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Synopsis

A brief introduction about dry granular materials and gas-solid suspensions and their im-
portance, along with the objective and motivation of the present research work, are given in
Chapter 1. The remaining chapters of this thesis are sub-divided into two parts: (i) Part-A and
(i1) Part-B. In Part-A, an extended hydrodynamic theory for dry granular materials and its rhe-
ological behaviour under plane shearing conditions are analysed in Chapter-2 and Chapter-3,
respectively. In Part-B, the related analyses for gas-solid suspensions are described in Chap-
ters 4 and 5.

The major focus of the present work has been to develop a complete theory for “rapid”
granular and gas-solid suspensions that includes normal-stress differences and shear-thinning
and shear-thickening behaviour, and the theory must be valid for the whole range of density
spanning from the dilute limit to the (close to) freezing density. The theoretical approach
adopted in this thesis is based on (i) the Enskog-Boltzmann equation of dense-gas kinetic
theory and (ii) the moment-method of Harold Grad. The present theory has been validated
via comparisons of transport coefficients with (i) the previous theories and (ii) the existing
particle-level simulations.

In Chapter 2, a 14/10-moment theory for a dense granular gas using Grad’s moment
method is developed. An effort has been made to develop a complete theory that can be
applicable to granular flows for any choice of inelasticity and particle volume fraction. An
expansion around the Maxwellian is performed to obtain the non-equilibrium distribution
function. A Grad-like moment theory has been developed in terms of fourteen field vari-
ables: (i) the mass density (p), (ii) the macroscopic flow velocity (u = (c)), (iii) the kinetic
stress (PX = p(CC) = pM), (iv) the kinetic heat-flux (g = p(CC?)) and (v) the contracted
fourth-moment P;;;;. The collisional source and flux terms at different orders are calculated by
including all nonlinear terms arising from these hydrodynamic fields and their gradients. The
collisional dissipation or the cooling rate is derived for the whole range of volume fraction
that includes second-order derivatives of the hydrodynamic variables as well. A generalized
Fourier law for granular heat flux is established using Maxwell-iteration technique, leading

to a 10-moment theory in terms of (i) the mass density (p), (ii) the macroscopic velocity (u)



xii Synopsis

and (iii) the kinetic stress (P¥). It is shown that the thermal conductivity is described by an
anisotropic-asymmetric tensor and the anisotropy follows from the presence of higher-order
nonlinear terms in the respective collisional source/production term X,g5; the gradients of
density and kinetic stress also drive a heat current; the above features of heat-flux vector are
distinct signatures of the non-Fourier rheology of the medium. Finally, the 14-moment theory
is applied to analyse the uniform shear flow of a dense granular fluid; the analytical expres-
sions of transport coefficients are determined as functions of the coefficient of restitution (e)
and the solid volume fraction (V). The theoretical results on pressure, shear viscosity and two
normal-stress differences are compared with data from previous molecular dynamics (MD)
simulations of granular shear flow. It is found that while the pressure and viscosity are well-
predicted by the present theory for a wide range of density, there are large quantitative differ-
ences between theory and simulation for the prediction of two normal-stress differences. The
resolution of the latter discrepancy is attempted in Chapter-3 that follows a different ansatz on

the distribution function.

In Chapter 3, the rheology of the steady uniform shear flow of smooth inelastic hard-
spheres is analysed using an anisotropic Maxwellian distribution function; the latter ansatz
follows from the maximum entropy principle (E. T. Jaynes, 1957, Phys. Rev.) and seems to
be appropriate for a granular gas for which an equilibrium-state does not exist. For the simple
shear flow, the second-moment tensor M is assumed to be anisotropic, characterized by three
parameters: (i) the non-coaxiality angle (¢, the angle between the principal eigen-directions
of M and the shear tensor D), (ii) the shear-plane temperature-anisotropy (1, the difference
between the principal eigenvalues of M on the shear plane, o T — 7)) and (iii) the excess
temperature (12 o< T — T;) along the vorticity direction. The balance equations governing the
kinetic stress tensor (or, the balance of second moment) has been solved using anisotropic
Maxwellian as the single particle distribution function. An exact analytical solution at the
Burnett order (second order in the shear rate) and a perturbative solution at the super-super-
Burnett order (fourth order in shear rate) have been derived leading to analytical determination
of the first (.#]) and second (.#2) normal-stress differences and other transport coefficients.
The theoretical expressions for the two normal-stress differences, along with those of pressure
(p) and shear viscosity (), are compared with (i) the full numerical solution of the second-
moment equation and (ii) the previous MD simulation data. An excellent agreement with the
simulation data is found when the solutions are considered at the super’>-Burnett order, valid
for the whole range of volume fraction spanning from the dilute limit (v — 0) to the freezing
point density (v — 0.5). The origins of two normal-stress differences are discussed in terms

of the non-coaxiality of the eigen-directions of the stress and strain tensors and the excess
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temperature in the vorticity direction. This chapter is based on two recently published papers
in J. Fluid Mech. [(i) vol. 757 (2014), pp. 251-296 and (ii) vol. 795 (2016), pp. 549-580].

In Chapter 4, the normal stress differences and other transport coefficients are analysed
for the simple shear flow of a dense gas-solid suspension of inelastic hard spheres suspended
in a Newtonian gas of viscosity l, and experiencing a Stokesian drag force; this work is a
direct extension of chapter-3 (St — o), including the effects of interstitial gas (St = finite).
The viscous heating from the boundaries is compensated by dissipation via two mechanisms
(i) the inelastic collisions between particles characterized by a coefficient of normal restitu-
tion e (0 < e < 1) and (if) the drag force which the surrounding fluid exerts on the particles.
Rheology of the particle phase is analysed with anisotropic-Maxwelliian as the single-particle
distribution function as in Chapter-3. The pressure, shear viscosity and the first and second
normal-stress differences are computed for the whole range of density (V) and inelasticity (e),
with the scaled Stokes number (St; = St/Ry;s) varying from a small value (~ 10) to the dry
granular limit of St — c. An exact solution of the second-moment balance of velocity fluc-
tuations at the Burnett order (i.e. second order in the shear rate) has been derived, leading
to analytical expressions for the first (.4]) and the second (.#3) normal stress differences. Ex-
panding around the Burnett order solution, a perturbative solution at the super-super-Burnett
order (i.e. fourth order in the shear rate) is also derived which is found to improve the second-
order solution. It is found that the first normal-stress difference is maximum in the dilute
regime and tends to zero in the dense limit and remains positive throughout; on the other hand,
the second normal-stress difference is negative in the dilute limit, undergoes a sign change at
some finite density and becomes positive in the dense limit. The effect of the gas-phase is
found to (i) decrease the values of both pressure and shear viscosity, and (ii) increase the mag-
nitude of both normal-stress differences. The location of the critical density, where the second
normal-stress difference changes its sign, is determined and plotted as a critical surface in the
(v,e,Stg)-plane. Finally, as the limit of St — oo (1, — 0) is approached, the results for the dry
granular flows of chapter 3 are recovered.

In Chapter 5, the dilute limit of a sheared gas-solid suspension is reanalysed, with a fo-
cus to understand the hysteresis behaviour in the particle phase rheology (H.-K. Tsao & D. L.
Koch, J. Fluid Mech, 1995, vol. 296). Another focus of this chapter is to analyse and quantify
the anisotropy of the second-moment tensor, M = (CC), of fluctuation velocity, and subse-
quently tie and explain the rheological/transport coefficients of a sheared gas-solid suspension
in terms of the anisotropies of M. In analysing this problem three qualitatively different states
of solutions are found. Firstly, the “quenched” state, in which the individual particles follow
the local fluid motion, corresponds to a very low value of particle agitation and appears be-

low a critical value of Stokes number Sz, (Vv,e); this state is followed by an unstable state
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of solution that exists over a range of intermediate Stokes numbers St., < St < St.,. Finally,
the agitated state corresponds to a very high value of temperature which is termed as the “ig-
nited” state and exists beyond a critical value of Stokes number St., (¢). The phase diagram
is constructed in the three-dimensional (v, St,e)-space that delineates the regions of ignited
and quenched states and their coexistence. Analytical expressions for the particle-phase shear
viscosity and the normal stress differences are obtained, along with related scaling relations
on the quenched and ignited states. At any e, the shear-viscosity undergoes a discontinuous
jump with increasing shear rate (i.e. discontinuous shear-thickening, DST) at the “quenched-
ignited” transition. The first (.#]) and second (.43) normal-stress differences also undergo
similar first-order transitions: (i) .#] jumps from large to small positive values and (ii) .43
from positive to negative values with increasing Sz, with the sign-change of .45 identified with
the system making a transition from the quenched to ignited states. It is shown that for both
granular and gas-solid suspensions, the excess temperature (7% = T = T, o< A?) along the
vorticity direction is responsible for .45 # 0, while the shear-plane anisotropies (¢ and 1) are
responsible for .47 # 0.
Finally, the conclusions are drawn in Chapter 6 with an overall summary of the thesis.
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Chapter 1
Introduction

Granular matter is a collection of large number of solid particles where the particle size ranges
from 1mm to meters (Saturn’s ring) and it is found everywhere in nature (avalanche, debris
flows, Planetary rings, etc.) as well as in industry (Jackson 2000; Rao & Nott 2008).

At rest the ‘dry’ granular materials (for which the effect of interstitial fluid can be ne-
glected) behave like a solid, having a compressive strength but no tensile strength, and hence
dubbed a ‘peculiar’ solid. On the other hand, a collection of particles can flow like a liquid as
in an hour-glass or behave like a gas under strong shaking (Forterre & Pouliquen 2008; Rao
& Nott 2008). In the case of a granular gas (Campbell 1990; Goldhirsch 2003; Brilliantov
& Poschel 2004), the particle collisions are inelastic, leading to the dissipation of the kinetic
energy of colliding particles. The inelastic dissipation is known to be the progenitors of many
interesting properties of a granular fluid, and is also responsible for the loss of ‘microscopic’
reversibility at the level of Liouville and Boltzmann equations that calls for non-standard sta-
tistical mechanics (Jenkins & Richman 1985a; Sela & Goldhirsch 1998; Garz6 & Dufty 1999;
Lutsko 2005; Rongali & Alam 2014) to develop coarse-grained theories for flowing granular
matter. Because of its rich properties it is still an interesting and unexplored topic of research.

Granular matter is found in all three forms of matter viz. solid, liquid and gas. It can
behave like a solid when undisturbed and can support large load or can form a pile. The
frictional bond among the particles support that large load (Campbell 1990). Once this bond
is overcome because of an external shear or some other form of disturbance, the system will
start to flow. The initial stage of the flow will be movement of the particle-blocks relative to
one another and this stage is the quasi static state. When the external disturbance is increased
beyond a certain limit, the system reaches to the rapid-flow regime. Where the system is under
a very strong external force, each particle moves randomly and independent of each other, as
it happens in a gas flow. Therefore granular matter can work as a solid when undisturbed and

can flow in response to an external influence. For example the sands in an hour glass flows
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Fig. 1.1 Granular matter appears as solid and fluid phases simultaneously.

under gravity. Hourglass is an example where quasi-static, fluid and solid, all three phases
of granular matter, can be seen. The flow through the orifice is the signature of a fluid, the
sand-slides above the orifice shows the quasi-static behaviour whereas the stored sands at the
bottom is the form of a solid (see figure 1.1).

Interestingly the flow rate through the orifice of an hour glass is independent of the height
(Jaeger et al. 1996) of the substance above. This is unconventional and the behaviour is exactly
opposing the characteristic of an usual fluid. This property of granular fluid being flowing at
an almost constant speed is used in hour glasses. It is the contact forces between the grains
and the static friction with the glass of the container enables the wall to support the extra load
of the sand above (Janssen 1895). Because of it’s stature and exhibition of properties of all
three forms of matter, granular matter can be thought of as a different state of matter in it’s

own right.

Once the external influence is increased by means of increasing the shear rate, granular
matter comes out of the quasi-static regime and flows like a fluid. At this stage an individual
particle flows independent of others and it is called a rapid granular flow. This thesis addresses
the behaviours of rapid granular flow in particular, when the substance is uniformly sheared.

Therefore, a driven system of macroscopic/non-Brownian particles (e.g. driven by external
vibration or shearing) resemble a molecular gas in which the particles move around randomly
but they loose energy upon collisions, with the latter being a major difference of the granu-
lar gas from its molecular counterpart. Such a non-equilibrium state of agitated particles is
actually known as rapid granular fluid (Goldhirsch 2003) for which the dense gas kinetic the-
ory (Chapman & Cowling 1970) has been appropriately modified and successfully used for a
variety of flow configurations over the last three decades (Savage & Jeffrey 1981; Jenkins &
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Richman 1985b,a; Sela & Goldhirsch 1998; Brey et al. 1998; Garz6 & Dufty 1999; Brilliantov
& Poschel 2004; Rao & Nott 2008).

When a granular matter is rapidly sheared, each individual particle moves randomly inde-
pendent of the presence of the neighbouring particles, it collides with other particles and the
collisions are instantaneous, therefore the motion of these grains in a granular system can be
thought of analogous to the thermal motion of the molecules in a molecular gas. The analogy
between the random motion of the granules and the thermal motion of the molecular gas is
so onto mapped that, all the definitions used in statistical mechanics of molecular gases have
been employed to analyse the properties of a flowing granular media. Following the defini-
tion of temperature in molecular gases, the granular temperature is also defined as the mean
of the square of particle’s fluctuation velocity (Ogawa 1978; Campbell 1990). One point we
must emphasize here that this granular temperature is not a thermodynamic temperature, it
is not possible to maintain a constant granular temperature just by keeping it in contact with
an isothermal heat hub albeit both the thermodynamic and granular temperatures have the act

similar in their respective systems.

Despite the similarities between the molecular and granular gases there are certain differ-
ences also. The first one is the difference in size. The diameter of the particles in a granular
system varies from 1 um to some meters (for example, in Saturn’s ring), much much larger
than the diameter of an atom or molecule. The second and most important difference is that
the collisions in a granular system are inherently “inelastic” leading to a continuous energy
dissipation (Kadanoff 1999; Brilliantov & Poschel 2004; Goldhirsch 2003). Because of this
continuous energy dissipation, granular system needs a constant supply of energy in order to
keep itself alive. If the energy source is stopped the system becomes dead. It can be experi-
enced in our daily life examples. The grains kept in a container shows random temperature like
motions when it is shaken but immediately becomes inert if the shaking is stopped. Therefore
we have to constantly shake it in order to maintain the motions of these grains. The inelastic
nature of the particles leads to so many interesting implications regarding the behaviours of a
granular gas which will be discussed in the main chapters of the present thesis.

1.1 Coefficient of Restitution

The inelastic collisions between the grains are characterized by a coefficient of normal restitu-
tion e. It relates the post (c/, ¢5) and pre-collisional (¢, ¢;) velocities of disks/spheres labelled
by 1 and 2 as (Brilliantov & Poschel 2004; Rao & Nott 2008)
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C2
. &

Fig. 1.2 Collision sketch of pairs of inelastic disks and spheres.

1
¢ =e - g

(1+e) ’ (1.D
ch=cr+ 5 (g-k)k

where g = ¢| — ¢, denotes the relative velocity of the colliding pair before the collision and k is
the unit contact vector along the line joining the centres of the particles (figure 1.2). This coef-
ficient of restitution mainly separates a granular gas from the molecular gas and is responsible

for some rich features that granular matter possesses.

In general, for a granular gas of realistic particles, the coefficient of restitution is a function
of the relative velocity e = e(g) and the explicit functional dependence on g must be worked
out. Many attempts have been made (Schwager & Poschel 1998; Ramirez er al. 1999) to
derive a general closed form expression for e(g). The most compact expression can be found

in Brilliantov & Poschel (2004), which is an infinite series representation of the form:
e=1-Ag'P+Bg* £, (1.2)

where A, B, - - - are functions of the Young modulus Y, Poisson ratio, mass density p, etc. Butin
this present thesis, for simplicity, we have assumed e to be a constant that belongs to the closed
interval [0,1]. The supremum of the set (e = 1) corresponds to a conserved system, where
collision occurs elastically and the infimum (e = 0) corresponds to a perfectly sticky collision,
where complete energy of the relative motion is lost and the particles are bound together after
a collision. Therefore the open interval (0, 1) corresponds to a dissipative system and causes
energy loss.

We have also assumed that the particles are smooth in nature, which means that there is

no change in the tangential direction of the relative velocity during a collision and the only
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change along the normal direction is governed by

(g'-k) = —e(g-k)}, 03

(&' xk)= (gxk)

where g’ = ¢/ — ¢}, is the relative velocity after the collision. There are some studies that deal
with the rough particles (Lun 1991; Abu-Zaid & Ahmadi 1993; Luding et al. 1998; Cafiero
& Luding 2000; Gayen & Alam 2006, 2008, 2011; Rongali & Alam 2014) including the spin
degrees of freedom. The particles that actually appear in real world are rough and frictional,
therefore system composed of particles like these must deserves an attention. Several scientists
have studied granular system of rough particles via theory (Alam & Nott 1997; Brilliantov
et al. 2007; Goldhirsch et al. 2005; Huthmann & Zippelius 1997; Jenkins & Zhang 2002;
Gayen & Alam 2006; Santos ef al. 2011) and simulation (Cafiero et al. 2002; Gayen & Alam
2008, 2011). In their studies of rough particles the collision model includes energy loss due
to changes in the normal as well as tangential components of momentum of the colliding

particles, and relative velocity changes according to the rule (Pidduck 1922; Maw et al. 1976):

(f’ k) = —e,(g-k) } (L4)
(8 x k) =—ei(gxk)
where G
8201—02+<5>k><(w1+w2), (1.5)

is the relative velocity before the collision. In equations (1.4-1.5) w;, @, are the angular
velocities of particles levelled with 1, 2 respectively and e,, e; stand for the coefficients of
normal, tangential restitution respectively. The parameter e; measures the particle’s surface
roughness and belongs to the interval [—1,1], it accounts for the amount of change in the
tangential direction during a collision. The boundary points ¢, = —1 and e¢; = 1 correspond
to perfectly smooth and perfectly rough collisions respectively. As in the present thesis we
are interested in granular flows for smooth particles we must take ¢, = —1 and replace ¢, = e,
for which the collision dynamics given in (1.4) simplifies to the equation (1.3). Polydispersity
is not a concern of the present thesis although it has great practical importance (Ottino &
Khakhar 2000) and some scientists have studied them (Garzé & Dufty 2002; Montanero &
Garz6 2003; Alam & Luding 2002, 2003b; Trujillo et al. 2003; Serero et al. 2006) in recent
days. Some people have worked with non-spherical grains as well (Buchholtz et al. 1995;
Poschel & Buchholtz 1995). But for the present thesis we focus on the simplest model that
consists of identical smooth spherical particles following hard sphere binary collisions.
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In general the interstices between the solid particles are filled with air or with some other
fluid and therefore, technically, the granular matter is a multiphase system. However when the
density ratio between the fluid phase and the solid phase becomes very low, the presence of
the interstitial fluid can be neglected and it is called the “dry” granular system. On the other
hand, when the presence of the ambient fluid becomes important, the particle fluid interaction
plays a significant role in momentum transport. The latter class of system is considered to be
a suspension and the presence of an interstitial fluid leads to interesting physical phenomena.
This thesis deals with both of these classes of systems, the dry granular flows and gas-solid
suspensions. In the fast two chapters of this thesis, we have concentrated in analysing the
dry granular system, while the last two chapters are devoted to analyse flows of gas-solid

suspensions.

1.2 Non-Newtonian Rheology: Normal Stress Differences

and Rate Dependent Viscosity in Granular Fluids

In a Newtonian fluid the shear stress varies linearly with the shear rate, passing thorough
the origin in a response to an external disturbance. The proportionality constant, called the
coefficient of shear viscosity or simply the viscosity, is the measure of fluidity or the measure
of fluid’s ability to resist deformation in response to shear stresses. In general for a Newtonian

fluid the total stress tensor can be expressed as

P(xﬁ = péaﬁ +i)\aﬁ' (1.6)

The deviatoric part ﬁaﬁ of the stress tensor for a Newtonian fluid takes the form

0 Py, Py
Pogp=1|Px 0 Py |, (1.7)
Py Py, O
where P,y is the shear stress, connects the strain rate % via the constant shear viscosity (1)
3
as
Ju,
Py =—Uu——, 1.8
Xy nu ary ( )

and called the Newton’s law of viscosity.
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When a fluid disobeys any one of these (1.7- 1.8) laws, in terms of showing non-zero
normal components in the deviatoric stress or/and non-constant U, it is categorized as a non-
Newtonian fluid. The occurrence of finite normal stress differences and the dependence of
shear viscosity on shear rate in non-Newtonian fluids are briefly discussed in following sub-

sections.

1.2.1 Normal Stress Differences and their consequences

The studies on normal stresses has a long and rich history in the area of particulate suspen-
sions (Bagnold 1954; Brady & Morris 1997; Sierou & Brady 2002; Singh & Nott 2003;
Guazzelli & Morris 2011), with the early works being carried out in the dense regime of such
systems. More recent experimental work (Boyer et al. 2011; Couturier et al. 2011) on the be-
haviour of normal stresses in non-Brownian suspensions has generated renewed interest to un-
derstand the non-Newtonian rheology of suspensions and dense granular media via simulation
and experiment (Lerner ef al. 2012; Trulsson et al. 2012; Dbouk et al. 2013; Denn & Morris
2014). Even after 60 years’ of research starting from (Bagnold 1954), there remain debates
about the sign of two normal stresses in the dense regime of a suspension. In any case, study-
ing the non-Newtonian behaviour is also important since the normal stresses themselves are
responsible for many interesting flow-features (e.g. rod-climbing or Weissenberg-effect, see
figure 1.3, die-swelling, secondary flows, etc.) in non-Newtonian fluids. Moreover, it is also
known from the literature on in polymeric fluids and suspensions that the non-Newtonian flu-
ids can support additional instability modes whose origin can solely be tied to normal stresses.
From the modelling viewpoint, the presence of large normal-stress differences readily calls
for higher-order constitutive models even at the minimal level. Of course, to make meaningful

progress in developing such constitutive models, a prior knowledge of rheology is also needed.
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Non-Newtonian

Newtonian

Water : Parabolic profile of free surface. Weissenberg effect : Rod-climbing.

Fig. 1.3 Manifestation of normal-stress differences as observed in an experiment. In the left
figure for a Newtonian fluid (water), the free surface is a parabola whereas the right figure
shows prominent non-Newtonian rheology as the fluid (water+polymer solution) is climbing
up along the rod.

In this thesis we investigate the non-Newtonian rheology of a sheared (i) granular and (if)
gas-solid systems via kinetic theory. For an N-particle system, the stress tensor has contribu-
tions from both kinetic and collisional mechanisms of transport:

P= Pkin +PC0117 (19)

the first term is dominant in the dilute regime, whereas the second-one dominates in the dense
regime. This can be further decomposed as

P=pI+P, (1.10)

where p = P,;/dim is the isotropic pressure (dim is the dimension), I is the identity tensor and
the deviatoric stress is P. The off-diagonal components of P are related to shear viscosity
which, in general, depends on the deformation rate.

At the Navier-Stokes (NS) order, the stress tensor (1.10) is Newtonian (i.e. linear in the
shear rate, with the proportionality constant being the shear viscosity) and its diagonal com-
ponents are equal. The latter implies that the first and second normal stress differences,
M ~ (P — Pyy) and A3 ~ (P, — P.;), respectively, are identically zero. The non-zero normal
stresses and/or the shear-rate dependence of viscosity are signatures of the non-Newtonian
rheology of the medium. In kinetic theory, the normal stresses appear at the Burnett-order
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Fig. 1.4 Variations of the () first normal stress difference with area fraction of disks for dif-
ferent values of the restitution coefficient e and (b) first and second normal stress differences
with volume fraction of particles for restitution coefficient e = 0.9. Data (symbols) correspond
to event-driven simulations (Alam & Luding 20035, 2005b) for a sheared system of smooth
inelastic hard-disks (panel a) and hard-spheres (panel b) with Lees-Edward boundary condi-
tion; lines are drawn to guide the eye. These two figures constitute the primary motivation of
the theoretical work embodied in the present thesis.

(Burnett 1935; Grad 1949; Chapman & Cowling 1970) and hence cannot be taken into ac-
count in the standard NS-order hydrodynamic equations. The higher-order theories like the
Burnett equations (Burnett 1935; Sela & Goldhirsch 1998), or, Grad’s 13-moment equations
(Grad 1949; Jenkins & Richman 1985b,a; Torrilhon & Struchtrup 2004) should therefore be
used to correctly model the nonlinear rheology of granular fluids. Although the rest state of
Burnett equations is known to be unstable for molecular gases, there are ways to regularize
these equations (Rosenau 1989); moreover, it has been established recently (Santos 2008) that
the partial sum of the shear stress converges in the uniform shear of a granular fluid, with its
radius of convergence increasing with increasing dissipation/inelasticity. On the other hand,
in Grad’s method the distribution function is expanded in a Hermite series around the local
Maxwellian of thermal equilibrium, and the moment equations for an extended set of hydro-

dynamic fields are given in the main chapters.

The sheared granular fluid is known to possess finite normal stress differences for the
whole range of densities (Walton & Braun 1986; Campbell 1990; Sela & Goldhirsch 1998;
Alam & Luding 2003a,b, 2005a,b; Montanero et al. 2006; Reyes et al. 2013; Saha & Alam
2014, 2016) and the rate-dependence of viscosity seems to be an inherent feature of the uni-
form shear state of a granular fluid (Santos et al. 2004). Figure 1.4 indicates that the first

normal stress difference is finite in a sheared granular fluid for a range of density and its
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magnitude increases with increasing dissipation. Detailed simulations in two-dimensions (2D,
i.e. for disks, (Alam & Luding 2003b)) and three-dimensions (3D, i.e. for spheres, (Alam &
Luding 2005b)) have uncovered the following distinguishing features of normal stresses in a
sheared granular fluid: (i) the first normal stress difference is positive in the dilute limit and un-
dergo a sign-reversal at a finite density near the freezing point (depending on dissipation) in the
dense limit; (ii) the second normal stress difference is negative in the dilute limit and becomes
positive beyond a moderate density. Both theory and simulation suggest that the magnitude of

both first and second normal stress differences increases with increasing dissipation.

Variations of the two normal stress differences (.47 and .45) for uniform shear flow of
smooth inelastic spheres, at a restitution coefficient e = 0.9 are displayed in figure 1.4(b). It
is observed that the scaled first normal stress difference (4] = (P — P,y)/p, where Pyq is
the diagonal component of the stress tensor along the a-direction, and p = (Pyc + Py + P;) /3
is the mean pressure) is positive and maximal in the dilute limit (v — 0) and decreases in
magnitude with increasing density. On the other hand, the second normal stress difference
(M2 = (Pyy — P;;)/ p) is negative in the dilute limit, increases with increasing density, becomes
positive at a critical density V. ~ 0.13, and increases monotonically thereafter. Alam & Lud-
ing (2005b) also postulated a frame-indifferent phenomenological constitutive model for gran-
ular fluids to predict the sign-reversals of both first and second normal stress differences.

Large normal stresses, such as those in figure 1.4, must be taken into account to correctly
model a dissipative granular fluid in the rapid shear regime. Jenkins & Richman (1988) have
incorporated normal stresses in their study of steady uniform shear flow (USF) of inelastic
disks, following earlier kinetic theory works of (Goldreich & Tremaine 1978) and (Araki
& Tremaine 1986) that used the anisotropic Gaussian as a reference state. They solved the
second moment balance equation in the two extreme limits of density, and derived analytical
results for the stress tensor in dilute and dense flows, but the solutions for the full range of
density remain unexplored for the shear flow of inelastic disks. Chou & Richman (1998)
analysed the USF of inelastic spheres and provided numerical solutions for the stress tensor
for the full range of density. More recently, Lutsko (2004) used an arbitrary Gaussian as a
reference to solve the Enskog equation for a polydisperse mixture of inelastic hard-spheres
via the Hermite expansion (Grad 1949) around the anisotropic reference state, and the related
kinetic integrals were simplified using a generating function technique. Focussing attention to
the uniform shear state, he evaluated the stress tensor numerically and confirmed the previous
numerical results of (Chou & Richman 1998). It was further shown (Lutsko 2004) that the
moment-theory predictions for normal stress differences agree well with those obtained from
the direct simulation Monte Carlo (DSMC) solution of the Enskog equation for a range of

densities but can differ considerably from molecular dynamic simulations of the same system
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for moderately dense binary mixtures. The reason for the latter disagreement remains unclear.
It would greatly help our understanding of nonlinear/non-Newtonian rheology of particulate
media if such higher-order theories can be tackled analytically or semi-analytically to obtain
closed-form constitutive relations— this forms the primary motivation of the present thesis.
Therefore the primary objective of the present thesis is to develop a unified theory and
the related non-Newtonian and non-Fourier constitutive relations of a granular fluid for a large
range of density encompassing the dilute and dense regimes that incorporates the normal stress
differences and the heat flux. Explaining figurel.4 theoretically is the major motivation of this

thesis as explained in Chapters 2 and 3.

1.2.2 Shear rate dependent viscosity: shear thinning and shear thicken-

ing

Shear Stress (7)

Shear Rate ()

Fig. 1.5 Schematic classifying different categories of fluid in terms of showing variations of
shear stress with shear rate. The raw data of the figure have been extracted from the wikipedia
article on “Non-Newtonian fluid”.

The decrease and increase of shear viscosity with increasing shear rate are, respectively,
defined as the shear thinning and shear thickening behaviours. In general viscosity (i) of a

system as a function of the shear rate ¥ is connected via the power law

=Ky, (1.11)
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where K is a constant based on the material itself. The shear thinning and thickening be-
haviours correspond to n < 1 and n > 1 respectively. Finally the intermediate value n = 1
corresponds to the Newtonian fluid, where viscosity is independent of the shear rate and re-

mains constant throughout.
* Newtonian fluid
In this case the apparent viscosity of the fluid remains constant during flow (black solid line

in figure 1.5) and Navier-Stokes level hydrodynamics remain the valid theory to analyse the

flow behaviour. Blood plasma, water are very commonly seen examples of Newtonian fluid.

Fig. 1.6 Paint: a shear thinning fluid. Cornstarch in water solution : a shear thickening fluid.
The first figure has been taken from an internet resource, the second figure is taken from Brown
& Jaeger (2014).

* Shear thinning fluid

It is also known as pseudoplastic. In this case unlike Newtonian fluid the viscosity of the
substance decreases with increasing shear rate (blue solid line in figure 1.5). This fluid is very
common in our daily life and some examples of shear thinning fluids are nail polish, ketchup,
syrups, latex paint, ice, blood and etc. Paint is a very well cited example of a shear thinning
fluid, it flows continuously when applied a shear with a brush without much drip (left panel
in figure 1.6). Similar technique is used in nail polish and spreading of butter over a bread.
Blood, a suspension of red blood cells in Newtonian plasma, is also an example of a shear
thinning fluid.

* Shear thickening fluid
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Fluids that behave exactly opposite to the case discussed above are called as shear thickening
fluids. The apparent viscosity in a shear thickening fluid increases with increasing shear rate
(red solid line in figure 1.5). Highly concentrated suspensions like cornstarch dissolved in
water is an example of shear thickening fluid. Figure 1.6 (right panel), taken from Brown
& Jaeger (2014), is a snapshot of an experiment showing a person running on the cornstarch
solution of water, a highly dense suspension. The suspension works like a normal fluid when
undisturbed but can support the weight of a person running over it. While running over it,
the man actually applies a shear stress onto the fluid that leads to an increase of viscosity.
Therefore the fluid behaves like a solid and supports the person’s weight. But if the person
tries to remain static over the fluid without running, he would sink into the fluid as it would
happen in a normal Newtonian fluid.

Discontinuous shear thickening is the phenomena, where this increment of shear viscosity
shows a sudden jump in the shear stress versus shear rate plot [figure 1.5]. This corresponds
to a very high value of shear viscosity and appears when index n becomes larger than 2 in the
power law (1.11).

Therefore, from equation (1.11), we can classify fluids according to different values of n:

n < 1 Shear thinning.

n = 1 Newtonian.

1 < n < 2 Continuous shear thickening.

* n > 2 Discontinuous shear thickening.

Beside this there is another class of fluid, in which the viscosity changes with time as the
fluid is continuously sheared. Fluids that show time dependent viscosity are called the memory
materials. Like shear thinning/thickening the time dependent feature can also be categorized
into two types, viz. thixotropic and rheopectic. When the viscosity of a fluid decreases with
time, it is called thixotropic and if it increases with time, it is called rheopectic. Examples of
thixotropic fluids are gelatine, cream, paints, yogurt, whereas the rheopectic behaviour is less
common in nature and can be observed in highly concentrated starch solutions.

As far as the present thesis is concerned, we are mostly interested in the shear rate depen-

dence of viscosity. The shear rate history (time) dependence is left for future.
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Recently in a review article by Brown & Jaeger (2014), three different mechanisms for
discontinuous shear thickening in a densely packed suspension are proposed: (i) hydroclus-
tering, (if) order-disorder transition and (iii) the dialatancy. In hydroclustering there is an
increase of lubrication drag force between particles and particles form larger clusters (Brady
& Bossis 1985). Flow structure changes from ordered layers to disordered in order-disorder
transition. Finally in dialatancy the volume of the particulate packing increases, leading to a
total increase of stresses. However neither of these conditions are necessary or sufficient for
a DST to happen. For example, these mechanisms are not able to explain the DST observed
in dry jammed frictional grains without presence of any interstitial fluid (Otsuki & Hayakawa
2011), nor it can explain why there has not been any DST for frictionless particles. Also in
the review article by Barnes (1989) it is said that all suspensions can exhibit shear thickening
provided a proper condition is being imposed. Depending upon the types of particles being
suspended and the suspended fluid, a complex fluid can exhibit all three natures viz. the (i)
Newtonian regime, (ii) shear thinning and finally the (iii) shear thickening with a change in
the shear rate. On the other hand, not all suspensions show all these behaviours. Therefore,
clarifying the conditions and identifying the proper mechanism behind DST still remains a

fundamental problem of research.
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Fig. 1.7 Evolution diagram showing (a) shear stress against shear rate, (b) shear viscosity ver-
sus against stress; for a concentrated suspension of cornstarch suspended in water at different
mass fractions ¢,,. The figure has been adopted from the works of Brown & Jaeger (2012,
2014).

Figure 1.7 has been taken from Brown & Jaeger (2012, 2014), it tells (a) the dependence
of shear stress (7) versus shear rate () and (b) the shear viscosity (1) versus shear stress (7)
for a suspension; cornstarch suspended in a solution of 85% glycerol and 15% water, with

different mass fraction ¢,,. The mass fraction is proportional to the volume fraction v. Here
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the shear viscosity and shear stress in a steady flow are related via

T=n(7)7 (1.12)

The portion of the plot (b), where the slope is greater than 0, is the region of continuous shear
thickening. It is observed that there is a threshold value 7,,;, beyond which shear thickening
starts. This value of minimum critical shear stress T, (marked by left dashed vertical line
in fig. 1.7) is almost independent of volume fraction (Maranzano & Wagner 2001; Wagner &
Brady 2009) and below 7., a shear thinning or Newtonian behaviour may be observed. The
continuous shear thickening does not generally appear in dilute suspensions, it is observed
in the range 0.3 < v < 0.4. On the other hand the portion of the plot (), where the slope
becomes 1 corresponds to point of discontinuous jump in viscosity. Therefore beyond the
point Ty, viscosity gradually increases with increasing shear rate but as it can be seen in fig.
1.7, this increase of viscosity is not indefinite, in fact there exists a critical value of shear stress
Tmax, Where this increasing phenomenon stops. This critical value of maximum shear stress
Tmax (marked by right dashed vertical line in fig. 1.7) is also independent of volume fraction
(Brown & Jaeger 2009; Maranzano & Wagner 2001) and beyond this value cracking, breakup
can be seen (Laun 1994). Therefore determining these critical values of shear stresses (T
and Tmax) and their explicit functional dependence with volume fraction remain an interesting
problem of research.

Extensive research on the appearance of discontinuous shear thickening in a densely packed
suspension has been done in the last few decades [Hoffman (1972, 1974); Barnes (1989);
Brown & Jaeger (2012); Fernandez et al. (2013); Seto et al. (2013); Brown & Jaeger (2014);
Wyart & Cates (2014); Xu et al. (2014); Clavaud et al. (2017)]. On the other hand there are a
few articles focusing on the dilute suspension. Tsao & Koch (1995) have identified DST for
a dilute suspension of elastic particles. Sangani et al. (1996) have extended their work for a
non-dilute suspension and it is shown that the DST disappears beyond a finite density. The
appearance of discontinuous shear thickening in simple shear flow of a “dilute” suspension
of elastic/inelastic particles along-with their conditions of existence are discussed thoroughly
in Chapter-5 of the present thesis. However uncovering the same conditions for a non-dilute
inelastic suspension remains an unsolved problem and must be worked out in future.

Figure 1.8 displays the variations of the effective viscosity 1/ versus Peélet number for
a colloidal Brownian suspension at different values of volume fraction v = 0.49 (solid line
on the top), v = 0.47 (dashed line) and v = 0.419 (dot-dashed line). This is a schematic
of the results obtained from Stokesian simulation data adapted from Foss & Brady (2000)
and Guazzelli & Morris (2011). Here uy is the effective viscosity of the suspension and

is the viscosity of the suspending fluid. The suspended particles are small enough that than
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Fig. 1.8 Variation of the effective viscosity versus Peélet number for different values of volume
fraction. The raw data for this figure have been taken from Foss & Brady (2000); Guazzelli &
Morris (2011).

can respond to thermal fluctuations in the suspending fluid. Therefore unlike non-Brownian
suspensions, the effective viscosity is a function of volume fraction v, shear rate ¥, the thermal
energy and viscosity of the suspending fluid and also of suspended particle’s diameter 6. The
combined effect is captured via defining the Peclet number

Pe ~ puyo? /Ty, (1.13)

is a dimensionless measure of the shear rate, Ty is the temperature of the fluid. It is clear
from the above figure that at any value of volume fraction v, as the shear rate is increased the
effective viscosity shows a shear thinning behaviour reaches a minimum and then eventually
shows a shear thickening behaviour at large shear rate. The increase of effective viscosity
with increasing volume fraction is also shown with an arrow. Figure 1.8 works as a secondary
motivation of the present thesis and our interest is to find the rheological properties of the
particle phase in suspensions composed of non-Brownian hard spheres (elastic or inelastic)
dense (Chapter 4) and dilute (Chapter 5) gas-solid suspensions.
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1.3 Organization of the Present Thesis

Chapters 2 to 5 are fairly independent and can be read as follows.

Nonlinear Moment Theory

Chapter 2 Chapter 3 Chapter 5
Nonlinear Theory of a Anisotropic Moment Shear-thickening and
Dense Granular Fluid Theory for a Dense NSD's for a dilute

Granular Fluid Gas-Solid Suspension
Chapter 4

Anisotropic Moment
Theory for a Dense
Gas-Solid Suspension







Chapter 2

Nonlinear Theory for a Granular Gas at

Finite Density : Fourteen and Ten

Moment Theories!

2.1 Introduction

In this chapter, we are interested in a dense-granular system of N randomly moving identical
smooth particles of mass m and diameter o. By using the word “dense” we mean granular
systems of finite density, spanning from the extreme dilute limit to close to the freezing point
density. Particles are colliding with each other randomly and unlike in a molecular gas these
collisions are inelastic in a granular gas and the system dissipates energy upon collisions. It
is assumed that the granules are solid balls/disks and collide according to the hard-sphere
potential for which the potential function works like a delta function: it becomes infinity
when two particles come into contact and remain zero otherwise. All these collisions are
instantaneous in the sense that particle-particle collision time is much much lesser than the
particle’s mean free time and we have accounted for binary collisions only. Cases like multi-
particle collisions, clustering, finite collision time, polydispersity are not considered in this
thesis.

By the word “dense” I tried to refer flows of granular matter at any “finite” density (non-dilute). In granular
research community scientists have used the term “dense” to mean granular flows having volume fractions > 0.01;
mathematically any value of volume fraction slightly greater than zero. In the works of Garzo et al. (2012); Garz6
(2013), they have mentioned volume fraction of 0.1 as “dense” granular fluid. Also in the works of Herdegen
& Hess (1982) and Ugawa & Cordero (2007), these authors have considered a volume fraction of v =0.015 as
dense. On the other hand, in soil mechanics and geophysical context a volume fraction of v > 0.5 is considered
as dense where frictional contacts are important.
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We have assumed the non-equilibrium distribution function is an expansion around the
isotropic Gaussian state. This isotropic Gaussian works as the equilibrium distribution func-
tion (Chapman & Cowling 1970; Huang 1987) in a dilute molecular gas at rest and is termed
as the Maxwell-Boltzmann distribution:

fM — Le—mCZ/ZkBTy (21)

kgT
27 (37)

where 7 is the number density, m denotes the mass of a molecule, kp is the Boltzmann constant,

N[0

T is the energy of the system and C is the peculiar velocity. Unlike in molecular gases the
particles in a granular gas are inherently inelastic, and therefore the system constantly dissi-
pates energy upon collisions. Because of the continuous energy loss, it is not possible to keep
a granular system alive without proper inclusion of an external energy resource. Therefore
we do not have any concept of a granular fluid at equilibrium and hence f* is not exactly
the same as the Maxwell-Boltzmann distribution for molecular gases at equilibrium/rest. Al-
though their functional forms look same, there exits certain difference as well. The base state
isotropic distribution function for flows of granular medium contains field variables n and T,
which are not constants as they are in a molecular gas but are functions of space and time
[Jenkins & Richman (1985a); Lun et al. (1984); Campbell (1990); Goldhirsch (2003)].

The macroscopic state of the granular system is assumed to be characterized by the four-
teen field variables: the mass density (p), macroscopic flow velocity (u), full stress tensor
(P), heat flux (q) and the contracted fourth moment P;;;;, for which the evolution equations
are given. The nonlinear production terms at different orders are calculated by including all
the second order nonlinearities which regularize this moment description. The collisional dis-
sipation is derived for the whole range of volume fraction that includes double derivatives of
the hydrodynamic field variables as well. In the dilute limit the balance of contracted third
order balance is solved to obtain a relation for granular heat flux. It is observed that, gradi-
ent of kinetic stress also drives a heat current and thermal conductivity is characterized by an
asymmetric anisotropic tensor. Therefore a generalized Fourier law for granular heat flux in
the dilute limit is established. Lastly, uniform shear flow of spherical granular particles is anal-
ysed using the theory and all the transport coefficients are computed for the whole range of
density. The non-Newtonian rheology appears in the uniform shear flow in terms of the normal
stress differences is also appreciated. Although discrepancy is observed in normal stress differ-
ences but for pressure and shear viscosity an excellent agreement with the particle simulation
data (Alam & Luding 20050) is found. The theory we propose gives better predictions over
all other existing Grad-level theories (Jenkins & Richman 1985a; Kremer & Marques Jr 2011;
Garz6 2012, 2013) in terms of predicting the non-Newtonian transport coefficients. Overall,
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Fig. 2.1 Collision sketch of pairs of inelastic disks and spheres.

we have tried to establish a complete Grad-level theory for a dense granular system which can
be applied to flows of finite density and inelasticity.

This work is a direct extension of the work by (Kremer & Marques Jr 2011; Jenkins &
Richman 1985a), in the sense that we have a “nonlinear” 14-moment theory for the whole
range of volume fraction including all nonlinear terms. It may be noted that Jenkins & Rich-
man (1985a) developed a 13-moment theory of a dense granular gas, but the source and flux
terms of each balance equation were not calculated. On the other hand, the 14-moment theory
of Kremer & Marques Jr (2011) holds only for a “dilute” granular gas; they calculated only the
“linear” part of source terms in each balance equation. Deficiencies of all previous moment
models will become clearer as we move through this chapter.

This chapter is organized as follows. A brief overview of kinetic theory is provided in
§2.2. The fourteen field variables and their corresponding balance equations are given in
§2.3 and §2.4. The non-equilibrium distribution function is proposed in §2.5. Mathematical
formulation of the nonlinear production terms at different orders are given in §2.6. The balance
of granular energy and the complete expression for the collisional dissipation for the whole
range of density that includes all the second order nonlinear terms are given in §2.7. Balance
of second and contracted third moment of velocity fluctuations along-with their closures are
discussed in §2.8 and §2.9. In §2.10 we outline a generalized Fourier law for granular heat flux.
In §2.11 the simple shear flow is analysed using this 14 moment nonlinear theory to determine

the non-Newtonian transport coefficients. Finally the summary is provided in §2.12.

2.2 Brief Overview of Kinetic Theory

We consider flows of a dry granular material consisting of identical, smooth, inelastic spheres
of mass m and diameter ¢. Particles are in random motion colliding in an inelastic manner

and share information among themselves. Let ¢; and ¢, denote the pre-collisional velocities
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of a colliding pair of particles, with ¢ and ¢} denoting the post-collisional one, respectively.
Then the collision dynamics is governed by (Brilliantov & Poschel 2004; Rao & Nott 2008)

1
ci=c— ( ;e>(g.k)k

(1Fe) ! 2.2)
c’2:cz+T(g-k)k

where g = ¢ — ¢, denotes the relative velocity of the colliding pair before the collision and k
is the unit contact vector along the line joining the centres of the particles (figure 2.1).

The particles are considered to be smooth and therefore the tangential component of the
relative velocity g remains unaltered during any collision. On the other hand as the collisions
are inelastic, there is a change in the relative velocity g along the normal direction after a colli-
sion. This change of g along the normal direction is measured using the inelasticity parameter
e, as introduced in eq.(2.2), which is called the coefficient of normal restitution, or simply the
restitution coefficient. In general the coefficient of restitution e is a function of the relative
velocity g [see Goldsmith (1960); Bizon et al. (1999); Brilliantov & Pdschel (2004)] but for
simplicity, we have assumed it to be a constant with its range being [0, 1], where ¢ = 0 and
e = 1 correspond to perfectly sticky and elastic collisions, respectively.

Now, the post-collisional relative velocity, denoted by g’ = ¢ — ¢}, changes according to

(& k)= —e(g-k>} | 03

(8' x k)= (gxk)

Therefore the total change in the kinetic energy (E = mc?/2) during a collision can be easily
obtained from eqs.(2.2-2.3) as

AE = %mc'l2 - %mc'zz — %mc% — %mc% = —%(1 —e?)(g-k)>. (2.4)
It is clear from equation (2.4) that in the elastic limit e = 1, AE = 0. Therefore when the
collisions are elastic the total energy of the system remains conserved. On the other hand, for
the case of granular matter, the collisions are inelastic and the system continuously dissipates
energy upon collisions. Hence we must supply energy from some external source in order to
maintain a steady state.

In kinetic theory of granular/molecular gases at the mesoscopic level, this system is de-
scribed by the Liouville equation for an N-particle distribution function which can be reduced
to an infinite hierarchy of evolution equations of distribution functions (one-body, two-body,
three-body, ...), known as the BBGKY-hierarchy (Chapman & Cowling 1970). The first
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member of this hierarchy deals with the evolution of the single-particle distribution function
fW (e, r,t) reads as:

ot

where V, is the gradient operator in the configuration space, V, is the gradient operator in the

(5e o9, ) 1 a2, 23

momentum space and F (r,1) is the velocity-independent external force field (such as gravity)
acting on particles. On the right hand side of equation (2.5), J(f (2)) is the collision integral
that depends on two-particle distribution function f(2 (c1,r1,€2,12,1).

The single particle distribution function f(!)(c,r,r) is defined such that f!) (¢, r,t)drdc
denotes the probable number of particles in an elementary volume dr about the point r with
the velocities in the range dc around c at time ¢. Therefore, from the above information about
U, the total number (N) of particles in the system is

N = / (e, r, 1)drde, (2.6)

and the local number density # at a point r at time ¢ is defined as

n(r,t):/f(l)(c,r,t)dc. 2.7)

The mean value of a physical property y(c) is calculated using the single particle distribu-

tion function f (1) as
(w(e)) = / y(e) /(e r,1)de. 2.8)

(y) describes the macroscopic analog of a microscopic property Y at the particle level. There-

fore equation (2.8) establishes a connection between the microscopic and macroscopic fields.

The evolution equations for the hydrodynamic fields are obtained from the kinetic equation
(2.5) by multiplying it with y(c) and integrating over the velocity space, resulting in the
following master balance (Chapman & Cowling 1970; Trulsen 1971; Reif 2009) equation :

d < F Jdy

E(m//) = §> — V. (ney)+ €y, (2.9)

where

€Yl = [0V —¥2)f P (c1,x — ok,c2,x,1)0 (k- g)dkde,dc } | @.10)

= fg~k>0<w; — l//])f(z)((,‘],x,Cz,x—l— ok,t)o(k-g)dkdc\dc;
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is the collisional rate of production of y per unit volume, with g -k > 0 referring to the
constraint of impending collisions. It is straightforward to decompose (2.10) into the following
form (Jenkins & Richman 1985b,a; Rao & Nott 2008):

d
cly] = X[y~ V-6ly] - Vo | 5. @)
where @[y] and X [y] are the collisional flux and production/source terms, respectively, whose
integral expressions are given by

1
Ryl =5 [ i+ vi—vi—v) P (e r—ok.cr,r)0’(g-K)dkderdes,  (2.12)
g-k>0

1
=5 fff W+ W — i — ) fP(c1,r,c2,7 + ok) 0% (g - k)dkde des, (2.13)
g-k>0

and

(—ck-V)"

(m+ 1)1 f(2)(c],r,C2,r—|— Gk)Gz(g°k)dde]d(;2_

oty = — [[[ (wi —wkzg
g:k>0

(2.14)

Note that the origin of the collisional flux @[y] is tied to the excluded volume of the “macro-
scopic” particles and hence this term vanishes for a “dilute” system of point particles. Combin-
ing (2.11) and (2.9), the master balance equation simplifies to (Jenkins & Richman 1985b.a,
1988)

d B F d ay v
E(nw) = <n<% — <E+C'V) u) %> —V-((ncy)+O[y]) —Vu:0 [%] + Xy,
(2.15)
where C is the peculiar velocity.

2.3 Fourteen Field Variables

The macroscopic state of a flowing granular media is characterized here by 14 hydrody-
namic variables as defined below. The connection from the microscopic level to the meso-
scopic/macroscopic level is set by the single particle distribution function f (1) (c,r,t)in (2.8).
From lower to higher order, the filed variables are defined as:

(i) the mass density
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p =mn(r,t) = (m) = m/f(l)(c,r,t)dc, (2.16)

(ii) the macroscopic flow velocity

u=(c)= /cf(')(c,r,t)dc. (2.17)
(iii) the full second moment tensor

M(r,t)

1
(CC) = m/CCf(c,r,t)dc, (2.18)

where C = ¢ — u is the peculiar/fluctuation velocity of particles. The granular temperature is
defined as the trace of the second moment tensor M (2.18) (Savage & Jeffrey 1981; Lun et al.
1984; Jenkins & Richman 1985b,a; Goldhirsch 2003)

T(r) = 1(c.c) = 3n(1r,t)

In some articles the definition (Chapman & Cowling 1970) of temperature incorporating the

/sz(c,r,t)dc. (2.19)

mass (m) and the Boltzmann constant (kg) has also been adopted (Garzé & Dufty 1999; Santos
et al. 2004; Lutsko 2005; Brilliantov & Poschel 2004). In either case, it must be noted that the

granular temperature is not a thermodynamic temperature (Goldhirsch 2003).

Finally, (iv) the kinetic part of the heat flux vector is defined as

g (r.1) = %p(C2C> = %/C2Cf(c,r,t)dc, (2.20)
and the (v) contracted fourth moment is
Paapp = p(C*) = m/C4f(c,r,t)dc. (2.21)

Equations (2.16,2.17,2.18,2.20,2.21) represent 14 hydrodynamic fields for which a macro-

scopic theory will be developed as detailed in the remaining part of this chapter.

This last quantity (2.21) is added to highlight some crucial features of granular flows, like
the anomalous heat current from lower to higher density regime (Brey et al. 2001; Candela
& Walsworth 2007; Ansari & Alam 2016) is due to the dependence of the heat flux vector
on spatial gradient of density, etc. The last quantity (Dufour current) vanishes in the elastic
limit (e = 1) but becomes finite for granular flows (e # 1) (Van Noije & Ernst 1998; Sela &
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Goldhirsch 1998; Garz6 & Dufty 1999; Brilliantov & Péschel 2003; Kremer & Marques Jr
2011; Garzo6 2013).

2.4 Balance Equations for Fourteen Field Variables

The balance equations for the fourteen field variables are obtained by substituting ¥ = 1, cq,
CoCp, C*C, and C* into the master balance equation (2.15), yielding

Dp 2.22
FZ‘ — —Pua,aa ( ’ )
Duy,
P = Py, (2.23)
DMaB
p Dr —Qyapy — Pspita.s — Psaltp,s + Nap, (2.24)
Dg’, 1 k k !
D —zanBB,y_ datts,s —dptap — Qraplpy+ | Map + QMW‘SO‘ﬁ Fpnn
1 1
—5Oypptiay T3 Rapp, (2.25)
DP, 8
B = ~Qraapp.y — Paappias —4Qrpaattp.y + o earyt Raapp. (2.26)

the balance of mass, momentum, second moment, heat flux and contracted fourth moment,
respectively.

In the above, D/Dt = d/dt +uy(d/dxq ) is the convective derivative, the subscript follow-
ing a comma denotes a partial derivative (i.e. wug ¢ = dug/Jdxe) with Einstein’s summation
convention over repeated indices, and

Pyp = p(CaCp) +Oq [mCp| = pMyp+ Oqp, (2.27)
QY(Xﬁ - p<C7CaCﬁ> + ®Y [mCaCB} = pMyaB + @’}/aﬁv (2.28)
Ryp = X [mCoCg], (2.29)

are the total stress tensor (momentum flux), the flux of the third moment, and the collisional
source of the second moment (dissipation), respectively. In (2.27) and (2.28), the first term
represents the kinetic contribution and the second term is its collisional contribution. Similarly

the flux and production terms can be written as :
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I I I I
da =3P (C*Ca) + 500 [mCz] = SPMagp+ 5 Oyaa = diy + i (2.30)
Oyopp = P(C*CiCa) + Oy [MCCa| = PMyapp +Opupp. 2.31)
Ropp = X [ mC2Cq (2.32)
Qyocaﬁﬁ = p<C4CY> + @Y [mc4] = pMyocaﬁﬁ + @yaaﬁﬁ7 (2.33)
R o = X [mC*| . (2.34)

For a complete 14-moment theory of a “dense” gas, all the above terms (2.27-2.34) must be

calculated by an appropriate choice of the single-particle distribution function.

2.5 Non-equilibrium Distribution Function

Let f¥ denotes the isotropic/base state Maxwellian distribution defined via

M _ Lf)ﬁ—cz/zr(r,z). (2.35)
(2xT(r,t))2

Equation (2.35) corresponds to distribution function of a five field theory at Eulerian level

hydrodynamics [Chapman & Cowling (1970)]. As we are interested in the theory beyond

Eulerian and Navier-Stokes order, we must include higher order moments in the distribution

function.

2.5.1 Expansion around Maxwellian

The full non-equilibrium distribution function in terms of all fourteen field variables is as-
sumed to be of the form (Grad 1949; Jenkins & Richman 1985a; Kremer & Marques Jr 2011)

f =" (a+aiCi+a;jCiC;+biCCi+bC*) . (2.36)

The solution for the fourteen unknown coefficients a,a;,a;;,b;,b follows from the compatibil-
ity conditions (2.16-2.21), and are found to be



2Bonlinear Theory for a Granular Gas at Finite Density : Fourteen and Ten Moment Theories

15a; )
— 142
a + g
Ly
a; = _W(IH
5a2 1 k
ai = =537 %+ 2y 237
L
bi - SpT3qz'7
az
b= 2
872’ J

where a; is defined as the deviation of the contracted fourth moment P;;;; from it’s isotropic

measure

Poapp — Phupp
chdaﬁﬁ

ay = (2.38)
Note that a, is a measure of “excess” Kurtosis of the distribution function. Therefore the
full from of the distribution function corresponding to this 14-moment theory for a general
non-equilibrium system is (Kremer & Marques Jr 2011; Garz6 2012, 2013) given by

k 4

1 : 15 5 C
W)y L pkcon 4 (e sre)i 222y &
f=r {1+2PT2P<U>C,C,+SPT3(C C; 5TC,)+<8 7C +8T2>a2}. (2.39)

The underlined term in equation (2.39) is an addition over the distribution function proposed
by Jenkins & Richman (1985a) who developed a 13-moment theory. Therefore at the level
of distribution function, the present work differs from that of Jenkins & Richman (1985a) by

including the “excess” Kurtosis of the distribution function.

2.5.2 Assumption of Molecular Chaos

To evaluate the collisional source and flux terms and in order to close the system we must
relate the two particle distribution function f(2) with the single particle distribution function
(). This has been done by adopting the molecular chaos assumption (Chapman & Cowling
1970) for which

f(er,r—ock,cy,r,t) = go(r— %Gk)f(cl,"— ok,t)f(ca,r,t), (2.40)
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where g is the contact value of the pair distribution function. The functional forms of the ra-
dial distribution functions for flows of uniform disks (2-dimension) and spheres (3-dimension)
are as follows (Verlet & Levesque 1982; Carnahan & Starling 1969)

go(v) = %, v =nno"/4; (2.41)
go(v) = % V=nno>/6; (2.42)

with v being the area/volume fractions (density) of particles.

2.6 Nonlinear Production and Flux Terms at Different Or-

ders

We re-write the expressions for the collisional source (X[y]) and flux (@[y]) terms as ob-
tained on decomposing the collisional production term €[y/], appeared in the right hand side

of the Enskog-Boltzmann equation (2.9):
Cly] = R[y]-V-Oly] —Vu: O[Vcy], (2.43)

where

1
R([y] = 5 fff (W + 5 — w1 — ) fP(c1,r— ok,cy,r)0%(g - k)dkde,de, (2.44)
g-k>0

1
=3 jjf (W + 5 — w1 — ) fP(er,r,ca,r + ok)o*(g - k)dkde, de, (2.45)
g-k>0

is the collisional source term.
On expanding the two particle distribution function f() in Taylor series yields the follow-

ing expression for collisional flux of vy :

(S - vy T 0 e s, - ok)0? g - Rdderde

gk>0 ( +1)
0
fjf (vi—w) ( 2' ]8 )f(z)(cl,r,cz,r—l—Gk)Gz(g-k)dkdcldcz,
gk>0

(2.46)
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is the collisional flux of y. Note that the derivatives of second and higher orders are neglected

on deriving the collisional flux (2.46).

Combining (2.44) and (2.45), we can re-write the collisional source term as

(f(z)(cl,r—Gk,Cz,r)+f(2)(C],r,C2,r+Gk)>

1
K[y = H Ay . o2(g-k)dkdedes,
g-k>0
(2.47)
where
AY =y 4y — Y — . (2.48)

Applying the molecular chaos assumption (2.40) on f (2), we have

f(z)(clvr_6k7c27r> :g()(r— %Gk)f(l)(CI,r—Gk)f(])(cz,r>

~ {go(f) —%O'k- Vg()(r) + %(O'k V)zgo(r) }

J

~\~

. {f(')(cl,r) _Gk-Vf(l)(Cl,r)+%(Gk‘v>2f(l)(clvr> }f(')(cz,r),

J/

-~

(2.49)

where the under-braced terms represent spatial-gradients upto second order.

Similarly we can write,

1O errer+0k) = gor+ 50k) £ (e1,7) O e, r 4 ok)

~{go(r)+ %Gk-Vgo(r) + %(Gk-V)Zgo(r) br(enn)}

-~

<AV es,r) 4 ok 9 (es,r) 4 3 (0k-9)2 (e }.

J

~\~

(2.50)



2.6 Nonlinear Production and Flux Terms at Different Orders 31

Using eqs.(2.49)-(2.50) on (2.47), we have the final expression for the collisional source/production
term as

f2

]
X[y H Al//flfz{l-l— Gk,a 1ogf1

g k>0

80 I azfl asz 4
g JJJ vk <f2ar,-ar,~+f‘ ariar,)" (8- k)dkdeyde;

g-k>0

1 d
g JJJ v 50 g“ (fziﬂf af2>64<g~k>dkdc1dcz

g-k>0

} o*(g-k)dkdc dc,

2

Hf Aykik;j 8‘9 or fifr6*(g-k)dkdeides, 2.51)
gk>0

and the collisional flux as

@ = jjf l//l [41 kf|f2{1+ lea logfz} 3(g-k)dkdc1d02

g k>0 f

Hf (W) — w1 ik = afl of> o5 (g-k)dkdeides

m O
g k>0

gﬂf Wi = vk, o (f 3? 8f2>"5<8'k)dkdc1dcz, (2.52)

g-k>0

where the following abbreviations have been used

AY =y 4y, — Y1 — y, fi=rWer,r1), fo=W(ez,r1). (2.53)

To evaluate the integrals (2.51-2.52) we will make use of the following change of co-ordinate
system

(c1,¢2) = (C1,C2) = (G,8),

C,+Cy (2.54)

G= > ; 8=C1—Cyanddcidc, =dGdg,

and compute all the integrals in the (G, g) co-ordinate space.

Equations (2.51-2.52) remain the backbone of the present analysis and will be used sub-
sequently to determine the collisional sources (X 45, X ¢85, X gqpp) and the collisional fluxes
(Oup>Oyap,Oyapp). These production terms will then be substituted into the balance equa-
tions (2.24-2.26) and hence will yield a “nonlinear” theory for a “dense” granular system
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which is valid upto “second-order” in gradients. The evaluation of these quantities at different

orders and their physical interpretations will be discussed in following sections.

It may be noted that Ugawa & Cordero (2007) have considered extended hydrodynamic
equations for a moderately dense flow of an “elastic” hard disks system using Grad’s moment
expansion method. In their work, although all the integrals appearing in (2.51) have been
taken care of in calculating X, but while calculating the collisional flux terms @ only the
first integral of (2.52) has been considered. Contributions from the gradients of hydrodynamic
fields in the collisional flux terms @ have been neglected in the work of Ugawa & Cordero
(2007). Therefore there is a lack of consistency in their work. Unlike all previous works
(Ugawa & Cordero 2007; Jenkins & Richman 1985a; Garz6 2013), we have calculated all the
source X and flux @ terms by retaining terms of second order in spatial gradients as well as

products of first-order gradients.

2.6.1 Dealing with Integrands

In this section we will give explicit expressions of different integrands that appear in the inte-
gral expressions of the collisional source and flux terms (2.51-2.52).

For the first integrand in (2.51-2.52), we use the following relation

1, 1
log(x/y) = logx —logy; log(1+x) = x — Ex2 + §x3 — . <, (2.55)

and hence we can write

k
Je q, ) e B B
log? 2 = log ;2 +2pT2(C2C2 clcl>ab+5pT3{(c Cl—C*Cly) ~ST(C2 - €1}

S5ax (o 2) (4 4)
4T(C|2 Ch)+gra(Cl=Ch

1 1
3 g Pl Pl (€2626:261= CLCACIC

1
. 5p2T6qaqb{(CZCa _5TC,)(C2Cp — 5TCy)|s — (C2Ca — 5TC,)(C2Cy — 5TCy))| 1}

(e ) - (5 e S
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which implies that

F(Cy,r)
f( )(Chr)

€, r V(¢ r) {H' lck aa log

4G +¢?
3T3 AT

1+ Cj+ i (CZC 5TC~>—|— 15 iC2+C—4 a
2pT2 5pT3 ’ 8 4T ' 872 21

T
k 4
a /s 5 5 , C
_ 5T =~ =
X{ m+5pT3<CC > Cl>+<8 arC Ter )™ i
[1

" ok;i du, ©Ok; 8TG - ok; pk (aua +3ub )
2759 or;  2T29r; 4pT?" @b)\ gy, 8b or; 8a
ok; 0 1
+ Wa—f {5TP<]Z,;9> (Gagp+ Gpga) +244(G?ga+ Zgzga +2G.Gpgp — STga)}
Gki k 8ub 8ua Gki 8ua o)

2 (Gagp+G Mag } 4G 8G,Gpgy — 20T
5pT3qa{ 8r,-( a8+ Gpga) + or, b8b 1672 Za ( ga+g 8at b8b ga)
Wﬁ{ZOTP@b) (Gagb+Gr8a) +qa(12G"ga+3878a +24GuGrgp — 40T g4)

4 5pTarGuga(4G? + g2 — 10T)}

k

oki P oki 9q5, o 1,
— G G ———— 4G - 2G,Gpgp — 5T

4pT2 or, (Gagp+Gpga) 10pT? 8r‘i( ga+4g 8at2GaGpgp ga)

ck; da
- 16T’2 a:Gaga(4G2—i— g>—20T)

l

ok; 1 0

— Tl{ma—n(f’@wpgm)(czczczcz —CiCiCCh)abim
1 0
350776 3 (qaqb){(CzCa ST C,)(C2Cy — 5TCy) |2 — (C2Co — STCL)(CXCy — 5TC,)| 1}
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2.6.2 Ordering Approximation : Second-order Gradients

In evaluating the collision integrals, we will consider terms that satisfy the following constraint

D E F/agPk \C 5 i\ H I
£ AR () (24 (O m) \ (94)" (992"
(P<“b>) (qc) (az) <8r,~) <8rj> <8rk> ( ory > <8rd or, )’

A+B+C+D+E+F+G+H+1<2. (2.58)

Assumption (2.58) implies that all the terms involving second-order nonlinearities are taken

into account.
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With (2.58), equation (2.57) simplifies to:

- | 2 g (€D
re,n s (Cz,r>{1+ ok 1ngu(cl,r)
o 4G° +¢°
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k
@) c.c 4a 2 2
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I5 5 2 L4 4

2 24 )+ = (Y +C
—l—a2(4 4T( |1+ |2)+8T2( l1+C2) "
L
+ 4p2T4P(ab>P(lm) (C:C, Czcz)ablm\(iv)

1
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1 15 5 ct 15 5 ct
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1
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_oki_dp k k(e2, L2
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Table 2.1 Truncation of equation (2.59)

Herdegen & Hess (1982) O+ )+ )
Kremer & Marques Jr (2011) (i) + ((ll’)) i (<le)) + )
Jenkins & Richman (19854) (@) tigi2?v5”i0
Gars6 (2013) O+ (@) Jzigii)(jiigvi Tvgv-l:i()v;)m o)
Present 14-moment theory ((l.i)) : g;i :gﬁ)

Different truncated versions of (2.59) have been used by several authors, as shown the Table

2.1

+ 5pT3 arj

+ 64T2 8r,-

Similarly, for the third-term in (2.51-2.52) we have

exp (A& | (290 30T 150w | 20uq,
m3T3) P AT ndx; Tdrj 4 dr; T or; “

1 8P<kab>

g o2 | (@4 g8+ = o (GG gass)
T23rj 2T 8rj 4 pT2 8r,- ab 4 “

1 94k 1
Y0 (rG2G, + §g2Ga + Gpgpga — 10TGy)

1 Jda
2 (g* +842G* + 16G” + 162,8,GaG))

(2.60)



3Bonlinear Theory for a Granular Gas at Finite Density : Fourteen and Ten Moment Theories

For the second-term in eqn. (2.52), we can write :

95 h _
dr, drp
n’ 4G? + g? 1 dn dn 3 (dndT 9ndT 9 JdT JdT
2P\ a7 ) 2aran awmr\arar Tar o | Tarian ar
(87T3) AT n?dr,dr, 2nT \ dr,dr, dr,dr, 4T2 drp, dry
1 [/ dn du, on du, 3 (0T du,, dT du,
—<a—raa—r,,c L . m‘2)—ﬁ<a—rdarbc L e Fl ‘2)
+1 du; duyy, C|C|+ 1 on dT o ﬁa_TC2|
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3 T dT , , N oT aum N oT Juy ,
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The underlined terms of (2.59-2.61) do not contribute to any of the “even order” pro-
duction terms X, Xgapp, Oqp and Oyypp since they are odd functions of the centre of

mass-velocity (G) and therefore cancel out and become identically zero.

On the other hand while calculating the “odd-order” moments like X545 and ©yqp, the
underlined terms in (2.59-2.61) only contribute and will produce non-zero values. We have
marked the terms with different colours. Note in (2.59-2.61) that the terms marked with red
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contribute to the “even-order” production terms whereas the terms marked with blue contribute

to the “odd-order” production terms.

2.7 Balance of Granular Energy and Collisional Dissipation

The granular temperature 7', (2.19), is defined as the trace of the second moment tensor M and
the balance of granular energy directly follows from the trace of the second moment balance
(2.24), yielding

3 DT
5pE = —qa,a— Paﬁ Ug o — 9, (2.62)

where 1 1
9 =—5Rpp=—5X[mC?] (2.63)

is the rate of dissipation of fluctuation kinetic energy per unit volume and

1 1 1
Go = zQaBB = EpMaﬁﬁ + §®aBB =gy + 4 (2.64)

is the total (kinetic and collisional) heat-flux. In equation (2.64), % PMpp is the transport/kinetic
part and %@aﬁ g 1s the collisional part of the energy flux vector, denoted by g* and ¢¢, respec-
tively. The kinetic components of the energy flux vector and other constitutive variables are
dominant in the dilute limit whereas the collisional components become significant in the
dense limit. Therefore, in dilute granular flows of point particles, the collisional component

vanishes and the kinetic component serves as the only contributor to any transport coefficient.

The collisional dissipation rate & appearing in the right hand side of the energy balance
equation (2.62) is the source of energy dissipation due to inelastic collisions and termed as the
cooling rate in granular literature (with some multiplicative constant). The most general form

of ¥ including second order gradients can be written as :
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D= Do+ Du(V-u)+ DV - ¢ + Dury(Vu: T) + Dy ((qu: ) + (Vq*: n))
+Z4p (g VP) + Dyo, (4" - Vi)
+2yV2p + DrVPT + Iy (V- (v.n)) + P, V2
+2p7Vp VT +ZpuVp - (V-II) + Zp,Vp - Vay
+ Drr(VT)? + VT - (V-T) + D7, VT - Va,
+ Dy (Vu: Vu+Vu: Vu' + (V- u)2>

+ Duq (Vu: Vg“+Vu: qu/—i—(V-qk)z). (2.65)

The coefficients 7, Zr corresponding to the terms Vzp and V2T have been calculated by
Brey et al. (1998) for a “dilute” granular gas whereas the coefficients %, Zr, Zrr, Ypr,
Y., have been determined by Brilliantov & Poschel (2003) for a dilute granular system of
“viscoelastic” particles. As a reference supporting the above statement we quote the text from
the work by (Garzé 2013) and put it below as an paragraph in italic font.

It must be noted that Navier-Stokes hydrodynamics retains terms up through second order
in the spatial gradients. Since the cooling rate { is a scalar, its most general form at this order

is

§ = G+ GV-Ut+LVint VT + 6 (Vi) + Crr (VT)?
+CurVn - VT + {1 0, 0iU;0iU; + 83 4, 0;U;i0:U;.

The first two second-order terms C, and { have been determined for dilute granular gases
by Brey et al., while all the set of coefficients {{,, &1, Guny Cnts §1 s, C2.uu } have been computed
for granular gases of viscoelastic particles by Brilliantov and Poschel. The evaluation of the
above set of coefficients for dense gases is a quite intricate problem. In fact, to the best of
my knowledge, no explicit results for these coefficients have been reported for granular
dense gases.

2.7.1 Collisional Dissipation Rate for Whole Range of Density

The determination of the collisional dissipation & (2.65) for the whole range of density in-
cluding all the terms (which also includes double derivatives of all the transport coefficients)

is a quite intricate problem and has not been worked out till date. The complete expression for
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collisional dissipation for the whole range of density including the terms involving derivatives
of second order in hydrodynamic variables has been computed in this thesis work. In order to
determine it, we have to take care of all the integrals appearing in eq.(2.51).

The total change of mC? in a collision is

AmC* = —2(

> 1-¢%)(g-k). (2.66)
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Substituting this into the expression for collisional source [(2.51) and 2.63] and after perform-
ing the integrals term by term we have the final expression for collisional dissipation as
D= : X
- 7 aa
_ 12pvgo(1—e»)T
- 1

20

-~

[SS[O8)

3 9 2 2
V‘
(1—1— 16a2+1 a2) 3pvgo(l —e)T( uz

N

3 3vgo(l—é? 3vgo(l — &2
- 1_(1 —ez)Vg0(2+21a2)V-qk+MH: H+M

I 1 1 3 (qk'qk>
0 St2opT?2 S0r2poT?

_9 2 . - 399 2 ky7 . k.
$vso(1 = &) (Vus T) = e v (1 —e )((q V: 1)+ (Vq .n))
3 63

+$Vgo(l—62)(qk'vp)—Evgo(l—e2)(qk'va2>

+pv(1—e23)6

16\/7T2
3 2
x | go(r){ 32 <T—> V2p+24T2V2T+§ T—) <V~(V~H)>+3T3V2a2
p 5\p
2
+48 (%) Vp VT +6T(VT)* + 25—4 (%) vVT-(V-N)

T3
+6 (7) Vp-Va, — 23772VT - Va,

4
+ ?8T2(Vu: Vu+Vu: Vu' + (V-u)2>

ﬁ Z v . K L k)2
+ 52 (p) (Vu.vq L Vu: Vgd (Vv q))

dgo
Ny 222
+ 16T { (8 Vp)}

980 T’ 2 3 48 (T?
—2"Vo- v/ 4TV \v — | — (V-
-I-a P {32( ) p-|—2 T“VT +3T°Va, + ( H) s

(2.67)

where a (') over a quantity means its transpose and the following notation is used for the

deviatoric part of the kinetic pressure tensor :

My = P{‘am. (2.68)
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The under-bracket terms in (2.67) are the contributions from the recent work by Garzé
(2013)

12pvgo(1 — )T 3
DaGarzo = P gO(l ) (1 + 1—6Cl2> —3pvgo(l —e )T(V-u), (2.69)
2o

where a 14-moment theory for a granular gas at a moderate density has been proposed. It is
clear that the 14-moment theory of Garzé (2013) is incomplete since he has not calculated all
source and flux terms consistently upto the second-order.

The 13-moment theory of Jenkins & Richman (1985a) is also incomplete for similar rea-

sons and their expression for collisional dissipation D is

[SS[O8)

12pvgo(1—e)T
Dienkins = P gO(l ) —3pvgo(l —eZ)T(V-u). (2.70)
n20

2.7.2 Collisional Dissipation in the Dilute limit

In the dilute limit of a granular gas (v — 0;g0 — 1), eq. (2.67) reduces into

[[S1I0%]

12pv(1 —e2)T

a2>+3v(1_e )1-[ m+ 3\/(11—62) (qqu)

D= (1+ ’
o 1677102472 " splgprs 50nzpaT%
(1- 4
L pvl-€)o V2p 4oar2viT 4+ B (—) (V-(V-m) +373V20,
16\/_T2 SAP
14 <p)Vp VT +6T(VT)’ + 254 (g)vr.(v.n)

T3
+6 ( 5 ) Vp-Va, —237T*VT -Va,

48
+ ?Tz(Vu: Vu+Vu: Vu' + (V-u)z)

48 .
+52 (p) (V Vg +Vu: V¢ +(V.gb )} 2.71)

Our expression of collisional dissipation (2.71) in the dilute limit contains all the terms ob-
tained by Kremer & Marques Jr (2011) and Garz6 (2012); moreover, the terms proportional
to the nonlinear transport coefficients (~ c12,P< >P<k >,qk2) match exactly with the expressions
of the cooling rate as computed in a recent article by Gupta et al. (2017).

It should be noted here that the cooling rate obtained in this present theory is proportional
o (1 —e?), like it is found in the previous literature (Jenkins & Richman 1985b; Sela & Gold-
hirsch 1998; Garz6 & Dufty 1999; Van Noije & Ernst 1998; Kremer & Marques Jr 2011). The
cooling rate computed via the present nonlinear theory also contains terms proportional to the
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double derivatives of number density (~ V?n), granular temperature (~ V>T'), kinetic stress
~k
(~ V2P") and cumulant (~ V?a,). Establishing the dependence of collisional dissipation on

these higher-order terms is a new finding of our work.

2.7.3 Remaining Higher-order Terms and the Nonlinear 5-Field Theory

The expression for @y g4 is calculated and given in (2.95) and serves as the collisional contri-
bution to the heat flux vector (2.64). It is noteworthy that with the information given for @,
along with the dissipation rate (2.67), gives a “nonlinear” 5-moment theory for a granular gas
at finite density that includes (i) the mass density (p), (ii) the macroscopic velocity (u) and
(iii) the granular temperature (7') as field variables; the corresponding balance equations are
as follows:

D
th’_ +ptg.q =0, (2.72)
Du
P, +Fup.p =0, (2.73)
3 DT
EPE +Qa,a +P(Xﬁ Mﬁ7a+@:O (274)

Using Maxwell-iteration technique [Truesdell & Muncaster (1980)] the laws of Navier-Stokes
and Fourier can be recovered as we shall demonstrate in §2.10.

This nonlinear 5-field theory can be applied to analyse molecular/granular flow phenomena
that have negligible normal stress differences and replicates the Navier-Stokes level hydrody-
namics (Garzé & Dufty 1999; Lutsko 2005) with second-order nonlinearities.

The hydrodynamics beyond Navier-Stokes that incorporates the normal stress differences
and generalized Fourier’s law are the main focus of the present work and will be considered
in the following sections. We will discuss about the higher-order moment equations where the
stress tensor P and heat flux vector g do not remain constitutive quantities but are considered

as independent hydrodynamic variables.

2.8 Balance of Second Moment and the 10-moment System

We re-write the balance of second moment

DM,p
Dr

p + Oyapyt+Pspitas + Psaup.s = Xap, (2.75)
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where the definitions of various production terms are as

NO‘B =X [mCaCB], ®(XB = @a[mCB] and @Y‘XB = @a[mCaCB], (276)

and
Pog = p(CaCp)+ Oy [mCs| = pMeg+Oup = Pyg+Pig, (2.77)
Oyap = P(CyCaCp) + Oy [mCoCp| = pMyyp + Oyap- (2.78)

In this section we focus on the evolution equation for the second moment of velocity fluc-
tuations Mg (= (CaCp)), or, the balance of second moment as given in (2.75) and discuss
about its closure. We evaluate the collisional source of second moment (X ) as appeared in
the right hand side of (2.75) along with the collisional flux at second (@) and third (©,4)
orders, respectively. The calculations involve terms correct up-to linear order in spatial gra-
dients and the terms containing derivatives of second and higher order are neglected. The
collisional flux of momentum (@) is also termed as the collisional contribution to the stress
tensor (2.77), P, whereas the second moment of velocity fluctuations p(CyCg) contributes

the kinetic counterpart, Pk, of the stress tensor.

2.8.1 Collisional Source and Flux at Second Order: Whole Range of
Density

The total change of the dyadic product CC and the particle momentum mC in a collision is
given by the formulae
m
A(mCoCp) = 5(1 +€)(8'k>{(1 +e)(8-k)kakp — (kagp +gakﬁ>}a (2.79)

m

m(Cb—Cﬁ)h:—2(1+e)(g-k)kﬁ, (2.80)
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where the subscript 1 in 2.80 corresponds to granule levelled with 1. Plugging the above set of

information into the integral expressions of collisional source (2.51) and flux (2.52), we obtain

1
Sap = PUEDTE ([ 114 0) (g ki — (5K (Fagp + sakp)
gk>0
1 2
xflfz{H—EGk logfl }ddedg
1 4
MU (L1 4 0) -k kaky — (&K1 (ke + 5aks) )
g-k>0
( o=t o/ -+ fi af 2>ddedg, 2.81)
) Mﬂf k) kak ff{1+16k—10 fz}dded
op = 1) (k) kakp f1 > e g
g-k>
(1+

g0 2 dfi dfs
fkjo 8- k) kakghnky o = dkdGg
g-k>

ﬂ g- k)2 kakghyks ago <f 3f LA {z)ddedg. (2.82)
g-k>0 "
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Evaluating above integrals, the expressions for collisional source of second moment is

found as

KE[NaB]:

sovao(l—e)Th 1 3ar 9 24vgo(1+e)3=)TH ( a

S T S T~ L P Ut

6pvgo(l+e)T

2 e (o)

%(Hzmg) (1-3¢)(V - @)1+3(2 - ){ Vg" + (Vg")'}|
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(2.83)
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and the expression for the collisional flux of momentum is

O = [@aﬁ] =
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The under-braced terms in (2.83) and (2.84) are contributions from work by Garz6 (2013); the
remaining terms are new contributions of the present work.

2.8.2 Collisional Flux at Third Order: Whole Range of Density

The second moment of velocity fluctuations (2.75) contains the third order flux @},a[;, see
€q.(2.78). In order to close the system of equations (2.75), we need to calculate this higher
order term. The detailed calculation is beyond the scope of the thesis and we give the final
expression as follows:
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It may be noted that third-order flux (2.85) has not been calculated in previous works [Jenkins
& Richman (1985a); Garzo6 (2013)].

2.8.3 Nonlinear 10-moment System

The following set of 10-equations

Dp _

Dr —Plo,as (2.86)
Duyg,

Por = Fapp: (2.87)
DM

P = Qrapy—FPoplias —FPoattp.s+ Nap. (2.88)

along with the constitutive expressions (2.83), (2.84) and (2.85) serve as the nonlinear 10-
moment theory of {p, u, P} for a dense granular gas at finite densities. It may be noted that
the third-order flux (2.85) has not been calculated before.

For a closure of second moment balance (2.88), we need a constitutive expression for the
kinetic part of the third moment tensor Q4. This can be accomplished via Maxwell-iteration
technique as discussed in §2.10.

2.9 Collisional Source and Flux at Third Order : Whole
Range of Density

In this section we determine the collisional source of contracted third moment X ;55 and the
collisional flux of third moment @44 for the whole range of density. The contracted third-
order production term X ;35 appears on the right hand side of the balance equation for kinetic

heat-flux (2.25), which after re-writing reads as

Dgj, | | k k : :
o EQYOtﬁB:Y"i‘ dats,s T dphap + Qrapupy — | Map + EMWS“ﬁ Fpnnt EQYBBMO"Y
1
=5 Rapp;
(2.89)

which determines the evolution of the kinetic contribution g* to granular heat flux. On the
other hand, the third order flux term ©,,p on the left hand side of (2.89) also appears on
the left hand side of the balance of second moment (2.24) which is required to close the 10-

moment theory. Furthermore, the contraction over the last two indices of ®,,g produces the
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collisional component of the heat flux vector qg,(: %@yaa) and therefore the total heat flux

vector can be obtained using

1 1
Qo= do+ 46 = >Mapp + 5Oupp- (2.90)
Now
Ropp = R[MC?Cql,  Opyp = O)[mCoCpl, (2.91)
A(mC*Cy) =
m
5 +e)(g-k){2(1 +e)(g-k)kakpGp — (1 —e)(g-k)Ga —2Gp(gakp +kagﬁ)}7
(2.92)
m (CoCh—CaCy ) =
m 1 1
5 +e)(g-k){§(1 +e)(8-kkak — (Gakp +kaGp) — 5 (8akp +ka86)}-

(2.93)

Plugging the above set of information into (2.51-2.52) and performing some tedious steps, we

obtain the expressions for the contracted third order source and flux:
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and

~ 12(1+e)vgo 12(1+e)vgoo [ du; Oug ;.  dup 4
Oupp = 3 qo 25T arlqa+ or, ql+8raql

k
8vgoo(1+e)VT , dp  pvgoo(l+e)VT Plogy | oT
+ Sﬁp P<al>arl Zoﬁ 5(16+7a2>5a]+16 pT arl

k 3 k
vgo(1+e)ovVT Py pvgo(l1+e)oT?2 Pl \ day
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IOﬁ ( 6+3 Clz) arl \/E 8051"’3 pT 8;7’ ( 95)

respectively.

The expression for Oypp given in (2.95) is twice the collisional contribution to the heat
flux vector (2.64) and gives a closure for the “nonlinear” 5-moment theory of (i) the mass
density (p), (ii) the macroscopic flow velocity (u#) and (iii) the granular temperature (7) as
discussed in §2.7.3:

D
th’. + Pt =0, (2.96)
Duyg,
p—Dt +Paﬁ7ﬁ =0, (2.97)
3 DT
2P HiwatFapupat? =0. (298)

The constitutive relation for the heat-flux must be determined at finite densities which is left
for a future work. In the following, we outline a procedure on how to determine “nonlinear”

constitutive relation for heat flux of a “dilute” granular gas.

2.10 Granular Heat Flux and Thermal Conductivity in the
Dilute Limit

In this section we focus on the dilute limit of of a granular gas and determine the granular heat
heat flux along with the corresponding thermal conductivity tensor in a non-uniform shear
flow. In dilute limit, the collisional component of any quantity becomes negligible and the
kinetic component is the only relevant parameter. Therefore in this limit (v — 0) the governing
equation (2.89) for heat flux reduces to

1 1 1
tqatts.s+5Qyappy T Qyapipy+dptap — (Maﬁ + §M775aﬁ) Ppnn = 5N app:

(2.99)

Dgq

Dt




S¥onlinear Theory for a Granular Gas at Finite Density : Fourteen and Ten Moment Theories

where the heat flux vector is defined via

m

1
o = do = > / C*Co fdC = 2PMapp. (2.100)

The other related quantities appearing in (2.99) take the form

OQyapp = PMyapp = p<C2CaCY> = SPT2(1 +a2)8yq + 7TP<k,ya>7

Qyoc[i = pMyaB = p<CYCaC[3>7
Pyp = Pgﬁ =pMyp = pT+P<"aﬁ>,
Ropp = — DT L (49— 33¢) + (19 - 3e) bk + Joa Pyt

(2.101)

Now we assume the third-order tensor Qyqp is trace-free, therefore, using (2.100), we can

write

1 2
Oyap = 5 (Qy0up + Qadpy+ Qpay) = 5 (45 +qa0py+qpOay) - (2.102)

Therefore the under-braced term in (2.99) simplifies to

Orerpits o+ O Dttt W+ 20y 28 (2.103)
Y(Xﬁ B?y qﬁua7ﬁ - 5 OC’}’q’J/ quy Sqa axﬁy .
where the following definitions of
1 (Jug duy
Day=5{5—+5— 2.104
* 2(8xy+8xa) (2.104)
1 (Quq duy
Way=5\5_"—3_ 2.105
) (8)@, 3xa) ’ ( )

strain and vorticity tensors, respectively, have been used. Inserting (2.101) and (2.103) into

the balance equation for heat flux (2.100), we get

Dqgy 14 al/ty a(pMyaBB> aPﬁY 18 k
ZF+ < 4o Iry + ar, (2M o +3T5aﬁ)—ary = Nayy— 3 qyDoy —2qyWay
ZF + ?qaa—xn +5{pT(1 —|—2a2)5a[3 +P<aﬁ>}—(9rﬁ + (SazT Saﬁ — —p P(aﬁ)) —arﬁ

Pk .. dPk
<gﬁ>) By) __4v(+e)VT Doydy, (2.106)

8a2
T? 2= 42(T8,5 —
+5p +2(T 8 ar, 507

drg
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where
. an 3(7 + e) k
Doy = {(49 ~33¢) 4 32(19- 3e)}5ay+ “op7
L dovm SoVE Weer, (2.107)

(1t eT 7 (i 4 eVT

-~

J/

is a second rank tensor.

Equation (2.106) remains the central equation to determine the heat flux vector (g) for a
dilute non-uniform granular shear flow. We will apply Maxwell iteration technique [Truesdell
& Muncaster (1980)] on (2.106) to obtain g.

2.10.1 Maxwell Iteration : Heat-flux for 5-Moment Theory of a Dilute

Granular Gas

In Maxwell iteration scheme [Maxwell (1867, 1879); Truesdell & Muncaster (1980)] the heat-
flux vector g and pressure deviator no longer remain field variables but they are constitutive
quantities. This method is based on the five-field theory of density, macroscopic velocity and
granular temperature and any other quantity other than these appearing on the left hand side
of (2.106) must be set to be zero. Therefore following the procedure as described in Ikenberry
& Truesdell (1956) and Kremer & Marques Jr (2011), and substituting P<ka[3> =g =0on the
left hand side of (2.106), we obtain

25/7p,0\/T 0T  25@p,0T? . dp
=—— (14+2m)[2 — -— 2.108
qY 4(1 +€) ( + a2)[ ’)/Ot]axa 4(1 +€)p aZ[ ’ya]axa ( )
aT ap
—_yr 2" _ P ZF 2.1
Ky Tra Ky Tng’ (2.109)
where the thermal conductivity and Dufour tensors are given by
25\/7p,0VT _
T _ p 1
Hya = 41 +e) (14202)[Zy4 ], (2.110)
25\/7p,0T> _
P _ p 1
Hyq = 2(1+e)p az[o@m], (2.111)

and the expression for 2 is given by (2.107).
The Fourier’s law for heat flux obtained in (2.108) is a modification over the conventional
Fourier’s law [as obtained in the articles of Kremer & Marques Jr (2011) and Garz6 (2012)] in

the sense that thermal conductivity (also Dufour tensor) is not just a scalar but an asymmetric
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anisotropic second-rank tensor. The asymmetry is due to the under-braced term in the govern-
ing equation for heat flux (2.99) manifested as the shear rate dependence in 2y and hence
in the thermal conductivity tensor .#7. The anisotropy of conductivity tensors [2.110 and
2.111] follows from the inclusion of the higher order term in calculating X 4434, the term un-
derlined in the expression for 24y in (2.107). The law established in (2.108) must be treated

as generalized Fourier law for granular heat flux.

2.10.2 Linear 5-Moment Theory : The Navier-Stokes Limit

The Navier-Stokes limit corresponds to a theory that is linear order in shear rate (~ ) and is a
special case of the proposition proposed in §2.10.1. This also gives a complete 5-field theory
of (i) the mass density (p), (if) the macroscopic velocity (#) and (ii7) the granular temperature
(T); but unlike previous section, only linear order terms must be retained and nonlinear terms

like P{‘awq;‘ should be ignored. . Therefore at linear order, (2.107) reduces to

Dy = {(49—33e)+;’—;(19—3e)}5ay. (2.112)

Substituting (2.112 ) into (2.108), we obtain the conventional Fourier’s law for heat flux

gy — _%/yg% _,%fyga%, (2.113)
with
A = 25Vap,ov'T (14 2a), (2.114)
4(1+€){ (49-33¢) + $(19-3¢) |
P 25/@p,0T? a, (2.115)

4(1 +e)p{(49—336) +;’—;(19—3e)}

are the expressions for “scalar” thermal conductivity and Dufour tensors at Navier-Stokes
order (Jenkins & Richman 1985a; Garz6 2012).

2.10.3 Nonlinear 10-Moment Theory for a Granular Gas

In the 10-moment theory the hydrodynamic field variables are the the mass density (p ), macro-
scopic flow velocity (), granular temperature (7)) and the kinetic stress deviator (P{‘am).
Therefore, in addition to the 5-field theory, P<ka B) is treated as a separate hydrodynamic field

and will remain non-zero in the iteration scheme for obtaining heat flux. The only constitutive



2.10 Granular Heat Flux and Thermal Conductivity in the Dilute Limit 57

quantity is the heat-flux vector and upon substituting ¢* = 0 on the left hand side of (2.106)

we obtain

4= ?ffe_)l;pf[g 21 (1+202)pT 8+ P, >}§771;
S TN e
- %[Q;&]{mﬁ M >}3%3> (2.116)

where the thermal conductivity, Dufour and stress conductivity tensors are given by

25\/7p,0
H = P [2,4]4 (14 2a)pT 845 + P, 2.118
ya 4(1 +e)p\/_[ {( +2a2)pT Sgp + <a[3>} ( )
5\/7p,0 2T
HpP = P 5a,7°8,5 — —PF 2.119
& 4(1+e)pf[ (30T s p ) @1
SVAPYO - Plap)
N = P [2,]4 Tap — , 2.120
ﬁ (1+ )p\/_[ ]{ OtB p } ( )

and the expression for 2 is given by (2.107).

The generalized Fourier’s law obtained in (2.117) using the 10-moment theory is also
different from the conventional law for heat flux. Because of the presence of non-zero off-
diagonal terms in the conductivity tensor, there exists heat flow in the direction perpendicular
to the temperature gradient. The gradient of kinetic stress also drives a heat current governed
by the stress conductivity tensor %I[;I (2.120). These are signatures of the non-Fourier rhe-
ology. The occurrence of the heat current parallel to the flow and the stress-gradient-driven
heat flux is a well known phenomena in rarefied gas study (Grad 1949; Kogan 1969; Chapman
& Cowling 1970). The establishment of a generalized Fourier law (2.117) for a non-uniform

dilute granular shear flow is a new finding of our work.

In order to obtain a complete information about the total heat flux vector (g = g* + ¢¢),
the kinetic component g* must be calculated from the general contracted third order balance
(2.64), valid for the whole range of density but not from the dilute version (2.99). The original
equation (2.25) governing the kinetic part of the granular heat flux contains the fourth-order

collisional flux term @45 that must be calculated to complete this equation. The total heat
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flux vector g can then be determined upon summing the kinetic g* and collisional components
q°¢ (2.95) of the heat flux vector (2.64).

The determination of the fourth order flux ®,,55 and consequently the generalized Fourier’s
law for a “dense” granular gas using full 14 moments and the issues related to the closure of
this 14 moment DG14 theory are left for a future work.

2.11 Application of Nonlinear DG14 Moment Theory to Uni-

form Shear Flow

We apply the above developed theory to analyse the uniform shear flow (USF) problem of a
dense granular gas. In USF, the number density n(= p/m), the velocity gradient Vu, the gran-
ular temperature 7 remain constant and heat flux along with the third-order moment vanish.

The velocity profile in simple shear flow is given by

Fig. 2.2 Schematic of the uniform shear flow, with x denoting the flow direction. The y axis is
along the gradient and z axis is along the vorticity direction.

u=27, v=0, w=0] (2.121)

where 27y is the constant/uniform shear rate. In this case the mass and momentum balance

equations are identically satisfied and the balance of second moment (2.75) reduces into
Pgﬁumg -|-P5auﬁ75 = Naﬁ: (2.122)

with
[Plag = Pig +Pog = pT +Plyg) +Ogp, (2.123)
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is total stress tensor and the expressions for the collisional source and flux at second order are
to be calculated from (2.83) and (2.84) respectively. Note that, for the present case of uni-
form shear flow [V (n,7,T) = 0], the balance of contracted third moment (2.99) also satisfies

trivially and we are remaining with

40yBaatipy = Naapp: (2.124)

to determine the excess Kurtosis a, in the present context. The contribution of a, in determin-
ing the non-Newtonian transport coefficients for USF is assumed to be negligible and therefore
for the present circumstance we neglect (2.124) leading to eq.(2.122) as the central equation

to solve for.

The system of equations given in (2.122) is solved in the context of the velocity pro-
file given in (2.121). It represents a system of equations with the set of unknowns being
k pk pk pk
{7 Py Pl Pl P,
tribution function g and the coefficient of restitution e are specified. The radial distribution

)3 P{im + P{‘yy> + P<kZZ> =0 } when the volume fraction v, the radial dis-

function g is a function of the volume fraction v and the exact functional dependence follows
from (Carnahan & Starling 1969):

g0 = %; v = émw3. (2.125)
All the transport coefficients viz. the total pressure (p = Pyq/3), shear viscosity (U ~ —Py,/ Z—;),
granular temperature and normal stress differences are computed and compared with the
molecular dynamics simulation results (Alam & Luding 20035, 2005b). The most impor-
tant result is the finding of the nonzero normal stress differences which are signatures of the
non-Newtonian rheology.

The total pressure, shear viscosity, granular temperature and the scaled first and second

normal stress differences are defined in the following way

1% Pxx+Pyy+PZZ
= 2.12
P b210?) ( 3 ) (2120
\%
- P 2.127
H = oo™ (127
3(Py—P,y)
M= AR 2.128
' (PutPy+P) ( )
P, —P
and Ny = 3Py — Po) (2.129)

2 — 5
(Px+ Py +Py;)



6Monlinear Theory for a Granular Gas at Finite Density : Fourteen and Ten Moment Theories

Fig. 2.3 Variations of the (a) total pressure (p), (b) shear viscosity (¢t) and (¢) granular tem-
perature (7') against volume fraction (V) for coefficient of restitution e = 0.9. The black solid
lines, black and red dashed lines present the current DG14 moment theory, the dense gas theo-
ries by Jenkins & Richman (1985a) and Garz6 (2013) respectively. The symbols are molecular
dynamics simulation results (Alam & Luding 20050).

respectively, are calculated for the whole range of density (v) for some specific choices of

restitution coefficients (e).

The density variations of (a) pressure (p), (b) shear viscosity (1) and (c¢) granular tem-
perature (7') at a restitution coefficient e = 0.9 are shown in figure 2.3(a)-(c). It is seen that
the DG14 moment theory (continuous black lines) predictions for p and u agrees well with
the simulations as compared to the theory by (Garzé 2013) (red dashed lines) and this agree-
ment holds uniformly for the whole range of density. In panel (b) the density variations of the
viscosity is displayed and it is observed that although both of these theories are almost indis-
tinguishable up-to volume fraction v = 0.1 but beyond this point the theory of Garzé (2013)

starts deviating from simulation data and the deviation continues thereafter. Both theories are
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Fig. 2.4 Variations of the (a) first (.47) and (b) second (.#2) normal stress differences (2.128-
2.129) against volume fraction (v) for restitution coefficient ¢ = 0.9. The black solid lines are
the results from the current DG14 moment theory whereas the black dashed and red dashed
lines represent the work of Jenkins & Richman (1985a) and Garz6 (2013) respectively. The
symbols are simulation results.

able to well predict the behaviour of granular temperature and they agree with the simulation
data [see figure 2.3.c]. Overall, the present 14-moment nonlinear theory well predicts p and
u over the other Grad-level theories (Jenkins & Richman 1985a; Garzé 2013) for the whole
range of density.

The normal stress differences and other transport coefficients obtained in this way are
compared with another Grad-level theory of (Garz6 2013) for a restitution coefficient e =
0.9 and are depicted in figure 2.4. In each panel the results from the molecular dynamics
simulation (Alam & Luding 2003b, 2005b) are also superimposed for a relative qualitative

study between these two Grad-level theories.

Figure 2.4 displays the variations of the two normal stress differences against density at
e = 0.9 and it shows that the theory presented here is unable to predict the correct qualitative
behaviours of the normal stress differences. It is observed that, for the first normal stress
difference (./47), the DG14 moment theory (black solid line) shows an excellent agreement
with the simulation up-to v = 0.1 but then starts deviating and the deviation continues with
increasing density. For the second normal stress difference (.42), although our theory is able
to capture the sign change of .45 at some finite density but underestimates its magnitude
throughout the span the volume fraction. Nevertheless, our theory is superior as compared
to other Grad level theories (Garz6 2013) in the sense that it is successful in capturing the

qualitative behaviour of the second normal stress difference (.42) along with its correct signs
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in the two extreme limits of the volume fraction (v — 0 and Vv — Vyax), Which the standard
Grad-level theories cannot predict.

The works of Jenkins & Richman (1985a) (black dashed line in figure 2.4) and Garz6
(2013) (red dashed line in figure 2.4), which also are based on an expansion around the
Maxwellian state, when applied to the USF, the second normal stress difference is found to be
identically zero .45 = 0. On the other hand, the kinetic theory work (based on a BGK-type
model) by Montanero et al. (1999) predicts .45 to be positive for all v. Therefore, the present
DG14 moment theory is preferable over the other Grad-like theories because of its qualitative

match with the simulation-data for normal stress differences over all densities.

2.12 Summary

On using the present nonlinear DG14-moment (Dense Grad 14-moment) theory, we have es-
tablished a generalized Fourier’s law for the granular heat flux in a dilute non-uniform shear
flow. It is observed that the gradient of kinetic stress also drives a heat current parallel to the
flow which clearly shows the non-Fourier phenomena. The anisotropy in the thermal conduc-
tivity and Dufour tensors along with its asymmetry are also discussed briefly. A thorough
analysis regarding the asymmetry and anisotropy of these thermal, Dufour and stress conduc-
tivity tensors and the establishment of a generalized Fourier’s law for a dense granular flow
will be considered in a future work. To complete the present DG14-moment theory, three ad-

ditional terms need to be determined as noted in Table 2.2. The DG14 theory discussed above

Collisional Source and Flux Terms
Calculated Yet to determine
Nop
@aﬁ KX aaBp
Oyap Oyapp
@70505 ®ya(xﬁ B
Rapp

Table 2.2 Production terms worksheet

has been tested in the context of an uniform shear flow at any arbitrary density. It is clear
from the discussions in §2.11 and from figures 2.3-2.4 that the DG14-moment theory gives
excellent predictions for pressure (p), viscosity (i), granular temperature (7') and a qualita-
tively correct prediction for two normal-stress differences over the whole range of density. It

is successful in predicting the qualitative variation of the second normal stress difference, the
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correct signs in the dilute and dense limits and its sign reversal at some finite density. The suc-
cess of our theory originates from the inclusion of the higher order nonlinear terms (~ P<2ij> , ‘]i2
etc.) in calculating the collision integrals.

Finally, it remains to find a theory that can improve the present analysis and match with the
simulation data for normal stress differences throughout the whole range of volume fraction
ve(0,0.5). An effort to predict the correct behaviours of the normal stress differences and
other transport coefficients in uniform shear flow of a dense granular fluid will be discussed in

the next chapter.






Chapter 3

Non-Newtonian and Non-Fourier
Rheology of Sheared Granular Fluid:
Expansion around Anisotropic
Maxwellian”

3.1 Introduction

In chapter 2 it was found that the nonlinear DG14 (Dense Grad 14 moment theory) moment
theory has a drawback in the sense that it is not possible to predict the “quantitative” be-
haviours of two normal-stress differences (black solid lines) for the whole range of density,
see figure 3.1. In this chapter we have followed a complementary approach to sort out the
issues raised in Chapter 2.

Here we assume that the single particle distribution function is an anisotropic Maxwellian,
which also gives a complete 10-moment system for the uniform shear flow. An exact solution
of the second-moment of velocity fluctuations at Burnett order (i.e second order in shear rate)
is derived which determines all the transport coefficients as functions of the coefficient of
restitution e and the volume fraction v. A perturbative solution at the fourth order (super-super-
Burnett) is also determined which improves the second order analytical solution. Particle

simulation data (Alam & Luding 2005b) for the uniform shear flow of inelastic hard-spheres

2This chapter is an extended version of the work published in Journal of Fluid Mechanics [Saha & Alam
(2016), J. Fluid Mech. 795, 549-580]. Additionally, a Burnett order analytical solution for the related 2-
dimensional problem is described in Appendix M of this chapter. The complete 2-dimensional analogue has
been published in the same journal [Saha & Alam (2014), J. Fluid Mech. 757, 251-296], which is attached as a
supplementary material at the end of this thesis.
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Fig. 3.1 Variations of the first (.#7) and second (.#3) normal stress differences with parti-
cle volume-fraction (V) in the uniform shear flow of smooth inelastic spheres; the symbols
represent the particle-dynamics simulation data of (Alam & Luding 2005b) for a restitution
coefficient of e = 0.9. The solid lines denote the “Dense Grad 14” (DG14) moment theory as
discussed in Chapter 2.

is compared with the theoretical model, with excellent agreement for pressure, shear viscosity
and two normal stress differences over a range of densities spanning from the dilute to close
to the freezing point. The origins of two normal stress differences in both dilute and dense
limits are discussed. Lastly, a generalized Fourier law for the granular heat flux is derived
for a dilute granular gas by analysing the non-uniform shear flow via an expansion around
the anisotropic Maxwellian state; this determination of granular heat flux makes the theory
closed at least in the dilute limit. It is observed that the gradient of kinetic stress drives a heat
current in addition to parallel heat flow, which certainly is a signature of non-Fourier rheology.
The thermal conductivity is characterized by an asymmetric anisotropic second-rank tensor,
for which explicit analytical expressions are given. It is observed that the asymmetry or/and
anisotropy appears at Burnett order and beyond, and therefore we can say that the non-Fourier

rheology is a Burnett order effect.

This chapter is organized as follows. The extended-hydrodynamic theory is outlined in
§3.2. The second moment tensor of velocity fluctuations is constructed and analysed for the
uniform shear flow in §3.4.1 and the origin of stress anisotropy is discussed in §3.4.2. Working
in a rotated coordinate frame and using a series expansion for certain integrals, the balance
equation for the second moment is reduced to a set of algebraic equations as described in
§3.5. Two sets of analytical solutions of these algebraic equations at different orders in the
perturbation parameter are derived in §3.6. The closed-form expressions for (i) all components

of the stress tensor, (ii) the shear viscosity, (iii) the pressure, (iv) two normal stress differences,
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and (v) the source of the second-moment tensor as well as the collisional dissipation rate are
provided in §3.7 for the whole range of density. The analytical forms of the above transport
coefficients are validated in §3.10.1; an analytical solution of the second-moment equation
valid near the dense-limit is derived and validated in §3.11. In §3.12 we consider the non-
uniform shear state and outline a procedure to derive the constitutive relation for the ‘non-

Fourier’ heat flux. The summary and conclusion are given in §3.13.

3.2 Extended Hydrodynamic Equations: the 10-Moment Sys-
tem with Heat Flux

We consider a dense granular gas consisting of N randomly moving smooth inelastic hard-
spheres of diameter o and mass m. The particles loose energy upon collisions which is char-
acterized by a single parameter e, called the coefficient of normal restitution, with e =1 and 0
referring to perfectly elastic and sticking collisions, respectively. The first member of BBGKY
(Bogoliubov-Born-Green-Kirkwood-Yvon, Chapman & Cowling (1970)) hierarchy, that deals
with the evolution of the single-particle distribution function f(c,x,¢) for a dense granular gas,
reads as (Chapman & Cowling 1970; Jenkins & Richman 1985a)

(£+C-V)f262/dcz/ dk(g - k) [efzf(z)(cl,x,cz,x—dk;t)
8t g.k>0

— (e, x,chx+okr) |, 3.1)

where g = ¢| — ¢, is the pre-collisional relative velocity between two colliding spheres, with ¢
and ¢, denoting their pre-collisional instantaneous velocities and their post-collisional veloci-
ties being denoted by primes, and g - k > 0 accounts for the constraint of impending collisions;
k =k = (x, —x1)/|x2 —x1] is the unit contact vector joining the center of sphere-1 to that
of sphere-2 at collision. In (5.4), £ is the two-body distribution function such that

f(z) (C] , X1 ,Cz,xz)dcldX] dCzdxz

is the probability of finding a pair of spheres with the first sphere being centered within dx;
about x1, with its velocity in de¢j about ¢ and the second one being centered within dx, about
x;, with its velocity in dc; about ¢;. For a pair of colliding smooth spheres, the tangential

component of their relative velocity remains invariant but the normal component changes ac-
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cording to the following the collision rule:

(&' k)= —e(g-k), (3.2)

where g = g1, = ¢; — ¢ and g’ = ¢/ — ¢}, are the pre- and post-collisional relative velocities,
respectively.

To derive hydrodynamic balance equations, let us consider any particle property y(C)
which is a function of the peculiar/fluctuation velocity C = (¢ — (c¢)), with the angular bracket,
(-), denoting an average over the velocity space. Multiplying (5.4) by y(C) and integrating
over the velocity space and after tedious algebra, the master balance equation is obtained (Jenk-
ins & Richman 1985a; Saha & Alam 2014)

2t (a2 e )2 ) 01w [ 2] s i, 63

n(r,t) = g = /f(c,r,t)dc, (3.4)

is the number density of particles, @(y) is the collisional flux of v,
:——/// (v —w) / P (e1,x— wck,cr,x+ ok — wok)
k>0
(k- g)dwdkdedc,, (3.5)

and X (y) is the collisional source of y,

62
- 7// o (vl + v —vi — ) fP(c1,x— ok, c2,x) (k- g)dkde1des.  (3.6)
8-k>

Note that the origin of the collisional flux term (3.5) is tied to the ‘macroscopic’ natures of
particles (and hence to the “denseness” of the matter) and this term is zero in a dilute gas of

point particles.

3.2.1 The 10-Moment System

As in our previous works [Saha & Alam (2014) and Chapter 2], we will work with an extended
set of 10 hydrodynamic fields: (i) the mass density

p(r,t) =mn(r,t) = m/f(c,r,t)dc, (3.7)
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(i1) the coarse-grained velocity

1
u(r,t)=(c)= o) /cf(c,r,t)dc, (3.8)
and (iii) the second moment tensor
M(ra)=(CC) = rl > / CCf(c,r.1)de, (3.9)

where C = ¢ — u is the peculiar/fluctuation velocity of particles. The last hydrodynamic field
(3.9) is required to account for normal stress differences which is the major focus of the present

work.

Putting v = 1, ¢ and CC into (3.3), the mass, momentum and second-moment balance

equations, respectively, are obtained as

(%+u-V)p:—pV-u, (3.10)
i+ .V)u=-V-P (3.11)

p 5 tu u= , .

p(%—i—u-V)M:—V-Q—P-Vu—(P-Vu)T+R (3.12)

where P is the total stress, a second-rank tensor, given by
P=p(CC)+0O(mC), (3.13)
Q is the flux of the second moment, a third-rank tensor, given by
Q0 =p(CCC)+0O(mCC), (3.14)
and R is the collisional source of second moment, a second-rank tensor, given by
X = X(mCC). (3.15)

In (3.13-3.14), the first and second terms refer to the corresponding kinetic and collisional

contributions, respectively.

Defining the granular temperature as

T=—-Mgyqy (3.16)
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and taking the trace of (3.12), we obtain the balance equation for the granular energy

3 d dqq dug
pl=+u-V|)T=-222_py-—F— 1
2P (aﬁ" ) EPREECLF P G.17)
and that of the deviator of the second-moment
1
2P ( V) ap =~ 135 (Qyap — 39r9ap)
1 dug Jug 1 19 (3.18)
- Z(Pwax tP Baxy> Pyéaxy5aﬁ}+§§zaﬁ
In above equations,
1 1 1
a= zQaBB = szaﬁﬁ + 5®aﬁﬁ (3.19)

is the total energy flux vector (i.e. the heat flux vector), whose first term is the kinetic contri-

bution and the second term is the collisional contribution, and

1 1
7 =—5Rpp=—5 X (mC?) (3.20)

is the rate of dissipation of kinetic energy per unit volume.

The balance equations (3.10-3.11) and (3.17), along with constitutive relations for (3.13),
(3.19) and (3.20), constitute the Navier-Stokes-order hydrodynamics for a fluidized granular
matter; clearly, the equation for the deviatoric part of the second moment tensor (3.18) satisfies
identically at NS-order.

For an extended hydrodynamic description of granular matter, incorporating normal stress
differences, we need the balance equation (3.12) for full second moment tensor, along with
mass and momentum balances (3.10-3.11). For a closure of (3.12), the deviatoric part of the
third-order Qyqp,

~ 1
Qyap = Qyap — 3 (QyeeBap + Qacedyp + Opee Say) , (3.21)

is assumed to be zero, leaving only its isotropic part, the heat flux vector (3.19), to be evaluated
as a constitutive relation. In addition to (3.19), we need to determine constitutive relations for
the stress tensor (3.13) and the source of second-moment (3.15) in terms of the gradients of the
hydrodynamic fields (p, u, M). While the expressions for the latter two constitutive quantities
are derived for the uniform shear state as discussed in §3.7.1, §3.7.2 and §3.9, the heat flux
(3.19) requires a consideration of the non-uniform shear flow since the temperature gradient
vanishes in the uniform shear flow (USF) which is dealt in §3.12.
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3.2.2 Why 10-moment System?

In Chapter 2, we dealt with a 14-moment system and showed how a 10-moment system with
heat-flux can be obtained via Maxwell-iteration technique. For the sake of simplicity, we
will restrict to the 10-moment theory of a dense granular fluid in the present and subsequent
chapters. The 10-moment theory is sufficient to analyse normal stress differences [Saha &
Alam (2014, 2016)] which constitute the major goal of this thesis.

3.3 Single-Particle Velocity Distribution Function

3.3.1 Maximum Entropy Principle and the Anisotropic Maxwellian Dis-
tribution

In order to obtain the explicit expressions of the single-particle distribution function using the
maximum entropy principle [Jaynes (1957); Holway Jr (1966)], we write down the definitions
of the 10 hydrodynamic fields that form the set {p, u, M}

p(r,t)=mn(r,t) = m/f(c,r,t)dc,
u(r,t)=(c) = n(:,t) /cf(c,r,t)dc, : (3.22)
M(r.i)=(CC) = - (rl,t) / ccf(eriyde

The optimum distribution function f is such that it maximizes the uncertainty about the ve-
locity, subject to a set of compatibility conditions given in (3.22). In information theory, the
entropy is defined following Shannon (1948)

S=— /f(c,r,t)lnf(c,r,t)dc, (3.23)
which is the same as the Boltzmann’s entropy (negative of H-function) without the multiplica-
tive factor of kg7 (Chapman & Cowling 1970).

The final probability distribution function is the one which maximizes the Shanon entropy
(3.23) subject to the constraints (3.22). The variation of S can be written as

oS = —/6f(111f—|— 1 —OC—OC,'C,'—OCijCiCj> dC, (324)

v~




72 Non-Newtonian and Non-Fourier Rheology of Sheared Granular Fluid

where o, @;, and ¢;; are Lagrange multipliers. For a maximum value of S, the variation 65
must be equal to zero. Using the basic principle of integral calculus we can say that vanishing
of 68 for an arbitrary choice of Jf imposes vanishing of the under-braced term in (3.24) as
well which yields

f:exp(oc— 1-|—OCiCi—|-OCijCiCj>. (3.25)

The solution set for 10 Lagrange multipliers { ¢, o, o;;} appeared in eq.(3.25) follows from
(3.22):

1
a=1-7In (87°|M|), (3.26)
o =0, (3.27)

1
oj = —M"! (3.28)

Using this, we obtain the final form of the distribution function as (Holway Jr 1966)

W (e,x,1) = —%C-Ml -c) , (3.29)

n
" e (
(873|M|)?

which is called the anisotropic Maxwell distribution (AMD) function.

3.3.2 Molecular Chaos Ansatz

To relate the two-particle distribution function with the single-particle velocity distribution

function, we adopt the molecular chaos assumption for which
P(er,x—ok,er,x) = go(v) f Y (e1,x — ak) f ) (ea,x), (3.30)

where go(Vv) is the well-known contact radial distribution function (Carnahan & Starling
1969),

go(V) = 5—=5 (3.31)

with
v =nnc’/6 (3.32)

being the local volume fraction of particles.



3.4 Second Moment Tensor and Its Anisotropies 73

Following the principle of maximum entropy we assume that the single particle velocity

distribution is an anisotropic Maxwellian/Gaussian
1
FO(e,xr)=—"exp (——C-M‘l -c) : (3.33)
(873 M])> 2

with |[M| = det(M), which contains complete information about the second moment tensor M.
This form (3.33) was originally used by Holway Jr (1966) to improve certain problems in the
BGK (Bhatnagar-Gross-Krook) model of gas dynamics, resulting in what is popularly known
as the ‘Ellipsoidal”’ BGK-model.

While (3.33) is an appropriate leading-order distribution function for a non-equilibrium
steady state, such as the steady uniform shear flow (Goldreich & Tremaine 1978; Shukhman
1984; Araki & Tremaine 1986; Araki 1988; Jenkins & Richman 1988; Richman 1989; Chou
& Richman 1998; Lutsko 2004; Saha & Alam 2014), the isotropic Maxwellian/Gaussian

1) _n_ (. C
e, x,t) = (ZnT)% exp< ZT) , (3.34)

(i.e. eq.(3.33) with Mg = T 8,) holds for the rest state of a gas at equilibrium.

3.4 Second Moment Tensor and Its Anisotropies

We consider a collection of smooth inelastic spheres of mass m and diameter o, subjected to

uniform shear flow in the (x,y)-plane:
u =27y, v=20 and w=0, (3.35)

where 27 is the uniform/constant shear rate. Note that x and y denote flow and gradient di-
rections, respectively, and the z direction is perpendicular to x-y plane, see figure 3.2; in the
following, the (x,y)-plane is referred to as the shear plane, with the z-direction being the vor-

ticity direction. The velocity gradient tensor completely characterizes the uniform shear flow:

2y

Vu= =D+W, (3.36)

S O O
S O O

0
0
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2, 1M 3>

Fig. 3.2 (Colour online) Sketch of the spherical coordinate system showing the eigendirections
of the shear tensor D and the second moment tensor M.

with the shear (D) and spin (W) tensors, respectively, are given by

07 0 0 70
D=|700]| ad W=| -0 0 |. (3.37)
000 0 00

It is straightforward to verify that 7, —7 and O are the eigenvalues of D and the corresponding

orthonormal eigenvectors are, respectively,

cos —sin 7 0
ID1)=| sinZ |, |Dy)=| cosZ | and |D3)=|0 |, (3.38)
0 0 1

that are sketched in figure 3.2. While |D3) is directed along the z-axis, the shear-plane eigen-
vectors |[Dp) and |D;) are rotated by 45° anticlockwise from the xy-axes.
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3.4.1 Construction of Second Moment Tensor from its Eigen Vectors

In this section we follow the seminal works of Goldreich & Tremaine (1978), Shukhman
(1984), Araki & Tremaine (1986), Araki (1988), Jenkins & Richman (1988), Richman (1989)

and Chou & Richman (1998) to construct the second moment tensor in terms of its eigen-basis.

Recalling that the granular temperature 7 = M, /3 is the isotropic measure of the second
moment tensor M, we can decompose M into an isotropic tensor and a traceless deviatoric
tensor: .

M M
— =1 + —

T T (3.39)

where M /T is the dimensionless counterpart of its deviatoric/traceless tensor whose eigenval-
ues &, ¢ and ( satisfy
E+c+E=0. (3.40)

From (3.39) it follows that the eigenvalues of M are T(1+&), T(1+¢) and T(1+§), and let
us assume that the corresponding orthonormal set of eigen-directions are |M}), |M;) and |M3),
respectively. Since M), |M;) and |M3) constitute an orthonormal triad of eigenvectors in the
three-dimensional Euclidean space (see figure 3.2), we can express the second-moment tensor
M as

M= T(1+&)[M) (M| +T(1+ Q)IM) (M| + T(1+ Q) M) M|, (B4

The expression for M follows from (3.39) and (5.20). The determinant of M is given by
M| =T*(1+&)(1+6)(1+0). (3.42)
Referring to figure 3.2, we assume that the shear-plane eigenvectors |M;) and |M>) can be

obtained by rotating the system of axes at an angle (/4 + ¢), with ¢ being unknown, in the

anti-clockwise sense about the z-axis which coincides with |M3):

cos (¢ +7%) —sin (¢ + %) 0
M) = | sin(¢p+%) |, IM)=| cos(¢+Z) | and [Mz)= |0 |. (3.43)
0 0 1

We further assume that the contact vector k makes an angle ¢ with |[M3), and 6 is the angle

between |M;) and k — (k - z)z, the projection of k on the shear plane, as shown in figure 3.2.
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Inserting (5.21) into (5.20), we obtain the following expression for the second moment tensor,

1 +A%4nsin2¢ —1cos2¢ 0
M=T —ncos2¢p  1+A2—nsin2¢ 0 =T[5 +M, (344
0 0 1—-2A2

and its deviatoric part is

A?+nsin2¢  —ncos2¢ 0
M=T| —ncos2¢ A?>—nsin2¢ 0 |, (3.45)
0 0 —2A2

where we have introduced the following notations
1
n=5(-¢)=0, (3.46)

1
A2=2(c+E) =-

NSNEVAN

>0, (3.47)

and T = Mg /3 is the granular temperature. It is straightforward to verify that the eigenvalues

in the shear-plane can be expressed in terms of 11 and 4 via
E=A*—n and ¢=A*+n>¢&, (3.48)

with the eigenvalue, {, along the vorticity direction (z), being given by (5.44).

Let us define the dimensionless shear rate (Savage & Jeffrey 1981)

. —1
R=— 1 _ ﬁ = Vsh (3.49)
4,/T /o2 oy/4 Vi

which can be interpreted as the inverse of the square root of dimensionless temperature. Equa-
tion (3.49) is called the Savage-Jeffrey parameter (Savage & Jeffrey 1981) which is a measure
of the mean shear velocity (vy, = 67/2 over a particle diameter) relative to the thermal ve-
locity (vyj, o< V/'T) associated with the random motion of particles. The second-moment tensor
(5.22) in USF, constructed from its eigen-basis, is, therefore, completely determined when R,
n, ¢ and A2 are specified.
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Fig. 3.3 Variation of excess temperature (3.50) with density for different restitution coeffi-
cients: e = 0.9 (solid line) and e = 0.1 (dashed line). While the lines denote the present theory,
the circles denote the simulation data of Alam (2005) for e = 0.9.

3.4.2 Anisotropy of Second Moment and Excess Temperature

It is clear from (5.23) that the second moment tensor M is anisotropic, and the measure of its
anisotropy is given by 7, ¢ and A2. Note that  [(5.43)] is the difference between the two
shear-plane eigenvalues of M which, in physical terms, is a measure of the anisotropy of the
second-moment tensor M on the shear plane. On the other hand, A2 [(5.44)] is a measure of

the excess temperature,
T = (T —T,) = —{T =2A°T >0, (3.50)

along the vorticity direction (which is proportional to the out-of-plane eigenvalue { of M).

Equation (3.50) implies that, when a granular material is sheared, the kinetic tempera-
ture along the vorticity direction is always smaller than the mean temperature [T = (T, +
T, +T)/3]. This theoretical result has been verified via a comparison of molecular dynamic
event-driven simulations for a sheared granular fluid, see figure 3.3. It is seen that the excess
temperature 7" decreases with increasing density but remains positive for all v and e. Due
to the linear relationship (3.50) between A2 and T, A2 will henceforth be termed as excess

temperature too.
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3.5 Balance Equations for Uniform Shear Flow and Their

Algebraic Form
In the steady uniform shear flow, the number density n, the velocity gradient Vu and the
components of the second moment tensor M are constants and the contracted third moment

vanishes. The mass and momentum balance equations, (3.10) and (3.11), are identically satis-

fied; the remaining balance equation (3.12) for the second moment tensor needs to be solved.

3.5.1 The Balance of Second Moment

The balance equation (3.12) for M in USF simplifies to
Psgug s+ Psqupg s = Xgp, (3.51)
where
Paﬁ = pMOCﬁ +®O€ﬁ7 (352)

is the total stress tensor, with pMyg = p(CoCp) being its kinetic contribution and @yp =
mBy|Cg] is its collisional contribution, given by [explicit derivation is given in Appendix K]
3(1+e)pvgo(v)

Oup =203 / Kakp (k- M- k)& (y) dk. (3.53)

In (3.51), X g represents the collisional source of second moment whose integral expression
[see Appendix L] can be written as (Chou & Richman 1998):

Ko =Aap +Eqp + Gap + OnsWps + OpsWos, (3.54)
with ( 2) W)
6(1—e”)pvgo(Vv

Agp =— p—y / kakp (k- M -k)>*F(x) dk, (3.55)

and the traceless tensors, Eaﬁ and Gaﬁ, are

2PV [ 1y + k) M) M-
om?2
e)pv

D=

Eqp = S(x)dk, (3.56)

6(1+

T

G = /(kajﬁ+jakﬁ>[<k-M-k><k-D-j>—<k-ﬁ-j><k-D-k>]®<x>dk

(3.57)
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The above integrals are to be evaluated over dk such that dk = sin ¢d@d0, with the limits of
the integrations being 6 € (0,27) and ¢ € (0, 7). Note that j is an unit vector perpendicular
to the contact vector k that lies in the plane formed by g and k such that

cos(6+ ¢ + F)sing . cos@cos(0+ ¢+ %) —sin(60+¢+7%)
k= | sin(6+ ¢+ F)singp and j:ﬁ cos @sin(0 + ¢ + 7) +-cos(0 +¢ + )
cos @ —sin@
(3.58)

It is straightforward to verify the following relations:

kM- k= T(l -1 sinz(p00529+12(3sin2(p—2)>
k-M-j= %Ts'n(p[n(sinze—cos<pcos29)+37tzcos(p] =k-M-j
k-D-j= —=ysin@g[cos pcos(2¢ +260) —sin(2¢ +26)]
D -k = ysin® @ cos(2¢ +26)

(3.59)
v
k-

In the integrand of (3.53-3.57), the following two analytic functions appear (Araki &
Tremaine 1986):

500 =~V (G20 ) etel) + (1 2)esol 1), (3.60)
60) =V (5 + 2 ) ete() - zexpl—1). G6)

where
C(R.1.0.3:0.0) = o(k-Vu-k) 2Rsin’ @ cos(2¢ +26) (3.62)

2\/(k-M-k) \/(1—nsin2g0c0820+7l,2(35in2g0—2))

The origin of } can be traced to the excluded volume effects of macroscopic particles (Jenkins
& Richman 1988; Saha & Alam 2014), and hence ¥ = 0 in the dilute limit and, consequently,

T
S(x)=1 and &(y)= %, as v—0. (3.63)
With (3.63), the integrals Oy, Agp, Eaﬁ and (A?aﬁ can be expressed in terms of elliptic inte-
grals (Goldreich & Tremaine 1978) and further approximations are needed to evaluate them
explicitly. On the other hand, it has not been possible to evaluate the above integrals analyti-

cally when the dense-gas corrections are incorporated due to the dependence of (3.60-3.61) on
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the integration variable 8 and ¢. We shall outline an approximate method in §3.5.3 to evaluate

these integrals analytically for the whole range of density.

Substituting (5.17), (3.52) and (3.54) into (3.51), the balance equation for the second mo-

ment tensor reduces to
PMsg(Dos+Weas) +PpMsa(Dps+Wps) +OspDos +OsaDps =Agp +Eqp +Gap. (3.64)

With the integrals for Oy, Agp, Eaﬁ and 6aﬁ being evaluated in terms of R, 1], ¢ and A as
discussed above, the equation (3.64) yields four independent algebraic equations that needs to
be solved to obtain the rheological properties of USF for the whole range of volume fraction
v. The collisional dissipation rate (3.54) can also be evaluated simultaneously.

3.5.2 Second Moment Balance in Rotated Co-ordinate Frame

Let us now rewrite (3.64) in a new co-ordinate system x'y'z’, formed by the orthonormal triad
of eigenvectors of M, i.e., with respect to the co-ordinate system whose axes coincide with
IMy), |My) and |M3), respectively. This amounts to a transformation, see figure 3.2, via the

following rotation matrix,

cos(p+%) —sin(¢+%) 0
K= | sin(p+7%) cos(¢+7%) 0 |, (3.65)
0 0 1
that transforms the second moment tensor,
1+A%—n 0 0
M=T 0 1+A%2+1 0 : (3.66)
0 0 1—-242

into a diagonal matrix. It is evident from (3.66) that the anisotropy of the second moment
in the rotated co-ordinate frame is quantified in terms of (i) the temperature difference 7
[eqn. (5.43)] in the shear-plane and (ii) the “excess” temperature 7 (o< A2 eqn. (3.50)) along
the vorticity direction. With a prime over a quantity denoting its value in the new co-ordinate
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frame, the following relations hold:

k' = cos Osin @|M) + sin 8 sin ¢| M, ) + cos @|M3), (3.67)
1
j= 7 [(cos @ cos @ —sinB)|M;) + (cos @sin O +cos 0)|My) — sinp|M3)], (3.68)

W =2y [x' sin (¢> + %) +y cos (¢ + %)] [cos (¢> + %) IM;) — sin (¢ + %) \M2>] . (3.69)
cos2¢ —sin2¢ O

D' =7| —sin2¢ —cos2¢ 0 and W =W. (3.70)
0 0 0

The last equation confirms that the spin tensor W is invariant under the planar rotation (3.65).

With the aid of (3.66-3.70), the second moment balance equation (3.64) transforms into
four independent equations in the rotated co-ordinate frame:

(1) the trace of (3.64),
—4npTycos2¢ + 27 [(Oyy — Opy) c0s29 — 20y sin2¢| = Ay +Ayy +Ayy,  (3.71)
(ii) the 7’-7 component of its deviatoric part
—4npTycos2¢ +27[(Opy — Opy)cos2¢ — 20,y sin2¢9] = —30., (3.72)
(iii) the difference between the x’-x" and y'-y’ components
4 (1 + ),2) pTycos2¢p +2y (@x/x/ + @y/y/) cos2¢ =Iyy — Iy, (3.73)
and, finally, (iv) the off-diagonal x’-y’ component
2pT7[n— (1+A%)sin2¢] — (Opy +Oyy) 7sin2¢ = Iy, (3.74)

where
Faﬁ :A(xﬁ —l—EaB +G(xﬁ7 (3.75)
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see (3.54-3.57). The various collision integrals (viz. §3.5.1) appearing in (3.71-3.74) can be

compactly written as

\

3(1 T
Opy —Opy = (+6)gvgo 30 )(n, A2,R,9),
3(1 T
20y = : +$§ng i (M, A% R, 9),
3(1 , 3.76
@x/x/—l—@y/y/ = 3(1+e _H;SZVgOT 002(77 ;LZ R (b) ( )
6(1
AX/X/ +Ay/y/ +AZIZ/ = _%%ég(rhlz’R’q)),
3 )
Bl 6(1 T2
Lo = - S 41— ) (2003 — A%) ~ 2 (A3~ A4T)
~OA2 AR — 4RAG) .
3
6(1 2
D=l == (1 0 4 2m (20— A~ AH)
OA? (A1 — A8) 4R (A — A1) |
3 _
6(1 T2
Gy =S s () A - )
P2 (A8 + ) 2R (Y + AT |
- 7
(3.77)

In (3.76-3.77), Jffé’ 7 Ofg ,and 2, Bp , have integral expressions over 6 and ¢:

aﬁ (n,R,¢,A) = / / sin®26 cosP 26 sin® @ cos? @
v 0-0J =0

x (1 —nsin® @cos26 +A?(3sin’ (p—2)) F(x[n.R.¢,1:6,0])ded6, (3.78)

/06137 n,R,0,4) = / / sin®26 cosP 26 sin’ @ cos” @
6=0J =0

x {1 —nsin® @cos26 +A>(3sin’ ¢ —2)}2 Q5( N,R,0,A;0,0])dpdo,
(3.79)

%‘Sﬁ”(n,R@,l) / / sin®20 cosP 20 sin® (pcosp(p[(1—2&2){sin(2¢+28)—cos¢
6=0J =0

x cos(2¢ +26)} + sin’ @{3),2sm(2¢—|—29)—ns1n2¢}] (x[n,R,0,1;0,0])dedo,
(3.80)
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where §(x) and &()) are given by (3.60) and (3.61), respectively. The integrals (3.78-3.80)
can be evaluated numerically via any quadrature method.

In the following section, we outline an approximate method to evaluate the integrals (3.78-
3.80) analytically via a power-series expansion. As illustrated in §3.5.3 below, the series
expansion would help (i) to reduce the integro-algebraic equations (3.71-3.74) into a set of
algebraic equations for four unknowns 7, R, ¢ and A as well as (ii) to obtain closed-from
analytical expressions for nonlinear transport coefficients and collisional dissipation (see §3.7).
More importantly, we shall derive ’closed-form’ analytical solutions of the second moment

balance at the Burnett order and beyond.

3.5.3 Series Expansion and the Algebraic form of Second-moment Bal-

ance

Recall that the integrand in (3.78-3.80) depend on two analytic functions §(x) and &(y) as
defined in (3.60) and (3.61), respectively, with y being given by (3.62). Substituting the power-
series representation for the complementary error function and the exponential and after some
straightforward algebra, the expressions for §() and &()x) can be written as (Saha & Alam
2014)

3Rsin’ @ cos(2¢ + 26
S(TI?R?(Pv)L’e?(P):_\/%{ ¢ ( (p ) 1
{1 —nsin® pcos26 + A2(3sin’ ¢ —2)}2
+{ 2Rsin’ @ cos(2¢ +26) } }

{1—nsin? @cos20 +A2(3sin @ —2)}2
n 2n
Ly —1') 3 { 2Rsin’ @ cos(2¢ +28) 1} 38D
iz n! (2n—1)(2n-3) {1 —nsin® @cos26 +A2(3sin> ¢ —2)}2
1 4R?sin* @ cos?(2¢ +26)

&(N,R,9,1;0,0) =7 |= . :

(n.R.¢ ?) \/_{ZJF1—ns1n2(pcos29+12(3sm2(p—2)}

. i (_1)11 2 |:{ 2Rsin2(pcos(2¢ +29)

2n+1
. (3.82)
n! 2n—1)2n+1) 1—nsinz(pCOSZG—|—7L2(3sin2(p—2)}J

Substituting (3.81-3.82) into (3.78-3.80) and carrying out term-by-term integrations over 0 €
(0,27) and @ € (0, ) results in an infinite series in 1, R and A for each integral in (3.78-3.80),
see Appendix F. To progress further, we need to truncate each series after a finite number of
terms.

Retaining terms up-to third order O(n™A"RP sin?(2¢))), m+n+ p+q < 3 in the resulting
infinite series for each integral (3.78-3.80) and substituting them into (3.71-3.74), we obtain
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the following set of coupled nonlinear algebraic equations

ZOﬁ{l + %(1 + €)Vg()}T]RC082(P +128(1 + €)vgoR?
—3(1—¢*)vgo(10+n? 4+ 32R> +8\/TRN cos2¢) =0
35\/ANRcos2¢ + (1 +e)Vg0{32(1 13e)R2—3(3—e)(n? +21A2)
—8/7(4— 3e)nRcos 2¢>} ~0
210y/7(1+A%)Rcos2¢ — (1+e)vgo [12¢/T{7(1 —3e) +4(4—3e)A> (- (3.83)
—32(1+e)R?}Rcos2¢ +n{126(3—e) —3(3 —e)n? +36(3 —e)A?
+64(4—3e)R* —32(5+3e)R*cos4¢ }] =0
105y/7{n — (14+22)sin2¢ } —2(1+e)vgosin2¢ [16(5 + 3e)NRcos2¢
—3vm{7(1—3e) +4(4—3e)A* —32(1+¢)R*}| =0

W

for four unknowns 1, A, R and ¢, given that the restitution coefficient (¢) and the volume
fraction (V) are known.

Similarly, retaining terms up-to fourth order O(n™A"RPsin?(2¢)), m+n+ p+q < 4, the
equations (3.71-3.74) simplify to

1680y/TNRcos2¢ —3(1 — e?)vgo (840 + 8402 +3n* +-2688R% + 1024R* )
—128R*n? 4+ 768R*A% — 24n?A% +252A% + 672\/TNRcos 2¢ — 641°R* cos 4¢)

+64(1+e)vgoR{21y/mN cos2¢ +4R(42 — 21> + 1242 +32R> — n*cos4d¢) } =0

2310y/TNRcos2¢ + (1 +e)vgy [32R*{66 + 8N* — 16542 + 3¢(66 — 4n* +331%) }
—9(3—e){n*+11n%(2—22) +664%(7— A?) } 4+ 1024(5+ 3¢)R*

—16RN{33/m(4 —3e)cos2¢ —4RN(2 —3e)cos4¢ }| =0

210y/7(1+ A%)Rcos2¢ — (1 +e)vgo [12y/T{7(1 —3e) + 4(4 — 3e)A?

—32(1+¢)R?}Rcos2¢ +n{126(3 —¢) —3(3—e)n>+36(3 —e)A>
+64(4 —3e)R*> —32(5+3e)R*cos4p }] =0
105y/7{n — (1+2A2)sin2¢ } —2(1+e)vgosin2¢ [16(5 + 3e)nRcos2¢
—3y/m{7(1—3e) +4(4—3e)A*—32(1+¢€)R*}| =0

(3?84)
For specified values of the restitution coefficient (¢) and the density (v), we can use the
standard Newton-Raphson’s method to solve both (3.83) and (3.84), yielding solutions for
n, A%, R and ¢ that are correct up-to orders O(nA"RPsin?(2¢)), m+n+p+q < 3 and
O(N™A"RPsin?(2¢)), m+n+ p + g < 4, respectively. However we have solved (3.83) and
(3.84) analytically using regular perturbation theory with the exact Burnett order solution as
the solution at leading order. We shall show in §3.10.1 that the terms up-to the fourth-order

must be retained in the above series expansion to recover the exact numerical solution of
(3.71-3.74).
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It must be noted that equations (3.83) and (3.84) belong to the ‘super-Burnett’ and ‘super-
super-Burnett” orders since they incorporate terms that are at most ‘cubic’ and ‘quartic’ in
the shear-rate (R) respectively. Therefore, the resulting solutions of (3.83) and (3.84) for 1,
A, R and ¢ and the transport coefficients will be dubbed ‘super-Burnett’ and ‘super’-Burnett’

solutions (see §3.10) respectively.

3.6 Closed-form Solution of ‘“Truncated” Second Moment

Equations

3.6.1 Approximate Solution in the Dilute Limit and its Comparison

Let us consider the dilute limit (v — 0) of the second-moment balance (3.71-3.74) which was
analysed previously by Richman (1989). In this limit, the collisional contribution to flux terms

vanishes (e.g. ©qp = 0) and consequently the stress tensor is given by its kinetic contribution:
Paﬁ = pMOtﬁ' (3.85)

Moreover, ¥ = 0 as v — 0 and hence F(x — 0) = 1, &(x — 0) = /7/2, see (3.63); it can
be verified that the integrals (A?aﬁ (v —=0)=0and Iy(x — 0) = 0 vanish too. Therefore, the
balance equations (3.71-3.74) for the second moment simplify to

—4T]pT)./COS Z(P =Auy —l—Ay/y/ +AZ/Z/,
—4npTycos2¢ = —3y,
4(1+A2)pTycos2¢ = (g — L),
2pT 7N — (1+A%)sin2¢] = Iy = 0.

(3.86)

The last equation of (3.86) yields an expression for the non-coaxiality angle ¢ in terms of
N and A:

. |
#zsmﬂb = q):ism ](1_;7&2). (3.87)

By evaluating the integrals on the right-hand side of (3.86) and retaining terms up-to super-
super-Burnett order O(n™A"RPsin?(2¢) m+n+ p 4+ g < 4), the remaining three equations
simplify to

872 RN cos20 — (1 — e2)wv(280+ 2812 4+ n* —8n2A2 +841%) = 0,
872RN cos 20 — (3 —e)(1+e)mv{n>+322(7—A2)} =0, (3.88)
35V/TR(1 +A%)cos2¢ —3(3+2e —e?)vn(7+2A%) =0.
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The solutions for R is given by

o 3(1=é&)v
~ 560/7Tn cos2¢

(280+28n% +n* —8n?A% +841%), (3.89)

where A2 satisfies a cubic equation, which after truncating at the second-order, takes the form

4 733, 2 S _
7L+(g+ﬂ(e —1))/1 —E(e —1)=0. (3.90)

yielding an approximate solution for A2. And finally, the solution for ° follows form

(14 4+3A%)n* =33(124+3A2 + A2 +198A%(7 + 647 — 1%) = 0. (3.91)

A comparison of the present analytical solutions (3.87, 3.89, 3.90, 3.91) for n, ¢, R and
A% with those of Richman (1989) is made in figure 3.4(a-d) respectively: the dashed and
dot-dashed lines denote the present 4th-order solution and that of Richman respectively. To
understand the quality of our solution (the red dot-dashed line), the exact variations of 1, ¢,
R and A? with e, obtained by solving (3.86) numerically, are superimposed in each panel as
denoted by the solid lines. It is clear that the present solutions are better than those of Richman
(1989) at lower values of the restitution coefficient (e < 0.5), but are almost indistinguishable
fore > 0.5.

3.6.2 Exact Solution at Leading Order for Whole Range of Density

Here we discuss an exact solution of the ‘leading-order’ second-moment equations that helps

to understand the scaling relations of 1, R, A% and ¢ in terms of the restitution coefficient (e).

Exact solution at Burnett order

Retaining terms up to second order O(n™A"R"sin?(2¢), m+n-+ p+ g < 2) in the resulting

o . Sp Sp Sp . : :
infinite series for J¢, By o By and % 5 [see (F4-F.18) in Appendix F], the following set of
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~,
~)
~

— numerical
== = super’ — Burnett

‘‘‘‘‘ = Richman (1989)

0.252 :
0.2
\8.15

0.1

0.05

1 0 1 3
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(& (&

Fig. 3.4 Comparison of the “dilute-limit” analytical solution (red dot-dashed line) with that
of Richman (1989) (black dot-dashed line) and the full numerical solution (black solid line):
Variations of (a) n, (b) ¢, (¢) R and (d) A2 with the restitution coefficient e.
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equations for the second moment balance (3.71-3.74) is obtained:

20\/E{1+g‘(1+e)Vgo}chos2¢+128(1+e)Vg0R2
—3(1—¢?)vgo(10+n?+32R> 4+ 8,/TNRcos2¢) =0
35\/TNRcos2¢ + (1 +e)vgo{32(1+3e)R*> —3(3 —e)(n?>+21A2%)
—8\/m(4—3e)nRcos2¢} =0
5vTRcos2¢ — (1+e)vgo{3(3—e)n+2(1 —3e)y/TRcos2¢} =0
5(n—sin2¢)+2(14¢)(1—3e)vgpsin(2¢) = 0.

(3.92)

/

These equations represent the second-moment balance equations at “Burnett order” (Burnett
1935) since all terms up to the second order in the shear rate have been retained.

These equations admit an exact solution

n= {572(1+e)5(173e)vg0} $in2¢ N
22— 10(-¢) [(7-3¢){5-2(1+¢)(1-3¢)vgo} ~18(1+¢)*(3—¢)vgo |
— 21(3—e) 525(3—e)
x{5—2(1+4e)(1—3e)vgo}sin®2¢ (3.93)
R= 3(14;67\)/(53—6)‘,8,0 tan2¢

Heos(2¢) = W‘/)@_e)cosz(w) (%20 +2(14¢)(3e— 1)) )

V
where sin2(2¢) = % is the real positive root of the quadratic equation
(11 —=3e){5—2(1 +e)(1 —3e)vgo}*n¥*—

(11 =3e){5—2(1 +e)(1—3e)vgo}*m+96(1+3e)(14¢e)*(3 —e)*v? gl +250m(1 —e) | %

+2507(1 —e) =0. (3.94)

For specified values of v and e, the non-coaxiality angle ¢ is determined from (3.94) and the
remaining quantities are from (3.93). This provides the ‘Burnett-order’ solution for ¢, 1, A2

and R as functions of v and e.
From (3.93-3.94), it is straightforward to verify the following scaling relations as v — 0:
N ~sin2 ~R~A~(1—e)/2. (3.95)

Equation (3.95) holds strictly in the dilute limit (v — 0), and therefore 1, sin2¢, R and A are
of the same order and scale with inelasticity as /(1 — e). The above scaling also holds in the
dense limit as we shall verify in §3.11. The validity of the leading-order solution (3.93) to
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accurately predict the transport coefficients (pressure, viscosity and normal stress differences,
see §3.7) for the whole range of density will be checked in §3.10.1.

Beyond Burnett Order: Perturbation Solution

To obtain solutions beyond the Burnett order, i.e. at O(n"A"R"sin?(2¢), m+n+p+q > 2),
we must solve the related nonlinear algebraic equations as given by (3.83-3.84) valid at third
and fourth orders in shear rate respectively. We could not find an ’exact’ solution of (3.83-
3.84) either at super-Burnett or super-super-Burnett order. Therefore we look for perturbation
solution of (3.83-3.84) be taking Burnett-order solution (3.93-3.94) as the leading solution:

n=n® yen® 4e2n® 4 ..

A2 =22 1 ed® 420 ™ 4.

R=R® +eR® +£2RW 4 ...
sin2¢ =sin2¢ + 5in2¢®) + 2sin2¢* + ...

(3.96)

J

In the above expressions € ~ ¥ and the superscript “2” corresponds to the “Burnett-order” solu-
tion and the superscripts “3” and “4” correspond to the corrections at the third and fourth order,
respectively, in the shear rate. Plugging (3.96) into the corresponding third- and fourth-order
equations and after performing some cumbersome algebra, we obtain the following solution

for the correction terms at third order:
n® =108 = R®) =in2¢® = 0. (3.97)

The fourth order correction terms are found to be non-zero and are given in Appendix H.
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3.7 Constitutive Relations for Non-Newtonian Stress and Col-

lisional Dissipation

The dimensionless stress tensor in USF can be written as

P P, P, 0
P =i P, P, 0
0 0 P
* 2 * | * *
pr 00 Mt 3 —u 0
=| 0 pr 0 [+ —u* — I I 0 , (3.98)
0 0 p* 0 0 — I =2
where
* 1 * * *
p :g(Pxx"i_Pyy—i_PZZ)’ (3.99)
ur=—P, (3.100)
M= (Pa—Fy), (3.101)
Ny' = (P, —P) (3.102)

is the pressure, the shear viscosity, the first and second normal stress differences respectively;
here p,, is material/intrinsic density of particles and Ug = 270 is the reference velocity scale.

The power-series (3.82) for &(n,R, ¢, A) is inserted into (3.53) to evaluate the collisional
stress, and the total stress tensor is subsequently obtained from (3.52) by summing the ki-
netic stress and the collisional stress. We will express constitutive relations in terms of the

dimensionless temperature, which is defined as

L (3.103)

T = .
64R?

S

The final analytical expressions for the components of the stress tensor are presented in the
following subsections, and the related algebraic details can be found in Appendix G.

3.7.1 Shear Stress and Viscosity

Retaining terms up-to the fourth-order in temperature anisotropy (1), shear rate (R), excess
temperature along the vorticity direction (e< 1) and sin(2¢) O(n"A"R"sin?(2¢), m+n+ p +
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q < 4), the dimensionless shear stress can be written as (see Appendix G):

*

P
D cos2g - U FVE [21R{8+\/%"C(I’;2¢ } +48A2R

vT* 1057
+4R3{32—Z—§(2+(1+2c0s22¢)> }] (3.104)

with the dimensionless temperature 7* being given by (3.103). The expression for the dimen-

sionless shear viscosity, U*=—Py,/ ppU g=—Py, follows from (3.104):

«  VVT*[ncos2¢ 4(1+e)vgo N cos2¢
=% { R 105/ (ZI{SJ”E R }

+48),2+128R2—4n2{2+(1+2cosz2(p)})], (3.105)

(. J
~\~

where the under-braced terms represent nonlinear contributions beyond the Navier-Stokes
(NYS) order.

Neglecting quadratic- and higher-order terms in (5.50), we obtain the NS-order expression

for the shear viscosity:

. VVT*[ncos2¢ 4(1+e)vgos 8  mncos2e
Hns =3 R T3 <ﬁ+ R

The elastic limit of the Burnett-order solution (3.93) for 1 cos2¢ /R, with ¢ — 0 (which holds
at NS order),

)| +o®). (3.106)

”“;:2") ;:)) 51\/; (v;) +§) (3.107)
can be substituted into (3.106) to arrive at
elastic SVm > 8
G (o) s e o

This expression (3.108) matches exactly with the shear viscosity for an elastic hard-sphere

system (Chapman & Cowling 1970).



92 Non-Newtonian and Non-Fourier Rheology of Sheared Granular Fluid

3.7.2 Normal Stress Components and the Pressure

The diagonal components of the stress tensor, correct up-to O(n"A"R"sin?(2¢), m+n+p+
q < 4), have following expressions:

VP; = (1+A2+75in2¢) +2(11+17§l_% [33(35+96R2+ 147 sin2¢ + 1412)
v %chosZ¢{3(66+5n2 —2222%) — 160R? — 227 sin2¢)}] , (3.109)
VP;Z = (1+A2—nsin2¢) + ;;"go [33 (35 4+ 96R — 141 sin2¢ + 1412)
+ﬁchos2(p{ (664502 —22A2) — 160R2+22nsm2¢}] (3.110)
VPT** (1-222) + 2(1?17;%)[33(35—1—3%2—2812)
+%chos2¢{(66+3n2—32R2)H. G.111)

The dimensionless mean pressure, correct up-to O(nA"R"sin?(2¢), m+n+p+q < 4), is
given by

2(1
P = VT [1 + %{315 F672R? 4~ nRcos26(42+ 302 — 22R2 — 1242) H .

VT

N J/
-~

(3.112)

Neglecting the ‘under-braced’ non-linear terms in (3.112), we obtain the well-known expres-
sion for pressure,

pns = VT (1+2(1+e)vgo), (3.113)
at the NS-order.
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3.8 Normal Stress Differences and Their Origin

3.8.1 First Normal Stress Difference and Its Origin

Subtracting (3.110) from (3.109) the expression for the first normal stress difference (3.101)
is found to be

N =21 sin(29) (1 LAEveor,, ichos(2q>)D vT*

105 JT
+O0(M"A"'R"sin?(2¢), m+n+p+q>5), (3.114)

with its kinetic and collisional contributions (4" = ,/Vlk* + "), respectively, being given
by

N =21 sin(2¢)vT* (3.115)
cx 8(1—|—€)Vg() _i . %
M = —is5 231 \/Echos(Z(p) nsin(2¢9)vT™. (3.116)

Note that both (3.115) and (3.116) vanish in the limits of 17 — 0 and/or ¢ — 0: while the former
represents the limit of vanishing temperature anisotropy in the shear-plane (5.43), the latter
correspond to the eigendirections of the second moment tensor M and the shear tensor D being
coaxial (viz. figure 3.2). Therefore we conclude that the origin of first normal stress difference
is tied to (1) the ‘finite’ temperature anisotropy and/or (ii) the ‘non-coaxiality’ between the

eigendirections of M and D at any density.
The leading terms in both (3.115) and (3.116) are,
nsin2¢ =0 (7), (3.117)
of Burnett-order in the shear rate. The leading-order corrections in (3.116) are
R sin(29) (%cos(zqs)) —0(). (3.118)

It is noteworthy that the excess temperature along the mean-vorticity direction (3.50), T,* o
A2, does not affect the kinetic part of first NSD, but it affects the collisional part of the first
NSD at sixth-order and beyond in the shear rate.
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3.8.2 Second Normal Stress Difference, Sign-reversal and Origin

Similarly, the expression for the second normal stress difference (3.102) is obtained from
(3.110) and from (3.111):

e/Vz*Ie/Vzk*—Fe/Vzc*

= [312 —nsin(2¢)] vT* +

2%
32(14+e)v-T*go [264(; 7

-0 kx 2

1155 Tyt )R

+%chosZ¢{(66+6n2—64R2—3312)+llnsinZ(pH
+O0(M"A"'R"sin?(2¢), m+n—+p+q>5), (3.119)

with its kinetic and collisional components at O(n™A>'RP, m+n+ p < 4) being given by

MM = [3A% —nsin(29) | vT* (3.120)
e 32(1+e)v3T*go 17 o\ 1
N = e [264 3Ty R+ onRes20
x {(66+6n2—64R2—33/12)+11nsin2¢}]. 3.121)

where 7™ is the dimensionless temperature (3.103). In the limit of vanishing of the ‘shear-
plane’ temperature-anisotropy (1 — 0) and/or the coaxiality (¢ — 0) between the eigendirec-
tions of M and D, we have

N = 3LV < T > 0, (3.122)
4(1 ’r*
pper = M +e3)5v 80 [32R2+2m2} >0, (3.123)

where T)** is the excess temperature (3.50). Both (3.122) and (3.123) hold strictly in the dense
limit since 11 and ¢ approach zero as Vv — Vpax. Equation (3.122) suggests that even the
kinetic part of the second normal stress difference remains positive in the dense limit since
A2 o T > 0 in the dense limit (see figure 3.3).

It is evident from (3.122) and (3.123) that the second normal-stress difference in the dense
limit (3.123) remains finite and positive which is in contrast to zero first normal stress differ-
ence in the same limit. Moreover, even if A2 = 0 and n = 0, .4, remains finite as V — Vpax
as long as the shear-rate is finite (R? > 0) and hence this is ‘shear-induced’. Therefore, the

origin of non-zero second normal-stress difference in the dense limit is tied to the imposed

shear field.



3.8 Normal Stress Differences and Their Origin 95
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Fig. 3.5 (a) Variation of (342 —1sin2¢) with density v for two values of restitution coefficient
e = 0.9 (solid line) and e = 0.1 (dashed line). (b) Variation of the critical density vf,, at which
nsin2¢ = 342, with e.

Equation (3.120) indicates that the J/zk* can be positive or negative depending on the

relative magnitudes of 342 and 7 sin(2¢) and can undergo a sign-change at a finite density if
312 —1nsin(2¢) = 0. (3.124)

The density-variation of (3.124), obtained by solving (3.71-3.74) numerically, as depicted in
figure 3.5(a) clarifies the above point: 312 < 1sin(2¢) in the dilute limit and 342 > 1 sin(2¢)
in the dense limit for any value of the restitution coefficient. The variation of the critical
density vf,, at which (3.124) holds, with the restitution coefficient is shown in figure 3.5(b) —

clearly, v¥ (e) is a decreasing function of e and can be fitted via the following linear function:
vk (e) = 0.27 —0.086e. (3.125)

Since .4, = 0 at v = 0 and is a monotonically increasing function of v, the critical density,
V.r, at which total second normal stress difference (45 = %k + A45¢ = 0) changes sign from
negative to positive would be slightly lower than (3.125).

In summary the second normal stress difference is negative and positive in the dilute and
dense limits, respectively, and the ‘sign-reversal’ of .45 at some finite density is directly tied
to the sign-reversal of its kinetic component Ji/zk. The above analysis further confirms that the
origin of .45 is tied to the ‘excess’ temperature (7, o< A2, viz. (3.50)) along the mean vorticity

direction in the dilute limit, but its origin in the dense limit is tied to the imposed shear field.
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3.9 Source of Second Moment and the Collisional Dissipa-

tion

In USF the collisional source of second moment (3.54) takes the following form:

Ny Xy O
R=| %, X, 0 |, (3.126)
0 0 X,

with its non-zero components being given by

N =Ax+ B+ Gu+270y

Ry =Ay+EBy+Gy—270, -
N, =Az+ Ezz + Gzz

iy = Ay+Eg+ Gy +7(6yy — )

The integral expressions for @qp (3.53), Agp (3.55), Eqp (3.56) and G4 (3.57) have been
evaluated in terms of 1, A and R, correct up-to O(n"A"RPsin?(2¢),m+n+ p+q < 4), and
the resulting truncated series for (3.127) are written down in Appendix I.

3.9.1 Collisional Dissipation

The constitutive expression for the collisional dissipation rate (3.20) follows directly from the
trace of (3.126):

1 1 3(1—¢? )pVgoT

9 = —5 Nﬁﬁ = _5 (Axx +Ayy +AZZ> = ‘%’603(7177[‘27137(1))

0'7'52

~ pvgo(1—e)T?

 700Tw
—1—3(28172-1—174—8112),2—1—84),4)], (3.128)

[840—1— 32{ (84+21\/E% C052¢> 432K —2n2(2 + cos4e) + 2412}132

where we have made use of the last equation in (3.76) and the related series expansion for
S0 by retaining terms up-to O(n™A"R"sin?(2¢)), m+n+ p+q < 4). In the isotropic limit
(n — 0 and A2 — 0), we obtain

16 128
29 =9° (1 : —R>+ 105R4) (3.129)
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where X
0_ 12p,v?go(1 —e*)T2

oVE

is the corresponding bare part valid at NS-order (Jenkins & Richman 1985a). Returning to

9

(3.130)

(3.128), we note that the correction terms beyond the NS-order depend quadratically on (i)
the shear rate (Y ~ R), (ii) the temperature anisotropy 7, and (iii) the excess temperature,
A% o T?*, along the vorticity direction. The quadratic-order shear rate dependence in (3.129)
agrees qualitatively with that calculated by Sela & Goldhirsch (1998) via a Burnett-order

indicate that the collisional dissipation depends on both normal stress differences,
D=D (-3 M, M), (3.131)

since (N, A) ~ (A1,.43) as we demonstrate below.

3.9.2 Dilute Limit: Dependence on NSDs

To clarify the dependence of collisional dissipation (3.131) on normal stress differences, here
we consider the dilute limit of (3.128). Recall that the leading-order moment equations admit

an exact solution in the dilute limit (v — 0):

_ 1 k k k

n?

a2 =g 2
where K = (Pk. — Pyky) /p and A5k = (Pyky — PL)/p are the kinetic parts of the ‘scaled” first
and second normal stress differences, respectively. Substituting (3.132) into (3.128) and re-
taining terms up-to quadratic-order in ,/Vlk and ,/Vzk, we obtain the following expression for
the collisional dissipation rate,

N[0

C 3ppvi(1—=eNT
N 700/

_ 3ppv2(1-A)T> ME Vo 107 & k
= 007 [280—1— 28+2</V1 + 3 (ai/l +2</V2)

9

[280+ n2(28+n>—81%) + 84/14} + hot.,

2
7 k k) > k\3
+§(JV1 +2454)7] + o (), (3.133)
which holds in the dilute limit. That the Grad-level dissipation rate depends on the normal

stress difference was pointed out previously (Saha & Alam 2014) for the case of granular

shear flow in two-dimensions.



98 Non-Newtonian and Non-Fourier Rheology of Sheared Granular Fluid

3.10 Validation of Constitutive Relations

In this section we probe the range of validity of the analytical constitutive relations for the
shear viscosity (§3.7.1), the pressure (§3.7.2), and the two normal stress differences (§3.8) that
are obtained by solving the ‘truncated’ second-moment equations (3.92), (3.83) and (3.84) at
second- third- and fourth-order, respectively. These approximate solutions are then compared
with the numerical solution of the full second moment equation (3.71-3.74) as functions of
the density (v) and the restitution coefficient (e). It may be recalled from the analysis in
§3.5.3 that the transport coefficients obtained using the solutions of (3.92), (3.83) and (3.84)
for n, A, R and ¢ are referred as the ‘Burnett’ ‘super-Burnett’ and ‘super’-Burnett’ solutions,
respectively.

For the ‘exact’ numerical solution of (3.71-3.74), first we evaluate the integrals ,%”jé’y

(3.78), /O‘fgy (3.79), and %‘Sﬁp (3.80), that appear in (3.76-3.77), numerically using the stan-
dard quadrature rule. Substituting the numerically evaluated integrals into (3.71-3.74) results
in a system of nonlinear algebraic equations which again is solved by the same Newton’s
method. The values of 1,4, R and ¢ thus obtained are inserted into the expressions for pres-
sure (p, G.6), viscosity (i, G.8) and the normal stress differences (.#] and .45, G.9) as given
in Appendix G. Such numerically obtained transport coefficients are dubbed ‘exact’ numerical
solution since a very high accurate solution can be obtained, limited only by (i) the truncation
error of the quadrature rule and (ii) the machine precision.

In the following, such exact numerical solutions for p, u, T, .47 and .45 are compared with
those obtained from (i) the (exact) Burnett-order solution and (i) the perturbation solution at
fourth order for 17, A, R and ¢.

3.10.1 Comparison Between Analytical and Exact Numerical Solutions

Figure 3.6(a-d) shows a comparison within the ‘exact’ numerical solution of second-moment
equations, the exact Burnett order solutions and the perturbative fourth order solutions for the
variations of the shear-plane anisotropy 7, the excess temperature A2, the dimensionless shear
rate R, and the non-coaxiality angle ¢ (degrees) with density (v) for three values of the resti-
tution coefficient e = 0.9, 0.7, 0.5. In each panel, while the solid black lines denote the exact
solution, the blue dashed lines and red dot-dashed lines denote the series solutions at second-
order and fourth-order, respectively. It is seen that while the second-order solution provides a
good agreement for 17, A2, ¢ and R up-to a restitution coefficient of e > 0.9, the fourth-order
solution is required for more dissipative particles (e = 0.7) for a reasonable agreement over
the whole range of density (for A? and R, see panels b and c respectively). On the other hand,
panels a and d indicate that even the 4th-order solution for the shear-plane anisotropy 1 and
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Fig. 3.6 Variations of (a) 1, (b) A2, (c) R, and (d) ¢ (degrees) with density (v). While the
solid black lines denote the exact numerical solution of second moment equations, the blue
dashed and red dot-dashed lines denote the exact Burnett-order solution and the perturbation
solution at fourth-order, respectively.
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the non-coaxiality angle ¢ is not adequate at e = 0.5 in the dense limit (for v > 0.3). Since all
transport coefficients in USF are functions of 1, A2, ¢ and R, next we will check the ability
of the exact second- (Burnett) and fourth-order approximations (super-super-Burnett) of the
second-moment equation to predict p, u, T, .4 and 5.

Figure 3.7(a-c) displays the density variations of (a) the pressure p, (b) the shear viscosity
u and (c) granular temperature 7 for three different values of the restitution coefficient e = 0.9,
0.7 and 0.5. In each panel, the ‘exact’ numerical solution (denoted by the black solid line) is
compared with (i) Burnett order (blue dashed line) and (ii) the perturbation solution at fourth-
order (red dot-dash line) It is seen that the Burnett-order solutions for p, u and 7" are almost
indistinguishable from their exact numerical value for small dissipation (e = 0.9); moreover,
this agreement seems to hold uniformly for the whole range of density. On the other hand,
retaining the fourth order terms yields a better agreement for p, u and T at large dissipation
(e =0.5).

The ability of the fourth-order series solution to quantitatively predict p and p at any
density also holds for both the first and second normal stress differences, see figures 3.8(a,b).
Note that the plotted quantities in figure 3.8 are the ‘scaled’ first and second normal stress
differences defined via
i _Pa=Py

p
_ Pyy —P, Z
b

(3.134)

N (3.135)
respectively, with the expressions for P, Py, P and p given in (3.109-3.112); equations
(3.134) and (3.135) are measures of two normal stress differences with respect to the mean
pressure. In figure 3.8(b) we find that .45 undergoes a sign reversal at some finite density.
The location (v = V) of the sign-reversal of .4 appears to be independent of the restitution
coefficient as it is evident from figure 3.8(b). This finding should be contrasted with the sign-
reversal of the kinetic component (Jl/zk) of the second normal stress difference in figure 3.5
which indicates that vX. (at which ,/Vzk = 0, figure 3.5b) is a decreasing function of e. The
dependence of the collisional component of the stress on e is likely to be responsible for the
independence of this critical density (V. at which .45 = Jl/zk + 45 = 0) on the restitution
coefficient.

3.10.2 Comparison with Simulation

The molecular dynamic event-driven simulations data for the uniform shear flow of inelastic
hard-spheres, previously carried out by Alam & Luding (2005b) for a restitution coefficient
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Fig. 3.7 Comparison between the ‘Burnett-order’ analytical solution (blue dashed lines),
fourth order perturbation solution (red dot-dashed lines) and the ‘exact’ numerical solution
(solid black lines) for (a) pressure, (b) shear viscosity and (c¢) granular temperature with vol-
ume fraction (V) for different values of e. The filled circles represent the molecular dynamic
event-driven simulations data of (Alam & Luding 20050) for e = 0.9.
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Fig. 3.8 Same as figure 3.7 but for the variations of (a) the first (.41,) and (b) the second (.43)
normal stress differences with density (V).

of e = 0.9, are superimposed in figures 3.7 and 3.8. Note that Alam & Luding (2005b) used
event-driven techniques to conduct these simulations of smooth inelastic hard-spheres in a
cubic box by implementing the Lees-Edwards boundary condition (Lees & Edwards 1972)
along the gradient (y) direction with periodic boundary conditions along the stream-wise (x)
and span-wise (z) directions — the other details of simulation can be obtained from the original
paper. Figure 3.7(a-c) indicates that our theoretical predictions are in good agreement with
the simulation data for p, u and T as well as for two normal stress differences .#] and .43
(figure 3.8).

The above comparative study in figures 3.6, 3.7, 3.8 and 3.9 suggests that the terms retained
up-to the fourth-order (super?-Burnett solutions) in the series expansion (3.81-3.82) of the
second-moment equation provide an adequate accuracy to predict all transport coefficients (p,
u, A and A43) in the uniform shear flow. This in turn implies that the super-super-Burnett
terms (i.e. fourth-order in the shear rate) must be retained to predict the correct behaviour of
p, W, A1 and 43 for all values of v and e.

3.11 Dense limit: Approximate Solution and Its Validation

Here we determine an approximate solution of the second-moment balance equations (3.71-
3.74) which is likely to hold in the dense limit (V — Viax). Since the collisional mechanism
of momentum transfer dominates over its Kinetic contribution as V — Vpqax, the stress tensor
can be approximated by

Pop = Oqp. (3.136)
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Therefore the balance equations (3.71-3.74) simplify to

27[(Oypy — @y’y’) cos2¢ — 2@)6/),/ sin2¢] = (Agy —I—Ay Y +A,),

27[(®x’x’ — @y/y/) CoS 2¢ — 2@)(/),/ sin 2¢)] 31}/2/, (3 137)
27(Opy + ®y’y’) cos2¢ (1} =TIy /)
_(®x’x’ + @y’y’M/Sinz(P 1}

Substituting the expressions of the integrals (@ + O, ) and Iy into the last equation yields
¢ = 0, which implies that the eigenvectors of the shear tensor D and the second-moment tensor
M becomes co-axial at v — V. We are now left with 1, A2 and R to solve for.

3.11.1 Approximate Solutions in the Dense Limit

Let us simplify (3.137) by retaining terms up-to O(nA’R)?:

32(1+36)R2—8(1—3e)\/ERn—3(1—e)n2—9(1—e)7t4—30(1—e):0,
32(1+3e)R?> —8(4 —3e)/TRN —3(3 —e)n> —63(3 —e)A> +9(3 —e)A* =0,
8(4 —3e)\/TRA? +6(3 —e)nA? + 14(1 —3e) /TR +21(3 —e)n = 0.

The solutions of these equations are given by

2 - I 2 3
n? = (7238+426740%){70—2813’{—924% 11922
(280 — 1190.2° —798.2°2 1 240.2°3) +3¢2(70 — 1072 — 42272 + 245{3)},
2 _ 1 3 2 3
R = G ni9r21e 2077 [3{36 (210 -4012"+422°=42427)
—3(1050 — 14572 +378 272 +72.2°3) — *(3570 — 86212 + 546 22 +456.273)

(6090 — 16493 2 + 88222 +7925{3)H :

/
(3.139)
where A2 = 2. Inserting (3.139) into (3.138) yields a fourth-order equation in 2°, which

after retaining terms only up-to quadratic-order in A% = 2" yields

(81792 + 199824¢ — 130560¢” + 18288¢> + 206667 — 88562¢m + 74982¢*w — 117906 ) 2

+(202104 + 485016¢ — 345912¢% + 53928 — 66017 — 26201 em + 83433 — 1770363 1) 2

—35280 — 58800¢ 4 129360e> — 35280¢> — 73507 + 33810em — 396907 + 132307 = 0.
(3.140)
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The above solution (3.139) and (3.140) can be further simplified if we remove A*-terms from
(3.138). The resulting equations admit an explicit solution (Alam & Saha 2017):

- 2lB3-e) (3.141)

Since 1, ¢ — 0, the first normal stress difference (4] «< 1 sin2¢) vanishes as V — Vpax, but
the second normal stress difference remains finite (.#5 < A% # 0) in the dense limit. The
solution (3.141) indicates that R, A ~ \ﬂ 1 — e) and therefore both the shear-rate and the excess
temperature scale with inelasticity as \ﬂ 1 —e) in the dense limit.
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Employing (3.141), all transport coefficients (p, i, .41 and .4) can now be calculated as

functions of v and e as follows:

1 2
Pt pt = 7(1;6;;&5’ {3465 +73028°
+ %T)Rcos 2¢(462 +331n% —352R> — 13242 +997L4)},
1 2 2
- % (1 + ?—SRZ) (3.142)
(1+€)V2g0[{ ncos2¢ 2 2 2 4
faptt = OV 8003 6161 77, /m 020 | 49244 11 4}
TR 18480\/ER366+\/ER +41°(44 481 A7 +4A

1 128(11 —422)R? —4n2{22+ (11— 1223)(1 +200522¢)}] ,

(1+e)vigo 2 2 4 2\ p2
=~ 2131544+ A°(44—-11A 42 32(11 —4A°)R 3.143
4620\/ERH A a2t} "] (3.143)
i PP
pC

12{231 — S nR(11 - 1212)cos2¢}n $in2¢

{231(15 +32R2) + N Rcos 29 (462 + 3312 — 352R2 — 13212 +99A4)} ’

—0 (3.144)
PC Pt

Ny e _ 2z _

6[33(32R2—7nsin2¢—|—21),2)+

£ nRcos 2¢{66+ 612 — 64R% — 3312 + 1824 +- (11 — 12A2) sin2(pH

{231 (15+32R2) + £ R os 20(462 + 3302 — 352R2 — 13222 +997L4)} ’

6(32R% +21A%)
— 3.145
7(15+32R?) ’ (3.145)

where we have retained only the collisional contributions to the stress tensor.

3.11.2 Validation of the Dense Limit Solution

The density-variations of the pressure, shear viscosity and granular temperature for v = (0.5,0.64)
are displayed in figures 3.9(a), 3.9(b) and 3.9(c), respectively. In each panel, while the blue
solid line denotes the ‘exact’ numerical solution of the second-moment equation with the ra-
dial distribution function being given by (3.31) of Carnahan & Starling (1969), the black solid
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Fig. 3.9 Comparison of ‘dense-limit’ analytical solution (green dashed lines) for (a) pressure
(3.142), (b) shear viscosity (3.143) and (c¢) granular temperature with their ‘exact’ numerical
solution for (i) Carnahan-Starling (3.31, blue solid line) and (ii) Torquato’s (3.146, black solid
line) radial distribution function. The red dot-dash line in each panel represents the ‘leading-
order’ closed-form solution (3.93-3.94).
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Fig. 3.10 Same as figure 3.9 but for (a) the first (.4#7) and (b) the second (-#>) normal stress
differences. The black solid line, the green dashed line and the red dot-dash line represent
the exact numerical solution, approximate dense-limit solution (3.144-3.145) and the leading-
order solution (3.93-3.94), respectively.

line represents the same with the following radial distribution function (Torquato 1995)

o if v <0.49
gO(V) = 2:0.49 (Vinax —0.49) (3]46)
2(1-0.49)>  (Vmax—V) ’ 0.49 < v <0.64,

where Vipax = 0.64 is taken as the random packing limit (or, the jamming density) and v =
0.49 ~ vy represents the freezing-density of a hard-sphere system. Our approximate dense-
limit solution (3.142-3.143) is marked by the green dash-line in each panel of figure 3.9; we
have also superimposed the leading-order solution (3.93-3.94) denoted by the red dot-dash line.
It is seen that while the dense-limit solution (3.142-3.143) agrees qualitatively with with the
respective exact (black solid line) numerical solution, the leading-order solution (3.93-3.94)
agree quantitatively (for e = 0.95) with the exact (black solid line) numerical solution. Expect-
edly, the pressure (figure 3.9a) and shear viscosity (figure 3.9b) calculated using the Carnahan-
Starling radial distribution function (3.31) deviates from those calculated using (3.146) since
the former has a singularity at v = 1. In fact, Torquato’s expression (3.146) is valid for the
whole range of density (for an ‘equilibrium’ hard-sphere system) up-to the maximum packing
limit (Viax ~ 0.64), while the Carnahan-Starling form (3.31) may be used up-to the freezing
density (vy ~ 0.49).

Figures 3.10(a) and 3.10(b) compare the above two dense-limit solutions for the first and

second normal stress differences, respectively, with the respective exact numerical-solution
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(the black solid line, with (3.146)). It may be noted that .#; = 0 for our approximate dense-
limit solution (3.144) since the non-coaxiality angle (¢) is zero, but .45 # 0 as in (3.145). On
the other hand, our leading-order solution (3.93-3.94) for the whole range of density predicts
a non-zero 4] for v < Vpax (denoted by the red dot-dash line in figure 3.10a) which closely
follows the exact numerical solution for .4]. In particular, the agreement between the leading-
order (red dot-dash line) and exact (black line) solutions for both .4] and .43 is very good at
e = 0.95, but the deviation increases with decreasing restitution coefficient.

Collectively, the comparative analysis in figures 3.9 and 3.10 suggests that our leading-
order solution (3.93-3.94) can be used as a first approximation to predict all transport coeffi-
cients (p, U, .41 and .43) in the dense limit. On the other hand, the present dense-limit solution
(3.141) can also be improved by incorporating next higher-order terms in future.

3.12 Granular Heat Flux and Thermal Conductivity

For the uniform shear flow, the granular heat flux vanishes identically since the gradients of
hydrodynamic fields (the number density, the shear rate and the second moment) are zero
for which the anisotropic Maxwellian (3.33) was chosen as the single-particle distribution
function. Therefore we need to determine the distribution function for the ‘non-USF’ having
finite gradients of hydrodynamic fields. To do this, we carry out a perturbation expansion
around the USF with the anisotropic Maxwellian being zeroth-order distribution function. The
resultant analysis is similar to our previous work (Saha & Alam 2014) on inelastic hard-disks,
and the related details for the present case of hard-spheres are discussed below.

With respect to the anisotropic Maxwellian as the weight function and applying Gram-

Schmidt orthogonalization procedure along with the following definition of the inner product

(0.9) = —

1
= S} /(py/exp(—EC-Ml -C)dC, (3.147)

we obtain a set of orthonormal polynomials { 20) @1(1) , @2(1) , 93(1) , @ff), @S), 3%?,
93(?, (@i(j) , L@i(lé), (@lg) } The explicit expressions of L@i(k) and 321.(]].{) are omitted for the
sake of brevity. In an analogous approach, the distribution function for the non-USF can be
written as

£ = £0) (a +aiC; + axCy +2ay,CiCy+ ay, Cy +a.C: + b,~c2c,-) . (3.148)
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where f 0) represents the anisotropic-Maxwellian state (3.33). To determine a, a;, Gy, Gyy, ayy,

a,; and b;, the following compatibility conditions must be satisfied

/f(])(c,x,t)dc:n(x,t):/f(o)(c,x,t)dc,

[erexnde=o= [crexnde

m/CaCBf(l)(c,x,t)dc =Py = m/CaCBf(O)(c,x,t)dc,

along with the definition of the heat-flux vector

da = %/CZCaf(l)(c,x,t)dc.
The solutions for the constants are
a=1, Axx = Ayy = Ayy = az; =0,

ay = # {{SM;‘y —2 [(3Myy —M:)M; + M (8M,y +MZZ)]M§y

_M)’)’<3Mxx + M,y + M:;) (M)%x + 3M)%y + Mzzz) }(Ix
My, { 3(Me+ Myy)? + (3M2, + 2M My + 3M2, + 4M2 )M,

+(Mxx + M, +Mzz>M3z}Qy} )

gy = L [Mxy{g( M+ Myy)® + (3M2, + 2M oMy + 3M2, + 4M2) M.,

po
+(Mxx + Myy + Mzz>M3z}Qx

+{ BML, — 2| (3Ma — Moo M+ My (8 o+ M) | M2,

~Mae(Mc+ 3Myy + Mzo) 3MZ + M, + M) }qy} :

- (Mxx+Myy+3Mzz)Qz
PM; (MZA+M3+3MZ+2M3,)

a; =

be = 35 [{foMyy + My MZ +3M3, +2(My + 3Myy)M§y}qx

Mo { 3M2 + 2M My + 3MZ, + M2 +4M3, | qy} ,

~po

by = l —M,, { 3M, + 2McMyy + 3M, + Mz, + 4M§y}q"

+ { 3MR, + MMy + MM+ 2(3Max + My ) M5,

b, =

qz
PMyo (M2 AMZA3MZ+2M3))

o).

(3.149)
(3.150)

(3.151)

(3.152)
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where
0 = (Mudyy — M2 ) {3ME 4+ 10MEMD, + AMEMZ + 30, + 4 M (3.153)
+ M+ M (12M3X + 16M2, — 8M My, + 1202, + 8MZZZ) } (3.154)

Equation (3.148) along with (3.153) and (3.154) constitute the single particle distribution func-

tion for the non-uniform shear flow.

This completes the determination of the distribution function (3.148) for the non-USF
which we shall use in the next section to calculate the source term in the balance equation for

the third-order moment.

3.12.1 The Third Order Balance

The balance equation for the contracted third-order moment is

DM e 3M (g5 Py + 3 — X 3.155
P, + Qnappn = 3IMapFBynn+3Cn(apUp)n = Rapp: (3.155)
where
Qnaﬁ = pMnaﬁ = /CnCaCﬁf(l)<C,x,t)dC (3156)
Onapp = PMuapp = / C?CoCofV (e, x,1)de, (3.157)
and
1 1
1 1
On(aptp)n = 5 (2Cnapttpn+ Qnppitan) = 5 (2Qnapup n+ 2qniton)- (3.159)

The source term in (3.155), ¥ aBBs is defined as
Ropp = X[mCCq]

2
:%/// ACCo) fD (1, %) D (ep,x) (g - k)dkde dey.  (3.160)
g:k>0

By using the distribution function (3.148) we can carry out the integration in (3.160) as

detailed in Appendix J. The final expression for the third-order source term (see Appendix J)
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is

The

2p(1 +e)VT

X = . 3.161
aBp 385pp0-\/E ayqdy ( )

expressions for different elements of £ are given below.

3.12.2 Elements of

The

Qi

Qi =

expressions for the non-zero elements of £ in (J.38) are given by
B 1

2542412+ 4012+ 16a* + 9644
+586074A8) — e{ (127050 +221760A% 4+ 5691512% 4 403722A.% + 427258A.8)
+ 12 (144309 + 4560642 + 3315244 +711924.%) +2n*(50529 42080042 — 296814)
—81°(210—73942)} +n?(205997 + 686184 % 4+ 3541321* — 1613041°)
+21n*(63017 — 778012 — 94424A%) — 8n°(1751 4+ 3309A2) — 10400n®
+21[4(5005 + 968042 + 12067A* +4856A°) — ¢{9240 — 21%(759 + 6740A% + 53671*)
+1*(5756 — 3264A%) +660n° + 2244012 + 165661* 4240081}

+12(6116 — 446401 — 43578A%) +n* (8961 — 129481.%) — 215619 sin2¢] . (3.162)

[(1 88650 4 341880A% 4+ 8497834 % + 6396061 °

B 2ncos2¢

2542412 + 4012+ 16a* + 9644
—2n%(759 + 674042 +5367A%) +1n* (5756 — 32641%) +660n° + 2244012 + 165661
424008481 + 102 (6116 — 4464042 — 435781%) +1n* (8961 — 129481.2) — 2156n6] ,
(3.163)

[4(5005 +9680A2 + 120674 % +4856A%) — £{9240
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1
T 2542412 +40A2 + 160 + 9644
+586074A8) — e{ (127050 +221760A% 4+ 5691511.% 4 403722A.% + 427258A.8)

+ 12 (144309 + 4560642 + 3315244 +711924.%) +2n*(50529 42080042 — 296814)
—8n°(210 —73942)} + n* (205997 + 686184 + 3541321* — 161304A.°)

+21n*(63017 — 778012 — 94424A%) — 8n°(1751 4+ 3309A2) — 10400n®

—2n[4(5005 4968042 4 12067A* + 48561°) — {9240 — 2n%(759 4 67404% 4 53671.4)
+1* (5756 — 3264A%) +660n° + 2244012 + 16566A* 4240081}

+12(6116 — 446401> — 43578A%) +n* (8961 — 129481.2) — 215619 sin2¢] . (3.164)

QO [(1 88650 +341880A% + 8497831* 4 639606A.°

1

= 7730 — 25410e 4 1873312 — 13101en? — 1028n* — 4en*
i3 (5+2n2—812)[3 30— 25410¢ + 1873302 — 13101en” — 10287 —den

—520m° —2{616(62 —39¢) — 11(71 — 147¢)1> + (889 + 167¢)n*}A>

+{33(4471 —2967¢) — 80(76 — 3e)n?}A* —2(21373 — 11121e)A°]. (3.165)

3.12.3 Heat Flux and Thermal Conductivity: Maxwell Iteration

Inserting (3.158-3.159) in (3.155), the equation for the heat-flux vector g can be written as:

- an 8uﬁ 8Qna[3[3 8Pﬁn
N(xﬁﬁ =2 Dt +2qa 8xB + axn (2Maﬁ +3T505B> axn

u
+2(Onap +Qn5aﬁ)a—ﬁ (3.166)

X n,

Following the same closure assumption of vanishing Qmﬁ as in (3.21), we can write

2
5

(Qnap + Qabup + Qpbuc) = < (408 +9abup +pSna) - (3.167)

N | =

Qnaﬁ =
Therefore, the under-braced term in (3.166) can be simplified as

18 4 8uﬁ

du
2(Qnocﬁ + %504[3>a—xﬁ = ?Dan% + 2Wongn + gQaE, (3.168)
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where we have used the following definitions

dug 1 (dug  duy 1 (dug du,\

ox, 2 (3)6,, + 8xa) + 2 (8xn B 3xa) = Dan+Won (3.169)
AL (3.170)
0xg

Inserting (3.168) into (3.166), the governing equation for the heat flux reduces to

P 4v(1 —I—e)\/T
Bn
— 2M066 +:;T(S(XB = — 0@06 ‘]7/ 3.171
( ) 3x,, 50\/% vy ( )

e AR
Dt + 5 Ge ox, + ox,

where

1 90/ 50T

Doy = = Qay+ =Dy + ———— =
AT vl e)vT T 2v(14e)VT

Woy (3.172)

is a rank-two tensor field.

Now to determine the constitutive relation for the heat flux, we apply the anisotropic
Maxwell-iteration scheme (Truesdell & Muncaster 1980; Saha & Alam 2014) for which the
following relations hold at the zeroth-order:

(0) (0)
P =pM_ s =pMyg,
ot _ DR } (3.173)
QnaBB = p(3T5aB + ZM(xﬁ)MnB7
and hence o
0
(0) 95 _ Mg, | dp
ap 3, = PMap =5, + 55, MapMpn;
9Capp p T Mg (3.174)
9%, :3a—anMan+3[;A%Man+3pT ax’bM
d n o
+2a_£1MnBMaB + 2p —axnﬁ M(Xﬁ + 2pMnﬁ —axnﬁ .
Inserting (3.173-3.174) into (3.171) we obtain the expression for the heat-flux vector
5ppovT 4 oT IMep
— _2POVE 4 (SM 9L oM ) 3.175
AT it LA R e L (3-175)

with 2,4 being given by (3.172). Equation (3.175) is dubbed the ‘generalized” Fourier law
since the gradient of the kinetic stress drives a heat-current in addition to the standard Fourier
heat-current driven by the gradient of the temperature. The coefficient of the temperature

gradient term in (3.175)
25p,0VTm
Ky=—"-""—"=2 Mg, 3.176
"4 4e)yT T G170
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is identified as the thermal conductivity which is a rank-two tensor field.

3.12.4 Navier-Stokes’s Limit

When the shear-plane temperature anisotropy (17 — 0) and the excess temperature along the

vorticity direction (A% — 0) approach zero, we have Maﬁ =0and Mg = T §,p, along with

2247R? -
T (1 a (l+e)2(497i33e)2v2) 0 0
D My = ——— 2247R> -
YO T (49 — 33e) 0 (1 - (1+e)2(49ﬂi336)2v2> 0
0 0
(3.177)
At linear order in the shear rate (~ R), (3.177) reduces to
T6
DMy, = — 3.178
YO T (49 — 33e) (3.178)
Substituting (3.178) into (3.175), we obtain an expression for the heat-flux
75mv/T oT oT
qy = — 5 myVT —=—K-—, (3.179)
2\/mo?(1+€)(49 —33¢) dxy dxy
with ST
25 T
k= VPO (3.180)

4(1+e)(49 —33e)
being the expression for the ‘scalar’ thermal conductivity at NS-order (Jenkins & Richman
1985a). Therefore, at linear-order in the shear rate (the NS-order), the heat flux follows the

standard Fourier law (3.179) and the thermal conductivity, Ky, = KSW, is an isotropic tensor.

3.12.5 Comparison with Previous Work

As cited in the work of (Simon & Jenkins 1994), similar expressions for the heat flux (3.175)
and thermal conductivity (3.176) were derived by Zhang (1993). Here we make a comparison
between our work and the constitutive expression derived by Zhang (1993) by analysing the

different components of the tensor 2 as given in (3.172).
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For the uniform shear flow and after truncating the terms beyond O(nA2)?, we can explic-

itly evaluate different components of 2: the diagonal elements of 2 are given by

_ 1 2 2 4
D = T OIS [17150+18727n +31080A% + 77253

—3e(3850 + 437302 + 672042 + 1724744 +4on{91 L 17612 — 6e(T + 1712)} sin2¢] ,
D)y = T2 T 0TI [17150+ 18727n* +-31080A% + 772531*
—36(3850 + 437302 + 672042 + 17247A%) — 4071{91 17612 — 6e(7+ 17/12)} sin2¢>] :
2 = T [37730—25410e+ 1873302 — 13101en>

—1232(62 — 39¢) A2 +33(4471 — 2967e)/14] ,

3.181)
and the non-zero off-diagonal elements are
o 201 cos2¢ 2 2 287
Dy =  7(25+24n2+4022+96B7) 91 +176A% —6e(7+ 17A7) | + V(1+6)R (3.182)
B 207 cos 29 2 2 8ym .
Dy =  7(25+24n2+4022+96 %) O1+176A7 —6e(7+174%) | + V(I+E)R’

with R = yo /4+/T being the Savage-Jeffrey parameter (3.49). Clearly, Qap # 2pq for any
R # 0, and hence 25 is asymmetric. We conclude that the thermal conductivity tensor Kqg
is anisotropic in the uniform shear flow having dependence on the shear rate and, moreover,

the off-diagonal anisotropy of Kyp (i.€. Kyp 7# Kpo) results from the imposed shear-field in
USE.

Before closing this section, we make a comparison of the different elements of 2 as given
by our expressions in (3.181-3.182) with the approximate solutions derived by Zhang (1993);
the related expression of 2 is given in Simon & Jenkins (1994). To evaluate each element
24, we used the reference state of USF for which 1, A2, R and ¢ are calculated as before
and they are subsequently substituted into (3.181-3.182). Figure 3.11(a) displays the diagonal
elements of 2, while figure 3.11(b) displays the non-zero off-diagonal elements 2, and 2,,.
It is seen in figure 3.11(b) that our second-order solution (3.182) for 2,, and 2, agree well
with those of Zhang (1993) for the whole range of restitution coefficient. On the other hand,
while the agreement for the longitudinal component 2, is excellent between two theories,
there are significant differences for 2y, and 2, for e < 0.9. It may be noted the analysis of
Zhang (1993) considers only leading-order terms, while our analysis is based on second-order
corrections. In any case, the particle simulation data are required to verify the constitutive

expressions for the heat flux.
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Fig. 3.11 Variations of the different components of 25 with e in the dilute limit (v = 0.01):
the values of 7, A% R and ¢ correspond to the solution of the USF problem. The solid lines
represent the present solution as given in (3.181-3.182) and the dashed lines represent the
work of Zhang (1993) as cited in (Simon & Jenkins 1994).

3.13 Summary and Comparison with Standard Moment The-

ory

3.13.1 Summary of Theory and Its Predictions

The motivation to develop a higher-order hydrodynamic-like theory for a flowing granular
matter came from the fact that the normal stress differences remain order-one quantities (see
figures 3.1 and 3.8) in a granular fluid and hence cannot be neglected. This ruled out Navier-
Stokes-order models (for which .4 = 0 = .45) and the ‘minimal’ model that incorporates
normal stress differences is the well-known “10-moment” model of (Grad 1949) in terms
of an extended set of 10 hydrodynamic fields (density, velocity vector and the second mo-
ment tensor) as detailed in §3.2. The constitutive relations were then derived by choosing the
anisotropic Maxwellian as the single-particle distribution function which is the zeroth-order
distribution function (Goldreich & Tremaine 1978; Araki & Tremaine 1986; Jenkins & Rich-
man 1988; Richman 1989; Lutsko 2004; Saha & Alam 2014) for a non-equilibrium system
like the steady uniform shear flow of smooth inelastic spheres. The equation for the second
moment tensor has been solved semi-analytically, and the closed-form expressions for the
“non-Newtonian” stress tensor, the shear viscosity and the collisional dissipation rate are pro-
vided for the whole range of density as detailed in §3.7.1, §3.7.2 and §3.9. In addition, the

origin of two normal stress differences has been identified in §3.8.
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We found that the normal stress differences and the anisotropy of the second-moment
tensor M = (CC) (where C = (¢ —u) is the peculiar velocity of a particle, ¢ is its instantaneous
velocity and u is the coarse-grained/hydrodynamic velocity) are intertwined with each other
in uniform shear flow. This can be easily appreciated by focussing on the dilute limit of shear

flow for which the following relations hold:

== 6+ +245) M (3.183)

A2 = é(,/l/l +2.45) (3.184)
. 3M

2¢ = 1
sin2¢ \/(6—1—,/1/1—1—2,/1/2) (3.185)

Therefore, the temperature anisotropy in the shear-plane (1), the non-coaxiality angle (¢) and
the excess temperature (7 = (T —T;) o< A2, where T, and T are the z-component and the
average of the granular temperature respectively) along the mean-vorticity (z) direction vanish
if the two normal stress differences are zero. This results in an ‘isotropic’ second-moment
tensor for which only the granular temperature is a field variable, in addition to density and
velocity, leading to the standard NS-order hydrodynamic model.

The ‘scaled’ first normal stress difference (4] = (P — Pyy)/p, scaled with respect to the
mean pressure) is positive in the dilute limit and decreases monotonically to zero in the dense
limit. In contrast, the scaled second normal stress difference (.45 = (P,, — P.;)/p) is negative
and positive in the dilute and dense limits, respectively, and the sign-change of .45 at some
finite density is directly tied to the sign-change of its kinetic component J/zk. In physical
terms, the vanishing of the first normal stress difference is tied to the ‘coaxiality’ (i.e. the
non-coaxiality angle is ¢ = 0) of the eigendirections of the shear tensor D = (Vu+ (Vu)T) /2
and the second-moment tensor M. On the other hand, the second normal stress difference
can be non-zero even if the above coaxiality condition (¢ = 0) is satisfied since the ‘excess’
temperature (7 = (T —T;) o< A%, where T and T, are the average and z-component of the
granular temperature) along the mean vorticity (z) direction could differ from zero in uniform
shear flow.

A detailed comparison between the ‘exact’ numerical solution of the second-moment equa-
tion and two different (approximate) semi-analytical solutions has been made (see figures 3.6,
3.7 and 3.8). We found that the super-super-Burnett terms (i.e. fourth-order in the shear
rate) must be retained in the series expansion (3.81-3.82) of the second-moment equation to
quantitatively predict the behaviour of the pressure (p), the shear viscosity (1) and two nor-
mal stress differences (4] and .#3) for all values of density (V) and restitution coefficient (e).
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Fig. 3.12 Variations of the (a) first .41 and (b) second .45 normal stress differences against
volume fraction v for coefficient of restitution e = 0.9. The blue solid lines, black solid lines
and red dashed lines represent the Burnett order analytical solution of current anisotropic
Gaussian theory, DG14 theory (chapter 2) and 14 moment theory of Garzé (2013) respectively.
The symbols are simulation results from Alam & Luding (20055).

Furthermore, a similar comparison with the molecular dynamic event-driven simulations data
of Alam & Luding (2005b) for the uniform shear flow of inelastic hard-spheres confirmed the
reliability of our theoretical expressions for transport coefficients over a large range of density
(see figures 3.7 and 3.9). Therefore we conclude that the beyond-Navier-Stokes contributions
up-to the super-super-Burnett order must be retained in all transport coefficients.

Lastly, we derived a constitutive relation for the granular heat-flux in the dilute limit by
utilizing an expansion around the anisotropic Maxwellian state. The resulting generalized heat
flux (3.175) depends on the gradients of (i) the granular temperature and (ii) the kinetic stress.
We found that the thermal conductivity tensor Ky (3.176) is anisotropic in the uniform shear
flow having dependence on the shear rate and, moreover, the off-diagonal anisotropy of kg
(i.e. Kgp 7# Kpo) results from the imposed shear-field in USF.

To complete the present 10-moment theory, the collisional contribution to the heat flux
needs to be calculated in future. This is required for the applicability of the present theory

over the whole range of density.

3.13.2 Comparison with GME (Grad’s Moment Expansion) Theory

Figure 3.12 shows a comparison of first (.47) and second (.45) normal stress differences within
(i) Burnett order analytical solution of present anisotropic Gaussian theory, (ii) Dense Grad
14 moment (DG14) theory established in Chapter 2, (iii) Grad’s 14 moment theory by Garzé
(2013) and (iv) molecular dynamics solution by Alam & Luding (2005b), against volume
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fraction v for e = 0.9. It is seen that the theory based on standard Grad’s moment expansion
(GME) (Jenkins & Richman 1985a; Garz6 2013) grossly over-predicts .47 and predicts .45
to be identically zero. Therefore questions the applicability of GME at a finite density as
far as normal stress differences are concerned. The DG14 moment theory predicts 4] up-
to a volume fraction of 0.1 and then over-predicts it. The .45 predictions of DG14 is better
compared to the GME in a sense that DG14 theory predicts the corrects signs of .45 at the
dilute and dense limits, and also predicts the sign reversal of it at some finite density. Overall,
the DG14 moment theory gives a qualitatively correct predictions for .4] and .45 both but
there is quantitative disagreement with the simulation. However the anisotropic Maxwellian
expansion (AME) discussed in this chapter predicts the correct behaviours of both the normal
stress differences and an excellent quantitative agreement with the simulation is observed
throughout the span of density. Here lies the success of AME theory.

The quantitative predictions of the AME theory for two normal stress differences and other
transport coefficients motivate us to apply this anisotropic theory to analyse the simple shear
flows of gas-solid suspensions. The particle phase rheology of a uniformly sheared gas-solid
suspension using anisotropic Maxwellian as the single particle distribution function will be

discussed in the remaining two chapters.






Chapter 4

Dense Gas-Solid Suspension: Stress
Tensor and Normal Stress Differences

4.1 Introduction

This chapter is devoted to analyse the non-Newtonian stress tensor in a sheared gas-solid sus-
pension, and is a direct extension of the anisotropic Maxwellian theory described in Chapter
3. A detailed review of pertinent works on gas-solid suspensions is deferred to Chapter-5;
in the following we discuss a few papers from which the present work is motivated. The
simple shear flow of a gas-solid suspension has been analysed by Tsao & Koch (1995) and
Sangani et al. (1996) for the cases of (i) the elastic particles in dense suspension and for (if)
the inelastic particles in very dilute suspension. Their theory is based on the standard Grad’s
moment-expansion (GME) around a Maxwellian using Hermite polynomials yielding (i) fi-
nite first normal stress difference (./#7) in the dense limit (Vv — Vax) and (ii) vanishing second
normal stress difference (.4 = 0) at any density. But the particle simulation data (Alam &
Luding 2005b,a) and related theory works (Jenkins & Richman 1988; Saha & Alam 2014,
2016) clearly suggest non-vanishing .4 # 0O at any density and vanishing .4#] — 0 in the
dense regime. Finding the correct behaviour of two normal stress differences (.47, .43) and
other transport coefficients for a “non-dilute” suspension of dissipative particles is the main
objective of the present chapter.

In figure 4.1 we have shown the density variations of the two normal stress differences [.4]
and .#5] for e = 0.5 (upper panel) and e = 0.9 (lower panel) respectively.® The continuous
lines are the results that correspond to a Stokes number (St;) of 10, whereas the dashed lines
correspond to its dry granular analogue (Sf; — o). This analysis is based on an adjusted

3The mathematical definitions of all the transport coefficients remain same as they are defined in previous
chapters.
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Fig. 4.1 Variations of the first (.47) and second (.43) normal stress differences with particle
volume fraction (V) in a uniformly sheared gas solid suspension of smooth inelastic spheres.
The dashed lines represent the theory of Saha & Alam (2016), in the limit of infinite Stokes
number (S7; — o) and the solid lines denote the present anisotropic moment theory at a finite
Stokes number of S7; = 10. The results depicted above are at restitution coefficients of e = 0.5

and e = 0.9 respectively.
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Stokes number (Sangani et al. 1996)
Stg = St/Rdism 4.1

defined via a correction factor R ;s, for which the clarification will be given in the main text.

Figure 4.1 works as a motivation for our present work. It shows that the normal stress
differences are ¢'(1) quantities in dry granular flows and as well in gas-solid suspensions. The
presence of an interstitial fluid increases the first (.#7) normal stress difference [panel (a) and
(c)] significantly in the dilute limit but its effect remains small near the dense regime. On the
other hand, for the case of second (.#3) normal stress difference [panel (») and (d)], the inter-
stitial fluid shows its effect throughout the span of volume fraction. Such large normal stress
differences must be taken into account to study the flow of a driven system of dissipative par-
ticles. It is also important to understand the effects of the interstitial fluid on the particle phase
normal-stress differences and other transport coefficients in a dissipative gas-solid suspension
relative to its dry granular counterpart.

Sangani et al. (1996) has proposed a linear theory for a gas-solid suspension of elastic and
inelastic particles based on an expansion around the Maxwellian. Their work is an applica-
tion of the theory described in Jenkins & Richman (1985a) for a suspension problem and an
extension of the work by Tsao & Koch (1995) for a dense suspension. They have included
finite-density effects for elastic particles but the second normal stress difference was found to
be identically zero. This is due to the removal of certain nonlinear terms while calculating the
production terms. A small portion of their work has been devoted towards the dissipative par-
ticles but focusing only in the dilute limit and .45 was again found to be zero. The extension
of their proposed model for the whole range density with inelastically colliding particles gives
rise to a finite first normal stress difference (.4]) in the dense limit with second normal stress
difference (.#3) being zero throughout. The behaviours of the two normal stress differences
as obtained from their theory are represented by brown dash-dotted lines in figure 4.1.

Recently, Parmentier & Simonin (2012) prescribed a theory for elastic and inelastic par-
ticles valid for arbitrary Stokes numbers. A comparison with the simulation (Abbas et al.
2009) has been made and a qualitatively good agreement is observed. But they have only
considered the kinetic contribution to the stress tensor (Pl’; = p(CiC,)) but nothing regarding
the collisional stress (PZ‘J = ©;;) has been mentioned. We know from the kinetic theory of
molecular and granular gases that collisional stresses are very important in determining the
correct transport properties at finite densities. All transport coefficients like the pressure (p),
viscosity (1), normal-stress differences (.41,.42) have contributions from kinetic as well as
collisional transport of momentum; the collisional contribution to each transport coefficient

becomes significant as we consider flows of a “non-dilute” system.
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In this chapter our focus is in the evaluation of the complete stress tensor F;; (= Pl’; + Pfj)
for a non-dilute suspension of dissipative particles, which can be valid for arbitrary values of
Stokes number and inelasticity, and this has not been worked out till date. The present work
fills this gap by determining the non-Newtonian stress tensor and related transport coefficients
for a “non-dilute” gas-solid suspension of inelastic particles. The resulting theory is nonlinear

since super-super-Burnett order terms are retained to evaluate the transport coefficients.

4.2 Governing Equations for Gas and Particles

Here we follow the work of Sangani ef al. (1996) to formulate the problem and the analy-

sis/solution of this problem follows methodologies and tools developed in Chapter 3.

4.2.1 Equations for the Fluid Phase: Stokes Equations

The gas phase is assumed to be a Newtonian fluid of constant viscosity U, and obeys the

Navier-Stokes equations of motion

Dv;
Ps

— Vipe Vi 4.2)
Under the assumption of small particle Reynolds number
Re ~ po70° /1 < 1, (4.3)

where p, stands for density of the fluid, o is the particle diameter and 7 is the shear rate of the
flow, the inertial terms on the left hand side of (4.2) can be left out and we have the equations
for the fluid phase as the well known Stokes equations of motion :

W Vi =Vipg,  Vi;=0. (4.4)

For a homogeneous sheared suspension at steady state, 7 is a constant and the ensemble aver-
aged velocity of the particles (the macroscopic velocity of the particle phase) is related to the

shear rate via

where c is the instantaneous velocity of a particle at time # and e; corresponds to the unit vector

in i-th direction. The velocity profile (4.5) satisfies (4.4) for a sheared suspension.
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4.2.2 Equations for the Particle Motion: Stokes Number

The motion of an individual “smooth” particle follows

dc

— =7 4.6
me =7, (4.6)
where c is the translational velocity of the particle at time ¢, and .# is the force acting on it,
exerted by the surrounding fluid. With .# to be the Stokes drag, we can have the definition of

Stokes number

y 1 T

st= = () () = .7
3nu,o 3nu,o/ \y-

the non-dimensional measure of the particle inertia.

It can be interpreted as the ratio between the viscous relaxation time scale, T, to

_ m
T 3mugo
an imposed time scale (7~ !) by shear. With m = p,mc3/6, where p,, is the material density,

we have

2
St = §(pp/pg)Re. (4.8)

On omitting the numerical pre-factor, the Stokes number is (p,/p,) times the Reynolds num-
ber based on particle diameter. The interstitial fluid here is a gas and that leads to a very high
value of the density ratio

Pp/Pg > 1. (4.9)

Hence, we can still have a very large value of the Stokes number even if the particle Reynolds
number (4.3) remains very small. In addition to that, the viscous forces of the fluid are large
enough as compared to the fluid inertial forces (Re < 1) but small enough in compare to the
inertia of the particles (S > 1). In that case the inelastic collisions between the particles are
mainly responsible for changes in particle velocities and the viscous drag exerted by the gas
plays a less significant role. Nevertheless when the Stokes number becomes very small for a
dilute suspension the viscous effects must be given equal importance and the detailed analysis
will be given in chapter 5. Finally, in the limit of St — oo the particles will not feel the presence
of any interstitial fluid and the dry granular theory (Chapter 2 and 3) remains relevant. The
inelastic inter-particle collisions between particles demands a statistical approach to elucidate
the collective behaviour of these granules. We will use the methods from kinetic theory to

determine the balance laws that govern the dynamics of the particle phase.
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In the following we will analyse the particle phase rheology of a sheared gas-solid non-
dilute suspension in the case of vanishingly small Reynolds number and moderate Stokes

number in absence of gravity.

4.3 Extended Hydrodynamic Equations for a Gas-Solid Sus-

pension

As it is mentioned in Chapters 2 and 3, the dynamics governing the particle/granular phase
will be followed from the non-equilibrium statistical mechanics (Zwanzig 2001; De Groot &
Mazur 2013). We adopt the kinetic theory of granular gases (Chapman & Cowling 1970; Jenk-
ins & Richman 1985a; Sela & Goldhirsch 1998; Brey et al. 1998; Brilliantov & Poschel 2003)
in determining this. At the particle phase, the probabilistic/statistical approach is governed by
the single particle distribution function f (D, where f(! (c,r,t)dedr is the probable number of
particles in By, (r)? having velocities within By (c) at time ¢. Then the evolution equation for
the single particle distribution function [ f") (¢, r,#)dedr] follows from the Enskog-Boltzmann
equation (Chapman & Cowling 1970)

(E‘FCV)JC‘FVC (dcf) :GZ/dCQ/ dk(gk) eizf(2)<cl,r,02,r—6k;t)
ot dt gk>0
—f(z)(C’l,r,c’z,rJrck;t)], (4.10)

where V. is the divergence operator in the velocity space and % is the acceleration of the
particle due to the external forces acting on it (viscous drag etc.). For the present problem, it
is assumed that the dynamics of individual particle follows the linear Stokes’s drag

de c—v

T

“4.11)

where
T, =m/(3TUe0), (4.12)

is the viscous relaxation time of the particles.
The pre-collisional relative velocity between two colliding spheres is given by g = ¢| — ¢»,
with ¢ and ¢; denoting their pre-collisional instantaneous velocities and their post-collisional

velocities being denoted by primes, and g-k > 0 accounts for the constraint of impending

3B,(r) : Volume of the sphere having radius a with centre at r.
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collisions; k = ki, = (rp — ry)/|r, — ry] is the unit contact vector joining the centre of sphere-
1 to that of sphere-2 at collision. In (4.10), f(?) is the two-body distribution function such
that

f(z)(cl,rl,cz,rg)dcldrldczdrz

is the probability of finding a pair of spheres with the first sphere being centred within dry
about ry, with its velocity in dc; about ¢; and the second one being centred within dr, about
rp, with its velocity in dc; about ¢;. For a pair of colliding smooth spheres, the tangential
component of their relative velocity remains invariant but the normal component changes ac-

cording to the following collision rule:
(8" k) = —e(g k), (4.13)

where g’ = ¢ — ¢} is the post-collisional relative velocity.

4.3.1 The 10-Moment System for Particle Phase

Any physical quantity at the macroscopic level is defined as the ensemble averaged value of

the same at the particle level, using the single particle distribution f(c,r,¢) function as

1
<I//> = ;/l//f(C,r,t)dc. (4.14)

Here n = n(r,t) denotes the number density which represents the number of particles in an
unit volume around the point r at time z. The macroscopic velocity u = (c), granular temper-
ature 7 = (C?/3) and the second moment of fluctuation velocity M = (CC) are obtained by
substituting ¥ = ¢, %Cz and CC respectively in equation(4.14) (Jenkins & Richman 1985a;
Saha & Alam 2014, 2016), where C = ¢ — u, is the peculiar velocity.

The master balance equation governing the evolution equations for all the hydrodynamic
field variables are obtained by multiplying the Enskog-Boltzmann equation (4.10) (Jenkins
& Richman 1985a; Sangani et al. 1996; Saha & Alam 2016) with particle property ¥ and

integrating over the velocity space, yields:

Dipv) +<W>3—ﬁ+%((ﬂcﬂl’>+@4m"’]) +plz);i<§lclli> - <%§Z_>

+((peg) +o mgE] ) 52 = Klmyl. 419
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Equation (4.15) holds as the key equation to obtain the individual moment equation at any
order. The balance equations for the set of 10 variables {n,u,M } follow from the master
balance equation (4.15) upon successive substitution of Y = 1, C and CC, respectively:

<£+u-V)p:—pV-u, (4.16)
ot
0 Yy /dc
el V)u=-V. Ll = :
p (at—l—u )u P+Stdp<dt>’ 4.17)
p (%—i—u-V)M: —V-Q—P-Vu—(P-Vu)"
27 14 14
— = —— — —— - 4.1
51, P (CC) =5 Pllu=v)C) = -p(Clu v»f&’ (4.18)
where P is the total stress, a second-rank tensor, given by
P=p(CC)+®(mC) =P+ P, (4.19)

Q is the flux of the second moment, a third-rank tensor, given by
Q =p(CCC)+0(mCC) = Q"+ 0, (4.20)
and X is the collisional source of second moment, a second-rank tensor, given by
X = R (mCC). 4.21)

In (4.19-4.20), the first and second terms refer to the corresponding kinetic and collisional
contributions, respectively. The balance equations (4.16-4.18) constitute the 10-moment sys-
tem for the particle-phase of a gas-solid suspension. These equations are supplemented by the

conservation equation (4.4) for the gas phase.

On deriving (4.18), we have used the following relation (Sangani et al. 1996)

(e +810) 5 ) = (2 ) RasslciCy), @22)

where Ry;s(V) is an effective drag coefficient. The functional dependence of R ;s on v has
been explicitly determined by Sangani et al. (1996)

Rdiss = kl (V) —k1 (V) —kz(V) lnem, (4.23)
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where
v 135 ’ 3
ki(v)=1+3 B —l—avlnv—l—ll.%v(l —=5.1v+16.57v- =21.77v°), (4.24)
k2 (v) = vgo, (4.25)
En = 9.767LMFP/0', (4.26)

go and Ayspp are the radial distribution function and mean free path respectively.

One point we should emphasize here that the hydrodynamic interactions between particles
are not considered explicitly in this study. This may appear as a very serious issue at initial
instant, but the hydrodynamic interaction is incorporated implicitly in the correction function
Rgiss as shown in Sangani et al. (1996). The whole analysis is based on an adjusted Stokes

number defined via :

St

Sty = (4.277)

diss

In the dilute limit of volume fraction (v — 0) Ry;;s — 1 and consequently we have St; = St.

The integral expressions for the collisional source and flux of y are given by (Jenkins &
Richman 19854, 1988; Chou & Richman 1998; Saha & Alam 2016),

2
&(W:%///k O(‘l/{'i“l/ﬁ—llfl—llfz)f(z)(clyr—Gkacz,")(k'g)dkdcldcz, (4.28)
gk>

and

3 1
o= -2 / / / (W, — i)k / FO(e1,r— wok,cs,r+ ok — 0Gk)
2 g k>0 0

(k-g)dwdkdcidec,,  (4.29)

respectively. The collisional flux term (4.29) takes care of the finite volume effect of the par-
ticles and the magnitude of this term decreases with decreasing volume fraction and becomes

zero for a dilute gas of point particles.

The integral expressions for the collisional source and flux terms given above are identical
with the ones derived in Chapter 3, in analysing the shear flow of a dry granular medium. This
point is clear from the fact that the presence of an interstitial fluid is assumed not to affect (no

St number dependence on X and @) the collision integrals.
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4.3.2 Granular Energy : Inelastic and Viscous Dissipations

The balance of granular temperature can be obtained by taking trace of (4.18):

3 d _ dqqa dug
5[) <E+M'V)T——axa— aﬁaxa—.@, (4.30)

and that of the deviator of the second-moment

3P (% +“'V) Mop = _Ea_xy (Qyap — 3‘175043)

4.31)
1 dup dug\ _ 1p U Raiss 5 1 1] (
_{ (Pwanyr ﬁaxy> 3 Yé&x 5“[3}_‘(5[—va“[3+§&“[3
In above equations,
1 1 1
go = 50app = 5PMapp + 5Oupp (4.32)

2 2 2
is the total energy flux vector (i.e. the heat flux vector), and

9 = -@viscous + ginelastic (433)

is the rate of dissipation of kinetic energy per unit volume.

The total energy dissipation rate & is a sum of energy sink via two mechanisms viz. energy
dissipation due to viscous drag and energy dissipation due to inelastic collisions within the
particles. For a suspension of zero mean velocity between the particles and the fluid, the rate

of viscous energy dissipation Z,iscous 18 (Sangani et al. 1996)
Dyiscous = 97t.ugn0-TRdiss- (4.34)

And the rate of energy dissipation due to inelastic collisions within the particles is given by

1
-@inelastic - _5 X (mCZ) ’ (4.35)

which must have to be calculated using a proper choice of the single-particle distribution
function. Therefore from eqns.(4.30) and (4.33), we can say that for a suspension of inelastic
particles, energy input into the system is compensated by two mechanisms viz. (i) the viscous
drag and (ii) the dissipative collisions. In absence of any interstitial fluid Z,scous becomes
zero and Yi,e145ic balances the energy input analogous to the dry granular flow as discussed in
Chapters (2-3). On the other hand, for suspension of elastic particles (e = 1) the energy input
is solely compensated by Zyiscous and Ziyerasric Vanishes identically. Finally, for a suspension
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composed of elastic particles, both these terms Pyscouss Pinelastic become zero which leads to
a continuous increase of energy and we need a thermostat to balance the system.

The moment equations (4.16-4.17) and (4.30), along with constitutive relations for (4.19),
(4.32) and (4.33), constitute the Navier-Stokes-order hydrodynamics for a fluidized granular
matter; the equation for the deviatoric part of the second moment tensor (4.31) satisfies identi-
cally at NS-order.

As clarified in Chapter 3, for an extended hydrodynamic description of granular matter,
incorporating normal stress differences, we need the balance equation (4.18) for full second
moment tensor, along with mass and momentum balances (4.16-4.17). For a closure of (4.18),
the deviatoric part of the third-order Qqp,

~ 1
Oyap = Qyap — 5 (Qyeedap + Quge Oyp + Opeeday) (4.36)

is assumed to be zero, and its isotropic part, the heat flux vector (4.32), remain to be evaluated
as a constitutive relation. In addition to (4.32), we need to determine constitutive relations for
the stress tensor (4.19) and the source of second-moment (4.21) in terms of the gradients of
the hydrodynamic fields (p, u, M).

In this present work, as we are focusing on the uniform shear flow problem, the heat flux
vector defined in (4.32) is identically zero and we are left to determine constitutive relations
for the full stress tensor P (4.19) and the collisional source of second moment X ( 4.21).

4.3.3 Molecular Chaos assumption and the Anisotropic Maxwellian Dis-

tribution Function

In order to evaluate the collision integrals (4.28) and (4.29), we make the following two as-
sumptions as in Chapter 3.
(i) Assumption of molecular chaos (Chapman & Cowling 1970):

P (er,x—ok,er,x) = go(v) V) (c1,x — ok) £V (€2, %), (4.37)
where go(Vv) contact radial distribution function of Carnahan & Starling (1969),
go(v)= 0% (4.38)
where

v =nno’/6 (4.39)
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is the local volume fraction of particles.

(ii) The single particle velocity distribution is an anisotropic Maxwellian

n

(e, r1) = ¥ exp (—%C-M1 -c) , (4.40)

(87°|M|
with |M| = det(M), which contains complete information about the second moment tensor M.
The choice of (4.40) follows from the maximum entropy principle which has been discussed
in Chapter 3.

4.4 Balance of Second Moment in Uniform Shear Flow

For the present problem of steady uniform shear flow (u, = ¥y, uy, = u; = 0) of a gas-solid
suspension, the number density n, the velocity gradient Vu and the components of the second
moment tensor M are constants, and the heat flux vector g, vanishes. As a consequence of

this, the ensemble averaged velocity of the particles equals with the local fluid velocity:
u=(c)=v. (4.41)

Therefore the motion between the particles and the suspension has a zero mean relative veloc-

ity, yields
u—v=_0, (4.42)

and the under-braced term in eqn.(4.18) vanishes.

Therefore in that case, the mass and momentum balance equations, (4.16) and (4.17), are
trivially satisfied and the remaining balance equation (4.18) for the second moment of velocity
fluctuations M = (CC) simplifies to

Pspitg.s + Psqiip.s +2P§BS—Z = Ry, (4.43)
where
Pog = PMap +®qp = Pyg + Py, (4.44)

is the total stress tensor. The integral expressions for the collisional stress/collisional flux

of second moment @, = mB@y[Cg] and the collisional source of second moment X ;g =
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N [mCaCB]'
o =Agp +Egp +Gop +OusWps + OpsWes, (4.45)

remain same as for dry granular flow and are explicitly given in Chapter-3. Substituting (4.44)

and (4.45) into (4.43), the balance equation for the second moment tensor reduces to

Y
PMsg(Das +Was) +PMse(Dgs +Wps) +OsgDys + OsoDps +2pMgp St
=Agp+Eqp+Gop.  (446)

In the limit of St; — oo, eqn. (4.46) reduces to that for dry granular flow as discussed in
Chapter- chapter : 3.

4.4.1 Second Moment Balance in Rotated Co-ordinate Frame

We can decompose the velocity gradient tensor as

0 /2 0 0 /20
Vu=D+W=1|792 0 0|+|-72 0 0], (4.47)
0 0 0 0 0 0

where D and W are the strain and vorticity tensors, respectively and ¥ is the constant shear
rate of the flow. Now with the help of figure 4.2 and in terms of following parameters (i)
the temperature anisotropy 1 o< (T, —T,,), (ii) the non-coaxiality angle ¢ o |D;)<|M;) and
(iii) the excess temperature along the vorticity direction A2 o< (T —T}), the expressions for the

second moment tensor of velocity fluctuations can be written as

1 +A%4nsin2¢ —1cos2¢ 0
M=T —ncos2¢p  1+A2—nsin2¢ 0 = T[Sup] +M.  (4.48)
0 0 1-2A2

The detailed derivation of the second moment tensor (4.48) and the definitions of 1, ¢, A2
are given in Chapter-3.

Let us now rewrite (4.46) in a new co-ordinate system x’'y’z’, formed by the orthonormal
triad of eigen-vectors of M, i.e., with respect to the co-ordinate system whose axes coincide

with the eigen-directions |M;), M) and |M3) of the second moment tensor M, respectively.
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2, 1M3>

Fig. 4.2 Sketch of the spherical coordinate system showing the eigendirections of the shear
tensor D and the second moment tensor M.

This amounts to a transformation, see figure 4.2, via the following rotation matrix,

cos(p+%) —sin(¢+7%) 0
K= | sin(p+7%) cos(¢+7%) O |, (4.49)
0 0 1
that transforms the second moment tensor,
1+4%2—n 0 0
M =T 0 1+A%4n 0 : (4.50)
0 0 1—-2A2

into a diagonal matrix. It is evident from (4.50) that for the present suspension problem also
the anisotropy of the second moment in the rotated co-ordinate frame is quantified in terms of
(i) the temperature difference 7 in the shear-plane and (ii) the “excess” temperature T, (< 1)
along the vorticity direction. With a prime over a quantity denoting its value in the new co-
ordinate frame, the second moment balance equation (4.46) transforms into four independent

equations in the rotated co-ordinate frame:



4.4 Balance of Second Moment in Uniform Shear Flow 135

(1) the trace of (4.46),
. . . 6pTy
—4npTycos2¢ +27[(Opy — Opy) cos2¢ — 20y, sin2¢ ] + o Ayy +Ayy +Ayy,
2
(4.51)
(ii) the 7~z component of its deviatoric part
12pTyA? ~
AN PT 082 +27((Opy — Oy,/)cos 20 — 20y, sin20] + % — 30, (4.52)
d
(iii) the difference between the x'-x" and y'-y’ components
4pT7
4 (14 2A2) pT7c0s20 +27 (Opy + Oy cos 20 — ps; LU P 9 (4.53)
d
and, finally, (iv) the off-diagonal x’-y’ component
20Ty [N — (1+24%)sin2¢] — (Opy +Opy) 7sin2¢ = Ly, (4.54)
where
Faﬁ :A(xﬁ —l—E\aB —l—é\aﬁ. (4.55)

The explicit expressions for the various integrals Agg, Eaﬁ, (A?aﬁ and @ appearing in (4.51-
4.54) remain the same as for the dry granular flow and we refer to Chapter-3 for details. The

underlined terms in (4.51)-(4.54) are the contributions from the fluid phase.

Equations (4.51-4.54) represent a system of four nonlinear algebraic equations with four
unknowns viz. (i) the temperature anisotropy 7 o< (7, — 7,), (ii) the non-coaxiality angle
¢ o |D1)£|My), (iii) the excess temperature along the vorticity direction A2 o< (T — T;) and
(iv) the Savage-Jeffrey parameter (Savage & Jeffrey 1981) R = yo/8+/T when the volume
fraction v, dissipation coefficient e and Stokes number S7; are specified. We must solve this
system of equations at different orders in shear rate to obtain the rheological properties of
the particle phase for the whole range of volume fraction, restitution coefficient and Stokes

number.
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4.5 Exact Solution at Burnett Order for the Whole Range of
Density

Retaining terms up to second order O(nN™A"RPsin?(2¢), m+n+ p+¢q < 2) in the correspond-
ing equations for the second moment balance 4.51-4.54, we obtain the following set of coupled
nonlinear algebraic equations

20\/E{1 +41 +e)Vg0}chos2¢ +128(1 + ) vgoR2

~3(1—?)vgo(10+ 0 +32R> + 8\/ANReos 29) — ™ —

35/TNRcos2¢ + (1 +e)vgo{32(143e)R> —3(3 —e)(n? +21A%)
210/7A%R (4.56)
—8y/7m(4—3e)NRcos2¢} — 2= =0

Sty

5VARC0s20 — (1+¢)vgo{3(3 —e)n +2(1 —3¢)y/AReos 29} — 14T —
5(n —sin2¢)+2(14¢)(1 —3e)vgpsin(2¢) =0

/

These equations represent the second-moment balance equations at “Burnett order” (Burnett

1935) since all terms up to the second order in the shear rate have been retained.

Equations (4.56) admit an exact solution

2 30(1—¢€?)Styvgo+60v/TR—32(14¢)(143e)StyvgoR?
n= 40/ TR 3(1+¢)(11-3¢)Siavgo
¢ = %Sin_l [{572(1+e)5(173e)‘/g0}77
22 140V/TR+(1+¢)vgoSta{70(1—¢)~32(143)R* — (5+3e)n*} —24/(1-+¢)*vgonReos(20) @.57)
o \/_28{3(1+e)(3—e)VgoStd+10\/ﬁR}
T cos(2¢) = & 22¢){5+2(1+e)(Be—1)v
7 €0s(29) {3(1+e)(3fe)vgo+1o\/ﬁ(%)}COS (20)1 (1+e)(3e=1)veo}

Vs

where R is the real positive root of the quadratic equation

[200(23 — 11le)m+250(1 —e)mSt3 — 96(3 —e)*(14¢)*(1 +3¢)St3v> g5
—(11 =3e)mS13{5—2(14¢)(1 —3e)vg}? | R?
+60(14¢)(3—¢)(19 — 13e)VT(St4)vgoR +90(1 +¢)(1 —€?)(3 —e)?St7v*g = 0.
(4.58)
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For specified values of v, e and St;, the Savage-Jeffrey parameter R is determined from
(4.58) and the remaining quantities are from (4.57). This provides the “exact” solution for R,
n, A and ¢ as functions of v, e and St;. The super-Burnett [(4.65)] and super-super-Burnett
[(4.66)] equations are solved via regular perturbation expansion around the exact Burnett-order
solution (4.57-4.58), see §4.5.2.

4.5.1 Dry Granular Limit (St — «): Recovering Results of Chapter 3

In this section we take the limit St — oo of the Burnett order solution described above in §4.5
and recover the related results of Chapter 3 (Saha & Alam 2016) fro dry granular flow.
The second equation of (4.57) gives

sin2¢ = (4.59)

5 2(1+e) (1 —3e)vgo}
and the third equation of (4.56) in the limit of St — oo simplifies to

B 3(1+e)(3—e)vgo
Cos(20) = s 2t e)(1—3e)veoR (4.60)

Upon division (4.59) by (4.60) we get

3(1+e)(3—e)
NG

R =

vgotan29, 4.61)

also from (4.59)

0= {5-=2(1+e)(1—3e)vgo} 20, 4.62)

are respectively equations 3.93-(c) and 3.93-(a) of of Chapter 3.
Now from (4.57) (St — )
—32(1+e)(1+3e)vgoR> = —30(1 —e?)vgo+3(1+¢)(11 —3e)vgon>. (4.63)
Substituting eqns. (4.60) and (4.63) into (4.57) and dropping the terms containing effects from
the gas phase, we get,

10(1 —e) N [(7—3e){5—2(1+e)(1—3e)vge} —18(14¢€)*(3 —e)Vvgo]
21(3—e) 525(3 —e)
x{5—2(14¢)(1—3e)vgo}sin®2¢, (4.64)

;LZ

equation 3.93-(b) of Chapter 3.
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Two points we would like to mention here

(i) The Burnett order solution for the present suspension problem [§4.5] eventually boils
down to an equation (4.58) for determining R. On the other hand the corresponding Burnett
order solution for the dry counterpart reduces to an equation determining the non-coaxial angle

¢, nevertheless both of these two approaches give rise to identical results for St — oo.

(ii) Secondly, the off-diagonal x-y component (4.54) of the second moment balance (4.46)
remains same for the dry granular flows and gas-solid suspensions. This is because of the
fact that the term containing the effect of interstitial fluid becomes a diagonal matrix in the
rotated co-ordinate frame of axes; consequently, the off-diagonal component vanishes, leads

to identical x-y components of equations for both of these (dry and wet) cases.

4.5.2 Beyond Burnett Order: Perturbation Solutions at Super and Super-
Super Burnett Orders

Retaining terms up-to third order O(n™A"RPsin?(2¢)), m+n+ p+q < 3 in the related in-
tegrals appearing in (4.51-4.54), we obtain the following set of coupled nonlinear algebraic

equations

2oﬁ{1 +4(1 +e)Vgo}chos2¢ +128(1 +€)vgoR?
—3(1—€*)vgo(10+ 12+ 32R? 4+ 8+/7RM cos 2¢) — 605{? =0

35\/ANRcos2¢ + (1 +e)Vg0{32(1 +3e)R2—3(3—€)(n? +21A2)
84— 3e)chos2¢} _2W0VEAR _

Sty
210y/7(1+A%)Rcos2¢ — (14 e)vgo[12y/T{7(1 —3e) +4(4 —3e)A?
—32(1+e)R?}Rcos2¢ +n{126(3—¢) —3(3 —e)n? +36(3 —e)A?
+64(4 —3¢)R? —32(5+3¢)R?cos4g }] — 2R — ¢
105y/7{n — (14+22)sin2¢ } —2(1+e)vgosin2¢ [16(5 + 3e)nRcos2¢

—3vm{7(1—3e) +4(4—3e)A* —32(1+¢)R*}| =0 )

. (4.65)

for four unknowns 1, A, R and ¢, given that the restitution coefficient (e), Stokes number
(St;) and the volume fraction (v) are known. Similarly, retaining terms up-to fourth order
O(N™A"RPsin?(2¢)), m+n—+ p+ q < 4, the equations (4.51-4.54) simplify to
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1680y/TNRcos2¢ —3(1 — e?)vgo (840 + 8402 +3n* +-2688R% + 1024R*
—128R*N? 4+ 768R*A% — 2402 A% +252A% + 672\/TNRcos 2¢ — 641°R> cos4¢)

+64(1+e)vgoR{21y/N cos2¢ +4R(42 — 21> + 1242 + 32R> — n*cos4¢) }

_5040VER _
Sty -

2310y/TNRcos2¢ + (14 ¢€)vgo[32R*{66 + 81 — 16542 + 3e(66 — 41> +3317%) }
—9(3—e){n*+11n%(2—A%) +66A%(7— A?)} + 1024(5 + 3¢)R*
—16RN {33/T(4 — 3¢) cos 20 — 4(2 — 3e)nRcos4¢ }] — BSOVFR _

Sty
210y/7(1+A%)Rcos2¢ — (14e)vgo[12y/T{7(1 —3e) +4(4 —3e)A>
—32(1+¢)R?}Rcos2¢ +n{126(3 —e) —3(3—e)n?+36(3 —e)A>
+64(4 —3e)R? —32(5+3¢)R2cos 4 } | — ZUWTR _

Sty
105y/7{n — (14+A2)sin2¢ } —2(1+e)vgosin2¢ [16(5 + 3e)nRcos2¢
—3vm{7(1—3e) +4(4—3e)A* —32(1+¢)R*}| =0

For specified values of the restitution coefficient (e) and the density (v), we can use the
standard Newton-Raphson’s method to solve both (4.65) and (4.66), yielding solutions for
n, A%, R and ¢ that are correct up-to orders O(n"A"RPsin?(2¢)), m+n+p+q < 3 and
O(N"A"RPsin?(2¢)), m+n—+ p+ q < 4, respectively.

It must be noted that equations (4.65) and (4.66) belong to the ‘super-Burnett’ and ‘super-
super-Burnett’” orders since they incorporate terms that are at most ‘cubic’ and ‘quartic’ in the
shear-rate (R ~ 7) respectively. Therefore, the resulting solutions of (4.65) and (4.66) for 1,
A, R and ¢ and the transport coefficients will be dubbed ‘super-Burnett’ and ‘super’-Burnett’

solutions, respectively.

But below we present a methodology to solve these higher order system analytically, by

opting for a regular perturbation technique. We assume the solution of the form

n=n® +en® +e2n@ 4.

22 =A%) 1 ed® 422 ™ 4.

R=R® 1 erG) 4 2R 4 ...
sin2¢ =sin2¢? + 5in2¢®) + 2sin2¢™ + ...

(4.67)

/

In the above expressions € ~ ¥ and the superscript “2" corresponds to the “Burnett-order”

solution (closed form expressions (4.57-4.58) are given in the previous section which is valid

¥4.60)
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for the whole range of density) and the superscripts “3” and “4" correspond to the corrections
beyond second order.

Plugging (4.67) into corresponding third (super-Burnett, 4.65) and fourth (super-super-
Burnett, 4.66) order equations and after performing some cumbersome algebra we obtain the
solutions at third-order as

(4.68)

The solutions at fourth-order are given by :

e?n® = — H\/E(l +e)vgocos20P{5—2(14¢)(1 — 3e)Vg0}{1024(5 +3e)R®"

—192(1+3¢)R?)’ (n<2>2 - 4N>2> —9(1—e) (n<2>4 _gn@% @7 ¢ 84/1<2>4> }]

- [s{sﬁn@) cos2¢@ +2(1 —I—e)Vgo(S(l +3¢)R® — (1 3e)y/an® cos2¢><2>>}

x {zlom<2>2R<2> 0322 — 48(1 +€)v/TvgoR™? cos 29 (4 - 3e)2 D _8(1 + e)R(2)2>
S3(1+ e)veon® (32(1 3R’ — (3-e)(n = 17%)) }H

168 [ﬁcos2¢(2> {2ﬁcos2¢<2>{5 “2(14e)(1—3e)vgo}RP —3(1 — e2)Vg0n(2>}

< {5-2(1+e)(1 —3e)Vg0}+2{3(1 te)(3—e)vgo+ 10\/%%)}{5\/%;(2) cos29?

+2(1 —l—e)Vg()(S(l +3¢)R® — (1 - 3e)y/an® cos2¢<2>> }] (4.69)




4.5 Exact Solution at Burnett Order for the Whole Range of Density 141

821(4) —

1 28(1+e€)vgo 4
1024(5 +3¢)R?)
776162 < [ {30+e)3-e)veo+10va(£)} {

+96R? (2- 3e)n@% —11(5— 3e)/1<2>2> —9(3—¢) (n<2)4 @7 @7 66/1<2>4> }]

132
L {3(1 +e)(3—e)vgo+ 10T g) }ﬁ{s “2(1+e)(1—3e)vgolvgocos29?

% [35v/EN ) cos 29 +8(1+ e)Vgo{S(l +3e)R® — (4 3e)van? cos2¢?@ }]
x [70v/AL @ R® cos20@ + (1 + e)vgo{ 16v/R? cos29 (8(1+ )R (4 3e)z(2>2>

—32(1-3e)n@7RP 4 (3 —e)n® (n<2>2 . 12)&2)2) H]
b

_|_

2 (@) [VA{35—8(1+¢)(4—3e)vgo}R? cos 29 —6(3 —e) (1 +e)vgon'?
1848&e°n [
) {3(1+e)(3—e)\/g0+10\/ﬁ(§)}

{35ﬁn<2> cos2¢? +8(1 +e)Vg0<8(1 +3¢)R®) — (4 3e)y/an®? cos2¢<2>> }]] )

* V{5 -2(1+¢€)(1—3e)vgo}cos2¢?
(4.70)
1 2
2p4) — 2107 PR cosP) 2
¢ 42ﬁ{5—2(1+e)(1—3e)Vg0}cos2¢<2>[ Ve cos2¢
+48(1+e)v/EVgoR™ cos®) 26 { (4 - 3¢)A2% (1 —l—e)R(2)2}
+3(1+e)vgon{32(1 - 3R~ (3-¢) (n<2>2 - 12)&2)2) }
R
20 @ 303 _ R
+42e2n {3(3 e)(1+e)Vg0+10\/E(St)}] 471

g’ Sin2¢(4) = [105\/E<gzn(4) — A(Z)ZSin@) 2¢>

2(1+e)Vg0sin(2>2¢{16(5+3e)n<2> )cos@2¢ — 3\F( (4—3e)A 2 _32(1+6)R<2)2>}]
21/m{5—2(14¢)(1 —3e)vgo}

4.72)
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In absence of any interstitial fluid i.e in the limit of St — oo, the underlying terms in (4.69-
4.72) disappear and we obtain the corresponding super-super-Burnett order solutions for the
dry-granular flow. On removing the terms containing St number dependence from (4.69-4.72),
the resulted expressions match exactly with the solution provided in Chapter 3 (Saha & Alam

2016) for uniform shear flow of dry granular matter.

4.6 Stress Tensor and Transport Coefficients

The dimensionless stress tensor in this uniformly sheared gas-solid suspension problem, takes

the form
p Pi Py O
Po= p,U3 = Px Py O
0 0 P
= 0 p* 0 |+ —u o /A Y 0 (4.13)
0 0y 0 i 2
where
* 1 * * *
P =3 (Pa+Py+P), (4.74)
u* = —Pjy, (4.75)
M= (P —Py,) (4.76)
5= (P~ L) 477)

is the pressure, the shear viscosity, the first and second normal stress differences respectively;
here p, is material/intrinsic density of particles and Ug = Y0 is the reference velocity scale.
The dimensionless temperature, scaled first and second normal stress differences are de-

fined in the following way

T

T = (4.78)
Uk
(P4 Py +P)’
P,, — P
and 5= 3Py —Pe) , (4.80)
(P + Py + Py)

where the explicit expressions of all these above transport coefficients are given below.
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4.6.1 Shear Stress and Viscosity

Retaining terms up-to the fourth-order O(n™A"R"sin?(2¢), m+n+ p + q < 4), the dimen-
sionless shear stress can be written as :

Py 4(1+e)vgo 1 cos2¢
Xy _ N\ TRV SY
yre T meos20 s [21R{8+ﬁ R }
2
+4812R+4R3{32—%(2+(1+2cos22¢))H, (4.81)

with the dimensionless temperature 7* being given by (4.78). The expression for the dimen-

sionless shear viscosity, u*=—P,/p,U I%:—Pjy, follows from (4.81):

. vWT*[ncos2¢ 4(1+e)vgo ncos2¢
Ho= 73 R 105v/7 (21{8+v= R }

+48),2+128R2—4n2{2+(1+2c0522¢)})}, (4.82)

~~

where the under-braced terms represent nonlinear contributions beyond the Navier-Stokes
(NS) order.

Neglecting quadratic- and higher-order terms in (4.82), we obtain the NS-order expression

for the shear viscosity:

. VT [ncos2¢ 4(1+e)vgos 8  mcos2¢
s = g s (\/E+ - )| (4.83)
4.6.2 Expression for Shear Viscosity in Dry Granular Limit
For the case of dry granular flow (St; — o), we have from (4.57)
n _ VT 2000y ( 2= _
Rcos(Z(p) = 30100-9 cos (2¢))(ng +2(14¢)(3e 1)) (4.84)
$=0 VT 5 B
3(1+e)(3—e)<Vgo+2(1+e)(3e 1)), (4.85)

with last expression holds at Navier-Stokes (¢ — 0) order. Substituting (4.85) into (4.83), we

obtain the expression for shear viscosity at Navier-Stokes order
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melastic 5Vw 2(1+e)(3e—1) 4(1+e)
inelastic

VT* 1 1
Hn's 24(1+e)(3—e)g0< * 5 vao J\ IV
4(1+e) ,
1%
+ N go]
= wu (4.86)
where
5/ T* 2(1+e)(3e—1)
. 1 4.87
Hi 24(14+e€)(3—e)go ( * 5 veo ) (“487)
1 g0V T* 5 2(1 3e—1
107 3(14+e)(3—e)vgo 5

are respectively the kinetic and collisional components of viscosity.

Equation (4.86) matches exactly with the expression for the shear viscosity (with a factor

pp)762) of a dense granular gas given as equation (69) in Jenkins & Richman (19854).

4.6.3 Normal Stress Components and the Pressure

The diagonal components of the stress tensor, correct up-to O(n™A"R"sin?(2¢), m+n+p+

q < 4), have following expressions:

P
vT*

*
Pyy

vT*

P*

iz

vT*

2(1
(14+A%+nsin2¢) + % [33(35 +96R? + 141 sin2¢ + 141.2)
—I-%chos 2¢{3(66+ 512 —2212) — 160R> — 227 sin2(pH : (4.89)
(1422 —1nsin2¢) + 2(1;7?5‘“"0 [33(35 1 96R? — 141 sin2¢ + 142.2)
+%chos 2¢{3(66+ 512 —22A%) — 160R* + 22 sin2¢H . (4.90)
2(1
(1-242) + % [33(35 1 32R% — 2812)

8 2 2
+ﬁchos2(p{(66—|—3n ~32R )}] (4.91)
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The dimensionless mean pressure, correct up-to O(nA"R"sin?(2¢), m+n+p+q < 4), is
given by

2(1+e)vgo >, 8 2 2 2
T{315+672R + = NRC0s20(42+ 307~ 32° 122 )H

(. J
~\~

pr=vT* [1—1—

(4.92)

Neglecting the ‘under-braced’ non-linear terms in (4.92), we obtain the well-known expression
for pressure,
pns = VT (1+2(1+e)vgo), (4.93)

at the NS-order.

4.6.4 First and Second Normal Stress Differences

Subtracting (4.90) from (4.89) the expression for the first normal stress difference (4.76) is
found to be

4(1 +€)Vg0 8 %
8021 - ﬁchos(mp)D vT
FOMM AR sin?(29), m+n+p+q>5), (4.94)

N = 21sin(29) (l-l—

with its kinetic and collisional contributions (4]* = A" + _#,*), respectively, being given

N = 2nsin(2)vT* (4.95)
o 8(1—|—6)ng _i . "
M = S [231 ﬁchos(2(p)]nsm(2¢)vT. (4.96)

Similarly, the expression for the second normal stress difference (4.77) is obtained from
(4.90) and from (4.91):

(/1/2* _ (/VZk*_i_(/Vzc*

_ 2 ., 32(1+e)vTg L7 s\ 2
= [32% = nsin@0) v + =50 264 ( S+~ | R

+%ch0s2¢{(66+6n2—64R2 —332%) + 11nsin2¢}]
+O(N" AR sin?(20), m+n+p+q>5)  (4.97)
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with its kinetic and collisional components at O(n™A>'RP, m+n+ p < 4) being given by

M = [3A* —nsin(29)] vT* (4.98)
e 32(1+e)viTg 17 o\ 1
N = e [264 2y R+ ZnReos2g

x{(66+6n2 —64R* —332%) + 117 sin2¢}] . (4.99)

where T* is the dimensionless temperature (4.78).

4.6.5 Universal Expressions for Transport Coefficients

One point should be noted here that all the expressions for transport coefficients obtained
above are exactly the same as those obtained for the dry-granular shear flow (Chapter refer).
But a careful look at these expressions reveals that the difference follows via the individual
expressions of 77, A, R and ¢. These parameters obtained for the dry granular flows and gas-
solid suspensions are different in the sense that the latter contains an explicit Stokes number
(Sty) dependence, clearly shown in §4.5 and §4.5.2.

(V,e,Std) )

n
(P(V,e,Sld)
QL(V,e,Sl‘d)

(4.100)

n
¢
A
R

R(V,e,Sld>

)

In the limit of St; — oo the interstitial fluid effect vanishes and both the theories yield
identical results.

4.7 Anisotropy of Second-moment Tensor

As discussed in §4.4.1, the anisotropy of the second-moment tensor is characterized by three
parameters: 1, ¢ and A2,

n=n(v,e,St)
0=¢(v,e Sty ;. (4.101)
A =A(v,e Sty)



4.7 Anisotropy of Second-moment Tensor 147

0.2p

0.15

9

A0

0.05 T4
€ -

1 1 1 1 1 G 1 1 1 1 1
0 01 02 03 04 05 0 01 02 03 04 05

10

i 1
0 01 02 03 04 05

Fig. 4.3 Variations of (a) 1, (b) A%, (¢) R and (d) ¢ (degrees) with density (v) at St; = 20.
While the solid black lines denote the exact numerical solution, the blue dashed and the red
dot-dashed lines denote the Burnett-order solution and the perturbation solution at fourth order,
respectively.
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Fig. 4.4 Same as FIG. 4.3 but for modified Stokes number equals to St; = 50.
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Fig. 4.5 Same as FIG. 4.3 but for modified Stokes number equals to St; = 100.
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whereas the parameter “R” is measure of the isotropic part of M (i.e. inverse of granular
temperature)
R=R(v,e,Sty). (4.102)

The nonzero values of (1,¢,A2) are a measure of the non-Newtonian character of rheology.

Figures 4.3-4.5 present a comparison within the second-order analytical solution §4.5 (blue
dashed lines), the fourth order perturbative solution §4.5.2 (red dot-dashed lines) and the full
numerical solution (black solid lines) of (4.51-4.54) for four unknowns 1, A2, R and ¢ (in
degrees) against a range of density at specified values of Stokes number (S7;) and coefficient
of restitution (e). In each of theses figures 4.3-4.5, the variations are shown for two different
values of restitution coefficients: e = 0.5 corresponds to a highly dissipative and e = 0.9
corresponds to a relatively less dissipative system, respectively. It is observed that at St; = 20
and for e = 0.9 three solutions for each of four parameters 1, A2, R and ¢ almost fall on
top of each other (however the temperature anisotropy 7 slightly differs above v ~ 0.25) and
remain indistinguishable. Therefore at e = 0.9 the Burnett order solution is good enough for
successful determination of (7, A2.R, ¢) even at a low value of Stokes number St; = 20.

On the other hand at e = 0.5 the Burnett order solution grossly underestimates 7 through-
out the span of density and the deviation is more in the dense limit, whereas the fourth-order
perturbative solution is closer to the full numerical solution except a slight deviation near
v ~ 0.25. For A2, although the Burnett order analytical solution gives a relatively better
approximation near the dilute limit, the fourth-order solution is better when the density is
increased. However, none of these analytical solutions are able to give a quantitative good
agreement for A2 for the whole range of density, which clearly will be manifested in the second
normal difference, therefore demands a numerical study when Stokes number becomes very
low St; ~ 20. For Savage-Jeffrey parameter R and non-coaxiality angle ¢, the fourth-order so-
lution gives a fairly good prediction for the whole range of density with a slight disagreement
near v = 0.2.

In figure 4.4, we have shown the variations of the parameters at Sz; = 50. It is seen that the
differences within the analytical and numerical solutions decrease when the Stokes number
is increased and eventually at a very high value of Stokes number St; = 100 the super-super-
Burnett order solution almost agree with the full numerical solution of (4.51-4.54) for the
whole range of density. One interesting point to note here that although increasing the number
of terms in the related algebraic equations (4.51-4.54) gives a relatively better agreement with
the full numerical solution, a closer look at these plots tells us that this series solution is in
fact oscillatory. Therefore one cannot have a better agreement just by increasing the number
of terms indefinitely. It may also appear that adding a certain number of terms in the series

expansion can make the solution worsen. One reason behind this behaviour could be due to
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the fact that the Chapman-Enskog expansion is actually a non-convergent series (McLennan
1965; Santos et al. 1986; Santos 2008). The related issues are not addressed in this thesis.

4.8 Validation of the Theoretical Model

4.8.1 Pressure, Shear Viscosity and Normal-Stress Differences

Here we focus on the behaviours of transport coefficients with varying Stokes number. Figure
4.6 display the density variations of (a) the pressure, () the shear viscosity and (c) the granu-
lar temperature at e = 0.5, ¢ = 0.9 for three different values of Stokes number St; = 20, 50 and
100. It is seen that the Burnett-order solutions for p, y and T are almost indistinguishable from
their exact numerical value at small dissipation (e = 0.9); moreover, this agreement seems to
hold uniformly for the whole range of density even for a very low value of Stokes number
Sty = 20. On the other hand, retaining the fourth-order terms yields a better agreement for p,
u and T at large dissipation (e = 0.5) and the agreement becomes better when we increase the
Stokes number.

The ability of the fourth-order series solution to quantitatively predict p and y at any
density and Stokes number also holds reasonably well for both first and second normal-stress
differences (4.79-4.80) which are displayed in figure 4.7. For nearly elastic particles (e = 0.9)
our Burnett order analytical solution is able to qualitatively predict both .4 and .45 in the
uniform shear flow of a gas-solid suspension for the whole range of density (v) and at any
value of Stokes number (St;). However, there are quantitative differences between numerical
and analytical solutions in the prediction of .43 for highly dissipative particles (¢ = 0.5) as it
is evident from the right panel of figure 4.7 (denoted by dashed and dash-dot lines).

4.8.2 Three-dimensional Representation : Comparison Between Numer-

ical and 4-th-order Perturbation Solution

The variations of all transport coefficients against inverse of Stokes number Sta,_l and density
v are shown in the three dimensional figures 4.8-4.12. In each of these plots the first row
shows the variations of the transport coefficient obtained by solving the system (4.51-4.54)
numerically for two values values of e = 0.5 and 0.9 respectively. In the second rows we have
shown the respective variations at (¢) v =0.01 and (d) v = 0.5. Therefore the second row tells
us about the inverse Stokes (St;l) variations of these transport coefficients at two extreme

(dilute and dense) limits of volume fractions. The results from the fourth-order perturbative
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Fig. 4.6 Comparison between the “Burnett-order” analytical solution (blue dashed lines),
fourth-order perturbation solution (red dot-dashed lines) and the “exact” numerical solution
(black solid lines) for the variations of the (a) pressure, (b) shear viscosity and (c) granu-
lar temperature with volume fraction (V) at coefficient of restitution e = 0.5 and e = 0.9 for
Sty =20 (top row), 50 (middle row) and 100 (bottom row) respectively.
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Fig. 4.7 Same as 4.6 but for the variations of the two normal stress differences (a) .#] and (b)
5 with volume fraction (V).
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Fig. 4.8 Variations of the total pressure (p = %Paa) against volume fraction (v) and full range
of (St5)~! at e = 0.5 and e = 0.9 respectively. Panel (a) and (b) describe the variations of
this transport coefficient (circles) when projected into the planes v = 0.01 (dilute limit) and
v = 0.5 (dense limit) at e = 0.9. The red dot-dashed lines represent the fourth order analytical
solutions (4.69)-(4.72) and the black solid lines are the quadratic (a) y = 9x*> — 66.63x +6.552
and linear fits (b) y = —4.16x+ 5.401 respectively.
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Fig. 4.9 Same as figure 4.8 but for the variations of shear viscosity (i). The equations behind
the quadratic and linear fits are (a) y = 19.8x*> — 14.49x+2.129 and (b) y = —0.6475x+1.603

respectively.
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Fig. 4.10 Same as figure 4.8 but for the variations of granular temperature (7). The equations

are (a) y = 1.934 + e04x? — 6413x +630.6 and (b) y = —0.6708x + 0.8294 respectively.
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@) with density (v) and
inverse of (St;) at coefficients of restitution e = 0.5, 0.7 and 0.9 respectively. In panel (a)
and (b) we have shown the behaviours of .47 (circles) at e = 0.9 in the dilute and dense limits
upon projecting the cartoon into the respective planes of v = 0.01 and v = 0.5 respectively.
It is observed that .4{ varies in a quadratic manner (a) y = 14.15x> 4+ 1.67x + 0.2324 in the
dilute limit whereas the variation is observed to be linear () y = 0.003654x+0.005009 in the

dense limit. The red dot-dashed lines are the fourth order perturbation solution (4.69)-(4.72).

Fig. 4.11 Variations of the first normal stress difference (4] =
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Fig. 4.12 Same as figure 4.11 but for the variations of the second normal stress difference
(N = @). The governing equations for the parabola and straight line in the dilute and

dense limit are (a) y = —0.2914x> — 0.1208x — 0.01634, (b) y = 0.04621x + 0.05662 respec-
tively.
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Fig. 4.13 Variation of the critical density v¥., at which 1sin2¢ = 312 against (St;)~' and e.

cre

The figure in the right is the corresponding dry granular analogue where (St;) ™' = 0(St — o).

solutions are superimposed in latter plots for a comparison between analytical (dot-dashed
line) and numerical schemes (“circles”).

It is observed that the dilute limit variations (left panels of second rows in figures) of p, u,
T and .47 are well predicted by the perturbative fourth order solution even at a very low value
of Stokes number (St; = IO;Sta,_l = 0.1). The prediction for .45 is good up-to St; = 50 but
for Stokes number less than 50 the fourth-order solution underestimates .45 and the deviation
increases with decreasing St;.

The dense limit variations are shown in the right panels of second rows of figures (4.8-
4.12), corresponding to a volume fraction v = 0.5. It is seen that the fourth order analytical
solutions agree with the full numerical solution up-to Std’1 = 0.05 (~ St; = 20) and beyond
this value we need an improvement over our analytical approach. Also the variations of all
transport coefficients at these extreme limits of volume fractions are checked by fitting them
with proper choices of polynomials. In the dilute limit all the quantities vary quadratically
with Sgl whereas in the dense limit the variations are linear and the equations of each of

these parabolas and straight lines are given explicitly in the captions.

4.8.3 Sign-change of .#5: Surface of Critical Density v¥.

In the plots for the second normal stress difference (figure 4.12), we find that .45 changes its
sign at some finite density similar to the case of dry granular flow, for any choice of Stokes
number and coefficient of restitution. The location (v = vX ) of the point at which .45 changes
its sign appears to be a slowly varying function of the restitution coefficient and Stokes number.
The variations of the critical density as a function of the Stokes number S#; and and coefficient

of restitution e are shown in figures 4.13-4.15.
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vE =0.2598-0.07683¢, vk =0.2541-0.0717¢, vk =0.2353 —0.05476¢

(4.103)
vk =0.2245—-0.2594(St,) "' — 1.289(St,) 2, (4.104)
vE =0.2077 —0.1816(St;) ' —0.7398(S1,) 2, (4.105)
vEk =0.1916 —0.09537(S;) "' — 0.4298(St4) 2. (4.106)

Combining the planar equations (4.103)-(4.106), the best fit for vL’?r is the surface
vk =0.2668 — 0.08424¢ — (0.4964 — 0.4360¢) ot — (2.048 —2.092¢) ar? |, (4.107)

where

a=(Sty)" " (4.108)

Equation (4.107) represents the critical surface in v-e-ST; space. The significance of this
surface is as follows: corresponding to any point (St;,e) in the ST;-e plane, there exists a
unique point vf, which satisfies equation (4.107) and above this value .45 is positive, whereas
M remains negative below this point. Therefore the surface (4.107) acts as the surface of
degeneracy for .45. Finally, when this surfaces is projected onto the plane Std_] (i.e St — o)
the critical density curve for dry granular flow Saha & Alam (2016)

VE (Sty — 00) =0.27 — 0.084¢ (4.109)

is recovered.

4.9 Summary and Outlook

4.9.1 Summary

We have studied the uniform shear flow of a gas solid suspension where inertial inelastic parti-
cles are suspended in a Newtonian gas and experiencing a Stokes drag force. Viscous heating
from the boundaries is compensated by dissipation via two mechanisms (i) the inelastic colli-
sions between particles characterized by a coefficient of normal restitution e (0 < e < 1) and
(ii) the Stokes drag force which the surround fluid exerts on the particles. The hydrodynamic
interactions has been not taken into account but as shown in Sangani et al. (1996), the hydro-
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Fig. 4.14 Variations of the critical density v¥., at which 1sin2¢ = 342 against e. Panel (a)
is a comparison between our present theory (circles) at (Sz;)~! = 0 and the theory of (Saha
& Alam 2016) (solid line) for dry granular flow. Panel (b), (¢) and (d) are variations of the
critical density at non zero values of (St;)~! = 0.01, 0.02 and 0.05 (presence of an interstitial
fluid is considered). The solid lines depicted in the last three figures are linear fittings (4.103).
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Fig. 4.15 Same as 4.14 but for variations of the critical density v¥. against (St;)~! for e = 0.5
and e = 0.9 respectively. The solid lines are quadratic fittings as given in (4.104)—(4.106).
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dynamic interaction is incorporated within a corrected factor Rgiss(V), where v is the particle
volume fraction and the analysis is based on an adjusted Stokes number St; = St /Rgjss.

The particle-phase rheology is analysed using the anisotropic Maxwellian as the single
particle distribution function. The balance equation for the second-moment of velocity fluctu-
ations is solved analytically and perturbatively to obtain the transport coefficients viz. pressure,
viscosity, normal stress differences etc.. The Burnett order analytical solution and perturbative
solution at super-super-Burnett order are compared with the full numerical solutions in terms
of the particle phase transport coefficients and a good agreement within these approaches has
been found for the whole range of density. Although a slight disagreement between the analyt-
ical and numerical solutions is observed when the Stokes number becomes very low St ~ 20
and the dissipation becomes very large e ~ (0.5 but for a nearly-elastic system e ~ 0.9 these
two solutions become almost identical.

In a recent work, Parmentier & Simonin (2012) have prescribed a theory for simple sheared
homogeneous suspension of elastic and inelastic particles, valid for the whole range of density
and Stokes number. But in their work, the collisional component of the stress tensor has not
been calculated. Their main focus was to predict the behaviours of the collisional source terms
with varying Stokes number and density, and a comparison of these quantities with simulations
were given. In our anisotropic Maxwellian theory, we have taken care of the kinetic (Pg ﬁ) as
well as the collisional components of the stress tensor (@p) that yield correct behaviours of
the transport coefficients for the whole range of density. It also improves the results presented
in Parmentier & Simonin (2012) in the sense that results obtained using anisotropic Gaussian
theory agrees well with the simulation data which can be seen from the figure 4.16

Figure 4.16 shows the density variation of the off-diagonal anisotropy of the second mo-
ment tensor for S7; = 3.5 and e = 1 and the improvement over the work by Parmentier &
Simonin (2012) is clearly seen at lower volume fraction. Finally, when St; — oo the conven-
tional results for the dry granular flows are recovered.

The simulation data on transport coefficients of gas-solid suspensions at finite densities are
scarce, and future work should focus on molecular dynamics simulation of gas-solid suspen-
sion of inelastic particles. In the next chapter, we will make a detailed comparison of present

theory with available simulation data in the dilute limit of a gas-solid suspension.

4.9.2 Next Chapter

When the particle volume fraction becomes very low, two distinct states can be expected (Tsao
& Koch 1995): the “quenched” state, in which particle inertia is less and the “ignited” state,
where particles are mostly agitated. A transition between these two states depending upon the

Stokes number and volume fraction has been analysed by Tsao & Koch (1995) in simple shear
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Fig. 4.16 Variation of the anisotropy coefficient against volume fraction for St =3.5and e = 1.
The solid line corresponds to the current anisotropic Gaussian theory whereas the dashed line
and symbols correspond to the theory and simulation work of Parmentier & Simonin (2012)
and Abbas et al. (2009) respectively.

flows of dilute gas-solid suspensions of elastic particles. In the next chapter we will extend
their work for inelastic particles, where the effects of inelasticity on the transport coefficients
in these two states will be discussed. The hysteresis in the particle-phase rheology along with

behavioural dependency of the transit points on inelasticity will also be addressed.



Chapter 5

Dilute Gas-Solid Suspension :

Shear-thickening Behaviour and Normal

Stress Differences?

5.1 Introduction

During the last few decades, a lot of research has been done to understand the behaviours
of rapid granular flows (Savage & Jeffrey 1981; Lun et al. 1984; Jenkins & Richman 1985aq;
Campbell 1990; Sela & Goldhirsch 1998; Brey et al. 1998; Goldhirsch 2003; Rao & Nott
2008; Forterre & Pouliquen 2008), a collection macroscopic inelastic (the restitution coeffi-
cient e < 1) hard-particles for which the effect of the interstitial fluid is neglected, and the
tools from dense-gas kinetic theory have been successfully employed to understand its hydro-
dynamics and rheology. The closely related research-area of gas-solid suspensions (Davidson
& Harrison 1963; Anderson & Jackson 1967; Buyevich 1971; Gidaspow 1994; Jackson 2000;
Guazzelli & Morris 2011), in which the viscous drag due to interstitial fluid and other related
hydrodynamic effects must be incorporated, has also been extensively studied over the last
century due to its importance in fluidized-bed and FCC reactors (Davidson & Harrison 1963;
Gidaspow 1994) encountered in chemical and process industries. For continuum models of
gas-solid suspensions, the kinetic-theory-based rheological models have been suggested by

considering elastically colliding particles (Koch 1990; Tsao & Koch 1995) as well as for in-

“This chapter is a slightly edited version of a paper submitted to J. Fluid Mech. (May 2017): “Revisiting
ignited-quench transition and the non-Newtonian rheology of a sheared dilute gas-solid suspension” by S. Saha
and M. Alam (Saha & Alam 2017a). The revised version has been published in the Journal of Fluid Mechanics
[Saha & Alam (2017b), J. Fluid Mech. 833, 240-246].
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elastic particles (Louge et al. 1991; Sangani et al. 1996; Lun & Savage 2003) interacting in a
bath of a Newtonian gas.

For the present problem of a sheared gas-solid suspension of inelastic particles, the energy
input due to shear is compensated by two mechanisms, (i) inelastic inter-particle collisions,
characterized by a coefficient of normal restitution (e) and (ii) the drag force which the sur-
rounding fluid exerts on the particles. The volume fraction of the suspended particles (of
diameter ¢ and mass ) is assumed to be small, i.e. v =703n/6 < 1, representing a ‘dilute’
suspension, along with the conditions of (ii) small Reynolds number Re = pg}'/cfz /e < 1
(where pg and U, are the gas density and its viscosity, respectively, and ¥ is the imposed shear

rate on the suspension) and (iii) finite Stokes number
St=1v1,, with 1, =m/(3nU,0) (5.1)

being the viscous relaxation time which is a measure of the time a typical particle takes to relax
back to the local fluid velocity. The limit of St — oo represents the ‘dry’ granular gas (Camp-
bell 1990; Goldhirsch 2003). Under the above assumptions, Tsao & Koch (1995) analysed
the hydrodynamics and the non-Newtonian rheology of a dilute suspension of elastic (e = 1)
hard-particles employing the Grad’s moment-expansion method (i.e. an expansion in terms of
Hermite polynomials around a Maxwellian, Grad (1949)). They discovered two qualitatively
different states, dubbed (i) “quenched” (low temperature) and (ii) “ignited” (high temperature)
states, corresponding to the time intervals (i) 7. > 7, > 7! and (ii) 7. < 7' < 1,, respec-
tively, where 7. is the collision time (i.e, the average time between two successive collisions).
They analytically determined two critical Stokes numbers St., and St., (with Sz, > St.,), be-
low and above which the flow remains in the quenched and ignited states, respectively. They
also determined the shear viscosity and the first and second normal-stress differences, and
compared their theory with DSMC (direct simulation Monte Carlo) data.

Sangani et al. (1996) extended the work of Tsao & Koch (1995) to (i) a ‘dense’ gas-solid
suspension of elastic (e = 1) particles as well as to (ii) a ‘dilute’ suspension of inelastic (e < 1)
particles. The same Grad moment-expansion was used to derive constitutive relations from
the underlying Enskog-Boltzmann equation; but their analysis is deficient in the sense that
they found zero value for the second normal stress difference as they did not incorporate cer-
tain non-linear terms (see §5.5 in this work). They briefly discussed about the lower limit of
Stokes number St.,, but a thorough analysis of the “ignited-quenched” transitions, identifying
the regions for the existence of different states, in terms of Stokes number (S?), particle vol-
ume fraction (v) and the coefficient of restitution (e) has not been worked out till date. The
latter effect of the restitution coefficient is important for dissipative particles which forms one

motivation of the present work.
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In the current decade, Parmentier & Simonin (2012) analysed a sheared gas-solid suspen-
sion by considering a distribution function that sandwiches both the ignited and quenched
states — the resulting rheological fields are reasonably well-predicted over a range of density
and Stokes number, although quantitative mis-match with simulation data exists that increase
with increasing dissipation (i.e. at smaller e). A Navier-Stokes-order continuum model has
been developed by Garzo et al. (2012) for a moderately-dense gas-solid suspension follow-
ing dense-gas kinetic theory. They solved the underlying Enskog-Boltzmann equation using
a Chapman-Enskog-like expansion around a time-dependent homogeneous cooling state for a
gas-solid suspension, and the particle motion has been modelled via a Langevin-type stochas-
tic model with Stokesian drag. The resulting transport coefficients for the particle-phase are
found to have explicit dependence on the gas-phase parameters. However, the prediction of the
latter model for the shear viscosity of a suspension indicates large discrepancies with simula-
tion data in the dilute limit of low-S? suspension, presumably due to the presence of order-one
values of normal stress differences and other non-Newtonian effects. A related work to un-
cover the non-Newtonian rheology of a ‘dilute’ gas-solid suspension has been done recently
by Chamorro et al. (2015). They followed the standard Grad’s method to analyse the ignited
state of a gas-solid suspension, and the related predictions on the granular temperature and
the non-Newtonian stress tensor are found to be quantitatively similar to the earlier work of
Tsao & Koch (1995); for example, the suspension viscosity is over-predicted by the Grad’s
moment-theory at smaller values of e, although the discrepancy decreases with increasing
Stokes number. Collectively, the above literature review points toward the need to go beyond
the well-studied Newtonian rheology (of Navier-Stokes-order) for both dry granular and gas-

solid suspensions.

In this chapter, we revisit and extend the work of Tsao & Koch (1995) by considering
a dilute system of inelastic (e < 1) particles suspended in a bath of a Newtonian gas, and
interacting via (1) a Stokeian drag force and (ii) hard-core inelastic collisions. Our work differs
from all previous works on gas-solid suspensions as we adopt the anisotropic Maxwellian
distribution function (Goldreich & Tremaine 1978; Jenkins & Richman 1988; Richman 1989)
to analyse the underlying Boltzmann equation under homogeneous shearing conditions. The
latter assumption is motivated from our recent work (Saha & Alam 2014, 2016; Alam & Saha
2017) on ‘dry’ (St — o) sheared granular fluid which established that the transport coefficients
for highly inelastic system (e < 1) of a sheared granular fluid (both dilute and dense) can be
accurately predicted by the anisotropic Maxwellian [in comparison to (i) the standard Grad’s
moment expansion (in terms of a truncated Hermite series around a Maxwellian) as well as (i)
the Burnett-order solutions obtained from Chapman-Enskog expansion]. Here we demonstrate

the superiority of the former for the case of a sheared gas-solid suspension via a one-to-one
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comparison of two theories with simulation data. Another focus of the present work is to
analyse and quantify the anisotropy of the second-moment, M = (CC), of fluctuation/peculiar
velocity, and subsequently tie and explain the rheological/transport coefficients of a sheared
gas-solid suspension in terms of the anisotropies of M. The underlying analysis utilizes the
geometric structure of the eigen-basis of both the shear tensor and the second-moment tensor;
this provides geometric insight into the origin of normal stress differences as found for the
case of a sheared granular fluid (Saha & Alam 2016). It must be noted that the analysis of
stress anisotropy in this form was initiated in a seminal work by Goldreich & Tremaine (1978)
and subsequently by others (Araki & Tremaine 1986; Araki 1988; Shukhman 1984; Jenkins &
Richman 1988; Richman 1989) and the present effort is a continuation of the same legacy to
the case of a sheared gas-solid suspension.

This chapter is organized as follows. A brief account of the problem and the governing
equations for the gas and particle phases are given in §5.2. The anisotropic-Maxwellian dis-
tribution function is introduced in §5.2.1 which is employed to analyse the “ignited” state of
sheared gas-solid suspension; the second moment tensor for the uniform shear flow is con-
structed in §5.2.1 in terms of its eigen-basis. The source term of the second moment balance
equation is calculated in §5.2.1 and §5.2.2 for the ignited and quenched states, respectively.
The second-moment balance combining both ignited (/) and quenched (Q) states is analysed
in §5.2.3. The multi-stability and hysteresis transitions in granular temperature are analysed
in detail in §5.3, along with (i) the validation and superiority of the present analysis in §5.3.1,
(i1) analytical solutions for temperatures in three states in §5.3.2 and (iii) the critical Stokes
numbers for “/ <+ Q” transitions in §5.3.3. The non-Newtonian rheology (shear-thickening,
normal stress differences) is analysed in §5.4.2 and §5.4.3, in terms of the anisotropies of the
second-moment tensor (§5.4.1). The relative merits of the present theory over the standard
Grad’s moment-expansion and Chapman-Enskog expansion are analysed in §5.5 via compar-
isons with available simulation data. The conclusions are given in §5.6. The mathematical

details of various analyses are relegated to Appendices A to E.

5.2 Problem description and the Kinetic-theory analysis

We examine the uniform shear flow of a “dilute” gas-solid suspension in the absence of gravity,
with a collection of smooth inelastic spheres of mass m and diameter ¢ being suspended in
a gas; with x, y and z pointing the velocity, gradient and vorticity directions (see figure 5.1),
respectively, the velocity field for the suspension is given by

U= (ux,uy,uz) = (7’)’7070)7 (52)
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where 7 is the overall shear rate. We are interested in a steady state suspension where the
fluid inertia is very small but the particle inertia remains finite. Under the assumptions of the
smallness of particle Reynolds number, the gas-phase obeys the Stokes equations of motion

W V2vi=Vipg, Vi =0, (5.3)
where 1, is the shear viscosity of the gas.

For the particle-phase, we adopt the kinetic theory of gases as pursued in granular gases
(Chapman & Cowling 1970; Savage & Jeffrey 1981; Lun et al. 1984; Jenkins & Richman
1985a; Brey et al. 1998; Sela & Goldhirsch 1998; Brilliantov & Poschel 2004; Rongali &
Alam 2014)as well as in gas-solid suspensions (koch1990kinetic,louge1991role,tsao1995simple,sangani 19965
The evolution of the single particle distribution function (f(c,x,t)) follows the celebrated
Boltzmann equation (Chapman & Cowling 1970)

d de\ /df
(E-l—c-V)f-i—Vc- (fE) - (E)mz’ S

where V. is divergence operator in the velocity space and (d f/91t) ., is the well-known col-
lision operator (chapman1970mathematical). The acceleration of the particles is assumed to
follow the Stokes’s linear drag law:

dc_ c—vVv

da - 1,

(5.5)

with 7, =m/ (37, 0) being the viscous relaxation time of the particles. Equation (5.5) holds if
the particle Reynolds number and the density-ratio (p/p,) are very small; for large Reynolds
numbers, a nonlinear form of the drag-law would be necessary (Jackson 2000). Any physical
quantity at the macroscopic level is defined as the ensemble averaged value of the same at the

particle level, using the single particle distribution f(¢,x,t) function

1
n(x,t)

1
n(x,t)

(y) = /q/cf(c,x,t)dc = /q/CdeC, (5.6)
with y(c) being any particle-level quantity. Here n = n(x,t) denotes the number density
and p(x,t) = mn = p,v is the mass-density of the particle-phase, with v = 76°n/6 being
the volume fraction of particles and p, = m/(wo?/6) is its intrinsic/material density. The
macroscopic/hydrodynamic velocity u = (c), the granular temperature 7 = (C2/3) and the
particle-phase stress tensor P = (mCC) are obtained by substituting ¥ = ¢, %Cz and mCC,

respectively, in (5.6), where C = ¢ — u, is the peculiar velocity.
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Focussing on a steady homogeneous sheared suspension, the Boltzmann equation (5.4) for
the distribution function f(C;x,¢) reads (Chapman & Cowling 1970)

af d [dcy af
—CopVim——t— | —F | == 5.7
where 7,5 = 70ax0p, is the velocity gradient tensor of the uniform shear flow. On multi-

plying (5.7) by my/(C) and integrating over the velocity space, the master balance equation is
obtained (Jenkins & Richman 1985a; Sangani et al. 1996) as

Pr <7km<Cm%> - <%g—é’;>) = R(my) (5.8)

where

X (my) = /ml// (%) dc (5.9

represents the collisional source of my.

Putting v = 1 and c into (5.8), the mass and momentum balance equations for the particle
phase, respectively are obtained. For the steady uniform shear flow (# = (7y,0,0)) the mass
balance (-u = 0) is identically satisfied since (i) the stress tensor is constant and the “mean’
drag on the particle phase (due to the gas phase) is zero. The latter follows from the assumption
that there is no ’slip’ between the coarse-grained velocity of the particle phase (#) and the
"local’ gas velocity (v), i.e ug = u —v = 0. The hydrodynamic interactions among the particles
are neglected in the present analysis which can be justified for a dilute suspension (Koch
1990; Tsao & Koch 1995) at moderate to high values of Stokes number. For moderately
dense gas-solid suspensions, Sangani et al. (1996) developed a Grad-type moment theory
by incorporating hydrodynamic interactions in an ad hoc manner (via a corrective function
Ryiss(v) to the Stokes drag, with its dilute limit being Ry;ss(V — 0) — 1. This theory was
found to be in good agreement with full dynamic simulations of gas-solid suspensions even
at a small Stokes number of St > 5. The mean-field arguments of Sangani et al. (1996) were
also used in a more recent work (Parmentier & Simonin 2012) on dense suspensions. The
reader is referred to a review article (Koch & Hill 2001) for further details on hydrodynamic

interactions.

Inserting y = CC into (5.8), we obtain the balance equation for the second moment:

P.Vu+(P-Vu) + Tgp(CC) + Tlp((u—v)@ + Tlp(((u—v)C)T) _ X(mCC), (5.10)
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where P = pCC is the particle-phase stress tensor and X (mCC) is the collisional source of
the second moment as defined in (5.9). The third term on the left hand side of (5.10) embodies
the Stokes drag law (5.5), along with the following assumption

<(5ikcj+5jkci)%> = —%(C,Cj), (5.11)
which holds if the microstructure of the suspension is nearly isotropic (Sangani et al. 1996).
The fourth and fifth terms in (5.10) vanish due to the zero-slip (#; = u — v = 0) assumption,
leading to the final form of the second moment balance equation

2
P-Vu+(P~Vu)T+T—P: X (mCC), (5.12)
v
which must be solved for the homogeneously sheared gas-solid suspension. The integral ex-
pression for the source term in (5.12) is given by Jenkins & Richman (1985a); Saha & Alam
(2014)

2
R = / mcc(g—{>colldc - % / A(mcc) F(C1)f(C2)dC1dCs, (5.13)
with
m
A(mcc) = S (14e)(g k) [(1+¢)(g- k)kk—kw—wk], (5.14)

where g = ¢ — ¢ and w =C| — C, = g — (u; — up) are the relative velocity and the relative
fluctuation velocity respectively, between two colliding particles 1 and 2; k = kjp = (x] —
x2)/|x1 — x| is the unit contact vector joining the center of particle-1 to that particle-2. The
molecular chaos ansatz, f(C;,C2) = f(C1)f(C>) (i.e. the two-particle distribution function
can be written as the product of two single-particle distribution functions), has been adopted
in 5.13.

With an appropriate choice of the distribution function f(c,x,?), the collision integral
(5.13) can be evaluated, which will be plugged into (5.12) to carry out the analysis for the
particle-phase rheology and hydrodynamics of a sheared gas-solid suspension.

5.2.1 Analysis in the ignited sate

The “ignited” state (Tsao & Koch 1995) represents the hydrodynamic state of fluidized-particles
in rapid granular flow (Goldhirsch 2003), where the particles fly around randomly in between

two collisions without getting much affected by the viscous drag of the interstitial fluid. A
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typical particle encounters successive collisions with other particles again and again before it
can relax back to the local fluid velocity and hence the collision time is much smaller than the
viscous relaxation time (7, < 7,). In this state, the particles have strong velocity fluctuations,
resulting in 7 /yo > 1.

As in our recent work (Saha & Alam 2014, 2016), the distribution function in the ignited

state of a sheared suspension is assumed to be an anisotropic Maxwellian,
flext) = i sexp( lem c) (5.15)
Ay L) = X T Rv ’ ’ :
m M2 P2

where |M| = det(M). This form of the distribution function has been used previously in
studying the velocity dispersions in Saturn’s rings (Goldreich & Tremaine 1978; Shukhman
1984; Araki & Tremaine 1986; Araki 1988) as well as to analyse the shear flow of dry rapid
granular flows (Jenkins & Richman 1988; Richman 1989; Lutsko 2004).

In the isotropic limit, (5.15) reduces to the Maxwellian distribution function, and an Her-

mite expansion of the form

n . .
f(c7x7t> = WCXP(—CQ/ZT) Za(l)jf(l)
n 1
B WCXP(_CZ/H){l+Wp<aﬁ>cacﬁ}+H0T, (5.16)

represents the well-known Grad’s moment expansion (GME) (Grad 1949) — such moment
expansion has subsequently been employed to solve the Boltzmann equation for molecular
gases (Herdegen & Hess 1982; Kremer 2010), granular gases (Jenkins & Richman 1985aq;
Kremer & Marques Jr 2011) and gas-solid suspensions (Tsao & Koch 1995; Sangani e? al.
1996; Chamorro et al. 2015). Equation (5.16) with leading-order term (P ) = pMqp — TSup
is the stress deviator) yields the 10-moment system of Grad (1949), with density, velocity,
temperature and stress-deviator constituting the extended set of ten hydrodynamic fields (Saha
& Alam 2016).

Uniform shear flow (USF) and the second moment tensor

The analysis in this section closely follows the theoretical framework introduced by (Goldre-
ich & Tremaine 1978; Shukhman 1984; Araki & Tremaine 1986; Jenkins & Richman 1988;
Richman 1989). For the uniform shear flow, the velocity gradient tensor can be decomposed
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Fig. 5.1 Schematic of the co-ordinate system and the eigen-basis for analysis; the eigen-
directions of the shear tensor D and the second moment tensor M are decpicted. The uniform
shear flow, u = (7y,0,0), is directed along the x-direction, with the velocity gradient along the
y-direction and the mean-vorticity along the z-direction.
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as
0 7/2 0 0 72 0
Vu=D+W= |72 0 0| + | -y2 0 0], (5.17)
0 0 0 0 0 0

where D and W are the shear and spin tensors, respectively. Referring to figure 5.1, the (x,y)-
plane is dubbed the shear plane and the z-direction is the vorticity direction. The eigenvalues
of D are 7/2, —7/2 and 0, with the corresponding orthonormal eigenvectors, respectively,

cos % —sinj 0
D)= sinf |, D)=| cosk | and [D3)=|0|, (I8
0 0 1

that are sketched in figure 5.1. While |D3) is directed along the z-axis, the shear-plane eigen-

vectors |[Dp) and |Dy) are rotated by 45° anticlockwise from the xy-axes.
Since the granular temperature 7' = M, /3 is the isotropic measure of the second moment

tensor M = (CC), we can decompose it as M /T = I+ M /T, where M/T is the dimensionless
counterpart of its deviatoric/traceless tensor. The eigenvalues of M are denoted by 7'(1+ &),

T(14¢)and T(1+¢), with €, ¢ and ¢ being the eigenvalues of M /T such that
(5.19)

E+g+C=0.

The corresponding orthonormal set of eigen-directions are assumed to be |M;), [M;) and |M3),
respectively, as depicted in figure 5.1. Therefore, the second-moment tensor M can be written

in terms of its eigen-basis:
M =T(1+8) M) M [+T(1+¢) M) (M| +T(1+§)[M3) (M;]. (5.20)

Referring to figure 5.1, we assume that the shear-plane eigenvectors |M;) and |M>) can be
obtained by rotating the system of axes at an angle (/4 + ¢), with ¢ being unknown, in the

anti-clockwise sense about the z-axis which coincides with |M3):

cos (¢ +7%) —sin (¢ + %) 0
M) = | sin(¢p+%) |, IM)=| cos(¢+Z) | and [Mz)= |0 |. (521)
0 1

0

We further assume that the contact vector k makes an angle ¢ with |[M3), and 6 is the angle
between |M;) and k — (k - z)z, the projection of k on the shear plane, as shown in figure 5.1.
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Inserting (5.21) into (5.20), we obtain the following expression for the second moment tensor
M =T[5, +M, (5.22)
with its deviatoric part being given by

A?+nsin2¢  —ncos2¢ 0
M=T| —ncos2¢ A*—nsin2¢ 0 |. (5.23)
0 0 —2A2

Here we have introduced the following notations

n= >0, (5.24)

[\ONRTaN

(-£)20 and A= J(c+&)=-

N =

such that the eigenvalues in the shear-plane can be expressed in terms of 1 and A via
E=2>—n and ¢=A%4+n>E, (5.25)

with the eigenvalue, {, along the vorticity direction (z), being given by (5.24).

Since ¢ = 0 implies that the shear tensor (D) and the second-moment tensor (M) have
same principal directions, a non-zero value of ¢ is a measure of the non-coaxiality angle
between the principal directions of D and M. It is straightforward to show that ) ~ (7, — 7))
is proportional to the difference between two temperatures 7, and 7, on the shear-plane (x,y),
and hence N1 # 0 is indicative of the degree of temperature-anisotropy on the shear plane. On
the other hand, a non-zero value of A2 is a measure of the excess temperature (Saha & Alam
2016),

Tex
T =(T-T,)=22°T = A*=2, (5.26)
2T
along the mean vorticity direction. In summary, the anisotropy of M is quantified in terms of
three dimensionless quantities: (i) 17 o< (Ty — Ty) # 0, or, ¢ # 0 and (i) A% < T.* #£ 0.

The second-moment tensor (5.22-5.23) in the USF of suspension, constructed from its
eigen-basis, is therefore completely determined when 7', 17, ¢ and A are specified; the depen-
dence on the Stokes number St and the particle volume fraction (V) is implicit as will be made

clear below.
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Source term in the ignited state

Employing (5.15), the collisional production term (5.13) for the ignited state has been evalu-
ated
s 6(1+e)ppv?
3

{(1—e)/kakﬁ(k-M~k)%dk

o nic
+2/(kajﬁ+jak,3)(k.M-k)é(k-M.j)dk}. (5.27)
273/2
_ A0 +e)ppvT {(1 )%
350n
704912 4+ 4212 + 421 sin2¢ —421m cos2¢ 0
—421 cos2¢ 704912 + 4212 — 4215in2¢ 0
0 0 704312 — 8412
n?+21A% +21nsin2¢ —21Mmcos2¢ 0
+4 211 cos2¢ n2+21A2 — 211 5in2¢ 0 } (5.28)
0 0 —2(n?+2142)

which is a function of v, e, T, 1, ¢ and A2, In the final expression (5.28), we have retained
terms that are up-to second-order in 7, sin¢ and A — we shall show in the end that this is
sufficient to yield accurate predictions of transport coefficients of a sheared dilute suspension
for a wide range of (i) restitution coefficient e and (ii) Stokes number St.

5.2.2 Analysis in the quenched sate

Tsao & Koch (1995) envisaged a scenario of a dilute gas-solid suspension in which the particle
inertia is very low such that the particles tend to align with fluid streamlines after a collision.
Most of the particles will be having their individual velocity equal to the fluid velocity (¢ =~ u)
which implies that the peculiar velocity C ~ 0 and therefore the particle agitation is very
small (T /y0o < 1) — this is dubbed the quenched state. The collisions in this state are mainly
shear-induced with some occasional variance-driven collisions and the particles relax back
to the local fluid velocity after such a collision before they encounter a second collision and
therefore the viscous relaxation time is much smaller than the collision time 7, < T.. The
velocity distribution function of the quenched state is taken to be a delta function

f=nd(C), (5.29)
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which is a solution of the Boltzmann equation. Using (5.29), the collisional production term

at second-order can be evaluated as

1 2
X = pperid ey / (keky) kokgdk,
kyky>0

2r
S22 16
=ppro -£ 2 o0 | (5.30)
0o 28
315

Note that this expression differs from that of Tsao & Koch (1995) by a numerical-factor 2

which was also noted previously (Parmentier & Simonin 2012).

5.2.3 Second moment balance combining quenched and ignited states

Combining the ignited and quenched states, the second-order moment balance equation (5.12)

for a ‘dilute’ gas-solid suspension undergoing uniform shear flow is

Ny
Pspiie.s+ Psotip s+ S—l’Paﬁ = Ko = RO+ Riyy, (5.31)

where the superscripts gs and is stand for the source of second moment in quenched and ignited
states, respectively. Following (5.22-5.23), the expression for the stress tensor can be written

as

1 +A%4nsin2¢ —1cos2¢ 0
P=pM=p,vT —1cos2¢ 1+A%—nsin2¢ 0 . (5.32)
0 0 1—2A2
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Substituting (5.27), (5.30) and (5.32) into (5.31), we obtain the following four independent

equations:
~2TNc0s29 + 2T(1+A2 +7sin2¢) = [‘%(70+9n2+42l2+42’75m2¢) |
_%(nﬂ-zmz—i—ﬂn sin2¢)}
[,
27(14A2—qsin2¢) = [_%(mwn%mﬂ—mn sin2¢)
_sizerd (07 +2122 - 21nsin2¢) |
[P
27(1-22?) — [ 2525 0+ 3m - 34
+%(n2+2112>} + [ 2.
T(14+A%—nsin2¢) — 271 cos2¢ = [%ncosw_ 4(]322%]

W

(5.33)

Note that the terms involving the Stokes number (St) on the left-hand sides of (5.33) vanish
in the limit of St — oo, thereby recovering the second-moment balance for the shear flow of a
‘dry’ granular gas (Saha & Alam 2016).

In (5.33), we have made temperature dimensionless via T = T /(o /2)?. The coupled
system of equations (5.33) must be solved to determine 1, A, ¢ and T for specified values
of (i) particle volume fraction (v), (ii) Stokes number (St) and (iii) restitution coefficient (e).
Analytical progress can be made to solve (5.33) as discussed in §5.3 and §5.4.

Before proceeding further, it may be noted that the analysis of the second moment balance
(5.31) or (5.33) in the ignited state (i.e. with & qasﬁ = 0) is considerably simplified for elastically-
colliding (e = 1) particles, see Appendix A. The related analytical results on the temperature
field provide a lower-bound on the Stokes number for the existence of the ignited state (and

consequently on the multiple states and hysteresis, §5.3.2) in a dilute gas-solid suspension.
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Fig. 5.2 Hysteretic/first-order transitions of granular temperature for (a) e =1 and v =5 x
1074 (b) e = 0.8, (c) e = 0.5 and (d) e = 0.3 with v = 0.01. The solid and dashed (inset)
lines denote the present anisotropic-Maxwellian theory and the Maxwellian theory (Tsao &
Koch 1995; Sangani et al. 1996), respectively. The filled-circles represent the DSMC data
of Sangani et al. (1996); the open-triangles in panel ¢ denote the DSMC data of Chamorro
et al. (2015). In each panel, the black and red lines represent stable and unstable solutions,
respectively, of Eq. (3.1).
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5.3 Granular temperature: Multi-stability and ignited-to-

quenched state transitions

After some tedious algebra, we found that (5.33) can be decoupled to yield a 10-th degree
polynomial for granular temperature & = /T

G(E) = a1ol 0 +agl® +agl® +arE7 +agl® +asE’ +ast + azE + a4 ar€ +ag =0,
(5.34)

the explicit expressions of the coefficients a; are given in Appendix B. It is straightforward to
verify that for the case of elastically colliding particles (e = 1), aj9p = 0 = a9 = ag and hence
(5.34) reduces to a polynomial of 7th-degree; in fact these three roots vapourize to —ecc at e = 1
and remain negative for e < 1 and hence unphysical. It has been verified numerically (as well
as via an ordering analysis, see Appendix C) that at most three roots of (5.34) are real positive,

depending on the values of v, St and e, and the remaining roots are negative and/or complex.

5.3.1 Validation of present anisotropic-Maxwellian theory

First, we solve the temperature equation (5.34) numerically and compare it with simulation
data in order to validate the present theory.

Figure 5.2(a,b,c,d) shows the variations of the granular temperature with Stokes number
(St) at particle volume fractions of (a) v =5 x 10~* and (b,c,d) v = 0.01, with different
values of the restitution coefficient (a) e =1, (b) e = 0.8, (¢) ¢ = 0.5 and ¢ = 0.3. In each
panel and inset, the symbols represent the DSMC (direct simulation Monte Carlo) data of
Sangani et al. (1996) which are compared with the (i) present anisotrpic-Maxwellian theory
(solid line) and (i1) the standard moment expansion (dashed line) of Tsao & Koch (1995, for
e = 1) and Sangani et al. (1996, for e # 1), Figure 5.2(a) indicates that for the case of elastically
colliding particles, the present theory is on par with Tsao-Koch theory. On the other hand, for
inelastic particles (e < 1), the insets of figure 5.2(b,c,d) confirm that the present theory is able
to better predict the temperature-variation with St; however, the agreement with Tsao-Koch
theory worsens with increasing dissipation. In panel c, the recent DSMC data (open triangles)
of Chamorro et al. (2015) for e = 0.5 also agree quantitatively with the present theory.

Overall, the moment theory with anisotropic-Maxwellian as the leading term seems better
suited for a dilute gas-solid suspension of inelastic particles undergoing shear flow for a large
range of e < 1 at small and moderate values of Stokes number. It may be noted that a similar
analysis (Saha & Alam 2014, 2016) for a sheared granular gas (St = o) provides excellent
predictions for temperature and rheological quantities for highly dissipative particles. The
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same conclusions seem to carry over to the limit of small Stokes numbers of a sheared gas-
solid suspension too — this issue is further discussed in §5.5 (with respect to predictions for

viscosity and normal stress differences).

5.3.2 Analytical solution for three temperatures: hysteresis and multi-
stability

Returning to figure 5.2, we note that the temperature is a multi-valued function of Stokes num-

ber for a range of St over which there are three possible solutions; there are hysteretic/discontinuous
jumps in temperature from the low/high temperature branches with increasing/decreasing St.
For a better understanding of this hysteresis phenomenon, equation (5.34) has been solved

in the asymptotic limit v < 1, St > 1, and St3v < 1 via an ordering analysis, the details of
which are given in Appendix C. Three real solutions have been found,

_ 5(14¢)7' (1691 +539¢ — 1223¢* +337¢)\/T (St e=1 5VTSt (5.35)
B 48(3 —€) (12607 — 19952¢ + 10099¢2 — 1746¢3) To144 v '
32(1 8
o = (I+e)? §3/2y1/2 ! \/_ S3/2y1/2. (5.36)

9457 3V 10571'

_ 840v'7 1\ ezl 1T
Tus_(1+e)(107+193e) (sﬁv) = T3 (Sp) (5.37)

which correspond to the temperatures in the ignited (7;s), quenched (7Tys) and unstable (7;)
states, respectively. These three solutions (5.35-5.37) can be identified in figure 5.2 as the high-
, low-, and intermediate-temperature branches, respectively; the red-colored solution branch
in each panel of figure 5.2 represent 7,; which is of course unstable from stability viewpoint
(see §5.4.2 for related discussions).

It is clear from (5.35) that 7} increases with increasing Stokes number Sz, but decreases
with increasing particle volume fraction v. On the other hand, the quenched-state temperature
(5.36) increases with increasing St and v, whereas the unstable temperature (5.37) decreases
with increasing St and v. These overall predictions are verified in figure 5.3 which display
the variations of granular temperature as functions of (v,e) for two values of Stokes number
(a) St = 10 and (b) St = 20. In each panel, the upper-most branch corresponds to the ignited-
state of high temperature Tj; the middle and the lower-most planes represent the unstable
and quenched states, respectively. The latter two states are connected via a line of turning-
points, resulting in saddle-node bifurcations (jump-transitions) from “Q — I’ with increasing
v, above which the ignited state is the only solution. The critical density v = v.(St, e) for this

transition increases with increasing inelasticity but decreases with increasing St (see panel b).
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(b)

Fig. 5.3 Multiple states of granular temperature as functions of the mean volume fraction v
and restitution coefficient e for (a) St = 10 and (b) St = 20.

The corresponding Stokes number for “Q — I”-transition is denoted by St.,(v,e) which can
also be identified with the right limit-point in figure 5.2.

A noteworthy feature of figure 5.3 is that the ignited branch [T o< v~2, see (5.35)] is discon-
nected from the quenched and unstable branches, and therefore there is no jump-transitions
(on decreasing v) from I — Q at St = 10 (panel a) and 20 (panel b). However, on further
decreasing the Stokes number (below St = 10), the ignited state solution disappears below a
minimum St — how this process occurs is explained in figures 5.4(a,b,c) fore =1, 0.8 and 0.5,
respectively. In particular, at any e, the unstable branch (red line) and the ignited-branch come
closer with decreasing St and merge with each other at some minimum St below which only
the quenched-state solution [T o< Vv, see (5.36)] survives. Similarly, by fixing the Stokes num-
ber at St = 6 but increasing the inelasticity (decreasing e) also results in the disappearance of
the ignited state solution, see figure 5.4(d). Therefore, the quenched state is the only possible
solution below a minimum Stokes number St = St., (e, v) — this can be identified with the left

limit-point in figure 5.2 for “I — Q” transition.

5.3.3 Ciritical Stokes numbers (57, 5%.,) and the master phase-diagram

Referring to figure 5.2, two critical/limit points (at St = St., and St.,, with St., > St.,) corre-
spond to the double roots of (5.34) at which the following conditions must be satisfied:

G(E)=0 and ¥'(&)=0. (5.38)

This implies that two solution branches, corresponding to two different states [(i) ignited (7};),
(i1) quenched (7,) and (iii) unstable (7;,s)] meet at & = &, leading to saddle-node bifurcations

from one stable state to another stable state.
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Fig. 5.4 Disappearance of the ignited-state branch with (a,b,c) decreasing Stokes number at
(a)e=1, (b) e=0.8 and (c) e = 0.5, and (d) the same with decreasing restitution coefficient
at St = 6.
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The discontinuous “Q — I” transition corresponds to a limit point (St = St.,, viz. fig-
ure 5.2a) at which the quenched and unstable solution branches meet. Carrying out the asymp-
totic analysis of (5.34) with Ty = T,; and satisfying (5.38) (see Appendix D for details), we
obtain the following relation

1
308700072 ’
3
St ve = <(1 )2> : (5.39)

+¢)*(107 + 193¢

that represents a critical-surface in the (v,St,e)-plane, above which only the ignited state
exists. Equation (5.39) is depicted in figure 5.5 as a blue-surface. In the elastic limit of e = 1,
(5.39) reduces to Stf2 V. = 2.7685 which differs from the prediction (= 3.23) of Tsao & Koch
(1995).

The critical Stokes number, St., for the “I — Q” transition (on decreasing St) corresponds
to the limit point at which 7;; = T,;. The asymptotic analysis of (5.34) yields the following
expression for St., (see Appendix D for details):

Ste; 9.9—-4091e, (5.40)

which is marked as a brown-shaded plane in figure 5.5, to the left of which only the quenched
state exists. For elastically colliding particles (e = 1), we have St., ~ 4.99 which is close to
our numerical solution of 4.94...; both are close to the result of \/W ~ 4.92 obtained
by Tsao & Koch (1995). Note that (5.40) depends only on the restitution coefficient, and
therefore the minimum value of Stokes number (St., ), below which only the quenched-state

exists, is independent of the volume fraction for a dilute gas-solid suspension.

The master phase-diagram in figure 5.5 summarizes all possible states in the (v, St,e)-
plane: (i) the ignited state (/) exists above the blue-surface, (ii) the quenched state (Q) is the
only solution to the left of the brown surface and (iii) the coexistence of ignited and quenched
(I 4+ Q) states occurs for parameter values lying between the blue and brown surfaces. Two
critical surfaces in figure 5.5 would meet along a curve, thus acting as an upper bound for the
existence of the unstable state (7;,5) solution (and hence the existence of the mixed state / + Q).

By equating St., = St.,, the equation of this curve is obtained as

1

3087000%2 :
l 3
Y = 9—-491 41
us(€) <(1+e)4(107+1936)2> /99 ole)’, >-41)
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Fig. 5.5 Complete phase diagram of different states [“ignited” (I), “quenched” (Q) and their co-
existence (Q+I)] in the (v, St, e)-plane. The blue- and brown-colored planes, above and below
which, respectively, the ignited and quenched states exist, have been determined analytically
from an ordering analysis of (5.34) in the dilute limit; for details, see the text in §5.3.3 and
Appendix D.
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which is a decreasing function of the restitution coefficient. Note that (5.41) is not a critical
point, rather it represents an upper-bound on density below which the phase-coexistence [/ +
Q] occurs in the small-St regime of a sheared gas-solid suspension.

It is clear from from (5.40) and (5.39) that the critical Stokes numbers S?., and St., increase
with decreasing e (i.e. increasing inelasticity) at a fixed volume fraction v < v._, When
dissipative particles (e < 1) collide with each other they loose more energy and hence loose
more of their inertia; in that case the recovery time (7,) reduces and the adjustment with the
local fluid velocity becomes faster, leading to the quenched state. On the other hand, for nearly
elastic (e ~ 1) collisions, the particles lose very little kinetic energy during collisions and take
much more time to come back to the bulk flow and hence the recovery process becomes slow.
Therefore, at higher values of e, both ignited and quenched states exist but only the quenched
state is possible if we increase inelasticity of the system, leading to the behaviour of S, as in

(5.40). Similar argument holds for the variation of Sz., with inelasticity as well.

5.4 Non-Newtonian rheology: second-moment anisotropy, dis-

continuous shear-thickening and normal stress differences

Once the temperature field is solved from (5.34) for specified values of v, St and e, the non-
coaxiality angle ¢, the temperature-anisotropy 1 and the excess temperature 4> can be cal-
culated from the remaining equations of (5.33) — these are amenable to analytical solutions
as described in §5.4.1. The behaviour of shear viscosity and normal stress differences are
analysed in §5.4.2 and §5.4.3, respectively.

5.4.1 Anisotropies of second-moment tensor: analytical solution for ¢, n
and 22

After some algebra and rearrangement of terms in (5.33), the closed-form solutions for ¢, n?
and A2 have been found:

1 (2 12(14+e)B3—e)vVT B
(p—itan <§+ 57 ) ’ 04
112:_2%—2% b2 — 4ac, (5.43)
12— ST+ (1+e)VT¥2[5(1—e) = (5+3¢) ] - S(QJ%V, (5.44)

(ET+6(1+e)(3-e)vT72)



5.4 Non-Newtonian rheology: second-moment anisotropy, discontinuous shear-thickening
and normal stress differences 185

T T T T T 1.6F T T T T L= 0.5F T T T T ]
07f - _ -
¢ g =T 7=t =t
odl ] m—W =00 NI |
ost 4. \.______ o : | %
o e=05 ik 4 sk =3 7
%odf k_ pT A N——z0s] AT
3 — i - > = 0.5
[ =08 _ ek & =08 | L e i
' =038
028 I T 0.4+ 7 . 0if AR
0.1k e=1 | 0zl e=1 | e=1
1 1 1 1 1 1 1 1 1 o'- 1 1 1 1 -
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
(a) St (b) St (c) St

Fig. 5.6 Variations of (a) the non-coaxiality angle ¢, (b) the shear-plane anisotropy 1 and (c)
the excess temperature A2 with Stokes number for different e. The mean volume fraction is
set to v = 0.005.

with T being calculated from (5.34) for specified values of S¢, v and e. The solution for the
temperature-anisotropy 7 follows from the quadratic equation an* 4 bn? + ¢ = 0, where

9(1—e?)2v2T73

a=
_6(1—2)vT3/2 (3 16v(1+e)? | 6(1—e2)vT3/2 )
- 756\/% <§T— -+ i/ﬁ ) —T%cos*2¢ \ (5.45)
(3 16v(14e? | 6(1-2)vT2\?

For a suspension of elastically colliding particles (e = 1, with finite St), we have a = 0 and
b= —T?cos?2¢, and hence the above solutions (5.42-5.44) simplify to

~1
¢(€:1):%taﬂil (%+485‘\//\£T >07
nNe=1)=—£= (37 -82) T 2sec?2¢ >0, (5.46)
SR _8yr3/2n2_ 32y
),2(6 — 1) — ! 57z 637 0
(T”T+24VT3/2>

Recall from (2.17) that the non-zero values of (¢, 7,A%) quantify the degree of anisotropy of
the second-moment tensor M (and hence is a measure of the anisotropy of the kinetic stress
tensor, P = (pCC) = pM, t00).

The positivity of (5.42-5.44) is verified in figures 5.6(a), 5.6(b) and 5.6(c), respectively,
which display the variations of ¢, 1 and A? with Stokes number for different values of the
restitution coefficient e < 1, at a mean volume fraction of v = 0.005 — the results look quali-
tatively similar at other values of v < v/ (5.41). It is seen from figure 5.6 that the increasing
inelasticity markedly increases the values of (¢,1,42) on the ignited state, thereby enhancing
the anisotropy of the second-moment tensor. In contrast, the inelasticity does not noticeably af-

fect (¢,n,?) on the quenched state in which the particle collisions are rare and the dynamics
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is primarily dictated by fluid inertia. Interestingly, increasing shear makes the second-moment
tensor more anisotropic on the quenched branch — this can be understood by considering the
scaling relations of (¢,7,A2) at St ~ 0 as follows. Using the closed-form solutions for three

temperatures (3.2-3.4), the non-coaxiality angle for e = 1 can be rewritten as

St

128v2 +,3/2¢45/2
2+—5mﬂv 28¢5/

tan2¢,s = ~S8t/2 at St~0. (5.47)

Therefore, in the limit of small S?, the inertia enhances the non-coaxiality angle in the quenched
state. On the other hand, increasing St decreases ¢ in the ignited state, reaching some asymp-
totic value (depending on e) at large enough St as seen in figure 5.6(a). This can be explained
from an analysis of the ignited branch solution, leading to:

358t 3

a2 = e ™ s

for St>1. (5.48)
Similar scalings (5.47-5.48) hold for the temperature anisotropy 1 and the excess temperature
A2 too, that explain the observed behaviour in figures 5.6(b) and 5.6(c), respectively. In sum-
mary, the degree of anisotropy of the second-moment tensor in the quenched and ignited states
is primarily dictated by the background shear and inelasticity, respectively. The latter effect of
inelasticty can be understood from following scaling arguments.

It may be noted that the scaling relation (5.48) is not strictly valid at St — oo since the
double-limit of e — 1 and St — oo leads to a singular behaviour of temperature 77 — oo (and
hence a thermostat is necessary to achieve a steady shearing state of elastically colliding par-
ticles in the absence of fluid drag). The case of a sheared granular gas (St = o at e # 1)
has been analysed previously (Jenkins & Richman 1988; Richman 1989; Saha & Alam 2014,
2016); it can be verified that the above solutions (5.42-5.44) for the ignited-branch reduce to
the low-density solution of Saha & Alam (2016):

3

22 &(168—1—53(1—@)[\/1+5760e(1—e)(168—|—53(1_e)>—2_1]
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A2(7+61
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VT = 3(13\‘3/25)1‘3(01034?772)%6(1@2)“7(1_”2/10)(1_n2/2>
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Q
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Therefore, in the limit (St — o) of a granular gas, N ~ A ~ sin2¢ ~ /(1 — e), with the
granular temperature diverging like 7 ~ (1 —e)~! — the latter finding rules out the possibility
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(a) St

Fig. 5.7 (a) Hysteretic behaviour of particle-phase viscosity (1) as functions of (St,e) for a
volume fraction of v = 0.005; this represents DST (discontinuous shear-thickening) behaviour
for any e at v < v [(5.41)].

of the quenched-state solution in a sheared granular gas. The scaling relations (5.49) hold at
leading-order in /1 — e for St > 1, and therefore we conclude that the inelasticty enhances
the degree of anisotropy of M on the ignited branch, see figure 5.6.

5.4.2 Shear viscosity: continuous and discontinuous shear-thickening
(DST)

The dimensionless shear viscosity for the particle phase is given by

Py,

= ————=——=mnco0s(2¢0)T
g povirofay 1)
3 16v(1+e)? 3(1—e)vTi/? 5
= StT_ 357 + N (10+n7), (5.50)
St 16V(14e)2  3(1—e)vT3/? 5
= ——5 NG (10+7*) >0, V e<l. (5.51)

For the ignited-state solution only (i.e. X = X), it can be verified that the shear viscosity for

elastically colliding particles (¢ = 1) is u = 3T /St which represents the first term in (5.50).
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(a) (b) St

Fig. 5.8 Variations of the first (.#]) normal stress differences against Stokes number (Sf) and
restitution coefficient (e) at v = 0.005. In panel b the projection of panel a is displayed for
different e.

The variation of (5.50) as functions of (S7, e) is depicted in figure 5.7(a) for particle volume
fraction of v =0.005. Similar to granular temperature, the shear viscosity undergoes hysteretic
jumps at St = St., (“Q — I”’) and St., (“I — Q”) on increasing and decreasing St, respectively.
The effect of dissipation (e < 1) is to reduce the viscosity of the particle-phase in each state, see
figure 5.7(b). On the other hand, the effect of Stokes number can be understood by considering
the viscosity of elastically colliding (e = 1) particles as given by

757 St 384 5 1477

vSt?, and s~ ——V 2817, (5.52)

His = 50736 vz Has ¥ 94500 25

in the ignited, quenched and unstable states, respectively. Clearly, two shear-thickening branches
(Q and I) are connected via a shear-thinning branch.

The ‘discontinuous shear thickening” (DST) behaviour, such as in figure 5.7(a,b), occurs
only in the small Stokes-number limit of a dilute gas-solid suspension at v < v/, (5.41), for
any restitution coefficient. The middle-branch in figure 5.7(a,b), over which u decreases with
increasing St (i.e. the shear-thinning branch), is unstable. This is a thermodynamic/constitutive
instability which can be understood from a phenomenological viewpoint (Saha & Alam 2017a).

In the area of liquid-solid suspensions, the shear-thickening and its discontinuous ana-
log are well-known since the original work of Hoffman (1972). There have been a renewed
research activity to understand the origin of DST in the “dense” regime of colloidal and non-
colloidal suspensions as well as in dense granular media (Brown & Jaeger 2014; Denn &
Morris 2014). Extending the present theoretical formalism to the dense regime of suspen-
sions, by incorporating frictional interactions and related physics (Seto et al. 2013; Fernandez

et al. 2013; Wyart & Cates 2014; Clavaud et al. 2017), would be an interesting future work.
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5.4.3 First and second normal stress differences

The expression for the first normal stress difference is

Py —P,
M =" —2psin2¢, (5.53)
p

which has been ‘scaled’ by the mean pressure p = (P + Py + P;;)/3; in (5.53), ¢ and ) are
calculated from (5.42) and (5.43), respectively. The variation of (5.53) as functions of (5S¢, ¢)
is displayed in figure 5.8(a,b). The quenched-branch .#] remains unaffected by inelasticity
(see panel b), however, on the ignited branch, increasing inelasticity increases .47; the effect
of the gas-phase (i.e. decreasing St) also increases the ignited branch .#]. On the whole, the
dependence of .47 on both St and e mirrors that of the non-coaxiality angle (¢) and the shear-
plane temperature-anisotropy (1), compare figure 5.8(b) with figure 5.6(a,b). It is clear from
(5.53) that the origin of the first normal stress difference is tied to the shear-plane anisotropies
(n and ¢) of the second-moment tensor as in the case of a sheared granular gas (Jenkins &
Richman 1988; Saha & Alam 2016) — the dependence of St on its origin remains implicit via
two anisotropy parameters (¢, ).

The scaled second normal stress difference is given by

By — P
p

N = =312 —nsin2¢ =312 — %m. (5.54)
The variation of (5.54) with St is shown in figure 5.9(a) for different values of the restitu-
tion coefficient e. Similar to .47, the effect of inelasticity is to increase the magnitude of the
second normal stress difference on the ignited branch, but the quenched-branch .45 remains
unaffected (expectedly) by changing e. It is noteworthy in figure 5.9(a) that .45 is positive
and negative in the quenched and ignited states, respectively. This sign-change can be under-
stood from figure 5.9(b) which display the variations of two terms in (5.54) with St. In the
quenched state the excess temperature (342 o T*) dominates over the shear-plane anisotropies
(nsin2¢ = .41 /2), whereas the latter dominates over the former in the ignited state, resulting

in the sign-change of .45 at some finite value of St.

The parameter combinations (St, e, v) at which .45 undergoes sign-reversal can be calcu-

lated by solving the following equation
M =627 =0, (5.55)

along with (5.53) and (5.44). Figure 5.9(c) shows the variation of St with restitution coef-
ficient: .45 is positive and negative, respectively, below and above each line for a specified
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Fig. 5.9 (a) Variation of the second (./#5) normal stress difference against Stokes number (St)
for different values of the restitution coefficient; the particle volume fraction is v = 0.005. (b)
Variations of 342 (blue circles) and .4 /2 (green triangles) with St for e = 0.5, with other
parameters as in panel a. (¢) Variations of the critical Stokes number Sz (at which .45 = 0)
with e for v = 0.005 (solid line) and v = 0.0005 (dashed line).
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density v. It is seen that the effect of inelastic dissipation is to increase the critical value of
St at which .45 changes its sign; reducing the mean-density increases St at any e.

It may be noted that for a ‘dense’ sheared granular gas (St — o), the second normal-
stress difference undergoes sign-change (Alam & Luding 2005b; Saha & Alam 2016) at some
critical density (v4 ~ 0.2), with .4 being negative and positive in the dilute and dense limit,
respectively; the competition between (i) the collisional anisotropies in a dense system (that
makes the particle-motion increasingly streamlined (Alam & Luding 2005b) with increasing
density) and (ii) the second-moment anisotropies (¢, n,lz) is known to be responsible for
this sign-change (Saha & Alam 2016). For the present case of a ‘dilute’ suspension, the
behaviour of .45 in the quenched state resembles that in a sheared ‘dense’ granular fluid; this
could possibly be due to the ‘streamlined’ particle motion in both systems, characterizing the

underlying anisotropy.

5.5 Discussion: Comparison with Grad’s moment-expansion
(GME)

Recall that in figure 5.2, we have made a detailed comparison between the predictions of two
moment theories: (i) the standard Grad’s moment-expansion (GME) around a Maxwellian (Grad
1949; Tsao & Koch 1995; Sangani et al. 1996; Chamorro et al. 2015) using Hermite polynomi-
als and (ii) the present anisotropic-Maxwellian moment-expansion (AME). Overall, the AME
predictions for granular temperature are found to be more accurate (see insets in figure 5.2)
than that of GME, especially at lower values of restitution coefficient, via a comparison with
available simulation data. This conclusion holds for shear viscosity too (not shown) since
i o< /T — in the following we focus on the predictive abilities of the present theory (AME)
with reference to two normal-stress differences. (The reader is referred to Saha & Alam (2014)
for details on AME that has been used to derive a generalized Fourier law for heat-flux vector,
along with conductivity tensors; the heat-flux, however, vanishes in uniform shear flow as in

the present case.)

5.5.1 Suspension of elastic and inelastic hard spheres: .47 and .4,

From the present AME theory, the normal stress differences for elastic (e = 1) hard-sphere

suspensions in the “ignited” state are given by (Appendix A)

18 9(9 + QSt?)QSt?

—°  and — M= 0. (556
orase M T s par t sTas? T I0sA (5.56)

M
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with

1/2
_ 1| (s 22 3) " (12v3p
Q= <St - ) + ((St 7) (12v/2) > : (5.57)

The last quantity Q is positive for St > St., = 1/171/7 (the critical Stokes number for “ignited-
to-unstable” transition, viz. eqn. (3.7)), and asymptotically approaches unity, Q(St — o) =1,
and hence Q € (0, 1) at any St > St.,.

The AME-predictions (5.56) can be compared with the corresponding GME predictions
for A1 and .A5:

JV—L and e/l/—%i>0 (5.58)
'™ 6+ 0812 2T 6+052 " '
where
1/2
1 , 171 , 171\*
_ _7 ~ ) —12 . :
0=1s (St 14)+<(St 14) (5.59)

In (5.58) that there is a minor correction in the expression for .45: the numerical factor 9/14
in the numerator was taken as 9/7 in Tsao & Koch (1995). The positivity of (5.59) follows
from the positivity of its discriminant, resulting in St > St., = \/W , which is very close
to W for the positivity of (5.57). It is worth pointing out that the functional dependence
of both (5.57) and (5.59) yields almost identical values for Q and ©® at any St > St,,.

Figure 5.10 shows a comparison of (5.56) (denoted by solid lines) for .#] and .45 with
(i) the DSMC simulation data (symbols) of Tsao & Koch (1995) and (ii) the GME theory
(5.58) (dashed lines) — the particle volume fraction is set to v = 0.01, representing a ‘dilute’
gas-solid suspension. It is seen that both (5.56) and (5.58) predict the correct behaviour of
M — two theories are almost indistinguishable from each other, with excellent quantitative
agreement with simulation. However, there is a significant disagreement (by a factor of about
2) between (5.58) and the DSMC data for the second normal-stress difference .45; in contrast,
the predictions of AME (5.56) are uniformly good for both .47 and .45 over a range of Stokes
number.

It may be noted that in GME the quadratic nonlinear-terms (proportional to Pé B) need to be
taken into account while evaluating the source term X g (5.13) in order to obtain ‘non-zero’
second normal-stress difference as suggested by Herdegen & Hess (1982) for a Boltzmann
(dilute) gas. A brief account of the related analysis for a gas-solid suspension of inelastic

particles is provided in Appendix E — the resulting expressions for . 4] and .43 reduce to (5.58)
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Fig. 5.10 Variations of the first (circles) and second (squares) normal-stress differences with
Stokes number for a suspension of elastic (e = 1) hard-spheres — the particle volume fraction
is v = 0.01, representing a ‘dilute’ suspension. The solid lines represent the present theory
(5.56) and the dashed lines represent the standard Grad’s moment theory (5.58); the DSMC
simulation data (Tsao & Koch 1995) are denoted by symbols.
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Fig. 5.11 Comparisons of (a) first and (b) second normal-stress differences at St = 10: (1)
DSMC simulation (filled circles, Sangani et al. (1996)), (ii) present theory (solid lines), (iii)
the standard Grad’s moment expansion [dashed lines, see Appendix E].



194Dilute Gas-Solid Suspension : Shear-thickening Behaviour and Normal Stress Differences

for elastically-colliding particles. On the other hand, the analysis of Sangani ef al. (1996) did
not include such nonlinear Grad-terms, resulting in .4, = 0; the recent work of Chamorro
et al. (2015) also confirmed that the nonlinear Grad-terms are necessary for .45 # 0. It has
been verified that the quadratic non-linear terms do not noticeably affect the value of 4] as
well as the shear viscosity.

The effect of inelasticity on 4] and .45 can be ascertained from figures 5.11(a) and
5.11(b), respectively, for a suspension with small Stokes number (St = 10); other parame-
ters are as in figure 5.10. It is clear from panel a that the present predictions of .41 (solid line)
agree well with simulation data for the whole range of e, but the GME-predictions (dashed
and dot-dashed lines) are slightly lower at e < 0.5. On the other hand, the GME theory grossly
under-predicts (by a factor of 3) the value of .45 for dissipative particles, see figure 5.11(b).

5.5.2 From sheared suspension to ‘dry’ (St — o) granular gas

To further understand the predictions of normal stress differences (4] and .43) from two
theories (GME and AME) for dissipative particles (e < 1), we focus on the uniform shear flow
of a dilute granular gas (St — o) — the molecular-dynamics (MD) simulations of inelastic
hard-spheres with Lees-Edward boundary conditions have been carried out for a range of
restitution coefficients e € (0.3, 1) at a particle volume fraction of v = 0.01; a relatively small
system with N = 1000 particles was simulated— other simulation details can be found in (Alam
& Luding 2005b; Gayen & Alam 2008). From these simulations, it is easy to extract data on
two anisotropy parameters, namely, (i) the shear-plane temperature anisotropy 7 [see (5.24)]
and (ii) the excess temperature 7 /T = A? [see (5.26)], which are marked by filled-circles in
figures 5.12(a) and 5.12(b), respectively. In each panel, the theoretical predictions of Saha &
Alam (2016) are shown by solid lines. Overall, there is excellent agreement between AME
theory and MD simulation.

Figures 5.13(a) and 5.13(b) compare the MD simulation data (symbols) for .47 and .43,
respectively, with theory; the AME predictions, denoted by solid lines, are calculated from
(5.53) and (5.54) by setting St — oo (Saha & Alam 2016), and the corresponding GME-
predictions (Appendix E) are denoted by dashed lines. In addition, the dot-dashed line in
each panel represents the super-Burnett-order solution of Sela & Goldhirsch (1998), obtained
from the Chapman-Enskog expansion of inelastic Boltzmann equation. It is clear that both
GME and AME theories predict almost the same value of .#] for a range of restitution coeffi-
cient e € (0.3, 1), but the GME-prediction for .45 is consistently lower than that of AME and
can be off by a factor of 3 at e = 0.3. On the other hand, the AME-predictions for both . 4] and
N5 are comparable to those of Chapman-Enskog solution for e > 0.8, but the latter becomes

increasingly inaccurate for e < 0.8. Therefore, the quantitative predictions of the AME for two
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Fig. 5.12 Comparisons of (a) shear-plane temperature-anisotropy 71 and (b) the excess temper-
ature 7" /T = 222 in uniform shear flow of a granular gas (St = co): MD simulation (symbols)
and theory [solid line, Saha & Alam (2016)]. The particle volume fraction is v = 0.01 and the
number of particles is N = 1000 in simulations.

normal stress differences are better than those of GME and Chapman-Enskog solution — this

overall conclusion holds for both gas-solid and dry granular suspensions of inelastic particles.

5.6 Summary and Conclusion

The rheology of a dilute gas-solid suspension, consisting of inelastic spheres suspended in a
Newtonian fluid, undergoing simple shear flow is analysed, with the effect of the gas-phase be-
ing modelled via a Stokesian drag force. The pertinent inelastic Boltzmann equation is solved
using an anisotropic Gaussian as the single particle distribution function which is known to
be appropriate for a sheared system. The resulting hydrodynamic model for the particle-phase
consists of a 10-moment system (p,u, M) of density (p), hydrodynamic velocity (u) and the
second-moment (M = (CC)) of fluctuation/peculiar velocity. One focus of the present work
has been to analyse the anisotropy of M in the simple shear flow of a dilute gas-solid suspen-
sion and subsequently tie and explain the rheological quantities in terms of them.

The seond-moment tensor has been characterized by three parameters: (i) the non-coaxiality
angle (¢, the angle between the principal eigen-direction of M and the shear tensor D), (ii) the
shear-plane temperature-anisotropy (7, the difference between the principal eigenvalues of
M on the shear plane, 1 o< T, — T}, where T; is the granular temperature along i-th direction)
and (iii) the excess temperature (A2 o< T — T}) along the vorticity direction; the first two [¢
and 1] are dubbed ‘shear-plane’ anisotropies and the last-one (A2) is dubbed vorticity-plane
anisotropy. The closed-form expressions for three anisotropy parameters (¢, 1, A%) and the
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Fig. 5.13 Comparisons of (a) .41 and (b) .45 in uniform shear flow of a granular gas (St = oo):
(i) MD simulation (symbols), (ii) present theory [solid lines, Saha & Alam (2016)] and (iii)
the standard Grad’s moment theory (dashed line). The dot-dash line in each panel represent
the super-Burnett-order Chapman-Enskog solution of Sela & Goldhirsch (1998). Parameter
values as in figure 5.12.

granular temperature (7)) have been obtained as functions of the Stokes number (St), the mean
density (v) and the restitution coefficient (e) by solving the second-moment balance equation;
these are used to obtain analytical expressions for the particle-phase viscosity and two normal-
stress differences. Scaling relations have been obtained in the limits of small and large St as

well as small inelasticity (1 —e).

Static multiple states of high and low temperatures are found when the Stokes number
is small enough, thereby recovering the original “ignited” (/) and “quenched” (Q) states of
Tsao & Koch (1995) — the role of inelasticity on these states has been examined. The high-
temperature ignited state, in which the randomness of the particle motion is high giving rise to
a large value of granular temperature (7'), exists above some minimum Stokes number (St.,)
whose value increases with increasing e. In contrast, the low-temperature quenched state,
in which most of the particles in the system follow the local fluid velocity, appears below a
critical value of Stokes number (S7.,) which is a decreasing function of both e and v. Both
these Stokes numbers (57, and St.,) have been determined analytically as functions of v and e,
and the regions of co-existence of two states (quenched and ignited) along with the transition
regimes have been identified in a three-dimensional (S?, e, V) phase diagram.

The effect of inelasticity is found to reduce the particle-phase viscosity on both ignited and
quenched states, with shear-thickening behaviour (increasing viscosity with increasing shear
rate) being found in both states. At any e, the shear-viscosity undergoes a discontinuous jump

with increasing St at “Q — I’ transition, which can be interpreted as “discontinuous shear
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thickening” (DST). The two normal stress differences also undergo similar first-order jump-
transitions: (i) .#] from large to small positive values and (ii) .45 from positive to negative
values. The sign-change of .45 (figure 5.9) has been identified with the system being making
a “Q < I’ transition. The origin of this sign-change has been tied to a competition between (i)
the excess temperature (7" o 312) and (ii) the shear-plane anisotropies (1] sin2¢ = .41 /2) of
the second-moment tensor: while the former dominates over the latter in the quenched state,
the latter dominates in the ignited state, resulting in the sign-change of .45 at some finite value
of St. For both granular and gas-solid suspensions, the excess temperature along the vorticity
direction is responsible for the origin of .43 # 0, while the temperature anisotropy 1 and the
non-coaxiality angle ¢ are responsible for .47 # 0.

The comparative analyses in figures 5.2, 5.10, 5.11, 5.12 and 5.13 can be summarized
as follows: the moment expansion about an anisotropic-Maxwellian (AME) yields accurate
transport coefficients (shear viscosity and normal stress differences) for dissipative particles
(e < 1) in both small and large Stokes number limits, representative of gas-solid and dry gran-
ular suspensions, respectively. The standard Grad’s moment-expansion (GME) significantly
under-predicts the value of the second normal stress difference .45, although it is comparable
with AME with respect to .47 up-to a restitution coefficient of ¢ = 0.5. On the other hand, the
latter theory (GME) also over-predicts the shear viscosity (i o< \/7, viz. figure 5.2) of small-St
suspensions even for moderately dissipative (¢ = 0.8) particles; the mismatch between GME
and simulation increases with decreasing e. Based on the present work we conclude that
the superior predictive ability of the AME theory for hydrodynamics and rheology of ‘dry’
(St — o) sheared granular gases (Saha & Alam 2014, 2016) carries over to small-St gas-solid
suspensions of highly inelastic particles.

It would be interesting to check the applicability of this theory to dense gas-solid suspen-
sions of inelastic particles (with frictional interactions) which can be taken up in future. The
present work can also be extended to include a ‘non-linear’ drag law (dependence on parti-
cle Reynolds number) by modifying (5.5) via well-known empirical correlations. Lastly, the
anisotropies (¢, 1, A2) of the second-moment tensor should be measured from simulations of
finite-St suspensions so that one-to-one comparisons with theory can be made in this regard.






Appendix A

Analysis in the ignited state for elastic
hard-spheres

For a gas-solid suspension of elastic hard-spheres (e = 1), the collisional source of second-
moment in the ignited state is given by

—24p,v? _ 1
Sup =0 [ iy + kg o) (M) M )
OoT?
__3p,viT
 356ym
n%+21A%421nsin2¢ —211cos2¢ 0
—211ncos2¢ n%+21A% —21nsin2¢ 0 . (A
0 0 —2(n?+21A2%)

which is a function of v,T, 1, ¢ and A2,

Four independent equations of second-moment balance,

2
Psgug s + Psqup.s + S—z/Pa[s = Nyg» (A.2)

can be rearranged to yield a quartic-order equation,
®? | 12096S1*®* + (102608t — 420St%) @ + 3225 — 1758t | =0, (A.3)

where o is the rescaled temperature

(A.4)



200 Analysis in the ignited state for elastic hard-spheres

In the following, the temperature has been made dimensionless by dividing it by (7o /2)2.
Three distinct solutions of (A.3) are

5m2 St

Ty = ——Q(Sr), A.
144 v (81) (A-3)
1
5712 St 1782 — 171 — /4951% — 42512 — 14103
T, — _[ . : (A.6)
144 v 145t
Tys =0, (A7)
with Ty > T,,s > Ty, where
78t% — 171 +/4985* — 42512 — 14103 144 :
Q(St) = ] = st A8
(1) 14512 57 (&.8)

In the above expressions, Ty, corresponds to the quenched state temperature, 7,5 corresponds
to an unstable temperature and T;; corresponds to the temperature in the ignited state. It is
clear from (A.6) that a positive value for 7, requires the following condition on the Stokes
number:

171
7812 — 171 > 0, = S1>)\[ - 49425 =St (A.9)

Therefore, St must be greater than or equal to Sz, and (A.9) provides a lower bound on St for

the existence of the ignited state in a dilute sheared gas-solid suspension.

The remaining equations of (A.2) can be solved to yield solutions for n> and A? in the
ignited state:

nz _ ( 29(9+522St21) . 4)
4( 1+ g7 Q812+ 56 Q=51 .
2 , (A10)
T 14(145Q812+ 3 Q251)
the solution for the non-coaxilality angle is
. __n
Therefore, the normal stress differences in the ignited state are given by
15 18
M= = , A.12
LT 5124810 T 6+ Q812 (A.12)
2708t (5 + 16Stw
= (5+ ) (A.13)

(54 24Stw) (175 + 17408t 0 + 4032512 ?)
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In the ignited state, the expression for the shear viscosity of the particle phase is
W= —Pq /7= UnQ(St), (A.14)
where
Ly = %ppoﬁ (A.15)

is the Newtonian viscosity of a dilute gas. Therefore, Q(St) [(A.8)] is a measure of the devia-

tion of particle-phase viscosity from the Newtonian viscosity of a dilute hard-sphere gas.






Appendix B

Coefficients qg;

Explicit expressions of the individual coefficients a; appearing in (5.34) are given by:

a0 = 86416243200(3 — e)*(1 —e)* (14 ¢) wSt%V’,
a9 = 28805414400(3 — )3 (1 — e)*(1+¢)°(19 — 13¢) 73/ 57V,
ag = 28576800(3 —¢)*(1 —e)(1+e)’n*St*v’ (252(197 —278¢+93¢%)
+5(1747 — 1438 + 36362)St2),
a7 = 3810240(3 — ) (1 4 e)*/mSr3v* (2100(1 —¢)(241 —284¢ +79¢*) m?
+25(12607 — 19952¢ 4 10099¢* — 1746¢°) > St>
—3456(3 — e)3(1 — )(1 —|—e)4St3v3>,
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Appendix C

Ordering analysis to determine three

temperatures

We will solve (5.34) analytically in the asymptotic limit v < 1, St >> 1, and S’v < 1 (Tsao
& Koch 1995), and three feasible solutions have been found as described below.

C.1 Temperature in the quenched state

11

For & ~ O(8t3/2\/V), the leading order term in (5.34) is O(St 2 v%) and consequently we have
az&3 + a1 =0, (C.1)

where
ay = 578812500072S7,  a; = —19600000077 (1 +€)2Stv. (C.2)

The solution at this level of approximation is

32(1+e)?

i5n St3v, (C.3)

quzgzz

which corresponds to the temperature in the quenched state. Note that the quenched tempera-

ture increases with increasing both St and v.
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C.2 Unstable temperature

When & ~ O(St3v)~!, the highest-order term in (5.34) is O(1/St8v?), and on neglecting terms

smaller than this, we have at leading order

asét +azE3 =0, (C.4)
where
as = —6890625(1 +¢) (107 + 193e)m*St*v, a3 = 578812500072 t. (C.5)
Therefore, we have
840\/7 1
T, =& = C.6
w =6 (1+¢)(107 + 193¢) <St3v)’ ©6)

This is the temperature of an intermediate state which is unstable — note that 7, decreases

with increasing St and v.

C.3 Temperature in the ignited state

In the asymptotic limit of & ~ O(St/v), the leading order term of @;&' i = 0(1)11 is O(St'%/v?)

and consequently we have from (5.34)
@& +ast® =0, (C.7)

where

a7 = 95256000(3 — ¢)(1+e)*(12607 — 19952¢ + 10099¢2 — 1746¢3) 13 St5v4, C8)
ag = —9922500(1 4 €)*(1691 +539¢ — 1223¢? + 337¢3) > St0v3. S

Therefore, the temperature at this order of approximation is

VT = (C.9

5(1691 4 539¢ — 12232 +337¢%) /7 (St)
V )

s = 48(3—e)(1+¢)(12607 — 19952¢ + 100992 — 1746¢3) \ v

which corresponds to the temperature in the ignited state. While T} increases with increasing

St, it deceases with increasing the particle volume fraction v.
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Analytical determination of limit-points
St., and St

At the critical/limit points, two solution branches of (5.34) corresponding to two different
states [(i) quenched (7;,) and unstable (7,) states and (ii) unstable (7,) and ignited (7})
states] meet and consequently we have saddle-node bifurcations from one stable state to an-
other. Therefore, these limit points correspond to the double roots of (5.34) at which the

following conditions must be satisfied:

G4(E)=0 and ¥'(&)=0. (D.1)

D.1 Determining Sz, : discontinuous transition from “ignited”

to “quenched” states

The critical Stokes number, St.,, for the transition from the ignited to quenched states cor-
responds to the limit point at which the temperatures corresponding to the ignited (7;) and
unstable (7,,;) branches overlap with each other. Considering & ~ O(vSt)~! >> 1, and retain-
ing the highest-order terms, (5.34) reduces to

G~ arE’ +asE®+asE +asét + a38’ =0=a7E" + a6’ + as&* + as€ + a3,
(D.2)

and  4a7E3 +3a6E% +2a5E +ay =0, (D.3)



208 Analytical determination of limit-points St., and S,

where

a7 = 95256000(3 — €) (1 + €)*(12607 — 19952¢ + 10099¢% — 1746¢%) 72 S5v*, )

ag = 9922500(1 +e)3 73St (4(56617 —78677¢ +35629¢% — 5361¢%)
(1691 +539¢ — 122362 + 33763)St2> V3,

as = 16537500(1 +¢)?72 St3 (1 2(3437 —3093¢ + 688¢?) (D.4)
(477 + 442¢ — 24762)St2) V2,

as = 6890625(1 + e)w*S1%(6(2437 — 1069¢) — (107 + 193¢)St%) v,
a3 = 578812500072 St.

/

Using the condition of equal roots of a fourth-degree polynomial (D.2), we obtain an expres-
sion for the critical Stokes number for the “ignited-to-unstable” transition:

Ste; =9.9—-4091e. (D.5)

While decreasing the Stokes number along the ignited-state branch (see figure 5.2), the system
jumps from the ignited to the quenched state at St < St., for all v < vbl,s (3.8). Therefore,
(D.5) represents the minimum/critical Stokes number below which (5.34) admits the unique
“quenched” state solution.

D.2 Determining S7.,: discontinuous transition from “quenched”

to “ignited” state

The limit point corresponding to the overlap of the quenched and unstable branches of the
system is denoted by the Stokes number S7., at which the temperatures associated with the
quenched (7ys) and unstable (7,) states coincide — above this critical value of Stokes number
the quenched state ceases to exist. Mathematically, St., is the point of the double root T;; = T,
of (5.34). above which there exists only one feasible solution 7j (corresponding to the ignited
state) and the system jumps from the quenched state into the ignited state At this order of
approximation & ~ O(1) and the highest order terms are of the orders of v.St* and St. Therefore
on neglecting the terms of 0(St4v2) and using the statement of 7;; = 7,5, we have from (5.34)

G (&) mas? + a3’ +a1€ =0=as&’ + a3&* +ay, (D.6)
and  ¢'(E.) ~3a4E? +2a3E =0, (D.7)
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where
a; = —6890625(1 4 ¢)(107 4 193¢) St
a3 — 5788125000725, (D.8)
ar = —196000000(1 + e)2 72 St4v.
It follows from (D.7) that
—2a 5607
Ee=—o—= vE (D.9)
3ay (1+¢€)(170+ 193¢)St3v
On substituting (D.9) into (D.6) we obtain the critical-surface
%
308700072
St3 Ve = ( )2> : (D.10)

above which only the ignited state exists.






Appendix E

Grad’s moment expansion (GME) for
inelastic gas-solid suspension

The standard Grad’s moment expansion (GME) in terms of a truncated Hermite series around
the Maxwellian (Grad 1949) has been employed by many researchers (Herdegen & Hess 1982;
Tsao & Koch 1995; Chamorro et al. 2015) to analyse the Boltzmann equation for a “sheared”
hard-sphere gas as well as gas-solid suspensions.

* Herdegen & Hess (1982)= e =1, St =  (Dilute gas of elastic hard-spheres)

* Tsao & Koch (1995)= e =1, St finite  (Suspension of elastic hard-spheres)

* Chamorro et al. (2015)= e # 1, St finite  (Suspension of inelastic hard-spheres)

For the case of a dilute gas-solid suspension of “inelastic” hard-spheres, the collisional
production term of the second moment has been evaluated as:

o —

8p,VA(1— AT 24v(1+e)(3—e)T

(I+e)
W { (5 +3¢) Py Prgay 8ap + 12(e — 3) Plauy P, }, (E.1)

where the underlined terms represent the quadratic nonlinearity in the pressure deviator P45y =
Popg — POup,> With p = Puq/3; pp = m/ (o3 /6) is the intrinsic/material density of particles,
v is the particle volume fraction and e is the restitution coefficient. In fact, the second normal-
stress difference is zero (.4 = 0) in the absence of the underlined non-linear terms in (E.1),
see the proof at the end of this appendix.
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Defining the non-dimensional quantities as

P T X
= . T = ————., N E.2
v (70/2)? (75/2)? PV (02 (£:2)

*

and on omitting the * signs, for convenience, the dimensionless second-moment balance for

steady homogeneous shear flow,

2
Psgug s + Psqup s+ §Paﬁ = Ngp, (E.3)
can be written in component form as follows:

(1+¢)(5+3e) (me +PL + Pl + 2szy> —12(1+e)(3—¢) (me + P%,)

14 TP,
—280(1 —e*)T* = 168(1+e)(3 — )T Py — %
140\/7/T
VT (7 4 By =0, (E4)
2 2 2 2 2 2
(1 +€)(5 +3€) (P<xx> +P<yy> +P<ZZ> +2Px)> - 12(1 —|—€)<3 - 6) (P<yy> +PX)’>
140/7VT
2\ 2
—280(1 = ¢")T? — 168(1 +€)3 =€) TPy — — = (T +Pyy)) =0, (ES)
(1+e)(5+3e) (me + Py + P+ ZPXZy) —12(1+e)(3-e)Py,
—280(1—e*)T> —168(1+e)(3—e) TP, — W(TJFP@) =0, (E.6)
70/7TT
12(1+€)(3 = €)PyPyyy — 168(1 +€) (3 — ) TPy — \/_T(T—I—P@y))
140\/7T?
— P =0, (E.7)

along with constraint Pyo = 0. These equations have been solved numerically for specified
values of e, St and v to yield 7, P<aa> and P,y; two normal stress differences .41 and .45 can
be expressed in terms of Pigq). These are dubbed “GME” solutions and their comparisons
with the present theory (§5.4) based on anisotropic-Maxwellian expansion (AME) are shown
in figures 5.10, 5.11 and 5.13, as discussed in §5.5.1 and §5.5.2.

Theorem 5.0.1. The source term is uniquely decomposed as X o = (% X W) Saﬁ + Nygpy. If
X (aB) = BPap), then N, = 0.
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Proof. For the case of homogeneous shear u, = Yy, uy, = 0, u; = 0; the balance of second

moment for a granular gas is

Pgﬁuaﬁ —|—P5auﬁ75 = N(xﬁ- (5.8)

Now, upon substituting @ =2, B =2 and o = 3, B = 3 we have

Xy =0= Ns3. (5.9)
From P;; = pd;; + P, we can write

Ny = (Pay = Pia3)) = B~ (R 29y — R33)) = 0. (5.10)

(]

Of course, (5.10) is in contradiction with (i) the nonlinear expression (E.1) obtained from
the standard Grad-moment expansion as well as with (i1) our choice of anisotropic Maxwellian
distribution function, both yielding .45 # 0.






Chapter 6
Summary

In this Chapter a summary of the research work done in this thesis alongwith conclusion made
are presented. We have tried to address the issues, which were raised in Chapter Chapter 1
(Introduction). A brief discussion about the future work that can be derived from the thesis is

also given. A chapter-wise summary of the present work is provided below.

A complete 14/10 moment theory for a “dense” granular gas using Grad’s moment method
Grad (1949) is proposed in Chapter 2. An expansion around the Gaussian is performed to
obtain the non-equilibrium distribution function. A Grad like moment theory has been estab-
lished in terms of the fourteen field variables: i) the mass density (p), i) macroscopic flow
velocity (u), iii) kinetic stress (P¥), iv) kinetic heat flux (g¥) and v) the contracted fourth
moment F;;;;. The collisional source and flux terms at different orders are calculated by in-
cluding all the nonlinear terms arising from these hydrodynamic field variables and their gra-
dients. The collisional dissipation or the cooling rate is derived for the whole range of volume
fraction that includes second order derivatives of the hydrodynamic variables as well. A gen-
eralized Fourier law for granular heat flux is established using Maxwell iteration technique.
It is observed that even at Navier-Stokes level (5 field theory) the thermal conductivity is an
anisotropic-asymmetric tensor and the anisotropy follows from the presence of higher order
nonlinear terms in X ,55. The gradient of kinetic stress also drives a heat current at the 10 mo-
ment theory and these features are clear signatures for non-Fourier rheology. Finally, this 14
moment theory is applied to analyse the uniform shear flow of a 3-dimensional granular fluid.
Analytical expressions of all the transport coefficients are determined as a function of the coef-
ficient of restitution (e) and the solid volume fraction (V) using this higher order theory. The
non-Newtonian rheology appears in this granular uniform shear flow in terms of the normal
stress differences is also appreciated. An effort has been made to develop a complete theory

that can be applicable to granular flows at any choice of inelasticity and volume fraction.
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In Chapter 3, an extended hydrodynamics equations, in terms of ten-moments (the den-
sity, the velocity vector and the second moment tensor), are proposed for a granular fluid that
include the normal stress differences as well as the granular heat flux. For the steady uni-
form shear flow of smooth inelastic spheres, the constitutive relations are derived by choosing
the anisotropic/triaxial Gaussian as the single-particle distribution function. The equation for
the second moment of velocity fluctuations is solved semi-analytically, yielding closed-form
expressions for the ‘non-Newtonian’ stress tensor, the shear viscosity and the collisional dis-
sipation rate for the whole range of density (i.e. the volume fraction of particles). The first
normal stress difference .4 is found to be positive in the dilute limit and decreases monoton-
ically to zero in the dense limit. However, the second normal stress difference .4 is negative
and positive in the dilute and dense limits, respectively, and the sign-change of .45 at a fi-
nite density is due to the sign-change of its kinetic component. The origin of .41 is tied to
the non-coaxiality (¢ # 0) between the eigen-directions of the second-moment tensor M and
those of the shear tensor D; the non-coaxiality angle ¢ is maximum in the dilute limit and
decreases with increasing density, resulting in co-linear (i.e. ¢ = 0) eigen-directions between
M and D and consequently .#; — 0 in the maximum packing limit. In contrast, the origin of
¥ in the dilute limit is tied to the ‘excess’ temperature (T,"* = T — T;, where T, and T are
the z-component and the average of the granular temperature respectively) along the mean-
vorticity (z) direction, whereas its origin in the dense limit is tied to the imposed shear field.
Theoretical expressions for both .47 and .43 as well as for pressure and shear viscosity agree
well with previous simulation data for the uniform shear flow of inelastic hard-spheres (Alam
& Luding, Powders & Grains, 2005, pp. 1141-1145) for a large range of volume fractions
spanning from the dilute to the dense regime. Based on our analytical solution for the dense
limit, we show that the eigen-directions of the collisional stress tensor P¢ are co-linear with
those of the shear tensor D as is the case for the kinetic stress (Pk = pM) in the same limit.
The proposed 10-moment hydrodynamic theory is made closed by deriving the constitutive re-
lation for the granular heat flux via a perturbation expansion around the anisotropic Gaussian
state. It is shown that the gradient of the kinetic stress also drives a heat current in addition to
the standard Fourier-current driven by the temperature gradient, and the ‘generalized’ thermal
conductivity is characterized by an anisotropic second-rank tensor. The leading off-diagonal
terms of the conductivity tensor vary quadratically with the shear rate and hence its anisotropy
is a Burnett-order effect. An improvement over the other Grad-level theories in terms of suc-
cessful determination of the two normal stress differences for the whole range of density is

discussed.

In Chapter 4, the normal stress differences along with other transport coefficients are

analysed for the simple shear flow of a dense gas-solid suspension of inelastic hard spheres
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suspended in a fluid of viscosity U, and experiencing a Stokes drag force. Viscous heating is
compensated by dissipation via two mechanisms (i) the inelastic collisions between particles
characterized by a coefficient of normal restitution e (0 < e < 1) and (ii) the Stokes drag force
which the surround fluid exerts on the particles. Rheology of the particle phase is analysed
with anisotropic-Gaussian as the single particle distribution function. The first and second
normal stress differences along-with other transport coefficients are computed for the whole
range of density (v) and inelasticity (e) with the scaled Stokes number (St; = St /R y;s5) varying
from a very low limit 10 to the dry granular limit St — . An exact solution of the second
moment balance of velocity fluctuations at Burnett order (i.e second order in the shear rate)
has been derived, leading to analytical expressions for the first (.#]) and the second (.43)
normal stress differences. On assuming the Burnett order solution as the base state solution
a perturbative solution at the super-super-Burnett order (i.e fourth order in the shear rate) is
also derived and that improves the analytical base. It is observed that the first normal stress
difference is maximum in the dilute regime and tends to zero at the dense limit but remains
positive throughout, on the other hand the second normal stress difference is negative in the
dilute limit undergoes a sign change at some finite density and becomes positive in the dense
limit. The location of the critical density, where second normal stress difference changes
its sign is determined and plotted as a 3-dimensional critical surface. This work is a direct
extension of chapter 3 (St — o), including the interstitial fluid effects (St = finite). Finally, as
we approach the limit of St — oo (g, — 0), results for the dry granular flows of chapter 3 are
directly followed.

In Chapter 5, the hydrodynamics and rheology of a sheared dilute gas-solid suspen-
sion, consisting of inelastic hard-spheres suspended in a gas, are analysed using anisotropic
Maxwellian as the single particle distribution function. The closed-form solutions for granular
temperature (7°) and three invariants of the second-moment tensor are obtained as functions of
the Stokes number (S?), the mean density (V) and the restitution coefficient (e). Multiple states
of high and low temperatures are found when the Stokes number is small, thus recovering the
“ignited” and “quenched” states, respectively, of Tsao & Koch (1995) (J. Fluid Mech.,1995,
vol. 296, pp. 211-246). The phase diagram is constructed in the three-dimensional (v, St, e)-
space that delineates the regions of ignited and quenched states and their coexistence. Ana-
lytical expressions for the particle-phase shear viscosity and the normal stress differences are
obtained, along with related scaling relations on the quenched and ignited states. At any e,
the shear-viscosity undergoes a discontinuous jump with increasing shear rate (i.e. discontin-
uous shear-thickening) at the “quenched-ignited” transition. The first (.4]) and second (.43)
normal-stress differences also undergo similar first-order transitions: (i) .47 jumps from large

to small positive values and (ii) .45 from positive to negative values with increasing St, with
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the sign-change of .45 identified with the system making a transition from the quenched to
ignited states. The superior prediction of the present theory over the standard Grad’s method
and the Chapman-Enskog solution is demonstrated via comparisons of transport coefficients

with simulation data for a range of Stokes number and restitution coefficient.



References

ABBAS, M., CLIMENT, E. & SIMONIN, O. 2009 Shear-induced self-diffusion of inertial
particles in a viscous fluid. Physical review E 79 (3), 036313.

ABU-ZAID, S. & AHMADI, G. 1993 Analysis of rapid shear flows of granular materials by a
kinetic model including frictional losses. Powder technology 77 (1), 7-17.

ALAM, M. 2005 Md simulation for a sheared granular gas: Non-newtonian and non-fourier

rheologies. Unpublished .

ALAM, M. & LUDING, S. 2002 How good is the equipartition assumption for the transport
properties of a granular mixture? Granular Matter 4 (3), 139-142.

ALAM, M. & LUDING, S. 2003« First normal stress difference and crystallization in a dense
sheared granular fluid. Physics of Fluids 15 (8), 2298-2312.

ALAM, M. & LUDING, S. 2003b Rheology of bidisperse granular mixtures via event-driven
simulations. Journal of Fluid Mechanics 476, 69—103.

ALAM, M. & LUDING, S. 2005a Energy nonequipartition, rtheology, and microstructure in
sheared bidisperse granular mixtures. Physics of Fluids 17 (6), 063303.

ALAM, M. & LUDING, S. 2005bh Non-newtonian granular fluids: simulation and theory. Pow-
ders and Grains p. 1141.

ALAM, M. & NOTT, P. R. 1997 The influence of friction on the stability of unbounded
granular shear flow. Journal of Fluid Mechanics 343, 267-301.

ALAM, M. & SAHA, S. 2017 Normal stress differences and beyond-navier-stokes hydrody-
namics. In EPJ Web of Conferences, , vol. 140, p. 11014. EDP Sciences.

ANDERSON, T. B. & JACKSON, R. 1967 Fluid mechanical description of fluidized beds.
equations of motion. Industrial & Engineering Chemistry Fundamentals 6 (4), 527-539.



220 References

ANSARI, I. H. & ALAM, M. 2016 Pattern transition, microstructure, and dynamics in a two-
dimensional vibrofluidized granular bed. Physical Review E 93 (5), 052901.

ARAKI, S. 1988 The dynamics of particle disks: Ii. effects of spin degrees of freedom. Icarus
76 (1), 182-198.

ARAKI, S. & TREMAINE, S. 1986 The dynamics of dense particle disks. Icarus 65 (1), 83—
109.

BAGNOLD, R. A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a
newtonian fluid under shear. In Proceedings of the Royal Society of London A: Mathemati-

cal, Physical and Engineering Sciences, , vol. 225, pp. 49—63. The Royal Society.

BARNES, H. 1989 Shear-thickening ("dilatancy") in suspensions of nonaggregating solid par-
ticles dispersed in newtonian liquids. Journal of Rheology 33 (2), 329-366.

BizoN, C., SHATTUCK, M., SWIFT, J. & SWINNEY, H. L. 1999 Transport coefficients for

granular media from molecular dynamics simulations. Physical Review E 60 (4), 4340.

BOYER, F., POULIQUEN, O. & GUAZZELLI, E. 2011 Dense suspensions in rotating-rod

flows: normal stresses and particle migration. Journal of Fluid Mechanics 686, 5-25.

BRADY, J. F. & Bossis, G. 1985 The rheology of concentrated suspensions of spheres in

simple shear flow by numerical simulation. Journal of Fluid Mechanics 155, 105-129.

BRADY, J. F. & MORRIS, J. F. 1997 Microstructure of strongly sheared suspensions and its
impact on rheology and diffusion. Journal of Fluid Mechanics 348, 103—1309.

BREY, J. J., DUFTY, J. W., KiM, C. S. & SANTOS, A. 1998 Hydrodynamics for granular
flow at low density. Physical Review E 58 (4), 4638.

BREY, J. J., MORENO, F., GARCIA-ROJO, R. & RUIZ-MONTERO, M. 2001 Hydrodynamic
maxwell demon in granular systems. Physical Review E 65 (1), 011305.

BRILLIANTOV, N. & POSCHEL, T. 2003 Hydrodynamics and transport coefficients for dilute
granular gases. Physical Review E 67 (6), 061304.

BRILLIANTOV, N. V. & POSCHEL, T. 2004 Kinetic theory of granular gases. Oxford Univer-

sity Press.

BRILLIANTOV, N. V., POSCHEL, T., KRANZ, W. T. & ZIPPELIUS, A. 2007 Translations

and rotations are correlated in granular gases. Physical review letters 98 (12), 128001.



References 221

BROWN, E. & JAEGER, H. M. 2009 Dynamic jamming point for shear thickening suspen-
sions. Physical review letters 103 (8), 086001.

BROWN, E. & JAEGER, H. M. 2012 The role of dilation and confining stresses in shear
thickening of dense suspensions. Journal of Rheology 56 (4), 875-923.

BROWN, E. & JAEGER, H. M. 2014 Shear thickening in concentrated suspensions: phe-
nomenology, mechanisms and relations to jamming. Reports on Progress in Physics 77 (4),
046602.

BucHHOLTZ, V., POSCHEL, T. & TILLEMANS, H.-J. 1995 Simulation of rotating drum
experiments using non-circular particles. Physica A: Statistical Mechanics and its Applica-
tions 216 (3), 199-212.

BURNETT, D. 1935 The distribution of velocities in a slightly non-uniform gas. Proceedings
of the London Mathematical Society 2 (1), 385-430.

BUYEVICH, Y. A. 1971 Statistical hydromechanics of disperse systems part 1. physical back-
ground and general equations. Journal of Fluid Mechanics 49 (3), 489-507.

CAFIERO, R. & LUDING, S. 2000 Mean field theory for a driven granular gas of frictional
particles. Physica A: Statistical Mechanics and its Applications 280 (1), 142—-147.

CAFIERO, R., LUDING, S. & HERRMANN, H. J. 2002 Rotationally driven gas of inelastic
rough spheres. EPL (Europhysics Letters) 60 (6), 854.

CAMPBELL, C. S. 1990 Rapid granular flows. Annual Review of Fluid Mechanics 22 (1),
57-90.

CANDELA, D. & WALSWORTH, R. 2007 Understanding the breakdown of fourier’s law in
granular fluids. American Journal of Physics 75 (8), 754-757.

CARNAHAN, N. F. & STARLING, K. E. 1969 Equation of state for nonattracting rigid spheres.
The Journal of Chemical Physics 51, 635.

CHAMORRO, M. G., REYES, F. V. & GARZO, V. 2015 Non-newtonian hydrodynamics for a

dilute granular suspension under uniform shear flow. Physical Review E 92 (5), 052205.

CHAPMAN, S. & COWLING, T. G. 1970 The mathematical theory of non-uniform gases:
an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases.

Cambridge university press.



222 References

CHoU, C.-S. & RICHMAN, M. W. 1998 Constitutive theory for homogeneous granular shear

flows of highly inelastic spheres. Physica A: Statistical Mechanics and its Applications
259 (3), 430-448.

CLAVAUD, C., BERUT, A., METZGER, B. & FORTERRE, Y. 2017 Revealing the frictional

transition in shear-thickening suspensions. Proceedings of the National Academy of Sci-
ences p. 201703926.

COUTURIER, E., BOYER, F., POULIQUEN, O. & GUAZzZzELLI, E. 2011 Suspensions in a
tilted trough: second normal stress difference. Journal of Fluid Mechanics 686, 26-39.

DAVIDSON, J. F. & HARRISON, D. 1963 Fluidised particles. Cambridge Univ Press.

DBOUK, T., LOBRY, L. & LEMAIRE, E. 2013 Normal stresses in concentrated non-brownian
suspensions. Journal of Fluid Mechanics 715, 239-272.

DE GROOT, S. R. & MAZUR, P. 2013 Non-equilibrium thermodynamics. Courier Corpora-

tion.

DENN, M. M. & MORRIS, J. F. 2014 Rheology of non-brownian suspensions. Annual review

of chemical and biomolecular engineering S, 203-228.

FERNANDEZ, N., MANI, R., RINALDI, D., KADAU, D., MOSQUET, M., LOMBOIS-
BURGER, H., CAYER-BARRIOZ, J., HERRMANN, H. J., SPENCER, N. D. & IsaA, L.
2013 Microscopic mechanism for shear thickening of non-brownian suspensions. Physical
review letters 111 (10), 108301.

FORTERRE, Y. & POULIQUEN, O. 2008 Flows of dense granular media. Annu. Rev. Fluid
Mech. 40, 1-24.

Foss, D. R. & BRADY, J. F. 2000 Structure, diffusion and rheology of brownian suspensions
by stokesian dynamics simulation. Journal of Fluid Mechanics 407, 167-200.

GARZzO, V. 2012 Grad’s moment method for a low-density granular gas. navier-stokes trans-

port coefficients. arXiv preprint arXiv:1211.5932 .

GARZO, V. 2013 Grad’s moment method for a granular fluid at moderate densities: Navier-
stokes transport coefficients. Physics of Fluids 25 (4), 043301.

GARZO, V. & DUFTY, J. 1999 Dense fluid transport for inelastic hard spheres. Physical Re-
view E 59 (5), 5895.



References 223

GARZO, V. & DUFTY, J. W. 2002 Hydrodynamics for a granular binary mixture at low den-
sity. Physics of Fluids 14 (4), 1476—-1490.

GARzO, V., TENNETI, S., SUBRAMANIAM, S. & HRENYA, C. 2012 Enskog kinetic theory
for monodisperse gas—solid flows. Journal of Fluid Mechanics 712, 129—-168.

GAYEN, B. & ALAM, M. 2006 Algebraic and exponential instabilities in a sheared micropolar
granular fluid. Journal of Fluid Mechanics 567, 195-233.

GAYEN, B. & ALAM, M. 2008 Orientational correlation and velocity distributions in uniform
shear flow of a dilute granular gas. Physical review letters 100 (6), 068002.

GAYEN, B. & ALAM, M. 2011 Effect of coulomb friction on orientational correlation and
velocity distribution functions in a sheared dilute granular gas. Physical Review E 84 (2),
021304.

GIDASPOW, D. 1994 Multiphase flow and fluidization: continuum and kinetic theory descrip-

tions. Academic press.

GOLDHIRSCH, I. 2003 Rapid granular flows. Annual review of fluid mechanics 35 (1), 267—
293.

GOLDHIRSCH, I., Noskowicz, S. & BAR-LEvV, O. 2005 Nearly smooth granular gases.
Physical review letters 95 (6), 068002.

GOLDREICH, P. & TREMAINE, S. 1978 The velocity dispersion in saturn’s rings. Icarus
34 (2), 227-239.

GOLDSMITH, W. 1960 Impact. Edward Arnold, London.

GRAD, H. 1949 On the kinetic theory of rarefied gases. Communications on pure and applied
mathematics 2 (4), 331-407.

GuAzzELLI, E. & MORRIS, J. F. 2011 A physical introduction to suspension dynamics, ,
vol. 45. Cambridge University Press.

GupTA, V. K., SHUKLA, P. & TORRILHON, M. 2017 Higher-order moment theories for
dilute granular gases of smooth hard-spheres. arXiv preprint arXiv:1701.09052 .

HERDEGEN, N. & HESS, S. 1982 Nonlinear flow behavior of the boltzmann gas. Physica A:
Statistical Mechanics and its Applications 115 (1-2), 281-299.



224 References

HOFFMAN, R. 1972 Discontinuous and dilatant viscosity behavior in concentrated suspen-

sions. i. observation of a flow instability. Transactions of the Society of Rheology 16 (1),
155-173.

HOFFMAN, R. 1974 Discontinuous and dilatant viscosity behavior in concentrated suspen-
sions. ii. theory and experimental tests. Journal of Colloid and Interface Science 46 (3),
491-506.

HoLwAY JRr, L. H. 1966 New statistical models for kinetic theory: methods of construction.
Physics of Fluids (1958-1988) 9 (9), 1658-1673.

HUANG, K. 1987 Statistical mechanics, 2nd. Edition (New York: John Wiley & Sons) .

HUTHMANN, M. & ZIPPELIUS, A. 1997 Dynamics of inelastically colliding rough spheres:
Relaxation of translational and rotational energy. Physical Review E 56 (6), R6275.

IKENBERRY, E. & TRUESDELL, C. 1956 On the pressures and flux of energy in a gas accord-
ing to {M} axwell\’s kinetic theory. J. Rat. Mech. Anal. 5.

JACKSON, R. 2000 The dynamics of fluidized particles. Cambridge University Press.

JAEGER, H. M., NAGEL, S. R. & BEHRINGER, R. P. 1996 Granular solids, liquids, and
gases. Reviews of modern physics 68 (4), 1259.

JANSSEN, H. 1895 Versuche iiber getreidedruck in silozellen. Zeitschr. d. Vereines deutscher
Ingenieure 39 (35), 1045-1049.

JAYNES, E. T. 1957 Information theory and statistical mechanics. Physical review 106 (4),
620.

JENKINS, J. & RICHMAN, M. 1985a Grad’s 13-moment system for a dense gas of inelastic
spheres. Archive of Rational Mechanics and Analysis 87, 647-669.

JENKINS, J. & RICHMAN, M. 19855/ Kinetic theory for plane flows of a dense gas of identical,
rough, inelastic, circular disks. Physics of Fluids (1958-1988) 28 (12), 3485-3494.

JENKINS, J. T. & RICHMAN, M. W. 1988 Plane simple shear of smooth inelastic circular

disks: the anisotropy of the second moment in the dilute and dense limits. J. Fluid Mech.
192, 313-328.

JENKINS, J. T. & ZHANG, C. 2002 Kinetic theory for identical, frictional, nearly elastic
spheres. Physics of Fluids 14 (3), 1228—1235.



References 225

KADANOFF, L. P. 1999 Built upon sand: Theoretical ideas inspired by granular flows. Re-
views of Modern Physics 71 (1), 435.

KocH, D. L. 1990 Kinetic theory for a monodisperse gas—solid suspension. Physics of Fluids
A: Fluid Dynamics 2 (10), 1711-1723.

KocH, D. L. & HILL, R. J. 2001 Inertial effects in suspension and porous-media flows.
Annual Review of Fluid Mechanics 33 (1), 619-647.

KOGAN, M. 1969 Rarefied gas dynamics. Plenum Press, New York 2, 1.

KREMER, G. M. 2010 An introduction to the Boltzmann equation and transport processes in

gases. Springer Science & Business Media.

KREMER, G. M. & MARQUES JR, W. 2011 Fourteen moment theory for granular gases.
Kinet. Relat. Models 4, 317-331.

LAUN, H. 1994 Normal stresses in extremely shear thickening polymer dispersions. Journal

of non-newtonian fluid mechanics 54, 87-108.

LEES, A. & EDWARDS, S. 1972 The computer study of transport processes under extreme
conditions. Journal of Physics C: Solid State Physics S (15), 1921.

LERNER, E., DURING, G. & WYART, M. 2012 A unified framework for non-brownian sus-

pension flows and soft amorphous solids. Proceedings of the National Academy of Sciences
109 (13), 4798-4803.

LOUGE, M., MASTORAKOS, E. & JENKINS, J. 1991 The role of particle collisions in pneu-
matic transport. Journal of Fluid Mechanics 231, 345-359.

LUDING, S., HUTHMANN, M., MCNAMARA, S. & ZIPPELIUS, A. 1998 Homogeneous

cooling of rough, dissipative particles: Theory and simulations. Physical Review E 58 (3),
3416.

LUN, C. 1991 Kinetic theory for granular flow of dense, slightly inelastic, slightly rough
spheres. Journal of Fluid Mechanics 233, 539-559.

LUN, C., SAVAGE, S. B., JEFFREY, D. & CHEPURNIY, N. 1984 Kinetic theories for granular
flow: inelastic particles in couette flow and slightly inelastic particles in a general flowfield.
J. Fluid Mech. 140, 223-256.



226 References

LUN, C. K. & SAVAGE, S. B. 2003 Kinetic theory for inertia flows of dilute turbulent gas-

solids mixtures. In Granular gas dynamics, pp. 267-289. Springer.

LuTsko, J. F. 2004 Rheology of dense polydisperse granular fluids under shear. Physical
Review E 70 (6), 061101.

LuTskoO, J. F. 2005 Transport properties of dense dissipative hard-sphere fluids for arbitrary
energy loss models. Physical Review E 72 (2), 021306.

MARANZANO, B. J. & WAGNER, N. J. 2001 The effects of particle size on reversible shear
thickening of concentrated colloidal dispersions. The Journal of chemical physics 114 (23),
10514-10527.

MAW, N., BARBER, J. & FAWCETT, J. 1976 The oblique impact of elastic spheres. Wear
38 (1), 101-114.

MAXWELL, J. C. 1867 On the dynamical theory of gases. Philosophical transactions of the
Royal Society of London 157, 49-88.

MAXWELL, J. C. 1879 On stresses in rarified gases arising from inequalities of temperature.
Philosophical Transactions of the royal society of London 170, 231-256.

MCLENNAN, J. A. 1965 Convergence of the chapman-enskog expansion for the linearized
boltzmann equation. The Physics of Fluids 8 (9), 1580—1584.

MONTANERO, J., GARZO, V., SANTOS, A. & BREY, J. 1999 Kinetic theory of simple gran-
ular shear flows of smooth hard spheres. Journal of Fluid Mechanics 389, 391-411.

MONTANERO, J. M. & GARZO, V. 2003 Shear viscosity for a heated granular binary mixture
at low density. Physical Review E 67 (2), 021308.

MONTANERO, J. M., GARZO, V., ALAM, M. & LUDING, S. 2006 Rheology of two-and
three-dimensional granular mixtures under uniform shear flow: Enskog kinetic theory ver-

sus molecular dynamics simulations. Granular Matter 8 (2), 103.
OGAWA, S. 1978 Multitemperature theory of granular materials .

OTSUKI, M. & HAYAKAWA, H. 2011 Critical scaling near jamming transition for frictional
granular particles. Physical Review E 83 (5), 051301.

OTTINO, J. & KHAKHAR, D. 2000 Mixing and segregation of granular materials. Annual
Review of Fluid Mechanics 32 (1), 55-91.



References 227

PARMENTIER, J.-F. & SIMONIN, O. 2012 Transition models from the quenched to ignited

states for flows of inertial particles suspended in a simple sheared viscous fluid. J. Fluid
Mech. 711, 147-160.

PIDDUCK, F. 1922 The kinetic theory of a special type of rigid molecule. Proceedings of
the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical
Character 101 (708), 101-112.

POSCHEL, T. & BUCHHOLTZ, V. 1995 Molecular dynamics of arbitrarily shaped granular
particles. Journal de physique I 5 (11), 1431-1455.

RAMIREZ, R., POSCHEL, T., BRILLIANTOV, N. V. & SCHWAGER, T. 1999 Coefficient of
restitution of colliding viscoelastic spheres. Physical review E 60 (4), 4465.

RAO, K. K. & NOTT, P. R. 2008 An introduction to granular flow. Cambridge University
Press New York.

REIF, F. 2009 Fundamentals of statistical and thermal physics. Waveland Press.

REYES, F. V., SANTOS, A. & GARZO, V. 2013 Steady base states for non-newtonian granular
hydrodynamics. Journal of Fluid Mechanics 719, 431-464.

RICHMAN, M. W. 1989 The source of second moment in dilute granular flows of highly
inelastic spheres. Journal of Rheology 33, 1293.

RONGALI, R. & ALAM, M. 2014 Higher-order effects on orientational correlation and relax-

ation dynamics in homogeneous cooling of a rough granular gas. Physical Review E 89 (6),
062201.

ROSENAU, P. 1989 Extending hydrodynamics via the regularization of the chapman-enskog
expansion. Physical Review A 40 (12), 7193.

SAHA, S. & ALAM, M. 2014 Non-newtonian stress, collisional dissipation and heat flux in
the shear flow of inelastic disks: a reduction via grad’s moment method. J. Fluid Mech. 757,
251-296.

SAHA, S. & ALAM, M. 2016 Normal stress differences, their origin and constitutive relations
for a sheared granular fluid. J. Fluid Mech. 795, 549-580.

SAHA, S. & ALAM, M. 2017a Revisiting ignited-quenched transition and the non-newtonian
rheology of a sheared dilute gas-solid suspension. arXiv preprint arXiv:1706.04457 .



228 References

SAHA, S. & ALAM, M. 2017b Revisiting ignited—quenched transition and the non-newtonian
rheology of a sheared dilute gas—solid suspension. J. Fluid Mech. 833, 206-246.

SANGANI, A. S., Mo, G., TsAo, H.-K. & KocH, D. L. 1996 Simple shear flows of dense
gas-solid suspensions at finite stokes numbers. J. Fluid Mech. 313, 309-341.

SANTOS, A. 2008 Does the chapman—enskog expansion for sheared granular gases converge?
Physical review letters 100 (7), 078003.

SANTOS, A., BREY, J. J. & DUFTY, J. W. 1986 Divergence of the chapman-enskog expan-
sion. Physical review letters 56 (15), 1571.

SANTOS, A., GARZO, V. & DUFTY, J. W. 2004 Inherent rheology of a granular fluid in
uniform shear flow. Physical Review E 69 (6), 061303.

SANTOS, A., KREMER, G. M. & DOS SANTOS, M. 2011 Sonine approximation for col-

lisional moments of granular gases of inelastic rough spheres. Physics of Fluids 23 (3),
030604.

SAVAGE, S. & JEFFREY, D. 1981 The stress tensor in a granular flow at high shear rates.
J. Fluid Mech. 110, 255-272.

SCHWAGER, T. & POSCHEL, T. 1998 Coefficient of normal restitution of viscous particles
and cooling rate of granular gases. Physical review E 57 (1), 650.

SELA, N. & GOLDHIRSCH, I. 1998 Hydrodynamic equations for rapid flows of smooth in-
elastic spheres, to burnett order. Journal of Fluid Mechanics 361, 41-74.

SERERO, D., GOLDHIRSCH, I., NoskowICZ, S. & TAN, M.-L. 2006 Hydrodynamics of

granular gases and granular gas mixtures. Journal of Fluid Mechanics 554, 237-258.

SETO, R., MARI, R., MORRIS, J. F. & DENN, M. M. 2013 Discontinuous shear thickening
of frictional hard-sphere suspensions. Physical review letters 111 (21), 218301.

SHANNON, C. 1948 Tech. 27 (1948) 379; ce shannon, bell syst. Tech 27, 623.

SHUKHMAN, I. 1984 Collisional dynamics of particles in saturn’s rings. Soviet Astronomy 238,
574-585.

SIEROU, A. & BRADY, J. 2002 Rheology and microstructure in concentrated noncolloidal
suspensions. Journal of Rheology 46 (5), 1031-1056.



References 229

SIMON, V. & JENKINS, J. T. 1994 On the vertical structure of dilute planetary rings. Icarus
110 (1), 109-116.

SINGH, A. & NOTT, P. R. 2003 Experimental measurements of the normal stresses in sheared
stokesian suspensions. Journal of Fluid Mechanics 490, 293-320.

TORQUATO, S. 1995 Nearest-neighbor statistics for packings of hard spheres and disks. Phys-
ical Review E 51 (4), 3170.

TORRILHON, M. & STRUCHTRUP, H. 2004 Regularized 13-moment equations: shock struc-

ture calculations and comparison to burnett models. Journal of Fluid Mechanics 513, 171-
198.

TRUESDELL, C. & MUNCASTER, R. G. 1980 Fundamentals of Maxwel’s Kinetic Theory of
a Simple Monatomic Gas: Treated as a Branch of Rational Mechanics, , vol. 83. Academic

Press.

TRUJILLO, L., ALAM, M. & HERRMANN, H. J. 2003 Segregation in a fluidized binary
granular mixture: Competition between buoyancy and geometric forces. EPL (Europhysics
Letters) 64 (2), 190.

TRULSEN, J. 1971 Towards a theory of jet streams. Astrophysics and Space Science 12 (2),
329-348.

TRULSSON, M., ANDREOTTI, B. & CLAUDIN, P. 2012 Transition from the viscous to inertial

regime in dense suspensions. Physical review letters 109 (11), 118305.

Tsao, H.-K. & KocH, D. L. 1995 Simple shear flows of dilute gas-solid suspensions.
J. Fluid Mech. 296, 211-246.

UGcawa, H. & CORDERO, P. 2007 Extended hydrodynamics from enskog’s equation for a

two-dimensional system general formalism. Journal of Statistical Physics 127 (2), 339-
358.

VAN NOUE, T. & ERNST, M. 1998 Velocity distributions in homogeneous granular fluids:
the free and the heated case. Granular Matter 1 (2), 57-64.

VERLET, L. & LEVESQUE, D. 1982 Integral equations for classical fluids: Iii. the hard discs
system. Molecular Physics 46 (5), 969-980.



230 References

WAGNER, N. J. & BRADY, J. F. 2009 Shear thickening in colloidal dispersions. Physics
Today 62 (10), 27-32.

WALTON, O. R. & BRAUN, R. L. 1986 Viscosity, granular-temperature, and stress calcu-

lations for shearing assemblies of inelastic, frictional disks. Journal of Rheology 30 (5),
949-980.

WYART, M. & CATES, M. 2014 Discontinuous shear thickening without inertia in dense

non-brownian suspensions. Physical review letters 112 (9), 098302.

XU, Q., MAJUMDAR, S., BROWN, E. & JAEGER, H. M. 2014 Shear thickening in highly
viscous granular suspensions. EPL (Europhysics Letters) 107 (6), 68004.

ZHANG, C. 1993 Kinetic theoryfor rapid granular flows. PhD thesis, Ph. D. Dis.

ZWANZIG, R. 2001 Nonequilibrium statistical mechanics. Oxford University Press.



Appendix F

Evaluation of Collision Integrals in Terms
of Series Expansion

In (3.76-3.77), %agy, /(fgy and %pr have integral expressions over 6 and ¢:

%jéj n,R,0,1) = / / sin®26 cosP 26 sin® @ cos? @
4 6=0J ¢=0

x (1—nsin® @ cos26 + A*(3sin® (p—2)) F(x[n.R.¢,1:0,0])ded6, (F.1)
aﬁy (n,R,¢,A) = /6 /(p 0sm %26 cosP 26 sin’ @ cos” @
x {1 —nsin® @cos26 + A% (3sin’ @ —2)}2 Q5( N,R,¢,1;0,0])ded0, (F2)
P(n,R,0,1) / / sin®26 cosP 26 sin (pcosp(p[(l —2A%){sin(2¢ +26) — cos @
6=0J =0

x cos(2¢ +20)} +sin® {312 sin(2¢ +26) — nsin2¢}| & (x [n,R,¢,1:0,9])dedo,
(E.3)

where §(x) and &(y) are given by (3.60) and (3.61), respectively.
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After performing term by term integration, and neglecting the terms beyond fourth order

inn, A, R and sin2¢, we have the integrals as

iy = 515 { 840+ 2688R% + 1024R* + T68R*A> — 24m*2% + 84 (n* + 31*)

+37 +672\/ERncos2¢—64n2R2(2+cos4¢>} (F4)
AP = 105 [4\FR(21+12/12+32R2> cos2¢+n{42 %+ 1222
+32R> (2 + cos4¢) H : (F.5)
0 1on Rsm2¢{\/E(21+1212+32R2>+16chos2¢} (F.6)
1037 705 ’
22— 3 = 1155{528\/_Rncos2¢>+138612+66<n2—3l4> — 330202
+1024R* +3n* 4 32R2 (66 —4n? 43342 — 2n2cos4¢) } (F7)

n(f%ﬂ]m f%’f)n>+6l Ao

1?7;5 {2217 — 641°R> +n* + 46242 + 1056A°R> — 11m°A2 — 6604
4R (33 n 32R2) 1 cos20 — 32R*n2 cos4¢ } (F8)
n(2<f”fi — A1 — %21)+3)~2(%11 ‘%ﬂl%)ll)
_ Anm 2 2 2 2
- 105{36\/_), RcosZ¢+n(42 2 +12A2 + 160R? — 64R cos4¢)}
(F9)
n (%ﬂzm + A0 — A4 %21) +3)~2<=%0101 +=%’611)
_l6m )
_RRsmmp{wm —32chos2¢}, (F.10)
87
30 2 2
30— 315{21\Fn+41e(42 3n2 4+ 1242 4+ 32R )cos2¢} (E11)
32r
30 2 2
30 315Rsmz¢(42 n*+1222+328%), (F12)
AT
30 2 _ 2 _ 2_ 2
20— 3465[33\/_(35+96R +14/1) 8Rn{16OR 3(66+5n 222 )}cosng},

(F.13)
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do _ ;—7’; [21\/%(15+32R2) —8Rn{32R2—3(14+n2—4/12>}cos2¢>], (F.14)

21
12 2 2\ 2 2
002 = 3165 [33\5(35+32R 28&) 8Rn{32R 3(22+n )}Cos2(p}, (F.15)
%31—32—”13(66% 2 _132A% +32R* — 24/TNRcos 29 + 30 cos4 F.16
0 = 3165 n°— —24y/mnRcos2¢ +3n“cosd¢ ),  (F16)
4r
30 _ 431 _ 2 2 _ 2 —
K — Ky 3465 [\/%{693+32R (33+10n 181 )}cos2¢> 8Rn{209

F15m2-91A2 - (143 F15m2 - 3712) cos4e +40v/7RN cos6¢}] . (E17)

4
A 4 A — % sin2¢{208nReos29 +3v/7(21+328%) }. (F.18)






Appendix G

Stress Tensor and Transport Coefficients
in Terms of Collision Integrals

The non-zero components of the dimensionless stress tensor in USF,

b Pi Py 0
P =S Py Py 0 |, (G.1)
PR 0o 0 P

can be expressed in terms of the collision integral ¢ O‘? [’; 7/(17,R, ¢,A?) as defined in (3.79) and
(F.2),

N X i . 3vgp(l+e .
P = vT* |(14 42+ sin2g) + 280029 ( —smw/&g—cosw%%)] (G2
L 212
. o , 3vgo(l+e ,
Py =vT* (142 —1sin2¢)+ g; . >( 9 +sin2¢ ()31()2—1—0052(1)/13002)}, (G.3)
L T2
. L 3vgo(l+e
PL=vT* |(1-224%)+ 228 (3 )/01022 : (G.4)
L T2
. o 3vgo(l+e ,
Py =vT —ncosZ(p—l—%(cosZ(p 03102—sm2¢ 13(?2)]. (G.5)
L T2

In (G.1), Ug = 2y0 is the reference velocity scale and p, = p/v is the material/intrinsic
density of particles.

The dimensionless pressure is given by

(G.6)

p*EP;x_FP;;_FPZ*Z o \% [1+Vg0(l+e> 10:|7

3 ~ 64R2 3/2 002
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where T* is the granular temperature

T 1

T"=—=—. G.7
Ug> 64R? G-D
The expression for the dimensionless shear viscosity is given by
3vgo(l
pw*=vT* [ncos2¢ — M (cos2¢_Zgth —sin2¢ _Zith) | - (G.8)
2m2

The ‘scaled’ first and second normal stress differences are defined with respect to mean

pressure via

Py —P, Py, —P.

==  and MHp="—F (G.9)
p p

(/I/l:



Appendix H

Fourth-order Perturbation Solutions at
Finite Density

We look for perturbation solutions of second moment equations in the form

3

n=n?+en® 4@

22 =22 12 122 @
R=R® 4+ &RV + £2R™
sin2¢ =sin2¢®) + £5in29 %) + £7sin2¢*

(H.1)

Plugging these perturbation series into corresponding third (super-Burnett) and fourth

(super-super-Burnett) order equations, we obtain perturbation equations at different orders.

At super-Burnett order (third-order in the shear rate), the balance equations for the second
moment are

20ﬁ{1 + g(l + e)Vgo} (MR 4 n@R®)c0s20? 1 256(1 + ) vgoRPRE)
—6(1— ez)vgo{n@)n@) + 32RORO) 4 4/m(nPRA + n(Z)R(3))cos2¢(2)} —0

35va(MPIR?) £ nPIRG)) cos2¢) +2(1 +¢)vgod 32(1 + 3¢)RPRE)

—33=e)(n®Pn® +2122A3)) —8\/7(4 —3¢)(nPRP) + nIRB)) cos2¢(2)} -0

5vAR® cos290? — (14 e)vgo{3(3 —e)n® +2(1 —3e)vARD cos20P} =0
53 —sin29®)) +2(1+¢€)(1 —3e)vgosin2¢) =0

(ﬁ.z)
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The solutions for third order corrections are zero. At fourth order in the shear rate, the pertur-

bation equations are

1680v/7e*(n R +nR) cos29?) —3(1 — ) vgo (1682 @ 13n@"
+5376e2RR <4)+1024R(2> —128R<2> n®? 1 768RP A2 _ 24027 @7
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The solution of these equations are

e2n™ = { [\/EVgO 05202 {5 —2(1 +€)(1 —3e)vgo} { 1024(1 +¢)(5+3¢)R®"
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1 2
2p(4) _ {_210 122R® cos202)
€ 2275 —2(1 +e)(1 - 3e)vgo) cos29 Ve cos2¢
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Appendix I

Source of Second Moment Tensor

Retaining terms up-to O(N"A"R"sin?(2¢), m+n+ p + g < 4), the expressions for the non-
zero elements of the source of the second moment tensor (3.126) in USF are given by

z‘zxx =Axn+ E\xx + é\xx + Zy@xy

1—eX)pveoT>
__({=e)p £0 i [3080+12672R2+5120R4+396n2—64on2R2+15n4

3850m:2
+ 184812 +4224A°R* — 132n%A% + 660A* + 3168+/TNRcos 2¢ — 320n*R> cos4¢

- a4n sin2¢{42+32R2_n2+ 12),2}]

~ 8(1+e)pvgoT?
385072
L 4VAR(33 4+ 32R%)N cos 2 — 32R*n%cos4e + 111 sm2¢{42+224R2 —n?+ 12&2}}

[zznZ — 6412R* + * + 46242 + 1056A2R> — 11242 — 661.*

8(1 T
_ 8 +e)pvf° Y[S\/En<77—32R2> cos2¢+3zR{66+48R2—2n2
115572

—n2cos4d — 44n sin2(p}], (L1)
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Nyy = Ayy + Eyy + ny - 27@)@

_ (1=¢?)pvgeT?
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+ 184812 +4224A2R* — 13212 A% + 660A* +3168+/TNR cos 2¢ — 320n>R> cos 4¢
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Ry = Ary + Exy + Gy + 7(@yy - @xx>

4(1—e*)pvgoT3
35671'%
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35671'%
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Appendix J

Contracted Third-order Source Term
(X ypp) in the dilute limit

The contracted third-order source term X aBp in the evaluation of heat flux (3.166) has the
following form

Ropp = X[mC>Cq]
m0'2 ) 2
= —/// AC?Cy) fP) (e1,r,¢2,7) (g - k)dkde de>. (d.1)
2 gk>0
In the following we will evaluate this multi-dimensional integral to obtain a closed-form alge-
braic expression for X g5 as given by (3.161) in the main text.
Changing the variables of integration from ¢j, co to g =¢;—¢c; =C; —Cy, G = (C; +

C,)/2; dc1der=dCdCr=dgdG and using

A(C*Cq) = |(1+e)*(g-k)*Gpkpko — (1+¢)(g - k)Gp(kpga + gpka)

1
—5(1=¢))(g k)*Ga|, J.2)
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along with the molecular-chaos assumption for the two-body distribution function f @), we

can rewrite (J.1) as

% mon? ///
PP~ 16m3|M]| k>0

(14 000Gk (1) )Gk + epka) 5 (1~ ) g G

1
exp { — ZM;; (4G,G), + gagb)} {1 +2a,G; + bifi(g,G) |dGdgdk

_

2) 3)
=Losp T 1opp +app- (J1.3)

aBp " "opp

where Einstein’s summation convention has been used in repeated index and

fi =133+ 83 +83)G1 +41(22G2 + 83G3) +2G1G?,
f =282 +38+83)Gr+2(21G1 +83G3) +2GoG?, (.4)
3 =3(g1+83+383)G3+83(81G1 + 82G2) +2G3G*.

Now using the following results

[exp{—G.M,,'Gy}dG = w3 |M|z,
[GiGjexp{ —G.M,, lGb}dG 2|M|2M,~j, (1.5)
[ GiG;G\G exp{ — GaM_,' G}, }dG = i \M| (M iMiq + MM j; + MM i),

we can simplify the three integrals 1, ( 1n (J.3) as
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2,2
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+ 4g% (3b1M1B +b2M2ﬁ —|—b3M3ﬁ) + g2 (blMlﬁ + 3b2MQB +b3M3ﬁ>

1
+ 583 (blMus +baMop +3b3M3ﬁ> glgz(bleﬁ +b2M1[s)

| — | =

1
+ 58183 (b1Mag +b3Mip ) + 523 (baMsp + bng)} dgdk, (1.7)

2,2 2
x l{al + by 3Mxx—|—Myy +MU) —|—b2Mxy}M1a
-t 5o (Mt 30y, 4 M) + b1 M
+ {a3 4= b3( My + My, + 3MZZ> }Mm
+ 481 <3blMla +boMog + b3M3a> + igz (blMla +3bayMq + b3M3a)
+ %gg (blMla +brMog + 3b3M3a> + %glgz <b1M2a + bZMl(x)

1 1
+ 58183 (blMSa + b3M1a> + 58283 (szm + bSMZa)} dgdk. (J.8)

To obtain closed-form expressions for integrals (J.6), (J.7) and (J.8), it remains to carry out

integrations over g and k. To carry out the integrations over g we use the following results:

1 1.3
/(g-k)%xp{ 4gaMabgb}dg 32717|M|2 B2, J.9)
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1
/ g (g~k)3e><p{ - ZgaMablgb}dg
— 167|M|2 02 T> [7—1—3112-1—8&2—1—),4-1—6{112— (1 +ﬂ,2)2}cos2¢ sin @sin26
—|—2n(5—|—212)sin2¢—3cos2(p{1—|—n2+47l,2—|-3),4+2n(1+2),2)sin2¢}

~2c0s26 sin2<p{8n(1 A2+ (5172 +3(1 +/12)2) sin2¢)}] , (1.10)

1
/ gi(g~k)3e><p{ - ZgaMablgb}dg
— 167|M|2 92T [7+3n2+8z2+/14—6{n2—(1+7L2)2}cos2¢sin2<psinze
—2n(5+2),2)sin2¢—3c0s2(p{1+n2+47t,2+3),4—2n(1+2),2)sin2¢}

~2c0s26 sin2<p{8n(1 +A2) - (5172 +3(1 +A2)2) sin2¢}] , (.11

1 _
/gf(g-k)3eXp{ — ZgaMab]gb}dg

= 32m|M|P 92T (1 - 2A2) [5 ~ 722 4+3(1 = 322) cos2¢ — 21 cos 26 sin (p] . (1.12)
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1 _
/gxgy(g'k)3exp{ - ZgaMablgb}dg
= 32717|M|%19%T2 [{5112 +3(1 +7t,2)2} cos2¢ cos 20 sin” ¢ — (5 +242) cos2¢

+31(1 4+ 242) cos 290529 +3{n2 (1 +12)2} sin @sin2¢ smze] ,(.13)

/ gxgz(g-k)SeXp{ - %gaM&,]gb}dg
= 48V2m|M* 94 T25in20(1 ~222)[(1+2%){ cos(0 + 9) —sin(0 +9) }
—n{cos(9—¢)+sin(9—¢)}], (1.14)

/ 2,8:(g k) exp { - igaMablgb}dg
= 48v/27|M|2 92 T2 sin2¢(1 — 2A2) [(1 +A2){cos(e+¢) +sm(e+¢)}
—n{cos(e —¢) —sin(8 —¢)}], (J.15)

/gx(g~k)ze><p{— ~8a abgb}dg

- 16\/§n\M\2192Ts1n(p[(1 +/12){cos<e +¢) —sin(0 +¢)}
—n{cos(@—gb)-ﬁ—sin(@—q))”, (1.16)

/ gy(g-k>26Xp{ - %gaM;fgb}dg
= 16\/§E|M|%19%Tsinq) [(1 -l—?l,z){cos(e +¢)+sin(6 + (P)}
—n{cos(6—¢)—sin(9—¢))H, (1.17)

1
/gz(g~k)2exp{ - ZgaMablgb}dg = 327|M|292T(1—222) cos @, (J.18)
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1
/ g (g-k)zeXP{ — ZgaMablgb}dg

8V2r|M| T3
el

o] sin(p[(l+12){cos(9—l—¢)—sin(6+¢)}
. n{cos(e —9) +sin(6 — ¢)}] [13+n2+812—5/14
+2{n? = (14+24%)?} cos 26 sin? psin20 +2n(7 — 2A%)sin2¢
—cos2<p{1 1242042 41944 +-2n(1 + 10A2) sm2¢}

~2¢0s28 sin <p{8n(1 FA?) 4 (7172 (1 12)2) sin2¢}] : (1.19)

1
/gi(g-k)zexp{ - ZgaMab]gb}dg
1
8V 2m|M|2T3
_ \/_7r|1 |2 sinq)[(l—1—12){C05(9+¢)+Sm(9+¢>}

B2
—n{cos(6—¢)—sin(6—¢)}|[13+n>+82%—52*
—2{172—(1+A2)2}C052¢sin2q)sin29—2n(7—27l,2)sin2¢
—cos2<p{1+n2+2oz2+19/14—2n(1+1oz2)sin2¢}

 2c0s26 sin2 <p{8n(1 A - (7172 F(1+ /12)2) sin2¢)}] , (1.20)

1
/ g (g-k)zeXP{ — ZgaMablgb}dg
 32a|M|2T?
_ em Ml

2

(1 —21,2)2cosq)[7—5),2+(1 — 11A%)cos2¢ — 61 cos 28 sin” @,

(J.21)
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I
/gazcgz(g ~k)2exp{ - ZgaMablgb}dg
_16x|M|2T3
92
+2{n2 —q +/12)2}cos2¢> sin @ 5in26 + 61 sin 20

(1—2/12)cos<p[5+n2+4/12—/14

—cos2(p{1 +n? 4802+ 724 +2n(1 +4/12)sin2¢}

—2c0s26sin? p{4n(1+2%) + (32 + (1+22)?) sin29 ||, 1.22)

1 _
/gxgg(g'k>zexp{ - ZgaMab]gb}dg
16V2x|M|2 T3
= o
— n{cos(@ —¢)+sin(0 — q))}] [3 —3A% 4+ (1 -5212)cos2¢ — 21 cos20sin” @,

(1 —2),2)sin(p[(l +12){cos(9+¢> —sin(9+¢>}

I
/ gigz(gk)zeXp{ - ZgaMablgb}dg
_16x|M|2T3
93
—2{772 —q +/12)2}cos2¢> sin @ 5in26 — 61 sin 20

(1 —212)cos<p[5+n2+4/12—z4

—cos2<p{1 24 8A2 724 —2n(1 +4/12)sin2¢}

420526 sm2<p{4n(1 +A%) - (3172 +(1 +A2)2) sin[2(pH , (1.23)

1 _
/ gygg(g-k)zeXp{ — 18aMy, gb}dg
16V2x|M|: T3
= o
—n{cos(@—(p) —sin(@—(p)}] [3—312—1—(1 —5A%)cos2¢ —2ncos26sin’ @ |,

(1 —2),2)sin(p[(1 +12){Cos(9+¢) —i—sin(@—i—q))}

o
/ 8:8y8:(g-k)*exp { - ZgaMabl gb}dg
 32a|M|2T?
92
. cos2¢{3n — (1 +42%)cos2¢ — (3n2 (1 +12)2> sin @ cos 29}] L 024

(1-22%)cos @ an —q +12)2} sin? @ $in 26 sin 2
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Now retaining up to fourth-order terms in 17, A2 in the expansion for % we have

O =k-M-k=T{l—nsin’pcos260 + A?(3sin’ ¢ —2)}, (1.25)

02 ~ T3 [1 - %{n sin? @ cos26 — A2(3sin® @ — 2)}

+ %{n sin? @ cos20 — A%(3sin® ¢ —2)}> + %6{17 sin® @ cos20 — A% (3sin® @ —2)}°

+ %{n sin2 @ cos20 — A2(3sin @ — 2)}4} , (1.26)
02 ~ T3 [1 - %{n sin? pcos26 — A2(3sin> g — 2)}

- %{n sin® g cos26 — A%(3sin’ @ —2)}> — %6{17 sin® @ cos26 — A2(3sin? ¢ —2)}°

2

128

1 1
9% & — [ 14 5{nsin’ pcos20 — 2%(3sin’ 9 —2)}

T2

+ %{n sin® @ cos26 — A%(3sin ¢ —2)}% + 126{17 sin® @ cos26 — A2(3sin? ¢ —2)}°

{nsin® @cos26 — A2(3sin® ¢ — 2)}4} , (1.27)

+ %{n sin? 9 cos20 — A%(3sin? @ —2)}*|. (J.28)
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Using the information about the contact vector k given above and carrying out the remain-

ing integrations over k, we obtain the final expressions for the integrals Igg B in (J.3):

1(1) B 4p(1 —i—e)2T1/2
BB 3850,0m1/2{16N* + 2402 (1 +2A4%) + (5 + 442+ 814)2}

X H— 81°(72 —221A%) 4+ 21n*(13379 + 578042 — 13521* +25681°)
+ (5+4A% +82%)(6930 + 693047 + 145534 +4951° — 1942° + 164'°)
+n2[38115 4+ A%{12573 4+ 8A%(10812 +26511% +4A* + 8811°)}]

+n{440n°® +6930(1 +222) +2n*(2125 — 92842 4 13601)
+ 2416137 4 1674812 +23146A* + 281615 +504018)

+n2(1683 — 622042 + 11196A* — 5761° + 58801%)} sin2¢] G
— [n{440n°® +6930(1 +242) +2n*(2125 — 92817 4 13601%)
+ 2416137 4 1674812 +23146A* +2816A° + 504018)

+n2(1683 — 622042 + 111964% — 5761° + 5880A%)} cos 2¢>] q}} , (1.29)

D _ 4p(1+e)°T'/
BB 3850,0m1/2{16M* + 2402 (1 +2A4%) + (5 + 442 + 814)2}

X [— [n{440n6 +6930(1+2A%) +21*(2125 — 9282% + 13601")
+ 2416137 4 1674812 +23146A* + 281615 +504018)
+n?(1683 — 622042 + 111964% — 576A° +58807Lg)}cos2¢] G
- [— 8N°(72 — 221A%) 4+ 2n*(13379 4 5780A% — 13524* + 2568A°)

+ (54417 +81%)(6930 4 6930A% + 145532% +-4951.° — 19428 - 16A1°)
+ 12381154+ A12{12573 4+ 8A%(10812+ 265112 +4A* + 8811°)}]
—n{440n° 4 6930(1 +2A2) +2n*(2125 — 92842 + 13601 %)

+ 2416137 4 1674812 +23146A* +2816A° + 504018)

+n2(1683 — 622042 + 111964% — 576A° +5880A%) } sin 2¢>] qy} , (1.30)
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1(1) _ 4p(1—i—e)2T1/2
PP 385p,0m1/2(54+2n2 — 842 + 1414)

X H6930—2n4(10 —23A2) — A%(13860 — 27027A% + 7524A* +4042.° 4 34822.%)

+n2{3465+1212(3+12)(11—712)}]4, (J.31)

/@ _ Sp(l-l—e)Tl/2
BB 385p,0m1/2{16M* + 2402 (1 +2A4%) + (5 4+ 442+ 814)2}

X H2600n8 +21%(1829 4316442+ 141001%)

—21n*(16501 — 136542 — 24216A* — 19336A° — 363001 %)

— (5442 +81%) (10010 + 1047242 4+208231* + 1606A° — 317418
+206A10 — 49801 1%) — {53537 +2A%(9163 +460741% — 18458*
—61221A% — 4209218 — 448601 '°)} — 2n{440(14 +2512)
—1%(484 4 424012) + n*(2926 — 334942 + 6721* — 134401.5)
+24(15994 4722842 +3614A* — 260811° — 19416A8 — 67201 17)

+21%(1375 — 545022 —3990A* — 130931° — 1061048 — 1276019} sin2¢ | ¢,
+ [2n{440(14 +251%) — n°(484 4-424017)

+n*(2926 — 33492 + 6724% — 134401°)
+24(15994 4722842 +3614A* — 260811° — 19416A8 — 67201 10)

+212(1375 — 5450A% — 3990A* — 13093A% — 1061018 — 12760&10)}cos2¢} qy] ,

J.32)
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/2 _ 8p(1 —|—e)T1/2
BB 3850,0m1/2{16N* + 2402 (1 +2A4%) + (5 + 442 + 814)2}

X Hzn{440(14 +2512) — 10(484 + 424012)
+n*(2926 — 334912 + 6724.% — 134401°)
+24(15994 472287 + 3614A* —260811° — 1941618 — 67201 17)
4212 (1375 — 545042 — 3990A* — 13093A° — 1061048 — 127604.19)} cos2¢ | ¢,
+ 2600m% +21°(1829 + 316442 4 1410044)

—2n*(16501 — 136512 — 24216A* — 193364.% — 363001°)

— (5442 +8A1%) (10010 + 1047242 4+208231* + 1606A° — 317418
+206A 10 —498014'%) — n?{53537 +-2A%(9163 + 4607417 — 184581*
—612211° — 4209218 — 448604 1)} + 21 {440(14 +2512)
—1%(484 4 424012) + n*(2926 — 334942 4+ 6721* — 134401.5)
+24(15994 472287 +3614A* —260811.° — 1941618 — 67201 1°)

4212 (1375 — 545042 — 39904 — 13093A° — 1061048 — 12760A.1%)} sin2¢} q}} ,

(J.33)

/@ _ 8p(1+e)T'/?
PP 385p,0m!/2(54-2n2 — 842 + 1414)

X Hmonﬁ —154(65 — 136A%) +21*(139 + 24142 +8851%)
— 1?4873 —22A% — 1580A* +4281° — 5110A%)

— 24(39435 — 12650A% — 140461* +285981.° — 34590&8)} qz} , (J.34)
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Ja

X,

Ja
Y

3)

2p(1—e*)T'/?

BB~ 35p,0m1/2{16n* +24n2(1 +2A%) + (5+ 4A2 1 8A4)2}

3)

X H— 24n°%(2 —9A2) +21n*(2161 + 84042 — 24A* +376A°)

+3(5+4A% +81%)(350 +-3081% + 75314 — 56A° +64° — 16A10)
+312{2063 4+ 4A%(155 + 12011% + 218A* + 4425+ 58A8)1
+2n{20m° +30(7 +26A%) + n* (137 — 12827 4+-80A%)

—3n%(97 +220A% + 141* + 80A° — 601%)

1 324(13 422042 + 34744 + 1648 + 12048} smzﬂ g

— [2n{20n° +30(7 +26A%) +n* (137 — 12812 + 801%)
—3n%(97 4+220A% + 141* + 80A° — 601%)

+324(13 +220A% +3471% +161° + 12018)}0052(1)} qy} ,

(J.35)

2p(1—¢e*)T1/2

BB~ 35p,0m1/2{16n* +24n2(1 +2A%) + (5+ 4A2+ 8A%)2}

X [— [211{20116 +30(74+264%) +n*(137 — 1281% +80A%)

—30%(97 +220A% + 144* + 80A° — 60A.%)

+324(13 422042 +-3472% + 161° 4-1204%) } cos 2¢) | g,

+ [~ 24n°(2—94%) +2*(2161 + 840A% — 2424 1 3761.9)
+3(5+4A% +81%)(350 +-3081% + 75314 — 56A° +64° — 161 10)
+3n2{2063 +4A%(155+ 120112 +218A* +441° +581%)}
—2n{20n°® +30(7 +26A2) + n*(137 — 12812 + 80A*)

—3n%(97 +220A% + 141* + 80A° — 601%)

+3A%(13 422042 + 3474 +16A° + 12048)} smzﬂ qy] :

(J.36)
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1(3) _ 2p(1 —62)T1/2
BB 35p,0m1/2(54+2n2 —8A2 4 14A4)

X [[n4(4+2212) +30? (187 +74A% +41°)
+3(350 — 61642+ 13294* — 21846 — 1228 — 118&10)} qz} . (1.37)

Inserting the above integrals into (J.3), we obtain the following expression for the third order

source term \/_
@ e 2p(14+e)VT
Naﬁﬁ —‘app +I(Xﬁﬁ +I(Xﬁﬁ = 385pp6ﬁ Qa’}/CI’}h

as in (3.161) in the main text, where gy is the heat flux and Q44 is a second-rank tensor whose

(J.38)

elements are explicitly given in 3.12.2.






Appendix K

Integral Expression for Collisional Flux of
Momentum (®p)

The collisional flux of momentum can be expressed as:

®aﬁ = @a[mCB]

1 3 1
:w///k O(g-k)zkakﬁ/o f(z)((,'],x—a)Gk,Cz,x+Gk—(DGk)d(dedC]dCQ.
gK>

(K.1)
Using the assumption of molecular chaos on f (2) and applying Taylor series expansion

on f(l) along with change of variables from ¢y, ¢;, ®tog =¢; —¢2, G= (C1+C2)/2, ® =
1/2 — &(dcdec, = dgdG) we have

1 1
£ (e1,x — wok,c2,x + ok — wok) = £ (Cux+ (e~ 5)ok,c2.+ (e + §>"k)

n*go I
— S CXP{_ZMaﬁ (8o +Va)(gp+Vp) +4(Go— €Va) (Gp — SVB)]} 7

(K.2)

where
V =0ck-Vu. (K.3)

Expression (K.2) is exact for simple shear. From (K.1) and (K.2), we arrive at
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~ m(1 +e)n’goo’ 5 1 »
Ot = S2mm] / /g.bo(g K)kakgexp{ — 7 1(ga+Va)M b (g5 + V)] |

X ( / é] / exp{ —[(Ga — eVa)M (G — €Vp)] }dee) dkdg. (K.4)

Using the following identity

/2]/exp{_[(Ga_gva)Maé(Gﬁ—éVB)]}deg:n%\/T3(5+1)(g+])(c_|_])
= oM, (K.5)

and carrying out the integration over G and &, we have

_ pn(1+e)goo’

)
op 3273 M|

/ / (g-k)kekgexp {—% (80 + V)M o (g5 +Vp)] } dkdg.
gk>0
(K.6)
In terms of the function & of y =V -k/ %/W, (see Araki & Tremaine (1986);
Jenkins & Richman (1988))

11
S(x) =7 (5 +x*)erfe(y) — xexp(—x?), (K.7)

the compact form for @, (after integrating over g) is found to be

3(1+e)pvgo
w2

Oup = / kakg (k- M -k)Bdk, (K.8)

the required expression for the collisional contribution of the stress tensor.



Appendix

L

Integral Expression for Collisional Source
of Second Moment (X ,z)

Ryp = ﬂ/// A(CaCﬁ)f(z)(q,x—Gk,cz,x)Gz(g-k)dkdmdcz,
2 gk>0

A(CaCp) = 5 (1+¢) g R)[(1 ~<)(g -khkaks + (g (ke + k)]

here j is the unit vector perpendicular to k, that lies in the plane formed by k and g.

Using the Taylor series expansion and the molecular chaos assumption we can write

f(z) (c1,x —ok,cy,x) =

Changing the variables of integration from ¢j, ¢c2 tog =c¢; —¢2, G = (C1 +C32)/2

f(Z) (C],x - Gk7c27

_ n280 ex
83| M|

Therefore

x)

P~

2

n2g0 |
Wexp {——Maﬁ[(Ca+Va)<Cﬁ "’Vﬁ) "’C(XC[;]} R

-M
4

;}g (8o +Va)(gg +Vp) +(2Ga +Va)(2Gg +vﬁ)]} .

(L.1)

(L.2)

(L.3)

(L4)
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m e I’l2 2
Rap =~ “Qniwﬁw / / /g.k>0[(1_e)(g‘k)3kakﬁ+(g'k>2(g'j>(k“jﬁ +Jakp)]

(L.5)

|
exp { — M pl(8a+Ve) (85 +Vp) + (2Gu+Va) (2Gp + Vp)] } dGdgdk.
Using the following identity
1 . 3.1
exp —Z[(ZGa-I—Va)MaB(ZG[s-I-Vﬁ)] dG =2 |M|> (L.6)

and carrying out the integration over G, we have

m(1+e)n’gyo?
3273 | M|z

Xap = - [ ] 0 R keky + s 10%(g ) (i + k)

1
xexp{—7(ga+ Va)M 5 (gp +Vp)]}dkdg. (L.7)

After performing the integration over g, we obtain the following expression for the colli-

sional source of second moment as (see Chou & Richman (1998))
N“B :Faﬁ+®a6WB6+@B6Wa57 (L.8)

where
Faﬁ :A(XB +EaB +GaB7 (L.9)

and the integral expressions of Aqg, Eaﬁ and éaﬁ are given in (3.55)-(3.57).



Appendix M

Uniform Shear Flow of Inelastic Disks:
The Planar Analogue

In this section we derive an analytical solution at Burnett order for the uniform shear flow of
identical disks. The number of parameters that are required to completely analyse the flow
reduce to three viz. i) the temperature anisotropy (1), ii) the Savage-Jeffrey parameter (R)
and iii) the non-coaxiality angle (¢). This work is the two-dimensional manifestation of the
flow of spheres discussed in this chapter. We project the 3-d schematic of the co-ordinate

reference displayed in figure 3.2 onto the x-y plane of motion as shown in figure M.1.

In this case the second moment of velocity fluctuations takes the form

M=T

14+1nsin2¢ —ncos2@ ~
= T[8y5]+M M.1
—ncos2¢ 1—nsin2¢ ] Gap) + M. (M.D

where 1, T and ¢ have the same interpretations as in 3-d. The planar analogue of the
anisotropic distribution function and the radial distribution function (Verlet & Levesque 1982)

are
fle,x,t) = L,exp —1C~M*l -C, (M.2)
2w|M|2 2
1-7v/16
go(v) = (=7v/16) (1_‘/\//)2 ), (M.3)

with v (= no? /4) being the area fraction (density) of particles.
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Fig. M.1 A sketch of the coordinate frame: |D;) and |D,) are the eigen-directions of the shear
tensor D, and |M;) and | M) are the eigen-directions of the second moment tensor M.

M.1 Burnett Order Analytical Solution for the Whole Range

of Area Fraction

The second moment balance when truncated at second-order yields the related Burnett order

equations

AT3NRcos2¢ + (1+¢)VgoR(16TR + 221 cos29) =
vgo(1 —e?)(3mINRcos 20 + 27 + 2an2 + 127R2)
4717%Rc052¢ —(1+e)vgo(2mn — 273 Rcos 2¢0) =vgo(l — ez)(3n%Rc052¢ +37n)
AT3R(N —sin2¢) — 273 (1 + ¢)vgoRsin2¢ = —312vgo(1 — e*)Rsin2¢
(M.4)

An analytical solution of the Burnett order equation is determined as a function of the
coefficient of restitution (), volume fraction (v) and the radial distribution function (gp). The

solution we obtain looks like

8\/7R
(1+e)(7—3e)vgo (M.5)

bl

tan(2¢9) =

n= %{4— (1+e)(1 —3e)Vg0}sin(2¢)
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Fig. M.2 Comparison among (7) the full numerical solution (solid lines), (ii) Burnett order an-
alytical solution (blue dashed lines) (ii) the Navier-Stokes model (black dashed lines, (Lutsko
2005)) and (iii) the simulation data (symbols, (Alam & Luding 2003b)) for the variation of (a)
total pressure p and (b) shear viscosity p with area fraction v. Results for two values of the
restitution coefficient (e = 0.9 and 0.7) are shown. In the second row variation of the scaled
first normal stress difference .#] with area fraction v is shown for three values of coefficients
of restitution e = 0.95,0.9 and 0.7 respectively.
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where R satisfies

512(1 + 3¢)nR*
v {256(-1 +e)m+8(7—3e)2(1+e)*(1 +3e) Vgl
+(25—9e)m(4+ (14¢)(—1 —|—3e)Vgo)2}R2+4(7 —3e)?(—1+e)(1+e)v?gi=0.
(M.6)

It must be noted that these solutions (M.5-M.6) are exact at second order, and hence differs
from the “approximate” second-order solution of Saha & Alam (2014). The latter paper is
attached at the end of this thesis.

Below we present the behaviours of the transport coefficients as obtained from Burnett-
order analytical solution (M.5-M.6), full numerical solution and Navier-Stokes order hydrody-
namics. The simulation results from Alam & Luding (2003b) are also superimposed.

For small dissipation e = 0.9, the analytical Burnett order solution (blue dashed lines) and
the full numerical solution (solid lines) give rise to almost identical results, and it is almost
impossible to distinguish these two results at least in naked eye. However at some moderate
value at inelasticity e = 0.7 the Burnett-order solutions for shear viscosity () slightly deviates
from the full numerical solution for v > 0.3 nevertheless for first normal stress difference (.47)

the analytical Burnett order solution matches exactly with the numerical solution.
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The non-Newtonian stress tensor, collisional dissipation rate and heat flux in the
plane shear flow of smooth inelastic disks are analysed from the Grad-level moment
equations using the anisotropic Gaussian as a reference. For steady uniform shear
flow, the balance equation for the second moment of velocity fluctuations is solved
semi-analytically, yielding closed-form expressions for the shear viscosity w, pressure
p, first normal stress difference .4{ and dissipation rate & as functions of (i) density
or area fraction v, (ii) restitution coefficient e, (iii) dimensionless shear rate R,
(iv) temperature anisotropy 71 (the difference between the principal eigenvalues
of the second-moment tensor) and (v) angle ¢ between the principal directions
of the shear tensor and the second-moment tensor. The last two parameters are
zero at the Navier-Stokes order, recovering the known exact transport coefficients
from the present analysis in the limit 5, ¢ — 0, and are therefore measures of the
non-Newtonian rheology of the medium. An exact analytical solution for leading-order
moment equations is given, which helped to determine the scaling relations of R, n
and ¢ with inelasticity. We show that the terms at super-Burnett order must be retained
for a quantitative prediction of transport coefficients, especially at moderate to large
densities for small values of the restitution coefficient (¢ << 1). Particle simulation data
for a sheared inelastic hard-disk system are compared with theoretical results, with
good agreement for p, u and 4] over a range of densities spanning from the dilute
to close to the freezing point. In contrast, the predictions from a constitutive model
at Navier—Stokes order are found to deviate significantly from both the simulation
and the moment theory even at moderate values of the restitution coefficient (e ~0.9).
Lastly, a generalized Fourier law for the granular heat flux, which vanishes identically
in the uniform shear state, is derived for a dilute granular gas by analysing the
non-uniform shear flow via an expansion around the anisotropic Gaussian state. We
show that the gradient of the deviatoric part of the kinetic stress drives a heat current
and the thermal conductivity is characterized by an anisotropic second-rank tensor,
for which explicit analytical expressions are given.
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1. Introduction

A driven system of macroscopic or non-Brownian particles (e.g. driven by external
vibration or shearing) resembles a molecular gas in which the particles move around
randomly but lose energy upon collision, with the latter being a major difference
between a granular gas and its molecular counterpart. Such a non-equilibrium state
of agitated particles is also known as a rapid granular fluid (Goldhirsch 2003), for
which the dense-gas kinetic theory (Chapman & Cowling 1970) has been appropriately
modified and successfully used for a variety of flow configurations over the past three
decades (Savage & Jeffrey 1981; Jenkins & Richman 1985a.b; Brey et al. 1998; Sela
& Goldhirsch 1998; Brilliantov & Poschel 2004; Rao & Nott 2008). In this paper
we investigate the non-Newtonian rheology of a sheared granular system via kinetic
theory. For an N-particle system, the stress tensor has contributions from both kinetic
and collisional mechanisms of transport:

P = Py, + Peoir. (1.1)

The first mechanism is dominant in the dilute regime, whereas the second one
dominates in the dense regime. This can be further decomposed as

P=pl+ P, (1.2)

where p = P;/dim is the isotropic pressure (dim is the dimension), / is the identity
tensor and the deviatoric stress is P. The off-diagonal components of P are related
to shear viscosity, which, in general, depends on the deformation rate. At the
Navier—Stokes (NS) order, the stress tensor is Newtonian (i.e. linear in the shear
rate, with the proportionality constant being the shear viscosity) and its diagonal
components are equal. The latter implies that the first and second normal stress
differences, .4#{ ~ P, — P,, and .4, ~ P,, — P, respectively, are identically zero. The
non-zero normal stresses and/or the shear-rate dependence of viscosity are signatures
of the non-Newtonian rheology of the medium. In kinetic theory, the normal stresses
appear at the Burnett order (Burnett 1935; Grad 1949; Chapman & Cowling 1970)
and hence cannot be taken into account in the standard NS-order hydrodynamic
equations. Higher-order theories such as the Burnett equations (Burnett 1935; Sela &
Goldhirsch 1998) or Grad’s 13-moment equations (Grad 1949; Jenkins & Richman
1985a,b; Torrilhon & Struchtrup 2004) should therefore be used to correctly model
the nonlinear rheology of granular fluids. Although the rest state of the Burnett
equations is known to be unstable for molecular gases, there are ways to regularize
these equations (Rosenau 1989). Moreover, it has been established recently (Santos
2008) that the partial sum of the shear stress converges in the uniform shear of a
granular fluid, with its radius of convergence increasing with increasing dissipation
or inelasticity. On the other hand, in Grad’s method the distribution function is
expanded in a Hermite series around the local Maxwellian of thermal equilibrium,
and the moment equations for an extended set of hydrodynamic fields are written
down.

The sheared granular fluid is known to possess finite normal stress differences for
the whole range of densities (Sela & Goldhirsch 1998; Alam & Luding 2003a.b,
2005a,b) and the rate dependence of viscosity seems to be an inherent feature of
the uniform shear state of a granular fluid (Santos, Garzo & Dufty 2004). Figure 1
indicates that the first normal stress difference is finite in a sheared granular fluid for
a range of densities and its magnitude increases with increasing dissipation. Detailed
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FIGURE 1. Variation of the first normal stress difference A =2(Py, — Pyy)/(Pyw + Py,) (see
(4.21)) with area fraction of particles for different values of the restitution coefficient e.
Data (symbols) correspond to event-driven simulations (Alam & Luding 2003a,b) for a
sheared system of smooth inelastic hard disks with Lees—Edward boundary condition (see
§5.2 for details); lines are drawn to guide the eye.

simulations in two dimensions, i.e. for disks (Alam & Luding 2003a,b), and three
dimensions, i.e. for spheres (Alam & Luding 2005a,b), have uncovered the following
distinguishing features of normal stresses in a sheared granular fluid: (i) the first
normal stress difference is positive in the dilute limit and undergoes a sign reversal
at a finite density near the freezing point (depending on dissipation) in the dense
limit; and (ii) the second normal stress difference is negative in the dilute limit and
becomes positive beyond a moderate density. Both theory and simulation suggest
that the magnitudes of the first and second normal stress differences increase with
increasing dissipation.

Large normal stresses, such as those in figure 1, must be taken into account to
correctly model a dissipative granular fluid in the rapid shear regime. Jenkins &
Richman (1988) have incorporated normal stresses in their study of steady uniform
shear flow (USF) of inelastic disks, following earlier kinetic theory work of Goldreich
& Tremaine (1978) and Araki & Tremaine (1986) that used the anisotropic Gaussian
as a reference state. They solved the second-moment balance equation in the two
extreme limits of density, and derived analytical results for the stress tensor in dilute
and dense flows, but the solutions for the full range of densities remain unexplored
for the shear flow of inelastic disks. Chou & Richman (1998) analysed the USF of
inelastic spheres and provided numerical solutions for the stress tensor for the full
range of densities. More recently, Lutsko (2004) used an arbitrary Gaussian as a
reference to solve the Enskog equation for a polydisperse mixture of inelastic hard
spheres via the Hermite expansion (Grad 1949) around the anisotropic reference
state, and the related kinetic integrals were simplified using a generating function
technique. Focusing attention on the uniform shear state, he evaluated the stress tensor
numerically and confirmed the previous numerical results of Chou & Richman (1998).
It was further shown that the moment theory predictions for normal stress differences
agree well with those obtained from the direct simulation Monte Carlo (DSMC)
solution of the Enskog equation for a range of densities but can differ considerably
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from molecular dynamics simulations of the same system for moderately dense binary
mixtures. The reason for the latter disagreement remains unclear. It would greatly
help our understanding of the nonlinear and non-Newtonian rheology of particulate
media if such higher-order theories could be tackled analytically or semi-analytically
to obtain closed-form constitutive relations — this forms the primary motivation of the
present work.

In this paper, we derive closed-form analytical expressions for all components of
the stress tensor as well as the collisional dissipation rate of steady USF for the whole
range of densities by considering terms up to super-Burnett order (i.e. third order
in shear rate and temperature anisotropy). To achieve the above goal, we follow the
anisotropic version of Grad’s moment method (Jenkins & Richman 1988) and solve
the balance equation for the second-moment of velocity fluctuations semi-analytically
for the USF of smooth inelastic hard disks. In addition, we generalize this method
for the non-uniform shear state and derive an explicit constitutive relation for heat
flux. Our primary focus is to decipher an analytical understanding of how all the
transport coefficients (shear viscosity, pressure and first normal stress difference)
depend on different control parameters (e.g. density, restitution coefficient, shear rate,
etc.) when one goes beyond the ‘linear’ NS regime via Grad’s moment equations. Our
second goal is to check whether the resulting moment theory can yield quantitative
predictions for normal stress differences and other transport coefficients for the whole
range of densities and restitution coefficients (e.g. at small values of the restitution
coefficient). Both goals are achieved successfully from our super-Burnett-order
constitutive relations as demonstrated in §4. Furthermore, the validation of the
derived nonlinear constitutive relations, via a comparison with molecular dynamics
simulations (§5), at different densities confirms the appropriateness of the Enskog
kinetic equation to describe the dense shear flow of inelastic hard disks.

The rest of this paper is organized as follows. Section 2 provides a brief overview of
the kinetic theory, the Grad-level (second or higher order in gradients) hydrodynamic
equations and the anisotropic Gaussian distribution function. The construction of the
second-moment tensor and its anisotropy in the USF, and the formulation of the
second-moment equation in a rotated coordinate frame, are described in §3. The
collision integrals in the moment equations are approximated by an infinite series
as outlined in §4, followed by the explicit forms of resulting moment equations
at Burnett and super-Burnett orders. An exact analytical solution for ‘leading-order’
moment equations is derived in §4.1. The super-Burnett-order expressions for all
components of the stress tensor, along with shear viscosity, pressure and first normal
stress difference, are discussed in §4.2. That the Grad-level dissipation rate depends
on both the shear rate and the temperature anisotropy is discussed in §4.3. The
degenerate nature of the uniform shear state is discussed in §4.4 in terms of
its inherent ‘non-Newtonian’ rheology. The accuracy of our super-Burnett-order
constitutive relations is verified in §5.1 via a comparison with the full numerical
solution. In addition to comparing with the molecular dynamics simulation data, §5.2
establishes the superior predictions of the present moment theory with respect to
an NS-order constitutive model (Lutsko 2005; Garzo, Santos & Montanero 2007).
A comparative discussion of our results with another Grad-level theory (Kremer &
Marques 2011; Garzo 2012) as well as with a Chapman-Enskog-based Burnett-order
theory (Sela, Goldhirsch & Noskowicz 1996) for a dilute system is made in §5.3.
In §6 we consider the non-uniform shear state and outline a procedure to derive the
constitutive relation for the ‘non-Fourier’ heat flux. The conclusions are given in §7.
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2. Overview of Enskog kinetic theory and Grad-level moment equations

Let us consider a dense granular gas consisting of N randomly moving smooth
inelastic hard disks of diameter o and mass m. Let ¢; and ¢, be the velocities of
two disks before a collision, with ¢; and ¢, being their post-collisional velocities,
respectively. The collision dynamics for instantaneous and binary collisions is
governed by

g -k)=—e(g-k), 2.1

where g =g, =c¢; —¢; and g’ =c¢| — ¢, are the pre- and post-collisional relative
velocities, respectively, and k =k, = (x, — x1)/|x» — x| is the unit contact vector
joining the centre of disk 1 to that of disk 2 at collision. In (2.1), e is the coefficient of
normal restitution, with e=1 and 0 referring to perfectly elastic and sticking collisions,
respectively. Since the disks are assumed to be smooth, there is no change in their
tangential component of relative velocity (i.e. k x g’ =k x g).

At the mesoscopic level, this system is described by the Liouville equation for an
N-particle distribution function, which can be reduced to an infinite hierarchy of
evolution equations of distribution functions (one-body, two-body, three-body, etc.),
known as the BBGKY (for Bogoliubov—Born—Green—Kirkwood—Yvon) hierarchy
(Chapman & Cowling 1970). The first member of this hierarchy deals with the
evolution of the single-particle distribution function f(c, x, t), which, in the absence
of any body force, reads

ad
<8t +c-V>f=J(f(2)), (2.2)

where V is the gradient operator in the configuration space and J(f®) is the
collision integral, which that depends on the two-particle distribution function
f® (e, x1, €2, x5, 1). The transition from the mesoscopic to the macroscopic level
is made via the hydrodynamic or coarse-grained fields, which are nothing but the
moments of f(c, x, ) of various orders. In addition to (i) the mass density

px,HD=mnx,t)=m /f(c, x, t)dc, (2.3)

where n(x, 1) = N/V is the number density of particles, and (ii) the coarse-grained

velocity
1

n(x, r)

ux,nH=/{)=

/cf(c, x, t)dc, 2.4)
we choose (iii) the full second-moment tensor
1
Mx,t)=(CC)=— /CCf(c, x, t)dc, (2.5)
n(x, t)

where C =c — u is the peculiar or fluctuation velocity of the particles, as a separate
hydrodynamic field. The trace of (2.5) is the granular temperature

— 1 _ 1 2
T(x,1)= <2c : C> = 30D /Cf(c, x, 1) de, (2.6)

which constitutes a hydrodynamic field at the NS order. Note that this definition of
temperature (2.6) is commonly used in the granular mechanics community (Savage
& Jeffrey 1981; Jenkins & Richman 1985a,b; Goldhirsch 2003; Rao & Nott 2008),
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although the usual definition (Chapman & Cowling 1970) incorporating the mass m
and the Boltzmann constant kz has also been adopted by many (Brilliantov & Poschel
2004; Santos et al. 2004; Lutsko 2005). In either case, it must be noted that the
granular temperature is not a thermodynamic temperature (Goldhirsch 2003).

The evolution equations for hydrodynamic fields are obtained from the kinetic
equation (2.2) by multiplying it by a particle property ¢ = r(c) and integrating it
over the velocity space, resulting in the following master balance equation:

d
o () ==V - {ney) + Y ). 2.7)

Here

ey = / / / W — ) O er, x — ok, ¢, %, 1) o (k - g) dl e, des
g-k>0
(2.8)
- /// W — ) P (er, x, e, x + ok, 1) o (k - g) dk de, des
gk>0

is the collisional rate of production of v per unit area, with g -k > 0 referring to the
constraint of impending collisions. It is straightforward to decompose (2.8) into the
form (Jenkins & Richman 1985a,b; Rao & Nott 2008)

CYy]l=R[Y]-V-Oly]—06O [gz] :Vu, 2.9)
where @[¢¥] and R[] are the collisional flux and production or source terms,
respectively, whose integral expressions are given in §§A.1 and A.2, respectively.
Note that the origin of the collisional flux @[] is tied to the excluded volume of
the ‘macroscopic’ particles and hence this term vanishes for a ‘dilute’ system of
point particles. Combining (2.9) and (2.7), the master balance equation simplifies to
(Jenkins & Richman 1985a,b, 1988)

0 ad oy oy
— = — <V | u, -V. (2] -0 |—|:V R[y].
ar(lﬂﬁ) <n(8t+c )M aca> ((neyr) + OV ]) [ac} u+RN[y]
(2.10)
Substituting ¥ =1, ¢, and C,Cy into (2.10), we obtain the balance equations
Dp
— = — Uy, 2.11
Dr PlUe, (2.11)
Du,
= —Pua. 2.12
1Y Dr B, ( )
DM,
Dr —Qyap.y — Psgltas — Psalig s + Ry, (2.13)

for the mass, momentum and second moment, respectively. In the above, D/Dt =
d/0t+u,(d/0x,) is the convective derivative, the subscript following a comma denotes
a partial derivative (i.e. u,, = 0u,/0x,) with Einstein’s summation convention over
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repeated indices, and

Pog = p{CoCp) + Oy [mCpl = pMoup + Oyp, (2.14)
anﬁ = p(CyCaC/S) + @y [mCaC/S] = pMyaﬁ + @yaﬁ’ (215)
Ros = N[mC,Cy] (2.16)

are the total stress tensor (momentum flux), the flux of the second moment, and
the collisional source of the second moment (dissipation), respectively. In (2.14) and
(2.15), the first term represents the kinetic contribution and the second term is its
collisional contribution.

The trace of (2.13) yields the well-known balance equation for granular energy,

Pp—=— — P, gu -9 (217)
o, a a s .
Dt q B BUB,
where
9= —%Nﬁlg = —%N[mCZ] (218)

is the rate of dissipation of energy per unit area (i.e. in two dimensions) and

qo = %Qaﬁﬂ = %,OMaﬂﬁ + %@aﬁﬁ (2.19)

is the heat-flux vector. In (2.13), we assume that the deviatoric part of Q,.g, i.e.

Oyap = Oyap — $(Qyiedap + Queedyp + Qpeebay), (2.20)

is zero, thus leaving only the contracted third moment M,z = (C,CsCp) as the
relevant hydrodynamic variable at third order.

In summary, the balance equations (2.11), (2.12) and (2.13), along with the
constraint @yaﬁ = 0, constitute the minimal Grad-level description of a fluidized
granular matter in terms of moment equations that incorporates normal stress
difference. The second-moment balance equation (2.13) can be replaced by its
deviatoric part and the standard granular energy equation (2.17); the former equation
is identically satisfied at the NS-level description. To close the balance equations
(2.11)—(2.13), we need constitutive relations for the stress tensor (2.14), the collisional
dissipation rate & (or the second-moment source term R,z, (2.16)) and the heat flux
(2.19). While the expressions for the first two constitutive quantities are derived
for the uniform shear state as discussed in §§3 and 4, the heat flux requires a
consideration of the non-uniform shear flow since the temperature gradient vanishes
in the USF, which is dealt in § 6.

2.1. Anisotropic Gaussian distribution function

The constitutive relations require an evaluation of the collision integrals (see
appendix A), which involve the two-particle distribution function. We adopt
Boltzmann’s stosszahlansatz (molecular chaos assumption) for which

P, x —ok,cr,x, 1) =go(v) fci, x — ok, 1) f(ca, x, 1). (2.21)
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Here go(v) is the contact value of the radial distribution function whose functional
form is taken to be (Verlet & Levesque 1982)

o) (1-"7v/16) (2.22)
V)= ———"—->—, .

8o (1= )2

with v (=nmno?/4) being the area fraction (density) of particles. As in the work of
Jenkins & Richman (1988), we assume that the single-particle velocity distribution is
an ‘anisotropic’ Gaussian

n 1 .
f(c,x, t):Wexp <—2C'M 'C) , (223)

where |M| = det(M) is the determinant of the second moment, which reduces to
the standard Maxwellian or Gaussian distribution function for the case of isotropic
Myp =T6,5. The ansatz of (2.23) as a solution for the homogeneous sheared system is
tantamount to choosing an extended set of hydrodynamic fields, since the anisotropic
Gaussian is a function of all components of the second moment, M = (CC), of the
fluctuation velocity. Such an approach of choosing the generalized or anisotropic
Gaussian as the reference state for a non-equilibrium system has been pioneered
in the planetary physics community (Goldreich & Tremaine 1978; Shukhman 1984;
Araki & Tremaine 1986; Schmidt er al. 2001; Latter & Ogilvie 2006) dealing with
the modelling of Saturn’s ring (Esposito 2006). This formalism has also been adopted
by the granular matter community (Jenkins & Richman 1988; Chou & Richman
1998; Lutsko 2004) and can be applied to study the rheology of an arbitrary sheared
state (as a perturbation of the homogeneous sheared system) via the well-known
Hermite expansion (Lutsko 2004). This differs from Grad’s original moment method
(Grad 1949; Jenkins & Richman 1985a,b; Torrilhon & Struchtrup 2004; Vega Reyes,
Santos & Garzo 2013) in which the reference state is a Gaussian representing the
rest state of thermal equilibrium, and the deviations from the ‘local’ equilibrium are
modelled via a Hermite expansion with unknown coefficients. In § 6, we will discuss
an orthonormal expansion around (2.23) to derive the constitutive relation for the
heat flux.

3. Steady uniform shear and the second-moment tensor

Let us focus on the two-dimensional coordinate system (since we are dealing with
an assembly of disks) as depicted in figure 2, with x and y denoting the flow and
gradient directions, respectively. The USF is described by the velocity-gradient tensor

0 0

such that the velocity field is u = (u, v) = (2yy, 0), where 2y = du/dy is the uniform
(constant) shear rate. The shear and spin tensors are given by

_ |0 vy _ |10 ¥
D= [)/ 0} and W—[_)} 0]. (3.2a,b)

Vu= [O 2’}] =D+W, 3.1)

The eigenvalues of D are +y with respective eigenvectors

—sin in
. . (3.3a,b)
oS § T

cos
|Dy) =

i
] and |D,) =
sin ;T
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FIGURE 2. A sketch of the coordinate frame: |D;) and |D,) are the eigen-directions of
the shear tensor D, and |M,) and |M,) are the eigen-directions of the second-moment
tensor M.

These eigen-directions are sketched in figure 2. To formulate the anisotropic moment
theory for the USF in two dimensions, we follow the work of Jenkins & Richman
(1988) in §§ 3.1 and 3.2. Next we simplify our analysis of the second-moment balance
by working in a rotated coordinate frame as discussed in § 3.3.

3.1. Anisotropy in the second-moment tensor

Here we analyse the second-moment tensor M in terms of its eigenvalues and
eigenvectors. Let M, and M, be the eigenvalues of M, with associated eigenvectors
|M,) and |M,), respectively. We assume that the eigenvector |M;) makes an angle ¢
with the eigenvector |D;) of the shear tensor D (see (3.3)). Since |M,) and |M,) are
orthogonal, the eigenvector |M,) makes the same angle ¢ with |D,); this is illustrated
in figure 2. The expression for the second-moment tensor M is

_ cos(¢ + 5m) . . )
" Lin(¢ + 37) [cos(¢ + 4m)  sin(¢ + 3]
—sin(¢ + 30| . , 1
i cos(¢ + ;1) [—sin(¢ + ;1) cos(¢ + ;70)]

- 14+nsin2¢ —ncos2¢
- —ncos2¢p 1—nsinp

] =T[8op] + M, (3.4)

where we have defined the following variables:

2T = Moo =M, + M,, (3.5)
n = (My—M)/2T, (3.6)

and M is the deviatoric part of the second moment,

sin2¢  —cos2¢

M=nT —cos2¢ —sin2¢ |’ 3.7)
It is clear from (3.4) that the diagonal elements of M are not equal, and 7 is a measure

of the anisotropy of the second-moment tensor. Moreover, the angle ¢ (see figure 2)
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measures the rotation that makes M diagonal (see § 3.3). It is straightforward to verify
that
M| =T*(1 —1?), (3.8)

M, =T(1—n) and M,=T( +7), (3.9a,b)

with M2 > Ml-
Let us introduce the ‘Savage—Jeffrey’ number (Savage & Jeffrey 1981)
oy y
R= = ) (3.10)
4T~ 4\/T/c?

which can be interpreted as the scaled or dimensionless shear rate and also as the
inverse of the square root of the dimensionless temperature. It is evident from (3.4)
and (3.10) that R, n and ¢ are three unknown parameters that completely characterize
the anisotropic second-moment tensor M in USF. Recall that the stress tensor (2.14)
is P= pM in the dilute limit. Hence the anisotropy of M is responsible for the first
normal stress difference (P, — Py, ~1sin2¢) in the dilute limit, which is one signature
of the stress tensor being non-Newtonian.

3.2. The second-moment balance equation in uniform shear flow

For the steady USF, the number density n, velocity gradient Vu, granular temperature
T and the components of M are constant, and therefore the mass and momentum
balance equations are identically satisfied. The balance equation for the second-
moment tensor (2.13) reduces to

Psguig s + Psqup s = Ryp, (3.11)
where
Paﬁ = ,OMa/g + @aﬁ (312)

is the total stress tensor. The kinetic stress pM,z is calculated from (3.4), and the
collisional stress can be written as (see § A.1)

_2(L+e)pvgoe(v)

)
ap T3/2

kokg(k« M- k)®(x) dk. (3.13)

The collisional source of second moment X,z in (3.11) can be decomposed as (Jenkins
& Richman 1988)

&aﬂ =Actﬂ + gaﬁ =A(xﬂ + Eotﬁ + aaﬁ + @ayWﬁy + @ﬁyWa)M (314)
where 5
4(1 — e*) pvgo(v)
A== [ kakyh M) (0) di, (3.15)

and §a,3, E’a,g and (A;aﬂ represent traceless tensors, which also possess similar integral
expressions as detailed in § A.2. The contact vector k over which the above
integrations have to be performed and its unit normal j can be expressed as

_ [COS(9 + ¢+ 5m) (3.16a,b)

sin(6 + ¢ + 17)

.| sin(@+¢+im
and j= |
—cos(0 +¢ + ;7)
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We have assumed that 6 is the angle between k and |M;) (the eigenvector
corresponding to the smaller eigenvalue of M, (3.9)) as illustrated in figure 2. It
is straightforward to verify that

k-M-k=T+k-M-k=T(1 —ncos20) and jeM-k=—-Tnsin20. (3.17a,b)

In (3.13) and (3.15) and related collision integrals, the integrands are expressed in
terms of two analytic functions §(x) and &(x) defined as (Araki & Tremaine 1986;
Jenkins & Richman 1988):

T = —VrGx + x)erfe() + (1 + x*) exp(—x?), (3.18)
B(x) = V1 + x)erfe(x) — x exp(—x?), (3.19)

where
_o(k-Vu-k) 2Rcos2(0+¢)

T 2Jk-M-k (1 —ncos20)l/2

It is clear from (3.16), (3.17) and (3.20) that the integrations over k in (3.13)-(3.15)
are to be carried out over 6 via dk=d6, with 6 € (0, 2m). It is worth pointing out that
x =0 in the dilute limit, since the origin of this term is tied to the excluded-volume
effects of macroscopic particles.

With the aid of (3.12) and (3.14), the balance of second moment (3.11) finally
reduces to

=x(, R, ¢,0). (3.20)

PMsg(Dys + Wos) + OspDos + pMsy (Dps + Wes) + OseDgs = A + Eozﬁ + aaﬂ- (3.21)

This is the central equation that must be solved to obtain the rheological quantities
(shear viscosity, pressure and first normal stress difference) of USF for the whole
range of densities v. Furthermore, the Grad-level collisional dissipation rate is
calculated from (3.14).

3.3. Reduced second-moment equations in rotated coordinate frame

Equation (3.21) is significantly simplified if M is made diagonal. This is achieved by
using

_ lcos((b +4m)  —sin(g + ) (3.22)

sin(¢ + ;1) cos(¢p + 37)

as the rotation matrix with respect to the coordinate frame x'y’, with x’ and y’ being
directed along |M;) and |M,), respectively (see figure 2). In the rotated x'y’ frame, the
second-moment tensor is diagonal,

(3.23)

v 1_77 0
M_T[ 0 1+n}’
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with the prime indicating that the quantity is evaluated in this new frame, and

, _|cos® , | sin@
k= {sin@] = [—cos 9] ’ (3.24a,b)
S e 1 , 1 cos(¢+in)
u =2y[x sin(¢ + ;1) +y cos(¢p + ;)] [—sin(¢+ %n) , (3.25)
and
, .| cos2¢p —sin2¢ , .10 1
b=y l:—Sil’l 2¢ —cos 2(1)} . W=y [—1 O] ’ (3.26a.b)

It is clear from (3.23) that the anisotropy of M is characterized solely by the
temperature difference n as defined in (3.6). Note that the non-zero component of
vorticity is in the direction orthogonal to the plane of the motion, and hence the spin
tensor is invariant under the planar rotation (3.22).

In the rotated coordinate frame, the components of (3.21) are its trace

—2npTy cos2¢ + Y (Opy — Oyy) c08 2¢p — 2y Oy Sin 2¢ = %(Axrxr +Ayy), (3.27)

the deviatoric component

20Ty c082¢ + 7 (Opy + Opy) c0s 20 = L (Apy — Ayy) + Eve + Gow,  (3.28)
and the off-diagonal component
20Ty (1 —sin2¢) — ¥ (Opy + Oyy) sin 2¢ = Ayy + Evy + Gy (3.29)

The integral terms appearing in (3.27)—(3.29) can be expressed as

—dpvgo(1 —e*)T3?
AXJX’ +Ay/y’ = (;'7[3/2 %03(779 R7 d))!
—4pvgy(l — e*)T3?
AX/X/ —Ay/y/ = OOT[3/2 %03(’77 Ra ¢)3
) v 1— 2 T3/2
Ay = 22280 — T e R ), (3.30)
) o2
~ 4pvgo(l +e)T**n
Ex’x’ = Ogn3/2 c%621 (77’ Rv ¢)’
~ 4pvgo(1 +e)T**n
Ex’y’ = - u 32 %ll(n’Rv ¢)7
o’
~ 2p0vgo(1 +e)Ty
Gev = = [c0s 29 _Fim (1. R. $)

+ sin2¢ _Z110(n, R, ¢) —nsin2¢ _Zoio(n, R, 9)],

2pvgo(1+e)Ty
Yy = _T [COS 2¢%11()(77, R’ d))

+ sin2¢ _#0(n, R, ¢) —nsin2¢ _Fip0(n, R, ¢)], (3.31)
2pvgo(1 +e)T

Q)

@x’x’ + @y/y/ = 753/2 fooz(ﬁ, R, d))’
2pvgo(1+e)T
@x’x’ - @y’y’ = W/lOZ(Ua R, ¢),
ovgo(1+e)T
Opy = 07}012(77,13, ®).

03/2
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Here 5, and _Z,5, possess the integral expressions
27
Hop, (1, R, ¢)z/ cos” 20 sin” 20 (1 — 5 cos 20)"*F(x[n, R, ¢, 61) d9, (3.32)
0

27
/aﬁy(n,R,@E/ cos® 26 sin” 20 (1 — ncos 20)"*&(x[n, R, ¢, 61)dO, (3.33)
0

with §(x) and &(x) given by (3.18) and (3.19).

Equations (3.27)—(3.29) represent a system of nonlinear integro-algebraic equations,
which we solve using two different methods: (i) semi-analytical method and
(i1)) numerical method. In §4 we outline a semi-analytical series solution (which
reduces to the solution of Jenkins & Richman (1988) in the dense limit) and verify
a posteriori, via a comparison with the full numerical solution (see §5.1), that
the adopted power-series representation of integrals (3.32) and (3.33) holds for the
whole range of densities. More importantly, this helps to achieve our primary goal
of deriving closed-form analytical expressions for nonlinear transport coefficients as
well as for the dissipation rate that are valid from dilute to dense flows as we show
in §§4.2 and 4.3, respectively.

4. Non-Newtonian stress tensor and dissipation rate: constitutive relations

The solution of (3.27)—(3.29) involves evaluating the integrals in (3.32) and (3.33)
whose integrands are functions of §(x) and &(x) as defined in (3.18) and (3.19),
respectively, with x being given by (3.20). Using the power-series representation for
the complementary error function and the exponential, the two functions §(x) and
B(x) can be compactly expressed as

_ 3 2R cos(2¢ + 26) 2R cos(2¢ + 260) 3
8 R ¢,0) = —/m [2(1—7700529)1/2 <(1—ncos29)1/2) ]

N i"’: (=" 3 [ZR cos(2¢ +26)
m=0

2m
m! (2m—1)2m—3) (l—ncosze)l/z] , @41

4R? cos® (2¢ +26)

1
@(n,R,¢,9)=ﬁ{2+ (1 — 1 cos 20) }

[e'e) m 2m+1
4 Z (=D 2 [ZR cos(2¢ + 20)] 42)
m=0

m! 4m?—1 [ (1 —ncos206)l/2

Substituting (4.1) and (4.2) into (3.32) and (3.33) and carrying out term-by-term
integrations over 6 € (0, 2m) results in an infinite series in n and R for each integral
in (3.32) and (3.33) (see appendix B). To progress further, we need to truncate each
series after a finite number of terms.

Retaining terms up to second order in n and R (i.e. O(n%), O(nR) and O(R?)) in the
integral expressions for ., ((3.32) and (B 6) in appendix B) and for _Z,4, ((3.33)
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and (B7) and (B 8) in appendix B), (3.27)—-(3.29) simplify to
4132 nR cos 2¢ + (1 + e)vgoR(16TR + 270°/%1) cos 2¢)
=vgo(1 — ) (3T *nR cos 2¢ + 21 + 37n* + 121R?),
47*2R cos 2¢ — (1 4 e)vgo(2mn — sz n® — 21%/?R cos 2¢p — 1270*2R* cos 2¢
—47nR? 4 8TnR? sin” 2¢)
=vgo(1 — e)[3nY/?R cos 2¢ + 377,
4732R(n — sin 2¢) — (1 + e)vgoR(27/? sin 2¢p + 127*/>R? sin 2¢p + 471y R sin 4¢)
= —37132vgy(1 — €*)R sin 2¢.

“4.3)
At the third order in n and R (i.e. up to O(n%), O(n’R), O(nR*) and O(R?)) they are

472 R cos 2¢ + (1 + e)vgoR(16TR + 167R’ 4 271¥/2n cos 2¢p — 1 7tn’R
— TR7? cos? 2¢)
=vgo(1 — ) (3T *nR cos 2¢ + 21 + mn* + 121R?),
47°R c08 2¢ — (1 + €)vgo(2mn — -7 — 21°/*R cos 2¢ — 127%/2R® cos 2¢
+ 87nR? sin” 2¢ — 4mR%n)
=vgo(1 — e)[3R1*? cos 2¢ + 67¥?R® cos 2¢ + 370 + 2nR*(2 + cos 4¢)],
47*2R(n — sin 2¢) — (1 + e)vgoR (21*/% sin 2¢ + 121*/*R? sin 2¢ + 47nR sin 4¢)
= —vgo(l — e)(Bn*?Rsin 2¢ + 67%/?R? sin 2¢ + 2nR* sin4¢)).

4.4)

It is clear that we have three unknowns 7, R and ¢ to solve for at each order, provided
the restitution coefficient e and the area fraction v are specified. Both sets of coupled
algebraic equations, (4.3) and (4.4), can be easily solved using the Newton—Raphson
method.

Equations (4.3) and (4.4) can be thought of as analogues of the Burnett-order
(quadratic in shear rate) and super-Burnett-order (cubic in shear rate) equations,
respectively, and this will become evident in §4.1, where we show that n ~ O(R)
to leading order. In principle we can retain further higher-order terms to solve the
above three equations but stop at the cubic order as they provide adequate accuracy
to recover the exact numerical solution, as we shall demonstrate in §5.1.

4.1. Exact solution at leading order: scaling relations

Before moving to numerical solution of (4.3) and (4.4), it is illuminating to consider
the leading-order moment equations that admit an exact solution, which helps to
understand the scaling relations for the three unknowns n, R and ¢ in terms of
the restitution coefficient e. Retaining only the zeroth-order terms in 5 and R in
the integral expressions for %4, and Z.s, (see (B6)-(B8) in appendix B), the
following equations for the second-moment balance are obtained:

2 /TR cos 2¢ — (1 — e*)vgy =0,
2R cos2¢p — (1 + e)vgon + /m(1 + €)vgoR cos 2¢ =0, 4.5)
2(n —sin2¢) — (1 +e)vgy sin2¢p = 0.
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These equations are amenable to analytical solution, and yield

1=+ +evg) ~ (1 — ',

_ N (1 —e)(1+e)vgo ~(1—e)
V27 Re+ (1 +e)vgo) ’

o -0

Sln2¢_\/2+(l+e)vg0 =™ (4.6)

cos2gp = | 2T v
2+ (1 +e)vgo

N VACT (T g 2et (1T evgy)

R (1+e)vgo

with each quantity being a function of e¢ and v only. Note further that

n _ 2e
Rc052¢_ﬁ(1+(1+e)vg0> . “4.7)

It is clear from (4.6) that the temperature anisotropy 7, the shear rate R and sin 2¢
scale as € = (1 — e)!/> (a measure of the inelasticity of particle collisions). More
importantly, that both n and R are of the same order lends credence to the adopted
power-series expansion of the collision integrals (3.32) and (3.33) in terms of n and
R (see appendix B). The leading-order scaling of R and 1 with € implies that the
NS-, Burnett- and super-Burnett-order terms in the USF are of order O(e), O(e?)
and O(e?), respectively, although we have not attempted to establish this connection
at higher orders (see the discussion in §4.4). In the rest of this paper, the second-
and third-order terms in R and n are referred to as Burnett and super-Burnett order,
respectively.

4.2. Non-Newtonian stress tensor: analytical expressions for transport coefficients

The dimensionless stress tensor can be written as

poP _ (P v P ) - (p* 2) - (“/572 ’“‘Z) , 48)
p,,U,% Py Py 0 p K °/V1/2

where p* = (P} + P} ))/2 is the pressure, u* = —P}, is the shear viscosity and N =
P, —P;*,y is the first normal stress difference. Here p, is the material (intrinsic) density
of particles and Ugr =2yo is the reference velocity scale. We will express constitutive

relations in terms of the dimensionless temperature, which is defined as

T" = r_ 1 (4.9)
Ui 64R* '
The power series (4.2) for &(n, R, ¢) is inserted into (3.13) to evaluate the
collisional stress, and the total stress tensor is subsequently obtained from (3.12). In
the following we present only the final analytical expressions for the components of
the stress tensor, thus leaving the related algebraic details to appendix C.
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4.2.1. Shear viscosity: up to super-Burnett order
Retaining terms up to the third order in temperature anisotropy n and shear rate R,
the dimensionless shear stress takes the following form (see appendix C):

P: 4vgo(1
V;;V* = —ncos2¢—vg(:(/_Tf€)[R <1+f20032¢)
2
+ R (1 — 3'27R2(1 + 2 cos? 2¢)> } +O0OM"R",m+n>=4). (4.10)

The first term on the right-hand side represents its kinetic contribution and the
remaining part its collisional contribution. Recall from (4.7) that (n/R) cos2¢ ~ O(1),
and hence the underbraced terms in (4.10) are of super-Burnett (O(R?)) order.

The expression for the dimensionless shear viscosity, u* = u/p,0 Ur=—P,,/p,Us =
—Pj;y, follows from (4.10):

vWT* | 7 4vgo(1 + e) VT , 0 5
= — 2 — 1+ —= 2 R——(1+2 2
7 g cos2¢ + NG + 2 R 8 ¢+ 32( + 2 cos” 2¢)
+O0OM"R",m+n=4). 4.11)

The nonlinear dependence of viscosity on the shear rate R and the temperature
anisotropy 1 is evident from the underbraced terms in (4.11).
For a check, we consider the NS-order shear viscosity

. wWT 4vgo(1 +e) ﬁz ,
w= A [RCOSZ¢+ﬁ <1+ 2 R0032¢>]+0(R ), 4.12)

which follows from (4.11) by neglecting the nonlinear terms. Substituting the
leading-order solution (4.7) into (4.12), we obtain the expressions for the kinetic
and collisional parts of the shear viscosity as

v T* /n v/ T 2e
- L cos2p) = 1+—), 4.13
ui = = (Reos29) == ﬁ( +(1+6)ng) (4.13)

. V2go(1 + e)/T* 511 2e
= SR s e -

respectively, at NS order. These expressions (4.13) and (4.14) with e = 1 agree
perfectly with the known results for the shear viscosity (Jenkins & Richman 1985a)
of an elastic hard-disk system.

4.2.2. Pressure: up to super-Burnett order
At the third-order approximation in 1 and R, the diagonal components of the stress
tensor are

P,
vT™*

1 2
= (1 +nsin2¢)+vgo(l +e) (1 + —nsin2¢ + 4R* + ——nR cos 2¢
2 JT

1
— man sin 2¢ cos 2¢) +OM"R",m+n=4), (4.15)
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" 1 2
= (1= sin26) + vgo(1 +0) <1 — 505020 -+4R + R eos 29

1
+ ——Rn?sin 2¢ cos 2¢> +O0M"R",m+n=4). (4.16)
b1’

IS

Note that both contain odd-order terms in 1 and R having opposite signs, and hence
they cancel each other, resulting in the following expression for the mean pressure:

2
pr=vT* [14+vgo(l+e) [ 14+4R*+ —=nRcos2¢ +OM"R",m+n=4). (4.17)
T

7=

This expression holds at both second and third order of approximation in n and R. In
any case, it is clear that the collisional part of the pressure depends on the shear rate
R and the temperature anisotropy 1, revealing the nonlinear dependence of pressure
at the Burnett order O(R*) and beyond. Neglecting the ‘underbraced’ terms in (4.17),
we arrive at the textbook expression for pressure,

P =vT*(1 +vgo(l +e)), (4.18)

which holds at NS order.

4.2.3. First normal stress difference
Subtracting (4.16) from (4.15), we obtain an expression for the first normal stress
difference:

1
Pi — P =2nsin(2p)vT* +v2go(1 +e)T*  nsin2¢ — ——=Rn*sin 2¢ cos 2¢ | +h.o.t.
» 2/
(4.19)

The leading term in (4.19) is of order O(R?), since 7 sin 2¢p = O(1 — e) = O(R?)
following (4.6), and the terms of order O(R) in (4.15) and (4.16) do not contribute
to the normal stress difference. The leading correction in (4.19) comes from the
collisional part of the stress tensor,

Ri? sin 26 cos 2¢ = R>(n sin 2¢) (I% cos 2¢) — O(RY), (4.20)

which is fourth order in the shear rate.
Retaining terms up to O(R*) in (4.19), the scaled first normal stress difference is
given by

1
7 sin 2¢ <2+ vgo(1+e) (1 — ——Rncos 2¢>>
P.—P,,
</1/]= 2 = 22\1/5 ) (421)
p 1+vgo(l+e)|1+4R>+ —nRcos2¢
I

which is a measure of the normal stress with respect to the mean/isotropic pressure
(4.17). Focusing on the dilute limit (v — 0), (4.21) becomes

M =2nsin2¢ =2(1 —e) ~R* ~ p?, (4.22)
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which scales quadratically with the shear rate. This confirms that the normal stress
difference is a Burnett-order effect (Sela & Goldhirsch 1998). Note from (4.21)
that 4] ~ n sin 2¢ at any density and it approaches zero for n — 0 and/or ¢ — 0.
The origin of the normal stress difference is, therefore, tied to (i) the temperature
anisotropy 7 and (ii) the angle ¢ between the eigen-directions of the shear tensor D
and the second-moment tensor M — both are shear-induced effects.

It should be noted that the elastic limit (e — 1) remains non-singular even though
the temperature diverges (T ~ R™> — 0o as e — 1). The latter divergence is due to
the absence of any mechanism to compensate the shear work, but this can be fixed
by using a thermostat. Therefore, the normal stress difference is finite for perfectly
elastic collisions (Sela et al. 1996; Alam & Luding 2003a,b):

22

N =0.679 Tf (4.23)

where [, is the mean free path. Note, however, that 4] ~ O(107?) in a sheared
molecular gas at standard temperature and pressure with y = O(1) and hence is
negligible. The expression (4.23) can be understood from (4.22) by tying the in-built
mechanism of energy replenishment in a granular gas with a thermostat in its
molecular counterpart.

4.3. Dissipation rate: dependence on shear rate and normal stress

Employing the series solution for integrals, the collisional dissipation rate in the
energy balance equation can be calculated from (3.14) as

9 = —In,, = 1(A + Byg) = 1(A +Ayy)
- 2 BB — 2 BB BB) — 2 x'x! vy

20pvgo(l — T3
= - Hoo3(1, R, ¢)

o Tr3/2

4 1 — )32 3
_ 4Pvgo \/;) <1+6R2< +“/—Zcos2¢> 16n2+h-0-t->' (4.24)

o

The neglected terms in (4.24) are of order O(n™R") with m+ n > 4: the leading-order
corrections are second order in both R and 7 but the odd-order terms (m+n=1,3,...)
are zero. Hence the expression (4.24) is exact up to the super-Burnett order. In the
isotropic limit of zero normal stress difference (1 — 0 and ¢ — 0), (4.24) reduces to

2 =291 +6R*+ O(RY), (4.25)

which contains a rate-dependent correction term at the leading order. The origin of

this correction is tied to the excluded-volume effects (3.20) of a dense gas. In (4.25),

4p,v*g0(1 — )T
o7

is the dissipation rate for a system of inelastic hard disks (Jenkins & Richman
1985a), which holds at both Euler and NS orders. Equation (4.26), however, differs

90 —

(4.26)
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from related NS-order theories (Lutsko 2005; Garzo et al. 2007) that are built around
the homogeneous cooling state as a reference.

Returning to (4.24), we note that the correction terms beyond the NS order
depend quadratically on both (i) the shear rate (y ~R~ € = (1 —e)'/?) and (ii) the
temperature anisotropy 7 (~ €). The latter finding uncovers a novel dependence of the
collisional dissipation rate on the normal stress difference since n ~ .4{. As clarified
in §4.1, the above quadratic-order corrections in (4.24) can also be translated into an
effective correction of O(e?), which agrees qualitatively with the related Burnett-order
expression for & derived by Sela & Goldhirsch (1998) and Brilliantov & Poschel
(2003), who used the Chapman—Enskog method to solve the Boltzmann equation in
three dimensions up to the Burnett order (i.e. the second order in the gradients of
hydrodynamic fields). Note that the latter work analysed the homogeneous cooling
state of a granular gas of viscoelastic particles by incorporating the second-order
gradient terms in the two-particle distribution function.

4.4. Inherent non-Newtonian rheology of uniform shear flow

Let us now remark on the dependence of various transport coefficients on (i) the shear
rate R, (ii) the temperature anisotropy #, (iii) the non-coaxiality angle ¢, (iv) the
restitution coefficient e and (v) the density or area fraction v that we uncovered in
§8§4.2 and 4.3. It is clear from (4.6) that there is an intertwined relationship among R,
n and ¢ via their dependence on e and v in the uniform shear state, and this survives
at any order. For example, (4.4) can be solved perturbatively by using (4.6) as the
zeroth-order solution, leading to an approximate solution for n, R and ¢ as a function
of € =(1—e)'/? for the whole range of densities. Substituting these values into (4.11)
results in an expression for the shear viscosity as a function of e and v. This implies
that specifying v and e with Lees—Edward boundary condition (Alam & Luding
2003a,b, 2005a,b; Gayen & Alam 2008) sets the granular temperature and the shear
rate simultaneously, which is a consequence of the ‘in-built’ thermostat of collisional
dissipation that balances the shear work. Therefore, it would not be possible to isolate
the shear-rate dependence of viscosity (and other transport coefficients) from its
dependence on inelasticity if we were to measure shear viscosity from the molecular
dynamics simulation (§5.2) of a granular fluid under uniform shear.

What is measured in simulations is nothing but the non-Newtonian viscosity, since
the shear rate is always finite, and hence the rheology of the uniform shear state
of a granular fluid is inherently non-Newtonian (Santos ef al. 2004) unlike in its
elastic counterpart. The comparisons of transport coefficients in §5.2 will validate
their dependence on the density and the restitution coefficient at any arbitrary shear
rate. On the other hand, the explicit rate dependence of transport coefficients can
be checked in future with simulations of boundary-driven shear (with imposed
temperature gradient) where the shear rate and the restitution coefficient can be
independently varied (Vega Reyes et al. 2013).

5. Validation of constitutive relations and comparison with particle simulation
5.1. Validation of constitutive relations: are super-Burnett terms required?

Here we validate the constitutive relations for all transport coefficients as detailed in
§4.2. This is done by carrying out a comparison between the transport coefficients
obtained from (i) the full numerical solution of moment equations and (ii) those
obtained from their analytical expressions at Burnett (i.e. quadratic order in R and n)
and super-Burnett (i.e. cubic order in R and n) orders. The goal is to check whether
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we need to go beyond the Burnett order for an accurate representation of transport
coefficients at any restitution coefficient for the whole range of densities.
For the complete numerical solution of the moment equations, we evaluate the

integrals in A, E, G and ® in (3.27)—(3.29) using the standard quadrature rule.
Next we solve the resulting system of three nonlinear algebraic equations by the
Newton—-Raphson method, yielding values of n, R and ¢ for specified values of
the area fraction v and the restitution coefficient e. This helps to determine (see
appendix C) the pressure p, the shear viscosity w and the first normal stress difference
A as functions of v and e.

The comparison between the full moment theory and the series solutions at second
and third orders is given in figure 3: panels (a)—(d), respectively, display the variations
of pressure, shear viscosity, granular temperature and first normal stress difference
with area fraction, for four values of the restitution coefficient (e =0.99, 0.9, 0.6 and
0.3). In each panel, the continuous (black) and dashed (red online) lines represent
the series solution at third- and second-order approximation, respectively, and the
symbols denote the exact solution (full numerical solution) of the moment equations.
We observe excellent agreement between the third-order series solution and the
exact solution even at a strong dissipation of e = 0.3. In contrast, the second-order
series solution does well only up to e = 0.6 for the normal stress difference (see
panel (d)), although the pressure, viscosity and temperature are well predicted by the
second-order solution even at e =0.3.

On the whole, figure 3 confirms that, while the Burnett-order expressions yield
accurate transport coefficients in the dilute limit, the super-Burnett-order terms are
required to reproduce the correct behaviour of all transport coefficients at higher
densities (v > 0.2) for the whole range of restitution coefficients (0 <e < 1).

To see why the adopted series expansion (4.1) and (4.2) works well, we plot the
variations of n, R and ¢ in figure 4(a—c), respectively. Again, we observe excellent
agreement between the exact solution (symbols) and the third-order series solution
(solid line) for the whole range of densities up to a restitution coefficient of e =0.3.
However, the second-order solution (dashed line) for n in panel (a) is seen to deviate
significantly from its exact solution at ¢ =0.6 beyond a moderate density of v~ 0.35,
and this disagreement occurs at a much lower density (v ~0.2) for e =0.3. It is clear
that both R and n are small in the dilute and dense limits, respectively, but they tend
to become of order one in opposite limits. Nevertheless, the series representation (4.1)
and (4.2) and the resulting power-series expansion of integrals (3.32) and (3.33) in
terms of 1 and R (appendix B) works excellently for the whole range of densities
even at strong dissipations, as illustrated in figure 4, if we retain the third-order terms
as in (4.4).

5.2. Comparison of anisotropic moment theory with simulation and Navier—Stokes
model

In this section we make a detailed comparison for all transport coefficients of the non-
Newtonian stress tensor as obtained in § 4.2 from the moment theory with (i) particle
simulations and (ii) an NS order model. The NS-order transport coefficients are taken
from those of Lutsko (2005) as detailed in appendix D. Note that Lutsko’s model
holds for both disks and spheres; Garzo et al. (2007) also derived NS-level transport
coefficients in arbitrary dimension using a modified Sonine expansion, and confirmed
that the viscosity, pressure and dissipation rate are hardly affected in both approaches.
It may be noted that both works carry out a Chapman-Enskog expansion around
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FIGURE 3. (Colour online) Comparison of the numerical solution for the moment theory
(symbols) with approximate series solution: second-order (red dashed lines) and third-order
(black solid line) series solutions for the (a) pressure, (b) shear viscosity, (c) granular
temperature and (d) first normal stress difference.

the homogeneous cooling state, and the NS-level transport coefficients thus obtained
are assumed to hold for all values of the restitution coefficient, since they made no
assumption about the smallness of inelasticity or dissipation.

The event-driven simulation of the USF of inelastic hard disks (i.e. in two
dimensions) has been carried out by Alam & Luding (2003a,b) and we take their data
to compare with the present theory. The disks interact via the standard binary collision
rule of smooth particles, (2.1), for a specified value of the restitution coefficient. The
state of uniform shear is achieved by employing the Lees—Edward boundary condition
(Lees & Edwards 1972). All simulations have been carried out in a square box with
N = 1024 disks for two values of the restitution coefficient, e = 0.9 and 0.7, for a
range of densities (area fractions) v € (0.01, 0.8) spanning from the dilute to the
dense regime.

Figure 5 shows a comparison for the pressure field between (i) the exact moment
theory (solid line, numerical solution), (ii) the NS-order model (dashed line) and
(ii1) simulation data (symbols). Panels (a)—(c), respectively, correspond to the total
pressure (p = py + p.), and its kinetic (p;) and collisional (p.) components; the data
for e=0.9 and 0.7 are marked in each panel. The analogue of figure 5 for the shear
viscosity is displayed in figure 6. For both pressure and viscosity, we observe that the
NS model overpredicts the simulation data, and the degree of discrepancy increases
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FIGURE 4. (Colour online) Comparison between the ‘exact’ (numerical solution) moment
theory and the approximate series solution for a range of densities: variations of (a) n,
(b) R and (c) ¢ (degrees) with area fraction. The symbols, dashed (red) and solid (black)
lines represent the full numerical solution, second-order and third-order series solutions,
respectively.

with decreasing value of e (i.e. with increasing dissipation). It is noteworthy that the
deviation between the NS model and the simulation is more prominent for dilute
flows at any restitution coefficient. In contrast, the predictions of the moment theory
agree excellently with simulation even at e = 0.7 for a large range of densities —
up to v ~0.65, which is close to the freezing point density v, = 0.69 (see figures 5
and 6). A possible reason for quantitative discrepancies at large densities could be the
breakdown of the molecular chaos assumption (§2.1), especially beyond the freezing
density (Mitarai & Nakanishi 2007).

Figures 7 and 8 show the variations of the scaled pressure p/T and the scaled
viscosity u/+/T, respectively. In each figure, panels (a) and (b) correspond to e =
0.9 and 0.7, respectively, with the solid line, dashed line and symbols denoting the
moment theory, NS theory and simulation data, respectively. Recall that both these
scaled quantities (p/T = fi(v, e, ...) and w/~T =f,(v, e, ...)) are functions solely
of the density and restitution coefficient in the NS-level theory; however, they have
additional dependence on the shear rate (y ~ R) as well as on the normal stress
difference (4] ~ n). Figure 7 indicates that the dependence of f; on R and 7 is
negligible in dilute to moderately dense flows even at e =0.7, but a slight deviation
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FIGURE 5. Comparison among the full moment theory (solid line, present work), the
NS model (dashed line, Lutsko 2005) and simulation data (symbols) for the variation of
pressure with area fraction: (a) total pressure p = p, + p., (b) kinetic pressure p, and
(c) collisional pressure p.. Results for two values of the restitution coefficient (e = 0.9
and 0.7) are shown.

(between the moment theory and the NS-level theory) is noticeable in the dense limit,
which becomes more prominent with increasing dissipation. On the other hand, the
viscosity function f, deviates strongly from its NS prediction in the dilute limit even
at e=0.9.

Figure 9 shows the variation of the scaled first normal stress difference 4] =
(P — Py,)/p with density for three values of e = 0.95, 0.9 and 0.7. The lines
correspond to the moment theory and the symbols to simulation data. Recall that
M =0 for all NS-order constitutive models. The prediction of the moment theory
agrees well with simulation data for e = 0.95 and 0.9, but there are quantitative
differences between theory and simulation that increase with increasing dissipation.
Although the theoretical prediction remains good in the dilute limit (v — 0) even
at e = 0.7 (see also §5.3 and figure 10), increasing the density leads to an
underprediction of simulation data — this might be related to enhanced density
correlations at finite densities. The latter assertion is supported by additional
simulations at ¢ =0.5 (with other simulation parameters being fixed at finite densities)
that show the emergence of particle clusters spanning over the whole system. Another
noteworthy point in figure 9 is that the theory predicts .#; — 0 in the dense limit, but
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FIGURE 6. Same as figure 5 but for the variation of shear viscosity with area fraction:
(a) total viscosity u =y + ., (b) kinetic viscosity u; and (c) collisional viscosity ..

the simulation shows a sign reversal of 4] at some critical density (near the freezing
density). This sign reversal of 4] is, in fact, tied to changes in the microstructure
(Alam & Luding 2003a,b), i.e. changes in the pair correlation function and its
relaxation under shear. The latter effect is not incorporated in the present theory,
which is likely to be responsible for the disagreement between theory and simulation
in the dense regime.

On the whole, we find that the Grad-level moment theory with anisotropic Gaussian
can quantitatively predict the pressure and shear viscosity for a range of densities
up to the freezing point at very strong dissipations (e = 0.3). In contrast the NS
model (Lutsko 2005; Garzo et al. 2007), which is assumed to hold at any dissipation,
shows quantitative discrepancies even at moderate dissipations (e = 0.9) and the
degree of disagreement increases with decreasing restitution coefficient e. Last but
not least, the missing ingredient of any NS-order constitutive model, the normal
stress difference (.41, figure 9), is well predicted by our anisotropic moment theory,
although quantitative discrepancy remains at finite densities for large dissipations.

5.3. Comparison with another Grad-level theory in the dilute limit

In this section we compare our analytical transport coefficients (§4.2) with those
derived from another variant of Grad’s method (Kremer & Marques 2011; Garzo
2012). In the latter two works, the moment theory was developed using a Hermite



Stress, dissipation and heat flux in shear flow of inelastic disks 275

(@) : : : )
10'F 3 10"
L e=0.9 I
/T 10° 3 E 100 E
p F 7 F
10 E 107!
1072 ' ' ' 1072
0 0.2 0.4 0.6 0.8 ]
% v

FIGURE 7. Variation of p/T (dimensionless) with area fraction for (a) e = 0.9 and
(b) e=0.7. The solid and dashed lines represent the exact moment theory (i.e. the full
numerical solution) and the NS-order model (Lutsko 2005), respectively, and the symbols
denote simulation data.
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FIGURE 8. Variation of p,/ﬁ (dimensionless) with area fraction for (a) e = 0.9 and
(b) e=0.7. The solid and dashed lines represent the exact moment theory (i.e. the full
numerical solution) and the NS-order model (Lutsko 2005), respectively, and the symbols
denote simulation data.

expansion around an isotropic Gaussian state, in contrast to the anisotropic Gaussian
reference in our work. Leaving aside the mathematical details, we note that the
balance equation for the second moment in the steady uniform shear state is the
same as (3.11) as elaborated in § 3.2. An approximate expression for the source term
has been determined for hard disks (Garzo 2012):

~

Naﬁ:_(pupaﬁ —{péaﬂ, (51)

where T’aﬁ = P,s — pdup 1is the pressure deviator. The equation of state is p =
(Pyx + Pyy)/2 = pT, and the expressions for the cooling rate ¢, collision frequency
¢, (related to shear viscosity) and the coefficient of the fourth velocity cumulant o,
(=(C*H/(CH® — 1, with the superscript ‘0’ denoting its evaluation for a Gaussian or
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FIGURE 9. (Colour online) Variation of the scaled first normal stress difference .#] with
area fraction. The symbols and lines represent the molecular dynamics simulation data and
the present moment theory, respectively.

Maxwellian) are given by

- gy (1432
¢ =, =0 e)(l—l— 16>ﬁ,
v o2
o= S Z0-30+0 (1-5) V7. (5.2)
B ( (4 _1>_ 16(1 — e)(1 — 2¢2)
o2 = (CHO T 57 —25¢+430(1 — e)e?

Note that o, =0 for a Maxwellian distribution function.
With the aid of (5.1) and taking the overall shear rate in the USF as du/dy =2y
(defined in (3.1)), (3.11) can be decomposed into its component forms:
@uPyy = =2y Py,
(@u = DPxe = (@u+ Py, (5.3)
S‘J}ny = _((p;L + é-)PxA + (¢u - {)P})
The solution of (5.3) yields the diagonal components of the stress tensor,
Py P, —
Tt 3 e . Sy Tk ) N C P
4p,y%0%  64R? @ 4p,y%0%  64R? @
and the dimensionless shear rate R is

Pl V(71 =3e2(1+0(1 - o)1 — 500’1 + )

= = : (5.5)
16T 163 + e — 5;a2(31 — 27e))
The expression for the first normal stress difference is
2(Py — P, 20 8(l—e)(1+ 2a
1 ( Vy)_i_ ( )( 16 Z)N(l—e)NRZ, (56)

 (PutPy) @ (1-3e)(1— L)
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FIGURE 10. (Colour online) Comparison of the first normal stress difference obtained
from simulation (symbols) with the present anisotropic Gaussian theory (blue solid line),
the Grad-level theory of Garzo (thick red dashed line, (5.6)) and the Burnett-order theory
of Sela & Goldhirsch (magenta dot-dashed line). The ‘thin’ black dashed line corresponds
to (5.6) with o, =0 (see the text in § 5.3 for details). The area fraction is set to v =0.01.

which scales quadratically with the shear rate and hence is a Burnett-order effect as
confirmed in §4.2.3.

The comparison of (5.6) with the present theory and the particle simulation data
is shown in figure 10, marked by the red dashed line, the blue solid line and the
circles, respectively; the simulations were carried out for an average area fraction
of v =0.01. The Burnett-order expression of Sela et al. (1996), obtained from the
Chapman—Enskog expansion, is also displayed on the same figure (magenta dot-dashed
line). We observe that the simulation data agree uniformly with the present anisotropic
Gaussian theory for a large range of restitution coefficients e € (0.3, 0.99), but the
Grad-level expression (5.6) of Garzo underpredicts the simulation results for e < 0.8.
On the other hand, the Burnett theory of Sela et al. agrees well with simulation and
present theory up to ¢ =0.5 and underpredicts .#; for e <0.5. To ascertain the relative
importance of the fourth velocity cumulant «, for a quantitative prediction of .41, we
set ap =0 in (5.6) and plot the resulting expression as the ‘thin’ black dashed line in
figure 10. It is clear that the fourth velocity cumulant does not affect .4{ noticeably
up to a restitution coefficient of e~ (0.6 but underpredicts it slightly for smaller e.

From (5.3) and (5.4), the expressions for shear viscosity u = —P,,/2y and pressure
p = (P + Py,)/2 can be obtained as

2 2 3
m vi(l —e)(1+ o) and p v

- - 5.7a,b
20,707 128 /7R3 4p,7%07  64R? (5-7a,5)

with R being given by (5.5). These two expressions (5.7) are compared in figure 11,
denoted by the red dashed lines, with (i) the particle simulation (denoted by
symbols) and (ii) the present anisotropic Gaussian theory (blue solid lines). The
curves for two variants of the NS-level theory (Lutsko 2005, green dot-dashed lines;
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FIGURE 11. (Colour online) Comparison for dimensionless pressure and shear viscosity
obtained from molecular dynamics simulation (symbols) with the present anisotropic
Gaussian theory (blue solid lines), the Grad-level theory of Garzo (red dashed lines, (5.7)),
the NS-level theory of Lutsko (2005, green dot-dashed lines) and the NS-level theory of
Jenkins & Richman (19854, magenta starred lines). Other parameters are as in figure 10.

and Jenkins & Richman 19854, magenta starred lines) are also displayed. We see
excellent agreement of simulation data with the present theory, but the isotropic
version of the moment theory slightly overpredicts both p and p for e < 0.5. In
contrast, both the NS-level theories overpredict the simulation data even at e = 0.9,
and the quantitative disagreement worsens significantly with further decrease of
restitution coefficient. It is surprising that the NS theory of Jenkins & Richman
provides a better quantitative prediction for p and p in comparison to Garzo and
Lutsko’s theory, since the latter theory incorporates the fourth velocity cumulant o,
and makes no assumption about the smallness of the restitution coefficient.

On the whole, figures 10 and 11 confirm that the present anisotropic Gaussian
theory provides better prediction for all transport coefficients (4], u and p) for the
whole range of restitution coefficients in comparison to two existing theories (in the
dilute limit) that are based on (i) the Chapman—Enskog expansion (Sela et al. 1996)
and (ii) the isotropic version of Grad’s moment expansion (Kremer & Marques 2011;
Garzo 2012).

6. Constitutive relation for granular heat flux in the dilute limit

Lastly, we outline a procedure to derive the constitutive relation for granular heat
flux focusing on the dilute limit of granular shear flow. Note that the heat flux
vanishes in the uniform shear state since VT = 0, and hence we need to consider
non-uniform shear flow (‘non-USF’) in which the gradients of hydrodynamic fields
are non-zero, i.e. V(n, T, y) # 0. Carrying out an orthonormal expansion around the
anisotropic Gaussian state, we will show that the heat-flux vector depends on the
gradients of temperature and the second-moment tensor, and the thermal conductivity
is characterized by an anisotropic second-rank tensor.
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6.1. Distribution function for non-uniform shear flow: expansion around the
anisotropic Gaussian

Following Grad (1949), we choose (1, C;, C,, C3, C,C,, C:, C*C,, C*C,) as the basis
set that incorporates the third-degree polynomials. Let us define an inner product,

! e

with respect to the anisotropic Gaussian as the weight function. The related
orthonormal basis (1, &, &, &, &&, &, &%, &%) is obtained by applying the
Gram-Schmidt orthogonalization procedure.

We assume that the single-particle distribution function for the non-uniform shear
flow (non-USF) can be expanded as

f=fola+ ai& + a;EE + biEE), (6.2)
where the anisotropic Gaussian

n

fo= gy

1
exp <—2caMa;cﬁ> (6.3)

is the zeroth state representing the USF. The coefficients a, a;, a; and b; in (6.2) are
to be chosen such that the basic hydrodynamic fields

(n, u, (CC)) 6.4)

are recovered at any order. This implies that the following ‘compatibility’ conditions
must be satisfied:

n(x, t):/f(c,x, t)dc:/fo(c,x, t)dc,
/Cf(c,x, t)dc:O:/Cfo(c,x, 1) de, (6.5)

Ma,g=/cacﬁf(c,x, t)dc:/CaC,gfo(c,x, 1) de =M.

This yields a=1, a;=0, a;=0 and b; # 0. Therefore, the distribution function for
non-USF is given by

n 1 1 4:{C} + C,C2 — 3M, + M,,)C, — 2M,,,C,}
fzil/zexp —5CM;Cp ) 1+ 5 5 > 5
27| M| 2 p{M(3M2, + 6M2, + M2) + 2M2 M.}
4y {MBM, 4 6M, + M )+2M; My} — q Moy 3M; +2M M, +4M; +3M)
P (Mo My, —M2 ) (M2, (3M2 +12M2 +10M2 ) —4M? (2M . M,,—4 M2 —3M?2 ) +3M }
3My (M + M)
M. (3M2 4 6M2, 4+ M2) + 2M2 M,
 MEGME 4 My M+ M) + MM,y (3M5, + 16M7) — 8M, c
M. (3M2 4 6M2, + M2) + 2M2 M, Y
M, (4M2 + 3M?, + 3M3, + 2M . M,))
Mo (M2 +6M2 + M2) + 2M2M,,

X

X {Cfcy + Cf, +

(C]+ Cfo.)H : (6.6)
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where
m

Ga )

/ C*C,f(c,x, ) dc (6.7)

is the ‘kinetic’ heat-flux vector.

6.2. Generalized Fourier law from the balance of contracted third moment

In the dilute limit, the collisional fluxes (& (-) = 0) are neglected and hence the
balance equation for the contracted third moment M,z = (C,CsCp) is obtained from
(2.10) as

DM,
Dtﬂﬁ + meﬂﬁ,n - 3M(aﬂP,B)n,n + 3Qn(ozﬁuﬁ),n = Naﬂ/& (68)

where Q,.5 = pM,.s and the second term on the left-hand side is a contracted fourth-
order moment,

Q”w‘ﬁﬁ =m / CnCDtCZf(xv ¢, t) dC, (69)

and the subscript under (...) on the third and fourth terms is defined such that
Oniepttpyn = 52Quapltpn + Quppllen)s (6.10)
M(Olﬁpﬁ)ﬂ,ﬂ = %(ZMaﬂPﬁn,n +MﬂﬁPan,n)a (611)

with the comma on the subscript denoting a partial derivative. The source term in (6.8)
has the following integral expression:

Nup =NICLCyCpl =5 / / / ACC)f(er, x)f (e2, x)(g - k) dk dey des,  (6.12)
g-k>0

where A(C?C,) is defined in § A.3.
Inserting the distribution function (6.6) into (6.12), changing to new integration
variables (¢, ¢;) — (g, G), and evaluating the integrals over G, g and k (see §A.3),
we obtain
o __pra +e)V/T
app = 320,07 ayqy>

where q = (q., g,) is the heat-flux vector. Note that we have neglected quadratic
nonlinear terms in g, to derive (6.13). The elements of Q =[Q,,] are

(6.13)

1 511 QIZ:|
= Qo ]= | = 2 6.14
Q =[Quy] Trn [5321 o (6.14)

where
Qi = 608 + 714n% + 831n* + 82n° — e(480 + 5941 + 606n* — 331°)
+18in 2¢(160 + 1241 + 148n* + 1057° 4+ e(—96 + 63n> — 84n*)),
Qi = —1ncos 2¢(160 + 124n% + 148n* + 1057° + e(—96 + 63> — 84n*))
= Qy
Q5 = 608 + 714n* + 831n* + 82n° — e(480 + 5941 + 606n* — 331°)
— nsin 2¢(160 + 124n* + 148n* 4 1051° + e(—96 + 631 — 84n*)).

It is clear from (6.13) that the source term R,z is a combination of ¢, and g, and
depends on the restitution coefficient e, the temperature anisotropy 1 and the non-
coaxiality angle ¢.

(6.15)
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6.2.1. Heat flux from Maxwell iteration: thermal conductivity tensor

Now we apply the well-known Maxwell iteration scheme (Truesdell & Muncaster
1980) to the contracted third-moment equation (6.8) to obtain the constitutive relation
for heat flux. For this purpose, we rewrite (6.8) as

Dde | 9 288 4 99matt 5 pr 4 78,0 2 E 20+ 018 a,g> . (6.16)
Dr 8 ﬁ 8xn xn xn

N(lﬁﬂ == 2

where ¢, is defined in (6.7). In the Maxwell iteration scheme, the terms on the right-
hand side of (6.16) are replaced by their zeroth-order values obtained by using the
anisotropic Gaussian (6.3) as the distribution function. For the USF (i.e. at the zeroth
order), it is straightforward to verify that

Py = pMS) = pMg,

o,

g =0=0y,. (6.17)
Qflgt)ﬁﬂ = 20(T0up + Myp)M,5,
and hence
a0 oM
M(O)P(O) — MM . Ma Bn
prn = gy Map pn TP P o,
1 3p aT M,
QQfﬁfﬂ,g,n = o TMu+ p =My + pT— (6.18)
O MM + 0 22 My 4 oMy Ot
ox, npMap '08” Mg+ p nﬁan

Inserting (6.17) and (6.18) into the right-hand side of (6.16) and equating the resulting
expression with (6.13), we obtain the desired constitutive relation for the heat flux:

64p,0 /T aT M5
= Q0 2My—— + Mp——" | 6.19
T T A oVT ( ox, P o, (6.19)

where Maﬂ is the deviatoric part of the second-moment tensor M,z = T34 +1\7Iw5, with
9,, being given by (6.14) and (6.15). (A similar expression for the heat flux was
used by Simon & Jenkins (1994) in the context of modelling planetary rings, made
of inelastic spheres (i.e. in three dimensions), but they did not present the related
derivation.) Equation (6.19) should be treated as a generalized Fourier law, since the
gradient of the deviatoric part of the second moment (or the kinetic stress) also creates
a heat flux, in addition to the standard Fourier contribution due to the temperature
gradient. This indicates that there could be a heat flux even in the absence of a
temperature gradient, driven solely by the gradient of the deviatoric stress ]\Alaﬂ. Such
a stress-gradient-driven heat flux is well known in rarefied gases (Grad 1949; Kogan
1969; Chapman & Cowling 1970); in fact, applying the Maxwell iteration scheme to
equation (5.38) of Grad (1949) leads to a similar constitutive relation for the heat
flux as in (6.19). In any case, identifying the coefficient of the temperature gradient
in (6.19) with the thermal conductivity, we find that the thermal conductivity,

_ 128p0ym

= 6.20
L T (6:20)
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is a second-rank tensor that is anisotropic (k. # &y, and «,, # 0). The anisotropy
of (6.20) is a consequence of the imposed shear field, since the °‘cross’ thermal
conductivity coefficient «,, is proportional to n ~ y. Therefore, (6.20) can aptly be
dubbed the ‘shear-induced’ anisotropic thermal conductivity tensor. One consequence
of this anisotropy is the well-known rarefaction effect of heat flow along a direction
orthogonal to the temperature gradient (Kogan 1969).

6.2.2. Thermal conductivity at Navier—Stokes order: verification
As a check, we consider the limit of vanishing temperature anisotropy, n — 0, for
which the following relations hold:

Mys=Tb.5, My=0 and Q)= 32(15_61_19)%. (6.21a—c)
Inserting these into (6.19) and (6.20), we obtain
=" ﬁa(1196:1 f— 15¢2) z?; = _Ke?;’ 6.22)
where
L6mvT (6.23)

© = /R0 (19 + de — 15¢2)

Equation (6.23) agrees exactly with the expression for thermal conductivity for a dilute
system of inelastic hard disks at NS order (Jenkins & Richman 1985a).

To summarize this section, we have found a generalized Fourier law (6.19) and
determined the explicit expressions for the elements of the thermal conductivity tensor
(6.20) in terms of e, n and ¢ for a sheared system of a dilute granular gas in two
dimensions. This should be extended to a dense granular gas to obtain an expression
for the thermal conductivity tensor for the whole range of densities.

7. Conclusions and outlook

We analysed the Grad-level moment equations (Grad 1949; Jenkins & Richman
1988) for the plane shear flow of smooth inelastic disks, with a goal to obtain
closed-form expressions for the non-Newtonian stress tensor, the collisional dissipation
rate and the granular heat flux. In this moment approach, an anisotropic Gaussian
(Goldreich & Tremaine 1978; Araki & Tremaine 1986), which is a function of
all components of the second moment of the fluctuation velocity (M = (CC)),
was taken as the single-particle distribution function representing the base state
of USF. The mass and momentum balance equations are identically satisfied for USF,
and the equation for the second-moment tensor of velocity fluctuations was solved
semi-analytically via a series expansion of certain collision integrals.

We derived closed-form expressions for all the transport coefficients (shear viscosity
W, pressure p and first normal stress difference .#7) and the collisional dissipation rate
2 in terms of five parameters: (i) density or area fraction v, (ii) restitution coefficient
e, (iii) shear rate R (see (3.10)), (iv) temperature anisotropy 1 (see (3.6)) and (v) angle
¢ between the principal eigenvectors of the shear tensor D = (Vu + (Vu)T)/2 and
the second-moment tensor M. The last two parameters ( and ¢) are zero at the NS
order (i.e. at the linear order in the shear rate) and are, therefore, a measure of the
non-Newtonian rheology of the medium. In the uniform shear state, we found that R, n
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and sin 2¢) scale with inelasticity € = (1 — e)!/? at the leading order (see (4.6) and
discussion in §4.4), and therefore the shear-rate dependence of transport coefficients
can be translated into their dependence on € in USF. The nonlinear nature of the
rheology was analysed by retaining terms up to the super-Burnett order (i.e. third order
in R and 7) in the transport coefficients, and our analytical expressions for transport
coefficients reduced to known exact expressions for the Newtonian rheology when they
were truncated at the NS order. The origin of the first normal stress difference was
shown to be tied to (i) the non-coaxiality (¢ # 0) of the principal directions of the
shear and second-moment tensors and (ii) the temperature anisotropy (n 7 0). Both
are shear-induced effects and appear at the Burnett-order approximation of transport
coefficients. In particular, both sin 2¢p and n are finite and are of the same order in
the dilute limit, leading to 4] #0 as v — 0.

From a comparison of analytically derived constitutive relations with those obtained
from the full numerical solution of moment equations (see figure 3), we showed
that, while the Burnett-order terms (i.e. second order in R and n) are sufficient for
accurate predictions of all transport coefficients (1, p and .4{) in the dilute limit,
the super-Burnett-order terms must be retained to achieve similar accuracy for dense
flows, especially at large dissipations. The resulting super-Burnett-order transport
coefficients were further validated via a comparison with the event-driven simulation
data for the USF of an inelastic hard-disk system. We found good agreement between
simulation and moment theory for p, u and 4] (figures 5-9) for a range of densities
spanning from the dilute to close to the freezing point. In contrast, the transport
coefficients obtained from an NS-order constitutive model (which is assumed to
hold at any dissipation (Lutsko 2005; Garzo et al. 2007)) were shown to deviate
significantly from both simulation and the moment theory even at moderate values of
the restitution coefficient (e ~0.9). The success of the anisotropic Gaussian to predict
transport coefficients in the uniform shear state seems to be tied to the fact that the
terms of all orders in the shear rate and the temperature anisotropy are implicitly
incorporated in the anisotropic Gaussian distribution function.

Going beyond the uniform shear state, we derived a constitutive relation for the
granular heat flux in the dilute limit (§ 6) using a perturbation expansion around the
anisotropic Gaussian and subsequently employing the Maxwell iteration scheme on
the balance equation for the contracted third moment (M,gs = (C,C?)) of fluctuation
velocity. We found that the granular heat flux follows a generalized Fourier law (6.19)
in which the gradients of the deviatoric part of the second-moment tensor drive a
heat current in addition to the standard Fourier conduction driven by the temperature
gradient. This non-Fourier contribution is a rarefaction effect, which appears at the
Grad-level (second order in gradients) description of the granular shear flow, and has
an analogue in rarefied molecular gases too (Grad 1949). The thermal conductivity
is found to be characterized by an anisotropic second-rank tensor (6.20), for which
we derived an explicit expression in terms of the restitution coefficient e, temperature
anisotropy n and non-coaxiality angle ¢. In the limits of  — 0 and ¢ — 0, we
recovered the expression for the scalar thermal conductivity that holds at the NS order.

In addition to considering the three-dimensional case of spheres, the present
anisotropic moment theory can be extended to include the full contracted fourth
moment (Myepp = (C*) as a separate hydrodynamic field, which is likely to recover
the density-gradient-dependent term in the constitutive relation for heat flux (Saha
& Alam 2014). This will also generate additional contributions (in terms of the
fourth velocity cumulant, o, = (C*)/(C*® — 1) to (i) the shear viscosity u (4.11)
and (ii) the dissipation rate & (4.24) that can be checked in future work. For the
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three-dimensional case, the existing Grad-level theories that are based on an expansion
around the isotropic Gaussian state (e.g. Kremer & Marques 2011) predict that the
second normal stress difference is zero, which is in contrast to both the particle
simulation data (Alam & Luding 2005a,b) and the Burnett-order theory (Sela &
Goldhirsch 1998) based on Chapman-Enskog expansion. On the other hand, the
theories based on the anisotropic Gaussian (Chou & Richman 1998; Lutsko 2004)
predict non-zero values for both normal stress differences. Therefore, the present
semi-analytical formalism of the anisotropic moment theory should be extended
to derive closed-form constitutive relations for spheres too. Another direction of
research would be to extend the present approach: (i) to include the rotational motion
for a rough frictional granular gas (Jenkins & Richman 1985a; Mitarai, Nakanishi
& Hayakawa 2002; Rongali & Alam 2014); and (ii) to consider a sheared binary
or polydisperse granular mixture (Alam er al. 2002; Lutsko 2004; Montanero et al.
2006). The present constitutive relations for the stress tensor (§4.2) and the heat flux
(§ 6) along with extended hydrodynamic equations (2.11)—(2.13) can also be tested in
dynamic simulations of granular flows, including the stability analyses of shear flows
(Gayen & Alam 2006; Shukla & Alam 2009, 2011a,b).
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Appendix A. Integral expressions for collisional flux and source terms
A.1. Collisional flux of momentum (Oyg) at second order

For a dense system of disks, the collisional flux of momentum can be expressed as
(Jenkins & Richman 1985a,b, 1988):

@aﬂ = @a [mCﬂ]

2
_ M // (g - k) *koks
gk>0

1
y / P (1, x — wok, ¢y, x + ok — wok) dw dk de, de,
0

2
g-k>0
1/2

X [P x+ (s — ;) ok, ¢y, x+ <s + ;) ok)dé dGdkdg. (A1)
—1/2

The latter expression has been obtained via a change of variables: (cj, ¢;, w) —
(g, G, &), withg=ci —¢,, G=(C; +(Cy)/2, £§E =1/2 — ® and dc; dc, = dgdG.
With the molecular chaos assumption and using the Taylor series expansion on
the single-particle distribution f, the two-particle distribution in (A1) can be
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simplified to

f(z) (Clsx+ (5—;> ok,cy, x+ <5+;) Uk)

n’g 1
= 4n2|;”| exp {—4Ma,}[(ga + Vo) (gs + V) + 4Gy — EVo) (G — SVﬂ)]} , (A2)

where |M|=det(M) and V=0k-Vu.
Combining (A1) and (A 2), we obtain

m(1 + e)n’gyo? 1 B
o = "t [ ke {5 [+ om0
12
X (/ /eXP{—[(Ga — EVM,, (Gy _gvﬂ)]}deé) dkdg
~12
_ pn(1 +e)goo?

1
R {= 3+ Vo4 Vi dkae
(A3)

16| M|!/?

To arrive at (A3), the identity [ [(-)dGd§ = n/[M| has been used. Carrying out
the integration over g, a compact expression for the collisional flux of momentum is
obtained as given by (3.13).

A.2. Collisional source of second moment (Ryp) at second order

Using the molecular chaos assumption and the Taylor series expansion of a single-
particle distribution about x, the two-particle distribution function can be written as

f(Z)(cls X = Uka C, x)
n’go
= €
472 | M|

1
Xp {—2M‘;ﬂl [(Co + Vo) (Cp + Vp) + (C"‘Cﬁ)]}

n*go |
= 4| M] exp {_4Ma,3 [(ga + Vo) (gs + Vi) + 2Gy + Vo) 2G4 + Vﬁ)]} . (Ad)

where the last expression involves a change of variables (¢, ¢;) — (g, G) and V =
ok-Vu.

The collisional source of the second moment can be expressed as (Jenkins &
Richman 1985a,b, 1988)

Nog

Naﬂ[mCaCﬁ]
- mza/// A(CyCp) fP(e1, x — ok, ¢2, x)(k - g) dk de; de,
g-k>0

mn’gyo

1
= S M| //k . A(CyCp)(g - k) exp {—4[(ga + VoM, (g5 + Vﬂ)]}
8>

x (/ exp {—i[(ZGa + V)M, (2G4 + vﬁ)]} dG) dk dg
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mon
= ﬁ// A(C.Cp)(g - k) exp [m+wm$w+wndmg
8K|M| / g-k>0
PV 8o 1 1
= — A . —= M .
EETI / /gM (C.Cp)(g k)exp{ 718+ V) aﬁ<gﬁ+vﬁ>]} dk dg

(A5)
The last expression results from f () dG = 7t/|M|. Note further that

A(CoCp) = —3(1 = )(g - k)’ kaky — 5(1 + €)(g - k) (g - ) ukp + kajp) (A6)

where j is a unit vector perpendicular to the contact vector k.
Inserting (A 6) into (A S5) and performing integrations over g, a compact expression
for R,4 is obtained,

Rop = Aup + Bup, (A7)

where A,z is given by (3.15), and the traceless part, lAiaﬁ, can be further decomposed
into

E(xﬂ :Eaﬂ +ﬁ‘(xﬂ» (A 8)
where
= 4(1 +e)pvgo(v) . C .
Eup = —m‘j/f"/uakﬁ+kodﬁ><1-M-k)(k-M-kWs(x)dk, (A9)
~ 2(1 4+ e)pvgy(v) ) ) .
Fup = 22080 [ Gkt ki) (V- M-I )
2(1 +e)pvgo(v) . . .
= T[3/2g0/(]otkﬁ+ka.]ﬂ)(k' (W+D)-M 1-J)|M|Q§()()dk
= OuyWp, + Opy Way + Gap, (A 10)
and
~ 2(1 +e)pvgo(v) . C . ~
Gop = % /(Jakﬂ + kejg)kej, (TD, e — Ds: M5, )& (x ) dk, (A11)

with M being the deviatoric part of M. The expression for §(x) is given by (3.18),
with x as in (3.20).

A.3. Third-order source term (Nypg) to calculate heat flux in the dilute limit

In the dilute limit, the third-order source term in (6.8) has the following integral
expression:

Rogs = N[mC*C,]
= sz/// ACC)fV (e, 0) [V (€2, 1) (g - k) dkdey dey. (A12)
g-k>0

Changing the variables of integration from (cy, ¢;) — (g, G), with dc, d¢; =dC,dC, =
dg dG and

A(CCy) = [(14e)*(g - k)’ Gpkphy — 5(1 — ) (g - b)°G,
—(1+e)(g-k)Gpkpga + gpka)], (A13)
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we can write

2
Nagp = m/// (1+e)*(g - k)’ Ggkgk,
82| M| gk>0

1
- ;0= ) (g k)’G, — (1 +e)(g - k)’ Gplkpga + gpka)

1
X exp {_4Ma_b] (4G.Gp + gagb)} [Xfi(g, G) + Yf2(g. G)]dG dg dk

R e,
Logp +Lagp + Lugp (A14)

where q
X = ol , A 15
2p(M.(3M?_+ 6Mfy + Myzy) + 2Mf_yMyy) ( )
_ qy (Mxx(3fo + 6szy + Myzy) + 2MX2yM_W) — quxy(3fo +2MM,, + 4Mf.), + 3M)2,y)
p|M|(M?.(3M2. + 12M§}, + 10M}2,y) + 4M§),(—2MHMW + 4M§y + 3M§y) + SM;‘y)

(A 16)
fi@g. G) = {38G. + ¢,G, + 4G} + 2¢.4,G, + 4G,G; — 43M,. + M,,)G, — 8M,,G,},
(A17)
3 2 1 2 3 2
fQ(g, G) = Egva + ngGy + 2Gy + gxgny + 2GxGy
N 6M,, (M, + M,,)> G
3M3, + M2 M + M M2, + 2M2 M,
203M* +9M, M> + M> M? +3M> M., + 16M> M, M, — 8M*)
_ xx WY xx yyo U xx yy xy~Y) xy G
3M3, + 6M2 M., + M2 M. 4 2M2 M, !
My (AM7, + 3M?, + 3M] + 2M M)
3M3, 4 6M2 M, + M2 M.+ 2M2 M,
3, 1, 3 2
X 2g)‘GX + 2gny +2G; + 8.8,G, + ZGXGy . (A'18)
Now using
/ exp{—G,M,,'G,} dG = =t|M|'"?, (A 19)
/ GG expl~Gi MGy} 4G = 2 | M, (A20)

/GiGijGlexp{_GaMahle}dG:Z|M|1/2(Miijl+MikA4jl+MilA/[jk)a (A21)

we carry out the integrations over G to obtain

2 2
1) mon (1 + e) 1 1 3
Lgs = TS M2 o exp _ZgaMab 8v ¢ (g -k)kgky

3 1
X |:X <2g%Mxﬁ + Eg)ZMAﬁ + gxgvaﬁ - (SMAJC + Myy)Mxﬁ - 2MxyMyﬁ)
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3 1 1 1
+Y {4g§Myﬁ + 7g)2cMyﬂ + 58:8Mp + E(MM +3My)M,5 + MM,

4 2
n 3M MM, + M,,)°
3M3, + 6M2 M, + M M2 + 2M2 M,
(M3, + MM} + M) M7, + 3M) M 4 16M; My M, — 8M;,)
B 3M3, + 6M2 M, + MM, +2M2 M,, v
_AMG, + 3ME M.y + 3M] My + 2M My, M.,
3M3 4 6M2 M. + M2 M 4 2M% M,

Yy

3 1 1
X (4g)2cMXﬂ+4g>2rMXﬁ+2gxgvaﬁ+2(3Mxx + M, )M + MxyMyﬂ> H dg dk,

(A22)
2 2
o man(l—e) ;
Iaﬁﬂ - 167‘[|M|1/2 k>oexp ab gb (g k)

3
X >g’M,
[ (g

zgme + 8:8Myo — BM . + M, )M, — 2MxyMyo,>

1 | |
ZgiMya + 5 8:8 Mo+ o (M + 3M, )My, + MM

3M Mo (M, + M, )3
3.M3 +6M2M + M, M2 +2M2M
BM?: +9M, M3 + Myva2 + 3M3 WM+ 16M2 M, — SM;‘y)
3M3, + 6M2 M, + M2 M., + 2M? MW -
B 4M3, 4 3ME M., + 3M] M.y + 2M My M.,
3M3 4 6M2 M., + M2 M, + 2M2 M

3 2
+Y ZgyMW +

1 1
gxgv ya+5(3Mxx + Myy)an + Mxvaa) }:| dg dkv

3 Mt g M4
X X(l Y X
Z8 Mt 8, 2

(A23)

2
3) mon“(1+e) 1 _
L = T g, O\ M 80+ g5k

3 1
X |:X (2 xﬂ + 2gy xB +gxg\ — (M., +M\))Mxﬁ ZMXYMyﬁ)

3 1 1 1
+7Y {433Myﬁ + *giMyﬂ + 58:8Mp + E(Mxx +3My)M,5 + M yM,g

4 2
3Mxnyﬁ (Mxx + )3
+
3M3 + 6M} M, + M M} + 2M} M,,
B (M3, + M M} + M M7, + 3M) M. 4 16M; My M, — 8M;,)
3M3, + 6MA M., + M2 M, + 2M2 M, yﬂ




Stress, dissipation and heat flux in shear flow of inelastic disks 289
_ 4M§} + 3MixMX) + 3M§nyy + 2M)UCMynyy
3M3, + 6M2 M. + M2 M. + 2M2 M,

3 1 1 1
X <g§Mxﬂ + 7g}2MXﬁ + 7gxg)'Myﬁ + 5(3Mx,\ + ny)Mxﬂ +M¥)’My,3) }:| dgdk

4 4 2
(A24)
To carry out the integrations over g, we need the following results:
1
/ (g k)’ exp {—4gaMab‘gb} dg = 16x'/|m|' /29772, (A25)

1 1
/g)%(g-k)3 exp{—4g,,Mablgb} dg = 1287!/2|m)'/2p !/ {ﬁkx+wky}2+Z|M|k§ ,
(A 26)
1
/gxgy(g'k)3 exXp {_4gaMublgb} dg
1
= 12872 M| 20 P[0k + why Oy — i) — 21 Mlkcks ], (A27)

1 1
/gf(g-k)3 exp{—4gaMablgb} dg = 128%'/?|m|'/291/2 {ﬁky—wkx}2+1|M|k§ ,

(A 28)
1
/ g:(g - k)% exp {—4gaMa,,‘gb} dg = 1672 |M|' 92 {9k, + k), (A29)
1
/ gy(g k) exp {—4gaMa,,‘gb} dg = 1602 |\M|"*9 29k, — k), (A30)
(N
/gi(g-k)zeXP {_4gllMablgb} dg
3271/2|m|1/2
=T iz (Oke + @ k)[4 ke + @ ky) + 3 MIKS ], (A31)
I
/ g2g,(g k) exp {—4gaMab1gb} dg
3271/2 M| /2 ,
= T[Mﬂky —wk Ok + @wky}” — 2|M|koky (D ky + o ky}
+ Mk {9k, — k., (A32)
1
/ 8:8;(g - k)* exp {—4guMab]gb} dg
322 | M| 2
=5 Bkt ok ok - wke)? — 2|M|k.k, {0k, — k)
+ MOk, + Tk}, (A33)
1
/ g, (g -k)” exp {—4gaMab1gb} dg
32 1/2 M 1/2
=2 VI k419, — wk, ) + 3IMIER], (A 34)

912



290 S. Saha and M. Alam

where
v=k-M-k=T( —ncos20) and @ = —Tnsin20, (A 35a,b)
and the contact vector k (cf. figure 2) is given by
cos(0 + ¢ + Im
- [sin((e—i-z—i-zn)) ) (A36)
Note that
(Ok, + wky) = T[cos(d +¢ + 37) —ncos(d — ¢ — 1], (A37)
(Vky, —wk,) = T[sin(6 + ¢ + %Tr) +nsin(@ — ¢ — %n)], (A38)
and to within an error of O(n®) we have
92 ~ TY2(1 — 3ncos 260 + 2n” cos® 26), (A39)
92 ~ T2(1 — 1ncos 20 — in* cos’ 20), (A 40)
912 ~ 1+%r} cos 2?1: %,IZCOSZ 29. (A4l)

Using the above results we can carry out the integrations over g and k to yield
3p(1 +e)2T'?

-
xBB 320p0751/2(1+772+774)
x [{96 + 114n* + 118n* — Tn°® + 1 sin 2¢ (24 — 5n* + 201 }q.
+ {n cos 2¢(—24 + 5n* — 20n")}q,1, (A42)
3p(1 + €)*T"/?
14, = 20 (=24 + 51> — 200"} .
BB 32pp0n‘/2(1+n2+n4)[{ncos ¢(—24+5n n)}q
+1{96 + 114n* + 118" — 7n° — 5 sin 2¢(24 — 5n* + 201}, ], (A 43)
3p(1 —eH)T'? .
19 = — 16 4+ 219% + 210" — n° + 2n(1 — n*)? sin 2¢}qx
BB 8ppan1/2(1+n2+n4)[{ +2In"+21n" —n” + 2n(1 — n°)" sin 2¢}q
+{=2n(1 — n*)* cos 2¢}q,1, (Ad4)
3p(1 —eA)T'?
1(2) - _ _2 1_ 2N\2 2 .
VB8 8pp0‘1‘[1/2(1+n2+n4)[{ n(l —n")"cos 2¢}q
+{16 +21n* +21n* — n° — 2n(1 — n*)*sin 2¢}q, ], (A 45)
® p(1+e)T'?
B 320p0751/2(1+772+774)
x [{704 + 804n% + 9337* 4+ 731n° 4 1 sin 2¢(208 + 1571 + 1847n* + 1051°)} g,
+ {—1 cos 2¢(208 + 157n* + 184n* + 1051 }q,], (A 46)
®3) p(1+e)T"? 2 4 6
O = — — 2¢(208 + 157 184 1057°)}q,
VBB 32pp0n1/2(1+n2+n4)[{ n cos 2¢ (208 + 157" + 184n™ + 1057°) }q
+ {704 + 804n* + 933n* + 731n° — 1 sin 24(208 + 157 + 184n* + 1057°)}¢,1.

(A47)

Substituting (A 42)-(A47) into (A 14), we obtain the final expressions (6.13)—(6.15)
for the third-order source term.
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Appendix B. Series representation for collision integrals

Recall from § 3.2 that the integration over the contact vector k is transformed into
the integration over another variable 6 € (0, 27) (the angle between k and |M,), the
eigenvector corresponding to the smaller eigenvalue of the second-moment tensor M;
cf. figure 2). The expressions for the integrals appearing in (3.27)—(3.29) are

2m
%ﬂy(n,R,¢)5/ cos® 20 sin” 26 (1 — n cos 20)"*F(n, R, ¢,0)do, (B1)
0

27
/aﬂy(n,R,qs)E/ cos® 20 sin” 26 (1 — 5 cos 20)"*&(n, R, ¢, 6)d0. (B2)
0

Now substituting the infinite series representation for § and &, as given in (4.1) and
(4.2), into above integrals, a term-by-term integration can be carried out for both
integrals .75, and _Z.s,. For example, the series representation for .7y; is

2r(n+1)

= 3
Hips (0, R, $) = 3R cos 20+ Y AC, 2m)m!
2 n!

n=0

> 1 nl/2(1 cos4p)I” 1
—|—12R2ZA *,2]’1 772,, ( +n+n ¢) (n+ 2)
2. \2 (n+ 1)

3 3
+ 8R* [475 + 6—4nn2(3 +2cos4p) + 0| + OR), (B3)

T2 cos 2 (n+ 3)

1 ad 1
Foo(n, R, ¢) = 5n3/2—4RZA(2”+*’2”+1)’72"“

s 2 (n+2)!
> 24n+m—1)cosdp}(n+1)
2 2n 2
2R ;77 (n+2)!

8 3 - 3 2n+1
—gR ;A<2n+2,2n+l)n

/2 cos 2¢{6 + n + (n — 3) cos 4p} " (n + 3)

13! +O0(R’), (B4

where
T'a+1)
Bl (a+1—p)
with similar expressions for other integrals of s, and _Z,,.
Each of the above infinite series at the third-order approximation in R and 7, with
error O(R"n™) and (m+ n) > 4, can be simplified to

A, p) = (B5)

Hs(n, R, ¢) =21 4+ 121R? + 37032nR cos 2¢ + %nnz + O(R™n"),
Hi3(n, R, §) = —313?R cos 2¢ — 37ty — 67°°R’ cos 2¢ — 3R> (2 + cos 4¢),

Hai3(n, R, ) =37 R sin 2¢) + 67°°R’ sin 2¢ + nnR* sin 4, (B6)

Hon(n, R, §) =70 — émf + 3nR*(2 — cos 4¢),
H11(n, R, ) = —3mR? sin4¢,
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Hoo(, R, ¢) = 372 — 1Ry cos 2¢ + w*/2R*(2 — cos 4¢)),
1100, R, ¢) = LRy sin2¢ — 73> R? sin 4¢p,
How(n, R, ¢) = 47R sin 2¢ — 72 nR? sin 4¢ + 7Ry’ sin 2¢ + 4nR’ sin 29,

B7)
Faoo(n, R, ¢) = 372 — 37tRy cos 2¢ + */2R*(2 + cos 4¢)),
J10(n, R, ) = —41R cos 2¢ 4+ 1/*nR*(2 + cos 4¢) — TRy’ cos 2¢ — 4TR’ cos 2¢p,
J102(n, R, §) = —4mR cos 2¢ — 11¥/2n + 37Rn’ cos 2¢ — 4R’ cos 2¢),
Soin(n, R, §) = 4R sin2¢ — £ Ry’ sin 2¢ + 47R’ sin 24, (BY)

Jon(n, R, ¢) = 1*/* + 4R* 7%/ 4 21nR cos 2¢.

Removing the underbraced terms yields second-order series approximation for
the above integral expressions. Note that some of the above quantities have zero
contribution at third order, and hence they are equal at both second- and third-order
approximation.

Appendix C. Evaluation of stress tensor for uniform shear flow

Here we present explicit expressions for the transport coefficients of the USF as
obtained from series solutions. The components of the dimensionless stress tensor are

PXX
P;ckx = 2
ppUR
= <(1 +nsm2¢)+M[/ooz(n,R ®)
— COS 2‘15/012(77, R, ¢) —sin 2‘15/102(77» R, ¢)]) ) Ccn
. _ Py
B = ue
1
= ((l—nsm2¢)+g0(+)[/ooz(n,R ®)
+ cos2¢ _Zoi(n, R, ¢) +sin2¢ _Z102(n, R, ¢)]) ) (C2)
P* — PX)’
w :OpUR2
vgo(l + )
= vT" ( 1 cos2¢ + T on [cos 2¢f102(77s R, ¢) — sm2¢/012(n, R, ¢)]>
(C3)

where p, is the density of particles, and the reference velocity scale for non-
dimensionalization is Ur = 2yo. Substituting the power-series expressions for
Hoz, Forr and 7\, as given by (B8) in appendix B, we obtain the super-Burnett-
order, O(R?), expression for the stress tensor in §4.2.
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The pressure p = (P, + Py,)/2 is calculated from the average of (C1) and (C2),
which can be further decomposed into its kinetic and collisional parts:

s__ P * Lk vgo(l +e)
p _m_pk +pC—VT 1+Tf002(7],R, ¢) s (C4)
Pe=vT, (C5)
. veo(l+e) .
pczgonTT /002(7’],R, d)) (C6)

The dimensionless shear viscosity and its kinetic and collisional components are given
by

* _PX)’

n= = [+
ppUR2 ¢
v vgo(l+e) .
= 5 [ncos 26 — ZE T (cos 26 Fin(n. R, @) = sin 26 Foa (1. R $)}
(C7)
v cos 2¢
. _ , (o
My 64R? (C?®)
. v2go(1 +e) )
He =~ 10520 (. R.§) —sin26_fon(n. R. §)]. (C9)

The granular temperature (3.5) is given by
M, +M,, T 1
= >

T*

T = — = —-
2 Ug> 64R?

(C10)

For the full numerical solution of the moment equations (3.29)—(3.31), the transport
coefficients are calculated from (C 1)—(C9) by evaluating the integrals _#yp, _Z10> and
Hoiz in (B2) by using standard quadrature rules.

On the other hand, for the series solution, (4.3) or (4.4) (at second order or third
order, respectively) are solved for n, R and ¢. Next the series expressions for
Soors o2 and _Zyo ((B8) from appendix B) are inserted into (C 1)-(C9) in order
to calculate the transport coefficients.

Appendix D. Constitutive model of Navier-Stokes order (Lutsko 2005)

The constitutive model for an inelastic hard-disk system is taken from Lutsko
(2005), which is almost identical to that of Garzo et al. (2007) up to the first Sonine
approximation:

_ 16 —7v
C16(1 —v)?’
16(1 —e)(1 —2¢%)
0y = s
57 —25e¢ 4+ 30(1 — e)e?
@, = go(l —%(1 —e)(1 —3e)), (D3)
§*=%go(1 —é). (D4)

8o DD

D2)
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The dimensionless pressure with its kinetic and collisional parts are given by

pr=vI*(1+ (1+e)vgy) =p; +p;. (DS)
=T, (D6)
pi=1+e’gT", (D7)

and the dimensionless viscosity is

W=+l (D8)
. T, (1—1(1+e)(1—3e)vg)
Mk=£T e SRl U (DY)
8 (@5 — 3¢
= ﬂT*l/z (I+e){l — 11+ e)1 —3e)vgo}vgo N 4(1+e)(1 — fzon)v?go
<8 2pp = 5¢%) T

(D10)

The expression for the dimensionless temperature follows from the energy balance
equation:

T (1 — (1 +e)(1 —3e)vgo) (1 4 5(1 + e)vgo) 1 — o D11)
32(1 — e)(1 + Fen) (@) — 52 8(1—e)(1+ jp0)
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List of Corrections in Updated Thesis

The thesis has been updated and reorganized following the suggestions of two reviewers.
Chapter 1

1. 1um is changed to 1mm.
Chapter 2

1. In expressions (2.51)-(2.52), the colour is changed to “blue”.
2. Text quoted from the work of Garzo (2013) is modified and made in italic font.

3. A footnote is added to explain the word “dense” in page 19.

Chapter 3

1. Appendices A-H have been renamed as appendices F-M and pushed to the end of the
thesis.

Chapter 4

Major changes are made in this chapter. Initially in the first draft of my thesis I mistak-
enly assumed terms like 'g—if are of third order in shear rate. But actually it is a Burnett order
term (second order in shear rate) and therefore should appear in the Burnett order equations
of second moment balance and consequently there will be changes in the super-Burnett and
super-super-Burnett order equations as well. This inclusion in the Burnett order approxima-
tions of the second moment balance produces quantitative and qualitative improvement of the
analytical solutions at various orders which are manifested in the figures for comparison with

full numerical solution. In summary the list of changes made in chapter 4 are as follows:

1. The Burnett order equations (4.56) are modified and therefore there is some modification
in Sec 4.5.

2. Related results for dry granular gas of Chapter 3 are recovered and a new subsection
4.5.1 is devoted to this.

3. The super- Burnett and super-super-Burnett order equations are modified and are listed

in subsection 4.5.2.
4. The expression for shear viscosity for a dry granular gas is derived in 4.6.2.

5. Figures 4.3-4.12 are updated.
Chapter 5

1. Appendices [-M are renamed to Appendices A-E.
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