβ eiβωgt , (5.85)

whereQQQ0 = RRRtumb
1 − (RRR1 ··· kkk)kkk/k2, QQQ2 = (RRRtumb

2 − iRRRtumb
3 )/2 andQQQ−2 = (RRRtumb

2 + iRRRtumb
3 )/2.

TheQQQβ for β = 0,2and−2 are given below.

QQQ000 =−2iA120k3
1k2

2

k6π
1111+

2iA120k2
1k2
(
k2−k2

2

)

k6π
1112−

2iA120k2
1k2

2k3

k6π
1113, (5.86)

QQQ222 = QQQ2Re+ iQQQ2i , (5.87)

QQQ−2 =−QQQ2Re+ iQQQ2i , (5.88)

QQQ2Re=

(
k2
(
−k4A222−2ωgk2A122

(
k2−2k2

1

)
+A112k2

1

(
−k2+2k2

1

))

2k6π

+
k2
(
A222

(
k2+2k2

1

)
k2

2+A332
(
k2+2k2

1

)
k2

3

)

2k6π

)
1111+

(
−k1

(
k2−2k2

2

)
A112k2

1

2k6π

−k1
(
k2−2k2

2

)(
+A222k2

2+A332k2
3+k2(−A222+2A122ωg)

)

2k6π

)
1112

+
k1k2k3

(
2ωgk2A122+A112k2

1+A222k2
2+A332

(
−k2+k2

3

))

k6π
1113, (5.89)

QQQ2i =
k1
(
−2A122k2

1k2
2+k2

(
A112

(
−k2+k2

1

)
+A222k2

2+A332k2
3

)
ωg
)

k6π
1111

+
k2
(
2A122k2

1

(
k2−k2

2

)
+k2

(
A112k2

1+A222
(
−k2+k2

2

)
+A332k2

3

)
ωg
)

k6π
1112

+
k3
(
−2A122k2

1k2
2+k2

(
A112k2

1+A222k2
2+A332

(
−k2+k2

3

))
ωg
)

k6π
1113. (5.90)

We have written the Fourier modes in complex exponential form in (5.85) to simplify the

analysis that follows. To reiterate, the general solution for ûuuf would contain a forcing on the

right-hand side of (5.85) that involves an infinite Fourier series. Only the three terms corre-

sponding to the values ofβ above contribute to the increase in the time period of rotation,

however.
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To obtain the solution of (5.85), ûuuf is expanded as a complex exponential Fourier series

given by:

ûuuf = ∑
β∈{0,2,−2}

ûuuf β eiβωgt (5.91)

Substituting the expansion above in (5.85), the governing equations for each of the compo-

nents of Fourier transformed velocity field may be written as:

∂ ûf β
1

∂k2
− (4π2k2+ iωgβ )

ûf β
1

k1
−
(

1− 2k2
1

k2

)
ûf β

2

k1
=−Qβ

1

k1
(5.92)

∂ ûf β
2

∂k2
− (4π2k2+ iωgβ )

ûf β
2

k1
+

(
2k1k2

k2

)
ûf β

2

k1
=−Qβ

2

k1
(5.93)

∂ ûf β
3

∂k2
− (4π2k2+ iωgβ )

ûf β
3

k1
+

(
2k1k3

k2

)
ûf β

2

k1
=−Qβ

3

k1
(5.94)

The equations above are similar to the ones seen for the spinning case in (5.47-5.49) except for

an additional frequency dependent term(involvingωg) on the left-hand side and a frequency-

dependent forcing amplitude on the right-hand side. The solution to (5.92-5.94) therefore pro-

ceeds in a manner similar to that of the spinning case. The components of̂uuuf β (β = 0,2,−2)

along the flow ( ˆuf β
1 ) and the vorticity ( ˆuf β

3 ) axes are coupled to the component along the gra-

dient axis ( ˆuf β
2 ). Thus, as for the spinning case, the gradient component is independent of the

other components and is therefore solved first. The solutionof (5.92)-(5.94) arising from the

substitution of (5.91) corresponds to the neglect of an exponentially decaying transient, that

governs the relaxation from a particular initial velocity field, and consideration of long time dy-

namics corresponding to the frequencies present in the applied forcing. The steady linear flow

ensures that there is a one-to-one correspondence between the Fourier amplitudes of the forc-

ing and the velocity field, with inertia determining the frequency dependent phase lag between

the two via the terms proportional toiωg in (5.92-5.94). Note again that ∑
β∈{0,2,−2}

QQQβ eiβωgt

is not the complete outer velocity field, but the part that is relevant for the determination of

∆Ttumb
c2 .
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Again, definingk′2 = k2+k1s, where ‘s’ is a time-like variable, the solutions for the indi-

vidual components ˆuf β
2 , ûf β

1 andûf β
3 are written in terms of ‘s’ as follows:

ûf β
2 (kkk) =

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)(
k2+k2

1s2+2k1k2s

k2

)
e−iωgβsQβ

2 (k1,k2+k1s,k3)ds,

(5.95)

ûf β
1 (kkk) =

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)

e−iωgβsQβ
1 (k1,k2+k1s,k3)ds−

ˆ ∞

0
e−iωgβs

e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)(
1− 2k2

1(
k2+k2

1s2+2k1k2s
)
)

ûf β
2 (k1,k2+k1s,k3)ds, (5.96)

ûf β
3 (kkk) =

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)

e−iωgβsQβ
3 (k1,k2+k1s,k3)ds+

ˆ ∞

0
e−iωgβs

e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)(
2k1k3

k2+k2
1s2+2k1k2s

)
ûf β

2 (k1,k2+k1s,k3)ds. (5.97)

The solutions for ˆuf β
1 and ûf β

3 are coupled with ˆuf β
2 as expected, and are given as a sum of

a one-dimensional and a two-dimensional integral, with thelatter integral arising from the

coupling withûf β
2 . The contributions in (5.95)-(5.97), for the differentβ ’s are substituted in

(5.91) to obtain the components ofûuuf in the space-fixed coordinate system, and are given by:

ûf
2(kkk) = ûf 0

2 (k1,k2,k3)+ ûf t
2 (k1,k2,k3, t), (5.98)

ûf
1(kkk) = ûf 0

1 (k1,k2,k3)+ ûf t
1 (k1,k2,k3, t), (5.99)

ûf
3(kkk) = ûf 0

3 (k1,k2,k3)+ ûf t
3 (k1,k2,k3, t), (5.100)

where we have written the components as a sum of a time-independent term(superscript ‘f 0’)

and time-dependent term(superscript ‘f t ’). Denoting the convected wave vector,k11111 + (k2+

k1s)1112 + k31113, askkk′′′ andk′ = |kkk′′′|, the time-dependent and time-independent contributions in

(5.98-5.100) which may be conveniently expressed in the form:
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ûf 0
2 (kkk) =

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)(
k2+k2

1s2+2k1k2s

k2

)
Q0

2(kkk
′′′)ds, (5.101)

ûf t
2 (kkk, t) =

ˆ ∞

0
i2e

−4π2
(

k2s+k1k2s2+
k2
1s3

3

)(
k2+k2

1s2+2k1k2s

k2

)((
Q2i

2 (kkk
′′′)cos(2ωgs)

−Q2Re
2 (kkk′′′)sin(2ωgs)

)
cos(2ωgt) +

(
Q2Re

2 (kkk′′′)cos(2ωgs)+Q2i
2 (kkk

′′′)sin(2ωgs)
)

sin(2ωgt)
)
ds

(5.102)

= ûf tcos
2 (kkk, t)cos(2ωgt)+ ûf tsin

2 (kkk, t)sin(2ωgt), (5.103)

ûf 0
1 (kkk) =

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)(
Q0

1(kkk
′′′)−

(
1− 2k2

1

k′2

)
ûf 0

2 (kkk′′′)

)
, ds (5.104)

ûf t
1 (kkk) =

ˆ ∞

0
i2e

−4π2
(

k2s+k1k2s2+
k2
1s3

3

)
((

Q2i
1 (kkk

′′′)cos(2ωgs)

−Q2Re
1 (kkk′′′)sin(2ωgs)

)
cos(2ωgt) +

(
Q2Re

1 (kkk′′′)cos(2ωgs)+Q2i
1 (kkk

′′′)sin(2ωgs)
)

sin(2ωgt)
)

ds

−
ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

) (
1− 2k2

1

k′2

)
ûf t

2 (kkk′′′, t,s+s′)ds (5.105)

= ûf tcos
1 (kkk, t)cos(2ωgt)+ ûf tsin

1 (kkk, t)sin(2ωgt), (5.106)

ûf 0
3 (kkk) =

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)(
Q0

3(kkk
′′′)+

2k1k3

k′2
ûf 0

2 (kkk′′′)

)
, ds (5.107)

ûf t
3 (kkk, t) =

ˆ ∞

0
i2e

−4π2
(

k2s+k1k2s2+
k2
1s3

3

)
((

Q2i
3 (kkk

′′′)cos(2ωgs)

−Q2Re
3 (kkk′′′)sin(2ωgs)

)
cos(2ωgt) +

(
Q2Re

3 (kkk′′′)cos(2ωgs)+Q2i
3 (kkk

′′′)sin(2ωgs)
)

sin(2ωgt)
)
ds

+

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

) (
2k1k3

k′2

)
ûf t

2 (kkk′′′, t,s+s′)ds (5.108)

= ûf tcos
3 (kkk, t)cos(2ωgt)+ ûf tsin

3 (kkk, t)sin(2ωgt), (5.109)

where the termsQ2Re
j ,Q2i

j are given in (5.89)-(5.90), with ‘ j ’ denoting the component along

the 1 ,2 and 3 directions. The coefficients of cos(2ωgt) and sin(2ωgt) in (5.102) and (5.108)

are denoted by ˆuf tcosandûf tsin. The flow and vorticity components are coupled to the gradient
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component through ˆuf t
2 (kkk′′′, t,s+s′) andûf 0

2 (kkk′′′) which are given by:

ûf t
2 (kkk′′′, t,s+s′) =

ˆ ∞

0
i2e

−4π2
(

k′2s′+k1k′2s′2+
k2
1s′3
3

)(
k′2+k2

1s′2+2k1k′2s′

k′2

)

((
Q2i

2 (kkk
′′′′′′)cos(2ωg(s+s′))−Q2Re

2 (kkk′′′′′′)sin(2ωg(s+s′))
)

cos(2ωgt)

+
(
Q2Re

2 (kkk′′′′′′)cos(2ωg(s+s′))+Q2i
2 (kkk

′′′′′′)sin(2ωg(s+s′))
)

sin(2ωgt)
)
ds′, (5.110)

and

ûf 0
2 (kkk′′′) =

ˆ ∞

0
e
−4π2

(
k′2s′+k1k′2s′2+

k2
1s3

3

)(
k′2+k2

1s2+2k1k′2s

k′2

)
Q0

2(kkk
′′′′′′)ds (5.111)

respectively. The primed variables in (5.110) and (5.111) are defined askkk′′ = k11111+ (k2+

k1(s+s′))1112+k31113, k′2 = k2+k1sandk′′ = |kkk′′′′′′|. The coefficients of cos(2ωgt) and sin(2ωgt)

in the time-dependent terms are defined as ˆuf tcos
i (kkk, t) andûf tsin

i (kkk, t) respectively. The com-

ponents along the flow and vorticity directions given in (5.104)-(5.109) is therefore a sum

of one-dimensional integral and a two-dimensional integral. The two-dimensional integrals

in (5.104)- (5.109) are coupled with the velocity in the gradient direction andare given by

(5.110) and (5.111).

5.6.4 Evaluation of the integrals

The integral for the tumbling time period given in (5.66) is evaluated in this section. The

inertial terms given in (5.80) along with the term involving the singularity in the test problem

in (5.67), are substituted in (5.66) to obtain the final form of the integral as:

∆T tumb
Re3/2 =

Re3/2

8πYc

ˆ ˆ Tje f f

0

[
−4π2k2(ûf

11111+ ûf
21112+ ûf

31113)+RRR1+RRR2cos(2ωgt)

+RRR3sin(2ωgt)] ···
(

TTTtumb
111 +TTTtumb

222 cos(2ωgt)+TTTtumb
333 sin(2ωgt)

)
dtdkkk. (5.112)
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where the components ofûuuf are given in (5.98)-(5.100). The integration over time in

(5.112) is straightforward and leads to:

∆T tumb
Re3/2 =

Re3/2

8πYC

ˆ

[
2π
ωg

TTTtumb
111 ··· (RRR1−4π2k2(ûf 0

1 1111+ ûf 0
2 1112+ ûf 0

3 1113))

+
π
ωg

TTTtumb
222 ··· (RRR2−4π2k2(ûf tcos

1 1111+ ûf tcos
2 1112+ ûf tcos

3 1113))

+
π
ωg

TTTtumb
333 ··· (RRR3−4π2k2(ûf tsin

1 1111+ ûf tsin
2 1112+ ûf tsin

3 1113))

]
dkkk. (5.113)

The expressions for ˆuf i (i=‘0’,‘cos’,‘sin’) are given in (5.101)-(5.109). Each of the terms

proportional to ˆuf i
1 and ûf i

3 (i=‘0’,‘cos’,‘sin’) in ( 5.113) is a sum of 4-dimensional and 5-

dimensional integrals. The terms proportional to ˆuf i
2 are 4-dimensional integrals and the terms

proportional toRRR1,RRR2 andRRR3 involve 3-dimensional integrals.

The numerical evaluation of the integrals proceeds in a manner similar to that of the spin-

ning case in section5.5. First we express them in a spherical coordinate system. It will be seen

that, individually, the 3-dimensional and the 4-dimensional integrals mentioned above are di-

vergent in the integration overk in the spherical coordinate system. However the combination

of these integrals are convergent, and proceeding in a manner similar to the spinning case, we

could reduce the integral in (5.113) to a sum of 3-dimensional and 4-dimensional convergent

integrals. These integrals are evaluated numerically to obtain the time period.

To illustrate the simplification of (5.113) to convergent integrals mentioned above, we

focus on the evaluation of the integrals proportional to ˆuf 0
1 , RRR1,RRR2 andRRR3. The simplification

of the other terms in the integral follow the same method as presented below. We present the

final simplified form of the integrals for the other terms in appendixC. We have written the

4-dimensional and 5-dimensional integrals for the term proportional toûf 0
1 below:

ˆ

(−4π2k2 ûf 0
1 (kkk)1111 ··· TTTtumb

1 )dkkk=−
ˆ

4π2k2
[
−(κ2+1)2

2κ2

iB3k2

2k2π
+

iB1(k2−2k2
1)k2

2k4π
(1−κ4)

2κ2

]

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)

Q0
1(kkk

′′′)dsdkkk+
ˆ

4π2k2
[
−(κ2+1)2

2κ2

iB3k2

2k2π
+

iB1(k2−2k2
1)k2

2k4π
(1−κ4)

2κ2

]

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)(
1− 2k2

1

k′2

)
ˆ ∞

0
e
−4π2

(
k′2s′+k1k′2s′2+

k2
1s′3
3

)(
k′2+k2

1s′2+2k1k′2s′

k′2

)

Q0
2(kkk

′′′′′′)ds′dsdkkk. (5.114)
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The first and the second integral on the right-hand side are respectively the 4-dimensional and

5-dimensional integrals. Recall that the 5-dimensional integral arises due to the coupling with

the velocity component in the gradient direction. While writing the 5-dimensional integral, we

have used the definition of ˆuf 0
2 in (5.111) and substituted in (5.104). The term in the square

brackets in (5.113) corresponds to the 1111 component ofTTTtumb
111 and is obtained from (5.67). The

integrals in (5.113) can be expressed in a spherical coordinate system withk1 = ksinθ cosφ ,

k2 = ksinθ sinφ , k3 = kcosθ anddkkk = k2sinθdkdθdφ . Rewriting (5.114) to isolate the k

integral in the spherical coordinate system (again for brevity we have retained the notation

k1,k2 andk3), one gets:

ˆ

(−4π2k2 ûf 0
1 (kkk)1111 ··· TTTtumb

1 )dkkk=−
ˆ 2π

0

ˆ π

0

ˆ ∞

0
4π2

{
k2Q0

1(kkk
′′′)
[
−(κ2+1)2

2κ2

iB3k2

2k2π
+

iB1(k2−2k2
1)k2

2k4π
(1−κ4)

2κ2

]}
ˆ ∞

0
k2e

−4π2
(

k2s+k1k2s2+
k2
1s3

3

)

dkdssinθ dθ dφ

+

ˆ 2π

0

ˆ π

0

ˆ ∞

0

ˆ ∞

0

{
4π2k2

[
−(κ2+1)2

2κ2

iB3k2

2k2π
+

iB1(k2−2k2
1)k2

2k4π
(1−κ4)

2κ2

]

(
1− 2k2

1

k′2

)
Q0

2(kkk
′′′′′′)

(
k′2+k2

1s′2+2k1k′2s′

k′2

)}

ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)

e
−4π2

(
k′2s′+k1k′2s′2+

k2
1s′3
3

)

k2dkds′dssinθ dθ dφ , (5.115)

where the term in the curly brackets is independent ofk becauseQ0
1(the ‘1’ component ofQQQ0,

see (5.86)) and the term in the square brackets above are proportionalto 1/k. Thek integrals

above are evaluated for the 4-dimensional case, given by

ˆ ∞

0
k2e

−4π2
(

k2s+k1k2s2+
k2
1s3

3

)

dk=
ˆ ∞

0
k2e−4π2k2(s+sin2θ cosφ sinφs2+sin2θ cos2φs3/3)dk

=
1

32π5/2(s+sin2 θ cosφ sinφs2+sin2 θ cos2 φs3/3)3/2
,

(5.116)

and the 5-dimensional case given by:

ˆ ∞

0
k2e

−4π2
(

k2s+k1k2s2+
k2
1s3

3

)

e
−4π2

(
k′2s′+k1k′2s′2+

k2
1s′3
3

)

dk=
ˆ

k2e−4π2k2(s+sin2θ cosφ sinφs2+sin2θ cos2φs3/3)

e−4k2π2 sp
3 (3(4+s2−s2cos2θ+2ssin2θ (scos2φ+2sin2φ))+4cosφ sin2θs′(3sinφ+cosφ(3s+s′)))dk

=
1

32π5/2( f exp(s,s′,θ ,φ))3/2
, (5.117)
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where f exp is the function that multiplies ‘−4π2k2’ in the exponent of the integrand. The

result of thek-integration for the four-dimensional integral is proportional to 1
s3/2 and there-

fore diverges in the limit ofs→ 0. The sum of all the four-dimensional divergent integrals

in (5.115) and (C.1)-(C.9), and the three dimensional integral presented in (5.118) is however

convergent. The reason for the emergence of this divergenceis explained in section5.5. Such

a divergence is present in the 4-dimensional integrals proportional toûf 0
2 , ûf 0

2 , ûf i
j (j=1,2 and

3 and i=‘tcos’,‘tsin’) given in appendix (C.1)-(C.9) also. Further thek integrals in (C.1)-(C.9)

are identical to that of (5.115).

The three-dimensional integral proportional toRRR1,RRR2 andRRR3 in (5.114) are given below:

ˆ

[
2π
ωg

TTTtumb
111 ··· (RRR1)+

π
ωg

TTTtumb
222 ···RRR2+

π
ωg

TTTtumb
333 ···RRR3

]
dkkk. (5.118)

RRR1, RRR2, RRR3, TTTtumb
1 , TTTtumb

2 andTTTtumb
3 (see (5.81)-(5.83) and (5.67)-(5.70)) are proportional to

(1/k) anddkkk is proportional tok2dk in (5.118) making thek integral divergent ask→ ∞. The

divergence here can again be isolated by introducing an integral over a dummy variable ‘s’.

Noting that
´ ∞

0 4π2k2exp(−4π2k2s) = 1 for s 6= 0 and is divergent ass→ 0, the integrals

proportional toRRR1,RRR2 andRRR3 are written as

4π2
ˆ 2π

0

ˆ π

0

ˆ ∞

0

ˆ ∞

0

[
2π
ωg

TTTtumb
111 ···RRR1+

π
ωg

TTTtumb
222 ···RRR2+

π
ωg

TTTtumb
333 ···RRR3

]
k2e−4π2k2sdsk2dksinθdθdφ ,

(5.119)

where we have added an additional ‘s’ integral to isolate the divergence. Thek integral can be

readily evaluated and (5.119) becomes:

4π2
ˆ 2π

0

ˆ π

0

ˆ ∞

0

{[
2π
ωg

TTTtumb
111 ···RRR1+

π
ωg

TTTtumb
222 ···RRR2+

π
ωg

TTTtumb
333 ···RRR3

]
k2
}

1

32π5/2s3/2
dssinθdθdφ ,

(5.120)

where the term in the curly brackets above is independent ofk.

In (5.115) and (C.1)-(C.9), the results ofk integration from (5.116) and (5.117) are substi-

tuted, and they are combined with (5.120), to obtain the final integral for the time period. The

final integral is evaluated numerically using Gaussian quadrature. The numerical integration

has to be carried out for each of the aspect ratios. This is unlike the spinning case, where

the aspect ratio dependent term factored out from the integral(see5.63). However in the limit

of extreme aspect ratios(κ− > 0 for an oblate spheroid andκ− > ∞ for a prolate spheroid),
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one can pull out aspect ratio dependence and obtain the asymptotic limit. This is discussed in

section5.6.5. The correction for the tumbling orbit obtained from the numerical integration is

presented in section5.7.

5.6.5 Extreme aspect ratio analysis

In this section, we evaluate the inertial correction to the time period for spheroids with extreme

aspect ratios (κ << 1 or κ >> 1) rotating in the tumbling orbit. An oblate (prolate) spheroid

spends a time of O(κ) (1/κ) in the aligned phase and O(1) time in the non-aligned phase.The

aligned phase of a thin prolate spheroid (slender fiber) corresponds toppp close to the flow axis

(φ j = 0), while that of for a thin oblate spheroid (flat disk) corresponds toppp being close to

the gradient axis (φ j = π/2). One would then expect the inertia to primarily alter the time

period during the aligned phase, that is, whenφ j is close toπ/2 or 3π/2 (0 orπ) for an oblate

(prolate) spheroid. The integral when expressed in terms ofφ j takes the form:

∆T tumb
c2 =−Re3/2

ˆ −π

π

φ̇c2dφ j

φ̇2
je f f

=

ˆ −π

π

1
8πYc

ˆ

[
4π2k2ûuuf +

∂ ûuumatch

∂ t
− (ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

match

+ΓΓΓ ··· ûuumatch
]
···
{

i (SSS(2t) ···kkk) ···1113

2πk2 ···
(

III − kkkkkk
k2

)}
1

φ̇2
je f f

dkkkdφ j .

(5.121)

Noting thatφ̇ je f f (5.26) in the extreme aspect ratio limit is zero when the spheroid is perfectly

aligned , one can see that the above integral diverges in the aligned phase. This suggests that

the contribution comes from region close to the aligned phase. One can then use a boundary

layer analysis, to isolate the contribution to the integralin (5.121).

We will first estimate the contribution from the aligned phase for a flat disk. Defining the

boundary layer variable aŝφ = (−π/2+φ j)/κ , one can rewrite (5.121) in the boundary layer

variable as:

∆T tumb
c2 =

ˆ −∞

∞

1
8πYc

ˆ

[
4π2k2ûuuf +

∂ ûuumatch

∂ t
− (ΓΓΓ† ···kkk) ···∇∇∇kkkûuu

match

+ΓΓΓ ··· ûuumatch
]
···
{

i (SSS(2t) ···kkk) ···1113

2πk2 ···
(

III − kkkkkk
k2

)}
1

κ3(φ̂2+1)2
dkkkdφ̂ . (5.122)
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At the leading order inκ , the term within braces in (5.122) becomes:

{
i (SSS(2t) ···kkk) ···1113

2πk2 ···
(

III − kkkkkk
k2

)}
= TTT1−TTT2, (5.123)

whereT1,T2 and are defined in (5.68-5.69) andB1 = B3 = −16/3. The term proportional to

the singularity in the test problem is therefore independent of κ . The leading order term in the

ûuumatch takes the form:

ûuumatch=− i
(
k2−2k12

)
A2k2

4k4π
1111−

ik1A2
(
k2−2k2

2

)

4k4π
1112+

ik1A2k2k3

2k4π
1113 (5.124)

Recall thatA2 is the coefficient of the longitudinal extension and is equalto −8πκ/3 in the

flat disk limit. The inertial terms in the square bracket in (5.122) is therefore proportional to

κ . Although the inertial terms involving the singularities in the axisymmetric extension and

transverse extensions come at O(κ), these contributions are also proportional to the boundary

layer variableφ̂ , and the integration over̂φ in (5.122) is zero for these contributions. The

evaluation of the integral in (5.122) leads to:

∆Ttumb
c2 = Re3/20.1763/κ2 (5.125)

for a flat disk.

The estimation of the correction for the slender fiber case isslightly nontrivial. If one

proceeds in a manner similar as that of the flat disk given above, one can see that the scaling

of the leading order term of the integrand in the time period integral, when expressed in the

boundary layer variable(φ̂ ) is κ2/ logκ . However, it turns out that the leading order term is

an odd function of the boundary layer variable, and therefore the integral over̂φ is zero. To

evaluate the integral at the next order(κ/ logκ) is difficult and not pursued here.

5.7 Results: Time period - O(Re
3
2)

In this section we summarize the numerical results obtainedusing the analytical expressions

derived in the previous two sections. The scaled correctionto the tumbling time period is

plotted against eccentricity(e) for a prolate spheroid in figure5.4a. For a sphere (e= 0) the

correction is 1.355, and it first decreases with increasing eccentricity (increasing aspect ratio)

till an eof about 0.75, shown in the inset plot, before eventually diverging in the slender fiber

limit. The correction normalized with the Jeffery period, which diverges asκ asκ → ∞, is
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c) Scaling slender fiber limit 

Fig. 5.4 (a) The correction at O(Re3/2) is plotted against eccentricity for prolate spheroid in
tumbling orbit. The inset plot shows a zoomed view of eccentricity< 0.8. (b) The correction
at O(Re3/2) scaled with the Jeffery period is plotted against eccentricity for the same. (c) The
correction is plotted on a log-log scale. The red line has a slope 1.

plotted against eccentricity in figure5.4b. As is clear from the dip in the plot for largeκ , the

divergence of the inertial correction is slower than O(κ) for κ → ∞. To obtain the scaling for

the divergence we have plotted it on a log-log scale in figure5.4c. together with a line of slope

1 (red) for purposes of comparison. The plot suggests a scaling of approximately O(κ/ logκ)

consistent with the arguments at the end of section5.6.5.

The correction to the time period is plotted against eccentricity, for an oblate spheroid in

the tumbling orbit in figure5.5a. The correction starts again from that for the sphere (e= 0)

and, to begin with, decreases slightly with increasing eccentricity(decreasing aspect ratio), as

shown in the inset plot, before eventually diverging in the limit of a flat disk. The correction

scaled with the Jeffery period(which diverges as 1/κ asκ → 0) is plotted in figure5.5b, and
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c) Scaling flat disk limit 

Fig. 5.5 (a) The correction at O(Re3/2) is plotted against eccentricity for oblate spheroid in
tumbling orbit. The inset plot shows the zoomed view for eccentricity < 0.8. (b) The cor-
rection at O(Re3/2) scaled with the Jeffery period is plotted against eccentricity for the same.
(c)The correction is plotted on a log-log scale. The red lineis the asymptote obtained from an
analysis for flat disk.

in contrast to the prolate case continues to diverge in the limit of κ → 0. We have plotted

the flat-disk asymptote (red) given by (5.125) as well as the numerical results on a log-log

scale in figure5.5c; the asymptotes compare well to the numerical results, andvalidates the

predicted O(κ−2) divergence. In figure5.6we have plotted the correction against eccentricity

for an oblate spheroid in spinning orbit, which was given in (5.63). In the spinning case the

correction to time period decreases with increasing eccentricity and approaches a finite value

0.47 for the flat disk.

The O(Re3/2) time period corrections for both the prolate and oblate spheroids have been

found to be positive, implying an increase in the time periodof rotation due to inertia. This is

consistent with what has been observed in the simulations.
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a) Oblate spheroid spinning

Fig. 5.6 The correction at O(Re3/2) is plotted against eccentricity for oblate spheroid in spin-
ning orbit.

5.8 Conclusions and future work

In this chapter we have evaluated the leading order fluid inertial correction, at O(Re3/2), and

the particle inertial correction, at O(St2), to the time period of rotation of a spheroid, in simple

shear flow, in the tumbling and the spinning orbits. The first effects of fluid inertia occur at

O(Re), but at this order inertia acts to stabilize either one of two Jeffrey orbits depending on the

spheroid aspect ratio and its initial orientation. Specifically it has been shown in chapter2 that

the stable orbit for a prolate spheroid of any aspect ratio istumbling and an oblate spheroid

with κ > 0.142 is spinning. The stable orbit for an oblate spheroid withκ < 0.142 is spinning

or tumbling depending on the initial orientation. The first effects of particle inertia occur at

O(St) and it stabilizes the tumbling orbit for a prolate spheroidand the spinning orbit for an

oblate spheroid. In the stabilized orbits, it is shown that the correction to the time period at

O(Re) and O(St) is zero.

The calculation of the correction to the angular velocity atO(St2) for a spheroid is straight-

forward and is presented in section5.4. The correction to the angular velocity at O(Re3/2)

is formulated as an integral in Fourier space, based on a reciprocal theorem formulation, the

details of which are given in section5.2. The disturbance velocity field around a spinning

spheroid is steady and therefore, the correction to angularvelocity at O(Re3/2) is trivially re-

lated to the correction to time period through (5.40). The calculation proceeds in a manner

similar to earlier ones for a sphere(Stoneet al. (2000); Subramanianet al. (2011)), and the

result is given in (5.63). The disturbance velocity field around a spheroid is unsteady in the

tumbling orbit, and the evaluation of the time period correction is therefore not trivial. How-
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ever, we show in section5.6 that by expanding the integrand in the reciprocal theorem asa

Fourier series in time one can evaluate this correction. Thenumerical results for both the tum-

bling and spinning orbits are given in section5.7. The results conclude that the time period of

rotation increases with fluid inertia in both tumbling and spinning orbits consistent with earlier

simulations. We find that the scaling for the correction for aflat disk rotating in the tumbling

orbit is 1/κ2 both from the plot of the arbitrary aspect ratio oblate spheroid presented in sec-

tion 5.7 as well as an asymptotic analysis presented in section5.6.5. For a slender fiber we

obtain the scaling as approximatelyκ/ logκ from the plot of the arbitrary aspect ratio prolate

spheroid presented in section5.7. The stronger divergence of the inertial correction, for thin

oblate spheroids, evidently implies a breakdown of the analysis here. This will be taken up for

future work.



Chapter 6

Conclusions and future work

This thesis has tried to answer the four questions that are raised in chapter1.

In chapter2, we address the first question, that is, whether weak inertial effects at O(Re)

and O(St) eliminate the indeterminacy associated with the Stokes limit. The indeterminacy,

as explained in chapter1, arises due to the reversibility of the Stokes flow, which makes a

spheroid rotate in any of a one parameter family of closed orbits, known as Jeffery orbits, in

planar linear flows withλ < λcrit . The investigations in chapter2 concluded that for certain

regions in theλ −κ plane, the weak inertial effects stabilize either of the twoorbits, namely

the tumbling and the spinning orbits. However, there are regions in theλ −κ plane, where

the orbit that is stabilized by inertia, depends on the initial orientation of the spheroid. To be

precise, in this region, a repeller divides the orientationunit-hemisphere into two basins of

attractions, with the attractors being the tumbling and thespinning orbits. In particular, for a

neutrally buoyant spheroid in simple shear flow (λ = 0), this region corresponds toκ < 0.137.

This finding for simple shear flow in chapter2, is utilized in chapter3, to address the second

question, that is about calculating the viscosity of a dilute suspension of neutrally buoyant

spheroids. The viscosity of a suspension of neutrally buoyant spheroids, which include prolate

spheroids of any aspect ratio as well as oblate spheroids with κ > 0.137, is calculated based

on the distribution that is set up by inertia alone. To calculate the viscosity of a suspension

of oblate spheroids withκ < 0.137, an additional orientation decorrelation mechanism inthe

form of rotary Brownian motion is considered. The orientation distribution that is set up by

weak inertial effects together with weak Brownian motion is, interestingly, a distribution of

the Boltzmann form, with a potential that depends onC, κ , and a dimensionless shear rate

(RePer ), and therefore lends itself to a novel thermodynamic interpretation inC−κ −RePer
space. The transition of this potential between a single-welled and a double-welled structure is

interpreted as a phase transition, and the small-C and large-C minima identified with spinning



164 Conclusions and future work

and tumbling phases. A phase diagram is plotted inC−κ −RePer space to identify the two-

phase region and its envelope. The phase transition named the ‘tumbling-spinning’ transition,

results in hysteretic dynamics within the two-phase envelope, making the viscosity sensitively

dependent on the precise shear rate history. In this sense, the tumbling-spinning transition is

analogous to the well known coil-stretch transition for polymer solutions, in that it endows

an inertial suspension of thin oblate spheroids with a memory that far exceeds the nominal

microstructural relaxation times.

The third question is addressed in chapter4, by investigating the effects of inertia on a

spheroid sedimenting in a simple shear flow using a reciprocal theorem formulation. The

combined effect of the torque due to sedimentation, and thatdue to inertial forces are ana-

lyzed therein, for three canonical cases, where the sedimenting force is aligned with any of

the gradient, vorticity and flow axes of the simple shear flow.Interestingly, depending on the

non-dimensional parameterResed/Re, the torque due to sedimentation may result in the emer-

gence of a repeller in the orientation space, in cases where there were no repellers in the limit

of Resed/Re= 0. The final question is addressed in chapter5, where an investigation is carried

out to understand the effect of inertia on the time period of rotation of a spheroid in a simple

shear flow. As mentioned in chapter1, simulations have observed that in the tumbling and the

spinning orbits, the effect of fluid inertia is to increase the time period from its leading order

value, and that of particle inertia is to decrease it. It is shown in chapter5 that in these orbits,

the O(Re) and O(St) angular velocities calculated in chapter2, do not alter the time period

from its leading order value. The next correction due to particle inertia comes at O(St2), and

the calculation of this is straightforward due to the regular nature of the problem. On account

of being a singular problem , the correction due to fluid inertia comes at O(Re3/2), and from

the outer region (L >> Re−1/2). A Fourier space based formulation is used to calculate the

correction. The corrections to the time period at O(St2) and O(Re3/2) are calculated and the

qualitative change in time period predicted by the analysis, is consistent with simulations. It

is important to note that for the case of a neutrally buoyant spheroid the correction comes at

O(Re3/2) and the effect of fluid inertia is therefore dominant.

Several new questions have emerged from this thesis and are given below.

In chapter2, the solution to the Stokes equations around a spheroid in simple shear flow,

is presented in terms of a vector spheroidal harmonics formalism . This formalism, together

with addition theorems, readily generalizes to the case of an N-body problem, and is thus a

powerful one, and can be extended to problems of a greater complexity. As mentioned in

chapter3, in an experiment with an inertial suspension of spheroids,hydrodynamic interac-
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tion might be the easiest accessible orientation decorrelation mechanism. If one could solve

the two body problem for a spheroid in a shear flow, the resultscan be used to understand the

combined effect of inertia and hydrodynamic interaction, and the resulting phase diagram may

be different from that presented in chapter3 for the Brownian motion. More importantly in an

experiment, it will be easier to access the different regions of the resulting phase diagram. The

spheroidal harmonics formalism may also be used to understand the effect of viscoelasticity,

on the orientation dynamics of a spheroid of arbitrary aspect ratio, rotating in a planar linear

flow. Again in an experiment, it is fairly straightforward torealize the effects of viscoelas-

ticity, and therefore it is important to understand the orientation dynamics of a spheroid in a

viscoelastic fluid. The orientation dynamics of a spheroid sedimenting in random linear flow

is a question that can be pursued due to its importance in geophysical situations such as the

orientation distribution of ice crystals in clouds, which in turn contributes to the scattering

albedo of the earth-atmospheric system.





References

A IDUN , C., LU, Y. & D ING, E.-J. 1998 Direct analysis of particulate suspensions with inertia

using the discrete boltzmann equation.J. Fluid Mech.373, 287–311.

AMINI , H., LEE, W. & CARLO, D. 2014 Inertial microfluidic physics.Lab Chip14, 2739–

2761.

ARFKEN, G. B., WEBER, H. J. & HARRIS, F. E. 2011Mathematical methods for physicists:

a comprehensive guide. Academic press.

AUER JR, A. H. & V EAL , D. L. 1970 The dimension of ice crystals in natural clouds.Journal

of the Atmospheric Sciences27 (6), 919–926.

BATCHELOR, G. 1977 Developments in microhydrodynamics.Theor. and Appl. Mechanics:

Proc. Fourteenth Int. Cong., Delft, Netherlands83, 33–55.

BATCHELOR, G. K. 1970a Slender-body theory for particles of arbitrary cross-section in

stokes flow.J. Fluid Mech.44, 791–810.

BATCHELOR, G. K. 1970b The stress system in a suspension of force-free particles.J. Fluid

Mech.41, 545–570.

BATCHELOR, G. K. 1972 Sedimentation in a dillute dispersion of spheres. J. Fluid Mech.52,

245–268.

BATCHELOR, G. K. & GREEN, J. 1972a The determination of the bulk stress in a suspension

of spherical particles to orderc2. J. Fluid Mech.56, 401–427.

BATCHELOR, G. K. & GREEN, J. 1972b The hydrodynamic interaction of two small freely-

moving spheres in a linear flow field.J. Fluid Mech.56, 375–400.

BECK, V. & SHAQFEH, E. 2006 Ergodicity breaking and conformational hysteresis in the

dynamics of a polymer tethered at a surface stagnation point. J. Chem. Phys.124, 094902.



168 References

BENDER, C. M. & ORSZAG, S. A. 1999Advanced mathematical methods for scientists and

engineers I. Springer Science & Business Media.

BENTLEY, B. & L EAL , L. 1986 An experimental investigation of drop deformationand

breakup in steady, two-dimensional linear flows.Journal of Fluid Mechanics167, 241–283.

BRADY, J. F. & MORRIS, J. F. 1997 Microstructure of strongly sheared suspensionsand its

impact on rheology and diffusion.Journal of Fluid Mechanics348, 103–139.

BRENNER, H. 1974 Rheology of a dilute suspension of axisymmetric brownian particles.

International journal of multiphase flow1 (2), 195–341.

BRETHERTON, F. P. 1962 The motion of rigid particles in a shear flow at low reynolds number.

Journal of Fluid Mechanics14 (02), 284–304.

BROWN, A. B. D. & RENNIE, A. R. 2001 Images of shear-induced phase separation in a

dispersion of hard nanoscale discs.Chem. Engg. Sci.56, 2999–3004.

CANDELIER, F., EINARSSON, J., LUNDELL , F., MEHLIG, B. & A NGILELLA , J.-R. 2015

Role of inertia for the rotation of a nearly spherical particle in a general linear flow.Physical

Review E91 (5), 053023.

CARO, C., PEDLEY, T., SCHROTER, R. & SEED, W. 2012The Mechanics of the circulation.

Cambridge University Press.

CHALLABOTLA , N., NILSEN, C. & ANDERSSON, H. 2015 On rotational dynamics of inertial

disks in creeping shear flow.Phys. Lett. A379, 011704.

CHANDRASEKHAR, S. 1943 Stochastic problems in physics and astronomy.Reviews of mod-

ern physics15 (1), 1.

CHENG, X., MCCOY, J. H., ISRAELACHVILI , J. N. & COHEN, I. 2011 Imaging the micro-

scopic structure of shear thinning and thickening colloidal suspensions.Science333(6047),

1276–1279.

CHILDRESS, S. 1964 The slow motion of a sphere in a rotating, viscous fluid.Journal of Fluid

Mechanics20 (02), 305–314.

CHWANG, A. T. & WU, T.-T. 1974 Hydromechanics of low-reynolds-number flow.part 1.

rotation of axisymmetric prolate bodies.J. Fluid Mech.63, 607–622.



References 169

CHWANG, A. T. & WU, T. Y.-T. 1975 Hydromechanics of low-reynolds-number flow.part 2.

singularity method for stokes flows.J. Fluid Mech.67, 787–815.

DABADE , V., MARATH , N. K. & SUBRAMANIAN , G. 2015 Effects of inertia and viscoelas-

ticity on sedimenting anisotropic particles.Journal of Fluid Mechanics778, 133–188.

DE GENNES, P. 1974 Coil-stretch transition of dilute flexible polymers under ultrahigh veloc-

ity gradients.The Journal of Chemical Physics60 (12), 5030–5042.

DERAKHSHANDEH, B., KEREKES, R. J., HATZIKIRIAKOS , S. G. & BENNINGTON, C. P. J.

2011 Rheology of pulp fibre suspensions: A critical review.Chem. Engg. Sci.66, 3460–

3470.

DING, E.-J. & AIDUN , C. 2000 The dynamics and scaling law for particles suspended in

shear flow with inertia.J. Fluid Mech.423, 317–344.

DWIVEDI , R. 2016 Effect of the brownian motion on thetransient dynamics of anisotropic

particles in simple shear flow.JNCASR Report.

EINARSSON, J., ANGILELLA , J. & MEHLIG, B. 2014 Orientational dynamics of weakly

inertial axisymmetric particles in steady viscous flows.Physica D: Nonlinear Phenomena

278, 79–85.

EINARSSON, J., CANDELIER, F., LUNDELL , F., ANGILELLA , J. & MEHLIG, B. 2015a

Effect of weak fluid inertia upon jeffery orbits.Physical Review E91 (4), 041002.

EINARSSON, J., CANDELIER, F., LUNDELL , F., ANGILELLA , J. R. & MEHLIG, B. 2015b

Rotation of a spheroid in a simple shear at small reynolds number.Physics of Fluids27 (6).

ENNIS, G. J., OKAGAWA , A. & M ASON, S. G. 1978 Memory impairment in flowing suspen-

sions. ii. experimental results.Canadian Journal of Chemistry56 (22), 2824–2832.

GAUTHIER, G., GONDRET, P. & RABAUD , M. 1998 Motions of anisotropic particles: appli-

cation to visualization of three-dimensional flows.Physics of Fluids (1994-present)10 (9),

2147–2154.

GOLDSTEIN, H. 1962Classical mechanics, , vol. 4. Pearson Education India.

GOTO, S., KIDA , S. & FUJIWARA, S. 2011 Flow visualization using reflective flakes.Journal

of Fluid Mechanics683, 417–429.



170 References

GRADSHTEYN, I. & RYZHIK , I. 2007 Table of integrals, series and products. Academic

Press.

HARLEN, O. G. & KOCH, D. L. 1997 Orientational drift of a fibre suspended in a dilute

polymer solution during oscillatory shear flow.Journal of non-newtonian fluid mechanics

73 (1), 81–93.

HARPER, E. & CHANG, I.-D. 1968 Maximum dissipation resulting from lift in a slow viscous

shear flow.Journal of Fluid Mechanics33 (02), 209–225.

HINCH, E. 1974 Mechanical models of dilute polymer solutions for strong flows with large

polymer deformations.Polymères et Lubrificationpp. 351–372.

HINCH, E. 1977 An averaged-equation approach to particle interactions in a fluid suspension.

J. Fluid Mech.83, 695–720.

HINCH, E. & LEAL , L. 1972 The effect of brownian motion on the rheological properties of

a suspension of non-spherical particles.J. Fluid Mech52, 683–712.

HINCH, E. J. 1991Perturbation methods. Cambridge university press.

HUANG, H., YANG, X., KRAFCZYK, M. & L U, X.-Y. 2012 Rotation of spheroidal particles

in couette flows.Journal of Fluid Mechanics692, 369–394.

JEFFERY, G. 1922 The motion of ellipsoidal particles immersed in a viscous fluid.Proc. Roy.

Soc. LondA102, 161–179.

KAO, S., COX, R. & MASON, S. 1977a Streamlines around single spheres and trajectories

of pairs of spheres in two-dimensional creeping flows.Chem. Engng. Sci.32, 1505.

KAO, S. V., COX, R. G. & MASON, S. G. 1977b Streamlines around single spheres and

trajectories of pairs of spheres in two-dimensional creeping flows.Chem. Engg. Sci.32,

1505–1515.

KARNIS, A., GOLDSMITH, H. & M ASON, S. 1966 The flow of suspensions through tubes:

V. inertial effects.The Canadian Journal of Chemical Engineering44 (4), 181–193.

K IM , S. & KARRILA , S. J. 1991 Microhydrodynamics: Principles and selected applications.

Butterworth-Heinemann.



References 171

KRISHNAMURTHY, D. 2014 Heat transfer from drops in shearing flows and collective mo-

tion in micro-scale swimmer suspensions. Master’s thesis,Jawaharlal Nehru Centre for Ad-

vanced Scientific Research, Bangalore, India.

KUSHCH, V. I. 1997 Microstresses and effective elastic moduli of a solid reinforced by peri-

odically distributed spheroidal particles.Int J. of Solid Structures34, 1353–1366.

KUSHCH, V. I. 1998 Elastic equilibrium of a medium containing a finite number of arbitrarily

oriented spheroidal inclusions.Int J. of Solid Structures35, 1187–1198.

KUSHCH, V. I. & SANGANI , A. S. 2003 The complete solutions for stokes interactions of

spheroidal particles by the mutipole expansion method.Preprint, Int J. of Mutiphase Flow.

34, 1353–1366.

LARSON, R. G. 1988 Constitutive equations for polymer melts and solutions.Butterworths.

LARSON, R. G. 2005 The rheology of dilute solutions of flexible polymers: Progress and

problems.Journal of Rheology49 (1), 1–70.

LEAHY, B. D., CHENG, X., ONG, D. C., LIDDELL -WATSON, C. & COHEN, I. 2013 Enhanc-

ing rotational diffusion using oscillatory shear.Physical review letters110(22), 228301.

LEAL , L. 1979 The motion of small particles in non-newtonian fluids. J. non-Newt. Fluid

Mech.5, 33–78.

LEAL , L. & H INCH, E. 1971 The effect of weak brownian rotations on particles in shear flow.

J. Fluid Mech46, 685–703.

LEAL , L. G. 1975 The slow motion of slender rod-like particles in asecond-order fluid.J.

Fluid Mech.69, 305–337.

LEAL , L. G. 1992 Laminar flow and convective transport processes,scaling principles and

asymptotic analysis.Butterworth-Heinemann Series in Chemical Engineering.

LEE, J. S., SHAQFEH, E. S. & MULLER, S. J. 2007 Dynamics of dna tumbling in shear to

rotational mixed flows: Pathways and periods.Physical Review E75 (4), 040802.

LEKKERKERKER, H. N. W. & VROEGE, G. J. 2012 Liquid crystal phase transitions in sus-

pensions of mineral colloids: new life from old roots.Phil. trans. R Soc. A371, 263.

L IN , C.-J., PEERY, J. & SCHOWALTER, W. 1970a Simple shear flow round a rigid sphere:

inertial effects and suspension rheology.J. Fluid Mech.44, 1–17.



172 References

L IN , C.-J., PEERY, J. H. & SCHOWALTER, W. 1970b Simple shear flow round a rigid sphere:

inertial effects and suspension rheology.Journal of Fluid Mechanics44 (01), 1–17.

L IOU, K.-N. 1986 Influence of cirrus clouds on weather and climateprocesses: A global

perspective.Monthly Weather Review114(6), 1167–1199.

LLEWELLIN , E., MADER, H. & W ILSON, S. 2002 The constitutive equation and flow dy-

namics of bubbly magmas.Geophys. Res. Lett.29, 23–1.

LUNDELL , F. 2011 The effect of particle inertia on triaxial ellipsoids in creeping shear: From

drift toward chaos to a single periodic solution.Physics of Fluids (1994-present)23 (1),

011704.

LUNDELL , F. & CARLSSON, A. 2010 Heavy ellipsoids in creeping shear flow: Transitions of

the particle rotation rate and orbit shape.Physical Review E81 (1), 016323.

LUNDELL , F. & CARLSSON, A. 2011 The effect of particle inertia on triaxial ellipsoids in

creeping shear: From drift toward chaos to a single periodicsolution.Phys. Fluids23,

011704.

LUNDELL , F., SÖDERBERG, L. D. & A LFREDSSON, P. H. 2011 Fluid mechanics of paper-

making.Annual Review of Fluid Mechanics43, 195–217.

MANGA , M., CASTRO, J., CASHMAN , K. & L OEWENBERG, M. 1998 Rheology of bubble

bearing magmas.J. Volcanology Geothermal Res.87, 15–28.

MAO, W. & A LEXEEV, A. 2014 Motion of spheroid particles in shear flow with inertia. J.

Fluid Mech.749, 145–166.

MEIBOHM, J., CANDELIER, F., ROSEN, T., EINARSSON, J., LUNDELL , F. & MEHLIG, F.

2016 Angular velocity of a spheroid log rolling in a simple shear at small reynolds number.

arxiv 1606.02665v2.

M ICHOT, L., BIHANNIC , I., MADDI , S., FUNARI , S. S., BARAVIAN , C., LEVITZ , P. &

DAVISON, P. 2006 Liquid-crystalline aqueous clay suspensions.Proc. Nat. Acad. Sci.103,

16101–16104.

M IKULENCAK , D. R. & MORRIS, J. F. 2004 Stationary shear flow around fixed and free

bodies at finite reynolds number.Journal of Fluid Mechanics520, 215–242.



References 173

MORRIS, J. & BRADY, J. 1997 Microstructure of strongly sheared suspensions and its impact

on rheology and diffusion.J. Fluid Mech348, 103–139.

MORRIS, J., YAN , Y. & K OPLIK, J. 2007 Hydrodynamic interaction of two particles in

confined linear shear flow at finite reynolds number.Phys. Fluids19 (11), 113305.

MORSE, P. M. & FESHBACH, H. 1953 Methods of theoretical physics.McGraw-Hill book

company, Inc.

MUELLER, S., LLEWELLIN , E. W. & MADER, H. M. 2011 The effect of particle shape on

suspension viscosity and implications for magmatic flows.Geophys. Res. Lett38, L13316.

OKAGAWA , A., COX, R. & MASON, S. 1973a The kinetics of flowing dispersinos. vi. tran-

sient orientation and rheological phenomena of rods and discs in shear flow.J. Coll. Int. Sci.

45, 303–329.

OKAGAWA , A., COX, R. & MASON, S. 1973b The kinetics of flowing dispersions. vii. oscil-

latory behavior of rods and discs in shear flow.J. Coll. Int. Sci.45, 303–329.

OKAGAWA , A. & M ASON, S. G. 1974 Particle behavior in shear and electric fields. vii. orien-

tation distributions of cylinders.Journal of Colloid and Interface Science47 (2), 568–587.

VAN OLPHEN, H. 1963An introduction to clay colloid chemistry. Wiley, New York.

PRAGER, S. 1957 Stress-strain relations in a suspension of dumbbells. Transactions of The

Society of Rheology (1957-1977)1 (1), 53–62.

QI , D. & L UO, L.-S. 2003 Rotational and orientational behaviour of three-dimensional

spheroidal particles in couette flows.Journal of Fluid Mechanics477, 201–213.

RAHNAMA , M., KOCH, D. & SHAQFEH, E. 1995 The effect of hydrodynamic interactions on

the orientation distribution in a fiber suspension subject to simple shear flow.Phys. Fluids

7, 487–506.

ROSEN, T., DO-QUANG, M., A IDUN , C. & LUNDELL , F. 2015 The dynamical states of a

prolate spheroid suspended in shear flow as a consequence of particle and fluid inertia.J.

Fluid Mech.771, 115–158.

ROSEN, T., LUNDELL , F. & A IDUN , C. 2014 Effect of fluid inertia on the dynamics and

scaling of neutrally buoyant particles in shear flow.J. Fluid Mech.738, 563–590.



174 References

SAFFMAN , P. 1956 On the motion of small spheroidal particles in a viscous liquid.Journal of

Fluid Mechanics1 (05), 540–553.

SAFFMAN , P. 1965 The lift on a small sphere in a slow shear flow.Journal of fluid mechanics

22 (02), 385–400.

SAVAS, Ö. 1985 On flow visualization using reflective flakes.Journal of Fluid Mechanics152,

235–248.

SCHROEDER, C., SHAQFEH, E. & CHU, S. 2004 Effect of hydrodynamic interactions on dna

dynamics in extesional flow: simulation and single moleculeexperiment.Macromol.37,

9242–9256.

SCHROEDER, C. M., BABCOCK, H. P., SHAQFEH, E. S. & CHU, S. 2003 Observation of

polymer conformation hysteresis in extensional flow.Science301(5639), 1515–1519.

SHAQFEH, E. S. G. 2005 The dynamics of single-molecule dna in flow.Journal of Non-

Newtonian Fluid Mechanics130(1), 1–28.

STONE, H., JOHN, B. & L OVALENTI , P. M. 2000 Inertial effects on the rheology of suspen-

sions and on the motion of individual particles.unpublished.

SUBRAMANIAN , G. & BRADY, J. 2004 Multiple scales analysis of the fokker–planck equa-

tion for simple shear flow.Physica A: Statistical Mechanics and its Applications334 (3),

343–384.

SUBRAMANIAN , G. & BRADY, J. F. 2006 Trajectory analysis for non-brownian inertial sus-

pensions in simple shear flow.J. Fluid Mech.559, 151–203.

SUBRAMANIAN , G. & KOCH, D. 2006a Centrifugal forces alter streamline topology and

greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a

shear flow.Physical review letters96 (13), 134503.

SUBRAMANIAN , G. & KOCH, D. L. 2005 Inertial effects on fibre motion in simple shear

flow. J. Fluid Mech.535, 383–414.

SUBRAMANIAN , G. & KOCH, D. L. 2006b Inertial effects on the orientation of nearly spher-

ical particles in simple shear flow.J. Fluid Mech.557, 257–296.

SUBRAMANIAN , G. & KOCH, D. L. 2006c Inertial effects on the transfer of heat or mass from

neutrally buoyant spheres in a steady linear velocity field.Phys. Fluids18 (7), 073302.



References 175

SUBRAMANIAN , G. & KOCH, D. L. 2007 Heat transfer from a neutrally buoyant sphere in a

second-order fluid.J. Non-Newtonian Fluid Mech.144(1), 49–57.

SUBRAMANIAN , G., KOCH, D. L., ZHANG, J. & YANG, C. 2011 The influence of the

inertially dominated outer region on the rheology of a dilute dispersion of low-reynolds-

number drops or rigid particles.Journal of Fluid Mechanics674, 307–358.

TAYLOR, G. 1923 The motion of ellipsoidal particles in a viscous fluid. Proceedings of the

Royal Society of London. Series A, Containing Papers of a Mathematical and Physical

Characterpp. 58–61.

THORODDSEN, S. T. & BAUER, J. 1999 Qualitative flow visualization using colored lights

and reflective flakes.Physics of Fluids (1994-present)11 (7), 1702–1704.

TREVELYAN , B. & M ASON, S. 1951 Particle motions in sheared suspensions. i. rotations.J.

Coll. Sci.6 (4), 354–367.

VROEGE, G. J. & LEKKERKERKER, H. N. W. 1992 Phase transitions in lyotropic colloidal

and polymer liquid crystals.Rep. Prog. Phys.55, 1241–1309.

YU, Z., PHAN-THIEN, N. & TANNER, R. I. 2007 Rotation of a spheroid in a couette flow at

moderate reynolds numbers.Physical Review E76 (2), 026310.





Appendix A

Expressions for the functionsIi’s and Ji’s

I1 =2π (A.1)

I2 =2π(κeq−1)(κeq+1)−1 (A.2)

I3 =2π
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2
((

C2+1
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C2κ2
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))−1/2−1
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(A.3)

I4 =2π(κeq−1)2(κeq+1)−2 (A.4)
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J1 =π(κ2
eq−1)(κeq+1)−2 (A.6)

J2 = −π(κ2
eq−1)

(
−4
√
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(A.7)

J3 =π(κ2
eq−1)(κeq−1)(κeq+1)−3 (A.8)

J4 =−π(κ2
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(A.9)

Note that onlyI5 + I6 matters sinceF p
5 (ξ0,λ ) = F p

6 (ξ0,λ ) (see (2.82)) and F f
5 (ξ0) =

F f
6 (ξ0) (see2.99).
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The C− τ coordiante system

The details of the(C,τ) coordinate system are given below. The orbital coordinates(C,τ) are

related to spherical coordinate angles,θ j andφ j , asC =
tanθ j (κ2

eqsin2 φ j+cos2φ j )
1/2

κeq
and tanτ =

1/(κeqtanφ j). The unit vectorsĈCC and τ̂ττ are given by ∂ r̂rr
∂C/|

∂ r̂rr
∂C| and ∂ r̂rr

∂τ /|
∂ r̂rr
∂τ | respectively,

wherer̂rr is the unit radial vector in spherical coordinates (r̂rr = sinθ j cosφ j1′x +sinθ j sinφ j1′y +

cosθ j1′z). The metric factorshC andhτ are given by| ∂ r̂rr
∂C| and| ∂ r̂rr

∂τ | respectively. Simplifying,

one gets:

ĈCC= cosθ j cosφ j1′x+cosθ j sinφ j1′y−sinθ j1′z= θ̂θθ jjj , (B.1)

τ̂ττ =

∂θ j
∂τ√(

∂θ j

∂τ

)2
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)2
sin2 θ j
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φ̂φφ jjj , (B.2)

hC =
∂θ j

∂C
, (B.3)

hτ =

√(
∂θ j

∂τ

)2

+

(
∂φ j

∂τ

)2

sin2θ j , (B.4)

where θ̂θθ jjj and φ̂φφ jjj =−sin(φ j)1′x + cos(φ j)1′y are the polar and azimuthal unit vectors in

spherical coordinate system, andτ̂ττ is tangent to a Jeffery orbit. The(C,τ) is a non-orthogonal

coordinate system and the angle(α) between the unit vectorŝCCC andτ̂ττ is given by:

cosα =

∂θ j

∂τ√(
∂θ j

∂τ

)2
+
(

∂φ j

∂τ

)2
sin2 θ j

. (B.5)

The τ̂ττ can then be written as cosα θ̂θθ jjj + sinα φ̂φφ jjj .
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The divergence operator in the(C,τ) coordinate system is given by:

∇. fff =
1

hChτ sinα
∂

∂C

(
hτ sinα fff .ĈCC

)
+

1
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∂
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The gradient operator in the(C,τ) coordinate system is given by:

∇ f =
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1
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The integrals in (5.113)

The 4-dimensional and 5-dimensional integrals for the terms proportional to ˆuf i
1 (i=‘0’,‘tcos’,‘tsin’),

ûf i
3 (i=‘0’,‘tcos’,‘tsin’) and the 4-dimensional integral for̂uf i

2 (‘tcos’,‘tsin’) in (5.113) are given

below in the spherical coordinate system.

The integral proportional to ˆuf 0
2 is written using (5.101) and (5.67),
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The integral proportional to ˆuf 0
3 is written using (5.107) and (5.67):

ˆ

(−4π2k2 ûf 0
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The integral proportional to ˆuf tcos
1 is written using (5.105) and (5.67):
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The integral proportional to ˆuf tcos
2 is written using (5.102) and (5.67):
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The integral proportional to ˆuf tcos
3 is written using (5.108) and (5.69):
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3 (kkk)1113 ··· TTTtumb

2 )dkkk=−
ˆ 2π

0

ˆ π

0

ˆ ∞

0
4π2

{
k2
[
− iB1k1k2k3

k4π
(1+κ2)2

2κ2

]

(
Q2i

3 (kkk
′′′)cos(2ωgs)−Q2Re

3 (kkk′′′)sin(2ωgs)
)}ˆ ∞

0
i2e

−4π2
(

k2s+k1k2s2+
k2
1s3

3

)

k2dkds

sinθdθdφ −
ˆ 2π

0

ˆ π

0

ˆ ∞

0

ˆ ∞

0

{
4π2k2

[
− iB1k1k2k3

k4π
(1+κ2)2

2κ2

](
2k1k3

k′2

)

(
k′2+k2

1s′2+2k1k′2s′

k′2

)(
Q2i

2 (kkk
′′′′′′)cos(2ωg(s+s′))−Q2Re

2 (kkk′′′′′′)sin(2ωg(s+s′))
)}

(C.5)
ˆ ∞

0
e
−4π2

(
k2s+k1k2s2+

k2
1s3

3

)

i2e
−4π2

(
k′2s+k1k′2s2+

k2
1s3

3

)

k2dkds′dssinθdθdφ . (C.6)

The integral proportional to ˆuf tsin
1 is written using (5.105) and (5.67):
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The integral proportional to ˆuf tsin
2 is written using (5.102) and (5.67):
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The integral proportional to ˆuf tsin
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