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Synopsis

A brief introduction about dry granular materials and gas-solid suspensions and their im-

portance, along with the objective and motivation of the present research work, are given in

Chapter 1. The remaining chapters of this thesis are sub-divided into two parts: (i) Part-A and

(ii) Part-B. In Part-A, an extended hydrodynamic theory for dry granular materials and its rhe-

ological behaviour under plane shearing conditions are analysed in Chapter-2 and Chapter-3,

respectively. In Part-B, the related analyses for gas-solid suspensions are described in Chap-

ters 4 and 5.

The major focus of the present work has been to develop a complete theory for “rapid”

granular and gas-solid suspensions that includes normal-stress differences and shear-thinning

and shear-thickening behaviour, and the theory must be valid for the whole range of density

spanning from the dilute limit to the (close to) freezing density. The theoretical approach

adopted in this thesis is based on (i) the Enskog-Boltzmann equation of dense-gas kinetic

theory and (ii) the moment-method of Harold Grad. The present theory has been validated

via comparisons of transport coefficients with (i) the previous theories and (ii) the existing

particle-level simulations.

In Chapter 2, a 14/10-moment theory for a dense granular gas using Grad’s moment

method is developed. An effort has been made to develop a complete theory that can be

applicable to granular flows for any choice of inelasticity and particle volume fraction. An

expansion around the Maxwellian is performed to obtain the non-equilibrium distribution

function. A Grad-like moment theory has been developed in terms of fourteen field vari-

ables: (i) the mass density (ρ), (ii) the macroscopic flow velocity (uuu = 〈ccc〉), (iii) the kinetic

stress (PPPk = ρ〈CCCCCC〉 ≡ ρMMM), (iv) the kinetic heat-flux (qqqk = ρ〈CCCC2〉) and (v) the contracted

fourth-moment Pii j j. The collisional source and flux terms at different orders are calculated by

including all nonlinear terms arising from these hydrodynamic fields and their gradients. The

collisional dissipation or the cooling rate is derived for the whole range of volume fraction

that includes second-order derivatives of the hydrodynamic variables as well. A generalized

Fourier law for granular heat flux is established using Maxwell-iteration technique, leading

to a 10-moment theory in terms of (i) the mass density (ρ), (ii) the macroscopic velocity (uuu)
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and (iii) the kinetic stress (PPPk). It is shown that the thermal conductivity is described by an

anisotropic-asymmetric tensor and the anisotropy follows from the presence of higher-order

nonlinear terms in the respective collisional source/production term ℵαββ ; the gradients of

density and kinetic stress also drive a heat current; the above features of heat-flux vector are

distinct signatures of the non-Fourier rheology of the medium. Finally, the 14-moment theory

is applied to analyse the uniform shear flow of a dense granular fluid; the analytical expres-

sions of transport coefficients are determined as functions of the coefficient of restitution (e)

and the solid volume fraction (ν). The theoretical results on pressure, shear viscosity and two

normal-stress differences are compared with data from previous molecular dynamics (MD)

simulations of granular shear flow. It is found that while the pressure and viscosity are well-

predicted by the present theory for a wide range of density, there are large quantitative differ-

ences between theory and simulation for the prediction of two normal-stress differences. The

resolution of the latter discrepancy is attempted in Chapter-3 that follows a different ansatz on

the distribution function.

In Chapter 3, the rheology of the steady uniform shear flow of smooth inelastic hard-

spheres is analysed using an anisotropic Maxwellian distribution function; the latter ansatz

follows from the maximum entropy principle (E. T. Jaynes, 1957, Phys. Rev.) and seems to

be appropriate for a granular gas for which an equilibrium-state does not exist. For the simple

shear flow, the second-moment tensor MMM is assumed to be anisotropic, characterized by three

parameters: (i) the non-coaxiality angle (φ , the angle between the principal eigen-directions

of MMM and the shear tensor DDD), (ii) the shear-plane temperature-anisotropy (η , the difference

between the principal eigenvalues of MMM on the shear plane, ∝ Tx − Ty) and (iii) the excess

temperature (λ 2 ∝ T −Tz) along the vorticity direction. The balance equations governing the

kinetic stress tensor (or, the balance of second moment) has been solved using anisotropic

Maxwellian as the single particle distribution function. An exact analytical solution at the

Burnett order (second order in the shear rate) and a perturbative solution at the super-super-

Burnett order (fourth order in shear rate) have been derived leading to analytical determination

of the first (N1) and second (N2) normal-stress differences and other transport coefficients.

The theoretical expressions for the two normal-stress differences, along with those of pressure

(p) and shear viscosity (µ), are compared with (i) the full numerical solution of the second-

moment equation and (ii) the previous MD simulation data. An excellent agreement with the

simulation data is found when the solutions are considered at the super2-Burnett order, valid

for the whole range of volume fraction spanning from the dilute limit (ν → 0) to the freezing

point density (ν → 0.5). The origins of two normal-stress differences are discussed in terms

of the non-coaxiality of the eigen-directions of the stress and strain tensors and the excess
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temperature in the vorticity direction. This chapter is based on two recently published papers

in J. Fluid Mech. [(i) vol. 757 (2014), pp. 251-296 and (ii) vol. 795 (2016), pp. 549-580].

In Chapter 4, the normal stress differences and other transport coefficients are analysed

for the simple shear flow of a dense gas-solid suspension of inelastic hard spheres suspended

in a Newtonian gas of viscosity µg and experiencing a Stokesian drag force; this work is a

direct extension of chapter-3 (St → ∞), including the effects of interstitial gas (St = finite).

The viscous heating from the boundaries is compensated by dissipation via two mechanisms

(i) the inelastic collisions between particles characterized by a coefficient of normal restitu-

tion e (0 < e < 1) and (ii) the drag force which the surrounding fluid exerts on the particles.

Rheology of the particle phase is analysed with anisotropic-Maxwelliian as the single-particle

distribution function as in Chapter-3. The pressure, shear viscosity and the first and second

normal-stress differences are computed for the whole range of density (ν) and inelasticity (e),

with the scaled Stokes number (Std = St/Rdiss) varying from a small value (∼ 10) to the dry

granular limit of St → ∞. An exact solution of the second-moment balance of velocity fluc-

tuations at the Burnett order (i.e. second order in the shear rate) has been derived, leading

to analytical expressions for the first (N1) and the second (N2) normal stress differences. Ex-

panding around the Burnett order solution, a perturbative solution at the super-super-Burnett

order (i.e. fourth order in the shear rate) is also derived which is found to improve the second-

order solution. It is found that the first normal-stress difference is maximum in the dilute

regime and tends to zero in the dense limit and remains positive throughout; on the other hand,

the second normal-stress difference is negative in the dilute limit, undergoes a sign change at

some finite density and becomes positive in the dense limit. The effect of the gas-phase is

found to (i) decrease the values of both pressure and shear viscosity, and (ii) increase the mag-

nitude of both normal-stress differences. The location of the critical density, where the second

normal-stress difference changes its sign, is determined and plotted as a critical surface in the

(ν,e,Std)-plane. Finally, as the limit of St → ∞ (µg → 0) is approached, the results for the dry

granular flows of chapter 3 are recovered.

In Chapter 5, the dilute limit of a sheared gas-solid suspension is reanalysed, with a fo-

cus to understand the hysteresis behaviour in the particle phase rheology (H.-K. Tsao & D. L.

Koch, J. Fluid Mech, 1995, vol. 296). Another focus of this chapter is to analyse and quantify

the anisotropy of the second-moment tensor, MMM = 〈CCCCCC〉, of fluctuation velocity, and subse-

quently tie and explain the rheological/transport coefficients of a sheared gas-solid suspension

in terms of the anisotropies of MMM. In analysing this problem three qualitatively different states

of solutions are found. Firstly, the “quenched” state, in which the individual particles follow

the local fluid motion, corresponds to a very low value of particle agitation and appears be-

low a critical value of Stokes number Stc2(ν,e); this state is followed by an unstable state
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of solution that exists over a range of intermediate Stokes numbers Stc1 < St < Stc2. Finally,

the agitated state corresponds to a very high value of temperature which is termed as the “ig-

nited” state and exists beyond a critical value of Stokes number Stc1(e). The phase diagram

is constructed in the three-dimensional (ν,St,e)-space that delineates the regions of ignited

and quenched states and their coexistence. Analytical expressions for the particle-phase shear

viscosity and the normal stress differences are obtained, along with related scaling relations

on the quenched and ignited states. At any e, the shear-viscosity undergoes a discontinuous

jump with increasing shear rate (i.e. discontinuous shear-thickening, DST) at the “quenched-

ignited” transition. The first (N1) and second (N2) normal-stress differences also undergo

similar first-order transitions: (i) N1 jumps from large to small positive values and (ii) N2

from positive to negative values with increasing St, with the sign-change of N2 identified with

the system making a transition from the quenched to ignited states. It is shown that for both

granular and gas-solid suspensions, the excess temperature (T ex = T = Tz ∝ λ 2) along the

vorticity direction is responsible for N2 6= 0, while the shear-plane anisotropies (φ and η) are

responsible for N1 6= 0.

Finally, the conclusions are drawn in Chapter 6 with an overall summary of the thesis.
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Chapter 1

Introduction

Granular matter is a collection of large number of solid particles where the particle size ranges

from 1mm to meters (Saturn’s ring) and it is found everywhere in nature (avalanche, debris

flows, Planetary rings, etc.) as well as in industry (Jackson 2000; Rao & Nott 2008).

At rest the ‘dry’ granular materials (for which the effect of interstitial fluid can be ne-

glected) behave like a solid, having a compressive strength but no tensile strength, and hence

dubbed a ‘peculiar’ solid. On the other hand, a collection of particles can flow like a liquid as

in an hour-glass or behave like a gas under strong shaking (Forterre & Pouliquen 2008; Rao

& Nott 2008). In the case of a granular gas (Campbell 1990; Goldhirsch 2003; Brilliantov

& Pöschel 2004), the particle collisions are inelastic, leading to the dissipation of the kinetic

energy of colliding particles. The inelastic dissipation is known to be the progenitors of many

interesting properties of a granular fluid, and is also responsible for the loss of ‘microscopic’

reversibility at the level of Liouville and Boltzmann equations that calls for non-standard sta-

tistical mechanics (Jenkins & Richman 1985a; Sela & Goldhirsch 1998; Garzó & Dufty 1999;

Lutsko 2005; Rongali & Alam 2014) to develop coarse-grained theories for flowing granular

matter. Because of its rich properties it is still an interesting and unexplored topic of research.

Granular matter is found in all three forms of matter viz. solid, liquid and gas. It can

behave like a solid when undisturbed and can support large load or can form a pile. The

frictional bond among the particles support that large load (Campbell 1990). Once this bond

is overcome because of an external shear or some other form of disturbance, the system will

start to flow. The initial stage of the flow will be movement of the particle-blocks relative to

one another and this stage is the quasi static state. When the external disturbance is increased

beyond a certain limit, the system reaches to the rapid-flow regime. Where the system is under

a very strong external force, each particle moves randomly and independent of each other, as

it happens in a gas flow. Therefore granular matter can work as a solid when undisturbed and

can flow in response to an external influence. For example the sands in an hour glass flows



2 Introduction

Fig. 1.1 Granular matter appears as solid and fluid phases simultaneously.

under gravity. Hourglass is an example where quasi-static, fluid and solid, all three phases

of granular matter, can be seen. The flow through the orifice is the signature of a fluid, the

sand-slides above the orifice shows the quasi-static behaviour whereas the stored sands at the

bottom is the form of a solid (see figure 1.1).

Interestingly the flow rate through the orifice of an hour glass is independent of the height

(Jaeger et al. 1996) of the substance above. This is unconventional and the behaviour is exactly

opposing the characteristic of an usual fluid. This property of granular fluid being flowing at

an almost constant speed is used in hour glasses. It is the contact forces between the grains

and the static friction with the glass of the container enables the wall to support the extra load

of the sand above (Janssen 1895). Because of it’s stature and exhibition of properties of all

three forms of matter, granular matter can be thought of as a different state of matter in it’s

own right.

Once the external influence is increased by means of increasing the shear rate, granular

matter comes out of the quasi-static regime and flows like a fluid. At this stage an individual

particle flows independent of others and it is called a rapid granular flow. This thesis addresses

the behaviours of rapid granular flow in particular, when the substance is uniformly sheared.

Therefore, a driven system of macroscopic/non-Brownian particles (e.g. driven by external

vibration or shearing) resemble a molecular gas in which the particles move around randomly

but they loose energy upon collisions, with the latter being a major difference of the granu-

lar gas from its molecular counterpart. Such a non-equilibrium state of agitated particles is

actually known as rapid granular fluid (Goldhirsch 2003) for which the dense gas kinetic the-

ory (Chapman & Cowling 1970) has been appropriately modified and successfully used for a

variety of flow configurations over the last three decades (Savage & Jeffrey 1981; Jenkins &
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Richman 1985b,a; Sela & Goldhirsch 1998; Brey et al. 1998; Garzó & Dufty 1999; Brilliantov

& Pöschel 2004; Rao & Nott 2008).

When a granular matter is rapidly sheared, each individual particle moves randomly inde-

pendent of the presence of the neighbouring particles, it collides with other particles and the

collisions are instantaneous, therefore the motion of these grains in a granular system can be

thought of analogous to the thermal motion of the molecules in a molecular gas. The analogy

between the random motion of the granules and the thermal motion of the molecular gas is

so onto mapped that, all the definitions used in statistical mechanics of molecular gases have

been employed to analyse the properties of a flowing granular media. Following the defini-

tion of temperature in molecular gases, the granular temperature is also defined as the mean

of the square of particle’s fluctuation velocity (Ogawa 1978; Campbell 1990). One point we

must emphasize here that this granular temperature is not a thermodynamic temperature, it

is not possible to maintain a constant granular temperature just by keeping it in contact with

an isothermal heat hub albeit both the thermodynamic and granular temperatures have the act

similar in their respective systems.

Despite the similarities between the molecular and granular gases there are certain differ-

ences also. The first one is the difference in size. The diameter of the particles in a granular

system varies from 1 µm to some meters (for example, in Saturn’s ring), much much larger

than the diameter of an atom or molecule. The second and most important difference is that

the collisions in a granular system are inherently “inelastic” leading to a continuous energy

dissipation (Kadanoff 1999; Brilliantov & Pöschel 2004; Goldhirsch 2003). Because of this

continuous energy dissipation, granular system needs a constant supply of energy in order to

keep itself alive. If the energy source is stopped the system becomes dead. It can be experi-

enced in our daily life examples. The grains kept in a container shows random temperature like

motions when it is shaken but immediately becomes inert if the shaking is stopped. Therefore

we have to constantly shake it in order to maintain the motions of these grains. The inelastic

nature of the particles leads to so many interesting implications regarding the behaviours of a

granular gas which will be discussed in the main chapters of the present thesis.

1.1 Coefficient of Restitution

The inelastic collisions between the grains are characterized by a coefficient of normal restitu-

tion e. It relates the post (ccc′1,ccc
′
2) and pre-collisional (ccc1,ccc2) velocities of disks/spheres labelled

by 1 and 2 as (Brilliantov & Pöschel 2004; Rao & Nott 2008)
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Fig. 1.2 Collision sketch of pairs of inelastic disks and spheres.

ccc′1 = ccc1 −
(1+ e)

2
(ggg ··· kkk)kkk

ccc′2 = ccc2 +
(1+ e)

2
(ggg ··· kkk)kkk





, (1.1)

where ggg= ccc1−ccc2 denotes the relative velocity of the colliding pair before the collision and kkk is

the unit contact vector along the line joining the centres of the particles (figure 1.2). This coef-

ficient of restitution mainly separates a granular gas from the molecular gas and is responsible

for some rich features that granular matter possesses.

In general, for a granular gas of realistic particles, the coefficient of restitution is a function

of the relative velocity e ≡ e(ggg) and the explicit functional dependence on g must be worked

out. Many attempts have been made (Schwager & Pöschel 1998; Ramírez et al. 1999) to

derive a general closed form expression for e(ggg). The most compact expression can be found

in Brilliantov & Pöschel (2004), which is an infinite series representation of the form:

e = 1−Ag1/5 +Bg2/5 ∓· · ·, (1.2)

where A,B, · · · are functions of the Young modulus Y , Poisson ratio, mass density ρ , etc. But in

this present thesis, for simplicity, we have assumed e to be a constant that belongs to the closed

interval [0,1]. The supremum of the set (e = 1) corresponds to a conserved system, where

collision occurs elastically and the infimum (e = 0) corresponds to a perfectly sticky collision,

where complete energy of the relative motion is lost and the particles are bound together after

a collision. Therefore the open interval (0,1) corresponds to a dissipative system and causes

energy loss.

We have also assumed that the particles are smooth in nature, which means that there is

no change in the tangential direction of the relative velocity during a collision and the only
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change along the normal direction is governed by

(ggg′ ··· kkk) =−e(ggg ··· kkk)
(ggg′× kkk) = (ggg× kkk)

}
, (1.3)

where ggg′ = ccc′1 − ccc′2 is the relative velocity after the collision. There are some studies that deal

with the rough particles (Lun 1991; Abu-Zaid & Ahmadi 1993; Luding et al. 1998; Cafiero

& Luding 2000; Gayen & Alam 2006, 2008, 2011; Rongali & Alam 2014) including the spin

degrees of freedom. The particles that actually appear in real world are rough and frictional,

therefore system composed of particles like these must deserves an attention. Several scientists

have studied granular system of rough particles via theory (Alam & Nott 1997; Brilliantov

et al. 2007; Goldhirsch et al. 2005; Huthmann & Zippelius 1997; Jenkins & Zhang 2002;

Gayen & Alam 2006; Santos et al. 2011) and simulation (Cafiero et al. 2002; Gayen & Alam

2008, 2011). In their studies of rough particles the collision model includes energy loss due

to changes in the normal as well as tangential components of momentum of the colliding

particles, and relative velocity changes according to the rule (Pidduck 1922; Maw et al. 1976):

(ggg′ ··· kkk) =−en(ggg ··· kkk)
(ggg′× kkk) =−et(ggg× kkk)

}
, (1.4)

where

ggg = ccc1 − ccc2 +
(σ

2

)
kkk× (ω1 +ω2), (1.5)

is the relative velocity before the collision. In equations (1.4-1.5) ω1, ω2 are the angular

velocities of particles levelled with 1, 2 respectively and en, et stand for the coefficients of

normal, tangential restitution respectively. The parameter et measures the particle’s surface

roughness and belongs to the interval [−1,1], it accounts for the amount of change in the

tangential direction during a collision. The boundary points et = −1 and et = 1 correspond

to perfectly smooth and perfectly rough collisions respectively. As in the present thesis we

are interested in granular flows for smooth particles we must take et =−1 and replace en = e,

for which the collision dynamics given in (1.4) simplifies to the equation (1.3). Polydispersity

is not a concern of the present thesis although it has great practical importance (Ottino &

Khakhar 2000) and some scientists have studied them (Garzó & Dufty 2002; Montanero &

Garzó 2003; Alam & Luding 2002, 2003b; Trujillo et al. 2003; Serero et al. 2006) in recent

days. Some people have worked with non-spherical grains as well (Buchholtz et al. 1995;

Pöschel & Buchholtz 1995). But for the present thesis we focus on the simplest model that

consists of identical smooth spherical particles following hard sphere binary collisions.
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In general the interstices between the solid particles are filled with air or with some other

fluid and therefore, technically, the granular matter is a multiphase system. However when the

density ratio between the fluid phase and the solid phase becomes very low, the presence of

the interstitial fluid can be neglected and it is called the “dry” granular system. On the other

hand, when the presence of the ambient fluid becomes important, the particle fluid interaction

plays a significant role in momentum transport. The latter class of system is considered to be

a suspension and the presence of an interstitial fluid leads to interesting physical phenomena.

This thesis deals with both of these classes of systems, the dry granular flows and gas-solid

suspensions. In the fast two chapters of this thesis, we have concentrated in analysing the

dry granular system, while the last two chapters are devoted to analyse flows of gas-solid

suspensions.

1.2 Non-Newtonian Rheology: Normal Stress Differences

and Rate Dependent Viscosity in Granular Fluids

In a Newtonian fluid the shear stress varies linearly with the shear rate, passing thorough

the origin in a response to an external disturbance. The proportionality constant, called the

coefficient of shear viscosity or simply the viscosity, is the measure of fluidity or the measure

of fluid’s ability to resist deformation in response to shear stresses. In general for a Newtonian

fluid the total stress tensor can be expressed as

Pαβ = pδαβ + P̂αβ . (1.6)

The deviatoric part P̂αβ of the stress tensor for a Newtonian fluid takes the form

P̂αβ =




0 Pxy Pxz

Pyx 0 Pyz

Pzx Pzy 0


 , (1.7)

where Pxy is the shear stress, connects the strain rate ∂ux

∂ ry
via the constant shear viscosity (µ)

as

Pxy =−µ
∂ux

∂ ry

, (1.8)

and called the Newton’s law of viscosity.
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When a fluid disobeys any one of these (1.7- 1.8) laws, in terms of showing non-zero

normal components in the deviatoric stress or/and non-constant µ , it is categorized as a non-

Newtonian fluid. The occurrence of finite normal stress differences and the dependence of

shear viscosity on shear rate in non-Newtonian fluids are briefly discussed in following sub-

sections.

1.2.1 Normal Stress Differences and their consequences

The studies on normal stresses has a long and rich history in the area of particulate suspen-

sions (Bagnold 1954; Brady & Morris 1997; Sierou & Brady 2002; Singh & Nott 2003;

Guazzelli & Morris 2011), with the early works being carried out in the dense regime of such

systems. More recent experimental work (Boyer et al. 2011; Couturier et al. 2011) on the be-

haviour of normal stresses in non-Brownian suspensions has generated renewed interest to un-

derstand the non-Newtonian rheology of suspensions and dense granular media via simulation

and experiment (Lerner et al. 2012; Trulsson et al. 2012; Dbouk et al. 2013; Denn & Morris

2014). Even after 60 years’ of research starting from (Bagnold 1954), there remain debates

about the sign of two normal stresses in the dense regime of a suspension. In any case, study-

ing the non-Newtonian behaviour is also important since the normal stresses themselves are

responsible for many interesting flow-features (e.g. rod-climbing or Weissenberg-effect, see

figure 1.3, die-swelling, secondary flows, etc.) in non-Newtonian fluids. Moreover, it is also

known from the literature on in polymeric fluids and suspensions that the non-Newtonian flu-

ids can support additional instability modes whose origin can solely be tied to normal stresses.

From the modelling viewpoint, the presence of large normal-stress differences readily calls

for higher-order constitutive models even at the minimal level. Of course, to make meaningful

progress in developing such constitutive models, a prior knowledge of rheology is also needed.
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Newtonian Non-Newtonian

	
Water : Parabolic profile of free surface. Weissenberg effect : Rod-climbing.

Fig. 1.3 Manifestation of normal-stress differences as observed in an experiment. In the left
figure for a Newtonian fluid (water), the free surface is a parabola whereas the right figure
shows prominent non-Newtonian rheology as the fluid (water+polymer solution) is climbing
up along the rod.

In this thesis we investigate the non-Newtonian rheology of a sheared (i) granular and (ii)

gas-solid systems via kinetic theory. For an N-particle system, the stress tensor has contribu-

tions from both kinetic and collisional mechanisms of transport:

PPP = PPPkin +PPPcoll, (1.9)

the first term is dominant in the dilute regime, whereas the second-one dominates in the dense

regime. This can be further decomposed as

PPP = pIII + P̂PP, (1.10)

where p ≡ Pii/dim is the isotropic pressure (dim is the dimension), III is the identity tensor and

the deviatoric stress is P̂PP. The off-diagonal components of P̂PP are related to shear viscosity

which, in general, depends on the deformation rate.

At the Navier-Stokes (NS) order, the stress tensor (1.10) is Newtonian (i.e. linear in the

shear rate, with the proportionality constant being the shear viscosity) and its diagonal com-

ponents are equal. The latter implies that the first and second normal stress differences,

N1 ∼ (Pxx−Pyy) and N2 ∼ (Pyy−Pzz), respectively, are identically zero. The non-zero normal

stresses and/or the shear-rate dependence of viscosity are signatures of the non-Newtonian

rheology of the medium. In kinetic theory, the normal stresses appear at the Burnett-order



1.2 Non-Newtonian Rheology: Normal Stress Differences and Rate Dependent Viscosity in
Granular Fluids 9

0 0.2 0.4 0.6
10

−3

10
−2

10
−1

10
0

e = 0.99

e = 0.9

Area fraction

N
S
D

e = 0.7

0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

N1

N2

e = 0.9

Volume fraction

N
1
,
N

2

Fig. 1.4 Variations of the (a) first normal stress difference with area fraction of disks for dif-
ferent values of the restitution coefficient e and (b) first and second normal stress differences
with volume fraction of particles for restitution coefficient e = 0.9. Data (symbols) correspond
to event-driven simulations (Alam & Luding 2003b, 2005b) for a sheared system of smooth
inelastic hard-disks (panel a) and hard-spheres (panel b) with Lees-Edward boundary condi-
tion; lines are drawn to guide the eye. These two figures constitute the primary motivation of
the theoretical work embodied in the present thesis.

(Burnett 1935; Grad 1949; Chapman & Cowling 1970) and hence cannot be taken into ac-

count in the standard NS-order hydrodynamic equations. The higher-order theories like the

Burnett equations (Burnett 1935; Sela & Goldhirsch 1998), or, Grad’s 13-moment equations

(Grad 1949; Jenkins & Richman 1985b,a; Torrilhon & Struchtrup 2004) should therefore be

used to correctly model the nonlinear rheology of granular fluids. Although the rest state of

Burnett equations is known to be unstable for molecular gases, there are ways to regularize

these equations (Rosenau 1989); moreover, it has been established recently (Santos 2008) that

the partial sum of the shear stress converges in the uniform shear of a granular fluid, with its

radius of convergence increasing with increasing dissipation/inelasticity. On the other hand,

in Grad’s method the distribution function is expanded in a Hermite series around the local

Maxwellian of thermal equilibrium, and the moment equations for an extended set of hydro-

dynamic fields are given in the main chapters.

The sheared granular fluid is known to possess finite normal stress differences for the

whole range of densities (Walton & Braun 1986; Campbell 1990; Sela & Goldhirsch 1998;

Alam & Luding 2003a,b, 2005a,b; Montanero et al. 2006; Reyes et al. 2013; Saha & Alam

2014, 2016) and the rate-dependence of viscosity seems to be an inherent feature of the uni-

form shear state of a granular fluid (Santos et al. 2004). Figure 1.4 indicates that the first

normal stress difference is finite in a sheared granular fluid for a range of density and its
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magnitude increases with increasing dissipation. Detailed simulations in two-dimensions (2D,

i.e. for disks, (Alam & Luding 2003b)) and three-dimensions (3D, i.e. for spheres, (Alam &

Luding 2005b)) have uncovered the following distinguishing features of normal stresses in a

sheared granular fluid: (i) the first normal stress difference is positive in the dilute limit and un-

dergo a sign-reversal at a finite density near the freezing point (depending on dissipation) in the

dense limit; (ii) the second normal stress difference is negative in the dilute limit and becomes

positive beyond a moderate density. Both theory and simulation suggest that the magnitude of

both first and second normal stress differences increases with increasing dissipation.

Variations of the two normal stress differences (N1 and N2) for uniform shear flow of

smooth inelastic spheres, at a restitution coefficient e = 0.9 are displayed in figure 1.4(b). It

is observed that the scaled first normal stress difference (N1 = (Pxx −Pyy)/p, where Pαα is

the diagonal component of the stress tensor along the α-direction, and p = (Pxx+Pyy+Pzz)/3

is the mean pressure) is positive and maximal in the dilute limit (ν → 0) and decreases in

magnitude with increasing density. On the other hand, the second normal stress difference

(N2 = (Pyy−Pzz)/p) is negative in the dilute limit, increases with increasing density, becomes

positive at a critical density νcr ≈ 0.13, and increases monotonically thereafter. Alam & Lud-

ing (2005b) also postulated a frame-indifferent phenomenological constitutive model for gran-

ular fluids to predict the sign-reversals of both first and second normal stress differences.

Large normal stresses, such as those in figure 1.4, must be taken into account to correctly

model a dissipative granular fluid in the rapid shear regime. Jenkins & Richman (1988) have

incorporated normal stresses in their study of steady uniform shear flow (USF) of inelastic

disks, following earlier kinetic theory works of (Goldreich & Tremaine 1978) and (Araki

& Tremaine 1986) that used the anisotropic Gaussian as a reference state. They solved the

second moment balance equation in the two extreme limits of density, and derived analytical

results for the stress tensor in dilute and dense flows, but the solutions for the full range of

density remain unexplored for the shear flow of inelastic disks. Chou & Richman (1998)

analysed the USF of inelastic spheres and provided numerical solutions for the stress tensor

for the full range of density. More recently, Lutsko (2004) used an arbitrary Gaussian as a

reference to solve the Enskog equation for a polydisperse mixture of inelastic hard-spheres

via the Hermite expansion (Grad 1949) around the anisotropic reference state, and the related

kinetic integrals were simplified using a generating function technique. Focussing attention to

the uniform shear state, he evaluated the stress tensor numerically and confirmed the previous

numerical results of (Chou & Richman 1998). It was further shown (Lutsko 2004) that the

moment-theory predictions for normal stress differences agree well with those obtained from

the direct simulation Monte Carlo (DSMC) solution of the Enskog equation for a range of

densities but can differ considerably from molecular dynamic simulations of the same system
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for moderately dense binary mixtures. The reason for the latter disagreement remains unclear.

It would greatly help our understanding of nonlinear/non-Newtonian rheology of particulate

media if such higher-order theories can be tackled analytically or semi-analytically to obtain

closed-form constitutive relations– this forms the primary motivation of the present thesis.

Therefore the primary objective of the present thesis is to develop a unified theory and

the related non-Newtonian and non-Fourier constitutive relations of a granular fluid for a large

range of density encompassing the dilute and dense regimes that incorporates the normal stress

differences and the heat flux. Explaining figure1.4 theoretically is the major motivation of this

thesis as explained in Chapters 2 and 3.

1.2.2 Shear rate dependent viscosity: shear thinning and shear thicken-

ing
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Fig. 1.5 Schematic classifying different categories of fluid in terms of showing variations of
shear stress with shear rate. The raw data of the figure have been extracted from the wikipedia
article on “Non-Newtonian fluid”.

The decrease and increase of shear viscosity with increasing shear rate are, respectively,

defined as the shear thinning and shear thickening behaviours. In general viscosity (µ) of a

system as a function of the shear rate γ̇ is connected via the power law

µ = Kγ̇n−1, (1.11)
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where K is a constant based on the material itself. The shear thinning and thickening be-

haviours correspond to n < 1 and n > 1 respectively. Finally the intermediate value n = 1

corresponds to the Newtonian fluid, where viscosity is independent of the shear rate and re-

mains constant throughout.

• Newtonian fluid

In this case the apparent viscosity of the fluid remains constant during flow (black solid line

in figure 1.5) and Navier-Stokes level hydrodynamics remain the valid theory to analyse the

flow behaviour. Blood plasma, water are very commonly seen examples of Newtonian fluid.

Fig. 1.6 Paint: a shear thinning fluid. Cornstarch in water solution : a shear thickening fluid.
The first figure has been taken from an internet resource, the second figure is taken from Brown
& Jaeger (2014).

• Shear thinning fluid

It is also known as pseudoplastic. In this case unlike Newtonian fluid the viscosity of the

substance decreases with increasing shear rate (blue solid line in figure 1.5). This fluid is very

common in our daily life and some examples of shear thinning fluids are nail polish, ketchup,

syrups, latex paint, ice, blood and etc. Paint is a very well cited example of a shear thinning

fluid, it flows continuously when applied a shear with a brush without much drip (left panel

in figure 1.6). Similar technique is used in nail polish and spreading of butter over a bread.

Blood, a suspension of red blood cells in Newtonian plasma, is also an example of a shear

thinning fluid.

• Shear thickening fluid
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Fluids that behave exactly opposite to the case discussed above are called as shear thickening

fluids. The apparent viscosity in a shear thickening fluid increases with increasing shear rate

(red solid line in figure 1.5). Highly concentrated suspensions like cornstarch dissolved in

water is an example of shear thickening fluid. Figure 1.6 (right panel), taken from Brown

& Jaeger (2014), is a snapshot of an experiment showing a person running on the cornstarch

solution of water, a highly dense suspension. The suspension works like a normal fluid when

undisturbed but can support the weight of a person running over it. While running over it,

the man actually applies a shear stress onto the fluid that leads to an increase of viscosity.

Therefore the fluid behaves like a solid and supports the person’s weight. But if the person

tries to remain static over the fluid without running, he would sink into the fluid as it would

happen in a normal Newtonian fluid.

Discontinuous shear thickening is the phenomena, where this increment of shear viscosity

shows a sudden jump in the shear stress versus shear rate plot [figure 1.5]. This corresponds

to a very high value of shear viscosity and appears when index n becomes larger than 2 in the

power law (1.11).

Therefore, from equation (1.11), we can classify fluids according to different values of n:

• n < 1 Shear thinning.

• n = 1 Newtonian.

• 1 < n < 2 Continuous shear thickening.

• n > 2 Discontinuous shear thickening.

Beside this there is another class of fluid, in which the viscosity changes with time as the

fluid is continuously sheared. Fluids that show time dependent viscosity are called the memory

materials. Like shear thinning/thickening the time dependent feature can also be categorized

into two types, viz. thixotropic and rheopectic. When the viscosity of a fluid decreases with

time, it is called thixotropic and if it increases with time, it is called rheopectic. Examples of

thixotropic fluids are gelatine, cream, paints, yogurt, whereas the rheopectic behaviour is less

common in nature and can be observed in highly concentrated starch solutions.

As far as the present thesis is concerned, we are mostly interested in the shear rate depen-

dence of viscosity. The shear rate history (time) dependence is left for future.
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Recently in a review article by Brown & Jaeger (2014), three different mechanisms for

discontinuous shear thickening in a densely packed suspension are proposed: (i) hydroclus-

tering, (ii) order-disorder transition and (iii) the dialatancy. In hydroclustering there is an

increase of lubrication drag force between particles and particles form larger clusters (Brady

& Bossis 1985). Flow structure changes from ordered layers to disordered in order-disorder

transition. Finally in dialatancy the volume of the particulate packing increases, leading to a

total increase of stresses. However neither of these conditions are necessary or sufficient for

a DST to happen. For example, these mechanisms are not able to explain the DST observed

in dry jammed frictional grains without presence of any interstitial fluid (Otsuki & Hayakawa

2011), nor it can explain why there has not been any DST for frictionless particles. Also in

the review article by Barnes (1989) it is said that all suspensions can exhibit shear thickening

provided a proper condition is being imposed. Depending upon the types of particles being

suspended and the suspended fluid, a complex fluid can exhibit all three natures viz. the (i)

Newtonian regime, (ii) shear thinning and finally the (iii) shear thickening with a change in

the shear rate. On the other hand, not all suspensions show all these behaviours. Therefore,

clarifying the conditions and identifying the proper mechanism behind DST still remains a

fundamental problem of research.

Fig. 1.7 Evolution diagram showing (a) shear stress against shear rate, (b) shear viscosity ver-
sus against stress; for a concentrated suspension of cornstarch suspended in water at different
mass fractions φm. The figure has been adopted from the works of Brown & Jaeger (2012,
2014).

Figure 1.7 has been taken from Brown & Jaeger (2012, 2014), it tells (a) the dependence

of shear stress (τ) versus shear rate (γ̇) and (b) the shear viscosity (η) versus shear stress (τ)

for a suspension; cornstarch suspended in a solution of 85% glycerol and 15% water, with

different mass fraction φm. The mass fraction is proportional to the volume fraction ν . Here
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the shear viscosity and shear stress in a steady flow are related via

τ = η(γ̇)γ̇. (1.12)

The portion of the plot (b), where the slope is greater than 0, is the region of continuous shear

thickening. It is observed that there is a threshold value τmin beyond which shear thickening

starts. This value of minimum critical shear stress τmin (marked by left dashed vertical line

in fig. 1.7) is almost independent of volume fraction (Maranzano & Wagner 2001; Wagner &

Brady 2009) and below τmin a shear thinning or Newtonian behaviour may be observed. The

continuous shear thickening does not generally appear in dilute suspensions, it is observed

in the range 0.3 6 ν 6 0.4. On the other hand the portion of the plot (b), where the slope

becomes 1 corresponds to point of discontinuous jump in viscosity. Therefore beyond the

point τmin viscosity gradually increases with increasing shear rate but as it can be seen in fig.

1.7, this increase of viscosity is not indefinite, in fact there exists a critical value of shear stress

τmax, where this increasing phenomenon stops. This critical value of maximum shear stress

τmax (marked by right dashed vertical line in fig. 1.7) is also independent of volume fraction

(Brown & Jaeger 2009; Maranzano & Wagner 2001) and beyond this value cracking, breakup

can be seen (Laun 1994). Therefore determining these critical values of shear stresses (τmin

and τmax) and their explicit functional dependence with volume fraction remain an interesting

problem of research.

Extensive research on the appearance of discontinuous shear thickening in a densely packed

suspension has been done in the last few decades [Hoffman (1972, 1974); Barnes (1989);

Brown & Jaeger (2012); Fernandez et al. (2013); Seto et al. (2013); Brown & Jaeger (2014);

Wyart & Cates (2014); Xu et al. (2014); Clavaud et al. (2017)]. On the other hand there are a

few articles focusing on the dilute suspension. Tsao & Koch (1995) have identified DST for

a dilute suspension of elastic particles. Sangani et al. (1996) have extended their work for a

non-dilute suspension and it is shown that the DST disappears beyond a finite density. The

appearance of discontinuous shear thickening in simple shear flow of a “dilute” suspension

of elastic/inelastic particles along-with their conditions of existence are discussed thoroughly

in Chapter-5 of the present thesis. However uncovering the same conditions for a non-dilute

inelastic suspension remains an unsolved problem and must be worked out in future.

Figure 1.8 displays the variations of the effective viscosity µs/µ versus Pećlet number for

a colloidal Brownian suspension at different values of volume fraction ν = 0.49 (solid line

on the top), ν = 0.47 (dashed line) and ν = 0.419 (dot-dashed line). This is a schematic

of the results obtained from Stokesian simulation data adapted from Foss & Brady (2000)

and Guazzelli & Morris (2011). Here µs is the effective viscosity of the suspension and µ

is the viscosity of the suspending fluid. The suspended particles are small enough that than
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Fig. 1.8 Variation of the effective viscosity versus Pećlet number for different values of volume
fraction. The raw data for this figure have been taken from Foss & Brady (2000); Guazzelli &
Morris (2011).

can respond to thermal fluctuations in the suspending fluid. Therefore unlike non-Brownian

suspensions, the effective viscosity is a function of volume fraction ν , shear rate γ̇ , the thermal

energy and viscosity of the suspending fluid and also of suspended particle’s diameter σ . The

combined effect is captured via defining the Pećlet number

Pe ∼ µγ̇σ 3/Tf , (1.13)

is a dimensionless measure of the shear rate, Tf is the temperature of the fluid. It is clear

from the above figure that at any value of volume fraction ν , as the shear rate is increased the

effective viscosity shows a shear thinning behaviour reaches a minimum and then eventually

shows a shear thickening behaviour at large shear rate. The increase of effective viscosity

with increasing volume fraction is also shown with an arrow. Figure 1.8 works as a secondary

motivation of the present thesis and our interest is to find the rheological properties of the

particle phase in suspensions composed of non-Brownian hard spheres (elastic or inelastic)

dense (Chapter 4) and dilute (Chapter 5) gas-solid suspensions.
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1.3 Organization of the Present Thesis

Chapters 2 to 5 are fairly independent and can be read as follows.

Nonlinear Moment Theory

Chapter 3

Anisotropic Moment 

Theory for a Dense 

Granular Fluid

Chapter 2

Nonlinear Theory of a 

Dense Granular Fluid

Chapter 4

Anisotropic Moment 

Theory for a Dense 

Gas-Solid Suspension

Chapter 5

Shear-thickening and 

NSD's for a dilute 

Gas-Solid Suspension





Chapter 2

Nonlinear Theory for a Granular Gas at

Finite Density : Fourteen and Ten

Moment Theories1

2.1 Introduction

In this chapter, we are interested in a dense-granular system of N randomly moving identical

smooth particles of mass m and diameter σ . By using the word “dense” we mean granular

systems of finite density, spanning from the extreme dilute limit to close to the freezing point

density. Particles are colliding with each other randomly and unlike in a molecular gas these

collisions are inelastic in a granular gas and the system dissipates energy upon collisions. It

is assumed that the granules are solid balls/disks and collide according to the hard-sphere

potential for which the potential function works like a delta function: it becomes infinity

when two particles come into contact and remain zero otherwise. All these collisions are

instantaneous in the sense that particle-particle collision time is much much lesser than the

particle’s mean free time and we have accounted for binary collisions only. Cases like multi-

particle collisions, clustering, finite collision time, polydispersity are not considered in this

thesis.

1By the word “dense” I tried to refer flows of granular matter at any “finite” density (non-dilute). In granular
research community scientists have used the term “dense” to mean granular flows having volume fractions > 0.01;
mathematically any value of volume fraction slightly greater than zero. In the works of Garzó et al. (2012); Garzó
(2013), they have mentioned volume fraction of 0.1 as “dense” granular fluid. Also in the works of Herdegen
& Hess (1982) and Ugawa & Cordero (2007), these authors have considered a volume fraction of ν = 0.015 as
dense. On the other hand, in soil mechanics and geophysical context a volume fraction of ν > 0.5 is considered
as dense where frictional contacts are important.
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We have assumed the non-equilibrium distribution function is an expansion around the

isotropic Gaussian state. This isotropic Gaussian works as the equilibrium distribution func-

tion (Chapman & Cowling 1970; Huang 1987) in a dilute molecular gas at rest and is termed

as the Maxwell-Boltzmann distribution:

f M =
n

2π
(

kBT
m

) 3
2

e−mC2/2kBT , (2.1)

where n is the number density, m denotes the mass of a molecule, kB is the Boltzmann constant,

T is the energy of the system and CCC is the peculiar velocity. Unlike in molecular gases the

particles in a granular gas are inherently inelastic, and therefore the system constantly dissi-

pates energy upon collisions. Because of the continuous energy loss, it is not possible to keep

a granular system alive without proper inclusion of an external energy resource. Therefore

we do not have any concept of a granular fluid at equilibrium and hence f M is not exactly

the same as the Maxwell-Boltzmann distribution for molecular gases at equilibrium/rest. Al-

though their functional forms look same, there exits certain difference as well. The base state

isotropic distribution function for flows of granular medium contains field variables n and T ,

which are not constants as they are in a molecular gas but are functions of space and time

[Jenkins & Richman (1985a); Lun et al. (1984); Campbell (1990); Goldhirsch (2003)].

The macroscopic state of the granular system is assumed to be characterized by the four-

teen field variables: the mass density (ρ), macroscopic flow velocity (uuu), full stress tensor

(PPP), heat flux (qqq) and the contracted fourth moment Pii j j, for which the evolution equations

are given. The nonlinear production terms at different orders are calculated by including all

the second order nonlinearities which regularize this moment description. The collisional dis-

sipation is derived for the whole range of volume fraction that includes double derivatives of

the hydrodynamic field variables as well. In the dilute limit the balance of contracted third

order balance is solved to obtain a relation for granular heat flux. It is observed that, gradi-

ent of kinetic stress also drives a heat current and thermal conductivity is characterized by an

asymmetric anisotropic tensor. Therefore a generalized Fourier law for granular heat flux in

the dilute limit is established. Lastly, uniform shear flow of spherical granular particles is anal-

ysed using the theory and all the transport coefficients are computed for the whole range of

density. The non-Newtonian rheology appears in the uniform shear flow in terms of the normal

stress differences is also appreciated. Although discrepancy is observed in normal stress differ-

ences but for pressure and shear viscosity an excellent agreement with the particle simulation

data (Alam & Luding 2005b) is found. The theory we propose gives better predictions over

all other existing Grad-level theories (Jenkins & Richman 1985a; Kremer & Marques Jr 2011;

Garzó 2012, 2013) in terms of predicting the non-Newtonian transport coefficients. Overall,
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Fig. 2.1 Collision sketch of pairs of inelastic disks and spheres.

we have tried to establish a complete Grad-level theory for a dense granular system which can

be applied to flows of finite density and inelasticity.

This work is a direct extension of the work by (Kremer & Marques Jr 2011; Jenkins &

Richman 1985a), in the sense that we have a “nonlinear” 14-moment theory for the whole

range of volume fraction including all nonlinear terms. It may be noted that Jenkins & Rich-

man (1985a) developed a 13-moment theory of a dense granular gas, but the source and flux

terms of each balance equation were not calculated. On the other hand, the 14-moment theory

of Kremer & Marques Jr (2011) holds only for a “dilute” granular gas; they calculated only the

“linear” part of source terms in each balance equation. Deficiencies of all previous moment

models will become clearer as we move through this chapter.

This chapter is organized as follows. A brief overview of kinetic theory is provided in

§2.2. The fourteen field variables and their corresponding balance equations are given in

§2.3 and §2.4. The non-equilibrium distribution function is proposed in §2.5. Mathematical

formulation of the nonlinear production terms at different orders are given in §2.6. The balance

of granular energy and the complete expression for the collisional dissipation for the whole

range of density that includes all the second order nonlinear terms are given in §2.7. Balance

of second and contracted third moment of velocity fluctuations along-with their closures are

discussed in §2.8 and §2.9. In §2.10 we outline a generalized Fourier law for granular heat flux.

In §2.11 the simple shear flow is analysed using this 14 moment nonlinear theory to determine

the non-Newtonian transport coefficients. Finally the summary is provided in §2.12.

2.2 Brief Overview of Kinetic Theory

We consider flows of a dry granular material consisting of identical, smooth, inelastic spheres

of mass m and diameter σ . Particles are in random motion colliding in an inelastic manner

and share information among themselves. Let ccc1 and ccc2 denote the pre-collisional velocities
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of a colliding pair of particles, with ccc′1 and ccc′2 denoting the post-collisional one, respectively.

Then the collision dynamics is governed by (Brilliantov & Pöschel 2004; Rao & Nott 2008)

ccc′1 = ccc1 −
(1+ e)

2
(ggg ··· kkk)kkk

ccc′2 = ccc2 +
(1+ e)

2
(ggg ··· kkk)kkk





, (2.2)

where ggg = ccc1 − ccc2 denotes the relative velocity of the colliding pair before the collision and kkk

is the unit contact vector along the line joining the centres of the particles (figure 2.1).

The particles are considered to be smooth and therefore the tangential component of the

relative velocity ggg remains unaltered during any collision. On the other hand as the collisions

are inelastic, there is a change in the relative velocity ggg along the normal direction after a colli-

sion. This change of ggg along the normal direction is measured using the inelasticity parameter

e, as introduced in eq.(2.2), which is called the coefficient of normal restitution, or simply the

restitution coefficient. In general the coefficient of restitution e is a function of the relative

velocity ggg [see Goldsmith (1960); Bizon et al. (1999); Brilliantov & Pöschel (2004)] but for

simplicity, we have assumed it to be a constant with its range being [0,1], where e = 0 and

e = 1 correspond to perfectly sticky and elastic collisions, respectively.

Now, the post-collisional relative velocity, denoted by ggg′ = ccc′1 − ccc′2, changes according to

(ggg′ ··· kkk) =−e(ggg ··· kkk)
(ggg′× kkk) = (ggg× kkk)

}
. (2.3)

Therefore the total change in the kinetic energy (E = mc2/2) during a collision can be easily

obtained from eqs.(2.2-2.3) as

∆E =
1
2

mccc′21 +
1
2

mccc′22 − 1
2

mccc2
1 −

1
2

mccc2
2 =−m

4
(1− e2)(ggg ··· kkk)2. (2.4)

It is clear from equation (2.4) that in the elastic limit e = 1, ∆E = 0. Therefore when the

collisions are elastic the total energy of the system remains conserved. On the other hand, for

the case of granular matter, the collisions are inelastic and the system continuously dissipates

energy upon collisions. Hence we must supply energy from some external source in order to

maintain a steady state.

In kinetic theory of granular/molecular gases at the mesoscopic level, this system is de-

scribed by the Liouville equation for an N-particle distribution function which can be reduced

to an infinite hierarchy of evolution equations of distribution functions (one-body, two-body,

three-body, ...), known as the BBGKY-hierarchy (Chapman & Cowling 1970). The first
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member of this hierarchy deals with the evolution of the single-particle distribution function

f (1)(ccc,rrr, t) reads as: (
∂

∂ t
+ ccc ···∇∇∇rrr +FFF ···∇∇∇ppp

)
f (1) = J( f (2)), (2.5)

where ∇∇∇rrr is the gradient operator in the configuration space, ∇∇∇ppp is the gradient operator in the

momentum space and FFF(rrr, t) is the velocity-independent external force field (such as gravity)

acting on particles. On the right hand side of equation (2.5), J( f (2)) is the collision integral

that depends on two-particle distribution function f (2)(ccc1,rrr1,ccc2,rrr2, t).

The single particle distribution function f (1)(ccc,rrr, t) is defined such that f (1)(ccc,rrr, t)drrrdccc

denotes the probable number of particles in an elementary volume drrr about the point rrr with

the velocities in the range dccc around ccc at time t. Therefore, from the above information about

f (1), the total number (N) of particles in the system is

N =

ˆ

f (1)(ccc,rrr, t)drrrdccc, (2.6)

and the local number density n at a point rrr at time t is defined as

n(rrr, t) =

ˆ

f (1)(ccc,rrr, t)dccc. (2.7)

The mean value of a physical property ψ(ccc) is calculated using the single particle distribu-

tion function f (1) as

〈ψ(ccc)〉=
ˆ

ψ(ccc) f (1)(ccc,rrr, t)dccc. (2.8)

〈ψ〉 describes the macroscopic analog of a microscopic property ψ at the particle level. There-

fore equation (2.8) establishes a connection between the microscopic and macroscopic fields.

The evolution equations for the hydrodynamic fields are obtained from the kinetic equation

(2.5) by multiplying it with ψ(ccc) and integrating over the velocity space, resulting in the

following master balance (Chapman & Cowling 1970; Trulsen 1971; Reif 2009) equation :

∂

∂ t
〈nψ〉=

〈
n

FFF

m
··· ∂ψ

∂ccc

〉
−∇∇∇ ··· 〈ncccψ〉+C[ψ], (2.9)

where

C[ψ] =
´

ggg···kkk>0(ψ
′
2 −ψ2) f (2)(ccc1,xxx−σkkk,ccc2,xxx, t)σ(kkk ···ggg)dkkkdccc1dccc2

=
´

ggg···kkk>0(ψ
′
1 −ψ1) f (2)(ccc1,xxx,ccc2,xxx+σkkk, t)σ(kkk ···ggg)dkkkdccc1dccc2

}
, (2.10)
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is the collisional rate of production of ψ per unit volume, with ggg ··· kkk > 0 referring to the

constraint of impending collisions. It is straightforward to decompose (2.10) into the following

form (Jenkins & Richman 1985b,a; Rao & Nott 2008):

C[ψ] = ℵ[ψ]−∇∇∇ ···ΘΘΘ [ψ]−∇∇∇uuu:::ΘΘΘ

[
∂ψ

∂CCC

]
, (2.11)

where ΘΘΘ [ψ] and ℵ[ψ] are the collisional flux and production/source terms, respectively, whose

integral expressions are given by

ℵ[ψ] =
1
2

y

ggg···kkk>0

(ψ ′
1 +ψ ′

2 −ψ1 −ψ2) f (2)(ccc1,rrr−σkkk,ccc2,rrr)σ
2(ggg ··· kkk)dkkkdccc1dccc2, (2.12)

=
1
2

y

ggg···kkk>0

(ψ ′
1 +ψ ′

2 −ψ1 −ψ2) f (2)(ccc1,rrr,ccc2,rrr+σkkk)σ 2(ggg ··· kkk)dkkkdccc1dccc2, (2.13)

and

ΘΘΘ [ψ] =−1
2

y

ggg···kkk>0

(ψ ′
1 −ψ1)kkkΣ∞

m=0
(−σk ···∇∇∇)m

(m+1)!
f (2)(ccc1,rrr,ccc2,rrr+σkkk)σ 2(ggg ··· kkk)dkkkdccc1dccc2.

(2.14)

Note that the origin of the collisional flux ΘΘΘ [ψ] is tied to the excluded volume of the “macro-

scopic” particles and hence this term vanishes for a “dilute” system of point particles. Combin-

ing (2.11) and (2.9), the master balance equation simplifies to (Jenkins & Richman 1985b,a,

1988)

∂

∂ t
〈nψ〉=

〈
n

(
FFF

m
−
(

∂

∂ t
+ ccc ···∇∇∇

)
u

)
··· ∂ψ

∂CCC

〉
−∇∇∇ ··· (〈ncccψ〉+ΘΘΘ [ψ])−∇∇∇uuu:::ΘΘΘ

[
∂ψ

∂CCC

]
+ℵ[ψ],

(2.15)

where CCC is the peculiar velocity.

2.3 Fourteen Field Variables

The macroscopic state of a flowing granular media is characterized here by 14 hydrody-

namic variables as defined below. The connection from the microscopic level to the meso-

scopic/macroscopic level is set by the single particle distribution function f (1)(ccc,rrr, t) in (2.8).

From lower to higher order, the filed variables are defined as:

(i) the mass density
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ρ ≡ mn(rrr, t)≡ 〈m〉= m

ˆ

f (1)(ccc,rrr, t)dccc, (2.16)

(ii) the macroscopic flow velocity

uuu ≡ 〈ccc〉=
ˆ

ccc f (1)(ccc,rrr, t)dccc. (2.17)

(iii) the full second moment tensor

MMM(rrr, t)≡ 〈CCCCCC〉= 1
n(rrr, t)

ˆ

CCCCCC f (ccc,rrr, t)dccc, (2.18)

where CCC ≡ ccc−uuu is the peculiar/fluctuation velocity of particles. The granular temperature is

defined as the trace of the second moment tensor MMM (2.18) (Savage & Jeffrey 1981; Lun et al.

1984; Jenkins & Richman 1985b,a; Goldhirsch 2003)

T (rrr, t)≡ 1
3
〈CCC ···CCC〉= 1

3n(rrr, t)

ˆ

CCC2 f (ccc,rrr, t)dccc. (2.19)

In some articles the definition (Chapman & Cowling 1970) of temperature incorporating the

mass (m) and the Boltzmann constant (kB) has also been adopted (Garzó & Dufty 1999; Santos

et al. 2004; Lutsko 2005; Brilliantov & Pöschel 2004). In either case, it must be noted that the

granular temperature is not a thermodynamic temperature (Goldhirsch 2003).

Finally, (iv) the kinetic part of the heat flux vector is defined as

qqqk(rrr, t)≡ 1
2

ρ〈CCC2CCC〉= m

2

ˆ

CCC2CCC f (ccc,rrr, t)dccc, (2.20)

and the (v) contracted fourth moment is

Pααββ ≡ ρ〈CCC4〉= m

ˆ

CCC4 f (ccc,rrr, t)dccc. (2.21)

Equations (2.16,2.17,2.18,2.20,2.21) represent 14 hydrodynamic fields for which a macro-

scopic theory will be developed as detailed in the remaining part of this chapter.

This last quantity (2.21) is added to highlight some crucial features of granular flows, like

the anomalous heat current from lower to higher density regime (Brey et al. 2001; Candela

& Walsworth 2007; Ansari & Alam 2016) is due to the dependence of the heat flux vector

on spatial gradient of density, etc. The last quantity (Dufour current) vanishes in the elastic

limit (e = 1) but becomes finite for granular flows (e 6= 1) (Van Noije & Ernst 1998; Sela &
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Goldhirsch 1998; Garzó & Dufty 1999; Brilliantov & Pöschel 2003; Kremer & Marques Jr

2011; Garzó 2013).

2.4 Balance Equations for Fourteen Field Variables

The balance equations for the fourteen field variables are obtained by substituting ψ = 1, cα ,

CαCβ , CCC2Cα and C4 into the master balance equation (2.15), yielding

Dρ

Dt
=−ρuα,α , (2.22)

ρ
Duα

Dt
=−Pαβ ,β , (2.23)

ρ
DMαβ

Dt
=−Qγαβ ,γ −Pδβ uα,δ −Pδαuβ ,δ +ℵαβ , (2.24)

Dqk
α

Dt
=−1

2
Qγαββ ,γ −qk

αuδ ,δ −qk
β uα,β −Qγαβ uβ ,γ +

(
Mαβ +

1
2

Mγγδαβ

)
Pβn,n

− 1
2

Θγββ uα,γ +
1
2

ℵαββ , (2.25)

DPααββ

Dt
=−Qγααββ ,γ −Pααββ uδ ,δ −4Qγβααuβ ,γ +

8
ρ

qk
αPαγ ,γ +ℵααββ , (2.26)

the balance of mass, momentum, second moment, heat flux and contracted fourth moment,

respectively.

In the above, D/Dt = ∂/∂ t+uα(∂/∂xα ) is the convective derivative, the subscript follow-

ing a comma denotes a partial derivative (i.e. uα,α ≡ ∂uα/∂xα ) with Einstein’s summation

convention over repeated indices, and

Pαβ = ρ〈CCCαCCCβ 〉+Θα

[
mCβ

]
≡ ρMαβ +Θαβ , (2.27)

Qγαβ = ρ〈CγCαCβ 〉+Θγ

[
mCαCβ

]
≡ ρMγαβ +Θγαβ , (2.28)

ℵαβ = ℵ
[
mCαCβ

]
, (2.29)

are the total stress tensor (momentum flux), the flux of the third moment, and the collisional

source of the second moment (dissipation), respectively. In (2.27) and (2.28), the first term

represents the kinetic contribution and the second term is its collisional contribution. Similarly

the flux and production terms can be written as :
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qα =
1
2

ρ〈CCC2Cα〉+
1
2

Θα

[
mCCC2

]
≡ 1

2
ρMαββ +

1
2

Θγαα = qk
α +qc

α , (2.30)

Qγαββ = ρ〈CCC2CγCα〉+Θγ

[
mCCC2Cα

]
≡ ρMγαββ +Θγαββ , (2.31)

ℵαββ = ℵ
[
mCCC2Cα

]
, (2.32)

Qγααββ = ρ〈CCC4Cγ〉+Θγ

[
mCCC4

]
≡ ρMγααββ +Θγααββ , (2.33)

ℵααββ = ℵ
[
mCCC4

]
. (2.34)

For a complete 14-moment theory of a “dense” gas, all the above terms (2.27-2.34) must be

calculated by an appropriate choice of the single-particle distribution function.

2.5 Non-equilibrium Distribution Function

Let f M denotes the isotropic/base state Maxwellian distribution defined via

f M =
n(rrr, t)

(2πT (rrr, t))
3
2

e−C2/2T (rrr,t). (2.35)

Equation (2.35) corresponds to distribution function of a five field theory at Eulerian level

hydrodynamics [Chapman & Cowling (1970)]. As we are interested in the theory beyond

Eulerian and Navier-Stokes order, we must include higher order moments in the distribution

function.

2.5.1 Expansion around Maxwellian

The full non-equilibrium distribution function in terms of all fourteen field variables is as-

sumed to be of the form (Grad 1949; Jenkins & Richman 1985a; Kremer & Marques Jr 2011)

f = f M
(
a+aiCi +ai jCiC j +biC

2Ci +bC4) . (2.36)

The solution for the fourteen unknown coefficients a,ai,ai j,bi,b follows from the compatibil-

ity conditions (2.16-2.21), and are found to be
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a = 1+
15a2

8
,

ai =− 1
ρT 2 qk

i ,

ai j =−5a2

4T
δi j +

1
2ρT 2 Pk

〈i j〉,

bi =
1

5ρT 3 qk
i ,

b =
a2

8T 2 ,





(2.37)

where a2 is defined as the deviation of the contracted fourth moment Pii j j from it’s isotropic

measure

a2 =
Pααββ −PM

ααββ

PM
ααββ

. (2.38)

Note that a2 is a measure of “excess” Kurtosis of the distribution function. Therefore the

full from of the distribution function corresponding to this 14-moment theory for a general

non-equilibrium system is (Kremer & Marques Jr 2011; Garzó 2012, 2013) given by

f (1)= f (0)

{
1+

1
2ρT 2 Pk

〈i j〉CiC j+
qk

i

5ρT 3

(
C2Ci−5TCi

)
+

(
15
8
− 5

4T
C2 +

C4

8T 2

)
a2

}
. (2.39)

The underlined term in equation (2.39) is an addition over the distribution function proposed

by Jenkins & Richman (1985a) who developed a 13-moment theory. Therefore at the level

of distribution function, the present work differs from that of Jenkins & Richman (1985a) by

including the “excess” Kurtosis of the distribution function.

2.5.2 Assumption of Molecular Chaos

To evaluate the collisional source and flux terms and in order to close the system we must

relate the two particle distribution function f (2) with the single particle distribution function

f (1). This has been done by adopting the molecular chaos assumption (Chapman & Cowling

1970) for which

f (2)(ccc1,rrr−σkkk,ccc2,rrr, t) = g0(rrr−
1
2

σkkk) f (ccc1,rrr−σkkk, t) f (ccc2,rrr, t), (2.40)
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where g0 is the contact value of the pair distribution function. The functional forms of the ra-

dial distribution functions for flows of uniform disks (2-dimension) and spheres (3-dimension)

are as follows (Verlet & Levesque 1982; Carnahan & Starling 1969)

g0(ν) =
(1−7ν/16)
(1−ν)2 , ν = nπσ 2/4; (2.41)

g0(ν) =
(1−ν/2)
(1−ν)3 , ν = nπσ 3/6; (2.42)

with ν being the area/volume fractions (density) of particles.

2.6 Nonlinear Production and Flux Terms at Different Or-

ders

We re-write the expressions for the collisional source (ℵ[ψ]) and flux (ΘΘΘ [ψ]) terms as ob-

tained on decomposing the collisional production term C[ψ], appeared in the right hand side

of the Enskog-Boltzmann equation (2.9):

C[ψ] = ℵ[ψ]−∇∇∇ ···ΘΘΘ [ψ]−∇∇∇u : ΘΘΘ [∇∇∇Cψ], (2.43)

where

ℵ[ψ] =
1
2

y

ggg···kkk>0

(ψ ′
1 +ψ ′

2 −ψ1 −ψ2) f (2)(ccc1,rrr−σkkk,ccc2,rrr)σ
2(ggg ··· kkk)dkkkdccc1dccc2 (2.44)

=
1
2

y

ggg···kkk>0

(ψ ′
1 +ψ ′

2 −ψ1 −ψ2) f (2)(ccc1,rrr,ccc2,rrr+σkkk)σ 2(ggg ··· kkk)dkkkdccc1dccc2, (2.45)

is the collisional source term.

On expanding the two particle distribution function f (2) in Taylor series yields the follow-

ing expression for collisional flux of ψ :

ΘΘΘ [ψ] =−1
2

y

ggg···kkk>0

(ψ ′
1 −ψ1)kkkΣ∞

m=0
(−σk ···∇∇∇)m

(m+1)!
f (2)(ccc1,rrr,ccc2,rrr+σkkk)σ 2(ggg ··· kkk)dkkkdccc1dccc2

⇒Θi[ψ]≈−1
2

y

ggg···kkk>0

(ψ ′
1 −ψ1)ki

(
1− σ

2!
k j

∂

∂ r j

)
f (2)(ccc1,rrr,ccc2,rrr+σkkk)σ 2(ggg ··· kkk)dkkkdccc1dccc2,

(2.46)
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is the collisional flux of ψ . Note that the derivatives of second and higher orders are neglected

on deriving the collisional flux (2.46).

Combining (2.44) and (2.45), we can re-write the collisional source term as

ℵ[ψ] =
1
2

y

ggg···kkk>0

∆ψ

(
f (2)(ccc1,rrr−σkkk,ccc2,rrr)+ f (2)(ccc1,rrr,ccc2,rrr+σkkk)

)

2
σ 2(ggg ··· kkk)dkkkdccc1dccc2,

(2.47)

where

∆ψ = ψ ′
1 +ψ ′

2 −ψ1 −ψ2. (2.48)

Applying the molecular chaos assumption (2.40) on f (2), we have

f (2)(ccc1,rrr−σkkk,ccc2,rrr) = g0

(
rrr− 1

2
σkkk
)

f (1)(ccc1,rrr−σkkk) f (1)(ccc2,rrr)

≈
{

g0(rrr)−
1
2

σkkk ···∇∇∇g0(rrr)+
1
8
(σkkk ···∇∇∇)2g0(rrr)

︸ ︷︷ ︸

}

×
{

f (1)(ccc1,rrr)−σkkk ···∇∇∇ f (1)(ccc1,rrr)+
1
2
(σkkk ···∇∇∇)2 f (1)(ccc1,rrr)

︸ ︷︷ ︸

}
f (1)(ccc2,rrr),

(2.49)

where the under-braced terms represent spatial-gradients upto second order.

Similarly we can write,

f (2)(ccc1,rrr,ccc2,rrr+σkkk) = g0

(
rrr+

1
2

σkkk
)

f (1)(ccc1,rrr) f (1)(ccc2,rrr+σkkk)

≈
{

g0(rrr)+
1
2

σkkk ···∇∇∇g0(rrr)+
1
8
(σkkk ···∇∇∇)2g0(rrr)

︸ ︷︷ ︸

}
f (1)(ccc1,rrr)

}

×
{

f (1)(ccc2,rrr)+σkkk ···∇∇∇ f (1)(ccc2,rrr)+
1
2
(σkkk ···∇∇∇)2 f (1)(ccc2,rrr)

︸ ︷︷ ︸

}
.

(2.50)
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Using eqs.(2.49)-(2.50) on (2.47), we have the final expression for the collisional source/production

term as

ℵ[ψ] =
g0

2

y

ggg···kkk>0

∆ψ f1 f2

{
1+

1
2

σki
∂

∂ ri
log

f2

f1

}
σ 2(ggg ··· kkk)dkkkdccc1dccc2

+
g0

8

y

ggg···kkk>0

∆ψkik j

(
f2

∂ 2 f1

∂ ri∂ r j

+ f1
∂ 2 f2

∂ ri∂ r j

)
σ 4(ggg ··· kkk)dkkkdccc1dccc2

+
1
8

y

ggg···kkk>0

∆ψkik j
∂g0

∂ ri

(
f2

∂ f1

∂ r j
+ f1

∂ f2

∂ r j

)
σ 4(ggg ··· kkk)dkkkdccc1dccc2

+
1

16

y

ggg···kkk>0

∆ψkik j
∂ 2g0

∂ ri∂ r j
f1 f2σ 4(ggg ··· kkk)dkkkdccc1dccc2, (2.51)

and the collisional flux as

Θi[ψ] =−g0

2

y

ggg···kkk>0

(ψ ′
1 −ψ1)ki f1 f2

{
1+

1
2

σkl

∂

∂ rl

log
f2

f1

}
σ 3(ggg ··· kkk)dkkkdccc1dccc2

+
g0

4

y

ggg···kkk>0

(ψ ′
1 −ψ1)kikmkn

∂ f1

∂ rm

∂ f2

∂ rn
σ 5(ggg ··· kkk)dkkkdccc1dccc2

+
1
8

y

ggg···kkk>0

(ψ ′
1 −ψ1)kikmkn

∂g0

∂ rm

(
f2

∂ f1

∂ rn
+ f1

∂ f2

∂ rn

)
σ 5(ggg ··· kkk)dkkkdccc1dccc2, (2.52)

where the following abbreviations have been used

∆ψ = ψ ′
1 +ψ ′

2 −ψ1 −ψ2, f1 = f (1)(ccc1,rrr, t), f2 = f (1)(ccc2,rrr, t). (2.53)

To evaluate the integrals (2.51-2.52) we will make use of the following change of co-ordinate

system

(ccc1,ccc2)⇒ (CCC1,CCC2)⇒ (GGG,ggg),

GGG =
CCC1 +CCC2

2
; ggg =CCC1 −CCC2 and dccc1dccc2 = dGGGdggg,



 (2.54)

and compute all the integrals in the (GGG,ggg) co-ordinate space.

Equations (2.51-2.52) remain the backbone of the present analysis and will be used sub-

sequently to determine the collisional sources (ℵαβ ,ℵαββ ,ℵααββ ) and the collisional fluxes

(Θαβ ,Θγαβ ,Θγαββ ). These production terms will then be substituted into the balance equa-

tions (2.24-2.26) and hence will yield a “nonlinear” theory for a “dense” granular system
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which is valid upto “second-order” in gradients. The evaluation of these quantities at different

orders and their physical interpretations will be discussed in following sections.

It may be noted that Ugawa & Cordero (2007) have considered extended hydrodynamic

equations for a moderately dense flow of an “elastic” hard disks system using Grad’s moment

expansion method. In their work, although all the integrals appearing in (2.51) have been

taken care of in calculating ℵℵℵ, but while calculating the collisional flux terms ΘΘΘ only the

first integral of (2.52) has been considered. Contributions from the gradients of hydrodynamic

fields in the collisional flux terms ΘΘΘ have been neglected in the work of Ugawa & Cordero

(2007). Therefore there is a lack of consistency in their work. Unlike all previous works

(Ugawa & Cordero 2007; Jenkins & Richman 1985a; Garzó 2013), we have calculated all the

source ℵℵℵ and flux ΘΘΘ terms by retaining terms of second order in spatial gradients as well as

products of first-order gradients.

2.6.1 Dealing with Integrands

In this section we will give explicit expressions of different integrands that appear in the inte-

gral expressions of the collisional source and flux terms (2.51-2.52).

For the first integrand in (2.51-2.52), we use the following relation

log(x/y) = logx− logy; log(1+ x) = x− 1
2

x2 +
1
3

x3 − ...; |x| ≪ 1, (2.55)

and hence we can write

log
f2

f1
= log

f02

f01
+

Pk
〈ab〉

2ρT 2 (CCC2CCC2 −CCC1CCC1)ab +
qk

a

5ρT 3

{
(C2CCC|2 −C2CCC|1)−5T (CCC2 −CCC1)

}
a

− 5a2

4T

(
C2|2 −C2|1

)
+

a2

8T 2

(
C4|2 −C4|1

)

− 1
2

[ 1
4ρ2T 4 Pk

〈ab〉P
k
〈lm〉(CCC2CCC2CCC2CCC2 −CCC1CCC1CCC1CCC1)ablm

+
1

25ρ2T 6 qk
aqk

b

{
(C2Ca −5TCa)(C

2Cb −5TCb)|2 − (C2Ca −5TCa)(C
2Cb −5TCb)|1

}

+a2
2

{(15
8
− 5

4T
C2 +

C4

8T 2

)2∣∣∣
2
−
(15

8
− 5

4T
C2 +

C4

8T 2

)2∣∣∣
1

}]
, (2.56)
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which implies that

f (1)(CCC1,rrr) f (1)(CCC2,rrr)

{
1+

1
2

σki
∂

∂ ri
log

f (1)(CCC2,rrr)

f (1)(CCC1,rrr)

}

≈ n2

(8π3T 3)
exp

(
−4G2 +g2

4T

)

×
{

1+
Pk
〈i j〉

2ρT 2CiC j +
qk

i

5ρT 3

(
C2Ci −5TCi

)
+

(
15
8
− 5

4T
C2 +

C4

8T 2

)
a2

}

1

×
{

1+
Pk
〈lm〉

2ρT 2ClCm +
qk

l

5ρT 3

(
C2Cl −5TCl

)
+

(
15
8
− 5

4T
C2 +

C4

8T 2

)
a2

}

2

×
[

1− σki

2T
ga

∂ua

∂ ri
− σki

2T 2

∂T

∂ ri
Gaga +

σki

4ρT 2 Pk
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(∂ua

∂ ri
gb +

∂ub

∂ ri
ga

)

+
σki

20ρ2T 3

∂ρ

∂ ri

{
5T Pk

〈ab〉(Gagb +Gbga)+2qk
a(G

2ga +
1
4

g2ga +2GaGbgb −5T ga)
}

+
σki

5ρT 3 qk
a

{∂ub

∂ ri

(Gagb +Gbga)+
∂ua

∂ ri

Gbgb

}
+

σki

16T 2a2
∂ua

∂ ri

(4G2ga +g2ga +8GaGbgb −20T ga)

+
σki

40ρT 4

∂T

∂ ri

{
20TPk

〈ab〉(Gagb +Gbga)+qk
a(12G2ga +3g2ga +24GaGbgb −40T ga)

+5ρTa2Gaga(4G2+g2 −10T )
}

− σki

4ρT 2

∂Pk
〈ab〉

∂ ri
(Gagb +Gbga)−

σki

10ρT 3

∂qk
a

∂ ri
(G2ga +

1
4

g2ga +2GaGbgb −5T ga)

− σki

16T 2

∂a2

∂ ri

Gaga(4G2 +g2 −20T )

− σki

4

{
1

4ρ2T 4

∂

∂ ri
(Pk

〈ab〉P
k
〈lm〉)(CCC2CCC2CCC2CCC2 −CCC1CCC1CCC1CCC1)ablm

+
1

25ρ2T 6

∂

∂ ri

(qk
aqk

b)
{
(C2Ca −5TCa)(C

2Cb −5TCb)|2− (C2Ca −5TCa)(C
2Cb −5TCb)|1
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+
∂

∂ ri
(a2

2)
{(15

8
− 5

4T
C2 +

C4

8T 2

)2∣∣∣
2
−
(15

8
− 5

4T
C2 +

C4

8T 2
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1

}}]
. (2.57)
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2.6.2 Ordering Approximation : Second-order Gradients

In evaluating the collision integrals, we will consider terms that satisfy the following constraint

(
Pk
〈ab〉
)A(

qk
c

)B(
a2
)C
(

∂n

∂ ri

)D(∂up

∂ r j

)E(∂T

∂ rk

)F
(

∂Pk
〈lm〉

∂ rs

)G(
∂qk

t

∂ rd

)H(
∂a2

∂ rn

)I

;

A+B+C+D+E +F +G+H + I ≤ 2. (2.58)

Assumption (2.58) implies that all the terms involving second-order nonlinearities are taken

into account.
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With (2.58), equation (2.57) simplifies to:

f (1)(CCC1,rrr) f (1)(CCC2,rrr)

{
1+
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σki
∂

∂ ri
log
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+
σki

20ρ2T 3
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Table 2.1 Truncation of equation (2.59)

Herdegen & Hess (1982) (i)+(ii)+(iv)

Kremer & Marques Jr (2011)
(i)+(ii)+(iii)+(v)

(i)+(iii)

Jenkins & Richman (1985a)
(i)+(ii)+(viii)

(i)+(v)

Garzó (2013)
(i)+(ii)+(iii)+(v)+(viii)+(x)+(xiv)

(i)+(iii)+(v)+(vii)

Present 14-moment theory
(i)+(ii)+ ....+(xx)
(i)+(ii)+ ....+(xxi)

Different truncated versions of (2.59) have been used by several authors, as shown the Table

2.1

Similarly, for the third-term in (2.51-2.52) we have
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. (2.60)
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For the second-term in eqn. (2.52), we can write :
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The underlined terms of (2.59-2.61) do not contribute to any of the “even order” pro-

duction terms ℵαβ , ℵααββ , Θαβ and Θγαββ since they are odd functions of the centre of

mass-velocity (G) and therefore cancel out and become identically zero.

On the other hand while calculating the “odd-order” moments like ℵαββ and Θγαβ , the

underlined terms in (2.59-2.61) only contribute and will produce non-zero values. We have

marked the terms with different colours. Note in (2.59-2.61) that the terms marked with red



2.7 Balance of Granular Energy and Collisional Dissipation 39

contribute to the “even-order” production terms whereas the terms marked with blue contribute

to the “odd-order” production terms.

2.7 Balance of Granular Energy and Collisional Dissipation

The granular temperature T , (2.19), is defined as the trace of the second moment tensor MMM and

the balance of granular energy directly follows from the trace of the second moment balance

(2.24), yielding
3
2

ρ
DT

Dt
=−qα,α −Pαβ uβ ,α −D , (2.62)

where

D ≡−1
2

ℵββ =−1
2

ℵ[mC2] (2.63)

is the rate of dissipation of fluctuation kinetic energy per unit volume and

qα ≡ 1
2

Qαββ =
1
2

ρMαββ +
1
2

Θαββ = qk
α +qc

α (2.64)

is the total (kinetic and collisional) heat-flux. In equation (2.64), 1
2ρMαββ is the transport/kinetic

part and 1
2Θαββ is the collisional part of the energy flux vector, denoted by qk and qc, respec-

tively. The kinetic components of the energy flux vector and other constitutive variables are

dominant in the dilute limit whereas the collisional components become significant in the

dense limit. Therefore, in dilute granular flows of point particles, the collisional component

vanishes and the kinetic component serves as the only contributor to any transport coefficient.

The collisional dissipation rate D appearing in the right hand side of the energy balance

equation (2.62) is the source of energy dissipation due to inelastic collisions and termed as the

cooling rate in granular literature (with some multiplicative constant). The most general form

of D including second order gradients can be written as :
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D = D0 +Du(∇∇∇ ···uuu)+Dq∇∇∇ ···qqqk +DuΠ(∇∇∇uuu : ΠΠΠ)+DqΠ

(
(qqqk∇∇∇ : ΠΠΠ)+(∇∇∇qqqk : ΠΠΠ)

)

+Dqρ(qqq
k ···∇∇∇ρ)+Dqa2(qqq

k ···∇∇∇a2)

+Dρ∇∇∇2ρ +DT ∇∇∇2
T +DΠ

(
∇∇∇ · (∇∇∇ ·ΠΠΠ)

)
+Da2∇∇∇2

a2

+DρT ∇∇∇ρ ···∇∇∇T +DρΠ∇∇∇ρ ··· (∇∇∇ ···ΠΠΠ)+Dρa2∇∇∇ρ ···∇∇∇a2

+DT T (∇∇∇T )2 +DT Π∇∇∇T ··· (∇∇∇ ···ΠΠΠ)+DTa2∇∇∇T ···∇∇∇a2

+Duu

(
∇∇∇uuu : ∇∇∇uuu+∇∇∇uuu : ∇∇∇uuu′+(∇∇∇ ···uuu)2

)

+Duq

(
∇∇∇uuu : ∇∇∇qqqk +∇∇∇uuu : ∇∇∇qqqk′ +(∇∇∇ ···qqqk)2

)
. (2.65)

The coefficients Dρ , DT corresponding to the terms ∇∇∇2ρ and ∇∇∇2
T have been calculated by

Brey et al. (1998) for a “dilute” granular gas whereas the coefficients Dρ , DT , DT T , DρT ,

Duu have been determined by Brilliantov & Pöschel (2003) for a dilute granular system of

“viscoelastic” particles. As a reference supporting the above statement we quote the text from

the work by (Garzó 2013) and put it below as an paragraph in italic font.

It must be noted that Navier-Stokes hydrodynamics retains terms up through second order

in the spatial gradients. Since the cooling rate ζ is a scalar, its most general form at this order

is

ζ = ζ0 +ζU ∇∇∇ ···U+ζn∇∇∇2
n+ζT ∇∇∇2

T +ζnn (∇∇∇n)2 +ζT T (∇∇∇T )2

+ζnT ∇∇∇n ···∇∇∇T +ζ1,uu∂iU j∂iU j +ζ2,uu∂ jUi∂iU j.

The first two second-order terms ζn and ζT have been determined for dilute granular gases

by Brey et al., while all the set of coefficients {ζn,ζT ,ζnn,ζnT ,ζ1,uu,ζ2,uu} have been computed

for granular gases of viscoelastic particles by Brilliantov and Pöschel. The evaluation of the

above set of coefficients for dense gases is a quite intricate problem. In fact, to the best of

my knowledge, no explicit results for these coefficients have been reported for granular

dense gases.

2.7.1 Collisional Dissipation Rate for Whole Range of Density

The determination of the collisional dissipation D (2.65) for the whole range of density in-

cluding all the terms (which also includes double derivatives of all the transport coefficients)

is a quite intricate problem and has not been worked out till date. The complete expression for
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collisional dissipation for the whole range of density including the terms involving derivatives

of second order in hydrodynamic variables has been computed in this thesis work. In order to

determine it, we have to take care of all the integrals appearing in eq.(2.51).

The total change of mC2 in a collision is

∆mC2 =−m

2
(1− e2)(ggg ··· kkk)2 . (2.66)
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Substituting this into the expression for collisional source [(2.51) and 2.63] and after perform-

ing the integrals term by term we have the final expression for collisional dissipation as

D=−1
2

ℵαα

=
12ρνg0(1− e2)T

3
2

π
1
2 σ

(
1+

3
16

a2

︸ ︷︷ ︸
+

9
1024

a2
2

)
−3ρνg0(1− e2)T (∇∇∇ ···uuu)︸ ︷︷ ︸

− 3
10

(1− e2)νg0(2+21a2)∇∇∇ ···qqqk +
3νg0(1− e2)

5π
1
2 σρT

1
2

ΠΠΠ : ΠΠΠ+
3νg0(1− e2)

50π
1
2 ρσT

3
2

(qqqk ···qqqk)

− 6
5

νg0(1− e2)(∇∇∇uuu : ΠΠΠ)− 399
175ρT

νg0(1− e2)
(
(qqqk∇∇∇ : ΠΠΠ)+(∇∇∇qqqk : ΠΠΠ)

)

+
3

5ρ
νg0(1− e2)(qqqk ···∇∇∇ρ)− 63

10
νg0(1− e2)(qqqk ···∇∇∇a2)

+
ρν(1− e2)σ

16
√

πT
3
2

×
[

g0(rrr)

{
32

(
T 3

ρ

)
∇∇∇2ρ +24T 2∇∇∇2

T +
48
5

(
T 2

ρ

)(
∇∇∇ · (∇∇∇ ·ΠΠΠ)

)
+3T 3∇∇∇2

a2

+48

(
T 2

ρ

)
∇∇∇ρ ···∇∇∇T +6T (∇∇∇T )2 +

24
5

(
T

ρ

)
∇∇∇T ··· (∇∇∇ ···ΠΠΠ)

+6

(
T 3

ρ

)
∇∇∇ρ ···∇∇∇a2 −237T 2∇∇∇T ···∇∇∇a2

+
48
5

T 2
(

∇∇∇uuu : ∇∇∇uuu+∇∇∇uuu : ∇∇∇uuu′+(∇∇∇ ···uuu)2
)

+
48
25

(
T

ρ

)(
∇∇∇uuu : ∇∇∇qqqk +∇∇∇uuu : ∇∇∇qqqk′ +(∇∇∇ ···qqqk)2

)}

+16T 3

{
∇∇∇ ·
(

∂g0

∂ρ
∇∇∇ρ

)}

+
∂g0

∂ρ
∇∇∇ρ ···

{
32

(
T 3

ρ

)
∇∇∇ρ +24T 2∇∇∇T +3T 3∇∇∇a2 +

48
5

(
T 2

ρ

)
(∇∇∇ ···ΠΠΠ)

}]
,

(2.67)

where a (′) over a quantity means its transpose and the following notation is used for the

deviatoric part of the kinetic pressure tensor :

Παβ = Pk
〈αβ 〉. (2.68)
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The under-bracket terms in (2.67) are the contributions from the recent work by Garzó

(2013)

DGarzo =
12ρνg0(1− e2)T

3
2

π
1
2 σ

(
1+

3
16

a2

)
−3ρνg0(1− e2)T (∇∇∇ ···uuu), (2.69)

where a 14-moment theory for a granular gas at a moderate density has been proposed. It is

clear that the 14-moment theory of Garzó (2013) is incomplete since he has not calculated all

source and flux terms consistently upto the second-order.

The 13-moment theory of Jenkins & Richman (1985a) is also incomplete for similar rea-

sons and their expression for collisional dissipation D is

DJenkins =
12ρνg0(1− e2)T

3
2

π
1
2 σ

−3ρνg0(1− e2)T (∇∇∇ ···uuu). (2.70)

2.7.2 Collisional Dissipation in the Dilute limit

In the dilute limit of a granular gas (ν → 0;g0 → 1), eq. (2.67) reduces into

D=
12ρν(1− e2)T

3
2

π
1
2 σ

(
1+

3
16

a2 +
9

1024
a2

2

)
+

3ν(1− e2)

5π
1
2 σρT

1
2

ΠΠΠ : ΠΠΠ+
3ν(1− e2)

50π
1
2 ρσT

3
2

(qqqk ···qqqk)

+
ρν(1− e2)σ

16
√

πT
3
2

{
32

(
T 3

ρ

)
∇∇∇2ρ +24T 2∇∇∇2

T +
48
5

(
T 2

ρ

)(
∇∇∇ · (∇∇∇ ·ΠΠΠ)

)
+3T 3∇∇∇2

a2

+48

(
T 2

ρ

)
∇∇∇ρ ···∇∇∇T +6T (∇∇∇T )2 +

24
5

(
T

ρ

)
∇∇∇T ··· (∇∇∇ ···ΠΠΠ)

+6

(
T 3

ρ

)
∇∇∇ρ ···∇∇∇a2 −237T 2∇∇∇T ···∇∇∇a2

+
48
5

T 2
(

∇∇∇uuu : ∇∇∇uuu+∇∇∇uuu : ∇∇∇uuu′+(∇∇∇ ···uuu)2
)

+
48
25

(
T

ρ

)(
∇∇∇uuu : ∇∇∇qqqk +∇∇∇uuu : ∇∇∇qqqk′ +(∇∇∇ ···qqqk)2

)}
. (2.71)

Our expression of collisional dissipation (2.71) in the dilute limit contains all the terms ob-

tained by Kremer & Marques Jr (2011) and Garzó (2012); moreover, the terms proportional

to the nonlinear transport coefficients (∼ a2
2,P

k
〈kl〉P

k
〈kl〉,q

k2
) match exactly with the expressions

of the cooling rate as computed in a recent article by Gupta et al. (2017).

It should be noted here that the cooling rate obtained in this present theory is proportional

to (1−e2), like it is found in the previous literature (Jenkins & Richman 1985b; Sela & Gold-

hirsch 1998; Garzó & Dufty 1999; Van Noije & Ernst 1998; Kremer & Marques Jr 2011). The

cooling rate computed via the present nonlinear theory also contains terms proportional to the
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double derivatives of number density (∼ ∇∇∇2
n), granular temperature (∼ ∇∇∇2

T ), kinetic stress

(∼ ∇∇∇2
P̂PP

k
) and cumulant (∼ ∇∇∇2

a2). Establishing the dependence of collisional dissipation on

these higher-order terms is a new finding of our work.

2.7.3 Remaining Higher-order Terms and the Nonlinear 5-Field Theory

The expression for Θαββ is calculated and given in (2.95) and serves as the collisional contri-

bution to the heat flux vector (2.64). It is noteworthy that with the information given for Θαββ ,

along with the dissipation rate (2.67), gives a “nonlinear” 5-moment theory for a granular gas

at finite density that includes (i) the mass density (ρ), (ii) the macroscopic velocity (uuu) and

(iii) the granular temperature (T ) as field variables; the corresponding balance equations are

as follows:

Dρ

Dt
+ρuα,α = 0, (2.72)

ρ
Duα

Dt
+Pαβ ,β = 0, (2.73)

3
2

ρ
DT

Dt
+qα,α +Pαβ uβ ,α +D = 0. (2.74)

Using Maxwell-iteration technique [Truesdell & Muncaster (1980)] the laws of Navier-Stokes

and Fourier can be recovered as we shall demonstrate in §2.10.

This nonlinear 5-field theory can be applied to analyse molecular/granular flow phenomena

that have negligible normal stress differences and replicates the Navier-Stokes level hydrody-

namics (Garzó & Dufty 1999; Lutsko 2005) with second-order nonlinearities.

The hydrodynamics beyond Navier-Stokes that incorporates the normal stress differences

and generalized Fourier’s law are the main focus of the present work and will be considered

in the following sections. We will discuss about the higher-order moment equations where the

stress tensor PPP and heat flux vector qqq do not remain constitutive quantities but are considered

as independent hydrodynamic variables.

2.8 Balance of Second Moment and the 10-moment System

We re-write the balance of second moment

ρ
DMαβ

Dt
+Qγαβ ,γ +Pδβ uα,δ +Pδαuβ ,δ = ℵαβ , (2.75)
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where the definitions of various production terms are as

ℵαβ = ℵ[mCαCβ ], Θαβ =Θα [mCβ ] and Θγαβ =Θα [mCαCβ ], (2.76)

and

Pαβ = ρ〈CCCαCCCβ 〉+Θα

[
mCβ

]
≡ ρMαβ +Θαβ = Pk

αβ +Pc
αβ , (2.77)

Qγαβ = ρ〈CγCαCβ 〉+Θγ

[
mCαCβ

]
≡ ρMγαβ +Θγαβ . (2.78)

In this section we focus on the evolution equation for the second moment of velocity fluc-

tuations Mαβ (= 〈CαCβ 〉), or, the balance of second moment as given in (2.75) and discuss

about its closure. We evaluate the collisional source of second moment (ℵαβ ) as appeared in

the right hand side of (2.75) along with the collisional flux at second (Θαβ ) and third (Θγαβ )

orders, respectively. The calculations involve terms correct up-to linear order in spatial gra-

dients and the terms containing derivatives of second and higher order are neglected. The

collisional flux of momentum (Θαβ ) is also termed as the collisional contribution to the stress

tensor (2.77), PPPc, whereas the second moment of velocity fluctuations ρ〈CαCβ 〉 contributes

the kinetic counterpart, PPPk, of the stress tensor.

2.8.1 Collisional Source and Flux at Second Order: Whole Range of

Density

The total change of the dyadic product CCCC and the particle momentum mCCC in a collision is

given by the formulae

∆(mCαCβ ) =
m

2
(1+ e)(ggg ··· kkk)

{
(1+ e)(ggg ··· kkk)kαkβ − (kαgβ +gαkβ )

}
, (2.79)

m(C′
β −Cβ )|1 =−m

2
(1+ e)(ggg ··· kkk)kβ , (2.80)
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where the subscript 1 in 2.80 corresponds to granule levelled with 1. Plugging the above set of

information into the integral expressions of collisional source (2.51) and flux (2.52), we obtain

ℵαβ =
m(1+ e)σ 2g0

4

y

ggg···kkk>0

{
(1+ e)(ggg ··· kkk)3kαkβ − (ggg ··· kkk)2(kαgβ +gαkβ )

}

× f1 f2

{
1+

1
2

σki
∂

∂ ri
log

f2

f1

}
dkkkdGGGdggg

+
m(1+ e)σ 4

16

y

ggg···kkk>0

{
(1+ e)(ggg ··· kkk)3kαkβ − (ggg ··· kkk)2(kαgβ +gαkβ )

}

× kik j
∂g0

∂ ri

(
f2

∂ f1

∂ r j
+ f1

∂ f2

∂ r j

)
dkkkdGGGdggg, (2.81)

Θαβ =
m(1+ e)σ 3g0

4

y

ggg···kkk>0

(ggg ··· kkk)2kαkβ f1 f2

{
1+

1
2

σki
∂

∂ ri

log
f2

f1

}
dkkkdGGGdggg

− m(1+ e)σ 5g0

8

y

ggg···kkk>0

(ggg ··· kkk)2kαkβ kmkn
∂ f1

∂ rm

∂ f2

∂ rn
dkkkdGGGdggg

− m(1+ e)σ 5

16

y

ggg···kkk>0

(ggg ··· kkk)2kαkβ kmkn
∂g0

∂ rm

(
f2

∂ f1

∂ rn
+ f1

∂ f2

∂ rn

)
dkkkdGGGdggg. (2.82)
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Evaluating above integrals, the expressions for collisional source of second moment is

found as

ℵℵℵ ≡ [ℵαβ ] =

−8ρνg0(1− e2)T
3
2

π
1
2 σ

(
1+

3a2

16︸ ︷︷ ︸
+

9
1024

a2
2

)
I−24νg0(1+ e)(3− e)T

1
2

5π
1
2 σ

(
1− a2

32

)
ΠΠΠ

︸ ︷︷ ︸

−6ρνg0(1+ e)T

5

{
2(e−2)D+

(
e− 1

3

)
(∇∇∇ ···uuu)I

}

︸ ︷︷ ︸

+
(1+ e)νg0

25
(2+21a2)

[
(1−3e)(∇∇∇ ···qqq)I+3(2− e)

{
∇∇∇qqqk +(∇∇∇qqqk)′

}]

+
(1+ e)νg0

35π
1
2 ρσT

1
2

{
(3e+5)(ΠΠΠ : ΠΠΠ)I+12(e−3)(ΠΠΠ ···ΠΠΠ)

}

+
(1+ e)νg0

125π
1
2 ρσT

3
2

{
(1+3e)(qk ···qk)I−6(3− e)(qkqk)

}

+
2(1+ e)νg0

35

[
(1−27e)(∇∇∇uuu : ΠΠΠ)I+(50−27e)

{
(∇∇∇uuu ···ΠΠΠ)+(∇∇∇uuu ···ΠΠΠ)′

}

+2(11−3e)
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− 2(1+ e)νg0

5

{
(1−3e)(∇∇∇uuu : ΠΠΠ)I+3(2− e)

(
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+
2(1+ e)νg0

175ρT

[
4(11−3e)

{(
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)

+
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+(9−75e)
{
(qqqk∇∇∇ : ΠΠΠ)+(∇∇∇qqqk : ΠΠΠ)
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I
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(∇∇∇ΠΠΠ) ···qqqk +{(∇∇∇ΠΠΠ) ···qqqk}′+(∇∇∇qqqk) ···ΠΠΠ+{(∇∇∇qqqk) ···ΠΠΠ}′

}]

− 2(1+ e)νg0

25ρ

{
(1−3e)(qqqk ···∇∇∇ρ)I+3(2− e)

(
qqqk∇∇∇ρ +(qqqk∇∇∇ρ)′
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+
21(1+ e)νg0
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{
(1−3e)(qqqk ···∇∇∇a2)I+3(2− e)

(
qqqk∇∇∇a2 +(qqqk∇∇∇a2)

′
)}

− ρνσ(1+ e)T
1
2

40π
1
2
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∇∇∇g0

(
32(1− e)

T

n
∇∇∇n+24(1− e)∇∇∇T +3(1− e)T ∇∇∇a2 +

48(2− e)

7
1
ρ

∇∇∇ ···ΠΠΠ
)}

+
{

∇∇∇g0

(
32(1− e)

T

n
∇∇∇n+24(1− e)∇∇∇T +3(1− e)T ∇∇∇a2 +

48(2− e)

7
1
ρ

∇∇∇ ···ΠΠΠ
)}′

+
{

∇∇∇g0 ···
(

32(1− e)
T

n
∇∇∇n+24(1− e)∇∇∇T +3(1− e)T ∇∇∇a2 −

16(1+3e)

7
1
ρ

∇∇∇ ···ΠΠΠ
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I

+
48(2− e)

7
1
ρ

{
(∇∇∇ΠΠΠ ···∇∇∇g)+(∇∇∇ΠΠΠ ···∇∇∇g)′

}
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16(13−3e)

7
1
ρ
(∇∇∇g ···∇∇∇ΠΠΠ)

]
,

(2.83)
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and the expression for the collisional flux of momentum is

ΘΘΘ ≡ [Θαβ ] =

(
2(1+ e)ρνg0T

)
I+

4
5

νg0(1+ e)ΠΠΠ− 4ρνg0(1+ e)σT
1
2

5π
1
2

(
1− a2

16

)(
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)

− 59(1+ e)νg0σ

50π
1
2 T

1
2

(
qqqk∇∇∇a2 +(qqqk∇∇∇a2)

′+(qqqk ···∇∇∇a2)I
)

− ρ(1+ e)νg0σ 2

5n

[T

n

{
(∇∇∇n ···∇∇∇n)I+2(∇∇∇n∇∇∇n)

}
+
{
(∇∇∇n ···∇∇∇T )I+(∇∇∇n∇∇∇T )+(∇∇∇n∇∇∇T )′

}]

+
ρ(1+ e)νg0σ 2

35

[{
∇∇∇uuu : ∇∇∇uuu+∇∇∇uuu : (∇∇∇uuu)′+(∇∇∇ ···uuu)2

}
I

+2
{

∇∇∇uuu ···∇∇∇uuu+(∇∇∇uuu ···∇∇∇uuu)′+∇∇∇uuu ··· (∇∇∇uuu)′+(∇∇∇uuu)′ ···∇∇∇uuu+
(

∇∇∇uuu+(∇∇∇uuu)′
)
(∇∇∇ ···uuu)

}]

− ρ(1+ e)νσ 2

10

[2T

n

{
(∇∇∇g0 ···∇∇∇n)I+(∇∇∇g0∇∇∇n)+(∇∇∇g0∇∇∇n)′

}

+
{
(∇∇∇g0 ···∇∇∇T )I+(∇∇∇g0∇∇∇T )+(∇∇∇g0∇∇∇T )′

}]

− (1+ e)νσ 2

35ρ

[
(∇∇∇g0 ···∇∇∇)ΠΠΠ+

{
(∇∇∇g0) ··· (∇∇∇ ···ΠΠΠ)

}
I+(∇∇∇ΠΠΠ) ···∇∇∇g0 +

{
(∇∇∇ΠΠΠ) ···∇∇∇g0

}′

+(∇∇∇g0)(∇∇∇ ···ΠΠΠ)+
{
(∇∇∇g0)(∇∇∇ ···ΠΠΠ)

}′]
, (2.84)
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The under-braced terms in (2.83) and (2.84) are contributions from work by Garzó (2013); the

remaining terms are new contributions of the present work.

2.8.2 Collisional Flux at Third Order: Whole Range of Density

The second moment of velocity fluctuations (2.75) contains the third order flux Θγαβ , see

eq.(2.78). In order to close the system of equations (2.75), we need to calculate this higher

order term. The detailed calculation is beyond the scope of the thesis and we give the final

expression as follows:
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Θγαβ =
2

25
νg0(1+ e)

(
4qγδαβ +9qαδβγ +9qβ δαγ

)

− 2νg0σ(1+ e)

175
√

π
√

T

[
4

{
∂uα

∂ rβ
+

∂uβ

∂ rα
+(∇∇∇ ·u)δαβ

}
qk

γ

+4

{
∂uα

∂ rl

δβγ +
∂uβ

∂ rl

δαγ +
∂uγ

∂ rl

δαβ

}
qk

l +4

{
∂ul

∂ rα
δβγ +

∂ul

∂ rβ
δαγ +

∂ul

∂ rγ
δαβ

}
qk

l

+11

{
∂uα

∂ rγ
+

∂uγ

∂ rα
+(∇∇∇ ·u)δαγ

}
qk

β +11

{
∂uβ

∂ rγ
+

∂uγ

∂ rβ
+(∇∇∇ ·u)δβγ

}
qk

α

]

− ρνg0σ(1+ e)

20
√

π
(16+7a2)

√
T

(
∂T

∂ rγ
δαβ +

∂T

∂ rα
δβγ +

∂T

∂ rβ
δαγ

)

− 4νg0σ(1+ e)

35
√

π
√

T

{(
Pk
〈αl〉δβγ +Pk

〈β l〉δαγ +Pk
〈γ l〉δαβ

)
∂T

∂ rl

+Pk
〈αβ 〉

∂T

∂ rγ
+Pk

〈βγ〉
∂T

∂ rα
+Pk

〈αγ〉
∂T

∂ rβ

}

+
2νg0σ(1+ e)

√
T

5
√

πρ

{(
Pk
〈αβ 〉δγ l +Pk

〈αl〉δβγ +Pk
〈β l〉δαγ

)
∂ρ

∂ rl

+Pk
〈αβ 〉

∂ρ

∂ rγ
+Pk

〈βγ〉
∂ρ

∂ rα
+Pk

〈αγ〉
∂ρ

∂ rβ

}

− 2νg0σ(1+ e)
√

T

5
√

π

(
∂Pk

〈αβ 〉
∂ rγ

+
∂Pk

〈βγ〉
∂ rα

+
∂Pk

〈αγ〉
∂ rβ

+
∂Pk

〈αβ 〉
∂ rl

δγ l +
∂Pk

〈αl〉
∂ rl

δβγ +
∂Pk

〈β l〉
∂ rl

δαγ

)

− νg0σ(1+ e)
√

Ta2

280
√

π

(
354

∂Pk
〈αβ 〉

∂ rγ
+193

∂Pk
〈βγ〉

∂ rα
+193

∂Pk
〈αγ〉

∂ rβ

+32
∂Pk

〈γ l〉
∂ rl

δαβ +193
∂Pk

〈αl〉
∂ rl

δβγ +193
∂Pk

〈β l〉
∂ rl

δαγ

)

− νg0σ(1+ e)

35
√

πρ
√

T

{
2

(
∂Pk

〈αβ 〉
∂ rl

Pk
〈γ l〉−

∂Pk
〈γ l〉

∂ rl

Pk
〈αβ 〉

)

+
∂Pk

〈αl〉
∂ rβ

Pk
〈γ l〉−

∂Pk
〈γ l〉

∂ rβ
Pk
〈αl〉+

(
∂Pk

〈βm〉
∂ rl

Pk
〈ml〉−

∂Pk
〈ml〉

∂ rl

Pk
〈βm〉

)
δαγ

+
∂Pk

〈β l〉
∂ rα

Pk
〈γ l〉−

∂Pk
〈γ l〉

∂ rα
Pk
〈β l〉+

(
∂Pk

〈αm〉
∂ rl

Pk
〈ml〉−

∂Pk
〈ml〉

∂ rl

Pk
〈αm〉

)
δβγ

}

− νg0σ(1+ e)

250
√

πρT
3
2

{
∂qk

α

∂ rβ
qk

γ −
∂qk

γ

∂ rβ
qk

α +
∂qk

β

∂ rα
qk

γ −
∂qk

γ

∂ rα
qk

β

+

(
∂qk

β

∂ rl

qk
l −

∂qk
l

∂ rl

qk
β

)
δαγ +

(
∂qk

α

∂ rl

qk
l −

∂qk
l

∂ rl

qk
α

)
δβγ

}
. (2.85)
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It may be noted that third-order flux (2.85) has not been calculated in previous works [Jenkins

& Richman (1985a); Garzó (2013)].

2.8.3 Nonlinear 10-moment System

The following set of 10-equations

Dρ

Dt
=−ρuα,α , (2.86)

ρ
Duα

Dt
=−Pαβ ,β , (2.87)

ρ
DMαβ

Dt
=−Qγαβ ,γ −Pδβ uα,δ −Pδαuβ ,δ +ℵαβ , (2.88)

along with the constitutive expressions (2.83), (2.84) and (2.85) serve as the nonlinear 10-

moment theory of {ρ , uuu, PPP} for a dense granular gas at finite densities. It may be noted that

the third-order flux (2.85) has not been calculated before.

For a closure of second moment balance (2.88), we need a constitutive expression for the

kinetic part of the third moment tensor Qγαβ . This can be accomplished via Maxwell-iteration

technique as discussed in §2.10.

2.9 Collisional Source and Flux at Third Order : Whole

Range of Density

In this section we determine the collisional source of contracted third moment ℵαββ and the

collisional flux of third moment Θγαβ for the whole range of density. The contracted third-

order production term ℵαββ appears on the right hand side of the balance equation for kinetic

heat-flux (2.25), which after re-writing reads as

Dqk
α

Dt
+

1
2

Qγαββ ,γ +qk
αuδ ,δ +qk

β uα,β +Qγαβ uβ ,γ −
(

Mαβ +
1
2

Mγγδαβ

)
Pβn,n +

1
2

Θγββ uα,γ

=
1
2

ℵαββ ,

(2.89)

which determines the evolution of the kinetic contribution qqqk to granular heat flux. On the

other hand, the third order flux term Θγαβ on the left hand side of (2.89) also appears on

the left hand side of the balance of second moment (2.24) which is required to close the 10-

moment theory. Furthermore, the contraction over the last two indices of Θγαβ produces the
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collisional component of the heat flux vector qc
γ(=

1
2Θγαα) and therefore the total heat flux

vector can be obtained using

qα = qk
α +qc

α =
1
2

Mαββ +
1
2

Θαββ . (2.90)

Now

ℵαββ = ℵ[mC2Cα ], Θγαβ =Θγ [mCαCβ ], (2.91)

∆(mC2Cα) =
m

2
(1+ e)(ggg ··· kkk)

{
2(1+ e)(ggg ··· kkk)kαkβ Gβ − (1− e)(ggg ··· kkk)Gα −2Gβ (gαkβ + kαgβ )

}
,

(2.92)

m
(

C′
αC′

β −CαCβ

)
=

m

2
(1+ e)(ggg ··· kkk)

{1
2
(1+ e)(ggg ··· kkk)kαkβ − (Gαkβ + kαGβ )−

1
2
(gαkβ + kαgβ )

}
.

(2.93)

Plugging the above set of information into (2.51-2.52) and performing some tedious steps, we

obtain the expressions for the contracted third order source and flux:

ℵαββ =−4(1+ e)νg0
√

T

5
√

πσ

[{
(49−33e)+

a2

32
(19−3e)

}
qk

α +
3(7+ e)

10ρT
Pk
〈αl〉q

k
l

]

− 1
5ρ

νg0(1+ e)(29−27e)TPk
〈αl〉

∂ρ

∂ rl

+
2(1+ e)νg0

25

[
(55−39e)

∂ul

∂ rl

qk
α +2(25−12e)

∂uα

∂ rl

qk
l +6(5−4e)

∂ul

∂ rα
qk

l

]

+
1
5

ρνg0(1+ e)

{
5(13−9e)(1+a2)T δαl +2(19−9e)

Pk
〈αl〉
ρ

}
∂T

∂ rl

+
1
5

νg0(1+ e)

{
(29−27e)+24(4−3e)a2

}
T

Pk
〈αl〉
∂ rl

+
1

10
ρνg0(1+ e)

{
5(13−9e)δlα +48(4−3e)

Pk
〈αl〉
ρT

}
T 2 ∂a2

∂ rl

, (2.94)
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and

Θαββ =
12(1+ e)νg0

5
qα − 12(1+ e)νg0σ

25
√

π
√

T

(
∂ul

∂ rl

qk
α +

∂uα

∂ rl

qk
l +

∂ul

∂ rα
qk

l

)

+
8νg0σ(1+ e)

√
T

5
√

πρ
Pk
〈αl〉

∂ρ

∂ rl

− ρνg0σ(1+ e)
√

T

20
√

π

{
5(16+7a2)δαl +16

Pk
〈αl〉
ρT

}
∂T

∂ rl

− νg0(1+ e)σ
√

T

10
√

π
(16+31a2)

Pk
〈αl〉
∂ rl

− ρνg0(1+ e)σT
3
2

√
π

(
δαl +3

Pk
〈αl〉
ρT

)
∂a2

∂ rl

, (2.95)

respectively.

The expression for Θαββ given in (2.95) is twice the collisional contribution to the heat

flux vector (2.64) and gives a closure for the “nonlinear” 5-moment theory of (i) the mass

density (ρ), (ii) the macroscopic flow velocity (uuu) and (iii) the granular temperature (T ) as

discussed in §2.7.3:

Dρ

Dt
+ρuα,α = 0, (2.96)

ρ
Duα

Dt
+Pαβ ,β = 0, (2.97)

3
2

ρ
DT

Dt
+qα,α +Pαβ uβ ,α +D = 0. (2.98)

The constitutive relation for the heat-flux must be determined at finite densities which is left

for a future work. In the following, we outline a procedure on how to determine “nonlinear”

constitutive relation for heat flux of a “dilute” granular gas.

2.10 Granular Heat Flux and Thermal Conductivity in the

Dilute Limit

In this section we focus on the dilute limit of of a granular gas and determine the granular heat

heat flux along with the corresponding thermal conductivity tensor in a non-uniform shear

flow. In dilute limit, the collisional component of any quantity becomes negligible and the

kinetic component is the only relevant parameter. Therefore in this limit (ν → 0) the governing

equation (2.89) for heat flux reduces to

Dqα

Dt
+qαuδ ,δ +

1
2

Qγαββ ,γ +Qγαβ uβ ,γ +qβ uα,β︸ ︷︷ ︸
−
(

Mαβ +
1
2

Mγγδαβ

)
Pβn,n =

1
2

ℵαββ ,

(2.99)
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where the heat flux vector is defined via

qα = qk
α =

m

2

ˆ

C2Cα f dCCC =
1
2

ρMαββ . (2.100)

The other related quantities appearing in (2.99) take the form

Qγαββ = ρMγαββ = ρ〈C2CαCγ〉= 5ρT 2(1+a2)δγα +7T Pk
〈γα〉,

Qγαβ = ρMγαβ = ρ〈CγCαCβ 〉,
Pαβ = Pk

αβ = ρMαβ = ρT +Pk
〈αβ 〉,

ℵαββ =−4(1+e)νg0
√

T

5
√

πσ

[{
(49−33e)+ a2

32(19−3e)
}

qk
α +

3(7+e)
10ρT

Pk
〈αl〉q

k
l

]
.





(2.101)

Now we assume the third-order tensor Qγαβ is trace-free, therefore, using (2.100), we can

write

Qγαβ =
1
5

(
Qγδαβ +Qαδβγ +Qβ δαγ

)
≡ 2

5

(
qγδαβ +qαδβγ +qβ δαγ

)
. (2.102)

Therefore the under-braced term in (2.99) simplifies to

Qγαβ uβ ,γ +qβ uα,β =
9
5

Dαγqγ +Wαnqγ +
2
5

qα
∂uβ

∂xβ
, (2.103)

where the following definitions of

Dαγ =
1
2

(
∂uα

∂xγ
+

∂uγ

∂xα

)
(2.104)

Wαγ =
1
2

(
∂uα

∂xγ
− ∂uγ

∂xα

)
, (2.105)

strain and vorticity tensors, respectively, have been used. Inserting (2.101) and (2.103) into

the balance equation for heat flux (2.100), we get

2
Dqα

Dt
+

14
5

qα
∂uγ

∂ rγ
+

∂ (ρMγαββ )

∂ rγ
− (2Mαβ +3T δαβ )

∂Pβγ

∂ rγ
= ℵαγγ −

18
5

qk
γDαγ −2qk

γWαγ

2
Dqα

Dt
+

14
5

qα
∂un

∂xn
+5
{

ρT (1+2a2)δαβ +Pk
〈αβ 〉

} ∂T

∂ rβ
+
(

5a2T 2δαβ − 2T

ρ
Pk
〈αβ 〉

) ∂ρ

∂ rβ

+5ρT 2 ∂a2

∂ rα
+2
(

T δαβ −
Pk
〈αβ 〉
ρ

)∂Pk
〈βγ〉

∂ rγ
=−4ν(1+ e)

√
T

5σ
√

π
Qαγqγ , (2.106)
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where

Qαγ =
{
(49−33e)+

a2

32
(19−3e)

}
δαγ +

3(7+ e)

10ρT
Pk
〈αγ〉

+
9σ

√
π

2ν(1+ e)
√

T
Dαγ +

5σ
√

π

2ν(1+ e)
√

T
Wαγ

︸ ︷︷ ︸
, (2.107)

is a second rank tensor.

Equation (2.106) remains the central equation to determine the heat flux vector (qqq) for a

dilute non-uniform granular shear flow. We will apply Maxwell iteration technique [Truesdell

& Muncaster (1980)] on (2.106) to obtain qqq.

2.10.1 Maxwell Iteration : Heat-flux for 5-Moment Theory of a Dilute

Granular Gas

In Maxwell iteration scheme [Maxwell (1867, 1879); Truesdell & Muncaster (1980)] the heat-

flux vector qqq and pressure deviator no longer remain field variables but they are constitutive

quantities. This method is based on the five-field theory of density, macroscopic velocity and

granular temperature and any other quantity other than these appearing on the left hand side

of (2.106) must be set to be zero. Therefore following the procedure as described in Ikenberry

& Truesdell (1956) and Kremer & Marques Jr (2011), and substituting Pk
〈αβ 〉 = qk = 0 on the

left hand side of (2.106), we obtain

qγ =−25
√

πρpσ
√

T

4(1+ e)
(1+2a2)[Q

−1
γα ]

∂T

∂xα
− 25

√
πρpσT

3
2

4(1+ e)ρ
a2[Q

−1
γα ]

∂ρ

∂xα
(2.108)

=−K T
γα

∂T

∂xα
−K

ρ
γα

∂ρ

∂xα
, (2.109)

where the thermal conductivity and Dufour tensors are given by

K T
γα =

25
√

πρpσ
√

T

4(1+ e)
(1+2a2)[Q

−1
γα ], (2.110)

K ρ
γα =

25
√

πρpσT
3
2

4(1+ e)ρ
a2[Q

−1
γα ], (2.111)

and the expression for Q is given by (2.107).

The Fourier’s law for heat flux obtained in (2.108) is a modification over the conventional

Fourier’s law [as obtained in the articles of Kremer & Marques Jr (2011) and Garzó (2012)] in

the sense that thermal conductivity (also Dufour tensor) is not just a scalar but an asymmetric
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anisotropic second-rank tensor. The asymmetry is due to the under-braced term in the govern-

ing equation for heat flux (2.99) manifested as the shear rate dependence in Qαγ and hence

in the thermal conductivity tensor K T . The anisotropy of conductivity tensors [2.110 and

2.111] follows from the inclusion of the higher order term in calculating ℵαββ , the term un-

derlined in the expression for Qαγ in (2.107). The law established in (2.108) must be treated

as generalized Fourier law for granular heat flux.

2.10.2 Linear 5-Moment Theory : The Navier-Stokes Limit

The Navier-Stokes limit corresponds to a theory that is linear order in shear rate (∼ γ̇) and is a

special case of the proposition proposed in §2.10.1. This also gives a complete 5-field theory

of (i) the mass density (ρ), (ii) the macroscopic velocity (uuu) and (iii) the granular temperature

(T ); but unlike previous section, only linear order terms must be retained and nonlinear terms

like Pk
〈αl〉q

k
l should be ignored. . Therefore at linear order, (2.107) reduces to

Qγα =
{
(49−33e)+

a2

32
(19−3e)

}
δαγ . (2.112)

Substituting (2.112 ) into (2.108), we obtain the conventional Fourier’s law for heat flux

qγ =−K T
γα

∂T

∂xα
−K

ρ
γα

∂ρ

∂xα
, (2.113)

with

K T
γα =

25
√

πρpσ
√

T

4(1+ e)
{
(49−33e)+ a2

32(19−3e)
}(1+2a2), (2.114)

K
ρ

γα =
25

√
πρpσT

3
2

4(1+ e)ρ
{
(49−33e)+ a2

32(19−3e)
}a2, (2.115)

are the expressions for “scalar” thermal conductivity and Dufour tensors at Navier-Stokes

order (Jenkins & Richman 1985a; Garzó 2012).

2.10.3 Nonlinear 10-Moment Theory for a Granular Gas

In the 10-moment theory the hydrodynamic field variables are the the mass density (ρ), macro-

scopic flow velocity (uuu), granular temperature (T ) and the kinetic stress deviator (Pk
〈αβ 〉).

Therefore, in addition to the 5-field theory, Pk
〈αβ 〉 is treated as a separate hydrodynamic field

and will remain non-zero in the iteration scheme for obtaining heat flux. The only constitutive
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quantity is the heat-flux vector and upon substituting qk = 0 on the left hand side of (2.106)

we obtain

qγ =− 25
√

πρpσ

4(1+ e)ρ
√

T
[Q−1

γα ]
{
(1+2a2)ρTδαβ +Pk

〈αβ 〉

} ∂T

∂xβ

− 5
√

πρpσ

4(1+ e)ρ
√

T
[Q−1

γα ]
{

5a2T 2δαβ − 2T

ρ
Pk
〈αβ 〉

} ∂ρ

∂xβ

− 5
√

πρpσ

2(1+ e)ρ
√

T
[Q−1

γα ]
{

T δαβ −
Pk
〈αβ 〉
ρ

}∂Pk
〈βn〉

∂xn

(2.116)

≡−K T
γα

∂T

∂xα
−K ρ

γα
∂ρ

∂xα
−K Π

γβ

∂Pk
〈βn〉

∂xn

(2.117)

where the thermal conductivity, Dufour and stress conductivity tensors are given by

K T
γα =

25
√

πρpσ

4(1+ e)ρ
√

T
[Q−1

γα ]
{
(1+2a2)ρTδαβ +Pk

〈αβ 〉

}
, (2.118)

K
ρ

γα =
5
√

πρpσ

4(1+ e)ρ
√

T
[Q−1

γα ]
{

5a2T 2δαβ − 2T

ρ
Pk
〈αβ 〉

}
, (2.119)

K Π
γβ =

5
√

πρpσ

2(1+ e)ρ
√

T
[Q−1

γα ]
{

T δαβ −
Pk
〈αβ 〉
ρ

}
, (2.120)

and the expression for Q is given by (2.107).

The generalized Fourier’s law obtained in (2.117) using the 10-moment theory is also

different from the conventional law for heat flux. Because of the presence of non-zero off-

diagonal terms in the conductivity tensor, there exists heat flow in the direction perpendicular

to the temperature gradient. The gradient of kinetic stress also drives a heat current governed

by the stress conductivity tensor K Π
γβ (2.120). These are signatures of the non-Fourier rhe-

ology. The occurrence of the heat current parallel to the flow and the stress-gradient-driven

heat flux is a well known phenomena in rarefied gas study (Grad 1949; Kogan 1969; Chapman

& Cowling 1970). The establishment of a generalized Fourier law (2.117) for a non-uniform

dilute granular shear flow is a new finding of our work.

In order to obtain a complete information about the total heat flux vector (qqq = qqqk + qqqc),

the kinetic component qqqk must be calculated from the general contracted third order balance

(2.64), valid for the whole range of density but not from the dilute version (2.99). The original

equation (2.25) governing the kinetic part of the granular heat flux contains the fourth-order

collisional flux term Θγαββ that must be calculated to complete this equation. The total heat
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flux vector qqq can then be determined upon summing the kinetic qqqk and collisional components

qqqc (2.95) of the heat flux vector (2.64).

The determination of the fourth order flux Θγαββ and consequently the generalized Fourier’s

law for a “dense” granular gas using full 14 moments and the issues related to the closure of

this 14 moment DG14 theory are left for a future work.

2.11 Application of Nonlinear DG14 Moment Theory to Uni-

form Shear Flow

We apply the above developed theory to analyse the uniform shear flow (USF) problem of a

dense granular gas. In USF, the number density n(= ρ/m), the velocity gradient ∇∇∇u, the gran-

ular temperature T remain constant and heat flux along with the third-order moment vanish.

The velocity profile in simple shear flow is given by

Fig. 2.2 Schematic of the uniform shear flow, with x denoting the flow direction. The y axis is
along the gradient and z axis is along the vorticity direction.

u = 2γ̇y, v = 0, w = 0 , (2.121)

where 2γ̇y is the constant/uniform shear rate. In this case the mass and momentum balance

equations are identically satisfied and the balance of second moment (2.75) reduces into

Pδβ uα,δ +Pδαuβ ,δ = ℵαβ , (2.122)

with

[PPP]αβ = Pk
αβ +Pc

αβ = ρT +Pk
〈αβ 〉+Θαβ , (2.123)
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is total stress tensor and the expressions for the collisional source and flux at second order are

to be calculated from (2.83) and (2.84) respectively. Note that, for the present case of uni-

form shear flow [∇(n, γ̇,T ) = 0], the balance of contracted third moment (2.99) also satisfies

trivially and we are remaining with

4Qγβααuβ ,γ = ℵααββ , (2.124)

to determine the excess Kurtosis a2 in the present context. The contribution of a2 in determin-

ing the non-Newtonian transport coefficients for USF is assumed to be negligible and therefore

for the present circumstance we neglect (2.124) leading to eq.(2.122) as the central equation

to solve for.

The system of equations given in (2.122) is solved in the context of the velocity pro-

file given in (2.121). It represents a system of equations with the set of unknowns being{
T,Pk

〈xx〉,P
k
〈yy〉,P

k
〈zz〉,P

k
〈xy〉; Pk

〈xx〉+Pk
〈yy〉+Pk

〈zz〉 = 0
}

when the volume fraction ν , the radial dis-

tribution function g0 and the coefficient of restitution e are specified. The radial distribution

function g0 is a function of the volume fraction ν and the exact functional dependence follows

from (Carnahan & Starling 1969):

g0 =
(2−ν)

2(1−ν)3 ; ν =
1
6

nπσ 3. (2.125)

All the transport coefficients viz. the total pressure (p=Pαα/3), shear viscosity (µ ≃−Pxy/
du
dy
),

granular temperature and normal stress differences are computed and compared with the

molecular dynamics simulation results (Alam & Luding 2003b, 2005b). The most impor-

tant result is the finding of the nonzero normal stress differences which are signatures of the

non-Newtonian rheology.

The total pressure, shear viscosity, granular temperature and the scaled first and second

normal stress differences are defined in the following way

p =
ν

ρ(2γ̇σ 2)

(
Pxx +Pyy +Pzz

3

)
, (2.126)

µ =− ν

ρ(2γ̇σ 2)
Pxy, (2.127)

N1 =
3(Pxx−Pyy)

(Pxx +Pyy +Pzz)
, (2.128)

and N2 =
3(Pyy−Pzz)

(Pxx +Pyy +Pzz)
, (2.129)
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Fig. 2.3 Variations of the (a) total pressure (p), (b) shear viscosity (µ) and (c) granular tem-
perature (T ) against volume fraction (ν) for coefficient of restitution e = 0.9. The black solid
lines, black and red dashed lines present the current DG14 moment theory, the dense gas theo-
ries by Jenkins & Richman (1985a) and Garzó (2013) respectively. The symbols are molecular
dynamics simulation results (Alam & Luding 2005b).

respectively, are calculated for the whole range of density (ν) for some specific choices of

restitution coefficients (e).

The density variations of (a) pressure (p), (b) shear viscosity (µ) and (c) granular tem-

perature (T ) at a restitution coefficient e = 0.9 are shown in figure 2.3(a)-(c). It is seen that

the DG14 moment theory (continuous black lines) predictions for p and µ agrees well with

the simulations as compared to the theory by (Garzó 2013) (red dashed lines) and this agree-

ment holds uniformly for the whole range of density. In panel (b) the density variations of the

viscosity is displayed and it is observed that although both of these theories are almost indis-

tinguishable up-to volume fraction ν = 0.1 but beyond this point the theory of Garzó (2013)

starts deviating from simulation data and the deviation continues thereafter. Both theories are
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Fig. 2.4 Variations of the (a) first (N1) and (b) second (N2) normal stress differences (2.128-
2.129) against volume fraction (ν) for restitution coefficient e = 0.9. The black solid lines are
the results from the current DG14 moment theory whereas the black dashed and red dashed
lines represent the work of Jenkins & Richman (1985a) and Garzó (2013) respectively. The
symbols are simulation results.

able to well predict the behaviour of granular temperature and they agree with the simulation

data [see figure 2.3.c]. Overall, the present 14-moment nonlinear theory well predicts p and

µ over the other Grad-level theories (Jenkins & Richman 1985a; Garzó 2013) for the whole

range of density.

The normal stress differences and other transport coefficients obtained in this way are

compared with another Grad-level theory of (Garzó 2013) for a restitution coefficient e =

0.9 and are depicted in figure 2.4. In each panel the results from the molecular dynamics

simulation (Alam & Luding 2003b, 2005b) are also superimposed for a relative qualitative

study between these two Grad-level theories.

Figure 2.4 displays the variations of the two normal stress differences against density at

e = 0.9 and it shows that the theory presented here is unable to predict the correct qualitative

behaviours of the normal stress differences. It is observed that, for the first normal stress

difference (N1), the DG14 moment theory (black solid line) shows an excellent agreement

with the simulation up-to ν = 0.1 but then starts deviating and the deviation continues with

increasing density. For the second normal stress difference (N2), although our theory is able

to capture the sign change of N2 at some finite density but underestimates its magnitude

throughout the span the volume fraction. Nevertheless, our theory is superior as compared

to other Grad level theories (Garzó 2013) in the sense that it is successful in capturing the

qualitative behaviour of the second normal stress difference (N2) along with its correct signs
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in the two extreme limits of the volume fraction (ν → 0 and ν → νmax), which the standard

Grad-level theories cannot predict.

The works of Jenkins & Richman (1985a) (black dashed line in figure 2.4) and Garzó

(2013) (red dashed line in figure 2.4), which also are based on an expansion around the

Maxwellian state, when applied to the USF, the second normal stress difference is found to be

identically zero N2 ≡ 0. On the other hand, the kinetic theory work (based on a BGK-type

model) by Montanero et al. (1999) predicts N2 to be positive for all ν . Therefore, the present

DG14 moment theory is preferable over the other Grad-like theories because of its qualitative

match with the simulation-data for normal stress differences over all densities.

2.12 Summary

On using the present nonlinear DG14-moment (Dense Grad 14-moment) theory, we have es-

tablished a generalized Fourier’s law for the granular heat flux in a dilute non-uniform shear

flow. It is observed that the gradient of kinetic stress also drives a heat current parallel to the

flow which clearly shows the non-Fourier phenomena. The anisotropy in the thermal conduc-

tivity and Dufour tensors along with its asymmetry are also discussed briefly. A thorough

analysis regarding the asymmetry and anisotropy of these thermal, Dufour and stress conduc-

tivity tensors and the establishment of a generalized Fourier’s law for a dense granular flow

will be considered in a future work. To complete the present DG14-moment theory, three ad-

ditional terms need to be determined as noted in Table 2.2. The DG14 theory discussed above

Collisional Source and Flux Terms

Calculated Yet to determine

ℵαβ

Θαβ ℵααββ

Θγαβ Θγαββ

Θγαα Θγααββ

ℵαββ

Table 2.2 Production terms worksheet

has been tested in the context of an uniform shear flow at any arbitrary density. It is clear

from the discussions in §2.11 and from figures 2.3-2.4 that the DG14-moment theory gives

excellent predictions for pressure (p), viscosity (µ), granular temperature (T ) and a qualita-

tively correct prediction for two normal-stress differences over the whole range of density. It

is successful in predicting the qualitative variation of the second normal stress difference, the
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correct signs in the dilute and dense limits and its sign reversal at some finite density. The suc-

cess of our theory originates from the inclusion of the higher order nonlinear terms (∼ P2
〈i j〉,q

2
i

etc.) in calculating the collision integrals.

Finally, it remains to find a theory that can improve the present analysis and match with the

simulation data for normal stress differences throughout the whole range of volume fraction

νε(0,0.5). An effort to predict the correct behaviours of the normal stress differences and

other transport coefficients in uniform shear flow of a dense granular fluid will be discussed in

the next chapter.





Chapter 3

Non-Newtonian and Non-Fourier

Rheology of Sheared Granular Fluid:

Expansion around Anisotropic

Maxwellian2

3.1 Introduction

In chapter 2 it was found that the nonlinear DG14 (Dense Grad 14 moment theory) moment

theory has a drawback in the sense that it is not possible to predict the “quantitative” be-

haviours of two normal-stress differences (black solid lines) for the whole range of density,

see figure 3.1. In this chapter we have followed a complementary approach to sort out the

issues raised in Chapter 2.

Here we assume that the single particle distribution function is an anisotropic Maxwellian,

which also gives a complete 10-moment system for the uniform shear flow. An exact solution

of the second-moment of velocity fluctuations at Burnett order (i.e second order in shear rate)

is derived which determines all the transport coefficients as functions of the coefficient of

restitution e and the volume fraction ν . A perturbative solution at the fourth order (super-super-

Burnett) is also determined which improves the second order analytical solution. Particle

simulation data (Alam & Luding 2005b) for the uniform shear flow of inelastic hard-spheres

2This chapter is an extended version of the work published in Journal of Fluid Mechanics [Saha & Alam
(2016), J. Fluid Mech. 795, 549-580]. Additionally, a Burnett order analytical solution for the related 2-
dimensional problem is described in Appendix M of this chapter. The complete 2-dimensional analogue has
been published in the same journal [Saha & Alam (2014), J. Fluid Mech. 757, 251-296], which is attached as a
supplementary material at the end of this thesis.
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Fig. 3.1 Variations of the first (N1) and second (N2) normal stress differences with parti-
cle volume-fraction (ν) in the uniform shear flow of smooth inelastic spheres; the symbols
represent the particle-dynamics simulation data of (Alam & Luding 2005b) for a restitution
coefficient of e = 0.9. The solid lines denote the “Dense Grad 14” (DG14) moment theory as
discussed in Chapter 2.

is compared with the theoretical model, with excellent agreement for pressure, shear viscosity

and two normal stress differences over a range of densities spanning from the dilute to close

to the freezing point. The origins of two normal stress differences in both dilute and dense

limits are discussed. Lastly, a generalized Fourier law for the granular heat flux is derived

for a dilute granular gas by analysing the non-uniform shear flow via an expansion around

the anisotropic Maxwellian state; this determination of granular heat flux makes the theory

closed at least in the dilute limit. It is observed that the gradient of kinetic stress drives a heat

current in addition to parallel heat flow, which certainly is a signature of non-Fourier rheology.

The thermal conductivity is characterized by an asymmetric anisotropic second-rank tensor,

for which explicit analytical expressions are given. It is observed that the asymmetry or/and

anisotropy appears at Burnett order and beyond, and therefore we can say that the non-Fourier

rheology is a Burnett order effect.

This chapter is organized as follows. The extended-hydrodynamic theory is outlined in

§3.2. The second moment tensor of velocity fluctuations is constructed and analysed for the

uniform shear flow in §3.4.1 and the origin of stress anisotropy is discussed in §3.4.2. Working

in a rotated coordinate frame and using a series expansion for certain integrals, the balance

equation for the second moment is reduced to a set of algebraic equations as described in

§3.5. Two sets of analytical solutions of these algebraic equations at different orders in the

perturbation parameter are derived in §3.6. The closed-form expressions for (i) all components

of the stress tensor, (ii) the shear viscosity, (iii) the pressure, (iv) two normal stress differences,
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and (v) the source of the second-moment tensor as well as the collisional dissipation rate are

provided in §3.7 for the whole range of density. The analytical forms of the above transport

coefficients are validated in §3.10.1; an analytical solution of the second-moment equation

valid near the dense-limit is derived and validated in §3.11. In §3.12 we consider the non-

uniform shear state and outline a procedure to derive the constitutive relation for the ‘non-

Fourier’ heat flux. The summary and conclusion are given in §3.13.

3.2 Extended Hydrodynamic Equations: the 10-Moment Sys-

tem with Heat Flux

We consider a dense granular gas consisting of N randomly moving smooth inelastic hard-

spheres of diameter σ and mass m. The particles loose energy upon collisions which is char-

acterized by a single parameter e, called the coefficient of normal restitution, with e = 1 and 0

referring to perfectly elastic and sticking collisions, respectively. The first member of BBGKY

(Bogoliubov-Born-Green-Kirkwood-Yvon, Chapman & Cowling (1970)) hierarchy, that deals

with the evolution of the single-particle distribution function f (ccc,xxx, t) for a dense granular gas,

reads as (Chapman & Cowling 1970; Jenkins & Richman 1985a)

(
∂

∂ t
+ ccc ···∇∇∇

)
f = σ 2

ˆ

dccc2

ˆ

ggg···kkk>0
dkkk(ggg ··· kkk)

[
e−2 f (2)(ccc1,xxx,ccc2,xxx−σkkk; t)

− f (2)(ccc′1,xxx,ccc
′
2,xxx+σkkk; t)

]
, (3.1)

where ggg= ccc1−ccc2 is the pre-collisional relative velocity between two colliding spheres, with ccc1

and ccc2 denoting their pre-collisional instantaneous velocities and their post-collisional veloci-

ties being denoted by primes, and ggg ··· kkk > 0 accounts for the constraint of impending collisions;

kkk ≡ kkk12 = (xxx2 − xxx1)/|xxx2 − xxx1| is the unit contact vector joining the center of sphere-1 to that

of sphere-2 at collision. In (5.4), f (2) is the two-body distribution function such that

f (2)(ccc1,xxx1,ccc2,xxx2)dccc1dxxx1dccc2dxxx2

is the probability of finding a pair of spheres with the first sphere being centered within dxxx1

about xxx1, with its velocity in dccc1 about ccc1 and the second one being centered within dxxx2 about

xxx2, with its velocity in dccc2 about ccc2. For a pair of colliding smooth spheres, the tangential

component of their relative velocity remains invariant but the normal component changes ac-
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cording to the following the collision rule:

(ggg′ ··· kkk) =−e(ggg ··· kkk), (3.2)

where ggg ≡ ggg12 = ccc1 − ccc2 and ggg′ = ccc′1 − ccc′2 are the pre- and post-collisional relative velocities,

respectively.

To derive hydrodynamic balance equations, let us consider any particle property ψ(CCC)

which is a function of the peculiar/fluctuation velocity CCC = (ccc−〈ccc〉), with the angular bracket,

〈·〉, denoting an average over the velocity space. Multiplying (5.4) by ψ(CCC) and integrating

over the velocity space and after tedious algebra, the master balance equation is obtained (Jenk-

ins & Richman 1985a; Saha & Alam 2014)

∂

∂ t
〈nψ〉=−

〈
n

(
∂

∂ t
+ ccc ···∇∇∇

)
uα

∂ψ

∂Cα

〉
−∇∇∇ ···(〈ncccψ〉+ΘΘΘ [ψ])−ΘΘΘ

[
∂ψ

∂CCC

]
:::∇∇∇uuu+ℵℵℵ[ψ], (3.3)

where

n(rrr, t)≡ N

V
=

ˆ

f (ccc,rrr, t)dccc, (3.4)

is the number density of particles, ΘΘΘ(ψ) is the collisional flux of ψ ,

ΘΘΘ(ψ) =−σ 3

2

ˆ ˆ ˆ

ggg···kkk>0
(ψ ′

1 −ψ1)kkk

ˆ 1

0
f (2)(ccc1,xxx−ωσkkk,ccc2,xxx+σkkk−ωσkkk)

(kkk ···ggg)dωdkkkdccc1dccc2, (3.5)

and ℵℵℵ(ψ) is the collisional source of ψ ,

ℵℵℵ(ψ) =
σ 2

2

ˆ ˆ ˆ

ggg···kkk>0

(
ψ ′

1 +ψ ′
2 −ψ1 −ψ2

)
f (2)(ccc1,xxx−σkkk,ccc2,xxx)(kkk ···ggg)dkkkdccc1dccc2. (3.6)

Note that the origin of the collisional flux term (3.5) is tied to the ‘macroscopic’ natures of

particles (and hence to the “denseness” of the matter) and this term is zero in a dilute gas of

point particles.

3.2.1 The 10-Moment System

As in our previous works [Saha & Alam (2014) and Chapter 2], we will work with an extended

set of 10 hydrodynamic fields: (i) the mass density

ρ(rrr, t)≡ mn(rrr, t) = m

ˆ

f (ccc,rrr, t)dccc, (3.7)
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(ii) the coarse-grained velocity

uuu(rrr, t)≡ 〈ccc〉= 1
n(rrr, t)

ˆ

ccc f (ccc,rrr, t)dccc, (3.8)

and (iii) the second moment tensor

MMM(rrr, t)≡ 〈CCCCCC〉= 1
n(rrr, t)

ˆ

CCCCCC f (ccc,rrr, t)dccc, (3.9)

where CCC ≡ ccc−uuu is the peculiar/fluctuation velocity of particles. The last hydrodynamic field

(3.9) is required to account for normal stress differences which is the major focus of the present

work.

Putting ψ = 1, ccc and CCCCCC into (3.3), the mass, momentum and second-moment balance

equations, respectively, are obtained as

(
∂

∂ t
+uuu ···∇∇∇

)
ρ =−ρ∇∇∇ ···uuu, (3.10)

ρ

(
∂

∂ t
+uuu ···∇∇∇

)
uuu =−∇∇∇ ···PPP, (3.11)

ρ

(
∂

∂ t
+uuu ···∇∇∇

)
MMM =−∇∇∇ ···QQQ−PPP ···∇∇∇uuu− (PPP ···∇∇∇uuu)T +ℵℵℵ (3.12)

where PPP is the total stress, a second-rank tensor, given by

PPP ≡ ρ〈CCCCCC〉+ΘΘΘ(mCCC) , (3.13)

QQQ is the flux of the second moment, a third-rank tensor, given by

QQQ ≡ ρ〈CCCCCCCCC〉+ΘΘΘ(mCCCCCC), (3.14)

and ℵℵℵ is the collisional source of second moment, a second-rank tensor, given by

ℵℵℵ ≡ ℵℵℵ(mCCCCCC). (3.15)

In (3.13-3.14), the first and second terms refer to the corresponding kinetic and collisional

contributions, respectively.

Defining the granular temperature as

T ≡ 1
3

Mαα (3.16)
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and taking the trace of (3.12), we obtain the balance equation for the granular energy

3
2

ρ

(
∂

∂ t
+uuu ···∇∇∇

)
T =−∂qα

∂xα
−Pαβ

∂uβ

∂xα
−D , (3.17)

and that of the deviator of the second-moment

1
2ρ
(

∂
∂ t
+uuu ···∇∇∇

)
M̂αβ =−1

2
∂

∂xγ

(
Qγαβ − 2

3qγδαβ

)

−
{

1
2

(
Pγα

∂uβ

∂xγ
+Pγβ

∂uα
∂xγ

)
− 1

3Pγξ
∂uξ

∂xγ
δαβ

}
+ 1

2ℵ̂αβ



 . (3.18)

In above equations,

qα ≡ 1
2

Qαββ =
1
2

ρMαββ +
1
2

Θαββ (3.19)

is the total energy flux vector (i.e. the heat flux vector), whose first term is the kinetic contri-

bution and the second term is the collisional contribution, and

D ≡−1
2

ℵββ =−1
2

ℵℵℵ
(
mC2) (3.20)

is the rate of dissipation of kinetic energy per unit volume.

The balance equations (3.10-3.11) and (3.17), along with constitutive relations for (3.13),

(3.19) and (3.20), constitute the Navier-Stokes-order hydrodynamics for a fluidized granular

matter; clearly, the equation for the deviatoric part of the second moment tensor (3.18) satisfies

identically at NS-order.

For an extended hydrodynamic description of granular matter, incorporating normal stress

differences, we need the balance equation (3.12) for full second moment tensor, along with

mass and momentum balances (3.10-3.11). For a closure of (3.12), the deviatoric part of the

third-order Qγαβ ,

Q̂γαβ = Qγαβ − 1
5

(
Qγξξ δαβ +Qαξξ δγβ +Qβξξ δαγ

)
, (3.21)

is assumed to be zero, leaving only its isotropic part, the heat flux vector (3.19), to be evaluated

as a constitutive relation. In addition to (3.19), we need to determine constitutive relations for

the stress tensor (3.13) and the source of second-moment (3.15) in terms of the gradients of the

hydrodynamic fields (ρ , uuu, MMM). While the expressions for the latter two constitutive quantities

are derived for the uniform shear state as discussed in §3.7.1, §3.7.2 and §3.9, the heat flux

(3.19) requires a consideration of the non-uniform shear flow since the temperature gradient

vanishes in the uniform shear flow (USF) which is dealt in §3.12.
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3.2.2 Why 10-moment System?

In Chapter 2, we dealt with a 14-moment system and showed how a 10-moment system with

heat-flux can be obtained via Maxwell-iteration technique. For the sake of simplicity, we

will restrict to the 10-moment theory of a dense granular fluid in the present and subsequent

chapters. The 10-moment theory is sufficient to analyse normal stress differences [Saha &

Alam (2014, 2016)] which constitute the major goal of this thesis.

3.3 Single-Particle Velocity Distribution Function

3.3.1 Maximum Entropy Principle and the Anisotropic Maxwellian Dis-

tribution

In order to obtain the explicit expressions of the single-particle distribution function using the

maximum entropy principle [Jaynes (1957); Holway Jr (1966)], we write down the definitions

of the 10 hydrodynamic fields that form the set {ρ , uuu, MMM}

ρ(rrr, t)≡ mn(rrr, t) = m

ˆ

f (ccc,rrr, t)dccc,

uuu(rrr, t)≡ 〈ccc〉= 1
n(rrr, t)

ˆ

ccc f (ccc,rrr, t)dccc,

MMM(rrr, t)≡ 〈CCCCCC〉= 1
n(rrr, t)

ˆ

CCCCCC f (ccc,rrr, t)dccc





. (3.22)

The optimum distribution function f is such that it maximizes the uncertainty about the ve-

locity, subject to a set of compatibility conditions given in (3.22). In information theory, the

entropy is defined following Shannon (1948)

S =−
ˆ

f (ccc,rrr, t) ln f (ccc,rrr, t)dccc, (3.23)

which is the same as the Boltzmann’s entropy (negative of H-function) without the multiplica-

tive factor of kBT (Chapman & Cowling 1970).

The final probability distribution function is the one which maximizes the Shanon entropy

(3.23) subject to the constraints (3.22). The variation of S can be written as

δS =−
ˆ

δ f
(

ln f +1−α −αici −αi jCiC j

)

︸ ︷︷ ︸
dccc, (3.24)
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where α , αi, and αi j are Lagrange multipliers. For a maximum value of S, the variation δS

must be equal to zero. Using the basic principle of integral calculus we can say that vanishing

of δS for an arbitrary choice of δ f imposes vanishing of the under-braced term in (3.24) as

well which yields

f = exp(α −1+αici +αi jCiC j). (3.25)

The solution set for 10 Lagrange multipliers {α , αi, αi j} appeared in eq.(3.25) follows from

(3.22):

α = 1− 1
2

ln
(
8π3|MMM|

)
, (3.26)

αi = 0, (3.27)

αi j =−1
2

MMM−1. (3.28)

Using this, we obtain the final form of the distribution function as (Holway Jr 1966)

f (1)(ccc,xxx, t) =
n

(8π3|MMM|) 1
2

exp

(
−1

2
CCC ···MMM−1 ···CCC

)
, (3.29)

which is called the anisotropic Maxwell distribution (AMD) function.

3.3.2 Molecular Chaos Ansatz

To relate the two-particle distribution function with the single-particle velocity distribution

function, we adopt the molecular chaos assumption for which

f (2)(c1,x−σk,c2,x) = g0(ν) f (1)(c1,x−σk) f (1)(c2,x), (3.30)

where g0(ν) is the well-known contact radial distribution function (Carnahan & Starling

1969),

g0(ν) =
(2−ν)

2(1−ν)3 , (3.31)

with

ν = nπσ 3/6 (3.32)

being the local volume fraction of particles.
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Following the principle of maximum entropy we assume that the single particle velocity

distribution is an anisotropic Maxwellian/Gaussian

f (1)(ccc,xxx, t) =
n

(8π3|MMM|) 1
2

exp

(
−1

2
CCC ···MMM−1 ···CCC

)
, (3.33)

with |MMM|= det(MMM), which contains complete information about the second moment tensor MMM.

This form (3.33) was originally used by Holway Jr (1966) to improve certain problems in the

BGK (Bhatnagar-Gross-Krook) model of gas dynamics, resulting in what is popularly known

as the ‘Ellipsoidal’ BGK-model.

While (3.33) is an appropriate leading-order distribution function for a non-equilibrium

steady state, such as the steady uniform shear flow (Goldreich & Tremaine 1978; Shukhman

1984; Araki & Tremaine 1986; Araki 1988; Jenkins & Richman 1988; Richman 1989; Chou

& Richman 1998; Lutsko 2004; Saha & Alam 2014), the isotropic Maxwellian/Gaussian

f (1)(ccc,xxx, t) =
n

(2πT )
3
2

exp

(
−C2

2T

)
, (3.34)

(i.e. eq.(3.33) with Mαβ = T δαβ ) holds for the rest state of a gas at equilibrium.

3.4 Second Moment Tensor and Its Anisotropies

We consider a collection of smooth inelastic spheres of mass m and diameter σ , subjected to

uniform shear flow in the (x,y)-plane:

u = 2γ̇y, v = 0 and w = 0, (3.35)

where 2γ̇ is the uniform/constant shear rate. Note that x and y denote flow and gradient di-

rections, respectively, and the z direction is perpendicular to x-y plane, see figure 3.2; in the

following, the (x,y)-plane is referred to as the shear plane, with the z-direction being the vor-

ticity direction. The velocity gradient tensor completely characterizes the uniform shear flow:

∇∇∇uuu =




0 2γ̇ 0

0 0 0

0 0 0


≡ DDD+WWW , (3.36)
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Fig. 3.2 (Colour online) Sketch of the spherical coordinate system showing the eigendirections
of the shear tensor DDD and the second moment tensor MMM.

with the shear (DDD) and spin (WWW ) tensors, respectively, are given by

DDD =




0 γ̇ 0

γ̇ 0 0

0 0 0


 and WWW =




0 γ̇ 0

−γ̇ 0 0

0 0 0


 . (3.37)

It is straightforward to verify that γ̇ , −γ̇ and 0 are the eigenvalues of DDD and the corresponding

orthonormal eigenvectors are, respectively,

|D1〉=




cos π
4

sin π
4

0


 , |D2〉=




−sin π
4

cos π
4

0


 and |D3〉=




0

0

1


 , (3.38)

that are sketched in figure 3.2. While |D3〉 is directed along the z-axis, the shear-plane eigen-

vectors |D1〉 and |D2〉 are rotated by 45◦ anticlockwise from the xy-axes.
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3.4.1 Construction of Second Moment Tensor from its Eigen Vectors

In this section we follow the seminal works of Goldreich & Tremaine (1978), Shukhman

(1984), Araki & Tremaine (1986), Araki (1988), Jenkins & Richman (1988), Richman (1989)

and Chou & Richman (1998) to construct the second moment tensor in terms of its eigen-basis.

Recalling that the granular temperature T = Mαα/3 is the isotropic measure of the second

moment tensor MMM, we can decompose MMM into an isotropic tensor and a traceless deviatoric

tensor:
MMM

T
= III +

M̂MM

T
(3.39)

where M̂MM/T is the dimensionless counterpart of its deviatoric/traceless tensor whose eigenval-

ues ξ , ς and ζ satisfy

ξ + ς +ζ = 0. (3.40)

From (3.39) it follows that the eigenvalues of MMM are T (1+ξ ), T (1+ς) and T (1+ζ ), and let

us assume that the corresponding orthonormal set of eigen-directions are |M1〉, |M2〉 and |M3〉,
respectively. Since |M1〉, |M2〉 and |M3〉 constitute an orthonormal triad of eigenvectors in the

three-dimensional Euclidean space (see figure 3.2), we can express the second-moment tensor

MMM as

MMM = T (1+ξ )|M1〉〈M1|+T (1+ ς)|M2〉〈M2|+T (1+ζ )|M3〉〈M3|, (3.41)

The expression for M̂MM follows from (3.39) and (5.20). The determinant of MMM is given by

|MMM|= T 3(1+ξ )(1+ ς)(1+ζ ). (3.42)

Referring to figure 3.2, we assume that the shear-plane eigenvectors |M1〉 and |M2〉 can be

obtained by rotating the system of axes at an angle (π/4+φ), with φ being unknown, in the

anti-clockwise sense about the z-axis which coincides with |M3〉:

|M1〉=




cos
(
φ + π

4

)

sin
(
φ + π

4

)

0


 , |M2〉=




−sin
(
φ + π

4

)

cos
(
φ + π

4

)

0


 and |M3〉=




0

0

1


 . (3.43)

We further assume that the contact vector kkk makes an angle ϕ with |M3〉, and θ is the angle

between |M1〉 and kkk− (kkk ··· zzz)zzz, the projection of kkk on the shear plane, as shown in figure 3.2.
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Inserting (5.21) into (5.20), we obtain the following expression for the second moment tensor,

MMM = T




1+λ 2 +η sin2φ −η cos2φ 0

−η cos2φ 1+λ 2 −η sin2φ 0

0 0 1−2λ 2


 ≡ T [δαβ ]+ M̂MM, (3.44)

and its deviatoric part is

M̂MM = T




λ 2 +η sin2φ −η cos2φ 0

−η cos2φ λ 2 −η sin2φ 0

0 0 −2λ 2


 , (3.45)

where we have introduced the following notations

η ≡ 1
2
(ς −ξ )≥ 0, (3.46)

λ 2 ≡ 1
2
(ς +ξ ) =−ζ

2
≥ 0, (3.47)

and T = Mαα/3 is the granular temperature. It is straightforward to verify that the eigenvalues

in the shear-plane can be expressed in terms of η and λ via

ξ = λ 2 −η and ς = λ 2 +η > ξ , (3.48)

with the eigenvalue, ζ , along the vorticity direction (z), being given by (5.44).

Let us define the dimensionless shear rate (Savage & Jeffrey 1981)

R ≡ γ̇

4
√

T/σ 2
=

( √
T

σγ̇/4

)−1

≡ vsh

vth

, (3.49)

which can be interpreted as the inverse of the square root of dimensionless temperature. Equa-

tion (3.49) is called the Savage-Jeffrey parameter (Savage & Jeffrey 1981) which is a measure

of the mean shear velocity (vsh = σγ̇/2 over a particle diameter) relative to the thermal ve-

locity (vth ∝
√

T ) associated with the random motion of particles. The second-moment tensor

(5.22) in USF, constructed from its eigen-basis, is, therefore, completely determined when R,

η , φ and λ 2 are specified.
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Fig. 3.3 Variation of excess temperature (3.50) with density for different restitution coeffi-
cients: e = 0.9 (solid line) and e = 0.1 (dashed line). While the lines denote the present theory,
the circles denote the simulation data of Alam (2005) for e = 0.9.

3.4.2 Anisotropy of Second Moment and Excess Temperature

It is clear from (5.23) that the second moment tensor MMM is anisotropic, and the measure of its

anisotropy is given by η , φ and λ 2. Note that η [(5.43)] is the difference between the two

shear-plane eigenvalues of MMM which, in physical terms, is a measure of the anisotropy of the

second-moment tensor MMM on the shear plane. On the other hand, λ 2 [(5.44)] is a measure of

the excess temperature,

T ex
z ≡ (T −Tz) =−ζ T ≡ 2λ 2T > 0, (3.50)

along the vorticity direction (which is proportional to the out-of-plane eigenvalue ζ of MMM).

Equation (3.50) implies that, when a granular material is sheared, the kinetic tempera-

ture along the vorticity direction is always smaller than the mean temperature [T = (Tx +

Ty +Tz)/3]. This theoretical result has been verified via a comparison of molecular dynamic

event-driven simulations for a sheared granular fluid, see figure 3.3. It is seen that the excess

temperature T ex
z decreases with increasing density but remains positive for all ν and e. Due

to the linear relationship (3.50) between λ 2 and T ex
z , λ 2 will henceforth be termed as excess

temperature too.
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3.5 Balance Equations for Uniform Shear Flow and Their

Algebraic Form

In the steady uniform shear flow, the number density n, the velocity gradient ∇∇∇uuu and the

components of the second moment tensor MMM are constants and the contracted third moment

vanishes. The mass and momentum balance equations, (3.10) and (3.11), are identically satis-

fied; the remaining balance equation (3.12) for the second moment tensor needs to be solved.

3.5.1 The Balance of Second Moment

The balance equation (3.12) for MMM in USF simplifies to

Pδβ uα,δ +Pδαuβ ,δ = ℵαβ , (3.51)

where

Pαβ = ρMαβ +Θαβ , (3.52)

is the total stress tensor, with ρMαβ ≡ ρ〈CαCβ 〉 being its kinetic contribution and Θαβ ≡
mΘα [Cβ ] is its collisional contribution, given by [explicit derivation is given in Appendix K]

Θαβ =
3(1+ e)ρνg0(ν)

π3/2

ˆ

kαkβ (kkk ···MMM ··· kkk)G(χ)dkkk. (3.53)

In (3.51), ℵαβ represents the collisional source of second moment whose integral expression

[see Appendix L] can be written as (Chou & Richman 1998):

ℵαβ = Aαβ + Êαβ + Ĝαβ +ΘαδWβδ +ΘβδWαδ , (3.54)

with

Aαβ =−6(1− e2)ρνg0(ν)

σπ3/2

ˆ

kαkβ (kkk ···MMM ··· kkk)3/2F(χ)dkkk, (3.55)

and the traceless tensors, Êαβ and Ĝαβ , are

Êαβ =−12(1+ e)ρνg0

σπ
3
2

ˆ

(kα jβ + jαkβ )(kkk ···MMM ··· jjj)(kkk ···MMM ··· kkk) 1
2F(χ)dkkk, (3.56)

Ĝαβ =
6(1+ e)ρνg0

π
3
2

ˆ

(kα jβ + jαkβ )[(kkk ···MMM ··· kkk)(kkk ···DDD ··· jjj)− (kkk ··· M̂MM ··· jjj)(kkk ···DDD ··· kkk)]G(χ)dk.

(3.57)
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The above integrals are to be evaluated over dkkk such that dkkk = sinϕdϕdθ , with the limits of

the integrations being θ ∈ (0,2π) and ϕ ∈ (0,π). Note that jjj is an unit vector perpendicular

to the contact vector kkk that lies in the plane formed by ggg and kkk such that

kkk =




cos(θ +φ + π
4 )sinϕ

sin(θ +φ + π
4 )sinϕ

cosϕ


 and jjj =

1√
2




cosϕ cos(θ +φ + π
4 )− sin(θ +φ + π

4 )

cosϕ sin(θ +φ + π
4 )+ cos(θ +φ + π

4 )

−sinϕ




(3.58)

It is straightforward to verify the following relations:

kkk ···MMM ··· kkk = T
(

1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)
)

kkk ···MMM ··· jjj = 1√
2
T sinϕ[η(sin2θ − cosϕ cos2θ)+3λ 2 cosϕ] ≡ kkk ··· M̂MM ··· jjj

kkk ···DDD ··· jjj = 1√
2
γ̇ sinϕ[cosϕ cos(2φ +2θ)− sin(2φ +2θ)]

kkk ···DDD ··· kkk = γ̇ sin2 ϕ cos(2φ +2θ)





. (3.59)

In the integrand of (3.53-3.57), the following two analytic functions appear (Araki &

Tremaine 1986):

F(χ)≡−
√

π

(
3
2

χ +χ3
)

erfc(χ)+(1+χ2)exp(−χ2), (3.60)

G(χ)≡
√

π

(
1
2
+χ2

)
erfc(χ)−χ exp(−χ2), (3.61)

where

χ(R,η,φ ,λ ;θ ,ϕ)≡ σ(kkk ···∇∇∇uuu ··· kkk)
2
√

(kkk ···MMM ··· kkk)
=

2Rsin2 ϕ cos(2φ +2θ)√
(1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2))

. (3.62)

The origin of χ can be traced to the excluded volume effects of macroscopic particles (Jenkins

& Richman 1988; Saha & Alam 2014), and hence χ = 0 in the dilute limit and, consequently,

F(χ) = 1 and G(χ) =

√
π

2
, as ν → 0. (3.63)

With (3.63), the integrals Θαβ , Aαβ , Êαβ and Ĝαβ can be expressed in terms of elliptic inte-

grals (Goldreich & Tremaine 1978) and further approximations are needed to evaluate them

explicitly. On the other hand, it has not been possible to evaluate the above integrals analyti-

cally when the dense-gas corrections are incorporated due to the dependence of (3.60-3.61) on
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the integration variable θ and ϕ . We shall outline an approximate method in §3.5.3 to evaluate

these integrals analytically for the whole range of density.

Substituting (5.17), (3.52) and (3.54) into (3.51), the balance equation for the second mo-

ment tensor reduces to

ρMδβ (Dαδ +Wαδ )+ρMδα(Dβδ +Wβδ )+Θδβ Dαδ +ΘδαDβδ = Aαβ + Êαβ +Ĝαβ . (3.64)

With the integrals for Θαβ , Aαβ , Êαβ and Ĝαβ being evaluated in terms of R, η , φ and λ as

discussed above, the equation (3.64) yields four independent algebraic equations that needs to

be solved to obtain the rheological properties of USF for the whole range of volume fraction

ν . The collisional dissipation rate (3.54) can also be evaluated simultaneously.

3.5.2 Second Moment Balance in Rotated Co-ordinate Frame

Let us now rewrite (3.64) in a new co-ordinate system x′y′z′, formed by the orthonormal triad

of eigenvectors of MMM, i.e., with respect to the co-ordinate system whose axes coincide with

|M1〉, |M2〉 and |M3〉, respectively. This amounts to a transformation, see figure 3.2, via the

following rotation matrix,

R =




cos(φ + π
4 ) −sin(φ + π

4 ) 0

sin(φ + π
4 ) cos(φ + π

4 ) 0

0 0 1


 , (3.65)

that transforms the second moment tensor,

MMM′ = T




1+λ 2 −η 0 0

0 1+λ 2 +η 0

0 0 1−2λ 2


 , (3.66)

into a diagonal matrix. It is evident from (3.66) that the anisotropy of the second moment

in the rotated co-ordinate frame is quantified in terms of (i) the temperature difference η

[eqn. (5.43)] in the shear-plane and (ii) the “excess” temperature T ex
z (∝ λ 2 eqn. (3.50)) along

the vorticity direction. With a prime over a quantity denoting its value in the new co-ordinate
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frame, the following relations hold:

kkk′ = cosθ sinϕ|M1〉+ sinθ sinϕ|M2〉+ cosϕ|M3〉, (3.67)

jjj′ =
1√
2
[(cosϕ cosθ − sinθ)|M1〉+(cosϕ sinθ + cosθ)|M2〉− sinϕ|M3〉] , (3.68)

uuu′ = 2γ̇
[
x′ sin

(
φ +

π

4

)
+ y′ cos

(
φ +

π

4

)][
cos
(

φ +
π

4

)
|M1〉− sin

(
φ +

π

4

)
|M2〉

]
, (3.69)

DDD′ = γ̇




cos2φ −sin2φ 0

−sin2φ −cos2φ 0

0 0 0


 and WWW ′ =WWW . (3.70)

The last equation confirms that the spin tensor WWW is invariant under the planar rotation (3.65).

With the aid of (3.66-3.70), the second moment balance equation (3.64) transforms into

four independent equations in the rotated co-ordinate frame:

(i) the trace of (3.64),

−4ηρT γ̇ cos2φ +2γ̇
[(

Θx′x′ −Θy′y′
)

cos2φ −2Θx′y′ sin2φ
]
= Ax′x′ +Ay′y′ +Az′z′, (3.71)

(ii) the z′-z′ component of its deviatoric part

−4ηρT γ̇ cos2φ +2γ̇[(Θx′x′ −Θy′y′)cos2φ −2Θx′y′ sin2φ ] =−3Γ̂z′z′, (3.72)

(iii) the difference between the x′-x′ and y′-y′ components

4
(
1+λ 2)ρT γ̇ cos2φ +2γ̇

(
Θx′x′ +Θy′y′

)
cos2φ = Γx′x′ −Γy′y′ , (3.73)

and, finally, (iv) the off-diagonal x′-y′ component

2ρT γ̇
[
η −

(
1+λ 2)sin2φ

]
−
(
Θx′x′ +Θy′y′

)
γ̇ sin2φ = Γx′y′, (3.74)

where

Γαβ = Aαβ + Êαβ + Ĝαβ , (3.75)
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see (3.54-3.57). The various collision integrals (viz. §3.5.1) appearing in (3.71-3.74) can be

compactly written as

Θx′x′ −Θy′y′ =
3(1+e)ρνg0T

π
3
2

J 30
012(η,λ

2,R,φ),

2Θx′y′ = 3(1+e)ρνg0T

π
3
2

J 30
102(η,λ

2,R,φ),

Θx′x′ +Θy′y′ =
3(1+e)ρνg0T

π
3
2

J 30
002(η,λ

2,R,φ),

Ax′x′ +Ay′y′ +Az′z′ =−6(1−e2)ρνg0T
3
2

σπ
3
2

H 10
003(η,λ

2,R,φ),





, (3.76)

Γ̂z′z′ =−6(1+e)ρνg0T
3
2

σπ
3
2

[
1
3(1− e)

(
2H 12

003 −H 30
003

)
−2η

(
H 31

101 −H 32
011

)

−6λ 2H 32
001 −4RK 31

00

]
,

Γx′x′ −Γy′y′ =−6(1+e)ρνg0T
3
2

σπ
3
2

[
(1− e)H 30

013 +2η
(
2H 31

111 −H 30
201 −H 32

021

)

+6λ 2
(
H 32

011 −H 31
101

)
−4R

(
K 30

10 −K 31
01

)]
,

Γx′y′ =−6(1+e)ρνg0T
3
2

σπ
3
2

[
1
2(1− e)H 30

103 +η
(
H 31

201 +H 30
111 −H 32

111 −H 31
021

)

+3λ 2
(
H 32

101 +H 31
011

)
+2R

(
K 31

10 +K 30
01

)]
.





.

(3.77)

In (3.76-3.77), H δ p

αβγ , J δ p

αβγ and K δ p

αβγ have integral expressions over θ and ϕ:

H δ p

αβγ(η,R,φ ,λ )≡
ˆ 2π

θ=0

ˆ π

ϕ=0
sinα 2θ cosβ 2θ sinδ ϕ cosp ϕ

×
(
1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)

) γ
2 F(χ [η,R,φ ,λ ;θ ,ϕ])dϕdθ , (3.78)

J δ p

αβγ(η,R,φ ,λ )≡
ˆ 2π

θ=0

ˆ π

ϕ=0
sinα 2θ cosβ 2θ sinδ ϕ cosp ϕ

× {1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)}
γ
2G(χ [η,R,φ ,λ ;θ ,ϕ])dϕdθ ,

(3.79)

K δ p

αβ
(η,R,φ ,λ )≡

ˆ 2π

θ=0

ˆ π

ϕ=0
sinα 2θ cosβ 2θ sinδ ϕ cosp ϕ

[
(1−2λ 2){sin(2φ +2θ)− cosϕ

× cos(2φ +2θ)}+ sin2 ϕ{3λ 2 sin(2φ +2θ)−η sin2φ}
]
G(χ [η,R,φ ,λ ;θ ,ϕ])dϕdθ ,

(3.80)
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where F(χ) and G(χ) are given by (3.60) and (3.61), respectively. The integrals (3.78-3.80)

can be evaluated numerically via any quadrature method.

In the following section, we outline an approximate method to evaluate the integrals (3.78-

3.80) analytically via a power-series expansion. As illustrated in §3.5.3 below, the series

expansion would help (i) to reduce the integro-algebraic equations (3.71-3.74) into a set of

algebraic equations for four unknowns η , R, φ and λ as well as (ii) to obtain closed-from

analytical expressions for nonlinear transport coefficients and collisional dissipation (see §3.7).

More importantly, we shall derive ’closed-form’ analytical solutions of the second moment

balance at the Burnett order and beyond.

3.5.3 Series Expansion and the Algebraic form of Second-moment Bal-

ance

Recall that the integrand in (3.78-3.80) depend on two analytic functions F(χ) and G(χ) as

defined in (3.60) and (3.61), respectively, with χ being given by (3.62). Substituting the power-

series representation for the complementary error function and the exponential and after some

straightforward algebra, the expressions for F(χ) and G(χ) can be written as (Saha & Alam

2014)

F(η,R,φ ,λ ;θ ,ϕ) =−
√

π

[
3Rsin2 ϕ cos(2φ +2θ)

{1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)} 1
2

+

{
2Rsin2 ϕ cos(2φ +2θ)

{1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)} 1
2

}3]

+
∞

∑
n=0

(−1)n

n!
3

(2n−1)(2n−3)

[
2Rsin2 ϕ cos(2φ +2θ)

{1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)} 1
2

]2n

, (3.81)

G(η,R,φ ,λ ;θ ,ϕ) =
√

π

[
1
2
+

4R2 sin4 ϕ cos2(2φ +2θ)

1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)

]

+
∞

∑
n=0

(−1)n

n!
2

(2n−1)(2n+1)

[
2Rsin2 ϕ cos(2φ +2θ)

{1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)} 1
2

]2n+1

. (3.82)

Substituting (3.81-3.82) into (3.78-3.80) and carrying out term-by-term integrations over θ ∈
(0,2π) and ϕ ∈ (0,π) results in an infinite series in η , R and λ for each integral in (3.78-3.80),

see Appendix F. To progress further, we need to truncate each series after a finite number of

terms.

Retaining terms up-to third order O(ηmλ nRp sinq(2φ)), m+n+ p+q ≤ 3 in the resulting

infinite series for each integral (3.78-3.80) and substituting them into (3.71-3.74), we obtain
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the following set of coupled nonlinear algebraic equations

20
√

π
{

1+ 4
5(1+ e)νg0

}
ηRcos2φ +128(1+ e)νg0R2

−3(1− e2)νg0(10+η2 +32R2 +8
√

πRη cos2φ) = 0

35
√

πηRcos2φ +(1+ e)νg0

{
32(1+3e)R2 −3(3− e)(η2 +21λ 2)

−8
√

π(4−3e)ηRcos2φ
}
= 0

210
√

π(1+λ 2)Rcos2φ − (1+ e)νg0
[
12

√
π
{

7(1−3e)+4(4−3e)λ 2

−32(1+ e)R2
}

Rcos2φ +η
{

126(3− e)−3(3− e)η2+36(3− e)λ 2

+64(4−3e)R2−32(5+3e)R2 cos4φ
}]

= 0

105
√

π
{

η − (1+λ 2)sin2φ
}
−2(1+ e)νg0 sin2φ

[
16(5+3e)ηRcos2φ

−3
√

π
{

7(1−3e)+4(4−3e)λ 2−32(1+ e)R2
}]

= 0





. (3.83)

for four unknowns η , λ , R and φ , given that the restitution coefficient (e) and the volume

fraction (ν) are known.

Similarly, retaining terms up-to fourth order O(ηmλ nRp sinq(2φ)), m+n+ p+q ≤ 4, the

equations (3.71-3.74) simplify to

1680
√

πηRcos2φ −3(1− e2)νg0
(
840+84η2 +3η4 +2688R2+1024R4

−128R2η2 +768R2λ 2 −24η2λ 2 +252λ 4 +672
√

πηRcos2φ −64η2R2 cos4φ
)

+64(1+ e)νg0R
{

21
√

πη cos2φ +4R(42−2η2 +12λ 2 +32R2 −η2 cos4φ)
}
= 0

2310
√

πηRcos2φ +(1+ e)νg0
[
32R2

{
66+8η2 −165λ 2 +3e(66−4η2 +33λ 2)

}

−9(3− e)
{

η4 +11η2(2−λ 2)+66λ 2(7−λ 2)
}
+1024(5+3e)R4

−16Rη
{

33
√

π(4−3e)cos2φ −4Rη(2−3e)cos4φ
}]

= 0

210
√

π(1+λ 2)Rcos2φ − (1+ e)νg0
[
12

√
π
{

7(1−3e)+4(4−3e)λ 2

−32(1+ e)R2
}

Rcos2φ +η
{

126(3− e)−3(3− e)η2+36(3− e)λ 2

+64(4−3e)R2−32(5+3e)R2 cos4φ
}]

= 0

105
√

π
{

η − (1+λ 2)sin2φ
}
−2(1+ e)νg0 sin2φ

[
16(5+3e)ηRcos2φ

−3
√

π
{

7(1−3e)+4(4−3e)λ 2−32(1+ e)R2
}]

= 0





.

(3.84)

For specified values of the restitution coefficient (e) and the density (ν), we can use the

standard Newton-Raphson’s method to solve both (3.83) and (3.84), yielding solutions for

η , λ 2, R and φ that are correct up-to orders O(ηmλ nRp sinq(2φ)), m+ n+ p + q ≤ 3 and

O(ηmλ nRp sinq(2φ)), m+ n+ p+ q ≤ 4, respectively. However we have solved (3.83) and

(3.84) analytically using regular perturbation theory with the exact Burnett order solution as

the solution at leading order. We shall show in §3.10.1 that the terms up-to the fourth-order

must be retained in the above series expansion to recover the exact numerical solution of

(3.71-3.74).
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It must be noted that equations (3.83) and (3.84) belong to the ‘super-Burnett’ and ‘super-

super-Burnett’ orders since they incorporate terms that are at most ‘cubic’ and ‘quartic’ in

the shear-rate (R) respectively. Therefore, the resulting solutions of (3.83) and (3.84) for η ,

λ , R and φ and the transport coefficients will be dubbed ‘super-Burnett’ and ‘super2-Burnett’

solutions (see §3.10) respectively.

3.6 Closed-form Solution of “Truncated” Second Moment

Equations

3.6.1 Approximate Solution in the Dilute Limit and its Comparison

Let us consider the dilute limit (ν → 0) of the second-moment balance (3.71-3.74) which was

analysed previously by Richman (1989). In this limit, the collisional contribution to flux terms

vanishes (e.g. Θαβ = 0) and consequently the stress tensor is given by its kinetic contribution:

Pαβ = ρMαβ . (3.85)

Moreover, χ = 0 as ν → 0 and hence F(χ → 0) = 1, G(χ → 0) =
√

π/2, see (3.63); it can

be verified that the integrals Ĝαβ (ν → 0) = 0 and Γx′y′(χ → 0) = 0 vanish too. Therefore, the

balance equations (3.71-3.74) for the second moment simplify to

−4ηρT γ̇ cos2φ = Ax′x′ +Ay′y′ +Az′z′ ,

−4ηρT γ̇ cos2φ =−3Γ̂z′z′ ,

4(1+λ 2)ρT γ̇ cos2φ = (Γx′x′ −Γy′y′),

2ρT γ̇[η − (1+λ 2)sin2φ ] = Γx′y′ = 0.





(3.86)

The last equation of (3.86) yields an expression for the non-coaxiality angle φ in terms of

η and λ :
η

1+λ 2 = sin2φ ⇒ φ =
1
2

sin−1
(

η

1+λ 2

)
. (3.87)

By evaluating the integrals on the right-hand side of (3.86) and retaining terms up-to super-

super-Burnett order O(ηmλ nRp sinq(2φ) m+ n+ p+ q ≤ 4), the remaining three equations

simplify to

8π
3
2 Rη cos2φ − 3

70(1− e2)πν(280+28η2+η4 −8η2λ 2 +84λ 4) = 0,

8π
3
2 Rη cos2φ − 24

35(3− e)(1+ e)πν{η2+3λ 2(7−λ 2)}= 0,

35
√

πR(1+λ 2)cos2φ −3(3+2e− e2)νη(7+2λ 2) = 0.





(3.88)
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The solutions for R is given by

R =
3(1− e2)ν

560
√

πη cos2φ

(
280+28η2 +η4 −8η2λ 2 +84λ 4) , (3.89)

where λ 2 satisfies a cubic equation, which after truncating at the second-order, takes the form

λ 4 +

(
7
e
+

53
24

(
e−1 −1

))
λ 2 − 5

2

(
e−1 −1

)
= 0. (3.90)

yielding an approximate solution for λ 2. And finally, the solution for η2 follows form

(14+3λ 2)η4 −33(12+3λ 2+λ 4)η2 +198λ 2(7+6λ 2−λ 4) = 0. (3.91)

A comparison of the present analytical solutions (3.87, 3.89, 3.90, 3.91) for η , φ , R and

λ 2 with those of Richman (1989) is made in figure 3.4(a-d) respectively: the dashed and

dot-dashed lines denote the present 4th-order solution and that of Richman respectively. To

understand the quality of our solution (the red dot-dashed line), the exact variations of η , φ ,

R and λ 2 with e, obtained by solving (3.86) numerically, are superimposed in each panel as

denoted by the solid lines. It is clear that the present solutions are better than those of Richman

(1989) at lower values of the restitution coefficient (e < 0.5), but are almost indistinguishable

for e > 0.5.

3.6.2 Exact Solution at Leading Order for Whole Range of Density

Here we discuss an exact solution of the ‘leading-order’ second-moment equations that helps

to understand the scaling relations of η , R, λ 2 and φ in terms of the restitution coefficient (e).

Exact solution at Burnett order

Retaining terms up to second order O(ηmλ nRn sinq(2φ), m+n+ p+q ≤ 2) in the resulting

infinite series for H δ p

αβγ , J δ p

αβγ and K δ p

αβ [see (F.4-F.18) in Appendix F], the following set of
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Variations of (a) η , (b) φ , (c) R and (d) λ 2 with the restitution coefficient e.
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equations for the second moment balance (3.71-3.74) is obtained:

20
√

π
{

1+ 4
5(1+ e)νg0

}
ηRcos2φ +128(1+ e)νg0R2

−3(1− e2)νg0(10+η2 +32R2 +8
√

πηRcos2φ) = 0

35
√

πηRcos2φ +(1+ e)νg0{32(1+3e)R2−3(3− e)(η2 +21λ 2)

−8
√

π(4−3e)ηRcos2φ}= 0

5
√

πRcos2φ − (1+ e)νg0{3(3− e)η +2(1−3e)
√

πRcos2φ}= 0

5(η − sin2φ)+2(1+ e)(1−3e)νg0 sin(2φ) = 0.





(3.92)

These equations represent the second-moment balance equations at “Burnett order” (Burnett

1935) since all terms up to the second order in the shear rate have been retained.

These equations admit an exact solution

η = {5−2(1+e)(1−3e)νg0}
5 sin2φ

λ 2 =
10(1−e)
21(3−e) +

[
(7−3e){5−2(1+e)(1−3e)νg0}−18(1+e)2(3−e)νg0

]
525(3−e)

×{5−2(1+ e)(1−3e)νg0}sin2 2φ

R =
3(1+e)(3−e)

5
√

π
νg0 tan2φ

η
R

cos(2φ) =
√

π
3(1+e)(3−e) cos2(2φ)

(
5

νg0
+2(1+ e)(3e−1)

)
,





(3.93)

where sin2(2φ) = Y is the real positive root of the quadratic equation

(11−3e){5−2(1+ e)(1−3e)νg0}2πY 2−
[
(11−3e){5−2(1+ e)(1−3e)νg0}2π +96(1+3e)(1+ e)2(3− e)2ν2g2

0 +250π(1− e)
]
Y

+250π(1− e) = 0. (3.94)

For specified values of ν and e, the non-coaxiality angle φ is determined from (3.94) and the

remaining quantities are from (3.93). This provides the ‘Burnett-order’ solution for φ , η , λ 2

and R as functions of ν and e.

From (3.93-3.94), it is straightforward to verify the following scaling relations as ν → 0:

η ∼ sin2φ ∼ R ∼ λ ∼ (1− e)1/2. (3.95)

Equation (3.95) holds strictly in the dilute limit (ν → 0), and therefore η , sin2φ , R and λ are

of the same order and scale with inelasticity as
√

(1− e). The above scaling also holds in the

dense limit as we shall verify in §3.11. The validity of the leading-order solution (3.93) to



3.6 Closed-form Solution of “Truncated” Second Moment Equations 89

accurately predict the transport coefficients (pressure, viscosity and normal stress differences,

see §3.7) for the whole range of density will be checked in §3.10.1.

Beyond Burnett Order: Perturbation Solution

To obtain solutions beyond the Burnett order, i.e. at O(ηmλ nRn sinq(2φ), m+n+ p+q > 2),

we must solve the related nonlinear algebraic equations as given by (3.83-3.84) valid at third

and fourth orders in shear rate respectively. We could not find an ’exact’ solution of (3.83-

3.84) either at super-Burnett or super-super-Burnett order. Therefore we look for perturbation

solution of (3.83-3.84) be taking Burnett-order solution (3.93-3.94) as the leading solution:

η =η(2)+ εη(3)+ ε2η(4)+ · · ·
λ 2 =λ (2)+ ελ (3)+ ε2λ (4)+ · · ·
R =R(2)+ εR(3)+ ε2R(4)+ · · ·

sin2φ =sin2φ (2)+ ε sin2φ (3)+ ε2 sin2φ (4)+ · · ·





. (3.96)

In the above expressions ε ∼ γ̇ and the superscript “2” corresponds to the “Burnett-order” solu-

tion and the superscripts “3” and “4” correspond to the corrections at the third and fourth order,

respectively, in the shear rate. Plugging (3.96) into the corresponding third- and fourth-order

equations and after performing some cumbersome algebra, we obtain the following solution

for the correction terms at third order:

η(3) = λ (3) = R(3) = sin2φ (3) = 0. (3.97)

The fourth order correction terms are found to be non-zero and are given in Appendix H.
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3.7 Constitutive Relations for Non-Newtonian Stress and Col-

lisional Dissipation

The dimensionless stress tensor in USF can be written as

PPP∗ =
PPP

ρpU2
R

=




P∗
xx P∗

xy 0

P∗
yx P∗

yy 0

0 0 P∗
zz




≡




p∗ 0 0

0 p∗ 0

0 0 p∗


+




2
3N ∗

1 + 1
3N ∗

2 −µ∗ 0

−µ∗ −1
3N ∗

1 + 1
3N ∗

2 0

0 0 −1
3N ∗

1 − 2
3N ∗

2


 , (3.98)

where

p∗ =
1
3

(
P∗

xx +P∗
yy +P∗

zz

)
, (3.99)

µ∗ =−P∗
xy, (3.100)

N ∗
1 =

(
P∗

xx −P∗
yy

)
, (3.101)

N ∗
2 =

(
P∗

yy −P∗
zz

)
(3.102)

is the pressure, the shear viscosity, the first and second normal stress differences respectively;

here ρp is material/intrinsic density of particles and UR = 2γ̇σ is the reference velocity scale.

The power-series (3.82) for G(η,R,φ ,λ ) is inserted into (3.53) to evaluate the collisional

stress, and the total stress tensor is subsequently obtained from (3.52) by summing the ki-

netic stress and the collisional stress. We will express constitutive relations in terms of the

dimensionless temperature, which is defined as

T ∗ =
T

U2
R

≡ 1
64R2 . (3.103)

The final analytical expressions for the components of the stress tensor are presented in the

following subsections, and the related algebraic details can be found in Appendix G.

3.7.1 Shear Stress and Viscosity

Retaining terms up-to the fourth-order in temperature anisotropy (η), shear rate (R), excess

temperature along the vorticity direction (∝ λ ) and sin(2φ) O(ηmλ nRn sinq(2φ), m+n+ p+



3.7 Constitutive Relations for Non-Newtonian Stress and Collisional Dissipation 91

q ≤ 4), the dimensionless shear stress can be written as (see Appendix G):

P∗
xy

νT ∗ =−η cos2φ − 4(1+ e)νg0

105
√

π

[
21R

{
8+

√
π

η cos2φ

R

}
+48λ 2R

+4R3
{

32− η2

R2

(
2+(1+2cos2 2φ)

)}]
, (3.104)

with the dimensionless temperature T ∗ being given by (3.103). The expression for the dimen-

sionless shear viscosity, µ∗=−Pxy/ρpU
2
R=−P∗

xy, follows from (3.104):

µ∗ =
ν
√

T ∗

8

[
η cos2φ

R
+

4(1+ e)νg0

105
√

π

(
21
{

8+
√

π
η cos2φ

R

}

+48λ 2 +128R2 −4η2
{

2+(1+2cos2 2φ)
}

︸ ︷︷ ︸

)]
, (3.105)

where the under-braced terms represent nonlinear contributions beyond the Navier-Stokes

(NS) order.

Neglecting quadratic- and higher-order terms in (5.50), we obtain the NS-order expression

for the shear viscosity:

µ∗
NS =

ν
√

T ∗

8

[
η cos2φ

R
+

4(1+ e)νg0

5

( 8√
π
+

η cos2φ

R

)]
+O(R2). (3.106)

The elastic limit of the Burnett-order solution (3.93) for η cos2φ/R, with φ → 0 (which holds

at NS order),
η cos2φ

R

e=1−−→
φ=0

5
√

π

12

(
1

νg0
+

8
5

)
, (3.107)

can be substituted into (3.106) to arrive at

µelastic
NS =

√
T ∗
[

5
√

π

96g0

(
1+

8
5

νg0

)2

+
8

5
√

π
ν2g0

]
. (3.108)

This expression (3.108) matches exactly with the shear viscosity for an elastic hard-sphere

system (Chapman & Cowling 1970).
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3.7.2 Normal Stress Components and the Pressure

The diagonal components of the stress tensor, correct up-to O(ηmλ nRn sinq(2φ), m+n+ p+

q ≤ 4), have following expressions:

P∗
xx

νT ∗ = (1+λ 2+η sin2φ)+
2(1+ e)νg0

1155

[
33(35+96R2+14η sin2φ +14λ 2)

+
8√
π

ηRcos2φ
{

3(66+5η2 −22λ 2)−160R2−22η sin2φ
}]

, (3.109)

P∗
yy

νT ∗ = (1+λ 2−η sin2φ)+
2(1+ e)νg0

1155

[
33(35+96R2−14η sin2φ +14λ 2)

+
8√
π

ηRcos2φ
{

3(66+5η2 −22λ 2)−160R2+22η sin2φ
}]

, (3.110)

P∗
zz

νT ∗ = (1−2λ 2)+
2(1+ e)νg0

1155

[
33(35+32R2−28λ 2)

+
8√
π

ηRcos2φ
{
(66+3η2 −32R2)

}]
. (3.111)

The dimensionless mean pressure, correct up-to O(ηmλ nRn sinq(2φ), m+ n+ p+ q ≤ 4), is

given by

p∗ = νT ∗
[
1+

2(1+ e)νg0

315

{
315+672R2+

8√
π

ηRcos2φ(42+3η2 −32R2 −12λ 2)

︸ ︷︷ ︸

}]
.

(3.112)

Neglecting the ‘under-braced’ non-linear terms in (3.112), we obtain the well-known expres-

sion for pressure,

p∗NS = νT ∗(1+2(1+ e)νg0), (3.113)

at the NS-order.
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3.8 Normal Stress Differences and Their Origin

3.8.1 First Normal Stress Difference and Its Origin

Subtracting (3.110) from (3.109) the expression for the first normal stress difference (3.101)

is found to be

N ∗
1 = 2η sin(2φ)

(
1+

4(1+ e)νg0

105

[
21− 8√

π
ηRcos(2φ)

])
νT ∗

+O(ηmλ nRn sinq(2φ), m+n+ p+q ≥ 5), (3.114)

with its kinetic and collisional contributions (N ∗
1 = N k∗

1 +N c∗
1 ), respectively, being given

by

N k∗
1 = 2η sin(2φ)νT ∗ (3.115)

N c∗
1 =

8(1+ e)νg0

1155

[
231− 8√

π
ηRcos(2φ)

]
ηsin(2φ)νT ∗. (3.116)

Note that both (3.115) and (3.116) vanish in the limits of η → 0 and/or φ → 0: while the former

represents the limit of vanishing temperature anisotropy in the shear-plane (5.43), the latter

correspond to the eigendirections of the second moment tensor MMM and the shear tensor DDD being

coaxial (viz. figure 3.2). Therefore we conclude that the origin of first normal stress difference

is tied to (i) the ‘finite’ temperature anisotropy and/or (ii) the ‘non-coaxiality’ between the

eigendirections of MMM and DDD at any density.

The leading terms in both (3.115) and (3.116) are,

η sin2φ = O
(
γ̇2) , (3.117)

of Burnett-order in the shear rate. The leading-order corrections in (3.116) are

R2η sin(2φ)
(η

R
cos(2φ)

)
= O

(
γ̇4) . (3.118)

It is noteworthy that the excess temperature along the mean-vorticity direction (3.50), T ex
z ∝

λ 2, does not affect the kinetic part of first NSD, but it affects the collisional part of the first

NSD at sixth-order and beyond in the shear rate.
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3.8.2 Second Normal Stress Difference, Sign-reversal and Origin

Similarly, the expression for the second normal stress difference (3.102) is obtained from

(3.110) and from (3.111):

N ∗
2 = N k∗

2 +N c∗
2

=
[
3λ 2 −η sin(2φ)

]
νT ∗+

32(1+ e)ν2T ∗g0

1155

[
264

(
1
2
+

7
ν

N k∗
2

)
R2

+
1√
π

ηRcos2φ
{
(66+6η2 −64R2 −33λ 2)+11η sin2φ

}]

+O(ηmλ nRn sinq(2φ), m+n+ p+q ≥ 5), (3.119)

with its kinetic and collisional components at O(ηmλ 2nRp, m+n+ p ≤ 4) being given by

N k∗
2 =

[
3λ 2 −η sin(2φ)

]
νT ∗ (3.120)

N c∗
2 =

32(1+ e)ν2T ∗g0

1155

[
264

(
1
2
+

7
ν

N k∗
2

)
R2 +

1√
π

ηRcos2φ

×
{
(66+6η2 −64R2 −33λ 2)+11η sin2φ

}]
. (3.121)

where T ∗ is the dimensionless temperature (3.103). In the limit of vanishing of the ‘shear-

plane’ temperature-anisotropy (η → 0) and/or the coaxiality (φ → 0) between the eigendirec-

tions of MMM and DDD, we have

N k∗
2 = 3λ 2νT ∗ ∝ T ex

z ≥ 0, (3.122)

N c∗
2 =

4(1+ e)ν2T ∗g0

35

[
32R2 +21λ 2

]
≥ 0, (3.123)

where T ex
z is the excess temperature (3.50). Both (3.122) and (3.123) hold strictly in the dense

limit since η and φ approach zero as ν → νmax. Equation (3.122) suggests that even the

kinetic part of the second normal stress difference remains positive in the dense limit since

λ 2 ∝ T ex
z > 0 in the dense limit (see figure 3.3).

It is evident from (3.122) and (3.123) that the second normal-stress difference in the dense

limit (3.123) remains finite and positive which is in contrast to zero first normal stress differ-

ence in the same limit. Moreover, even if λ 2 = 0 and η = 0, N2 remains finite as ν → νmax

as long as the shear-rate is finite (R2 > 0) and hence this is ‘shear-induced’. Therefore, the

origin of non-zero second normal-stress difference in the dense limit is tied to the imposed

shear field.
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Equation (3.120) indicates that the N k∗
2 can be positive or negative depending on the

relative magnitudes of 3λ 2 and η sin(2φ) and can undergo a sign-change at a finite density if

3λ 2 −η sin(2φ) = 0. (3.124)

The density-variation of (3.124), obtained by solving (3.71-3.74) numerically, as depicted in

figure 3.5(a) clarifies the above point: 3λ 2 < η sin(2φ) in the dilute limit and 3λ 2 > η sin(2φ)

in the dense limit for any value of the restitution coefficient. The variation of the critical

density νk
cr, at which (3.124) holds, with the restitution coefficient is shown in figure 3.5(b) –

clearly, νk
cr(e) is a decreasing function of e and can be fitted via the following linear function:

νk
cr(e) = 0.27−0.086e. (3.125)

Since N c
2 = 0 at ν = 0 and is a monotonically increasing function of ν , the critical density,

νcr, at which total second normal stress difference (N2 = N k
2 +N c

2 = 0) changes sign from

negative to positive would be slightly lower than (3.125).

In summary the second normal stress difference is negative and positive in the dilute and

dense limits, respectively, and the ‘sign-reversal’ of N2 at some finite density is directly tied

to the sign-reversal of its kinetic component N k
2 . The above analysis further confirms that the

origin of N2 is tied to the ‘excess’ temperature (T ex
z ∝ λ 2, viz. (3.50)) along the mean vorticity

direction in the dilute limit, but its origin in the dense limit is tied to the imposed shear field.
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3.9 Source of Second Moment and the Collisional Dissipa-

tion

In USF the collisional source of second moment (3.54) takes the following form:

ℵℵℵ =




ℵxx ℵxy 0

ℵyx ℵyy 0

0 0 ℵzz


 , (3.126)

with its non-zero components being given by

ℵxx = Axx + Êxx + Ĝxx +2γ̇Θxy

ℵyy = Ayy + Êyy + Ĝyy −2γ̇Θxy

ℵzz = Azz + Êzz + Ĝzz

ℵxy = Axy + Êxy + Ĝxy + γ̇ (Θyy −Θxx)





. (3.127)

The integral expressions for Θαβ (3.53), Aαβ (3.55), Eαβ (3.56) and Gαβ (3.57) have been

evaluated in terms of η , λ and R, correct up-to O(ηmλ nRp sinq(2φ),m+n+ p+q ≤ 4), and

the resulting truncated series for (3.127) are written down in Appendix I.

3.9.1 Collisional Dissipation

The constitutive expression for the collisional dissipation rate (3.20) follows directly from the

trace of (3.126):

D =−1
2

ℵββ =−1
2
(Axx +Ayy +Azz) =

3(1− e2)ρνg0T
3
2

σπ
3
2

H 10
003(η,λ

2,R,φ)

=
ρνg0(1− e2)T

3
2

70σ
√

π

[
840+32

{(
84+21

√
π

η

R
cos2φ

)
+32R2 −2η2(2+ cos4φ)+24λ 2

}
R2

+3(28η2 +η4 −8η2λ 2 +84λ 4)
]
, (3.128)

where we have made use of the last equation in (3.76) and the related series expansion for

H 10
003 by retaining terms up-to O(ηmλ nRn sinq(2φ), m+n+ p+q ≤ 4). In the isotropic limit

(η → 0 and λ 2 → 0), we obtain

D = D0
(

1+
16
5

R2 +
128
105

R4
)
, (3.129)
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where

D0 =
12ρpν2g0(1− e2)T

3
2

σ
√

π
(3.130)

is the corresponding bare part valid at NS-order (Jenkins & Richman 1985a). Returning to

(3.128), we note that the correction terms beyond the NS-order depend quadratically on (i)

the shear rate (γ̇ ∼ R), (ii) the temperature anisotropy η , and (iii) the excess temperature,

λ 2 ∝ T ex
z , along the vorticity direction. The quadratic-order shear rate dependence in (3.129)

agrees qualitatively with that calculated by Sela & Goldhirsch (1998) via a Burnett-order

Chapman-Enskog expansion of inelastic Boltzmann equation. The latter two findings (ii-iii)

indicate that the collisional dissipation depends on both normal stress differences,

D ≡ D (· · · ;N1,N2) , (3.131)

since (η,λ ) ∼ (N1,N2) as we demonstrate below.

3.9.2 Dilute Limit: Dependence on NSDs

To clarify the dependence of collisional dissipation (3.131) on normal stress differences, here

we consider the dilute limit of (3.128). Recall that the leading-order moment equations admit

an exact solution in the dilute limit (ν → 0):

η2 = 1
12

(
6+N k

1 +2N k
2

)
N k

1

λ 2 = 1
6

(
N k

1 +2N k
2

)
}
, (3.132)

where N k
1 = (Pk

xx −Pk
yy)/p and N k

2 = (Pk
yy −Pk

zz)/p are the kinetic parts of the ‘scaled’ first

and second normal stress differences, respectively. Substituting (3.132) into (3.128) and re-

taining terms up-to quadratic-order in N k
1 and N k

2 , we obtain the following expression for

the collisional dissipation rate,

D =
3ρpν2(1− e2)T

3
2

70σ
√

π

[
280+η2(28+η2 −8λ 2)+84λ 4

]
+ h.o.t.,

=
3ρpν2(1− e2)T

3
2

70σ
√

π

[
280+

N k
1

2

(
28+

1
2
N k

1 +
10
3

(
N k

1 +2N k
2

))

+
7
3

(
N k

1 +2N k
2

)2 ]
+ O

(
(Nk

i )
3
)
, (3.133)

which holds in the dilute limit. That the Grad-level dissipation rate depends on the normal

stress difference was pointed out previously (Saha & Alam 2014) for the case of granular

shear flow in two-dimensions.
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3.10 Validation of Constitutive Relations

In this section we probe the range of validity of the analytical constitutive relations for the

shear viscosity (§3.7.1), the pressure (§3.7.2), and the two normal stress differences (§3.8) that

are obtained by solving the ‘truncated’ second-moment equations (3.92), (3.83) and (3.84) at

second- third- and fourth-order, respectively. These approximate solutions are then compared

with the numerical solution of the full second moment equation (3.71-3.74) as functions of

the density (ν) and the restitution coefficient (e). It may be recalled from the analysis in

§3.5.3 that the transport coefficients obtained using the solutions of (3.92), (3.83) and (3.84)

for η , λ , R and φ are referred as the ‘Burnett’ ‘super-Burnett’ and ‘super2-Burnett’ solutions,

respectively.

For the ‘exact’ numerical solution of (3.71-3.74), first we evaluate the integrals H δ p

αβγ

(3.78), J δ p

αβγ (3.79), and K δ p

αβ (3.80), that appear in (3.76-3.77), numerically using the stan-

dard quadrature rule. Substituting the numerically evaluated integrals into (3.71-3.74) results

in a system of nonlinear algebraic equations which again is solved by the same Newton’s

method. The values of η ,λ , R and φ thus obtained are inserted into the expressions for pres-

sure (p, G.6), viscosity (µ , G.8) and the normal stress differences (N1 and N2, G.9) as given

in Appendix G. Such numerically obtained transport coefficients are dubbed ‘exact’ numerical

solution since a very high accurate solution can be obtained, limited only by (i) the truncation

error of the quadrature rule and (ii) the machine precision.

In the following, such exact numerical solutions for p, µ , T , N1 and N2 are compared with

those obtained from (i) the (exact) Burnett-order solution and (ii) the perturbation solution at

fourth order for η , λ , R and φ .

3.10.1 Comparison Between Analytical and Exact Numerical Solutions

Figure 3.6(a-d) shows a comparison within the ‘exact’ numerical solution of second-moment

equations, the exact Burnett order solutions and the perturbative fourth order solutions for the

variations of the shear-plane anisotropy η , the excess temperature λ 2, the dimensionless shear

rate R, and the non-coaxiality angle φ (degrees) with density (ν) for three values of the resti-

tution coefficient e = 0.9, 0.7, 0.5. In each panel, while the solid black lines denote the exact

solution, the blue dashed lines and red dot-dashed lines denote the series solutions at second-

order and fourth-order, respectively. It is seen that while the second-order solution provides a

good agreement for η , λ 2, φ and R up-to a restitution coefficient of e ≥ 0.9, the fourth-order

solution is required for more dissipative particles (e = 0.7) for a reasonable agreement over

the whole range of density (for λ 2 and R, see panels b and c respectively). On the other hand,

panels a and d indicate that even the 4th-order solution for the shear-plane anisotropy η and
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the non-coaxiality angle φ is not adequate at e = 0.5 in the dense limit (for ν > 0.3). Since all

transport coefficients in USF are functions of η , λ 2, φ and R, next we will check the ability

of the exact second- (Burnett) and fourth-order approximations (super-super-Burnett) of the

second-moment equation to predict p, µ , T , N1 and N2.

Figure 3.7(a-c) displays the density variations of (a) the pressure p, (b) the shear viscosity

µ and (c) granular temperature T for three different values of the restitution coefficient e= 0.9,

0.7 and 0.5. In each panel, the ‘exact’ numerical solution (denoted by the black solid line) is

compared with (i) Burnett order (blue dashed line) and (ii) the perturbation solution at fourth-

order (red dot-dash line) It is seen that the Burnett-order solutions for p, µ and T are almost

indistinguishable from their exact numerical value for small dissipation (e = 0.9); moreover,

this agreement seems to hold uniformly for the whole range of density. On the other hand,

retaining the fourth order terms yields a better agreement for p, µ and T at large dissipation

(e = 0.5).

The ability of the fourth-order series solution to quantitatively predict p and µ at any

density also holds for both the first and second normal stress differences, see figures 3.8(a,b).

Note that the plotted quantities in figure 3.8 are the ‘scaled’ first and second normal stress

differences defined via

N1 =
Pxx −Pyy

p
(3.134)

N2 =
Pyy −Pzz

p
(3.135)

respectively, with the expressions for Pxx, Pyy, Pzz and p given in (3.109-3.112); equations

(3.134) and (3.135) are measures of two normal stress differences with respect to the mean

pressure. In figure 3.8(b) we find that N2 undergoes a sign reversal at some finite density.

The location (ν = νcr) of the sign-reversal of N2 appears to be independent of the restitution

coefficient as it is evident from figure 3.8(b). This finding should be contrasted with the sign-

reversal of the kinetic component (N k
2 ) of the second normal stress difference in figure 3.5

which indicates that νk
cr (at which N k

2 = 0, figure 3.5b) is a decreasing function of e. The

dependence of the collisional component of the stress on e is likely to be responsible for the

independence of this critical density (νcr at which N2 = N k
2 +N c

2 = 0) on the restitution

coefficient.

3.10.2 Comparison with Simulation

The molecular dynamic event-driven simulations data for the uniform shear flow of inelastic

hard-spheres, previously carried out by Alam & Luding (2005b) for a restitution coefficient
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fourth order perturbation solution (red dot-dashed lines) and the ‘exact’ numerical solution
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Fig. 3.8 Same as figure 3.7 but for the variations of (a) the first (N1,) and (b) the second (N2)
normal stress differences with density (ν).

of e = 0.9, are superimposed in figures 3.7 and 3.8. Note that Alam & Luding (2005b) used

event-driven techniques to conduct these simulations of smooth inelastic hard-spheres in a

cubic box by implementing the Lees-Edwards boundary condition (Lees & Edwards 1972)

along the gradient (y) direction with periodic boundary conditions along the stream-wise (x)

and span-wise (z) directions – the other details of simulation can be obtained from the original

paper. Figure 3.7(a-c) indicates that our theoretical predictions are in good agreement with

the simulation data for p, µ and T as well as for two normal stress differences N1 and N2

(figure 3.8).

The above comparative study in figures 3.6, 3.7, 3.8 and 3.9 suggests that the terms retained

up-to the fourth-order (super2-Burnett solutions) in the series expansion (3.81–3.82) of the

second-moment equation provide an adequate accuracy to predict all transport coefficients (p,

µ , N1 and N2) in the uniform shear flow. This in turn implies that the super-super-Burnett

terms (i.e. fourth-order in the shear rate) must be retained to predict the correct behaviour of

p, µ , N1 and N2 for all values of ν and e.

3.11 Dense limit: Approximate Solution and Its Validation

Here we determine an approximate solution of the second-moment balance equations (3.71-

3.74) which is likely to hold in the dense limit (ν → νmax). Since the collisional mechanism

of momentum transfer dominates over its kinetic contribution as ν → νmax, the stress tensor

can be approximated by

Pαβ =Θαβ . (3.136)
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Therefore the balance equations (3.71-3.74) simplify to

2γ̇[(Θx′x′ −Θy′y′)cos2φ −2Θx′y′ sin2φ ] = (Ax′x′ +Ay′y′ +Az′z′),

2γ̇[(Θx′x′ −Θy′y′)cos2φ −2Θx′y′ sin2φ ] =−3Γ̂z′z′,

2γ̇(Θx′x′ +Θy′y′)cos2φ = (Γx′x′ −Γy′y′),

−(Θx′x′ +Θy′y′)γ̇ sin2φ = Γx′y′ ,





(3.137)

Substituting the expressions of the integrals (Θx′x′+Θy′y′) and Γx′y′ into the last equation yields

φ = 0, which implies that the eigenvectors of the shear tensor DDD and the second-moment tensor

MMM becomes co-axial at ν → νmax. We are now left with η , λ 2 and R to solve for.

3.11.1 Approximate Solutions in the Dense Limit

Let us simplify (3.137) by retaining terms up-to O(ηλ 2R)2:

32(1+3e)R2−8(1−3e)
√

πRη −3(1− e)η2 −9(1− e)λ 4−30(1− e) = 0,

32(1+3e)R2−8(4−3e)
√

πRη −3(3− e)η2 −63(3− e)λ 2+9(3− e)λ 4 = 0,

8(4−3e)
√

πRλ 2 +6(3− e)ηλ 2 +14(1−3e)
√

πR+21(3− e)η = 0.





(3.138)

The solutions of these equations are given by

η2 = 1
(−238+42e−40X )

{
70−281X −924X 2 +192X 3

−e(280−1190X −798X 2 +240X 3)+3e2(70−107X −42X 2 +24X 3)
}
,

R2 = 1
64(1+3e)(−119+21e−20X )

[
3
{

3e3(210−401X +42X 2 +24X 3)

−3(1050−1457X +378X 2 +72X 3)− e2(3570−8621X +546X 2 +456X 3)

+e(6090−16493X +882X 2 +792X 3)
}]

,





(3.139)

where λ 2 = X . Inserting (3.139) into (3.138) yields a fourth-order equation in X , which

after retaining terms only up-to quadratic-order in λ 2 = X yields

(81792+199824e−130560e2+18288e3 +20666π −88562eπ +74982e2π −11790e3π)X 2

+(202104+485016e−345912e2+53928e3 −6601π −26201eπ +83433e2π −17703e3π)X

−35280−58800e+129360e2−35280e3 −7350π +33810eπ −39690e2π +13230e3π = 0.

(3.140)
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The above solution (3.139) and (3.140) can be further simplified if we remove λ 4-terms from

(3.138). The resulting equations admit an explicit solution (Alam & Saha 2017):

η = 0,

λ 2 = 10(1−e)
21(3−e) ,

R2 =
15(1−e)

16(1+3e) ,

φ = 0.





(3.141)

Since η,φ → 0, the first normal stress difference (N1 ∝ η sin2φ ) vanishes as ν → νmax, but

the second normal stress difference remains finite (N2 ∝ λ 2 6= 0) in the dense limit. The

solution (3.141) indicates that R,λ ∼
√

(1−e) and therefore both the shear-rate and the excess

temperature scale with inelasticity as
√

(1− e) in the dense limit.
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Employing (3.141), all transport coefficients (p, µ , N1 and N2) can now be calculated as

functions of ν and e as follows:

p∗ ≈ pc∗ ≡ (1+ e)ν2g0

110880R2

{
3465+7392R2

+
8√
π

ηRcos2φ(462+33η2−352R2 −132λ 2 +99λ 4)
}
,

=
(1+ e)ν2g0

32R2

(
1+

32
15

R2
)

(3.142)

µ∗ ≈ µc∗ ≡ (1+ e)ν2g0

18480
√

πR

[
3
{

616+77
√

π
η cos2φ

R
+4λ 2(44+8η2 −11λ 2 +4λ 4

}

+128(11−4λ 2)R2 −4η2
{

22+(11−12λ 2)(1+2cos2 2φ)
}]

,

=
(1+ e)ν2g0

4620
√

πR

[
3
{

154+λ 2(44−11λ 2+4λ 4
}
+32(11−4λ 2)R2

]
, (3.143)

N1 ≈
Pc

xx −Pc
yy

pc

=
12
{

231− 8√
π

ηR(11−12λ 2)cos2φ
}

η sin2φ
{

231(15+32R2)+ 8√
π

ηRcos2φ(462+33η2−352R2 −132λ 2 +99λ 4)
} ,

= 0 (3.144)

N2 ≈
Pc

yy −Pc
zz

pc
=

6
[
33(32R2−7η sin2φ +21λ 2)+

8√
π

ηRcos2φ
{

66+6η2 −64R2 −33λ 2 +18λ 4 +η(11−12λ 2)sin2φ
}]

{
231(15+32R2)+ 8√

π
ηRcos2φ(462+33η2 −352R2 −132λ 2 +99λ 4)

} ,

=
6(32R2 +21λ 2)

7(15+32R2)
, (3.145)

where we have retained only the collisional contributions to the stress tensor.

3.11.2 Validation of the Dense Limit Solution

The density-variations of the pressure, shear viscosity and granular temperature for ν =(0.5,0.64)

are displayed in figures 3.9(a), 3.9(b) and 3.9(c), respectively. In each panel, while the blue

solid line denotes the ‘exact’ numerical solution of the second-moment equation with the ra-

dial distribution function being given by (3.31) of Carnahan & Starling (1969), the black solid
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Fig. 3.9 Comparison of ‘dense-limit’ analytical solution (green dashed lines) for (a) pressure
(3.142), (b) shear viscosity (3.143) and (c) granular temperature with their ‘exact’ numerical
solution for (i) Carnahan-Starling (3.31, blue solid line) and (ii) Torquato’s (3.146, black solid
line) radial distribution function. The red dot-dash line in each panel represents the ‘leading-
order’ closed-form solution (3.93-3.94).
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line represents the same with the following radial distribution function (Torquato 1995)

g0(ν) =





2−ν
2(1−ν)3 , if ν ≤ 0.49

2−0.49
2(1−0.49)3

(νmax−0.49)
(νmax−ν) , 0.49 < ν < 0.64,

(3.146)

where νmax = 0.64 is taken as the random packing limit (or, the jamming density) and ν =

0.49 ≈ ν f represents the freezing-density of a hard-sphere system. Our approximate dense-

limit solution (3.142-3.143) is marked by the green dash-line in each panel of figure 3.9; we

have also superimposed the leading-order solution (3.93-3.94) denoted by the red dot-dash line.

It is seen that while the dense-limit solution (3.142-3.143) agrees qualitatively with with the

respective exact (black solid line) numerical solution, the leading-order solution (3.93-3.94)

agree quantitatively (for e = 0.95) with the exact (black solid line) numerical solution. Expect-

edly, the pressure (figure 3.9a) and shear viscosity (figure 3.9b) calculated using the Carnahan-

Starling radial distribution function (3.31) deviates from those calculated using (3.146) since

the former has a singularity at ν = 1. In fact, Torquato’s expression (3.146) is valid for the

whole range of density (for an ‘equilibrium’ hard-sphere system) up-to the maximum packing

limit (νmax ∼ 0.64), while the Carnahan-Starling form (3.31) may be used up-to the freezing

density (ν f ∼ 0.49).

Figures 3.10(a) and 3.10(b) compare the above two dense-limit solutions for the first and

second normal stress differences, respectively, with the respective exact numerical-solution
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(the black solid line, with (3.146)). It may be noted that N1 = 0 for our approximate dense-

limit solution (3.144) since the non-coaxiality angle (φ ) is zero, but N2 6= 0 as in (3.145). On

the other hand, our leading-order solution (3.93-3.94) for the whole range of density predicts

a non-zero N1 for ν < νmax (denoted by the red dot-dash line in figure 3.10a) which closely

follows the exact numerical solution for N1. In particular, the agreement between the leading-

order (red dot-dash line) and exact (black line) solutions for both N1 and N2 is very good at

e = 0.95, but the deviation increases with decreasing restitution coefficient.

Collectively, the comparative analysis in figures 3.9 and 3.10 suggests that our leading-

order solution (3.93-3.94) can be used as a first approximation to predict all transport coeffi-

cients (p, µ , N1 and N2) in the dense limit. On the other hand, the present dense-limit solution

(3.141) can also be improved by incorporating next higher-order terms in future.

3.12 Granular Heat Flux and Thermal Conductivity

For the uniform shear flow, the granular heat flux vanishes identically since the gradients of

hydrodynamic fields (the number density, the shear rate and the second moment) are zero

for which the anisotropic Maxwellian (3.33) was chosen as the single-particle distribution

function. Therefore we need to determine the distribution function for the ‘non-USF’ having

finite gradients of hydrodynamic fields. To do this, we carry out a perturbation expansion

around the USF with the anisotropic Maxwellian being zeroth-order distribution function. The

resultant analysis is similar to our previous work (Saha & Alam 2014) on inelastic hard-disks,

and the related details for the present case of hard-spheres are discussed below.

With respect to the anisotropic Maxwellian as the weight function and applying Gram-

Schmidt orthogonalization procedure along with the following definition of the inner product

〈φ ,ψ〉= 1

2π |M| 1
2

ˆ

φψ exp
(
− 1

2
C ···M−1 ···C

)
dC, (3.147)

we obtain a set of orthonormal polynomials
{

P(0), P
(1)
1 , P

(1)
2 , P

(1)
3 , P

(2)
11 , P

(2)
12 , P

(2)
22 ,

P
(2)
33 , P

(3)
ii1 , P

(3)
ii2 , P

(3)
ii3

}
. The explicit expressions of P

(k)
i and P

(k)
i j are omitted for the

sake of brevity. In an analogous approach, the distribution function for the non-USF can be

written as

f (1) = f (0)
(

a+aiCi +axxC
2
x +2axyCxCy +ayyC

2
y +azzC

2
z +biC

2Ci

)
. (3.148)
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where f (0) represents the anisotropic-Maxwellian state (3.33). To determine a, ai, axx, axy, ayy,

azz and bi, the following compatibility conditions must be satisfied

ˆ

f (1)(c,x, t)dc = n(x, t) =

ˆ

f (0)(c,x, t)dc, (3.149)
ˆ

C f (1)(c,x, t)dc = 0 =

ˆ

C f (0)(c,x, t)dc, (3.150)

m

ˆ

CαCβ f (1)(c,x, t)dc = Pαβ = m

ˆ

CαCβ f (0)(c,x, t)dc, (3.151)

along with the definition of the heat-flux vector

qα =
m

2

ˆ

C2Cα f (1)(c,x, t)dc. (3.152)

The solutions for the constants are

a = 1, axx = axy = ayy = azz = 0,

ax =
1

ρd

[{
8M4

xy −2
[
(3Myy−Mzz)Mzz+Mxx(8Myy+Mzz)

]
M2

xy

−Myy(3Mxx +Myy +Mzz)(M
2
xx +3M2

yy+M2
zz)
}

qx

+Mxy

{
3(Mxx+Myy)

3 +(3M2
xx +2MxxMyy +3M2

yy +4M2
xy)Mzz

+(Mxx +Myy +Mzz)M
2
zz

}
qy

]
,

ay =
1

ρd

[
Mxy

{
3(Mxx +Myy)

3 +(3M2
xx +2MxxMyy +3M2

yy +4M2
xy)Mzz

+(Mxx +Myy +Mzz)M
2
zz

}
qx

+
{

8M4
xy−2

[
(3Mxx −Mzz)Mzz+Myy(8Mxx+Mzz)

]
M2

xy

−Mxx(Mxx +3Myy+Mzz)(3M2
xx +M2

yy +M2
zz)
}

qy

]
,

az =− (Mxx+Myy+3Mzz)qz

ρMzz(M2
xx+M2

yy+3M2
zz+2M2

xy)
,

bx =
1

ρd

[{
M2

xxMyy +MyyM2
zz +3M3

yy +2(Mxx +3Myy)M
2
xy

}
qx

−Mxy

{
3M2

xx +2MxxMyy +3M2
yy +M2

zz +4M2
xy

}
qy

]
,

by =
1

ρd

[
−Mxy

{
3M2

xx +2MxxMyy +3M2
yy +M2

zz +4M2
xy

}
qx

+
{

3M3
xx +MxxM2

yy +MxxM2
zz+2(3Mxx +Myy)M

2
xy

}
qy

]
,

bz =
qz

ρMzz(M2
xx+M2

yy+3M2
zz+2M2

xy)
.
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where

d=
(

MxxMyy−M2
xy

){
3M4

xx +10M2
xxM2

yy +4M2
xxM2

zz +3M4
yy +4M2

yyM2
zz (3.153)

+M4
zz +M2

xy

(
12M2

xx +16M2
xy−8MxxMyy +12M2

yy +8M2
zz

)}
. (3.154)

Equation (3.148) along with (3.153) and (3.154) constitute the single particle distribution func-

tion for the non-uniform shear flow.

This completes the determination of the distribution function (3.148) for the non-USF

which we shall use in the next section to calculate the source term in the balance equation for

the third-order moment.

3.12.1 The Third Order Balance

The balance equation for the contracted third-order moment is

ρ
DMαββ

Dt
+Qnαββ ,n −3M(αβ Pβ )n,n +3Qn(αβ uβ ),n = ℵαββ , (3.155)

where

Qnαβ = ρMnαβ =

ˆ

CnCαCβ f (1)(c,x, t)dc (3.156)

Qnαββ = ρMnαββ =

ˆ

C2CnCα f (1)(c,x, t)dc, (3.157)

and

M(αβ Pβ )n,n =
1
3
(2Mαβ Pβn,n +Mββ Pαn,n) =

1
3
(2Mαβ Pβn,n +3T Pαn,n), (3.158)

Qn(αβ uβ ),n =
1
3
(2Qnαβ uβ ,n +Qnββ uα,n) =

1
3
(2Qnαβ uβ ,n +2qnuα,n). (3.159)

The source term in (3.155), ℵαββ , is defined as

ℵαββ = ℵ[mC2Cα ]

=
mσ 2

2

ˆ ˆ ˆ

g···k>0
∆(C2Cα) f (1)(c1,x) f (1)(c2,x)(g ···k)dkdc1dc2. (3.160)

By using the distribution function (3.148) we can carry out the integration in (3.160) as

detailed in Appendix J. The final expression for the third-order source term (see Appendix J)
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is

ℵαββ =−2ρ(1+ e)
√

T

385ρpσ
√

π
Qαγ qγ . (3.161)

The expressions for different elements of Q are given below.

3.12.2 Elements of Q

The expressions for the non-zero elements of Q in (J.38) are given by

Q11 =
1

25+24η2 +40λ 2 +16α4 +96λ 4

[
(188650+341880λ 2+849783λ 4+639606λ 6

+586074λ 8)− e{(127050+221760λ 2+569151λ 4 +403722λ 6+427258λ 8)

+η2(144309+45606λ 2+331524λ 4 +71192λ 6)+2η4(50529+20800λ 2−2968λ 4)

−8η6(210−739λ 2)}+η2(205997+68618λ 2+354132λ 4−161304λ 6)

+2η4(63017−7780λ 2−94424λ 4)−8η6(1751+3309λ 2)−10400η8

+2η[4(5005+9680λ 2+12067λ 4+4856λ 6)− e{9240−2η2(759+6740λ 2+5367λ 4)

+η4(5756−3264λ 2)+660η6 +22440λ 2 +16566λ 4+24008λ 8}

+η2(6116−44640λ 2−43578λ 4)+η4(8961−12948λ 2)−2156η6]sin2φ
]
, (3.162)

Q12 =− 2η cos2φ

25+24η2 +40λ 2 +16α4 +96λ 4

[
4(5005+9680λ 2+12067λ 4+4856λ 6)− e{9240

−2η2(759+6740λ 2+5367λ 4)+η4(5756−3264λ 2)+660η6 +22440λ 2+16566λ 4

+24008λ 8}+η2(6116−44640λ 2−43578λ 4)+η4(8961−12948λ 2)−2156η6
]
,

(3.163)
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Q22 =
1

25+24η2 +40λ 2 +16α4 +96λ 4

[
(188650+341880λ 2+849783λ 4+639606λ 6

+586074λ 8)− e{(127050+221760λ 2+569151λ 4 +403722λ 6+427258λ 8)

+η2(144309+45606λ 2+331524λ 4 +71192λ 6)+2η4(50529+20800λ 2−2968λ 4)

−8η6(210−739λ 2)}+η2(205997+68618λ 2+354132λ 4−161304λ 6)

+2η4(63017−7780λ 2−94424λ 4)−8η6(1751+3309λ 2)−10400η8

−2η[4(5005+9680λ 2+12067λ 4+4856λ 6)− e{9240−2η2(759+6740λ 2+5367λ 4)

+η4(5756−3264λ 2)+660η6 +22440λ 2 +16566λ 4+24008λ 8}

+η2(6116−44640λ 2−43578λ 4)+η4(8961−12948λ 2)−2156η6]sin2φ
]
, (3.164)

Q33 =
1

(5+2η2 −8λ 2)

[
37730−25410e+18733η2−13101eη2 −1028η4 −4eη4

−520η6 −2{616(62−39e)−11(71−147e)η2+(889+167e)η4}λ 2

+{33(4471−2967e)−80(76−3e)η2}λ 4 −2(21373−11121e)λ 6
]
. (3.165)

3.12.3 Heat Flux and Thermal Conductivity: Maxwell Iteration

Inserting (3.158-3.159) in (3.155), the equation for the heat-flux vector q can be written as:

ℵαββ = 2
Dqα

Dt
+2qα

∂uβ

∂xβ
+

∂Qnαββ

∂xn

− (2Mαβ +3T δαβ )
∂Pβn

∂xn

+2(Qnαβ +qnδαβ )
∂uβ

∂xn︸ ︷︷ ︸
. (3.166)

Following the same closure assumption of vanishing Q̂nαβ as in (3.21), we can write

Qnαβ =
1
5

(
Qnδαβ +Qαδnβ +Qβ δnα

)
≡ 2

5

(
qnδαβ +qαδnβ +qβ δnα

)
. (3.167)

Therefore, the under-braced term in (3.166) can be simplified as

2(Qnαβ +qnδαβ )
∂uβ

∂xn
=

18
5

Dαnqn +2Wαnqn +
4
5

qα
∂uβ

∂xβ
, (3.168)
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where we have used the following definitions

∂uα

∂xn

=
1
2

(
∂uα

∂xn

+
∂un

∂xα

)
+

1
2

(
∂uα

∂xn

− ∂un

∂xα

)
= Dαn +Wαn (3.169)

∂un

∂xα
= Dαn −Wαn. (3.170)

Inserting (3.168) into (3.166), the governing equation for the heat flux reduces to

2
Dqα

Dt
+

14
5

qα
∂un

∂xn
+

∂Qnαββ

∂xn
− (2Mαβ +3T δαβ )

∂Pβn

∂xn
=−4ν(1+ e)

√
T

5σ
√

π
Qαγqγ , (3.171)

where

Qαγ =
1

154
Qαγ +

9σ
√

π

2ν(1+ e)
√

T
Dαγ +

5σ
√

π

2ν(1+ e)
√

T
Wαγ (3.172)

is a rank-two tensor field.

Now to determine the constitutive relation for the heat flux, we apply the anisotropic

Maxwell-iteration scheme (Truesdell & Muncaster 1980; Saha & Alam 2014) for which the

following relations hold at the zeroth-order:

P
(0)
αβ = ρM

(0)
αβ = ρMαβ ,

Q
(0)
nαββ = ρ(3Tδαβ +2Mαβ )Mnβ ,

}
(3.173)

and hence

M
(0)
αβ

∂P
(0)
βn

∂xn
= ρMαβ

∂Mβn

∂n
+ ∂ρ

∂xn
Mαβ Mβn,

∂Q
(0)
nαββ

∂xn
= 3 ∂ρ

∂xn
T Mαn +3ρ ∂T

∂xn
Mαn +3ρT ∂Mαn

∂xn

+2 ∂ρ
∂xn

Mnβ Mαβ +2ρ
∂Mnβ

∂xn
Mαβ +2ρMnβ

∂Mαβ

∂xn
.





(3.174)

Inserting (3.173-3.174) into (3.171) we obtain the expression for the heat-flux vector

qγ =− 5ρpσ
√

π

4(1+ e)
√

T
Q−1

γα

(
5Mαn

∂T

∂xn

+2Mβn

∂M̂αβ

∂xn

)
, (3.175)

with Qγα being given by (3.172). Equation (3.175) is dubbed the ‘generalized’ Fourier law

since the gradient of the kinetic stress drives a heat-current in addition to the standard Fourier

heat-current driven by the gradient of the temperature. The coefficient of the temperature

gradient term in (3.175)

κγn =
25ρpσ

√
π

4(1+ e)
√

T
Q−1

γα Mαn, (3.176)
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is identified as the thermal conductivity which is a rank-two tensor field.

3.12.4 Navier-Stokes’s Limit

When the shear-plane temperature anisotropy (η → 0) and the excess temperature along the

vorticity direction (λ 2 → 0) approach zero, we have M̂αβ = 0 and Mαβ = T δαβ , along with

Q−1
γα Mαn =

T

(49−33e)




(
1− 224πR2

(1+e)2(49−33e)2ν2

)−1
0 0

0
(

1− 224πR2

(1+e)2(49−33e)2ν2

)−1
0

0 0 1


 .

(3.177)

At linear order in the shear rate (∼ R), (3.177) reduces to

Q−1
γα Mαn =

T δγn

(49−33e)
. (3.178)

Substituting (3.178) into (3.175), we obtain an expression for the heat-flux

qγ =− 75m
√

T

2
√

πσ 2(1+ e)(49−33e)

∂T

∂xγ
=−κ

∂T

∂xγ
, (3.179)

with

κ =
25

√
πρpσ

√
T

4(1+ e)(49−33e)
(3.180)

being the expression for the ‘scalar’ thermal conductivity at NS-order (Jenkins & Richman

1985a). Therefore, at linear-order in the shear rate (the NS-order), the heat flux follows the

standard Fourier law (3.179) and the thermal conductivity, κγn = κδγn, is an isotropic tensor.

3.12.5 Comparison with Previous Work

As cited in the work of (Simon & Jenkins 1994), similar expressions for the heat flux (3.175)

and thermal conductivity (3.176) were derived by Zhang (1993). Here we make a comparison

between our work and the constitutive expression derived by Zhang (1993) by analysing the

different components of the tensor Q as given in (3.172).
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For the uniform shear flow and after truncating the terms beyond O(ηλ 2)2, we can explic-

itly evaluate different components of Q: the diagonal elements of Q are given by

Qxx =
1

14(25+24η2+40λ 2+96β 4)

[
17150+18727η2+31080λ 2+77253λ 4

−3e(3850+4373η2+6720λ 2 +17247λ 4)+40η
{

91+176λ 2−6e(7+17λ 2)
}

sin2φ
]
,

Qyy =
1

14(25+24η2+40λ 2+96β 4)

[
17150+18727η2+31080λ 2 +77253λ 4

−3e(3850+4373η2+6720λ 2 +17247λ 4)−40η
{

91+176λ 2−6e(7+17λ 2)
}

sin2φ
]
,

Qzz =
1

154(5+2η2−8λ 2+14λ 4)

[
37730−25410e+18733η2−13101eη2

−1232(62−39e)λ 2+33(4471−2967e)λ 4
]
,





(3.181)

and the non-zero off-diagonal elements are

Qxy =− 20η cos2φ
7(25+24η2+40λ 2+96β 4)

[
91+176λ 2−6e(7+17λ 2)

]
+ 28

√
π

ν(1+e)
R

Qyx =− 20η cos2φ
7(25+24η2+40λ 2+96β 4)

[
91+176λ 2−6e(7+17λ 2)

]
+ 8

√
π

ν(1+e)R,



 (3.182)

with R = γ̇σ/4
√

T being the Savage-Jeffrey parameter (3.49). Clearly, Qαβ 6= Qβα for any

R 6= 0, and hence Qαβ is asymmetric. We conclude that the thermal conductivity tensor καβ

is anisotropic in the uniform shear flow having dependence on the shear rate and, moreover,

the off-diagonal anisotropy of καβ (i.e. καβ 6= κβα) results from the imposed shear-field in

USF.

Before closing this section, we make a comparison of the different elements of Q as given

by our expressions in (3.181-3.182) with the approximate solutions derived by Zhang (1993);

the related expression of Q is given in Simon & Jenkins (1994). To evaluate each element

Qαβ , we used the reference state of USF for which η , λ 2, R and φ are calculated as before

and they are subsequently substituted into (3.181-3.182). Figure 3.11(a) displays the diagonal

elements of Q, while figure 3.11(b) displays the non-zero off-diagonal elements Qxy and Qyx.

It is seen in figure 3.11(b) that our second-order solution (3.182) for Qxy and Qyx agree well

with those of Zhang (1993) for the whole range of restitution coefficient. On the other hand,

while the agreement for the longitudinal component Qxx is excellent between two theories,

there are significant differences for Qyy and Qzz for e < 0.9. It may be noted the analysis of

Zhang (1993) considers only leading-order terms, while our analysis is based on second-order

corrections. In any case, the particle simulation data are required to verify the constitutive

expressions for the heat flux.
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Fig. 3.11 Variations of the different components of Qαβ with e in the dilute limit (ν = 0.01):
the values of η , λ 2, R and φ correspond to the solution of the USF problem. The solid lines
represent the present solution as given in (3.181-3.182) and the dashed lines represent the
work of Zhang (1993) as cited in (Simon & Jenkins 1994).

3.13 Summary and Comparison with Standard Moment The-

ory

3.13.1 Summary of Theory and Its Predictions

The motivation to develop a higher-order hydrodynamic-like theory for a flowing granular

matter came from the fact that the normal stress differences remain order-one quantities (see

figures 3.1 and 3.8) in a granular fluid and hence cannot be neglected. This ruled out Navier-

Stokes-order models (for which N1 = 0 = N2) and the ‘minimal’ model that incorporates

normal stress differences is the well-known “10-moment” model of (Grad 1949) in terms

of an extended set of 10 hydrodynamic fields (density, velocity vector and the second mo-

ment tensor) as detailed in §3.2. The constitutive relations were then derived by choosing the

anisotropic Maxwellian as the single-particle distribution function which is the zeroth-order

distribution function (Goldreich & Tremaine 1978; Araki & Tremaine 1986; Jenkins & Rich-

man 1988; Richman 1989; Lutsko 2004; Saha & Alam 2014) for a non-equilibrium system

like the steady uniform shear flow of smooth inelastic spheres. The equation for the second

moment tensor has been solved semi-analytically, and the closed-form expressions for the

“non-Newtonian” stress tensor, the shear viscosity and the collisional dissipation rate are pro-

vided for the whole range of density as detailed in §3.7.1, §3.7.2 and §3.9. In addition, the

origin of two normal stress differences has been identified in §3.8.
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We found that the normal stress differences and the anisotropy of the second-moment

tensor MMM = 〈CCCCCC〉 (where CCC = (ccc−uuu) is the peculiar velocity of a particle, ccc is its instantaneous

velocity and uuu is the coarse-grained/hydrodynamic velocity) are intertwined with each other

in uniform shear flow. This can be easily appreciated by focussing on the dilute limit of shear

flow for which the following relations hold:

η2 =
1

12
(6+N1 +2N2)N1 (3.183)

λ 2 =
1
6
(N1 +2N2) (3.184)

sin2φ =

√
3N1

(6+N1 +2N2)
(3.185)

Therefore, the temperature anisotropy in the shear-plane (η), the non-coaxiality angle (φ ) and

the excess temperature (T ex
z = (T −Tz) ∝ λ 2, where Tz and T are the z-component and the

average of the granular temperature respectively) along the mean-vorticity (z) direction vanish

if the two normal stress differences are zero. This results in an ‘isotropic’ second-moment

tensor for which only the granular temperature is a field variable, in addition to density and

velocity, leading to the standard NS-order hydrodynamic model.

The ‘scaled’ first normal stress difference (N1 = (Pxx −Pyy)/p, scaled with respect to the

mean pressure) is positive in the dilute limit and decreases monotonically to zero in the dense

limit. In contrast, the scaled second normal stress difference (N2 = (Pyy−Pzz)/p) is negative

and positive in the dilute and dense limits, respectively, and the sign-change of N2 at some

finite density is directly tied to the sign-change of its kinetic component N k
2 . In physical

terms, the vanishing of the first normal stress difference is tied to the ‘coaxiality’ (i.e. the

non-coaxiality angle is φ = 0) of the eigendirections of the shear tensor DDD = (∇∇∇uuu+(∇∇∇uuu)T )/2

and the second-moment tensor MMM. On the other hand, the second normal stress difference

can be non-zero even if the above coaxiality condition (φ = 0) is satisfied since the ‘excess’

temperature (T ex
z = (T −Tz) ∝ λ 2, where T and Tz are the average and z-component of the

granular temperature) along the mean vorticity (z) direction could differ from zero in uniform

shear flow.

A detailed comparison between the ‘exact’ numerical solution of the second-moment equa-

tion and two different (approximate) semi-analytical solutions has been made (see figures 3.6,

3.7 and 3.8). We found that the super-super-Burnett terms (i.e. fourth-order in the shear

rate) must be retained in the series expansion (3.81–3.82) of the second-moment equation to

quantitatively predict the behaviour of the pressure (p), the shear viscosity (µ) and two nor-

mal stress differences (N1 and N2) for all values of density (ν) and restitution coefficient (e).
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Fig. 3.12 Variations of the (a) first N1 and (b) second N2 normal stress differences against
volume fraction ν for coefficient of restitution e = 0.9. The blue solid lines, black solid lines
and red dashed lines represent the Burnett order analytical solution of current anisotropic
Gaussian theory, DG14 theory (chapter 2) and 14 moment theory of Garzó (2013) respectively.
The symbols are simulation results from Alam & Luding (2005b).

Furthermore, a similar comparison with the molecular dynamic event-driven simulations data

of Alam & Luding (2005b) for the uniform shear flow of inelastic hard-spheres confirmed the

reliability of our theoretical expressions for transport coefficients over a large range of density

(see figures 3.7 and 3.9). Therefore we conclude that the beyond-Navier-Stokes contributions

up-to the super-super-Burnett order must be retained in all transport coefficients.

Lastly, we derived a constitutive relation for the granular heat-flux in the dilute limit by

utilizing an expansion around the anisotropic Maxwellian state. The resulting generalized heat

flux (3.175) depends on the gradients of (i) the granular temperature and (ii) the kinetic stress.

We found that the thermal conductivity tensor καβ (3.176) is anisotropic in the uniform shear

flow having dependence on the shear rate and, moreover, the off-diagonal anisotropy of καβ

(i.e. καβ 6= κβα) results from the imposed shear-field in USF.

To complete the present 10-moment theory, the collisional contribution to the heat flux

needs to be calculated in future. This is required for the applicability of the present theory

over the whole range of density.

3.13.2 Comparison with GME (Grad’s Moment Expansion) Theory

Figure 3.12 shows a comparison of first (N1) and second (N2) normal stress differences within

(i) Burnett order analytical solution of present anisotropic Gaussian theory, (ii) Dense Grad

14 moment (DG14) theory established in Chapter 2, (iii) Grad’s 14 moment theory by Garzó

(2013) and (iv) molecular dynamics solution by Alam & Luding (2005b), against volume
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fraction ν for e = 0.9. It is seen that the theory based on standard Grad’s moment expansion

(GME) (Jenkins & Richman 1985a; Garzó 2013) grossly over-predicts N1 and predicts N2

to be identically zero. Therefore questions the applicability of GME at a finite density as

far as normal stress differences are concerned. The DG14 moment theory predicts N1 up-

to a volume fraction of 0.1 and then over-predicts it. The N2 predictions of DG14 is better

compared to the GME in a sense that DG14 theory predicts the corrects signs of N2 at the

dilute and dense limits, and also predicts the sign reversal of it at some finite density. Overall,

the DG14 moment theory gives a qualitatively correct predictions for N1 and N2 both but

there is quantitative disagreement with the simulation. However the anisotropic Maxwellian

expansion (AME) discussed in this chapter predicts the correct behaviours of both the normal

stress differences and an excellent quantitative agreement with the simulation is observed

throughout the span of density. Here lies the success of AME theory.

The quantitative predictions of the AME theory for two normal stress differences and other

transport coefficients motivate us to apply this anisotropic theory to analyse the simple shear

flows of gas-solid suspensions. The particle phase rheology of a uniformly sheared gas-solid

suspension using anisotropic Maxwellian as the single particle distribution function will be

discussed in the remaining two chapters.





Chapter 4

Dense Gas-Solid Suspension: Stress

Tensor and Normal Stress Differences

4.1 Introduction

This chapter is devoted to analyse the non-Newtonian stress tensor in a sheared gas-solid sus-

pension, and is a direct extension of the anisotropic Maxwellian theory described in Chapter

3. A detailed review of pertinent works on gas-solid suspensions is deferred to Chapter-5;

in the following we discuss a few papers from which the present work is motivated. The

simple shear flow of a gas-solid suspension has been analysed by Tsao & Koch (1995) and

Sangani et al. (1996) for the cases of (i) the elastic particles in dense suspension and for (ii)

the inelastic particles in very dilute suspension. Their theory is based on the standard Grad’s

moment-expansion (GME) around a Maxwellian using Hermite polynomials yielding (i) fi-

nite first normal stress difference (N1) in the dense limit (ν → νmax) and (ii) vanishing second

normal stress difference (N2 ≡ 0) at any density. But the particle simulation data (Alam &

Luding 2005b,a) and related theory works (Jenkins & Richman 1988; Saha & Alam 2014,

2016) clearly suggest non-vanishing N2 6= 0 at any density and vanishing N1 → 0 in the

dense regime. Finding the correct behaviour of two normal stress differences (N1, N2) and

other transport coefficients for a “non-dilute” suspension of dissipative particles is the main

objective of the present chapter.

In figure 4.1 we have shown the density variations of the two normal stress differences [N1

and N2] for e = 0.5 (upper panel) and e = 0.9 (lower panel) respectively.3 The continuous

lines are the results that correspond to a Stokes number (Std) of 10, whereas the dashed lines

correspond to its dry granular analogue (Std → ∞). This analysis is based on an adjusted

3The mathematical definitions of all the transport coefficients remain same as they are defined in previous
chapters.



122 Dense Gas-Solid Suspension: Stress Tensor and Normal Stress Differences

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

e = 0.5

(a)

ν

N1

0 0.1 0.2 0.3 0.4 0.5
−0.1

0

0.1

0.2

0.3

e = 0.5

(b)

ν

N2

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

e = 0.9

(c)

ν

N1

0 0.1 0.2 0.3 0.4 0.5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

e = 0.9

(d)

ν

N2

Fig. 4.1 Variations of the first (N1) and second (N2) normal stress differences with particle
volume fraction (ν) in a uniformly sheared gas solid suspension of smooth inelastic spheres.
The dashed lines represent the theory of Saha & Alam (2016), in the limit of infinite Stokes
number (Std → ∞) and the solid lines denote the present anisotropic moment theory at a finite
Stokes number of Std = 10. The results depicted above are at restitution coefficients of e = 0.5
and e = 0.9 respectively.
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Stokes number (Sangani et al. 1996)

Std = St/Rdiss, (4.1)

defined via a correction factor Rdiss, for which the clarification will be given in the main text.

Figure 4.1 works as a motivation for our present work. It shows that the normal stress

differences are O(1) quantities in dry granular flows and as well in gas-solid suspensions. The

presence of an interstitial fluid increases the first (N1) normal stress difference [panel (a) and

(c)] significantly in the dilute limit but its effect remains small near the dense regime. On the

other hand, for the case of second (N2) normal stress difference [panel (b) and (d)], the inter-

stitial fluid shows its effect throughout the span of volume fraction. Such large normal stress

differences must be taken into account to study the flow of a driven system of dissipative par-

ticles. It is also important to understand the effects of the interstitial fluid on the particle phase

normal-stress differences and other transport coefficients in a dissipative gas-solid suspension

relative to its dry granular counterpart.

Sangani et al. (1996) has proposed a linear theory for a gas-solid suspension of elastic and

inelastic particles based on an expansion around the Maxwellian. Their work is an applica-

tion of the theory described in Jenkins & Richman (1985a) for a suspension problem and an

extension of the work by Tsao & Koch (1995) for a dense suspension. They have included

finite-density effects for elastic particles but the second normal stress difference was found to

be identically zero. This is due to the removal of certain nonlinear terms while calculating the

production terms. A small portion of their work has been devoted towards the dissipative par-

ticles but focusing only in the dilute limit and N2 was again found to be zero. The extension

of their proposed model for the whole range density with inelastically colliding particles gives

rise to a finite first normal stress difference (N1) in the dense limit with second normal stress

difference (N2) being zero throughout. The behaviours of the two normal stress differences

as obtained from their theory are represented by brown dash-dotted lines in figure 4.1.

Recently, Parmentier & Simonin (2012) prescribed a theory for elastic and inelastic par-

ticles valid for arbitrary Stokes numbers. A comparison with the simulation (Abbas et al.

2009) has been made and a qualitatively good agreement is observed. But they have only

considered the kinetic contribution to the stress tensor (Pk
i j = ρ〈CiC j〉) but nothing regarding

the collisional stress (Pc
i j = Θi j) has been mentioned. We know from the kinetic theory of

molecular and granular gases that collisional stresses are very important in determining the

correct transport properties at finite densities. All transport coefficients like the pressure (p),

viscosity (µ), normal-stress differences (N1,N2) have contributions from kinetic as well as

collisional transport of momentum; the collisional contribution to each transport coefficient

becomes significant as we consider flows of a “non-dilute” system.
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In this chapter our focus is in the evaluation of the complete stress tensor Pi j (= Pk
i j +Pc

i j)

for a non-dilute suspension of dissipative particles, which can be valid for arbitrary values of

Stokes number and inelasticity, and this has not been worked out till date. The present work

fills this gap by determining the non-Newtonian stress tensor and related transport coefficients

for a “non-dilute” gas-solid suspension of inelastic particles. The resulting theory is nonlinear

since super-super-Burnett order terms are retained to evaluate the transport coefficients.

4.2 Governing Equations for Gas and Particles

Here we follow the work of Sangani et al. (1996) to formulate the problem and the analy-

sis/solution of this problem follows methodologies and tools developed in Chapter 3.

4.2.1 Equations for the Fluid Phase: Stokes Equations

The gas phase is assumed to be a Newtonian fluid of constant viscosity µg and obeys the

Navier-Stokes equations of motion

ρg
Dvi

Dt
=−∇i pg +µg∇2vi. (4.2)

Under the assumption of small particle Reynolds number

Re ∼ ρgγ̇σ 2/µg ≪ 1, (4.3)

where ρg stands for density of the fluid, σ is the particle diameter and γ̇ is the shear rate of the

flow, the inertial terms on the left hand side of (4.2) can be left out and we have the equations

for the fluid phase as the well known Stokes equations of motion :

µg∇2vi = ∇i pg, ∇ivi = 0. (4.4)

For a homogeneous sheared suspension at steady state, γ̇ is a constant and the ensemble aver-

aged velocity of the particles (the macroscopic velocity of the particle phase) is related to the

shear rate via

〈ccc〉= uuu = γi jx j = γ̇yeeex +0eeey +0eeez, (4.5)

where ccc is the instantaneous velocity of a particle at time t and eeei corresponds to the unit vector

in i-th direction. The velocity profile (4.5) satisfies (4.4) for a sheared suspension.
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4.2.2 Equations for the Particle Motion: Stokes Number

The motion of an individual “smooth” particle follows

m
dccc

dt
= F , (4.6)

where c is the translational velocity of the particle at time t, and F is the force acting on it,

exerted by the surrounding fluid. With F to be the Stokes drag, we can have the definition of

Stokes number

St =
mγ̇

3πµgσ
=
( m

3πµgσ

)( 1
γ̇−1

)
=

τv

γ̇−1 , (4.7)

the non-dimensional measure of the particle inertia.

It can be interpreted as the ratio between the viscous relaxation time scale, τv =
m

3πµgσ to

an imposed time scale (γ̇−1) by shear. With m = ρpπσ 3/6, where ρp is the material density,

we have

St =
2
9
(ρp/ρg)Re. (4.8)

On omitting the numerical pre-factor, the Stokes number is (ρp/ρg) times the Reynolds num-

ber based on particle diameter. The interstitial fluid here is a gas and that leads to a very high

value of the density ratio

ρp/ρg ≫ 1. (4.9)

Hence, we can still have a very large value of the Stokes number even if the particle Reynolds

number (4.3) remains very small. In addition to that, the viscous forces of the fluid are large

enough as compared to the fluid inertial forces (Re ≪ 1) but small enough in compare to the

inertia of the particles (St ≫ 1). In that case the inelastic collisions between the particles are

mainly responsible for changes in particle velocities and the viscous drag exerted by the gas

plays a less significant role. Nevertheless when the Stokes number becomes very small for a

dilute suspension the viscous effects must be given equal importance and the detailed analysis

will be given in chapter 5. Finally, in the limit of St → ∞ the particles will not feel the presence

of any interstitial fluid and the dry granular theory (Chapter 2 and 3) remains relevant. The

inelastic inter-particle collisions between particles demands a statistical approach to elucidate

the collective behaviour of these granules. We will use the methods from kinetic theory to

determine the balance laws that govern the dynamics of the particle phase.
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In the following we will analyse the particle phase rheology of a sheared gas-solid non-

dilute suspension in the case of vanishingly small Reynolds number and moderate Stokes

number in absence of gravity.

4.3 Extended Hydrodynamic Equations for a Gas-Solid Sus-

pension

As it is mentioned in Chapters 2 and 3, the dynamics governing the particle/granular phase

will be followed from the non-equilibrium statistical mechanics (Zwanzig 2001; De Groot &

Mazur 2013). We adopt the kinetic theory of granular gases (Chapman & Cowling 1970; Jenk-

ins & Richman 1985a; Sela & Goldhirsch 1998; Brey et al. 1998; Brilliantov & Pöschel 2003)

in determining this. At the particle phase, the probabilistic/statistical approach is governed by

the single particle distribution function f (1), where f (1)(ccc,rrr, t)dcccdrrr is the probable number of

particles in Bdrrr(rrr)
3 having velocities within Bdccc(ccc) at time t. Then the evolution equation for

the single particle distribution function [ f (1)(ccc,rrr, t)dcccdrrr] follows from the Enskog-Boltzmann

equation (Chapman & Cowling 1970)

(
∂

∂ t
+ ccc ·∇

)
f +∇ccc ·

(
dccc

dt
f

)
= σ 2

ˆ

dccc2

ˆ

ggg·kkk>0
dkkk(ggg · kkk)

[
e−2 f (2)(ccc1,rrr,ccc2,rrr−σkkk; t)

− f (2)(ccc′1,rrr,ccc
′
2,rrr+σkkk; t)

]
, (4.10)

where ∇ccc is the divergence operator in the velocity space and dccc
dt

is the acceleration of the

particle due to the external forces acting on it (viscous drag etc.). For the present problem, it

is assumed that the dynamics of individual particle follows the linear Stokes’s drag

dccc

dt
=−ccc− vvv

τv
, (4.11)

where

τv = m/(3πµgσ), (4.12)

is the viscous relaxation time of the particles.

The pre-collisional relative velocity between two colliding spheres is given by ggg = ccc1−ccc2,

with ccc1 and ccc2 denoting their pre-collisional instantaneous velocities and their post-collisional

velocities being denoted by primes, and ggg · kkk > 0 accounts for the constraint of impending

3Ba(rrr) : Volume of the sphere having radius a with centre at rrr.
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collisions; kkk ≡ kkk12 = (rrr2 − rrr1)/|rrr2− rrr1| is the unit contact vector joining the centre of sphere-

1 to that of sphere-2 at collision. In (4.10), f (2) is the two-body distribution function such

that

f (2)(ccc1,rrr1,ccc2,rrr2)dccc1drrr1dccc2drrr2

is the probability of finding a pair of spheres with the first sphere being centred within drrr1

about rrr1, with its velocity in dccc1 about ccc1 and the second one being centred within drrr2 about

rrr2, with its velocity in dccc2 about ccc2. For a pair of colliding smooth spheres, the tangential

component of their relative velocity remains invariant but the normal component changes ac-

cording to the following collision rule:

(ggg′ · kkk) =−e(ggg · kkk), (4.13)

where ggg′ = ccc′1 − ccc′2 is the post-collisional relative velocity.

4.3.1 The 10-Moment System for Particle Phase

Any physical quantity at the macroscopic level is defined as the ensemble averaged value of

the same at the particle level, using the single particle distribution f (ccc,rrr, t) function as

〈ψ〉 ≡ 1
n

ˆ

ψ f (ccc,rrr, t)dccc. (4.14)

Here n ≡ n(rrr, t) denotes the number density which represents the number of particles in an

unit volume around the point rrr at time t. The macroscopic velocity uuu = 〈ccc〉, granular temper-

ature T = 〈C2/3〉 and the second moment of fluctuation velocity MMM = 〈CCCCCC〉 are obtained by

substituting ψ = ccc, 1
3CCC2 and CCCC respectively in equation(4.14) (Jenkins & Richman 1985a;

Saha & Alam 2014, 2016), where CCC = ccc−uuu, is the peculiar velocity.

The master balance equation governing the evolution equations for all the hydrodynamic

field variables are obtained by multiplying the Enskog-Boltzmann equation (4.10) (Jenkins

& Richman 1985a; Sangani et al. 1996; Saha & Alam 2016) with particle property ψ and

integrating over the velocity space, yields:

D〈ρψ〉
Dt

+ 〈ρψ〉∂ui

∂ ri
+

∂

∂ ri

(
〈ρCiψ〉+Θi[mψ]

)
+ρ

Dui

Dt

〈∂ψ

∂Ci

〉
−ρ
〈dci

dt

∂ψ

∂Ci

〉

+
(〈

ρCi
∂ψ

∂C j

〉
+Θi

[
m

∂ψ

∂C j

])∂u j

∂ ri
= ℵ[mψ]. (4.15)
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Equation (4.15) holds as the key equation to obtain the individual moment equation at any

order. The balance equations for the set of 10 variables
{

n,uuu,MMM
}

follow from the master

balance equation (4.15) upon successive substitution of ψ = 1, CCC and CCCCCC, respectively:

(
∂

∂ t
+uuu ·∇

)
ρ =−ρ∇ ·uuu, (4.16)

ρ

(
∂

∂ t
+uuu ·∇

)
uuu =−∇ ·PPP+

γ̇

Std
ρ
〈dccc

dt

〉
, (4.17)

ρ

(
∂

∂ t
+uuu ·∇

)
M =−∇ ·QQQ−PPP ·∇uuu− (PPP ·∇uuu)T

− 2γ̇

Std
ρ〈CCCCCC〉− γ̇

Std
ρ〈(uuu− vvv)CCC〉− γ̇

Std
ρ〈CCC(uuu− vvv)〉

︸ ︷︷ ︸
+ℵℵℵ, (4.18)

where PPP is the total stress, a second-rank tensor, given by

PPP ≡ ρ〈CCCCCC〉+ΘΘΘ(mCCC) = PPPk +Pc, (4.19)

QQQ is the flux of the second moment, a third-rank tensor, given by

QQQ ≡ ρ〈CCCCCCCCC〉+ΘΘΘ(mCCCCCC) = QQQk +Qc, (4.20)

and ℵℵℵ is the collisional source of second moment, a second-rank tensor, given by

ℵℵℵ ≡ ℵℵℵ(mCCCCCC). (4.21)

In (4.19-4.20), the first and second terms refer to the corresponding kinetic and collisional

contributions, respectively. The balance equations (4.16-4.18) constitute the 10-moment sys-

tem for the particle-phase of a gas-solid suspension. These equations are supplemented by the

conservation equation (4.4) for the gas phase.

On deriving (4.18), we have used the following relation (Sangani et al. 1996)

〈(
δikC j +δ jkCi

)dccc

dt

〉
=−

( 2
τv

)
Rdiss〈CiC j〉, (4.22)

where Rdiss(ν) is an effective drag coefficient. The functional dependence of Rdiss on ν has

been explicitly determined by Sangani et al. (1996)

Rdiss = k1(ν)− k1(ν)− k2(ν) lnεm, (4.23)
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where

k1(ν) = 1+3

√
ν

2
+

135
64

ν lnν +11.26ν(1−5.1ν +16.57ν2−21.77ν3), (4.24)

k2(ν) = νg0, (4.25)

εm = 9.76λMFP/σ , (4.26)

g0 and λMFP are the radial distribution function and mean free path respectively.

One point we should emphasize here that the hydrodynamic interactions between particles

are not considered explicitly in this study. This may appear as a very serious issue at initial

instant, but the hydrodynamic interaction is incorporated implicitly in the correction function

Rdiss as shown in Sangani et al. (1996). The whole analysis is based on an adjusted Stokes

number defined via :

Std =
St

Rdiss

. (4.27)

In the dilute limit of volume fraction (ν → 0) Rdiss → 1 and consequently we have Std = St.

The integral expressions for the collisional source and flux of ψ are given by (Jenkins &

Richman 1985a, 1988; Chou & Richman 1998; Saha & Alam 2016),

ℵℵℵ(ψ) =
σ 2

2

ˆ ˆ ˆ

ggg·kkk>0

(
ψ ′

1 +ψ ′
2 −ψ1 −ψ2

)
f (2)(ccc1,rrr−σkkk,ccc2,rrr)(kkk ·ggg)dkkkdccc1dccc2, (4.28)

and

ΘΘΘ(ψ) =−σ 3

2

ˆ ˆ ˆ

ggg·kkk>0
(ψ ′

1 −ψ1)kkk

ˆ 1

0
f (2)(ccc1,rrr−ωσkkk,ccc2,rrr+σkkk−ωσkkk)

(kkk ·ggg)dωdkkkdccc1dccc2, (4.29)

respectively. The collisional flux term (4.29) takes care of the finite volume effect of the par-

ticles and the magnitude of this term decreases with decreasing volume fraction and becomes

zero for a dilute gas of point particles.

The integral expressions for the collisional source and flux terms given above are identical

with the ones derived in Chapter 3, in analysing the shear flow of a dry granular medium. This

point is clear from the fact that the presence of an interstitial fluid is assumed not to affect (no

St number dependence on ℵℵℵ and ΘΘΘ ) the collision integrals.
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4.3.2 Granular Energy : Inelastic and Viscous Dissipations

The balance of granular temperature can be obtained by taking trace of (4.18):

3
2

ρ

(
∂

∂ t
+uuu ·∇

)
T =−∂qα

∂xα
−Pαβ

∂uβ

∂xα
−D , (4.30)

and that of the deviator of the second-moment

1
2ρ
(

∂
∂ t
+uuu ·∇

)
M̂αβ =−1

2
∂

∂xγ

(
Qγαβ − 2

3qγδαβ

)

−
{

1
2

(
Pγα

∂uβ

∂xγ
+Pγβ

∂uα
∂xγ

)
− 1

3Pγξ
∂uξ

∂xγ
δαβ

}
− Rdiss

τv
ρM̂αβ + 1

2ℵ̂αβ



 . (4.31)

In above equations,

qα ≡ 1
2

Qαββ =
1
2

ρMαββ +
1
2

Θαββ (4.32)

is the total energy flux vector (i.e. the heat flux vector), and

D = Dviscous +Dinelastic (4.33)

is the rate of dissipation of kinetic energy per unit volume.

The total energy dissipation rate D is a sum of energy sink via two mechanisms viz. energy

dissipation due to viscous drag and energy dissipation due to inelastic collisions within the

particles. For a suspension of zero mean velocity between the particles and the fluid, the rate

of viscous energy dissipation Dviscous is (Sangani et al. 1996)

Dviscous = 9πµgnσT Rdiss. (4.34)

And the rate of energy dissipation due to inelastic collisions within the particles is given by

Dinelastic =−1
2

ℵℵℵ
(
mC2) , (4.35)

which must have to be calculated using a proper choice of the single-particle distribution

function. Therefore from eqns.(4.30) and (4.33), we can say that for a suspension of inelastic

particles, energy input into the system is compensated by two mechanisms viz. (i) the viscous

drag and (ii) the dissipative collisions. In absence of any interstitial fluid Dviscous becomes

zero and Dinelastic balances the energy input analogous to the dry granular flow as discussed in

Chapters (2-3). On the other hand, for suspension of elastic particles (e ≡ 1) the energy input

is solely compensated by Dviscous and Dinelastic vanishes identically. Finally, for a suspension
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composed of elastic particles, both these terms Dviscous, Dinelastic become zero which leads to

a continuous increase of energy and we need a thermostat to balance the system.

The moment equations (4.16-4.17) and (4.30), along with constitutive relations for (4.19),

(4.32) and (4.33), constitute the Navier-Stokes-order hydrodynamics for a fluidized granular

matter; the equation for the deviatoric part of the second moment tensor (4.31) satisfies identi-

cally at NS-order.

As clarified in Chapter 3, for an extended hydrodynamic description of granular matter,

incorporating normal stress differences, we need the balance equation (4.18) for full second

moment tensor, along with mass and momentum balances (4.16-4.17). For a closure of (4.18),

the deviatoric part of the third-order Qγαβ ,

Q̂γαβ = Qγαβ − 1
5

(
Qγξξ δαβ +Qαξξ δγβ +Qβξξ δαγ

)
, (4.36)

is assumed to be zero, and its isotropic part, the heat flux vector (4.32), remain to be evaluated

as a constitutive relation. In addition to (4.32), we need to determine constitutive relations for

the stress tensor (4.19) and the source of second-moment (4.21) in terms of the gradients of

the hydrodynamic fields (ρ , uuu, M).

In this present work, as we are focusing on the uniform shear flow problem, the heat flux

vector defined in (4.32) is identically zero and we are left to determine constitutive relations

for the full stress tensor PPP (4.19) and the collisional source of second moment ℵℵℵ( 4.21).

4.3.3 Molecular Chaos assumption and the Anisotropic Maxwellian Dis-

tribution Function

In order to evaluate the collision integrals (4.28) and (4.29), we make the following two as-

sumptions as in Chapter 3.

(i) Assumption of molecular chaos (Chapman & Cowling 1970):

f (2)(c1,x−σk,c2,x) = g0(ν) f (1)(c1,x−σk) f (1)(c2,x), (4.37)

where g0(ν) contact radial distribution function of Carnahan & Starling (1969),

g0(ν) =
(2−ν)

2(1−ν)3 , (4.38)

where

ν = nπσ 3/6 (4.39)
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is the local volume fraction of particles.

(ii) The single particle velocity distribution is an anisotropic Maxwellian

f (1)(ccc,rrr, t) =
n

(8π3|M|) 1
2

exp

(
−1

2
CCC ·M−1 ·CCC

)
, (4.40)

with |M|= det(M), which contains complete information about the second moment tensor M.

The choice of (4.40) follows from the maximum entropy principle which has been discussed

in Chapter 3.

4.4 Balance of Second Moment in Uniform Shear Flow

For the present problem of steady uniform shear flow (ux = γ̇y, uy = uz = 0) of a gas-solid

suspension, the number density n, the velocity gradient ∇uuu and the components of the second

moment tensor M are constants, and the heat flux vector qα vanishes. As a consequence of

this, the ensemble averaged velocity of the particles equals with the local fluid velocity:

uuu = 〈ccc〉= vvv. (4.41)

Therefore the motion between the particles and the suspension has a zero mean relative veloc-

ity, yields

uuu− vvv = 0, (4.42)

and the under-braced term in eqn.(4.18) vanishes.

Therefore in that case, the mass and momentum balance equations, (4.16) and (4.17), are

trivially satisfied and the remaining balance equation (4.18) for the second moment of velocity

fluctuations MMM = 〈CCCCCC〉 simplifies to

Pδβ uα,δ +Pδαuβ ,δ +2Pk
αβ

γ̇

Std
= ℵαβ , (4.43)

where

Pαβ = ρMαβ +Θαβ = Pk
αβ +Pc

αβ , (4.44)

is the total stress tensor. The integral expressions for the collisional stress/collisional flux

of second moment Θαβ ≡ mΘα [Cβ ] and the collisional source of second moment ℵαβ =
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ℵ[mCαCβ ]:

ℵαβ = Aαβ + Êαβ + Ĝαβ +ΘαδWβδ +ΘβδWαδ , (4.45)

remain same as for dry granular flow and are explicitly given in Chapter-3. Substituting (4.44)

and (4.45) into (4.43), the balance equation for the second moment tensor reduces to

ρMδβ (Dαδ +Wαδ )+ρMδα(Dβδ +Wβδ )+Θδβ Dαδ +ΘδαDβδ +2ρMαβ
γ̇

Std

= Aαβ + Êαβ + Ĝαβ . (4.46)

In the limit of Std → ∞, eqn. (4.46) reduces to that for dry granular flow as discussed in

Chapter- chapter : 3.

4.4.1 Second Moment Balance in Rotated Co-ordinate Frame

We can decompose the velocity gradient tensor as

∇∇∇u = DDD+WWW =




0 γ̇/2 0

γ̇/2 0 0

0 0 0


+




0 γ̇/2 0

−γ̇/2 0 0

0 0 0


 , (4.47)

where DDD and WWW are the strain and vorticity tensors, respectively and γ̇ is the constant shear

rate of the flow. Now with the help of figure 4.2 and in terms of following parameters (i)

the temperature anisotropy η ∝ (Tx −Ty), (ii) the non-coaxiality angle φ ∝ |D1〉∡|M1〉 and

(iii) the excess temperature along the vorticity direction λ 2 ∝ (T −Tz), the expressions for the

second moment tensor of velocity fluctuations can be written as

M = T




1+λ 2 +η sin2φ −η cos2φ 0

−η cos2φ 1+λ 2 −η sin2φ 0

0 0 1−2λ 2


 ≡ T [δαβ ]+ M̂. (4.48)

The detailed derivation of the second moment tensor (4.48) and the definitions of η , φ , λ 2

are given in Chapter-3.

Let us now rewrite (4.46) in a new co-ordinate system x′y′z′, formed by the orthonormal

triad of eigen-vectors of M, i.e., with respect to the co-ordinate system whose axes coincide

with the eigen-directions |M1〉, |M2〉 and |M3〉 of the second moment tensor M, respectively.
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Fig. 4.2 Sketch of the spherical coordinate system showing the eigendirections of the shear
tensor D and the second moment tensor M.

This amounts to a transformation, see figure 4.2, via the following rotation matrix,

R =




cos(φ + π
4 ) −sin(φ + π

4 ) 0

sin(φ + π
4 ) cos(φ + π

4 ) 0

0 0 1


 , (4.49)

that transforms the second moment tensor,

M′ = T




1+λ 2 −η 0 0

0 1+λ 2 +η 0

0 0 1−2λ 2


 , (4.50)

into a diagonal matrix. It is evident from (4.50) that for the present suspension problem also

the anisotropy of the second moment in the rotated co-ordinate frame is quantified in terms of

(i) the temperature difference η in the shear-plane and (ii) the “excess” temperature T ex
z (∝ λ 2)

along the vorticity direction. With a prime over a quantity denoting its value in the new co-

ordinate frame, the second moment balance equation (4.46) transforms into four independent

equations in the rotated co-ordinate frame:
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(i) the trace of (4.46),

−4ηρT γ̇ cos2φ +2γ̇
[(

Θx′x′ −Θy′y′
)

cos2φ −2Θx′y′ sin2φ
]
+

6ρT γ̇

Std
= Ax′x′ +Ay′y′ +Az′z′,

(4.51)

(ii) the z′-z′ component of its deviatoric part

−4ηρT γ̇ cos2φ +2γ̇ [(Θx′x′ −Θy′y′)cos2φ −2Θx′y′ sin2φ ]+
12ρT γ̇λ 2

Std
=−3Γ̂z′z′ , (4.52)

(iii) the difference between the x′-x′ and y′-y′ components

4
(
1+λ 2)ρT γ̇ cos2φ +2γ̇

(
Θx′x′ +Θy′y′

)
cos2φ − 4ρT γ̇η

Std
= Γx′x′ −Γy′y′, (4.53)

and, finally, (iv) the off-diagonal x′-y′ component

2ρT γ̇
[
η −

(
1+λ 2)sin2φ

]
−
(
Θx′x′ +Θy′y′

)
γ̇ sin2φ = Γx′y′, (4.54)

where

Γαβ = Aαβ + Êαβ + Ĝαβ . (4.55)

The explicit expressions for the various integrals Aαβ , Êαβ , Ĝαβ and Θαβ appearing in (4.51-

4.54) remain the same as for the dry granular flow and we refer to Chapter-3 for details. The

underlined terms in (4.51)-(4.54) are the contributions from the fluid phase.

Equations (4.51-4.54) represent a system of four nonlinear algebraic equations with four

unknowns viz. (i) the temperature anisotropy η ∝ (Tx − Ty), (ii) the non-coaxiality angle

φ ∝ |D1〉∡|M1〉, (iii) the excess temperature along the vorticity direction λ 2 ∝ (T −Tz) and

(iv) the Savage-Jeffrey parameter (Savage & Jeffrey 1981) R = γ̇σ/8
√

T when the volume

fraction ν , dissipation coefficient e and Stokes number Std are specified. We must solve this

system of equations at different orders in shear rate to obtain the rheological properties of

the particle phase for the whole range of volume fraction, restitution coefficient and Stokes

number.



136 Dense Gas-Solid Suspension: Stress Tensor and Normal Stress Differences

4.5 Exact Solution at Burnett Order for the Whole Range of

Density

Retaining terms up to second order O(ηmλ nRp sinq(2φ), m+n+ p+q ≤ 2) in the correspond-

ing equations for the second moment balance 4.51-4.54, we obtain the following set of coupled

nonlinear algebraic equations

20
√

π
{

1+ 4
5(1+ e)νg0

}
ηRcos2φ +128(1+ e)νg0R2

−3(1− e2)νg0(10+η2 +32R2 +8
√

πηRcos2φ)− 60
√

πR
Std

= 0

35
√

πηRcos2φ +(1+ e)νg0{32(1+3e)R2−3(3− e)(η2 +21λ 2)

−8
√

π(4−3e)ηRcos2φ}− 210
√

πλ 2R
Std

= 0

5
√

πRcos2φ − (1+ e)νg0{3(3− e)η +2(1−3e)
√

πRcos2φ}− 10
√

πηR
Std

= 0

5(η − sin2φ)+2(1+ e)(1−3e)νg0 sin(2φ) = 0





.(4.56)

These equations represent the second-moment balance equations at “Burnett order” (Burnett

1935) since all terms up to the second order in the shear rate have been retained.

Equations (4.56) admit an exact solution

η2 =
30(1−e2)Stdνg0+60

√
πR−32(1+e)(1+3e)Std νg0R2

40
√

πR+3(1+e)(11−3e)Std νg0

φ = 1
2 sin−1

[
5

{5−2(1+e)(1−3e)νg0}η
]

λ 2 =
140

√
πR+(1+e)νg0Std{70(1−e)−32(1+3e)R2−(5+3e)η2}−24

√
π(1+e)2νg0ηRcos(2φ)

28{3(1+e)(3−e)νg0Std+10
√

πR}
η
R

cos(2φ) =
√

π{
3(1+e)(3−e)νg0+10

√
π
(

R
Std

)} cos2(2φ){5+2(1+ e)(3e−1)νg0}





,(4.57)

where R is the real positive root of the quadratic equation

[
200(23−11e)π +250(1− e)πSt2

d −96(3− e)2(1+ e)2(1+3e)St2
dν2g2

0

−(11−3e)πSt2
d{5−2(1+ e)(1−3e)νg0}2

]
R2

+60(1+ e)(3− e)(19−13e)
√

π(Std)νgoR+90(1+ e)(1− e2)(3− e)2St2
dν2g2

0 = 0.

(4.58)
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For specified values of ν , e and Std, the Savage-Jeffrey parameter R is determined from

(4.58) and the remaining quantities are from (4.57). This provides the “exact” solution for R,

η , λ and φ as functions of ν , e and Std. The super-Burnett [(4.65)] and super-super-Burnett

[(4.66)] equations are solved via regular perturbation expansion around the exact Burnett-order

solution (4.57-4.58), see §4.5.2.

4.5.1 Dry Granular Limit (St → ∞): Recovering Results of Chapter 3

In this section we take the limit St → ∞ of the Burnett order solution described above in §4.5

and recover the related results of Chapter 3 (Saha & Alam 2016) fro dry granular flow.

The second equation of (4.57) gives

sin2φ =
5

{5−2(1+ e)(1−3e)νg0}
η, (4.59)

and the third equation of (4.56) in the limit of St → ∞ simplifies to

cos(2φ) =
3(1+ e)(3− e)νg0√

π{5−2(1+ e)(1−3e)νg0}R
η. (4.60)

Upon division (4.59) by (4.60) we get

R =
3(1+ e)(3− e)√

π
νg0 tan2φ , (4.61)

also from (4.59)

η =
{5−2(1+ e)(1−3e)νg0}

5
sin2φ , (4.62)

are respectively equations 3.93-(c) and 3.93-(a) of of Chapter 3.

Now from (4.57) (St → ∞)

−32(1+ e)(1+3e)νg0R2 =−30(1− e2)νg0 +3(1+ e)(11−3e)νg0η2. (4.63)

Substituting eqns. (4.60) and (4.63) into (4.57) and dropping the terms containing effects from

the gas phase, we get,

λ 2 =
10(1− e)

21(3− e)
+

[(7−3e){5−2(1+ e)(1−3e)νg0}−18(1+ e)2(3− e)νg0]

525(3− e)

×{5−2(1+ e)(1−3e)νg0}sin2 2φ , (4.64)

equation 3.93-(b) of Chapter 3.
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Two points we would like to mention here

(i) The Burnett order solution for the present suspension problem [§4.5] eventually boils

down to an equation (4.58) for determining R. On the other hand the corresponding Burnett

order solution for the dry counterpart reduces to an equation determining the non-coaxial angle

φ , nevertheless both of these two approaches give rise to identical results for St → ∞.

(ii) Secondly, the off-diagonal x-y component (4.54) of the second moment balance (4.46)

remains same for the dry granular flows and gas-solid suspensions. This is because of the

fact that the term containing the effect of interstitial fluid becomes a diagonal matrix in the

rotated co-ordinate frame of axes; consequently, the off-diagonal component vanishes, leads

to identical x-y components of equations for both of these (dry and wet) cases.

4.5.2 Beyond Burnett Order: Perturbation Solutions at Super and Super-

Super Burnett Orders

Retaining terms up-to third order O(ηmλ nRp sinq(2φ)), m+ n+ p+ q ≤ 3 in the related in-

tegrals appearing in (4.51-4.54), we obtain the following set of coupled nonlinear algebraic

equations

20
√

π
{

1+ 4
5(1+ e)νg0

}
ηRcos2φ +128(1+ e)νg0R2

−3(1− e2)νg0(10+η2 +32R2 +8
√

πRη cos2φ)− 60
√

πR
Std

= 0

35
√

πηRcos2φ +(1+ e)νg0

{
32(1+3e)R2−3(3− e)(η2 +21λ 2)

−8
√

π(4−3e)ηRcos2φ
}
− 210

√
πλ 2R

Std
= 0

210
√

π(1+λ 2)Rcos2φ − (1+ e)νg0
[
12

√
π
{

7(1−3e)+4(4−3e)λ 2

−32(1+ e)R2
}

Rcos2φ +η
{

126(3− e)−3(3− e)η2+36(3− e)λ 2

+64(4−3e)R2−32(5+3e)R2 cos4φ
}]

− 420
√

πηR
Std

= 0

105
√

π
{

η − (1+λ 2)sin2φ
}
−2(1+ e)νg0 sin2φ

[
16(5+3e)ηRcos2φ

−3
√

π
{

7(1−3e)+4(4−3e)λ 2−32(1+ e)R2
}]

= 0





. (4.65)

for four unknowns η , λ , R and φ , given that the restitution coefficient (e), Stokes number

(Std) and the volume fraction (ν) are known. Similarly, retaining terms up-to fourth order

O(ηmλ nRp sinq(2φ)), m+n+ p+q ≤ 4, the equations (4.51-4.54) simplify to
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1680
√

πηRcos2φ −3(1− e2)νg0
(
840+84η2 +3η4 +2688R2+1024R4

−128R2η2 +768R2λ 2 −24η2λ 2 +252λ 4 +672
√

πηRcos2φ −64η2R2 cos4φ
)

+64(1+ e)νg0R
{

21
√

πη cos2φ +4R(42−2η2 +12λ 2 +32R2 −η2 cos4φ)
}

−5040
√

πR
Std

= 0

2310
√

πηRcos2φ +(1+ e)νg0
[
32R2

{
66+8η2 −165λ 2 +3e(66−4η2 +33λ 2)

}

−9(3− e)
{

η4 +11η2(2−λ 2)+66λ 2(7−λ 2)
}
+1024(5+3e)R4

−16Rη
{

33
√

π(4−3e)cos2φ −4(2−3e)ηRcos4φ
}]

− 13860
√

πλ 2R
Std

= 0

210
√

π(1+λ 2)Rcos2φ − (1+ e)νg0
[
12

√
π
{

7(1−3e)+4(4−3e)λ 2

−32(1+ e)R2
}

Rcos2φ +η
{

126(3− e)−3(3− e)η2+36(3− e)λ 2

+64(4−3e)R2 −32(5+3e)R2 cos4φ
}]

− 420
√

πηR
Std

= 0

105
√

π
{

η − (1+λ 2)sin2φ
}
−2(1+ e)νg0 sin2φ

[
16(5+3e)ηRcos2φ

−3
√

π
{

7(1−3e)+4(4−3e)λ 2−32(1+ e)R2
}]

= 0





.(4.66)

For specified values of the restitution coefficient (e) and the density (ν), we can use the

standard Newton-Raphson’s method to solve both (4.65) and (4.66), yielding solutions for

η , λ 2, R and φ that are correct up-to orders O(ηmλ nRp sinq(2φ)), m+ n+ p + q ≤ 3 and

O(ηmλ nRp sinq(2φ)), m+n+ p+q ≤ 4, respectively.

It must be noted that equations (4.65) and (4.66) belong to the ‘super-Burnett’ and ‘super-

super-Burnett’ orders since they incorporate terms that are at most ‘cubic’ and ‘quartic’ in the

shear-rate (R ∼ γ̇) respectively. Therefore, the resulting solutions of (4.65) and (4.66) for η ,

λ , R and φ and the transport coefficients will be dubbed ‘super-Burnett’ and ‘super2-Burnett’

solutions, respectively.

But below we present a methodology to solve these higher order system analytically, by

opting for a regular perturbation technique. We assume the solution of the form

η =η(2)+ εη(3)+ ε2η(4)+ · · ·
λ 2 =λ (2)+ ελ (3)+ ε2λ (4)+ · · ·
R =R(2)+ εR(3)+ ε2R(4)+ · · ·

sin2φ =sin2φ (2)+ ε sin2φ (3)+ ε2 sin2φ (4)+ · · ·





. (4.67)

In the above expressions ε ∼ γ̇ and the superscript “2" corresponds to the “Burnett-order”

solution (closed form expressions (4.57-4.58) are given in the previous section which is valid
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for the whole range of density) and the superscripts “3” and “4" correspond to the corrections

beyond second order.

Plugging (4.67) into corresponding third (super-Burnett, 4.65) and fourth (super-super-

Burnett, 4.66) order equations and after performing some cumbersome algebra we obtain the

solutions at third-order as

η(3) = 0

λ (3) = 0

R(3) = 0

sin2φ (3) = 0





. (4.68)

The solutions at fourth-order are given by :

ε2η(4) =−
[[√

π(1+ e)νg0 cos2φ (2){5−2(1+ e)(1−3e)νg0}
{

1024(5+3e)R(2)4

−192(1+3e)R(2)2
(

η(2)2 −4λ (2)2
)
−9(1− e)

(
η(2)4 −8η(2)2

λ (2)2
+84λ (2)4

)}]

−
[
8
{

5
√

πη(2) cos2φ (2)+2(1+ e)νg0

(
8(1+3e)R(2)− (1−3e)

√
πη(2) cos2φ (2)

)}

×
{

210
√

πλ (2)2
R(2) cos2φ (2)−48(1+ e)

√
πνg0R(2) cos2φ (2)

(
(4−3e)λ (2)2 −8(1+ e)R(2)2

)

−3(1+ e)νg0η(2)
(

32(1−3e)R(2)2 − (3− e)(η(2)2 −λ (2)2
)
)}]]

168
[√

π cos2φ (2)
{

2
√

π cos2φ (2){5−2(1+ e)(1−3e)νg0}R(2)−3(1− e2)νg0η(2)
}

×{5−2(1+ e)(1−3e)νg0}+2
{

3(1+ e)(3− e)νg0+10
√

π
( R

St

)}{
5
√

πη(2) cos2φ (2)

+2(1+ e)νg0

(
8(1+3e)R(2)− (1−3e)

√
πη(2) cos2φ (2)

)}]
(4.69)
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ε2λ (4) =

1

77616λ (2)

([

a

28(1+ e)νg0{
3(1+ e)(3− e)νg0+10

√
π
(

R
St

)}
{

1024(5+3e)R(2)4

+96R(2)2
(

2(2−3e)η(2)2 −11(5−3e)λ (2)2
)
−9(3− e)

(
η(2)4 −11η(2)2

λ (2)2 −66λ (2)4
)}]

a

−
[

b

132{
3(1+ e)(3− e)νg0+10

√
π
(

R
St

)}√
π{5−2(1+ e)(1−3e)νg0}νg0 cos2φ (2)

×
[
35

√
πη(2) cos2φ (2)+8(1+ e)νg0

{
8(1+3e)R(2)− (4−3e)

√
πη(2) cos2φ (2)

}]

×
[
70

√
πλ (2)2

R(2) cos2φ (2)+(1+ e)νg0

{
16

√
πR(2) cos2φ (2)

(
8(1+ e)R(2)2 − (4−3e)λ (2)2

)

−32(1−3e)η(2)2
R(2)+(3− e)η(2)

(
η(2)2 −12λ (2)2

)}]]

b

+

[

c

1848ε2η(4)
[√π{35−8(1+ e)(4−3e)νg0}R(2) cos2φ (2)−6(3− e)(1+ e)νg0η(2)

{
3(1+ e)(3− e)νg0+10

√
π
(

R
St

)}

+

{
35

√
πη(2) cos2φ (2)+8(1+ e)νg0

(
8(1+3e)R(2)− (4−3e)

√
πη(2) cos2φ (2)

)}

√
π{5−2(1+ e)(1−3e)νg0}cos2φ (2)

]]

c

)

(4.70)

ε2R(4) =
1

42
√

π{5−2(1+ e)(1−3e)νg0}cos2φ (2)

[
−210

√
πλ (2)2

R(2) cos(2) 2φ

+48(1+ e)
√

πνg0R(2) cos(2) 2φ
{
(4−3e)λ (2)2 −8(1+ e)R(2)2

}

+3(1+ e)νg0η
{

32(1−3e)R(2)2 − (3− e)
(

η(2)2 −12λ (2)2
)}

+42ε2η(4)
{

3(3− e)(1+ e)νg0+10
√

π
( R

St

)}]
(4.71)

ε2 sin2φ (4) =
[
105

√
π
(

ε2η(4)−λ (2)2
sin(2) 2φ

)

−
2(1+ e)νg0 sin(2) 2φ

{
16(5+3e)η(2)R(2) cos(2) 2φ −3

√
π
(

4(4−3e)λ (2)2 −32(1+ e)R(2)2
)}]

21
√

π{5−2(1+ e)(1−3e)νg0}
(4.72)
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In absence of any interstitial fluid i.e in the limit of St → ∞, the underlying terms in (4.69-

4.72) disappear and we obtain the corresponding super-super-Burnett order solutions for the

dry-granular flow. On removing the terms containing St number dependence from (4.69-4.72),

the resulted expressions match exactly with the solution provided in Chapter 3 (Saha & Alam

2016) for uniform shear flow of dry granular matter.

4.6 Stress Tensor and Transport Coefficients

The dimensionless stress tensor in this uniformly sheared gas-solid suspension problem, takes

the form

PPP∗ =
PPP

ρpU2
R

=




P∗
xx P∗

xy 0

P∗
yx P∗

yy 0

0 0 P∗
zz




≡




p∗ 0 0

0 p∗ 0

0 0 p∗


+




2
3N ∗

1 + 1
3N ∗

2 −µ∗ 0

−µ∗ −1
3N ∗

1 + 1
3N ∗

2 0

0 0 −1
3N ∗

1 − 2
3N ∗

2


 ,(4.73)

where

p∗ =
1
3

(
P∗

xx +P∗
yy +P∗

zz

)
, (4.74)

µ∗ =−P∗
xy, (4.75)

N ∗
1 =

(
P∗

xx −P∗
yy

)
, (4.76)

N ∗
2 =

(
P∗

yy −P∗
zz

)
(4.77)

is the pressure, the shear viscosity, the first and second normal stress differences respectively;

here ρp is material/intrinsic density of particles and UR = γ̇σ is the reference velocity scale.

The dimensionless temperature, scaled first and second normal stress differences are de-

fined in the following way

T ∗ =
T

U2
R

, (4.78)

N1 =
3(Pxx −Pyy)

(Pxx +Pyy +Pzz)
, (4.79)

and N2 =
3(Pyy−Pzz)

(Pxx +Pyy +Pzz)
, (4.80)

where the explicit expressions of all these above transport coefficients are given below.
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4.6.1 Shear Stress and Viscosity

Retaining terms up-to the fourth-order O(ηmλ nRn sinq(2φ), m+ n+ p+ q ≤ 4), the dimen-

sionless shear stress can be written as :

P∗
xy

νT ∗ = −η cos2φ − 4(1+ e)νg0

105
√

π

[
21R

{
8+

√
π

η cos2φ

R

}

+48λ 2R+4R3
{

32− η2

R2

(
2+(1+2cos2 2φ)

)}]
, (4.81)

with the dimensionless temperature T ∗ being given by (4.78). The expression for the dimen-

sionless shear viscosity, µ∗=−Pxy/ρpU
2
R=−P∗

xy, follows from (4.81):

µ∗ =
ν
√

T ∗

8

[
η cos2φ

R
+

4(1+ e)νg0

105
√

π

(
21
{

8+
√

π
η cos2φ

R

}

+48λ 2 +128R2 −4η2
{

2+(1+2cos2 2φ)
}

︸ ︷︷ ︸

)]
, (4.82)

where the under-braced terms represent nonlinear contributions beyond the Navier-Stokes

(NS) order.

Neglecting quadratic- and higher-order terms in (4.82), we obtain the NS-order expression

for the shear viscosity:

µ∗
NS =

ν
√

T ∗

8

[
η cos2φ

R
+

4(1+ e)νg0

5

( 8√
π
+

η cos2φ

R

)]
. (4.83)

4.6.2 Expression for Shear Viscosity in Dry Granular Limit

For the case of dry granular flow (Std → ∞), we have from (4.57)

η

R
cos(2φ) =

√
π

3(1+ e)(3− e)
cos2(2φ)

(
5

νg0
+2(1+ e)(3e−1)

)
(4.84)

φ=0−−→
√

π

3(1+ e)(3− e)

(
5

νg0
+2(1+ e)(3e−1)

)
, (4.85)

with last expression holds at Navier-Stokes (φ → 0) order. Substituting (4.85) into (4.83), we

obtain the expression for shear viscosity at Navier-Stokes order
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µ inelastic
NS =

√
T ∗
[

5
√

π

24(1+ e)(3− e)g0

(
1+

2(1+ e)(3e−1)
5

νg0

)(
1+

4(1+ e)

5
νg0

)

+
4(1+ e)

5
√

π
ν2g0

]

= µ∗
k +µ∗

c , (4.86)

where

µ∗
k =

5
√

π
√

T ∗

24(1+ e)(3− e)g0

(
1+

2(1+ e)(3e−1)
5

νg0

)
, (4.87)

µ∗
c =

(1+ e)ν2g0
√

T ∗

10
√

π

{
8+

5π

3(1+ e)(3− e)νg0

(
1+

2(1+ e)(3e−1)
5

νg0

)}
,(4.88)

are respectively the kinetic and collisional components of viscosity.

Equation (4.86) matches exactly with the expression for the shear viscosity (with a factor

ρpγ̇σ 2) of a dense granular gas given as equation (69) in Jenkins & Richman (1985a).

4.6.3 Normal Stress Components and the Pressure

The diagonal components of the stress tensor, correct up-to O(ηmλ nRn sinq(2φ), m+n+ p+

q ≤ 4), have following expressions:

P∗
xx

νT ∗ = (1+λ 2 +η sin2φ)+
2(1+ e)νg0

1155

[
33(35+96R2+14η sin2φ +14λ 2)

+
8√
π

ηRcos2φ
{

3(66+5η2 −22λ 2)−160R2−22η sin2φ
}]

, (4.89)

P∗
yy

νT ∗ = (1+λ 2 −η sin2φ)+
2(1+ e)νg0

1155

[
33(35+96R2−14η sin2φ +14λ 2)

+
8√
π

ηRcos2φ
{

3(66+5η2 −22λ 2)−160R2+22η sin2φ
}]

, (4.90)

P∗
zz

νT ∗ = (1−2λ 2)+
2(1+ e)νg0

1155

[
33(35+32R2−28λ 2)

+
8√
π

ηRcos2φ
{
(66+3η2 −32R2)

}]
. (4.91)
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The dimensionless mean pressure, correct up-to O(ηmλ nRn sinq(2φ), m+ n+ p+ q ≤ 4), is

given by

p∗ = νT ∗
[
1+

2(1+ e)νg0

315

{
315+672R2+

8√
π

ηRcos2φ(42+3η2 −32R2 −12λ 2)

︸ ︷︷ ︸

}]
.

(4.92)

Neglecting the ‘under-braced’ non-linear terms in (4.92), we obtain the well-known expression

for pressure,

p∗NS = νT ∗(1+2(1+ e)νg0), (4.93)

at the NS-order.

4.6.4 First and Second Normal Stress Differences

Subtracting (4.90) from (4.89) the expression for the first normal stress difference (4.76) is

found to be

N ∗
1 = 2η sin(2φ)

(
1+

4(1+ e)νg0

105

[
21− 8√

π
ηRcos(2φ)

])
νT ∗

+O(ηmλ nRn sinq(2φ), m+n+ p+q ≥ 5), (4.94)

with its kinetic and collisional contributions (N ∗
1 = N k∗

1 +N c∗
1 ), respectively, being given

by

N k∗
1 = 2η sin(2φ)νT ∗ (4.95)

N c∗
1 =

8(1+ e)νg0

1155

[
231− 8√

π
ηRcos(2φ)

]
ηsin(2φ)νT ∗. (4.96)

Similarly, the expression for the second normal stress difference (4.77) is obtained from

(4.90) and from (4.91):

N ∗
2 = N k∗

2 +N c∗
2

=
[
3λ 2 −η sin(2φ)

]
νT ∗+

32(1+ e)ν2T ∗g0

1155

[
264

(
1
2
+

7
ν

N k∗
2

)
R2

+
1√
π

ηRcos2φ
{
(66+6η2 −64R2 −33λ 2)+11η sin2φ

}]

+O(ηmλ nRn sinq(2φ), m+n+ p+q ≥ 5) (4.97)
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with its kinetic and collisional components at O(ηmλ 2nRp, m+n+ p ≤ 4) being given by

N k∗
2 =

[
3λ 2 −η sin(2φ)

]
νT ∗ (4.98)

N c∗
2 =

32(1+ e)ν2T ∗g0

1155

[
264

(
1
2
+

7
ν

N k∗
2

)
R2 +

1√
π

ηRcos2φ

×
{
(66+6η2 −64R2 −33λ 2)+11η sin2φ

}]
. (4.99)

where T ∗ is the dimensionless temperature (4.78).

4.6.5 Universal Expressions for Transport Coefficients

One point should be noted here that all the expressions for transport coefficients obtained

above are exactly the same as those obtained for the dry-granular shear flow (Chapter refer).

But a careful look at these expressions reveals that the difference follows via the individual

expressions of η , λ , R and φ . These parameters obtained for the dry granular flows and gas-

solid suspensions are different in the sense that the latter contains an explicit Stokes number

(Std) dependence, clearly shown in §4.5 and §4.5.2.

η ≡ η(ν,e,Std)

φ ≡ φ(ν,e,Std)

λ ≡ λ (ν,e,Std)

R ≡ R(ν,e,Std).





. (4.100)

In the limit of Std → ∞ the interstitial fluid effect vanishes and both the theories yield

identical results.

4.7 Anisotropy of Second-moment Tensor

As discussed in §4.4.1, the anisotropy of the second-moment tensor is characterized by three

parameters: η , φ and λ 2,

η ≡ η(ν,e,Std)

φ ≡ φ(ν,e,Std)

λ ≡ λ (ν,e,Std)





. (4.101)
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Fig. 4.3 Variations of (a) η , (b) λ 2, (c) R and (d) φ (degrees) with density (ν) at Std = 20.
While the solid black lines denote the exact numerical solution, the blue dashed and the red
dot-dashed lines denote the Burnett-order solution and the perturbation solution at fourth order,
respectively.
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Fig. 4.4 Same as FIG. 4.3 but for modified Stokes number equals to Std = 50.
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Fig. 4.5 Same as FIG. 4.3 but for modified Stokes number equals to Std = 100.
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whereas the parameter “R” is measure of the isotropic part of MMM (i.e. inverse of granular

temperature)

R ≡ R(ν,e,Std). (4.102)

The nonzero values of (η ,φ ,λ 2) are a measure of the non-Newtonian character of rheology.

Figures 4.3-4.5 present a comparison within the second-order analytical solution §4.5 (blue

dashed lines), the fourth order perturbative solution §4.5.2 (red dot-dashed lines) and the full

numerical solution (black solid lines) of (4.51-4.54) for four unknowns η , λ 2, R and φ (in

degrees) against a range of density at specified values of Stokes number (Std) and coefficient

of restitution (e). In each of theses figures 4.3-4.5, the variations are shown for two different

values of restitution coefficients: e = 0.5 corresponds to a highly dissipative and e = 0.9

corresponds to a relatively less dissipative system, respectively. It is observed that at Std = 20

and for e = 0.9 three solutions for each of four parameters η , λ 2, R and φ almost fall on

top of each other (however the temperature anisotropy η slightly differs above ν ∼ 0.25) and

remain indistinguishable. Therefore at e = 0.9 the Burnett order solution is good enough for

successful determination of (η,λ 2,R,φ) even at a low value of Stokes number Std = 20.

On the other hand at e = 0.5 the Burnett order solution grossly underestimates η through-

out the span of density and the deviation is more in the dense limit, whereas the fourth-order

perturbative solution is closer to the full numerical solution except a slight deviation near

ν ∼ 0.25. For λ 2, although the Burnett order analytical solution gives a relatively better

approximation near the dilute limit, the fourth-order solution is better when the density is

increased. However, none of these analytical solutions are able to give a quantitative good

agreement for λ 2 for the whole range of density, which clearly will be manifested in the second

normal difference, therefore demands a numerical study when Stokes number becomes very

low Std ∼ 20. For Savage-Jeffrey parameter R and non-coaxiality angle φ , the fourth-order so-

lution gives a fairly good prediction for the whole range of density with a slight disagreement

near ν = 0.2.

In figure 4.4, we have shown the variations of the parameters at Std = 50. It is seen that the

differences within the analytical and numerical solutions decrease when the Stokes number

is increased and eventually at a very high value of Stokes number Std = 100 the super-super-

Burnett order solution almost agree with the full numerical solution of (4.51-4.54) for the

whole range of density. One interesting point to note here that although increasing the number

of terms in the related algebraic equations (4.51-4.54) gives a relatively better agreement with

the full numerical solution, a closer look at these plots tells us that this series solution is in

fact oscillatory. Therefore one cannot have a better agreement just by increasing the number

of terms indefinitely. It may also appear that adding a certain number of terms in the series

expansion can make the solution worsen. One reason behind this behaviour could be due to
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the fact that the Chapman-Enskog expansion is actually a non-convergent series (McLennan

1965; Santos et al. 1986; Santos 2008). The related issues are not addressed in this thesis.

4.8 Validation of the Theoretical Model

4.8.1 Pressure, Shear Viscosity and Normal-Stress Differences

Here we focus on the behaviours of transport coefficients with varying Stokes number. Figure

4.6 display the density variations of (a) the pressure, (b) the shear viscosity and (c) the granu-

lar temperature at e = 0.5,e= 0.9 for three different values of Stokes number Std = 20, 50 and

100. It is seen that the Burnett-order solutions for p, µ and T are almost indistinguishable from

their exact numerical value at small dissipation (e = 0.9); moreover, this agreement seems to

hold uniformly for the whole range of density even for a very low value of Stokes number

Std = 20. On the other hand, retaining the fourth-order terms yields a better agreement for p,

µ and T at large dissipation (e = 0.5) and the agreement becomes better when we increase the

Stokes number.

The ability of the fourth-order series solution to quantitatively predict p and µ at any

density and Stokes number also holds reasonably well for both first and second normal-stress

differences (4.79-4.80) which are displayed in figure 4.7. For nearly elastic particles (e = 0.9)

our Burnett order analytical solution is able to qualitatively predict both N1 and N2 in the

uniform shear flow of a gas-solid suspension for the whole range of density (ν) and at any

value of Stokes number (Std). However, there are quantitative differences between numerical

and analytical solutions in the prediction of N2 for highly dissipative particles (e = 0.5) as it

is evident from the right panel of figure 4.7 (denoted by dashed and dash-dot lines).

4.8.2 Three-dimensional Representation : Comparison Between Numer-

ical and 4-th-order Perturbation Solution

The variations of all transport coefficients against inverse of Stokes number St−1
d and density

ν are shown in the three dimensional figures 4.8-4.12. In each of these plots the first row

shows the variations of the transport coefficient obtained by solving the system (4.51-4.54)

numerically for two values values of e = 0.5 and 0.9 respectively. In the second rows we have

shown the respective variations at (c) ν = 0.01 and (d) ν = 0.5. Therefore the second row tells

us about the inverse Stokes (St−1
d ) variations of these transport coefficients at two extreme

(dilute and dense) limits of volume fractions. The results from the fourth-order perturbative
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Fig. 4.6 Comparison between the “Burnett-order” analytical solution (blue dashed lines),
fourth-order perturbation solution (red dot-dashed lines) and the “exact” numerical solution
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Fig. 4.9 Same as figure 4.8 but for the variations of shear viscosity (µ). The equations behind
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Fig. 4.10 Same as figure 4.8 but for the variations of granular temperature (T ). The equations
are (a) y = 1.934+ e04x2−6413x+630.6 and (b) y =−0.6708x+0.8294 respectively.
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Fig. 4.11 Variations of the first normal stress difference (N1 =
Pxx−Pyy

p
) with density (ν) and

inverse of (Std) at coefficients of restitution e = 0.5, 0.7 and 0.9 respectively. In panel (a)
and (b) we have shown the behaviours of N1 (circles) at e = 0.9 in the dilute and dense limits
upon projecting the cartoon into the respective planes of ν = 0.01 and ν = 0.5 respectively.
It is observed that N1 varies in a quadratic manner (a) y = 14.15x2 + 1.67x+ 0.2324 in the
dilute limit whereas the variation is observed to be linear (b) y = 0.003654x+0.005009 in the
dense limit. The red dot-dashed lines are the fourth order perturbation solution (4.69)-(4.72).
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Fig. 4.12 Same as figure 4.11 but for the variations of the second normal stress difference
(N2 =

Pyy−Pzz

p
). The governing equations for the parabola and straight line in the dilute and

dense limit are (a) y = −0.2914x2 −0.1208x−0.01634, (b) y = 0.04621x+0.05662 respec-
tively.
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−1 and e.
The figure in the right is the corresponding dry granular analogue where (Std)

−1 = 0(St → ∞).

solutions are superimposed in latter plots for a comparison between analytical (dot-dashed

line) and numerical schemes (“circles”).

It is observed that the dilute limit variations (left panels of second rows in figures) of p, µ ,

T and N1 are well predicted by the perturbative fourth order solution even at a very low value

of Stokes number (Std = 10;St−1
d = 0.1). The prediction for N2 is good up-to Std = 50 but

for Stokes number less than 50 the fourth-order solution underestimates N2 and the deviation

increases with decreasing Std.

The dense limit variations are shown in the right panels of second rows of figures (4.8-

4.12), corresponding to a volume fraction ν = 0.5. It is seen that the fourth order analytical

solutions agree with the full numerical solution up-to St−1
d

= 0.05 (∼ Std = 20) and beyond

this value we need an improvement over our analytical approach. Also the variations of all

transport coefficients at these extreme limits of volume fractions are checked by fitting them

with proper choices of polynomials. In the dilute limit all the quantities vary quadratically

with St−1
d whereas in the dense limit the variations are linear and the equations of each of

these parabolas and straight lines are given explicitly in the captions.

4.8.3 Sign-change of N2: Surface of Critical Density νk
cr

In the plots for the second normal stress difference (figure 4.12), we find that N2 changes its

sign at some finite density similar to the case of dry granular flow, for any choice of Stokes

number and coefficient of restitution. The location (ν = νk
cr) of the point at which N2 changes

its sign appears to be a slowly varying function of the restitution coefficient and Stokes number.

The variations of the critical density as a function of the Stokes number Std and and coefficient

of restitution e are shown in figures 4.13-4.15.
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νk
cr = 0.2598−0.07683e, νk

cr = 0.2541−0.0717e, νk
cr = 0.2353−0.05476e

(4.103)

νk
cr = 0.2245−0.2594(Std)

−1 −1.289(Std)
−2, (4.104)

νk
cr = 0.2077−0.1816(Std)

−1 −0.7398(Std)
−2, (4.105)

νk
cr = 0.1916−0.09537(Std)

−1 −0.4298(Std)
−2. (4.106)

Combining the planar equations (4.103)-(4.106), the best fit for νk
cr is the surface

νk
cr = 0.2668−0.08424e− (0.4964−0.4360e)α− (2.048−2.092e)α2 , (4.107)

where

α = (Std)
−1. (4.108)

Equation (4.107) represents the critical surface in ν-e-STd space. The significance of this

surface is as follows: corresponding to any point (Std,e) in the STd-e plane, there exists a

unique point νk
cr which satisfies equation (4.107) and above this value N2 is positive, whereas

N2 remains negative below this point. Therefore the surface (4.107) acts as the surface of

degeneracy for N2. Finally, when this surfaces is projected onto the plane St−1
d (i.e St → ∞)

the critical density curve for dry granular flow Saha & Alam (2016)

νk
cr(Std → ∞)≡ 0.27−0.084e (4.109)

is recovered.

4.9 Summary and Outlook

4.9.1 Summary

We have studied the uniform shear flow of a gas solid suspension where inertial inelastic parti-

cles are suspended in a Newtonian gas and experiencing a Stokes drag force. Viscous heating

from the boundaries is compensated by dissipation via two mechanisms (i) the inelastic colli-

sions between particles characterized by a coefficient of normal restitution e (0 < e < 1) and

(ii) the Stokes drag force which the surround fluid exerts on the particles. The hydrodynamic

interactions has been not taken into account but as shown in Sangani et al. (1996), the hydro-
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Fig. 4.14 Variations of the critical density νk
cr, at which η sin2φ = 3λ 2 against e. Panel (a)
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& Alam 2016) (solid line) for dry granular flow. Panel (b), (c) and (d) are variations of the
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dynamic interaction is incorporated within a corrected factor Rdiss(ν), where ν is the particle

volume fraction and the analysis is based on an adjusted Stokes number Std = St/Rdiss.

The particle-phase rheology is analysed using the anisotropic Maxwellian as the single

particle distribution function. The balance equation for the second-moment of velocity fluctu-

ations is solved analytically and perturbatively to obtain the transport coefficients viz. pressure,

viscosity, normal stress differences etc.. The Burnett order analytical solution and perturbative

solution at super-super-Burnett order are compared with the full numerical solutions in terms

of the particle phase transport coefficients and a good agreement within these approaches has

been found for the whole range of density. Although a slight disagreement between the analyt-

ical and numerical solutions is observed when the Stokes number becomes very low St ∼ 20

and the dissipation becomes very large e ∼ 0.5 but for a nearly-elastic system e ∼ 0.9 these

two solutions become almost identical.

In a recent work, Parmentier & Simonin (2012) have prescribed a theory for simple sheared

homogeneous suspension of elastic and inelastic particles, valid for the whole range of density

and Stokes number. But in their work, the collisional component of the stress tensor has not

been calculated. Their main focus was to predict the behaviours of the collisional source terms

with varying Stokes number and density, and a comparison of these quantities with simulations

were given. In our anisotropic Maxwellian theory, we have taken care of the kinetic (Pk
αβ ) as

well as the collisional components of the stress tensor (Θαβ ) that yield correct behaviours of

the transport coefficients for the whole range of density. It also improves the results presented

in Parmentier & Simonin (2012) in the sense that results obtained using anisotropic Gaussian

theory agrees well with the simulation data which can be seen from the figure 4.16

Figure 4.16 shows the density variation of the off-diagonal anisotropy of the second mo-

ment tensor for Std = 3.5 and e = 1 and the improvement over the work by Parmentier &

Simonin (2012) is clearly seen at lower volume fraction. Finally, when Std → ∞ the conven-

tional results for the dry granular flows are recovered.

The simulation data on transport coefficients of gas-solid suspensions at finite densities are

scarce, and future work should focus on molecular dynamics simulation of gas-solid suspen-

sion of inelastic particles. In the next chapter, we will make a detailed comparison of present

theory with available simulation data in the dilute limit of a gas-solid suspension.

4.9.2 Next Chapter

When the particle volume fraction becomes very low, two distinct states can be expected (Tsao

& Koch 1995): the “quenched” state, in which particle inertia is less and the “ignited” state,

where particles are mostly agitated. A transition between these two states depending upon the

Stokes number and volume fraction has been analysed by Tsao & Koch (1995) in simple shear
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flows of dilute gas-solid suspensions of elastic particles. In the next chapter we will extend

their work for inelastic particles, where the effects of inelasticity on the transport coefficients

in these two states will be discussed. The hysteresis in the particle-phase rheology along with

behavioural dependency of the transit points on inelasticity will also be addressed.



Chapter 5

Dilute Gas-Solid Suspension :

Shear-thickening Behaviour and Normal

Stress Differences4

5.1 Introduction

During the last few decades, a lot of research has been done to understand the behaviours

of rapid granular flows (Savage & Jeffrey 1981; Lun et al. 1984; Jenkins & Richman 1985a;

Campbell 1990; Sela & Goldhirsch 1998; Brey et al. 1998; Goldhirsch 2003; Rao & Nott

2008; Forterre & Pouliquen 2008), a collection macroscopic inelastic (the restitution coeffi-

cient e < 1) hard-particles for which the effect of the interstitial fluid is neglected, and the

tools from dense-gas kinetic theory have been successfully employed to understand its hydro-

dynamics and rheology. The closely related research-area of gas-solid suspensions (Davidson

& Harrison 1963; Anderson & Jackson 1967; Buyevich 1971; Gidaspow 1994; Jackson 2000;

Guazzelli & Morris 2011), in which the viscous drag due to interstitial fluid and other related

hydrodynamic effects must be incorporated, has also been extensively studied over the last

century due to its importance in fluidized-bed and FCC reactors (Davidson & Harrison 1963;

Gidaspow 1994) encountered in chemical and process industries. For continuum models of

gas-solid suspensions, the kinetic-theory-based rheological models have been suggested by

considering elastically colliding particles (Koch 1990; Tsao & Koch 1995) as well as for in-

4This chapter is a slightly edited version of a paper submitted to J. Fluid Mech. (May 2017): “Revisiting
ignited-quench transition and the non-Newtonian rheology of a sheared dilute gas-solid suspension” by S. Saha
and M. Alam (Saha & Alam 2017a). The revised version has been published in the Journal of Fluid Mechanics
[Saha & Alam (2017b), J. Fluid Mech. 833, 240-246].
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elastic particles (Louge et al. 1991; Sangani et al. 1996; Lun & Savage 2003) interacting in a

bath of a Newtonian gas.

For the present problem of a sheared gas-solid suspension of inelastic particles, the energy

input due to shear is compensated by two mechanisms, (i) inelastic inter-particle collisions,

characterized by a coefficient of normal restitution (e) and (ii) the drag force which the sur-

rounding fluid exerts on the particles. The volume fraction of the suspended particles (of

diameter σ and mass m) is assumed to be small, i.e. ν = πσ 3n/6 ≪ 1, representing a ‘dilute’

suspension, along with the conditions of (ii) small Reynolds number Re = ρgγ̇σ 2/µg ≪ 1

(where ρg and µg are the gas density and its viscosity, respectively, and γ̇ is the imposed shear

rate on the suspension) and (iii) finite Stokes number

St = γ̇τv, with τv = m/(3πµgσ) (5.1)

being the viscous relaxation time which is a measure of the time a typical particle takes to relax

back to the local fluid velocity. The limit of St → ∞ represents the ‘dry’ granular gas (Camp-

bell 1990; Goldhirsch 2003). Under the above assumptions, Tsao & Koch (1995) analysed

the hydrodynamics and the non-Newtonian rheology of a dilute suspension of elastic (e = 1)

hard-particles employing the Grad’s moment-expansion method (i.e. an expansion in terms of

Hermite polynomials around a Maxwellian, Grad (1949)). They discovered two qualitatively

different states, dubbed (i) “quenched” (low temperature) and (ii) “ignited” (high temperature)

states, corresponding to the time intervals (i) τc ≫ τv ≫ γ̇−1 and (ii) τc ≪ γ̇−1 ≪ τv, respec-

tively, where τc is the collision time (i.e, the average time between two successive collisions).

They analytically determined two critical Stokes numbers Stc1 and Stc2 (with Stc2 > Stc1), be-

low and above which the flow remains in the quenched and ignited states, respectively. They

also determined the shear viscosity and the first and second normal-stress differences, and

compared their theory with DSMC (direct simulation Monte Carlo) data.

Sangani et al. (1996) extended the work of Tsao & Koch (1995) to (i) a ‘dense’ gas-solid

suspension of elastic (e = 1) particles as well as to (ii) a ‘dilute’ suspension of inelastic (e < 1)

particles. The same Grad moment-expansion was used to derive constitutive relations from

the underlying Enskog-Boltzmann equation; but their analysis is deficient in the sense that

they found zero value for the second normal stress difference as they did not incorporate cer-

tain non-linear terms (see §5.5 in this work). They briefly discussed about the lower limit of

Stokes number Stc1, but a thorough analysis of the “ignited-quenched” transitions, identifying

the regions for the existence of different states, in terms of Stokes number (St), particle vol-

ume fraction (ν) and the coefficient of restitution (e) has not been worked out till date. The

latter effect of the restitution coefficient is important for dissipative particles which forms one

motivation of the present work.
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In the current decade, Parmentier & Simonin (2012) analysed a sheared gas-solid suspen-

sion by considering a distribution function that sandwiches both the ignited and quenched

states – the resulting rheological fields are reasonably well-predicted over a range of density

and Stokes number, although quantitative mis-match with simulation data exists that increase

with increasing dissipation (i.e. at smaller e). A Navier-Stokes-order continuum model has

been developed by Garzó et al. (2012) for a moderately-dense gas-solid suspension follow-

ing dense-gas kinetic theory. They solved the underlying Enskog-Boltzmann equation using

a Chapman-Enskog-like expansion around a time-dependent homogeneous cooling state for a

gas-solid suspension, and the particle motion has been modelled via a Langevin-type stochas-

tic model with Stokesian drag. The resulting transport coefficients for the particle-phase are

found to have explicit dependence on the gas-phase parameters. However, the prediction of the

latter model for the shear viscosity of a suspension indicates large discrepancies with simula-

tion data in the dilute limit of low-St suspension, presumably due to the presence of order-one

values of normal stress differences and other non-Newtonian effects. A related work to un-

cover the non-Newtonian rheology of a ‘dilute’ gas-solid suspension has been done recently

by Chamorro et al. (2015). They followed the standard Grad’s method to analyse the ignited

state of a gas-solid suspension, and the related predictions on the granular temperature and

the non-Newtonian stress tensor are found to be quantitatively similar to the earlier work of

Tsao & Koch (1995); for example, the suspension viscosity is over-predicted by the Grad’s

moment-theory at smaller values of e, although the discrepancy decreases with increasing

Stokes number. Collectively, the above literature review points toward the need to go beyond

the well-studied Newtonian rheology (of Navier-Stokes-order) for both dry granular and gas-

solid suspensions.

In this chapter, we revisit and extend the work of Tsao & Koch (1995) by considering

a dilute system of inelastic (e ≤ 1) particles suspended in a bath of a Newtonian gas, and

interacting via (i) a Stokeian drag force and (ii) hard-core inelastic collisions. Our work differs

from all previous works on gas-solid suspensions as we adopt the anisotropic Maxwellian

distribution function (Goldreich & Tremaine 1978; Jenkins & Richman 1988; Richman 1989)

to analyse the underlying Boltzmann equation under homogeneous shearing conditions. The

latter assumption is motivated from our recent work (Saha & Alam 2014, 2016; Alam & Saha

2017) on ‘dry’ (St →∞) sheared granular fluid which established that the transport coefficients

for highly inelastic system (e ≪ 1) of a sheared granular fluid (both dilute and dense) can be

accurately predicted by the anisotropic Maxwellian [in comparison to (i) the standard Grad’s

moment expansion (in terms of a truncated Hermite series around a Maxwellian) as well as (ii)

the Burnett-order solutions obtained from Chapman-Enskog expansion]. Here we demonstrate

the superiority of the former for the case of a sheared gas-solid suspension via a one-to-one
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comparison of two theories with simulation data. Another focus of the present work is to

analyse and quantify the anisotropy of the second-moment, MMM = 〈CCCCCC〉, of fluctuation/peculiar

velocity, and subsequently tie and explain the rheological/transport coefficients of a sheared

gas-solid suspension in terms of the anisotropies of MMM. The underlying analysis utilizes the

geometric structure of the eigen-basis of both the shear tensor and the second-moment tensor;

this provides geometric insight into the origin of normal stress differences as found for the

case of a sheared granular fluid (Saha & Alam 2016). It must be noted that the analysis of

stress anisotropy in this form was initiated in a seminal work by Goldreich & Tremaine (1978)

and subsequently by others (Araki & Tremaine 1986; Araki 1988; Shukhman 1984; Jenkins &

Richman 1988; Richman 1989) and the present effort is a continuation of the same legacy to

the case of a sheared gas-solid suspension.

This chapter is organized as follows. A brief account of the problem and the governing

equations for the gas and particle phases are given in §5.2. The anisotropic-Maxwellian dis-

tribution function is introduced in §5.2.1 which is employed to analyse the “ignited” state of

sheared gas-solid suspension; the second moment tensor for the uniform shear flow is con-

structed in §5.2.1 in terms of its eigen-basis. The source term of the second moment balance

equation is calculated in §5.2.1 and §5.2.2 for the ignited and quenched states, respectively.

The second-moment balance combining both ignited (I) and quenched (Q) states is analysed

in §5.2.3. The multi-stability and hysteresis transitions in granular temperature are analysed

in detail in §5.3, along with (i) the validation and superiority of the present analysis in §5.3.1,

(ii) analytical solutions for temperatures in three states in §5.3.2 and (iii) the critical Stokes

numbers for “I ↔ Q” transitions in §5.3.3. The non-Newtonian rheology (shear-thickening,

normal stress differences) is analysed in §5.4.2 and §5.4.3, in terms of the anisotropies of the

second-moment tensor (§5.4.1). The relative merits of the present theory over the standard

Grad’s moment-expansion and Chapman-Enskog expansion are analysed in §5.5 via compar-

isons with available simulation data. The conclusions are given in §5.6. The mathematical

details of various analyses are relegated to Appendices A to E.

5.2 Problem description and the kinetic-theory analysis

We examine the uniform shear flow of a “dilute” gas-solid suspension in the absence of gravity,

with a collection of smooth inelastic spheres of mass m and diameter σ being suspended in

a gas; with x, y and z pointing the velocity, gradient and vorticity directions (see figure 5.1),

respectively, the velocity field for the suspension is given by

uuu ≡ (ux,uy,uz) = (γ̇y,0,0), (5.2)
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where γ̇ is the overall shear rate. We are interested in a steady state suspension where the

fluid inertia is very small but the particle inertia remains finite. Under the assumptions of the

smallness of particle Reynolds number, the gas-phase obeys the Stokes equations of motion

µg∇2vi = ∇i pg, ∇ivi = 0, (5.3)

where µg is the shear viscosity of the gas.

For the particle-phase, we adopt the kinetic theory of gases as pursued in granular gases

(Chapman & Cowling 1970; Savage & Jeffrey 1981; Lun et al. 1984; Jenkins & Richman

1985a; Brey et al. 1998; Sela & Goldhirsch 1998; Brilliantov & Pöschel 2004; Rongali &

Alam 2014)as well as in gas-solid suspensions (koch1990kinetic,louge1991role,tsao1995simple,sangani1996s

The evolution of the single particle distribution function ( f (ccc,xxx, t)) follows the celebrated

Boltzmann equation (Chapman & Cowling 1970)

(
∂

∂ t
+ ccc ·∇

)
f +∇ccc ·

(
f

dccc

dt

)
=
(∂ f

∂ t

)
coll

, (5.4)

where ∇ccc is divergence operator in the velocity space and (∂ f/∂ t)coll is the well-known col-

lision operator (chapman1970mathematical). The acceleration of the particles is assumed to

follow the Stokes’s linear drag law:

dccc

dt
=−ccc− vvv

τv
, (5.5)

with τv =m/(3πµgσ) being the viscous relaxation time of the particles. Equation (5.5) holds if

the particle Reynolds number and the density-ratio (ρ f /ρp) are very small; for large Reynolds

numbers, a nonlinear form of the drag-law would be necessary (Jackson 2000). Any physical

quantity at the macroscopic level is defined as the ensemble averaged value of the same at the

particle level, using the single particle distribution f (ccc,xxx, t) function

〈ψ〉= 1
n(xxx, t)

ˆ

ψccc f (ccc,xxx, t)dccc ≡ 1
n(xxx, t)

ˆ

ψCCC fCCCdCCC, (5.6)

with ψ(ccc) being any particle-level quantity. Here n ≡ n(xxx, t) denotes the number density

and ρ(xxx, t) = mn ≡ ρpν is the mass-density of the particle-phase, with ν = πσ 3n/6 being

the volume fraction of particles and ρp = m/(πσ 3/6) is its intrinsic/material density. The

macroscopic/hydrodynamic velocity uuu = 〈ccc〉, the granular temperature T = 〈CCC2/3〉 and the

particle-phase stress tensor PPP = 〈mCCCCCC〉 are obtained by substituting ψ = ccc, 1
3CCC2 and mCCCC,

respectively, in (5.6), where CCC = ccc−uuu, is the peculiar velocity.
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Focussing on a steady homogeneous sheared suspension, the Boltzmann equation (5.4) for

the distribution function f (CCC;xxx, t) reads (Chapman & Cowling 1970)

−Cmγ̇km

∂ f

∂Ck

+
∂

∂Ck

(
dck

dt
f

)
=

(
∂ f

∂ t

)

coll

, (5.7)

where γ̇αβ = γ̇δαxδβy is the velocity gradient tensor of the uniform shear flow. On multi-

plying (5.7) by mψ(CCC) and integrating over the velocity space, the master balance equation is

obtained (Jenkins & Richman 1985a; Sangani et al. 1996) as

ρ f

(
γ̇km

〈
Cm

∂ψ

∂Ck

〉
−
〈dck

dt

∂ψ

∂Ck

〉)
= ℵℵℵ(mψ) (5.8)

where

ℵℵℵ(mψ) =

ˆ

mψ

(
∂ f

∂ t

)
dCCC (5.9)

represents the collisional source of mψ .

Putting ψ = 1 and ccc into (5.8), the mass and momentum balance equations for the particle

phase, respectively are obtained. For the steady uniform shear flow (u = (γ̇y,0,0)) the mass

balance (···u = 0) is identically satisfied since (i) the stress tensor is constant and the ’mean’

drag on the particle phase (due to the gas phase) is zero. The latter follows from the assumption

that there is no ’slip’ between the coarse-grained velocity of the particle phase (uuu) and the

’local’ gas velocity (vvv), i.e uuus = uuu−vvv = 0. The hydrodynamic interactions among the particles

are neglected in the present analysis which can be justified for a dilute suspension (Koch

1990; Tsao & Koch 1995) at moderate to high values of Stokes number. For moderately

dense gas-solid suspensions, Sangani et al. (1996) developed a Grad-type moment theory

by incorporating hydrodynamic interactions in an ad hoc manner (via a corrective function

Rdiss(ν) to the Stokes drag, with its dilute limit being Rdiss(ν → 0) → 1. This theory was

found to be in good agreement with full dynamic simulations of gas-solid suspensions even

at a small Stokes number of St ≫ 5. The mean-field arguments of Sangani et al. (1996) were

also used in a more recent work (Parmentier & Simonin 2012) on dense suspensions. The

reader is referred to a review article (Koch & Hill 2001) for further details on hydrodynamic

interactions.

Inserting ψ =CCCCCC into (5.8), we obtain the balance equation for the second moment:

PPP ·∇uuu+(PPP ·∇uuu)T +
2
τv

ρ〈CCCCCC〉+ 1
τv

ρ〈(uuu− vvv)CCC〉+ 1
τv

ρ〈((uuu− vvv)CCC)T 〉= ℵℵℵ(mCCCCCC), (5.10)
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where PPP = ρCCCCCC is the particle-phase stress tensor and ℵℵℵ(mCCCCCC) is the collisional source of

the second moment as defined in (5.9). The third term on the left hand side of (5.10) embodies

the Stokes drag law (5.5), along with the following assumption

〈
(δikC j +δ jkCi)

dck

dt

〉
=− 2

τv

〈CiC j〉, (5.11)

which holds if the microstructure of the suspension is nearly isotropic (Sangani et al. 1996).

The fourth and fifth terms in (5.10) vanish due to the zero-slip (uuus = uuu− vvv = 0) assumption,

leading to the final form of the second moment balance equation

PPP ·∇uuu+(PPP ·∇uuu)T +
2
τv

PPP = ℵℵℵ(mCCCCCC), (5.12)

which must be solved for the homogeneously sheared gas-solid suspension. The integral ex-

pression for the source term in (5.12) is given by Jenkins & Richman (1985a); Saha & Alam

(2014)

ℵℵℵ =

ˆ

mCCCCCC
(∂ f

∂ t

)
coll

dCCC =
σ 2

2

ˆ

∆
(

mCCCCCC
)

f (CCC1) f (CCC2)dCCC1dCCC2, (5.13)

with

∆
(

mCCCCCC
)
=

m

2
(1+ e)(ggg · kkk) [(1+ e)(ggg · kkk)kkkkkk− kkkwww−wwwkkk] , (5.14)

where ggg = ccc1 − ccc2 and www =CCC1 −CCC2 ≡ ggg− (uuu1 −uuu2) are the relative velocity and the relative

fluctuation velocity respectively, between two colliding particles 1 and 2; kkk ≡ kkk12 = (xxx1 −
xxx2)/|xxx1 − xxx2| is the unit contact vector joining the center of particle-1 to that particle-2. The

molecular chaos ansatz, f (CCC1,CCC2) = f (CCC1) f (CCC2) (i.e. the two-particle distribution function

can be written as the product of two single-particle distribution functions), has been adopted

in 5.13.

With an appropriate choice of the distribution function f (ccc,xxx, t), the collision integral

(5.13) can be evaluated, which will be plugged into (5.12) to carry out the analysis for the

particle-phase rheology and hydrodynamics of a sheared gas-solid suspension.

5.2.1 Analysis in the ignited sate

The “ignited” state (Tsao & Koch 1995) represents the hydrodynamic state of fluidized-particles

in rapid granular flow (Goldhirsch 2003), where the particles fly around randomly in between

two collisions without getting much affected by the viscous drag of the interstitial fluid. A
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typical particle encounters successive collisions with other particles again and again before it

can relax back to the local fluid velocity and hence the collision time is much smaller than the

viscous relaxation time (τc ≪ τv). In this state, the particles have strong velocity fluctuations,

resulting in T/γ̇σ ≫ 1.

As in our recent work (Saha & Alam 2014, 2016), the distribution function in the ignited

state of a sheared suspension is assumed to be an anisotropic Maxwellian,

f (ccc,xxx, t) =
n

(8π3|MMM|)1/2
exp
(
− 1

2
CCC ·MMM ·CCC

)
, (5.15)

where |MMM| = det(MMM). This form of the distribution function has been used previously in

studying the velocity dispersions in Saturn’s rings (Goldreich & Tremaine 1978; Shukhman

1984; Araki & Tremaine 1986; Araki 1988) as well as to analyse the shear flow of dry rapid

granular flows (Jenkins & Richman 1988; Richman 1989; Lutsko 2004).

In the isotropic limit, (5.15) reduces to the Maxwellian distribution function, and an Her-

mite expansion of the form

f (ccc,xxx, t) =
n

(2πT )3/2
exp
(
−C2/2T

)
∑

i

a(i)H (i)

=
n

(2πT )3/2
exp
(
−C2/2T

){
1+

1
2ρT 2 P〈αβ 〉CαCβ

}
+HOT, (5.16)

represents the well-known Grad’s moment expansion (GME) (Grad 1949) – such moment

expansion has subsequently been employed to solve the Boltzmann equation for molecular

gases (Herdegen & Hess 1982; Kremer 2010), granular gases (Jenkins & Richman 1985a;

Kremer & Marques Jr 2011) and gas-solid suspensions (Tsao & Koch 1995; Sangani et al.

1996; Chamorro et al. 2015). Equation (5.16) with leading-order term (P〈αβ 〉 = ρMαβ −T δαβ

is the stress deviator) yields the 10-moment system of Grad (1949), with density, velocity,

temperature and stress-deviator constituting the extended set of ten hydrodynamic fields (Saha

& Alam 2016).

Uniform shear flow (USF) and the second moment tensor

The analysis in this section closely follows the theoretical framework introduced by (Goldre-

ich & Tremaine 1978; Shukhman 1984; Araki & Tremaine 1986; Jenkins & Richman 1988;

Richman 1989). For the uniform shear flow, the velocity gradient tensor can be decomposed
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Fig. 5.1 Schematic of the co-ordinate system and the eigen-basis for analysis; the eigen-
directions of the shear tensor DDD and the second moment tensor MMM are decpicted. The uniform
shear flow, uuu = (γ̇y,0,0), is directed along the x-direction, with the velocity gradient along the
y-direction and the mean-vorticity along the z-direction.
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as

∇∇∇uuu = DDD+WWW ≡




0 γ̇/2 0

γ̇/2 0 0

0 0 0


 +




0 γ̇/2 0

−γ̇/2 0 0

0 0 0


 , (5.17)

where DDD and WWW are the shear and spin tensors, respectively. Referring to figure 5.1, the (x,y)-

plane is dubbed the shear plane and the z-direction is the vorticity direction. The eigenvalues

of DDD are γ̇/2, −γ̇/2 and 0, with the corresponding orthonormal eigenvectors, respectively,

|D1〉=




cos π
4

sin π
4

0


 , |D2〉=




−sin π
4

cos π
4

0


 and |D3〉=




0

0

1


 , (5.18)

that are sketched in figure 5.1. While |D3〉 is directed along the z-axis, the shear-plane eigen-

vectors |D1〉 and |D2〉 are rotated by 45◦ anticlockwise from the xy-axes.

Since the granular temperature T = Mαα/3 is the isotropic measure of the second moment

tensor MMM = 〈CCCCCC〉, we can decompose it as MMM/T = III+M̂MM/T , where M̂MM/T is the dimensionless

counterpart of its deviatoric/traceless tensor. The eigenvalues of MMM are denoted by T (1+ξ ),

T (1+ ς) and T (1+ζ ), with ξ , ς and ζ being the eigenvalues of M̂MM/T such that

ξ + ς +ζ = 0. (5.19)

The corresponding orthonormal set of eigen-directions are assumed to be |M1〉, |M2〉 and |M3〉,
respectively, as depicted in figure 5.1. Therefore, the second-moment tensor MMM can be written

in terms of its eigen-basis:

MMM = T (1+ξ )|M1〉〈M1|+T (1+ ς)|M2〉〈M2|+T (1+ζ )|M3〉〈M3|. (5.20)

Referring to figure 5.1, we assume that the shear-plane eigenvectors |M1〉 and |M2〉 can be

obtained by rotating the system of axes at an angle (π/4+φ), with φ being unknown, in the

anti-clockwise sense about the z-axis which coincides with |M3〉:

|M1〉=




cos
(
φ + π

4

)

sin
(
φ + π

4

)

0


 , |M2〉=




−sin
(
φ + π

4

)

cos
(
φ + π

4

)

0


 and |M3〉=




0

0

1


 . (5.21)

We further assume that the contact vector kkk makes an angle ϕ with |M3〉, and θ is the angle

between |M1〉 and kkk− (kkk ··· zzz)zzz, the projection of kkk on the shear plane, as shown in figure 5.1.
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Inserting (5.21) into (5.20), we obtain the following expression for the second moment tensor

MMM = T [δαβ ]+ M̂MM, (5.22)

with its deviatoric part being given by

M̂MM = T




λ 2 +η sin2φ −η cos2φ 0

−η cos2φ λ 2 −η sin2φ 0

0 0 −2λ 2


 . (5.23)

Here we have introduced the following notations

η ≡ 1
2
(ς −ξ )≥ 0 and λ 2 ≡ 1

2
(ς +ξ ) =−ζ

2
≥ 0, (5.24)

such that the eigenvalues in the shear-plane can be expressed in terms of η and λ via

ξ = λ 2 −η and ς = λ 2 +η > ξ , (5.25)

with the eigenvalue, ζ , along the vorticity direction (z), being given by (5.24).

Since φ = 0 implies that the shear tensor (DDD) and the second-moment tensor (MMM) have

same principal directions, a non-zero value of φ is a measure of the non-coaxiality angle

between the principal directions of DDD and MMM. It is straightforward to show that η ∼ (Tx −Ty)

is proportional to the difference between two temperatures Tx and Ty on the shear-plane (x,y),

and hence η 6= 0 is indicative of the degree of temperature-anisotropy on the shear plane. On

the other hand, a non-zero value of λ 2 is a measure of the excess temperature (Saha & Alam

2016),

T ex
z = (T −Tz) = 2λ 2T ⇒ λ 2 =

T ex
z

2T
, (5.26)

along the mean vorticity direction. In summary, the anisotropy of MMM is quantified in terms of

three dimensionless quantities: (i) η ∝ (Tx −Ty) 6= 0, or, φ 6= 0 and (ii) λ 2 ∝ T ex
z 6= 0.

The second-moment tensor (5.22-5.23) in the USF of suspension, constructed from its

eigen-basis, is therefore completely determined when T , η , φ and λ 2 are specified; the depen-

dence on the Stokes number St and the particle volume fraction (ν) is implicit as will be made

clear below.
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Source term in the ignited state

Employing (5.15), the collisional production term (5.13) for the ignited state has been evalu-

ated

ℵis
αβ =−6(1+ e)ρpν2

π
3
2 σ

{
(1− e)

ˆ

kαkβ (kkk ·MMM · kkk) 3
2 dkkk

+2
ˆ

(kα jβ + jαkβ )(kkk ·MMM · kkk) 1
2 (kkk ·MMM · jjj)dkkk

}
. (5.27)

=−4(1+ e)ρpν2T 3/2

35σ
√

π

{
(1− e)×




70+9η2 +42λ 2 +42η sin2φ −42η cos2φ 0

−42η cos2φ 70+9η2 +42λ 2 −42η sin2φ 0

0 0 70+3η2 −84λ 2




+ 4




η2 +21λ 2 +21η sin2φ −21η cos2φ 0

−21η cos2φ η2 +21λ 2 −21η sin2φ 0

0 0 −2(η2 +21λ 2)



}
, (5.28)

which is a function of ν , e, T , η , φ and λ 2. In the final expression (5.28), we have retained

terms that are up-to second-order in η , sinφ and λ – we shall show in the end that this is

sufficient to yield accurate predictions of transport coefficients of a sheared dilute suspension

for a wide range of (i) restitution coefficient e and (ii) Stokes number St.

5.2.2 Analysis in the quenched sate

Tsao & Koch (1995) envisaged a scenario of a dilute gas-solid suspension in which the particle

inertia is very low such that the particles tend to align with fluid streamlines after a collision.

Most of the particles will be having their individual velocity equal to the fluid velocity (ccc ≈ uuu)

which implies that the peculiar velocity CCC ≈ 0 and therefore the particle agitation is very

small (T/γ̇σ ≪ 1) – this is dubbed the quenched state. The collisions in this state are mainly

shear-induced with some occasional variance-driven collisions and the particles relax back

to the local fluid velocity after such a collision before they encounter a second collision and

therefore the viscous relaxation time is much smaller than the collision time τv ≪ τc. The

velocity distribution function of the quenched state is taken to be a delta function

f = nδ (CCC), (5.29)
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which is a solution of the Boltzmann equation. Using (5.29), the collisional production term

at second-order can be evaluated as

ℵ
qs

αβ
=−ργ̇3σ 2 3(1+ e)2ν

2π

ˆ

kxky>0
(kxky)

3kαkβ dkkk,

= ρpγ̇3σ 2 (1+ e)2ν2

16




512
315π −16

35 0

−16
35

512
315π 0

0 0 128
315π


 . (5.30)

Note that this expression differs from that of Tsao & Koch (1995) by a numerical-factor 2

which was also noted previously (Parmentier & Simonin 2012).

5.2.3 Second moment balance combining quenched and ignited states

Combining the ignited and quenched states, the second-order moment balance equation (5.12)

for a ‘dilute’ gas-solid suspension undergoing uniform shear flow is

Pδβ uα,δ +Pδαuβ ,δ +
2γ̇

St
Pαβ = ℵαβ ≡ ℵqs

αβ
+ℵis

αβ , (5.31)

where the superscripts qs and is stand for the source of second moment in quenched and ignited

states, respectively. Following (5.22-5.23), the expression for the stress tensor can be written

as

PPP = ρMMM = ρpνT




1+λ 2 +η sin2φ −η cos2φ 0

−η cos2φ 1+λ 2 −η sin2φ 0

0 0 1−2λ 2


 . (5.32)
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Substituting (5.27), (5.30) and (5.32) into (5.31), we obtain the following four independent

equations:

−2T η cos2φ + 2
St

T (1+λ 2 +η sin2φ) =
[
− 2(1−e2)νT

3
2

35
√

π
(70+9η2 +42λ 2 +42η sin2φ)

−8(1+e)νT
3
2

35
√

π
(η2 +21λ 2 +21η sin2φ)

]

+
[

128(1+e)2ν
315π

]
,

2
St

T (1+λ 2 −η sin2φ) =
[
− 2(1−e2)νT

3
2

35
√

π
(70+9η2 +42λ 2 −42η sin2φ)

−8(1+e)νT
3
2

35
√

π
(η2 +21λ 2 −21η sin2φ)

]

+
[

128(1+e)2ν
315π

]
,

2
St

T (1−2λ 2) =
[
− 2(1−e2)νT

3
2

35
√

π
(70+3η2 −84λ 2)

+16(1+e)νT
3
2

35
√

π
(η2 +21λ 2)

]
+
[

32(1+e)2ν
315π

]
,

T (1+λ 2 −η sin2φ)− 2
St

T η cos2φ =
[

12(1−e)(3−e)νT
3
2

5
√

π
η cos2φ − 4(1+e)2ν

35π

]
.





,

(5.33)

Note that the terms involving the Stokes number (St) on the left-hand sides of (5.33) vanish

in the limit of St → ∞, thereby recovering the second-moment balance for the shear flow of a

‘dry’ granular gas (Saha & Alam 2016).

In (5.33), we have made temperature dimensionless via T = T/(γ̇σ/2)2. The coupled

system of equations (5.33) must be solved to determine η , λ , φ and T for specified values

of (i) particle volume fraction (ν), (ii) Stokes number (St) and (iii) restitution coefficient (e).

Analytical progress can be made to solve (5.33) as discussed in §5.3 and §5.4.

Before proceeding further, it may be noted that the analysis of the second moment balance

(5.31) or (5.33) in the ignited state (i.e. with ℵ
qs

αβ = 0) is considerably simplified for elastically-

colliding (e = 1) particles, see Appendix A. The related analytical results on the temperature

field provide a lower-bound on the Stokes number for the existence of the ignited state (and

consequently on the multiple states and hysteresis, §5.3.2) in a dilute gas-solid suspension.
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Fig. 5.2 Hysteretic/first-order transitions of granular temperature for (a) e = 1 and ν = 5×
10−4; (b) e = 0.8, (c) e = 0.5 and (d) e = 0.3 with ν = 0.01. The solid and dashed (inset)
lines denote the present anisotropic-Maxwellian theory and the Maxwellian theory (Tsao &
Koch 1995; Sangani et al. 1996), respectively. The filled-circles represent the DSMC data
of Sangani et al. (1996); the open-triangles in panel c denote the DSMC data of Chamorro
et al. (2015). In each panel, the black and red lines represent stable and unstable solutions,
respectively, of Eq. (3.1).
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5.3 Granular temperature: Multi-stability and ignited-to-

quenched state transitions

After some tedious algebra, we found that (5.33) can be decoupled to yield a 10-th degree

polynomial for granular temperature ξ =
√

T :

G (ξ )≡ a10ξ 10 +a9ξ 9 +a8ξ 8 +a7ξ 7 +a6ξ 6 +a5ξ 5 +a4ξ 4 +a3ξ 3 +a2ξ 2 +a1ξ +a0 = 0,

(5.34)

the explicit expressions of the coefficients ai are given in Appendix B. It is straightforward to

verify that for the case of elastically colliding particles (e = 1), a10 = 0 = a9 = a8 and hence

(5.34) reduces to a polynomial of 7th-degree; in fact these three roots vapourize to −∞ at e = 1

and remain negative for e < 1 and hence unphysical. It has been verified numerically (as well

as via an ordering analysis, see Appendix C) that at most three roots of (5.34) are real positive,

depending on the values of ν , St and e, and the remaining roots are negative and/or complex.

5.3.1 Validation of present anisotropic-Maxwellian theory

First, we solve the temperature equation (5.34) numerically and compare it with simulation

data in order to validate the present theory.

Figure 5.2(a,b,c,d) shows the variations of the granular temperature with Stokes number

(St) at particle volume fractions of (a) ν = 5× 10−4 and (b,c,d) ν = 0.01, with different

values of the restitution coefficient (a) e = 1, (b) e = 0.8, (c) e = 0.5 and e = 0.3. In each

panel and inset, the symbols represent the DSMC (direct simulation Monte Carlo) data of

Sangani et al. (1996) which are compared with the (i) present anisotrpic-Maxwellian theory

(solid line) and (ii) the standard moment expansion (dashed line) of Tsao & Koch (1995, for

e= 1) and Sangani et al. (1996, for e 6= 1), Figure 5.2(a) indicates that for the case of elastically

colliding particles, the present theory is on par with Tsao-Koch theory. On the other hand, for

inelastic particles (e < 1), the insets of figure 5.2(b,c,d) confirm that the present theory is able

to better predict the temperature-variation with St; however, the agreement with Tsao-Koch

theory worsens with increasing dissipation. In panel c, the recent DSMC data (open triangles)

of Chamorro et al. (2015) for e = 0.5 also agree quantitatively with the present theory.

Overall, the moment theory with anisotropic-Maxwellian as the leading term seems better

suited for a dilute gas-solid suspension of inelastic particles undergoing shear flow for a large

range of e < 1 at small and moderate values of Stokes number. It may be noted that a similar

analysis (Saha & Alam 2014, 2016) for a sheared granular gas (St = ∞) provides excellent

predictions for temperature and rheological quantities for highly dissipative particles. The
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same conclusions seem to carry over to the limit of small Stokes numbers of a sheared gas-

solid suspension too – this issue is further discussed in §5.5 (with respect to predictions for

viscosity and normal stress differences).

5.3.2 Analytical solution for three temperatures: hysteresis and multi-

stability

Returning to figure 5.2, we note that the temperature is a multi-valued function of Stokes num-

ber for a range of St over which there are three possible solutions; there are hysteretic/discontinuous

jumps in temperature from the low/high temperature branches with increasing/decreasing St.

For a better understanding of this hysteresis phenomenon, equation (5.34) has been solved

in the asymptotic limit ν ≪ 1, St ≫ 1, and St3ν ≪ 1 via an ordering analysis, the details of

which are given in Appendix C. Three real solutions have been found,

√
Tis =

5(1+ e)−1(1691+539e−1223e2+337e3)
√

π

48(3− e)(12607−19952e+10099e2−1746e3)

(
St

ν

)
e=1≡ 5

√
π

144
St

ν
, (5.35)

√
Tqs =

√
32(1+ e)2

945π
St3/2ν1/2 e=1≡ 8

√
2

3
√

105π
St3/2ν1/2, (5.36)

√
Tus =

840
√

π

(1+ e)(107+193e)

(
1

St3ν

)
e=1≡ 7

√
π

5

(
1

St3ν

)
, (5.37)

which correspond to the temperatures in the ignited (Tis), quenched (Tqs) and unstable (Tus)

states, respectively. These three solutions (5.35-5.37) can be identified in figure 5.2 as the high-

, low-, and intermediate-temperature branches, respectively; the red-colored solution branch

in each panel of figure 5.2 represent Tus which is of course unstable from stability viewpoint

(see §5.4.2 for related discussions).

It is clear from (5.35) that Tis increases with increasing Stokes number St, but decreases

with increasing particle volume fraction ν . On the other hand, the quenched-state temperature

(5.36) increases with increasing St and ν , whereas the unstable temperature (5.37) decreases

with increasing St and ν . These overall predictions are verified in figure 5.3 which display

the variations of granular temperature as functions of (ν,e) for two values of Stokes number

(a) St = 10 and (b) St = 20. In each panel, the upper-most branch corresponds to the ignited-

state of high temperature Tis; the middle and the lower-most planes represent the unstable

and quenched states, respectively. The latter two states are connected via a line of turning-

points, resulting in saddle-node bifurcations (jump-transitions) from “Q → I” with increasing

ν , above which the ignited state is the only solution. The critical density ν = νc(St,e) for this

transition increases with increasing inelasticity but decreases with increasing St (see panel b).
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Fig. 5.3 Multiple states of granular temperature as functions of the mean volume fraction ν
and restitution coefficient e for (a) St = 10 and (b) St = 20.

The corresponding Stokes number for “Q → I”-transition is denoted by Stc2(ν,e) which can

also be identified with the right limit-point in figure 5.2.

A noteworthy feature of figure 5.3 is that the ignited branch [T ∝ ν−2, see (5.35)] is discon-

nected from the quenched and unstable branches, and therefore there is no jump-transitions

(on decreasing ν) from I → Q at St = 10 (panel a) and 20 (panel b). However, on further

decreasing the Stokes number (below St = 10), the ignited state solution disappears below a

minimum St – how this process occurs is explained in figures 5.4(a,b,c) for e = 1, 0.8 and 0.5,

respectively. In particular, at any e, the unstable branch (red line) and the ignited-branch come

closer with decreasing St and merge with each other at some minimum St below which only

the quenched-state solution [T ∝ ν , see (5.36)] survives. Similarly, by fixing the Stokes num-

ber at St = 6 but increasing the inelasticity (decreasing e) also results in the disappearance of

the ignited state solution, see figure 5.4(d). Therefore, the quenched state is the only possible

solution below a minimum Stokes number St = Stc1(e,ν) – this can be identified with the left

limit-point in figure 5.2 for “I → Q” transition.

5.3.3 Critical Stokes numbers (Stc1,Stc2) and the master phase-diagram

Referring to figure 5.2, two critical/limit points (at St = Stc1 and Stc2, with Stc2 > Stc1) corre-

spond to the double roots of (5.34) at which the following conditions must be satisfied:

G (ξc) = 0 and G ′(ξc) = 0. (5.38)

This implies that two solution branches, corresponding to two different states [(i) ignited (Tis),

(ii) quenched (Tqs) and (iii) unstable (Tus)] meet at ξ = ξc, leading to saddle-node bifurcations

from one stable state to another stable state.
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Fig. 5.4 Disappearance of the ignited-state branch with (a,b,c) decreasing Stokes number at
(a) e = 1, (b) e = 0.8 and (c) e = 0.5, and (d) the same with decreasing restitution coefficient
at St = 6.



182Dilute Gas-Solid Suspension : Shear-thickening Behaviour and Normal Stress Differences

The discontinuous “Q → I” transition corresponds to a limit point (St = Stc2, viz. fig-

ure 5.2a) at which the quenched and unstable solution branches meet. Carrying out the asymp-

totic analysis of (5.34) with Tqs = Tus and satisfying (5.38) (see Appendix D for details), we

obtain the following relation

St3
c2

νc =

(
3087000π2

(1+ e)4(107+193e)2

) 1
3

, (5.39)

that represents a critical-surface in the (ν,St,e)-plane, above which only the ignited state

exists. Equation (5.39) is depicted in figure 5.5 as a blue-surface. In the elastic limit of e = 1,

(5.39) reduces to St3
c2

νc = 2.7685 which differs from the prediction (≈ 3.23) of Tsao & Koch

(1995).

The critical Stokes number, Stc1, for the “I → Q” transition (on decreasing St) corresponds

to the limit point at which Tis = Tus. The asymptotic analysis of (5.34) yields the following

expression for Stc1 (see Appendix D for details):

Stc1 ≈ 9.9−4.91e, (5.40)

which is marked as a brown-shaded plane in figure 5.5, to the left of which only the quenched

state exists. For elastically colliding particles (e = 1), we have Stc1 ≈ 4.99 which is close to

our numerical solution of 4.94...; both are close to the result of
√

169.5/7 ≈ 4.92 obtained

by Tsao & Koch (1995). Note that (5.40) depends only on the restitution coefficient, and

therefore the minimum value of Stokes number (Stc1), below which only the quenched-state

exists, is independent of the volume fraction for a dilute gas-solid suspension.

The master phase-diagram in figure 5.5 summarizes all possible states in the (ν,St,e)-

plane: (i) the ignited state (I) exists above the blue-surface, (ii) the quenched state (Q) is the

only solution to the left of the brown surface and (iii) the coexistence of ignited and quenched

(I +Q) states occurs for parameter values lying between the blue and brown surfaces. Two

critical surfaces in figure 5.5 would meet along a curve, thus acting as an upper bound for the

existence of the unstable state (Tus) solution (and hence the existence of the mixed state I+Q).

By equating Stc1 = Stc2 , the equation of this curve is obtained as

ν l
us(e) =

(
3087000π2

(1+ e)4(107+193e)2

) 1
3

/(9.9−4.91e)3, (5.41)



5.3 Granular temperature: Multi-stability and ignited-to-quenched state transitions 183

Q

Q+I

I

0.6

0.8

1.0

e

5
10

15
20

25

Stc

0.000

0.005

0.010

Νc

Fig. 5.5 Complete phase diagram of different states [“ignited” (I), “quenched” (Q) and their co-
existence (Q+I)] in the (ν,St,e)-plane. The blue- and brown-colored planes, above and below
which, respectively, the ignited and quenched states exist, have been determined analytically
from an ordering analysis of (5.34) in the dilute limit; for details, see the text in §5.3.3 and
Appendix D.
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which is a decreasing function of the restitution coefficient. Note that (5.41) is not a critical

point, rather it represents an upper-bound on density below which the phase-coexistence [I +

Q] occurs in the small-St regime of a sheared gas-solid suspension.

It is clear from from (5.40) and (5.39) that the critical Stokes numbers Stc1 and Stc2 increase

with decreasing e (i.e. increasing inelasticity) at a fixed volume fraction ν < ν l
us, When

dissipative particles (e ≪ 1) collide with each other they loose more energy and hence loose

more of their inertia; in that case the recovery time (τv) reduces and the adjustment with the

local fluid velocity becomes faster, leading to the quenched state. On the other hand, for nearly

elastic (e ∼ 1) collisions, the particles lose very little kinetic energy during collisions and take

much more time to come back to the bulk flow and hence the recovery process becomes slow.

Therefore, at higher values of e, both ignited and quenched states exist but only the quenched

state is possible if we increase inelasticity of the system, leading to the behaviour of Stc1 as in

(5.40). Similar argument holds for the variation of Stc2 with inelasticity as well.

5.4 Non-Newtonian rheology: second-moment anisotropy, dis-

continuous shear-thickening and normal stress differences

Once the temperature field is solved from (5.34) for specified values of ν , St and e, the non-

coaxiality angle φ , the temperature-anisotropy η and the excess temperature λ 2 can be cal-

culated from the remaining equations of (5.33) – these are amenable to analytical solutions

as described in §5.4.1. The behaviour of shear viscosity and normal stress differences are

analysed in §5.4.2 and §5.4.3, respectively.

5.4.1 Anisotropies of second-moment tensor: analytical solution for φ , η

and λ 2

After some algebra and rearrangement of terms in (5.33), the closed-form solutions for φ , η2

and λ 2 have been found:

φ =
1
2

tan−1

(
2
St

+
12(1+ e)(3− e)ν

√
T

5
√

π

)−1

, (5.42)

η2 =− b

2a
− 1

2a

√
b2 −4ac, (5.43)

λ 2 =

5
√

π
2St

T +(1+ e)νT 3/2[5(1− e)− (5+3e)η2

14 ]−
8(1+e)2ν

63
√

π(
5
√

π
St

T +6(1+ e)(3− e)νT 3/2
) , (5.44)
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Fig. 5.6 Variations of (a) the non-coaxiality angle φ , (b) the shear-plane anisotropy η and (c)
the excess temperature λ 2 with Stokes number for different e. The mean volume fraction is
set to ν = 0.005.

with T being calculated from (5.34) for specified values of St, ν and e. The solution for the

temperature-anisotropy η follows from the quadratic equation aη4 +bη2 + c= 0, where

a= 9(1−e2)2ν2T 3

25π > 0

b=
6(1−e2)νT 3/2

5
√

π

(
3
St

T − 16ν(1+e)2

35π +
6(1−e2)νT 3/2

√
π

)
−T 2 cos2 2φ

c=
(

3
St

T − 16ν(1+e)2

35π +
6(1−e2)νT 3/2

√
π

)2
> 0





. (5.45)

For a suspension of elastically colliding particles (e = 1, with finite St), we have a = 0 and

b=−T 2 cos2 2φ , and hence the above solutions (5.42-5.44) simplify to

φ(e = 1) = 1
2 tan−1

(
2
St
+ 48ν

√
T

5
√

π

)−1
> 0,

η2(e = 1) =− c
b
≡
(

3
St

T − 64ν
35π

)2
T−2 sec2 2φ > 0,

λ 2(e = 1) =
5
√

π
2St

T− 8
7 νT 3/2η2− 32ν

63
√

π(
5
√

π
St

T+24νT 3/2
) > 0.





(5.46)

Recall from (2.17) that the non-zero values of (φ ,η,λ 2) quantify the degree of anisotropy of

the second-moment tensor MMM (and hence is a measure of the anisotropy of the kinetic stress

tensor, PPP = 〈ρCCCCCC〉= ρMMM, too).

The positivity of (5.42-5.44) is verified in figures 5.6(a), 5.6(b) and 5.6(c), respectively,

which display the variations of φ , η and λ 2 with Stokes number for different values of the

restitution coefficient e ≤ 1, at a mean volume fraction of ν = 0.005 – the results look quali-

tatively similar at other values of ν < ν l
us (5.41). It is seen from figure 5.6 that the increasing

inelasticity markedly increases the values of (φ ,η,λ 2) on the ignited state, thereby enhancing

the anisotropy of the second-moment tensor. In contrast, the inelasticity does not noticeably af-

fect (φ ,η,λ 2) on the quenched state in which the particle collisions are rare and the dynamics
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is primarily dictated by fluid inertia. Interestingly, increasing shear makes the second-moment

tensor more anisotropic on the quenched branch – this can be understood by considering the

scaling relations of (φ ,η,λ 2) at St ∼ 0 as follows. Using the closed-form solutions for three

temperatures (3.2-3.4), the non-coaxiality angle for e = 1 can be rewritten as

tan2φqs =
St

2+ 128
√

2
5
√

105π
ν3/2St5/2

∼ St/2 at St ∼ 0. (5.47)

Therefore, in the limit of small St, the inertia enhances the non-coaxiality angle in the quenched

state. On the other hand, increasing St decreases φ in the ignited state, reaching some asymp-

totic value (depending on e) at large enough St as seen in figure 5.6(a). This can be explained

from an analysis of the ignited branch solution, leading to:

tan2φis =
3St

6+St2 ∼ 3
St
, for St ≫ 1. (5.48)

Similar scalings (5.47-5.48) hold for the temperature anisotropy η and the excess temperature

λ 2 too, that explain the observed behaviour in figures 5.6(b) and 5.6(c), respectively. In sum-

mary, the degree of anisotropy of the second-moment tensor in the quenched and ignited states

is primarily dictated by the background shear and inelasticity, respectively. The latter effect of

inelasticty can be understood from following scaling arguments.

It may be noted that the scaling relation (5.48) is not strictly valid at St → ∞ since the

double-limit of e → 1 and St → ∞ leads to a singular behaviour of temperature T → ∞ (and

hence a thermostat is necessary to achieve a steady shearing state of elastically colliding par-

ticles in the absence of fluid drag). The case of a sheared granular gas (St = ∞ at e 6= 1)

has been analysed previously (Jenkins & Richman 1988; Richman 1989; Saha & Alam 2014,

2016); it can be verified that the above solutions (5.42-5.44) for the ignited-branch reduce to

the low-density solution of Saha & Alam (2016):

λ 2 ≈ 1
48e

(168+53(1− e))
[√

1+5760e(1− e)(168+53(1− e))−2−1
]

≈ 5
14(1− e)

(
1+ 53

168(1− e)
)(

1− 53
84(1− e)

)

η2 =
3λ 2(7+6λ 2)

6+λ 2 ≈ 7
2λ 2 = 5

4(1− e)
(
1+ 53

168(1− e)
)(

1− 53
84(1− e)

)

sin2φ = η
1+λ 2 ≈ η ∼

√
1− e√

T = 5
√

πη cosφ
3(1−e2)ν(10+η2)

≈
√

π
6(1−e2)ν

η(1−η2/10)(1−η2/2)

≈
√

π
6(1−e2)ν

η(1− 3
5η2)∼ (1− e)−1/2





(5.49)

Therefore, in the limit (St → ∞) of a granular gas, η ∼ λ ∼ sin2φ ∼
√

(1− e), with the

granular temperature diverging like T ∼ (1− e)−1 – the latter finding rules out the possibility
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(a)

Fig. 5.7 (a) Hysteretic behaviour of particle-phase viscosity (µ) as functions of (St,e) for a
volume fraction of ν = 0.005; this represents DST (discontinuous shear-thickening) behaviour
for any e at ν < ν l

us [(5.41)].

of the quenched-state solution in a sheared granular gas. The scaling relations (5.49) hold at

leading-order in
√

1− e for St ≫ 1, and therefore we conclude that the inelasticty enhances

the degree of anisotropy of MMM on the ignited branch, see figure 5.6.

5.4.2 Shear viscosity: continuous and discontinuous shear-thickening

(DST)

The dimensionless shear viscosity for the particle phase is given by

µ = − Pxy

ρpν(γ̇σ/2)2 = η cos(2φ)T

≡ 3
St

T − 16ν(1+ e)2

35π
+

3(1− e2)νT 3/2

5
√

π
(10+η2), (5.50)

St→∞≡ −16ν(1+ e)2

35π
+

3(1− e2)νT 3/2

5
√

π
(10+η2)> 0, ∀ e < 1. (5.51)

For the ignited-state solution only (i.e. ℵ ≡ ℵis), it can be verified that the shear viscosity for

elastically colliding particles (e = 1) is µ = 3T/St which represents the first term in (5.50).
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Fig. 5.8 Variations of the first (N1) normal stress differences against Stokes number (St) and
restitution coefficient (e) at ν = 0.005. In panel b the projection of panel a is displayed for
different e.

The variation of (5.50) as functions of (St,e) is depicted in figure 5.7(a) for particle volume

fraction of ν = 0.005. Similar to granular temperature, the shear viscosity undergoes hysteretic

jumps at St = Stc2 (“Q → I”) and Stc1 (“I → Q”) on increasing and decreasing St, respectively.

The effect of dissipation (e< 1) is to reduce the viscosity of the particle-phase in each state, see

figure 5.7(b). On the other hand, the effect of Stokes number can be understood by considering

the viscosity of elastically colliding (e = 1) particles as given by

µis ≈
75π

20736
St

ν2 , µqs ≈
384

945π
νSt2, and µus ≈

147π

25
ν−2St−7, (5.52)

in the ignited, quenched and unstable states, respectively. Clearly, two shear-thickening branches

(Q and I) are connected via a shear-thinning branch.

The ‘discontinuous shear thickening’ (DST) behaviour, such as in figure 5.7(a,b), occurs

only in the small Stokes-number limit of a dilute gas-solid suspension at ν < ν l
us, (5.41), for

any restitution coefficient. The middle-branch in figure 5.7(a,b), over which µ decreases with

increasing St (i.e. the shear-thinning branch), is unstable. This is a thermodynamic/constitutive

instability which can be understood from a phenomenological viewpoint (Saha & Alam 2017a).

In the area of liquid-solid suspensions, the shear-thickening and its discontinuous ana-

log are well-known since the original work of Hoffman (1972). There have been a renewed

research activity to understand the origin of DST in the “dense” regime of colloidal and non-

colloidal suspensions as well as in dense granular media (Brown & Jaeger 2014; Denn &

Morris 2014). Extending the present theoretical formalism to the dense regime of suspen-

sions, by incorporating frictional interactions and related physics (Seto et al. 2013; Fernandez

et al. 2013; Wyart & Cates 2014; Clavaud et al. 2017), would be an interesting future work.
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5.4.3 First and second normal stress differences

The expression for the first normal stress difference is

N1 =
Pxx −Pyy

p
= 2η sin2φ , (5.53)

which has been ‘scaled’ by the mean pressure p = (Pxx +Pyy +Pzz)/3; in (5.53), φ and η are

calculated from (5.42) and (5.43), respectively. The variation of (5.53) as functions of (St,e)

is displayed in figure 5.8(a,b). The quenched-branch N1 remains unaffected by inelasticity

(see panel b), however, on the ignited branch, increasing inelasticity increases N1; the effect

of the gas-phase (i.e. decreasing St) also increases the ignited branch N1. On the whole, the

dependence of N1 on both St and e mirrors that of the non-coaxiality angle (φ ) and the shear-

plane temperature-anisotropy (η), compare figure 5.8(b) with figure 5.6(a,b). It is clear from

(5.53) that the origin of the first normal stress difference is tied to the shear-plane anisotropies

(η and φ ) of the second-moment tensor as in the case of a sheared granular gas (Jenkins &

Richman 1988; Saha & Alam 2016) – the dependence of St on its origin remains implicit via

two anisotropy parameters (φ ,η).

The scaled second normal stress difference is given by

N2 =
Pyy −Pzz

p
= 3λ 2 −η sin2φ = 3λ 2 − 1

2
N1. (5.54)

The variation of (5.54) with St is shown in figure 5.9(a) for different values of the restitu-

tion coefficient e. Similar to N1, the effect of inelasticity is to increase the magnitude of the

second normal stress difference on the ignited branch, but the quenched-branch N2 remains

unaffected (expectedly) by changing e. It is noteworthy in figure 5.9(a) that N2 is positive

and negative in the quenched and ignited states, respectively. This sign-change can be under-

stood from figure 5.9(b) which display the variations of two terms in (5.54) with St. In the

quenched state the excess temperature (3λ 2 ∝ T ex
z ) dominates over the shear-plane anisotropies

(η sin2φ ≡ N1/2), whereas the latter dominates over the former in the ignited state, resulting

in the sign-change of N2 at some finite value of St.

The parameter combinations (St,e,ν) at which N2 undergoes sign-reversal can be calcu-

lated by solving the following equation

N1 −6λ 2 = 0, (5.55)

along with (5.53) and (5.44). Figure 5.9(c) shows the variation of St± with restitution coef-

ficient: N2 is positive and negative, respectively, below and above each line for a specified
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Fig. 5.9 (a) Variation of the second (N2) normal stress difference against Stokes number (St)
for different values of the restitution coefficient; the particle volume fraction is ν = 0.005. (b)
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parameters as in panel a. (c) Variations of the critical Stokes number St± (at which N2 = 0)
with e for ν = 0.005 (solid line) and ν = 0.0005 (dashed line).



5.5 Discussion: Comparison with Grad’s moment-expansion (GME) 191

density ν . It is seen that the effect of inelastic dissipation is to increase the critical value of

St± at which N2 changes its sign; reducing the mean-density increases St± at any e.

It may be noted that for a ‘dense’ sheared granular gas (St → ∞), the second normal-

stress difference undergoes sign-change (Alam & Luding 2005b; Saha & Alam 2016) at some

critical density (ν± ∼ 0.2), with N2 being negative and positive in the dilute and dense limit,

respectively; the competition between (i) the collisional anisotropies in a dense system (that

makes the particle-motion increasingly streamlined (Alam & Luding 2005b) with increasing

density) and (ii) the second-moment anisotropies (φ ,η,λ 2) is known to be responsible for

this sign-change (Saha & Alam 2016). For the present case of a ‘dilute’ suspension, the

behaviour of N2 in the quenched state resembles that in a sheared ‘dense’ granular fluid; this

could possibly be due to the ‘streamlined’ particle motion in both systems, characterizing the

underlying anisotropy.

5.5 Discussion: Comparison with Grad’s moment-expansion

(GME)

Recall that in figure 5.2, we have made a detailed comparison between the predictions of two

moment theories: (i) the standard Grad’s moment-expansion (GME) around a Maxwellian (Grad

1949; Tsao & Koch 1995; Sangani et al. 1996; Chamorro et al. 2015) using Hermite polynomi-

als and (ii) the present anisotropic-Maxwellian moment-expansion (AME). Overall, the AME

predictions for granular temperature are found to be more accurate (see insets in figure 5.2)

than that of GME, especially at lower values of restitution coefficient, via a comparison with

available simulation data. This conclusion holds for shear viscosity too (not shown) since

µ ∝
√

T – in the following we focus on the predictive abilities of the present theory (AME)

with reference to two normal-stress differences. (The reader is referred to Saha & Alam (2014)

for details on AME that has been used to derive a generalized Fourier law for heat-flux vector,

along with conductivity tensors; the heat-flux, however, vanishes in uniform shear flow as in

the present case.)

5.5.1 Suspension of elastic and inelastic hard spheres: N1 and N2

From the present AME theory, the normal stress differences for elastic (e = 1) hard-sphere

suspensions in the “ignited” state are given by (Appendix A)

N1 =
18

6+ΩSt2 and −N2 =
9(9+ΩSt2)ΩSt2

(6+ΩSt2) [252+87ΩSt2+7Ω2St4]
> 0. (5.56)
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with

Ω =
1

2St2



(

St2− 171
7

)
+

((
St2− 3

7

)2

− (12
√

2)2

)1/2

 . (5.57)

The last quantity Ω is positive for St > Stc1 =
√

171/7 (the critical Stokes number for “ignited-

to-unstable” transition, viz. eqn. (3.7)), and asymptotically approaches unity, Ω(St → ∞) = 1,

and hence Ω ∈ (0,1) at any St > Stc1.

The AME-predictions (5.56) can be compared with the corresponding GME predictions

for N1 and N2:

N1 =
18

6+ΘSt2 and −N2 =
9

14Θ

6+ΘSt2 > 0, (5.58)

where

Θ =
1

2St2



(

St2− 171
14

)
+

((
St2− 171

14

)2

−122

)1/2

 . (5.59)

In (5.58) that there is a minor correction in the expression for N2: the numerical factor 9/14

in the numerator was taken as 9/7 in Tsao & Koch (1995). The positivity of (5.59) follows

from the positivity of its discriminant, resulting in St > Stc1 =
√

169.5/7, which is very close

to
√

171/7 for the positivity of (5.57). It is worth pointing out that the functional dependence

of both (5.57) and (5.59) yields almost identical values for Ω and Θ at any St > Stc1.

Figure 5.10 shows a comparison of (5.56) (denoted by solid lines) for N1 and N2 with

(i) the DSMC simulation data (symbols) of Tsao & Koch (1995) and (ii) the GME theory

(5.58) (dashed lines) – the particle volume fraction is set to ν = 0.01, representing a ‘dilute’

gas-solid suspension. It is seen that both (5.56) and (5.58) predict the correct behaviour of

N1 – two theories are almost indistinguishable from each other, with excellent quantitative

agreement with simulation. However, there is a significant disagreement (by a factor of about

2) between (5.58) and the DSMC data for the second normal-stress difference N2; in contrast,

the predictions of AME (5.56) are uniformly good for both N1 and N2 over a range of Stokes

number.

It may be noted that in GME the quadratic nonlinear-terms (proportional to P2
αβ ) need to be

taken into account while evaluating the source term ℵαβ (5.13) in order to obtain ‘non-zero’

second normal-stress difference as suggested by Herdegen & Hess (1982) for a Boltzmann

(dilute) gas. A brief account of the related analysis for a gas-solid suspension of inelastic

particles is provided in Appendix E – the resulting expressions for N1 and N2 reduce to (5.58)
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Fig. 5.10 Variations of the first (circles) and second (squares) normal-stress differences with
Stokes number for a suspension of elastic (e = 1) hard-spheres – the particle volume fraction
is ν = 0.01, representing a ‘dilute’ suspension. The solid lines represent the present theory
(5.56) and the dashed lines represent the standard Grad’s moment theory (5.58); the DSMC
simulation data (Tsao & Koch 1995) are denoted by symbols.
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Fig. 5.11 Comparisons of (a) first and (b) second normal-stress differences at St = 10: (i)
DSMC simulation (filled circles, Sangani et al. (1996)), (ii) present theory (solid lines), (iii)
the standard Grad’s moment expansion [dashed lines, see Appendix E].
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for elastically-colliding particles. On the other hand, the analysis of Sangani et al. (1996) did

not include such nonlinear Grad-terms, resulting in N2 = 0; the recent work of Chamorro

et al. (2015) also confirmed that the nonlinear Grad-terms are necessary for N2 6= 0. It has

been verified that the quadratic non-linear terms do not noticeably affect the value of N1 as

well as the shear viscosity.

The effect of inelasticity on N1 and N2 can be ascertained from figures 5.11(a) and

5.11(b), respectively, for a suspension with small Stokes number (St = 10); other parame-

ters are as in figure 5.10. It is clear from panel a that the present predictions of N1 (solid line)

agree well with simulation data for the whole range of e, but the GME-predictions (dashed

and dot-dashed lines) are slightly lower at e < 0.5. On the other hand, the GME theory grossly

under-predicts (by a factor of 3) the value of N2 for dissipative particles, see figure 5.11(b).

5.5.2 From sheared suspension to ‘dry’ (St → ∞) granular gas

To further understand the predictions of normal stress differences (N1 and N2) from two

theories (GME and AME) for dissipative particles (e < 1), we focus on the uniform shear flow

of a dilute granular gas (St → ∞) – the molecular-dynamics (MD) simulations of inelastic

hard-spheres with Lees-Edward boundary conditions have been carried out for a range of

restitution coefficients e ∈ (0.3,1) at a particle volume fraction of ν = 0.01; a relatively small

system with N = 1000 particles was simulated– other simulation details can be found in (Alam

& Luding 2005b; Gayen & Alam 2008). From these simulations, it is easy to extract data on

two anisotropy parameters, namely, (i) the shear-plane temperature anisotropy η [see (5.24)]

and (ii) the excess temperature T ex
z /T = λ 2 [see (5.26)], which are marked by filled-circles in

figures 5.12(a) and 5.12(b), respectively. In each panel, the theoretical predictions of Saha &

Alam (2016) are shown by solid lines. Overall, there is excellent agreement between AME

theory and MD simulation.

Figures 5.13(a) and 5.13(b) compare the MD simulation data (symbols) for N1 and N2,

respectively, with theory; the AME predictions, denoted by solid lines, are calculated from

(5.53) and (5.54) by setting St → ∞ (Saha & Alam 2016), and the corresponding GME-

predictions (Appendix E) are denoted by dashed lines. In addition, the dot-dashed line in

each panel represents the super-Burnett-order solution of Sela & Goldhirsch (1998), obtained

from the Chapman-Enskog expansion of inelastic Boltzmann equation. It is clear that both

GME and AME theories predict almost the same value of N1 for a range of restitution coeffi-

cient e ∈ (0.3,1), but the GME-prediction for N2 is consistently lower than that of AME and

can be off by a factor of 3 at e = 0.3. On the other hand, the AME-predictions for both N1 and

N2 are comparable to those of Chapman-Enskog solution for e ≥ 0.8, but the latter becomes

increasingly inaccurate for e< 0.8. Therefore, the quantitative predictions of the AME for two
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Fig. 5.12 Comparisons of (a) shear-plane temperature-anisotropy η and (b) the excess temper-
ature T ex

z /T ≡ 2λ 2 in uniform shear flow of a granular gas (St =∞): MD simulation (symbols)
and theory [solid line, Saha & Alam (2016)]. The particle volume fraction is ν = 0.01 and the
number of particles is N = 1000 in simulations.

normal stress differences are better than those of GME and Chapman-Enskog solution – this

overall conclusion holds for both gas-solid and dry granular suspensions of inelastic particles.

5.6 Summary and Conclusion

The rheology of a dilute gas-solid suspension, consisting of inelastic spheres suspended in a

Newtonian fluid, undergoing simple shear flow is analysed, with the effect of the gas-phase be-

ing modelled via a Stokesian drag force. The pertinent inelastic Boltzmann equation is solved

using an anisotropic Gaussian as the single particle distribution function which is known to

be appropriate for a sheared system. The resulting hydrodynamic model for the particle-phase

consists of a 10-moment system (ρ ,uuu,MMM) of density (ρ), hydrodynamic velocity (u) and the

second-moment (MMM = 〈CCCCCC〉) of fluctuation/peculiar velocity. One focus of the present work

has been to analyse the anisotropy of MMM in the simple shear flow of a dilute gas-solid suspen-

sion and subsequently tie and explain the rheological quantities in terms of them.

The seond-moment tensor has been characterized by three parameters: (i) the non-coaxiality

angle (φ , the angle between the principal eigen-direction of MMM and the shear tensor DDD), (ii) the

shear-plane temperature-anisotropy (η , the difference between the principal eigenvalues of

MMM on the shear plane, η ∝ Tx −Ty, where Ti is the granular temperature along i-th direction)

and (iii) the excess temperature (λ 2 ∝ T −Tz) along the vorticity direction; the first two [φ

and η] are dubbed ‘shear-plane’ anisotropies and the last-one (λ 2) is dubbed vorticity-plane

anisotropy. The closed-form expressions for three anisotropy parameters (φ , η , λ 2) and the
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Fig. 5.13 Comparisons of (a) N1 and (b) N2 in uniform shear flow of a granular gas (St = ∞):
(i) MD simulation (symbols), (ii) present theory [solid lines, Saha & Alam (2016)] and (iii)
the standard Grad’s moment theory (dashed line). The dot-dash line in each panel represent
the super-Burnett-order Chapman-Enskog solution of Sela & Goldhirsch (1998). Parameter
values as in figure 5.12.

granular temperature (T ) have been obtained as functions of the Stokes number (St), the mean

density (ν) and the restitution coefficient (e) by solving the second-moment balance equation;

these are used to obtain analytical expressions for the particle-phase viscosity and two normal-

stress differences. Scaling relations have been obtained in the limits of small and large St as

well as small inelasticity (1− e).

Static multiple states of high and low temperatures are found when the Stokes number

is small enough, thereby recovering the original “ignited” (I) and “quenched” (Q) states of

Tsao & Koch (1995) – the role of inelasticity on these states has been examined. The high-

temperature ignited state, in which the randomness of the particle motion is high giving rise to

a large value of granular temperature (T ), exists above some minimum Stokes number (Stc1)

whose value increases with increasing e. In contrast, the low-temperature quenched state,

in which most of the particles in the system follow the local fluid velocity, appears below a

critical value of Stokes number (Stc2) which is a decreasing function of both e and ν . Both

these Stokes numbers (Stc1 and Stc2) have been determined analytically as functions of ν and e,

and the regions of co-existence of two states (quenched and ignited) along with the transition

regimes have been identified in a three-dimensional (St,e,ν) phase diagram.

The effect of inelasticity is found to reduce the particle-phase viscosity on both ignited and

quenched states, with shear-thickening behaviour (increasing viscosity with increasing shear

rate) being found in both states. At any e, the shear-viscosity undergoes a discontinuous jump

with increasing St at “Q → I” transition, which can be interpreted as “discontinuous shear
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thickening” (DST). The two normal stress differences also undergo similar first-order jump-

transitions: (i) N1 from large to small positive values and (ii) N2 from positive to negative

values. The sign-change of N2 (figure 5.9) has been identified with the system being making

a “Q ↔ I” transition. The origin of this sign-change has been tied to a competition between (i)

the excess temperature (T ex
z ∝ 3λ 2) and (ii) the shear-plane anisotropies (η sin2φ ≡ N1/2) of

the second-moment tensor: while the former dominates over the latter in the quenched state,

the latter dominates in the ignited state, resulting in the sign-change of N2 at some finite value

of St. For both granular and gas-solid suspensions, the excess temperature along the vorticity

direction is responsible for the origin of N2 6= 0, while the temperature anisotropy η and the

non-coaxiality angle φ are responsible for N1 6= 0.

The comparative analyses in figures 5.2, 5.10, 5.11, 5.12 and 5.13 can be summarized

as follows: the moment expansion about an anisotropic-Maxwellian (AME) yields accurate

transport coefficients (shear viscosity and normal stress differences) for dissipative particles

(e < 1) in both small and large Stokes number limits, representative of gas-solid and dry gran-

ular suspensions, respectively. The standard Grad’s moment-expansion (GME) significantly

under-predicts the value of the second normal stress difference N2, although it is comparable

with AME with respect to N1 up-to a restitution coefficient of e = 0.5. On the other hand, the

latter theory (GME) also over-predicts the shear viscosity (µ ∝
√

T , viz. figure 5.2) of small-St

suspensions even for moderately dissipative (e = 0.8) particles; the mismatch between GME

and simulation increases with decreasing e. Based on the present work we conclude that

the superior predictive ability of the AME theory for hydrodynamics and rheology of ‘dry’

(St → ∞) sheared granular gases (Saha & Alam 2014, 2016) carries over to small-St gas-solid

suspensions of highly inelastic particles.

It would be interesting to check the applicability of this theory to dense gas-solid suspen-

sions of inelastic particles (with frictional interactions) which can be taken up in future. The

present work can also be extended to include a ‘non-linear’ drag law (dependence on parti-

cle Reynolds number) by modifying (5.5) via well-known empirical correlations. Lastly, the

anisotropies (φ ,η,λ 2) of the second-moment tensor should be measured from simulations of

finite-St suspensions so that one-to-one comparisons with theory can be made in this regard.





Appendix A

Analysis in the ignited state for elastic

hard-spheres

For a gas-solid suspension of elastic hard-spheres (e = 1), the collisional source of second-

moment in the ignited state is given by

ℵαβ =
−24ρpν2

σπ
3
2

ˆ

(kα jβ + kβ jα)(k ·MMM · j)(k ·MMM ·k) 1
2 dkkk

=−32ρpν2T 3/2

35σ
√

π
×




η2 +21λ 2 +21η sin2φ −21η cos2φ 0

−21η cos2φ η2 +21λ 2 −21η sin2φ 0

0 0 −2(η2 +21λ 2)


 , (A.1)

which is a function of ν ,T , η , φ and λ 2.

Four independent equations of second-moment balance,

Pδβ uα,δ +Pδαuβ ,δ +
2γ

St
Pαβ = ℵαβ , (A.2)

can be rearranged to yield a quartic-order equation,

ω2
[
12096St2ω2 +

(
10260St−420St3)ω +3225−175St2

]
= 0, (A.3)

where ω is the rescaled temperature

ω =
ν√
π

√
T

(γ̇σ/2)
. (A.4)
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In the following, the temperature has been made dimensionless by dividing it by (γ̇σ/2)2.

Three distinct solutions of (A.3) are

√
Tis =

5π
1
2

144
St

ν
Ω(St), (A.5)

√
Tus =

5π
1
2

144
St

ν

[7St2−171−
√

49St4−42St2−14103
14St2

]
, (A.6)

Tqs = 0, (A.7)

with Tis > Tus > Tqs, where

Ω(St) =
[7St2−171+

√
49St4−42St2−14103
14St2

]
≡ 144

5
ωisSt−1. (A.8)

In the above expressions, Tqs corresponds to the quenched state temperature, Tus corresponds

to an unstable temperature and Tis corresponds to the temperature in the ignited state. It is

clear from (A.6) that a positive value for Tus requires the following condition on the Stokes

number:

7St2−171 > 0, ⇒ St >

√
171

7
≈ 4.9425 ≡ Stc1. (A.9)

Therefore, St must be greater than or equal to Stc1, and (A.9) provides a lower bound on St for

the existence of the ignited state in a dilute sheared gas-solid suspension.

The remaining equations of (A.2) can be solved to yield solutions for η2 and λ 2 in the

ignited state:

η2 = (9+ΩSt2)

4(1+ 29
84 ΩSt2+ 1

36 Ω2St4)

λ 2 = (7+ΩSt2)

14(1+ 29
84 ΩSt2+ 1

36 Ω2St4)



 ; (A.10)

the solution for the non-coaxilality angle is

sin(2φ) =
η

1+λ 2 . (A.11)

Therefore, the normal stress differences in the ignited state are given by

N1 =
15

5+24Stω
≡ 18

6+ΩSt2 , (A.12)

−N2 =
270Stω(5+16Stω)

(5+24Stω)(175+1740Stω+4032St2ω2)
. (A.13)
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In the ignited state, the expression for the shear viscosity of the particle phase is

µ =−Pxy/γ̇ = µNΩ(St), (A.14)

where

µN =
5
√

π

96
ρpσ

√
T (A.15)

is the Newtonian viscosity of a dilute gas. Therefore, Ω(St) [(A.8)] is a measure of the devia-

tion of particle-phase viscosity from the Newtonian viscosity of a dilute hard-sphere gas.





Appendix B

Coefficients ai

Explicit expressions of the individual coefficients ai appearing in (5.34) are given by:

a10 = 86416243200(3− e)4(1− e)3(1+ e)7πSt6ν7, (B.1)

a9 = 28805414400(3− e)3(1− e)2(1+ e)6(19−13e)π(3/2)St5ν6, (B.2)

a8 = 28576800(3− e)2(1− e)(1+ e)5π2St4ν5
(

252(197−278e+93e2)

+5(1747−1438e+363e2)St2
)
, (B.3)

a7 = 3810240(3− e)(1+ e)4√πSt3ν4
(

2100(1− e)(241−284e+79e2)π2

+25(12607−19952e+10099e2−1746e3)π2St2

−3456(3− e)3(1− e)2(1+ e)4St3ν3
)
, (B.4)

a6 = 79380(1+ e)3πSt2ν3
(

21000(1− e)(871−854e+199e2)π2

+500(56617−78677e+35629e2−5361e3)π2St2

−125(1691+539e−1223e2+337e3)π2St4

−27648(3− e)3(1− e)(1+ e)4(29−23e)St3ν3
)
, (B.5)

a5 = 18900(1+ e)2π(3/2)Stν2
(

441000(1− e)(23−11e)π2

+10500(3437−3093e+688e2)π2St2−875(477+442e−247e2)π2St4

−580608(3− e)2(1− e)(1+ e)4(11−7e)St3ν3

−1152(3− e)2(1+ e)4(991−934e+279e2)St5ν3
)
, (B.6)
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a4 = 63(1+ e)ν
(

165375000(1− e)π4+656250(2437−1069e)π4St2

−109375(107+193e)π4St4−48384000(3− e)(1− e)(1+ e)4(37−19e)π2St3ν3

−288000(3− e)(1+ e)4(3917−3368e+843e2)π2St5ν3

−3024000(3− e)3(1+ e)4π3St6ν3 +7962624(3− e)4(1− e)(1+ e)8St6ν6
)
, (B.7)

a3 = 2520
√

πSt
(

2296875π4−504000(1− e)(1+ e)4(41−17e)π2Stν3

−6000(1+ e)4(5617−4438e+933e2)π2St3ν3 −189000(3− e)2(1+ e)4π3St4ν3

−1000(1+ e)4(1203−1002e+247e2)π2St5ν3

+663552(3− e)3(1− e)(1+ e)8St4ν6
)
, (B.8)

a2 =−2400(1+ e)3πStν2
(

1323000(1− e)π2+15750(383−151e)π2St2

+165375(3− e)π3St3+875(789−305e)π2St4

−870912(3− e)2(1− e)(1+ e)4St3ν3 −1728(3− e)2(1+ e)4(47−39e)St5ν3
)
, (B.9)

a1 =−2000(1+ e)2π(3/2)St2ν
(

441000π2+55125π3St +98000π2St2

−580608(3− e)(1− e)(1+ e)4Stν3 −3456(3− e)(1+ e)4(47−39e)St3ν3
)
, (B.10)

a0 = 1440000(1+ e)5π2St2(4+St2)ν3
(

42(1− e)+(13−9e)St2
)
. (B.11)



Appendix C

Ordering analysis to determine three

temperatures

We will solve (5.34) analytically in the asymptotic limit ν ≪ 1, St ≫ 1, and St3ν ≪ 1 (Tsao

& Koch 1995), and three feasible solutions have been found as described below.

C.1 Temperature in the quenched state

For ξ ∼ O(St3/2√ν), the leading order term in (5.34) is O(St
11
2 ν

3
2 ) and consequently we have

a3ξ 3 +a1ξ = 0, (C.1)

where

a3 = 5788125000π
9
2 St, a1 =−196000000π

7
2 (1+ e)2St4ν. (C.2)

The solution at this level of approximation is

Tqs = ξ 2 =
32(1+ e)2

945π
St3ν, (C.3)

which corresponds to the temperature in the quenched state. Note that the quenched tempera-

ture increases with increasing both St and ν .



206 Ordering analysis to determine three temperatures

C.2 Unstable temperature

When ξ ∼O(St3ν)−1, the highest-order term in (5.34) is O(1/St8ν3), and on neglecting terms

smaller than this, we have at leading order

a4ξ 4 +a3ξ 3 = 0, (C.4)

where

a4 =−6890625(1+ e)(107+193e)π4St4ν, a3 = 5788125000π
9
2 St. (C.5)

Therefore, we have

√
Tus = ξ =

840
√

π

(1+ e)(107+193e)

(
1

St3ν

)
, (C.6)

This is the temperature of an intermediate state which is unstable – note that Tus decreases

with increasing St and ν .

C.3 Temperature in the ignited state

In the asymptotic limit of ξ ∼O(St/ν), the leading order term of aiξ
i i= 0(1)11 is O(St12/ν3)

and consequently we have from (5.34)

a7ξ 7 +a6ξ 6 = 0, (C.7)

where

a7 = 95256000(3− e)(1+ e)4(12607−19952e+10099e2−1746e3)π
5
2 St5ν4,

a6 =−9922500(1+ e)3(1691+539e−1223e2+337e3)π3St6ν3.

}
. (C.8)

Therefore, the temperature at this order of approximation is

√
Tis = ξ =

5(1691+539e−1223e2+337e3)
√

π

48(3− e)(1+ e)(12607−19952e+10099e2−1746e3)

(
St

ν

)
, (C.9)

which corresponds to the temperature in the ignited state. While Tis increases with increasing

St, it deceases with increasing the particle volume fraction ν .
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Analytical determination of limit-points

Stc1 and Stc2

At the critical/limit points, two solution branches of (5.34) corresponding to two different

states [(i) quenched (Tqs) and unstable (Tus) states and (ii) unstable (Tus) and ignited (Tis)

states] meet and consequently we have saddle-node bifurcations from one stable state to an-

other. Therefore, these limit points correspond to the double roots of (5.34) at which the

following conditions must be satisfied:

G (ξc) = 0 and G ′(ξc) = 0. (D.1)

D.1 Determining Stc1: discontinuous transition from “ignited”

to “quenched” states

The critical Stokes number, Stc1, for the transition from the ignited to quenched states cor-

responds to the limit point at which the temperatures corresponding to the ignited (Tis) and

unstable (Tus) branches overlap with each other. Considering ξ ∼ O(νSt)−1 ≫ 1, and retain-

ing the highest-order terms, (5.34) reduces to

G ≈ a7ξ 7 +a6ξ 6 +a5ξ 5 +a4ξ 4 +a3ξ 3 = 0 = a7ξ 4 +a6ξ 3 +a5ξ 2 +a4ξ +a3,

(D.2)

and 4a7ξ 3 +3a6ξ 2 +2a5ξ +a4 = 0, (D.3)
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where

a7 = 95256000(3− e)(1+ e)4(12607−19952e+10099e2−1746e3)π
5
2 St5ν4,

a6 = 9922500(1+ e)3π3St4
(

4(56617−78677e+35629e2−5361e3)

−(1691+539e−1223e2+337e3)St2
)

ν3,

a5 = 16537500(1+ e)2π
7
2 St3

(
12(3437−3093e+688e2)

−(477+442e−247e2)St2
)

ν2,

a4 = 6890625(1+ e)π4St2(6(2437−1069e)− (107+193e)St2)ν,

a3 = 5788125000π
9
2 St.





(D.4)

Using the condition of equal roots of a fourth-degree polynomial (D.2), we obtain an expres-

sion for the critical Stokes number for the “ignited-to-unstable” transition:

Stc1 ≈ 9.9−4.91e. (D.5)

While decreasing the Stokes number along the ignited-state branch (see figure 5.2), the system

jumps from the ignited to the quenched state at St < Stc1 for all ν < ν l
us (3.8). Therefore,

(D.5) represents the minimum/critical Stokes number below which (5.34) admits the unique

“quenched” state solution.

D.2 Determining Stc2: discontinuous transition from “quenched”

to “ignited” state

The limit point corresponding to the overlap of the quenched and unstable branches of the

system is denoted by the Stokes number Stc2 at which the temperatures associated with the

quenched (Tqs) and unstable (Tus) states coincide – above this critical value of Stokes number

the quenched state ceases to exist. Mathematically, Stc2 is the point of the double root Tis = Tus

of (5.34). above which there exists only one feasible solution Tis (corresponding to the ignited

state) and the system jumps from the quenched state into the ignited state At this order of

approximation ξ ∼O(1) and the highest order terms are of the orders of νSt4 and St. Therefore

on neglecting the terms of O(St4ν2) and using the statement of Tis = Tus, we have from (5.34)

G (ξc)≈ a4ξ 4 +a3ξ 3 +a1ξ = 0 = a4ξ 3 +a3ξ 2 +a1, (D.6)

and G ′(ξc)≈ 3a4ξ 2 +2a3ξ = 0, (D.7)
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where

a4 =−6890625(1+ e)(107+193e)π4St4ν,

a3 = 5788125000π
9
2 St,

a1 =−196000000(1+ e)2π
7
2 St4ν.





(D.8)

It follows from (D.7) that

ξc =
−2a3

3a4
=

560
√

π

(1+ e)(170+193e)St3ν
. (D.9)

On substituting (D.9) into (D.6) we obtain the critical-surface

St3
c2

νc =

(
3087000π2

(1+ e)4(107+193e)2

) 1
3

, (D.10)

above which only the ignited state exists.





Appendix E

Grad’s moment expansion (GME) for

inelastic gas-solid suspension

The standard Grad’s moment expansion (GME) in terms of a truncated Hermite series around

the Maxwellian (Grad 1949) has been employed by many researchers (Herdegen & Hess 1982;

Tsao & Koch 1995; Chamorro et al. 2015) to analyse the Boltzmann equation for a “sheared”

hard-sphere gas as well as gas-solid suspensions.

• Herdegen & Hess (1982)⇒ e = 1, St = ∞ (Dilute gas of elastic hard-spheres)

• Tsao & Koch (1995)⇒ e = 1, St finite (Suspension of elastic hard-spheres)

• Chamorro et al. (2015)⇒ e 6= 1, St finite (Suspension of inelastic hard-spheres)

For the case of a dilute gas-solid suspension of “inelastic” hard-spheres, the collisional

production term of the second moment has been evaluated as:

ℵαβ =−8ρpν2(1− e2)T
3
2

√
πσ

δαβ − 24ν(1+ e)(3− e)T
1
2

5
√

πσ
P〈αβ 〉

+
(1+ e)

35
√

πσρpT
1
2

{
(5+3e)P〈kl〉P〈kl〉δαβ +12(e−3)P〈αl〉P〈lβ 〉

}
, (E.1)

where the underlined terms represent the quadratic nonlinearity in the pressure deviator P〈αβ 〉=

Pαβ − pδαβ , with p = Pαα/3; ρp = m/(πσ 3/6) is the intrinsic/material density of particles,

ν is the particle volume fraction and e is the restitution coefficient. In fact, the second normal-

stress difference is zero (N2 = 0) in the absence of the underlined non-linear terms in (E.1),

see the proof at the end of this appendix.
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Defining the non-dimensional quantities as

P∗ =
P

ρpν(γ̇σ/2)2 , T ∗ =
T

(γ̇σ/2)2 , ℵ∗ =
ℵ

ρpνγ̇3(σ/2)2 , (E.2)

and on omitting the ∗ signs, for convenience, the dimensionless second-moment balance for

steady homogeneous shear flow,

Pδβ uα,δ +Pδαuβ ,δ +
2
St

Pαβ = ℵαβ , (E.3)

can be written in component form as follows:

(1+ e)(5+3e)
(

P2
〈xx〉+P2

〈yy〉+P2
〈zz〉+2P2

xy

)
−12(1+ e)(3− e)

(
P2
〈xx〉+P2

xy

)

−280(1− e2)T 2 −168(1+ e)(3− e)TP〈xx〉−
140

√
π
√

T Pxy

ν

− 140
√

π
√

T

Stν
(T +P〈xx〉) = 0, (E.4)

(1+ e)(5+3e)
(

P2
〈xx〉+P2

〈yy〉+P2
〈zz〉+2P2

xy

)
−12(1+ e)(3− e)

(
P2
〈yy〉+P2

xy

)

−280(1− e2)T 2 −168(1+ e)(3− e)TP〈yy〉−
140

√
π
√

T

Stν
(T +P〈yy〉) = 0, (E.5)

(1+ e)(5+3e)
(

P2
〈xx〉+P2

〈yy〉+P2
〈zz〉+2P2

xy

)
−12(1+ e)(3− e)P2

〈zz〉

−280(1− e2)T 2 −168(1+ e)(3− e)TP〈zz〉−
140

√
π
√

T

Stν
(T +P〈zz〉) = 0, (E.6)

12(1+ e)(3− e)PxyP〈zz〉−168(1+ e)(3− e)TPxy −
70

√
π
√

T

ν
(T +P〈yy〉)

− 140
√

πT
1
2

Stν
Pxy = 0, (E.7)

along with constraint P̂αα = 0. These equations have been solved numerically for specified

values of e, St and ν to yield T , P〈αα〉 and Pxy; two normal stress differences N1 and N2 can

be expressed in terms of P〈αα〉. These are dubbed “GME” solutions and their comparisons

with the present theory (§5.4) based on anisotropic-Maxwellian expansion (AME) are shown

in figures 5.10, 5.11 and 5.13, as discussed in §5.5.1 and §5.5.2.

Theorem 5.0.1. The source term is uniquely decomposed as ℵαβ =
(

1
3ℵγγ

)
δαβ +ℵ〈αβ 〉. If

ℵ〈αβ 〉 = BP〈αβ 〉, then N2 = 0.
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Proof. For the case of homogeneous shear ux = γ̇y, uy = 0, uz = 0; the balance of second

moment for a granular gas is

Pδβ uα,δ +Pδαuβ ,δ = ℵαβ . (5.8)

Now, upon substituting α = 2, β = 2 and α = 3, β = 3 we have

ℵ22 = 0 = ℵ33. (5.9)

From Pi j = pδi j +P〈i j〉, we can write

N2 =
(
P〈22〉−P〈33〉

)
= B−1 (ℵ〈22〉−ℵ〈33〉

)
= 0. (5.10)

Of course, (5.10) is in contradiction with (i) the nonlinear expression (E.1) obtained from

the standard Grad-moment expansion as well as with (ii) our choice of anisotropic Maxwellian

distribution function, both yielding N2 6= 0.





Chapter 6

Summary

In this Chapter a summary of the research work done in this thesis alongwith conclusion made

are presented. We have tried to address the issues, which were raised in Chapter Chapter 1

(Introduction). A brief discussion about the future work that can be derived from the thesis is

also given. A chapter-wise summary of the present work is provided below.

A complete 14/10 moment theory for a “dense” granular gas using Grad’s moment method

Grad (1949) is proposed in Chapter 2. An expansion around the Gaussian is performed to

obtain the non-equilibrium distribution function. A Grad like moment theory has been estab-

lished in terms of the fourteen field variables: i) the mass density (ρ), ii) macroscopic flow

velocity (uuu), iii) kinetic stress (PPPk), iv) kinetic heat flux (qqqk) and v) the contracted fourth

moment Pii j j. The collisional source and flux terms at different orders are calculated by in-

cluding all the nonlinear terms arising from these hydrodynamic field variables and their gra-

dients. The collisional dissipation or the cooling rate is derived for the whole range of volume

fraction that includes second order derivatives of the hydrodynamic variables as well. A gen-

eralized Fourier law for granular heat flux is established using Maxwell iteration technique.

It is observed that even at Navier-Stokes level (5 field theory) the thermal conductivity is an

anisotropic-asymmetric tensor and the anisotropy follows from the presence of higher order

nonlinear terms in ℵαββ . The gradient of kinetic stress also drives a heat current at the 10 mo-

ment theory and these features are clear signatures for non-Fourier rheology. Finally, this 14

moment theory is applied to analyse the uniform shear flow of a 3-dimensional granular fluid.

Analytical expressions of all the transport coefficients are determined as a function of the coef-

ficient of restitution (e) and the solid volume fraction (ν) using this higher order theory. The

non-Newtonian rheology appears in this granular uniform shear flow in terms of the normal

stress differences is also appreciated. An effort has been made to develop a complete theory

that can be applicable to granular flows at any choice of inelasticity and volume fraction.
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In Chapter 3, an extended hydrodynamics equations, in terms of ten-moments (the den-

sity, the velocity vector and the second moment tensor), are proposed for a granular fluid that

include the normal stress differences as well as the granular heat flux. For the steady uni-

form shear flow of smooth inelastic spheres, the constitutive relations are derived by choosing

the anisotropic/triaxial Gaussian as the single-particle distribution function. The equation for

the second moment of velocity fluctuations is solved semi-analytically, yielding closed-form

expressions for the ‘non-Newtonian’ stress tensor, the shear viscosity and the collisional dis-

sipation rate for the whole range of density (i.e. the volume fraction of particles). The first

normal stress difference N1 is found to be positive in the dilute limit and decreases monoton-

ically to zero in the dense limit. However, the second normal stress difference N2 is negative

and positive in the dilute and dense limits, respectively, and the sign-change of N2 at a fi-

nite density is due to the sign-change of its kinetic component. The origin of N1 is tied to

the non-coaxiality (φ 6= 0) between the eigen-directions of the second-moment tensor MMM and

those of the shear tensor DDD; the non-coaxiality angle φ is maximum in the dilute limit and

decreases with increasing density, resulting in co-linear (i.e. φ = 0) eigen-directions between

MMM and DDD and consequently N1 → 0 in the maximum packing limit. In contrast, the origin of

N2 in the dilute limit is tied to the ‘excess’ temperature (T ex
z = T −Tz, where Tz and T are

the z-component and the average of the granular temperature respectively) along the mean-

vorticity (z) direction, whereas its origin in the dense limit is tied to the imposed shear field.

Theoretical expressions for both N1 and N2 as well as for pressure and shear viscosity agree

well with previous simulation data for the uniform shear flow of inelastic hard-spheres (Alam

& Luding, Powders & Grains, 2005, pp. 1141-1145) for a large range of volume fractions

spanning from the dilute to the dense regime. Based on our analytical solution for the dense

limit, we show that the eigen-directions of the collisional stress tensor PPPc are co-linear with

those of the shear tensor DDD as is the case for the kinetic stress (PPPk = ρMMM) in the same limit.

The proposed 10-moment hydrodynamic theory is made closed by deriving the constitutive re-

lation for the granular heat flux via a perturbation expansion around the anisotropic Gaussian

state. It is shown that the gradient of the kinetic stress also drives a heat current in addition to

the standard Fourier-current driven by the temperature gradient, and the ‘generalized’ thermal

conductivity is characterized by an anisotropic second-rank tensor. The leading off-diagonal

terms of the conductivity tensor vary quadratically with the shear rate and hence its anisotropy

is a Burnett-order effect. An improvement over the other Grad-level theories in terms of suc-

cessful determination of the two normal stress differences for the whole range of density is

discussed.

In Chapter 4, the normal stress differences along with other transport coefficients are

analysed for the simple shear flow of a dense gas-solid suspension of inelastic hard spheres
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suspended in a fluid of viscosity µg and experiencing a Stokes drag force. Viscous heating is

compensated by dissipation via two mechanisms (i) the inelastic collisions between particles

characterized by a coefficient of normal restitution e (0 < e < 1) and (ii) the Stokes drag force

which the surround fluid exerts on the particles. Rheology of the particle phase is analysed

with anisotropic-Gaussian as the single particle distribution function. The first and second

normal stress differences along-with other transport coefficients are computed for the whole

range of density (ν) and inelasticity (e) with the scaled Stokes number (Std = St/Rdiss) varying

from a very low limit 10 to the dry granular limit St → ∞. An exact solution of the second

moment balance of velocity fluctuations at Burnett order (i.e second order in the shear rate)

has been derived, leading to analytical expressions for the first (N1) and the second (N2)

normal stress differences. On assuming the Burnett order solution as the base state solution

a perturbative solution at the super-super-Burnett order (i.e fourth order in the shear rate) is

also derived and that improves the analytical base. It is observed that the first normal stress

difference is maximum in the dilute regime and tends to zero at the dense limit but remains

positive throughout, on the other hand the second normal stress difference is negative in the

dilute limit undergoes a sign change at some finite density and becomes positive in the dense

limit. The location of the critical density, where second normal stress difference changes

its sign is determined and plotted as a 3-dimensional critical surface. This work is a direct

extension of chapter 3 (St → ∞), including the interstitial fluid effects (St = finite). Finally, as

we approach the limit of St → ∞ (µg → 0), results for the dry granular flows of chapter 3 are

directly followed.

In Chapter 5, the hydrodynamics and rheology of a sheared dilute gas-solid suspen-

sion, consisting of inelastic hard-spheres suspended in a gas, are analysed using anisotropic

Maxwellian as the single particle distribution function. The closed-form solutions for granular

temperature (T ) and three invariants of the second-moment tensor are obtained as functions of

the Stokes number (St), the mean density (ν) and the restitution coefficient (e). Multiple states

of high and low temperatures are found when the Stokes number is small, thus recovering the

“ignited” and “quenched” states, respectively, of Tsao & Koch (1995) (J. Fluid Mech.,1995,

vol. 296, pp. 211-246). The phase diagram is constructed in the three-dimensional (ν,St,e)-

space that delineates the regions of ignited and quenched states and their coexistence. Ana-

lytical expressions for the particle-phase shear viscosity and the normal stress differences are

obtained, along with related scaling relations on the quenched and ignited states. At any e,

the shear-viscosity undergoes a discontinuous jump with increasing shear rate (i.e. discontin-

uous shear-thickening) at the “quenched-ignited” transition. The first (N1) and second (N2)

normal-stress differences also undergo similar first-order transitions: (i) N1 jumps from large

to small positive values and (ii) N2 from positive to negative values with increasing St, with
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the sign-change of N2 identified with the system making a transition from the quenched to

ignited states. The superior prediction of the present theory over the standard Grad’s method

and the Chapman-Enskog solution is demonstrated via comparisons of transport coefficients

with simulation data for a range of Stokes number and restitution coefficient.
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Appendix F

Evaluation of Collision Integrals in Terms

of Series Expansion

In (3.76-3.77), H δ p

αβγ , J δ p

αβγ and K δ p

αβγ have integral expressions over θ and ϕ:

H δ p

αβγ
(η,R,φ ,λ )≡

ˆ 2π

θ=0

ˆ π

ϕ=0
sinα 2θ cosβ 2θ sinδ ϕ cosp ϕ

×
(
1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)

) γ
2 F(χ [η,R,φ ,λ ;θ ,ϕ])dϕdθ , (F.1)

J δ p

αβγ
(η,R,φ ,λ )≡

ˆ 2π

θ=0

ˆ π

ϕ=0
sinα 2θ cosβ 2θ sinδ ϕ cosp ϕ

× {1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)}
γ
2G(χ [η,R,φ ,λ ;θ ,ϕ])dϕdθ , (F.2)

K δ p

αβ
(η,R,φ ,λ )≡

ˆ 2π

θ=0

ˆ π

ϕ=0
sinα 2θ cosβ 2θ sinδ ϕ cosp ϕ

[
(1−2λ 2){sin(2φ +2θ)− cosϕ

× cos(2φ +2θ)}+ sin2 ϕ{3λ 2 sin(2φ +2θ)−η sin2φ}
]
G(χ [η,R,φ ,λ ;θ ,ϕ])dϕdθ ,

(F.3)

where F(χ) and G(χ) are given by (3.60) and (3.61), respectively.
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After performing term by term integration, and neglecting the terms beyond fourth order

in η , λ , R and sin2φ , we have the integrals as

H 10
003 =

π

210

{
840+2688R2+1024R4 +768R2λ 2 −24η2λ 2 +84

(
η2 +3λ 4

)

+3η4 +672
√

πRη cos2φ −64η2R2
(

2+ cos4φ
)}

, (F.4)

H 30
013 =− 4π

105

[
4
√

πR
(

21+12λ 2 +32R2
)

cos2φ +η
{

42−η2 +12λ 2

+32R2
(

2+ cos4φ
)}]

, (F.5)

H 30
103 =

16π

105
Rsin2φ

{√
π
(

21+12λ 2 +32R2
)
+16ηRcos2φ

}
, (F.6)

2H 12
003 −H 30

003 =− 4π

1155

{
528

√
πRη cos2φ +1386λ 2 +66

(
η2 −3λ 4

)
−33η2λ 2

+1024R4 +3η4 +32R2
(

66−4η2 +33λ 2 −2η2 cos4φ
)}

, (F.7)

2η
(
H 31

101 −H 32
011

)
+6λ 2H 32

001

=
8π

1155

{
22η2 −64η2R2 +η4 +462λ 2 +1056λ 2R2 −11η2λ 2 −66λ 4

+4
√

πR
(

33+32R2
)

η cos2φ −32R2η2 cos4φ
}
, (F.8)
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2H 31
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021
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H 32
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=− 4π

105

{
36

√
πλ 2Rcos2φ +η
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42−η2 +12λ 2 +160R2 −64R2 cos4φ
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(F.9)
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011

)

=
16π
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J 10
002 =

2π

315
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√
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(
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, (F.14)

J 12
002 =

2π

3465

[
33

√
π
(

35+32R2 −28λ 2
)
−8Rη

{
32R2 −3

(
22+η2

)}
cos2φ

]
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Appendix G

Stress Tensor and Transport Coefficients

in Terms of Collision Integrals

The non-zero components of the dimensionless stress tensor in USF,

PPP∗ =
PPP

ρpU2
R

=




P∗
xx P∗

xy 0

P∗
yx P∗

yy 0

0 0 P∗
zz


 , (G.1)

can be expressed in terms of the collision integral J δ p

αβγ
(η,R,φ ,λ 2) as defined in (3.79) and

(F.2),

P∗
xx = νT ∗

[
(1+λ 2 +η sin2φ)+

3νg0(1+ e)

2π
3
2

(
J 30

002 − sin2φJ 30
012 − cos2φJ 30

102

)]
, (G.2)

P∗
yy = νT ∗

[
(1+λ 2 −η sin2φ)+

3νg0(1+ e)

2π
3
2

(
J 30

002 + sin2φJ 30
012 + cos2φJ 30

102

)]
, (G.3)

P∗
zz = νT ∗

[
(1−2λ 2)+

3νg0(1+ e)

π
3
2

J 12
002

]
, (G.4)

P∗
xy = νT ∗

[
−η cos2φ +

3νg0(1+ e)

2π
3
2

(
cos2φJ 30

012 − sin2φJ 30
102

)]
. (G.5)

In (G.1), UR = 2γ̇σ is the reference velocity scale and ρp = ρ/ν is the material/intrinsic

density of particles.

The dimensionless pressure is given by

p∗ ≡
P∗

xx +P∗
yy +P∗

zz

3
=

ν

64R2

[
1+

νg0(1+ e)

π3/2
J 10

002

]
, (G.6)
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where T ∗ is the granular temperature

T ∗ =
T

UR
2 =

1
64R2 . (G.7)

The expression for the dimensionless shear viscosity is given by

µ∗ = νT ∗
[

η cos2φ − 3νg0(1+ e)

2π
3
2

(
cos2φJ 30

012 − sin2φJ 30
102

)]
. (G.8)

The ‘scaled’ first and second normal stress differences are defined with respect to mean

pressure via

N1 =
Pxx −Pyy

p
and N2 =

Pyy −Pzz

p
. (G.9)



Appendix H

Fourth-order Perturbation Solutions at

Finite Density

We look for perturbation solutions of second moment equations in the form

η =η(2)+ εη(3)+ ε2η(4)

λ 2 =λ (2)+ ελ (3)+ ε2λ (4)

R =R(2)+ εR(3)+ ε2R(4)

sin2φ =sin2φ (2)+ ε sin2φ (3)+ ε2 sin2φ (4)





. (H.1)

Plugging these perturbation series into corresponding third (super-Burnett) and fourth

(super-super-Burnett) order equations, we obtain perturbation equations at different orders.

At super-Burnett order (third-order in the shear rate), the balance equations for the second

moment are

20
√

π
{

1+
4
5
(1+ e)νg0

}
(η(3)R(2)+η(2)R(3))cos2φ (2)+256(1+ e)νg0R(2)R(3)

−6(1− e2)νg0

{
η(2)η(3)+32R(2)R(3)+4

√
π(η(3)R(2)+η(2)R(3))cos2φ (2)

}
= 0

35
√

π(η(3)R(2)+η(2)R(3))cos2φ (2)+2(1+ e)νg0

{
32(1+3e)R(2)R(3)

−3(3− e)(η(2)η(3)+21λ (2)λ (3))−8
√

π(4−3e)(η(3)R(2)+η(2)R(3))cos2φ (2)
}
= 0

5
√

πR(3) cos2φ (2)− (1+ e)νg0{3(3− e)η(3)+2(1−3e)
√

πR(3) cos2φ (2)}= 0

5(η(3)− sin2φ (3))+2(1+ e)(1−3e)νg0 sin2φ (3) = 0





.

(H.2)
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The solutions for third order corrections are zero. At fourth order in the shear rate, the pertur-

bation equations are

1680
√

πε2(η(4)R(2)+η(2)R(4))cos2φ (2)−3(1− e2)νg0

(
168ε2η(2)η(4)+3η(2)4
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The solution of these equations are

ε2η(4) =

[[√
πνg0 cos2φ (2){5−2(1+ e)(1−3e)νg0}

{
1024(1+ e)(5+3e)R(2)4

−192(1+ e)(1+3e)R(2)2
(

η(2)2 −4λ (2)2
)
−9(1− e2)

(
η(2)4 −8η(2)2

λ (2)2
+84λ (2)4

)}]

−
[
8
{

5
√

πη(2) cos2φ (2)+2(1+ e)νg0

(
8(1+3e)R(2)− (1−3e)

√
πη(2) cos2φ (2)

)}

×
{

210
√

πλ (2)2
R(2) cos2φ (2)−48(1+ e)

√
πνg0R(2) cos2φ (2)

(
(4−3e)λ (2)2 −8(1+ e)R(2)2

)

−3(1+ e)νg0η(2)
(

32(1−3e)R(2)2 − (3− e)(η(2)2 −λ (2)2
)
)}]]

[
4
[√

π cos2φ (2)
{

2
√

π cos2φ (2){5−2(1+ e)(1−3e)νg0}R(2)−3(1− e2)νg0η(2)
}

×{5−2(1+ e)(1−3e)νg0}+6(3− e)(1+ e)νg0

{
5
√

πη(2) cos2φ (2)

+2(1+ e)νg0

(
8(1+3e)R(2)− (1−3e)

√
πη(2) cos2φ (2)

)}]]
, (H.4)

ε2λ (4) =
1

238848λ (2)

([
28

(3− e)

{
1024(5+3e)R(2)4

+96R(2)2
(

2(2−3e)η(2)2 −11(5−3e)λ (2)2
)
−9(3− e)

(
η(2)4 −11η(2)2

λ (2)2 −66λ (2)4
)}]

−
[

132
[
35

√
πη(2) cos2φ (2)+8(1+ e)νg0

{
8(1+3e)R(2)− (4−3e)

√
πη(2) cos2φ (2)

}]

×
[
70

√
πλ (2)2

R(2) cos2φ (2)+(1+ e)νg0

{
16

√
πR(2) cos2φ (2)

(
(1+ e)R(2)2 − (4−3e)λ (2)2

)

−32(1−3e)η(2)2
R(2)+3(3− e)η(2)

(
η(2)2 −12λ (2)2

)}]

(3− e)(1+ e)
√

π{5−2(1+ e)(1−3e)νg0}νg0 cos2φ (2)

]

+

[
1848ε2η(4)

[√
π{35−8(1+ e)(4−3e)νg0}R(2) cos2φ (2)−6(3− e)(1+ e)νg0η(2)

(3− e)(1+ e)νg0

+
3
{

35
√

πη(2) cos2φ (2)+8(1+ e)νg0

(
8(1+3e)R(2)− (4−3e)

√
πη(2) cos2φ (2)

)}

√
π{5−2(1+ e)(1−3e)νg0}cos2φ (2)

]])
,

(H.5)
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ε2R(4) =
1

42
√

π{5−2(1+ e)(1−3e)νg0}cos2φ (2)

[
−210

√
πλ (2)2

R(2) cos2φ (2)

+48(1+ e)
√

πνg0R(2) cos2φ (2)
{
(4−3e)λ (2)2 −8(1+ e)R(2)2

}

+3(1+ e)νg0η(2)
{

32(1−3e)R(2)2 − (3− e)
(

η(2)2 −λ (2)2
)}

+
{

126(3− e)(1+ e)νg0ε2η(4)
}]

, (H.6)

ε2 sin2φ (4) =
[
105

√
π
(

λ (2)2
sin2φ (2)− ε2η(4)

)
+

2(1+ e)νg0 sin2φ (2)
{

16(5+3e)η(2)R(2) cos2φ (2)−3
√

π
(
4(4−3e)λ (2)2 −32(1+ e)R(2)2

)}]

21
√

π{2(1+ e)(1−3e)νg0−5} .

(H.7)



Appendix I

Source of Second Moment Tensor

Retaining terms up-to O(ηmλ nRn sinq(2φ), m+ n+ p+ q ≤ 4), the expressions for the non-

zero elements of the source of the second moment tensor (3.126) in USF are given by

ℵxx = Axx + Êxx + Ĝxx +2γ̇Θxy

=−(1− e2)ρνg0T
3
2

385σπ
1
2

[
3080+12672R2+5120R4 +396η2 −640η2R2 +15η4

+1848λ 2+4224λ 2R2 −132η2λ 2 +660λ 4 +3168
√

πηRcos2φ −320η2R2 cos4φ

+44η sin2φ
{

42+32R2−η2 +12λ 2
}]

− 8(1+ e)ρνg0T
3
2

385σπ
1
2

[
22η2 −64η2R2 +η4 +462λ 2 +1056λ 2R2 −11η2λ 2 −66λ 4

+4
√

πR(33+32R2)η cos2φ −32R2η2 cos4φ +11η sin2φ
{

42+224R2−η2 +12λ 2
}]

− 8(1+ e)ρνg0T γ̇

1155π
1
2

[
3
√

πη
(

77−32R2
)

cos2φ +32R
{

66+48R2 −2η2

−η2 cos4φ −44η sin2φ
}]

, (I.1)
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ℵyy = Ayy + Êyy + Ĝyy −2γ̇Θxy

=−(1− e2)ρνg0T
3
2

385σπ
1
2

[
3080+12672R2+5120R4 +396η2 −640η2R2 +15η4

+1848λ 2 +4224λ 2R2 −132η2λ 2 +660λ 4 +3168
√

πηRcos2φ −320η2R2 cos4φ

−44η sin2φ
{

42+32R2 −η2 +12λ 2
}]

− 8(1+ e)ρνg0T
3
2

385σπ
1
2

[
22η2 −64η2R2 +η4 +462λ 2 +1056λ 2R2 −11η2λ 2 −66λ 4

+4
√

πR(33+32R2)η cos2φ −32R2η2 cos4φ −11η sin2φ
{

42+224R2 −η2 +12λ 2
}]

+
8(1+ e)ρνg0T γ̇

1155π
1
2

[
3
√

πη
(

77+32R2
)

cos2φ +8R
{

198+160R2 −14η2

+132λ 2 −7η2 cos4φ −176η sin2φ
]
, (I.2)

ℵzz = Azz + Êzz + Ĝzz

=−(1− e2)ρνg0T
3
2

385σπ
1
2

[
3080+4224R2+1024R4 +132η2 −128R2η2 +3η4 −3696λ 2

+1452λ 4 +1056
√

πRη cos2φ −64R2η2 cos4φ
]

+
16(1+ e)ρνg0T

3
2

385σπ
1
2

[
22η2 −64R2η2 +η4 +462λ 2 +1056R2λ 2 −11η2λ 2 −66λ 4

+4
√

πR(33+32R2)η cos2φ −32R2η2 cos4φ
]

+
64(1+ e)ρνg0T γ̇

1155π
1
2

R
(

66+32R2+6η2 −132λ 2 −24
√

πRη cos2φ +3η2 cos4φ
)
,

(I.3)
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ℵxy = Axy + Êxy + Ĝxy + γ̇
(

Θyy −Θxx

)

=
4(1− e2)ρνg0T

3
2

35σπ
1
2

[
4
√

πR(21+32R2+12λ 2)+η(42+96R2−η2 +12λ 2)cos2φ
]

+
8(1+ e)ρνg0T

3
2

35σπ
1
2

[
36

√
πRλ 2 +η(42+96R2 −η2 +12λ 2)cos2φ

]

+
4(1+ e)ρνg0T γ̇

1155
√

π

[√
π(693+1056R2−576R2λ 2 cos2 2φ −462η sin2φ)

−4Rη(132+15η2 −145λ 2)cos2φ +60Rη3 cos6φ

−148ηλ 2Rcos6φ +88Rη2 sin4φ
]
. (I.4)





Appendix J

Contracted Third-order Source Term

(ℵαβ β) in the dilute limit

The contracted third-order source term ℵαββ in the evaluation of heat flux (3.166) has the

following form

ℵαββ = ℵ[mC2Cα ]

=
mσ 2

2

ˆ ˆ ˆ

g·k>0
∆(C2Cα) f (2)(c1,r,c2,r)(g ·k)dkdc1dc2. (J.1)

In the following we will evaluate this multi-dimensional integral to obtain a closed-form alge-

braic expression for ℵαββ as given by (3.161) in the main text.

Changing the variables of integration from c1, c2 to g = c1 − c2 = C1 −C2, G = (C1 +

C2)/2; dc1dc2=dC1dC2=dgdG and using

∆(C2Cα) =

[
(1+ e)2(g ·k)2Gβ kβ kα − (1+ e)(g ·k)Gβ (kβ gα +gβ kα)

− 1
2
(1− e2)(g ·k)2Gα

]
, (J.2)
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along with the molecular-chaos assumption for the two-body distribution function f (2), we

can rewrite (J.1) as

ℵαββ =
mσ 2n2

16π3|M|

ˆ ˆ ˆ

g·k>0[
(1+ e)2(g ·k)3Gβ kβ kα − (1+ e)(g ·k)2Gβ (kβ gα +gβ kα)−

1
2
(1− e2)(g ·k)3Gα

]

exp

{
− 1

4
M−1

ab (4GaGb +gagb)

}[
1+2aiGi +bi fi(g,G)

]
dGdgdk

= I
(1)
αββ + I

(2)
αββ + I

(3)
αββ . (J.3)

where Einstein’s summation convention has been used in repeated index and

f1 = 1
2(3g2

1+g2
2 +g2

3)G1 +g1(g2G2 +g3G3)+2G1G2,

f2 = 1
2(g

2
1+3g2

2 +g2
3)G2 +g2(g1G1 +g3G3)+2G2G2,

f3 = 1
2(g

2
1+g2

2 +3g2
3)G3 +g3(g1G1 +g2G2)+2G3G2.





(J.4)

Now using the following results

´

exp
{
−GaM−1

ab Gb

}
dG = π

3
2 |M| 1

2 ,
´

GiG j exp
{
−GaM−1

ab Gb

}
dG = π

3
2

2 |M| 1
2 Mi j,

´

GiG jGkGl exp
{
−GaM−1

ab Gb

}
dG = π

3
2

4 |M| 1
2 (Mi jMkl +MikM jl +MilM jk),





(J.5)

we can simplify the three integrals I
(k)
αββ in (J.3) as

I
(1)
αββ

=
mσ 2n2(1+ e)2

16π
3
2 |M| 1

2

ˆ ˆ

g·k>0
(g ·k)3kαkβ exp

{
− 1

4
gaM−1

ab gb

}

×
[{

a1 +
1
2

b1

(
3Mxx +Myy +Mzz

)
+b2Mxy

}
M1β

+
{

a2 +
1
2

b2

(
Mxx +3Myy+Mzz

)
+b1Mxy

}
M2β

+
{

a3 +
1
2

b3

(
Mxx +Myy +3Mzz

)}
M3β

+
1
4

g2
1

(
3b1M1β +b2M2β +b3M3β

)
+

1
4

g2
2

(
b1M1β +3b2M2β +b3M3β

)

+
1
4

g2
3

(
b1M1β +b2M2β +3b3M3β

)
+

1
2

g1g2

(
b1M2β +b2M1β

)

+
1
2

g1g3

(
b1M3β +b3M1β

)
+

1
2

g2g3

(
b2M3β +b3M2β

)]
dgdk, (J.6)
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I
(2)
αββ

=−mσ 2n2(1+ e)

16π
3
2 |M| 1

2

ˆ ˆ

g·k>0
(g ·k)2

(
kαgβ +gαkβ

)
exp

{
− 1

4
gaM−1

ab gb

}

×
[{

a1 +
1
2

b1

(
3Mxx +Myy +Mzz

)
+b2Mxy

}
M1β

+
{

a2 +
1
2

b2

(
Mxx +3Myy +Mzz

)
+b1Mxy

}
M2β

+
{

a3 +
1
2

b3

(
Mxx +Myy +3Mzz

)}
M3β

+
1
4

g2
1

(
3b1M1β +b2M2β +b3M3β

)
+

1
4

g2
2

(
b1M1β +3b2M2β +b3M3β

)

+
1
4

g2
3

(
b1M1β +b2M2β +3b3M3β

)
+

1
2

g1g2

(
b1M2β +b2M1β

)

+
1
2

g1g3

(
b1M3β +b3M1β

)
+

1
2

g2g3

(
b2M3β +b3M2β

)]
dgdk, (J.7)

I
(3)
αββ

=−mσ 2n2(1− e2)

32π
3
2 |M| 1

2

ˆ ˆ

g·k>0
(g ·k)3 exp

{
− 1

4
gaM−1

ab gb

}

×
[{

a1 +
1
2

b1

(
3Mxx +Myy +Mzz

)
+b2Mxy

}
M1α

+
{

a2 +
1
2

b2

(
Mxx +3Myy +Mzz

)
+b1Mxy

}
M2α

+
{

a3 +
1
2

b3

(
Mxx +Myy +3Mzz

)}
M3α

+
1
4

g2
1

(
3b1M1α +b2M2α +b3M3α

)
+

1
4

g2
2

(
b1M1α +3b2M2α +b3M3α

)

+
1
4

g2
3

(
b1M1α +b2M2α +3b3M3α

)
+

1
2

g1g2

(
b1M2α +b2M1α

)

+
1
2

g1g3

(
b1M3α +b3M1α

)
+

1
2

g2g3

(
b2M3α +b3M2α

)]
dgdk. (J.8)

To obtain closed-form expressions for integrals (J.6), (J.7) and (J.8), it remains to carry out

integrations over g and k. To carry out the integrations over g we use the following results:

ˆ

(g ·k)3 exp

{
− 1

4
gaM−1

ab gb

}
dg = 32π |M| 1

2 ϑ
3
2 , (J.9)
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ˆ

g2
x(g ·k)3 exp

{
− 1

4
gaM−1

ab gb

}
dg

= 16π |M| 1
2 ϑ

1
2 T 2
[
7+3η2 +8λ 2 +λ 4 +6

{
η2 − (1+λ 2)2

}
cos2φ sin2 ϕ sin2θ

+2η(5+2λ 2)sin2φ −3cos2ϕ
{

1+η2 +4λ 2 +3λ 4 +2η(1+2λ 2)sin2φ
}

−2cos2θ sin2 ϕ
{

8η(1+λ 2)+
(

5η2 +3(1+λ 2)2
)

sin2φ
}]

, (J.10)

ˆ

g2
y(g ·k)3 exp

{
− 1

4
gaM−1

ab gb

}
dg

= 16π |M| 1
2 ϑ

1
2 T 2
[
7+3η2 +8λ 2 +λ 4 −6

{
η2 − (1+λ 2)2

}
cos2φ sin2 ϕ sin2θ

−2η(5+2λ 2)sin2φ −3cos2ϕ
{

1+η2 +4λ 2 +3λ 4 −2η(1+2λ 2)sin2φ
}

−2cos2θ sin2 ϕ
{

8η(1+λ 2)−
(

5η2 +3(1+λ 2)2
)

sin2φ
}]

, (J.11)

ˆ

g2
z (g ·k)3 exp

{
− 1

4
gaM−1

ab gb

}
dg

= 32π |M| 1
2 ϑ

1
2 T 2(1−2λ 2)

[
5−7λ 2 +3(1−3λ 2)cos2ϕ −2η cos2θ sin2 ϕ

]
, (J.12)
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ˆ

gxgy(g ·k)3 exp

{
− 1

4
gaM−1

ab gb

}
dg

= 32π |M| 1
2 ϑ

1
2 T 2
[{

5η2 +3(1+λ 2)2
}

cos2φ cos2θ sin2 ϕ −η(5+2λ 2)cos2φ

+3η(1+2λ 2)cos2ϕ cos2φ +3
{

η2 − (1+λ 2)2
}

sin2 ϕ sin2φ sin2θ
]
, (J.13)

ˆ

gxgz(g ·k)3 exp

{
− 1

4
gaM−1

ab gb

}
dg

= 48
√

2π |M| 1
2 ϑ

1
2 T 2 sin2ϕ(1−2λ 2)

[
(1+λ 2)

{
cos(θ +φ)− sin(θ +φ)

}

−η
{

cos(θ −φ)+ sin(θ −φ)
}]

, (J.14)

ˆ

gygz(g ·k)3 exp

{
− 1

4
gaM−1

ab gb

}
dg

= 48
√

2π |M| 1
2 ϑ

1
2 T 2 sin2ϕ(1−2λ 2)

[
(1+λ 2)

{
cos(θ +φ)+ sin(θ +φ)

}

−η
{

cos(θ −φ)− sin(θ −φ)
}]

, (J.15)

ˆ

gx(g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg

= 16
√

2π |M| 1
2 ϑ

1
2 T sinϕ

[
(1+λ 2)

{
cos(θ +φ)− sin(θ +φ)

}

−η
{

cos(θ −φ)+ sin(θ −φ)
}]

, (J.16)

ˆ

gy(g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg

= 16
√

2π |M| 1
2 ϑ

1
2 T sinϕ

[
(1+λ 2)

{
cos(θ +φ)+ sin(θ +φ)

}

−η
{

cos(θ −φ)− sin(θ −φ)
}]

, (J.17)

ˆ

gz(g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg = 32π |M| 1

2 ϑ
1
2 T (1−2λ 2)cosϕ, (J.18)



250 Contracted Third-order Source Term (ℵαββ ) in the dilute limit

ˆ

g3
x(g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg

=
8
√

2π |M| 1
2 T 3

ϑ
1
2

sinϕ
[
(1+λ 2)

{
cos(θ +φ)− sin(θ +φ)

}

−η
{

cos(θ −φ)+ sin(θ −φ)
}][

13+η2 +8λ 2 −5λ 4

+2
{

η2 − (1+λ 2)2
}

cos2φ sin2 ϕ sin2θ +2η(7−2λ 2)sin2φ

− cos2ϕ
{

1+η2 +20λ 2 +19λ 4 +2η(1+10λ 2)sin2φ
}

−2cos2θ sin2 ϕ
{

8η(1+λ 2)+
(

7η2 +(1+λ 2)2
)

sin2φ
}]

, (J.19)

ˆ

g3
y(g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg

=
8
√

2π |M| 1
2 T 3

ϑ
1
2

sinϕ
[
(1+λ 2)

{
cos(θ +φ)+ sin(θ +φ)

}

−η
{

cos(θ −φ)− sin(θ −φ)
}][

13+η2 +8λ 2 −5λ 4

−2
{

η2 − (1+λ 2)2
}

cos2φ sin2 ϕ sin2θ −2η(7−2λ 2)sin2φ

− cos2ϕ
{

1+η2 +20λ 2 +19λ 4 −2η(1+10λ 2)sin2φ
}

−2cos2θ sin2 ϕ
{

8η(1+λ 2)−
(

7η2 +(1+λ 2)2
)

sin2φ
}]

, (J.20)

ˆ

g3
z (g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg

=
32π |M| 1

2 T 3

ϑ
1
2

(1−2λ 2)2 cosϕ
[
7−5λ 2 +(1−11λ 2)cos2ϕ −6η cos2θ sin2 ϕ

]
,

(J.21)
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ˆ

g2
xgz(g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg

=
16π |M| 1

2 T 3

ϑ
1
2

(1−2λ 2)cosϕ
[
5+η2 +4λ 2 −λ 4

+2
{

η2 − (1+λ 2)2
}

cos2φ sin2 ϕ sin2θ +6η sin2φ

− cos2ϕ
{

1+η2 +8λ 2 +7λ 4 +2η(1+4λ 2)sin2φ
}

−2cos2θ sin2 ϕ
{

4η(1+λ 2)+
(

3η2 +(1+λ 2)2
)

sin2φ
}]

, (J.22)

ˆ

gxg2
z (g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg

=
16

√
2π |M| 1

2 T 3

ϑ
1
2

(1−2λ 2)sinϕ
[
(1+λ 2)

{
cos(θ +φ)− sin(θ +φ)

}

−η
{

cos(θ −φ)+ sin(θ −φ)
}][

3−3λ 2 +(1−5λ 2)cos2ϕ −2η cos2θ sin2 ϕ
]
,

ˆ

g2
ygz(g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg

=
16π |M| 1

2 T 3

ϑ
1
2

(1−2λ 2)cosϕ
[
5+η2 +4λ 2 −λ 4

−2
{

η2 − (1+λ 2)2
}

cos2φ sin2 ϕ sin2θ −6η sin2φ

− cos2ϕ
{

1+η2 +8λ 2 +7λ 4 −2η(1+4λ 2)sin2φ
}

+2cos2θ sin2 ϕ
{

4η(1+λ 2)−
(

3η2 +(1+λ 2)2
)

sin[2φ
}]

, (J.23)

ˆ

gyg2
z (g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg

=
16

√
2π |M| 1

2 T 3

ϑ
1
2

(1−2λ 2)sinϕ
[
(1+λ 2)

{
cos(θ +φ)+ sin(θ +φ)

}

−η
{

cos(θ −φ)− sin(θ −φ)
}][

3−3λ 2 +(1−5λ 2)cos2ϕ −2η cos2θ sin2 ϕ
]
,

ˆ

gxgygz(g ·k)2 exp

{
− 1

4
gaM−1

ab gb

}
dg

=
32π |M| 1

2 T 3

ϑ
1
2

(1−2λ 2)cosϕ
[{

η2 − (1+λ 2)2
}

sin2 ϕ sin2θ sin2φ

− cos2φ
{

3η −η(1+4λ 2)cos2ϕ −
(

3η2 +(1+λ 2)2
)

sin2 ϕ cos2θ
}]

. (J.24)
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Now retaining up to fourth-order terms in η , λ 2 in the expansion for ϑ we have

ϑ = k ·M ·k = T{1−η sin2 ϕ cos2θ +λ 2(3sin2 ϕ −2)}, (J.25)

ϑ
3
2 ≈ T

3
2

[
1− 3

2
{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}

+
3
8
{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}2 +

1
16

{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}3

+
3

128
{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}4

]
, (J.26)

ϑ
1
2 ≈ T

1
2

[
1− 1

2
{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}

− 1
8
{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}2 − 1

16
{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}3

− 5
128

{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}4
]
, (J.27)

ϑ− 1
2 ≈ 1

T
1
2

[
1+

1
2
{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}

+
3
8
{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}2 +

5
16

{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}3

+
35
128

{η sin2 ϕ cos2θ −λ 2(3sin2 ϕ −2)}4
]
. (J.28)
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Using the information about the contact vector k given above and carrying out the remain-

ing integrations over k, we obtain the final expressions for the integrals I
(k)
αββ in (J.3):

I
(1)
xββ =

4ρ(1+ e)2T 1/2

385ρpσπ1/2{16η4 +24η2(1+2λ 4)+(5+4λ 2 +8λ 4)2}

×
[[

−8η6(72−221λ 2)+2η4(13379+5780λ 2−1352λ 4 +2568λ 6)

+(5+4λ 2 +8λ 4)(6930+6930λ 2+14553λ 4 +495λ 6 −194λ 8 +16λ 10)

+η2[38115+λ 2{12573+8λ 2(10812+2651λ 2+4λ 4 +881λ 6)}]
+η{440η6 +6930(1+2λ 2)+2η4(2125−928λ 2+1360λ 4)

+λ 4(16137+16748λ 2+23146λ 4 +2816λ 6 +5040λ 8)

+η2(1683−6220λ 2+11196λ 4 −576λ 6 +5880λ 8)}sin2φ
]
qx

−
[
η{440η6 +6930(1+2λ 2)+2η4(2125−928λ 2+1360λ 4)

+λ 4(16137+16748λ 2+23146λ 4 +2816λ 6 +5040λ 8)

+η2(1683−6220λ 2+11196λ 4 −576λ 6 +5880λ 8)}cos2φ
]
qy

]
, (J.29)

I
(1)
yββ =

4ρ(1+ e)2T 1/2

385ρpσπ1/2{16η4 +24η2(1+2λ 4)+(5+4λ 2+8λ 4)2}

×
[
−
[
η{440η6 +6930(1+2λ 2)+2η4(2125−928λ 2+1360λ 4)

+λ 4(16137+16748λ 2+23146λ 4 +2816λ 6 +5040λ 8)

+η2(1683−6220λ 2+11196λ 4 −576λ 6 +5880λ 8)}cos2φ
]
qx

+
[
−8η6(72−221λ 2)+2η4(13379+5780λ 2−1352λ 4 +2568λ 6)

+(5+4λ 2 +8λ 4)(6930+6930λ 2+14553λ 4 +495λ 6 −194λ 8+16λ 10)

+η2[38115+λ 2{12573+8λ 2(10812+2651λ 2+4λ 4 +881λ 6)}]
−η{440η6 +6930(1+2λ 2)+2η4(2125−928λ 2+1360λ 4)

+λ 4(16137+16748λ 2+23146λ 4 +2816λ 6 +5040λ 8)

+η2(1683−6220λ 2+11196λ 4 −576λ 6 +5880λ 8)}sin2φ
]
qy

]
, (J.30)
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I
(1)
zββ =

4ρ(1+ e)2T 1/2

385ρpσπ1/2(5+2η2 −8λ 2 +14λ 4)

×
[[

6930−2η4(10−23λ 2)−λ 2(13860−27027λ 2+7524λ 4 +404λ 6 +3482λ 8)

+η2{3465+12λ 2(3+λ 2)(11−7λ 2)}
]
qz

]
, (J.31)

I
(2)
xββ

=
8ρ(1+ e)T 1/2

385ρpσπ1/2{16η4 +24η2(1+2λ 4)+(5+4λ 2+8λ 4)2}

×
[[

2600η8 +2η6(1829+3164λ 2+14100λ 4)

−2η4(16501−1365λ 2−24216λ 4 −19336λ 6 −36300λ 8)

− (5+4λ 2 +8λ 4)(10010+10472λ 2+20823λ 4 +1606λ 6 −3174λ 8

+206λ 10 −4980λ 12)−η2{53537+2λ 2(9163+46074λ 2−18458λ 4

−61221λ 6 −42092λ 8−44860λ 10)}−2η{440(14+25λ 2)

−η6(484+4240λ 2)+η4(2926−3349λ 2+672λ 4 −13440λ 6)

+λ 4(15994+7228λ 2+3614λ 4 −26081λ 6−19416λ 8 −6720λ 10)

+2η2(1375−5450λ 2−3990λ 4−13093λ 6 −10610λ 8 −12760λ 10)}sin2φ
]
qx

+
[
2η{440(14+25λ 2)−η6(484+4240λ 2)

+η4(2926−3349λ 2+672λ 4 −13440λ 6)

+λ 4(15994+7228λ 2+3614λ 4 −26081λ 6−19416λ 8 −6720λ 10)

+2η2(1375−5450λ 2−3990λ 4−13093λ 6 −10610λ 8 −12760λ 10)}cos2φ
]
qy

]
,

(J.32)
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I
(2)
yββ =

8ρ(1+ e)T 1/2

385ρpσπ1/2{16η4 +24η2(1+2λ 4)+(5+4λ 2+8λ 4)2}

×
[[

2η{440(14+25λ 2)−η6(484+4240λ 2)

+η4(2926−3349λ 2+672λ 4 −13440λ 6)

+λ 4(15994+7228λ 2+3614λ 4 −26081λ 6 −19416λ 8−6720λ 10)

+2η2(1375−5450λ 2−3990λ 4 −13093λ 6−10610λ 8 −12760λ 10)}cos2φ
]
qx

+
[
2600η8 +2η6(1829+3164λ 2+14100λ 4)

−2η4(16501−1365λ 2−24216λ 4−19336λ 6 −36300λ 8)

− (5+4λ 2 +8λ 4)(10010+10472λ 2+20823λ 4 +1606λ 6 −3174λ 8

+206λ 10 −4980λ 12)−η2{53537+2λ 2(9163+46074λ 2−18458λ 4

−61221λ 6 −42092λ 8−44860λ 10)}+2η{440(14+25λ 2)

−η6(484+4240λ 2)+η4(2926−3349λ 2+672λ 4 −13440λ 6)

+λ 4(15994+7228λ 2+3614λ 4 −26081λ 6 −19416λ 8−6720λ 10)

+2η2(1375−5450λ 2−3990λ 4 −13093λ 6−10610λ 8 −12760λ 10)}sin2φ
]
qy

]
,

(J.33)

I
(2)
zββ =

8ρ(1+ e)T 1/2

385ρpσπ1/2(5+2η2 −8λ 2 +14λ 4)

×
[[

130η6 −154(65−136λ 2)+2η4(139+241λ 2+885λ 4)

−η2(4873−22λ 2−1580λ 4 +428λ 6 −5110λ 8)

−λ 4(39435−12650λ 2−14046λ 4+28598λ 6 −34590λ 8)
]
qz

]
, (J.34)
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I
(3)
xββ =− 2ρ(1− e2)T 1/2

35ρpσπ1/2{16η4 +24η2(1+2λ 4)+(5+4λ 2 +8λ 4)2}

×
[[

−24η6(2−9λ 2)+2η4(2161+840λ 2−24λ 4 +376λ 6)

+3(5+4λ 2 +8λ 4)(350+308λ 2+753λ 4 −56λ 6 +6λ 8 −16λ 10)

+3η2{2063+4λ 2(155+1201λ 2+218λ 4 +44λ 6 +58λ 8)}
+2η{20η6 +30(7+26λ 2)+η4(137−128λ 2+80λ 4)

−3η2(97+220λ 2+14λ 4 +80λ 6 −60λ 8)

+3λ 4(13+220λ 2+347λ 4 +16λ 6 +120λ 8)}sin2φ
]
qx

−
[
2η{20η6 +30(7+26λ 2)+η4(137−128λ 2+80λ 4)

−3η2(97+220λ 2+14λ 4 +80λ 6 −60λ 8)

+3λ 4(13+220λ 2+347λ 4 +16λ 6 +120λ 8)}cos2φ
]
qy

]
,

(J.35)

I
(3)
yββ =− 2ρ(1− e2)T 1/2

35ρpσπ1/2{16η4 +24η2(1+2λ 4)+(5+4λ 2+8λ 4)2}

×
[
−
[
2η{20η6 +30(7+26λ 2)+η4(137−128λ 2+80λ 4)

−3η2(97+220λ 2+14λ 4 +80λ 6 −60λ 8)

+3λ 4(13+220λ 2+347λ 4 +16λ 6 +120λ 8)}cos2φ
]
qx

+
[
−24η6(2−9λ 2)+2η4(2161+840λ 2−24λ 4 +376λ 6)

+3(5+4λ 2+8λ 4)(350+308λ 2+753λ 4 −56λ 6 +6λ 8 −16λ 10)

+3η2{2063+4λ 2(155+1201λ 2+218λ 4 +44λ 6 +58λ 8)}
−2η{20η6 +30(7+26λ 2)+η4(137−128λ 2+80λ 4)

−3η2(97+220λ 2+14λ 4 +80λ 6 −60λ 8)

+3λ 4(13+220λ 2+347λ 4 +16λ 6 +120λ 8)}sin2φ
]
qy

]
,

(J.36)
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I
(3)
zββ =− 2ρ(1− e2)T 1/2

35ρpσπ1/2(5+2η2 −8λ 2 +14λ 4)

×
[[

η4(4+22λ 2)+3η2(187+74λ 2+4λ 6)

+3(350−616λ 2+1329λ 4 −218λ 6 −12λ 8 −118λ 10)
]
qz

]
. (J.37)

Inserting the above integrals into (J.3), we obtain the following expression for the third order

source term

ℵαββ = I
(1)
αββ + I

(2)
αββ + I

(3)
αββ =−2ρ(1+ e)

√
T

385ρpσ
√

π
Qαγ qγ , (J.38)

as in (3.161) in the main text, where qγ is the heat flux and Qαγ is a second-rank tensor whose

elements are explicitly given in 3.12.2.





Appendix K

Integral Expression for Collisional Flux of

Momentum (Θαβ )

The collisional flux of momentum can be expressed as:

Θαβ =Θα [mCβ ]

=
m(1+ e)σ 3

4

ˆ ˆ ˆ

g···k>0
(g ···k)2kαkβ

ˆ 1

0
f (2)(c1,x−ωσk,c2,x+σk−ωσk)dωdkdc1dc2.

(K.1)

Using the assumption of molecular chaos on f (2) and applying Taylor series expansion

on f (1) along with change of variables from c1, c2, ω to g = c1 − c2, G = (C1 +C2)/2, ω =

1/2− ε(dc1dc2 = dgdG) we have

f (2)(c1,x−ωσk,c2,x+σk−ωσk) = f (2)
(

c1,x+(ε − 1
2
)σk,c2,x+(ε +

1
2
)σk

)

=
n2g0

8π3|M| exp

{
−1

4
M−1

αβ [(gα +Vα)(gβ +Vβ )+4(Gα − εVα)(Gβ − εVβ )]

}
,

(K.2)

where

V = σk ···∇∇∇u. (K.3)

Expression (K.2) is exact for simple shear. From (K.1) and (K.2), we arrive at
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Θαβ =
m(1+ e)n2g0σ 3

32π3|M|

ˆ ˆ

g···k>0
(g ·k)2kαkβ exp

{
− 1

4
[(gα +Vα)M

−1
αβ (gβ +Vβ )]

}

×
(ˆ 1

2

− 1
2

ˆ

exp
{
− [(Gα − εVα)M

−1
αβ (Gβ − εVβ )]

}
dGdε

)
dkdg. (K.4)

Using the following identity

ˆ 1
2

− 1
2

ˆ

exp
{
−[(Gα −ξVα)M

−1
αβ (Gβ −ξVβ )]

}
dGdξ = π

3
2

√
T 3(ξ +1)(ς +1)(ζ +1)

= π
3
2 |M| 1

2 , (K.5)

and carrying out the integration over G and ξ , we have

Θαβ =
ρn(1+ e)g0σ 3

32π
3
2 |M| 1

2

ˆ ˆ

g·k>0
(g ·k)2kαkβ exp

{
−1

4
[(gα +Vα)M

−1
αβ (gβ +Vβ )]

}
dkdg.

(K.6)

In terms of the function G of χ ≡ V · k/2
√
(k ·M ·k), (see Araki & Tremaine (1986);

Jenkins & Richman (1988))

G(χ)≡ π
1
2 (

1
2
+χ2)erfc(χ)−χ exp(−χ2), (K.7)

the compact form for Θαβ (after integrating over g) is found to be

Θαβ =
3(1+ e)ρνg0

π
3
2

ˆ

kαkβ (k ·M ·k)Gdk, (K.8)

the required expression for the collisional contribution of the stress tensor.



Appendix L

Integral Expression for Collisional Source

of Second Moment (ℵαβ )

ℵαβ =
m

2

ˆ ˆ ˆ

g·k>0
∆(CαCβ ) f (2)(c1,x−σk,c2,x)σ

2(g ·k)dkdc1dc2, (L.1)

∆(CαCβ ) =−1
2
(1+ e)(g ·k)[(1− e)(g ·k)kαkβ +(g · j)(kα jβ + jαkβ )], (L.2)

here j is the unit vector perpendicular to k, that lies in the plane formed by k and g.

Using the Taylor series expansion and the molecular chaos assumption we can write

f (2)(c1,x−σk,c2,x) =
n2g0

8π3|M| exp

{
−1

2
M−1

αβ [(Cα +Vα)(Cβ +Vβ )+CαCβ ]

}
, (L.3)

Changing the variables of integration from c1, c2 to g = c1 − c2, G = (C1 +C2)/2

f (2)(c1,x−σk,c2,x)

=
n2g0

8π3|M| exp

{
−1

4
M−1

αβ [(gα +Vα)(gβ +Vβ )+(2Gα +Vα)(2Gβ +Vβ )]

}
. (L.4)

Therefore
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ℵαβ =−m(1+ e)n2g0σ 2

32π3|M|

ˆ ˆ ˆ

g·k>0
[(1− e)(g ·k)3kαkβ +(g ·k)2(g · j)(kα jβ + jαkβ )]

(L.5)

exp

{
−1

4
M−1

αβ [(gα +Vα)(gβ +Vβ )+(2Gα +Vα)(2Gβ +Vβ )]

}
dGdgdk.

Using the following identity

ˆ

exp

{
−1

4
[(2Gα +Vα)M

−1
αβ (2Gβ +Vβ )]

}
dG ≡ π

3
2 |M| 1

2 (L.6)

and carrying out the integration over G, we have

ℵαβ =−m(1+ e)n2g0σ 2

32π
3
2 |M| 1

2

ˆ ˆ

g·k>0
[(1− e)(g ·k)3kαkβ +(g ·k)2(g · j)(kα jβ + jαkβ )]

×exp{−1
4
[(gα +Vα)M

−1
αβ (gβ +Vβ )]}dkdg. (L.7)

After performing the integration over g, we obtain the following expression for the colli-

sional source of second moment as (see Chou & Richman (1998))

ℵαβ = Γαβ +ΘαδWβδ +ΘβδWαδ , (L.8)

where

Γαβ = Aαβ + Êαβ + Ĝαβ , (L.9)

and the integral expressions of Aαβ , Êαβ and Ĝαβ are given in (3.55)-(3.57).



Appendix M

Uniform Shear Flow of Inelastic Disks:

The Planar Analogue

In this section we derive an analytical solution at Burnett order for the uniform shear flow of

identical disks. The number of parameters that are required to completely analyse the flow

reduce to three viz. i) the temperature anisotropy (η), ii) the Savage-Jeffrey parameter (R)

and iii) the non-coaxiality angle (φ). This work is the two-dimensional manifestation of the

flow of spheres discussed in this chapter. We project the 3-d schematic of the co-ordinate

reference displayed in figure 3.2 onto the x-y plane of motion as shown in figure M.1.

In this case the second moment of velocity fluctuations takes the form

MMM ≡ T

[
1+η sin2φ −η cos2φ

−η cos2φ 1−η sin2φ

]
= T [δαβ ]+ M̂MM, (M.1)

where η , T and φ have the same interpretations as in 3-d. The planar analogue of the

anisotropic distribution function and the radial distribution function (Verlet & Levesque 1982)

are

f (ccc,xxx, t) =
n

2π |MMM| 1
2

exp

(
−1

2
CCC ·MMM−1 ·CCC

)
, (M.2)

g0(ν) =
(1−7ν/16)
(1−ν)2 , (M.3)

with ν (= nπσ 2/4) being the area fraction (density) of particles.
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Fig. M.1 A sketch of the coordinate frame: |D1〉 and |D2〉 are the eigen-directions of the shear
tensor DDD, and |M1〉 and |M2〉 are the eigen-directions of the second moment tensor MMM.

M.1 Burnett Order Analytical Solution for the Whole Range

of Area Fraction

The second moment balance when truncated at second-order yields the related Burnett order

equations

4π
3
2 ηRcos2φ +(1+ e)νg0R(16πR+2π

3
2 η cos2φ) =

νg0(1− e2)(3π
3
2 ηRcos2φ +2π + 3

8πη2 +12πR2)

4π
3
2 Rcos2φ − (1+ e)νg0(2πη −2π

3
2 Rcos2φ) = νg0(1− e2)(3π

3
2 Rcos2φ + 3

2πη)

4π
3
2 R(η − sin2φ)−2π

3
2 (1+ e)νg0Rsin2φ =−3π

3
2 νg0(1− e2)Rsin2φ





.

(M.4)

An analytical solution of the Burnett order equation is determined as a function of the

coefficient of restitution (e), volume fraction (ν) and the radial distribution function (g0). The

solution we obtain looks like

tan(2φ) =
8
√

πR

(1+ e)(7−3e)νg0

η =
1
4

{
4− (1+ e)(1−3e)νg0

}
sin(2φ)




, (M.5)
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Fig. M.2 Comparison among (i) the full numerical solution (solid lines), (ii) Burnett order an-
alytical solution (blue dashed lines) (ii) the Navier-Stokes model (black dashed lines, (Lutsko
2005)) and (iii) the simulation data (symbols, (Alam & Luding 2003b)) for the variation of (a)
total pressure p and (b) shear viscosity µ with area fraction ν . Results for two values of the
restitution coefficient (e = 0.9 and 0.7) are shown. In the second row variation of the scaled
first normal stress difference N1 with area fraction ν is shown for three values of coefficients
of restitution e = 0.95,0.9 and 0.7 respectively.
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where R satisfies

512(1+3e)πR4

+
{

256(−1+ e)π +8(7−3e)2(1+ e)2(1+3e)ν2g2
0

+(25−9e)π(4+(1+ e)(−1+3e)νg0)
2
}

R2 +4(7−3e)2(−1+ e)(1+ e)2ν2g2
0 = 0.

(M.6)

It must be noted that these solutions (M.5-M.6) are exact at second order, and hence differs

from the “approximate” second-order solution of Saha & Alam (2014). The latter paper is

attached at the end of this thesis.

Below we present the behaviours of the transport coefficients as obtained from Burnett-

order analytical solution (M.5-M.6), full numerical solution and Navier-Stokes order hydrody-

namics. The simulation results from Alam & Luding (2003b) are also superimposed.

For small dissipation e = 0.9, the analytical Burnett order solution (blue dashed lines) and

the full numerical solution (solid lines) give rise to almost identical results, and it is almost

impossible to distinguish these two results at least in naked eye. However at some moderate

value at inelasticity e= 0.7 the Burnett-order solutions for shear viscosity (µ) slightly deviates

from the full numerical solution for ν > 0.3 nevertheless for first normal stress difference (N1)

the analytical Burnett order solution matches exactly with the numerical solution.
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The non-Newtonian stress tensor, collisional dissipation rate and heat flux in the
plane shear flow of smooth inelastic disks are analysed from the Grad-level moment
equations using the anisotropic Gaussian as a reference. For steady uniform shear
flow, the balance equation for the second moment of velocity fluctuations is solved
semi-analytically, yielding closed-form expressions for the shear viscosity µ, pressure
p, first normal stress difference N1 and dissipation rate D as functions of (i) density
or area fraction ν, (ii) restitution coefficient e, (iii) dimensionless shear rate R,
(iv) temperature anisotropy η (the difference between the principal eigenvalues
of the second-moment tensor) and (v) angle φ between the principal directions
of the shear tensor and the second-moment tensor. The last two parameters are
zero at the Navier–Stokes order, recovering the known exact transport coefficients
from the present analysis in the limit η, φ → 0, and are therefore measures of the
non-Newtonian rheology of the medium. An exact analytical solution for leading-order
moment equations is given, which helped to determine the scaling relations of R, η
and φ with inelasticity. We show that the terms at super-Burnett order must be retained
for a quantitative prediction of transport coefficients, especially at moderate to large
densities for small values of the restitution coefficient (e ≪ 1). Particle simulation data
for a sheared inelastic hard-disk system are compared with theoretical results, with
good agreement for p, µ and N1 over a range of densities spanning from the dilute
to close to the freezing point. In contrast, the predictions from a constitutive model
at Navier–Stokes order are found to deviate significantly from both the simulation
and the moment theory even at moderate values of the restitution coefficient (e ∼ 0.9).
Lastly, a generalized Fourier law for the granular heat flux, which vanishes identically
in the uniform shear state, is derived for a dilute granular gas by analysing the
non-uniform shear flow via an expansion around the anisotropic Gaussian state. We
show that the gradient of the deviatoric part of the kinetic stress drives a heat current
and the thermal conductivity is characterized by an anisotropic second-rank tensor,
for which explicit analytical expressions are given.
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1. Introduction

A driven system of macroscopic or non-Brownian particles (e.g. driven by external
vibration or shearing) resembles a molecular gas in which the particles move around
randomly but lose energy upon collision, with the latter being a major difference
between a granular gas and its molecular counterpart. Such a non-equilibrium state
of agitated particles is also known as a rapid granular fluid (Goldhirsch 2003), for
which the dense-gas kinetic theory (Chapman & Cowling 1970) has been appropriately
modified and successfully used for a variety of flow configurations over the past three
decades (Savage & Jeffrey 1981; Jenkins & Richman 1985a,b; Brey et al. 1998; Sela
& Goldhirsch 1998; Brilliantov & Pöschel 2004; Rao & Nott 2008). In this paper
we investigate the non-Newtonian rheology of a sheared granular system via kinetic
theory. For an N-particle system, the stress tensor has contributions from both kinetic
and collisional mechanisms of transport:

P = Pkin + Pcoll. (1.1)

The first mechanism is dominant in the dilute regime, whereas the second one
dominates in the dense regime. This can be further decomposed as

P = pI + P̂, (1.2)

where p ≡ Pii/dim is the isotropic pressure (dim is the dimension), I is the identity
tensor and the deviatoric stress is P̂. The off-diagonal components of P̂ are related
to shear viscosity, which, in general, depends on the deformation rate. At the
Navier–Stokes (NS) order, the stress tensor is Newtonian (i.e. linear in the shear
rate, with the proportionality constant being the shear viscosity) and its diagonal
components are equal. The latter implies that the first and second normal stress
differences, N1 ∼ Pxx − Pyy and N2 ∼ Pyy − Pzz, respectively, are identically zero. The
non-zero normal stresses and/or the shear-rate dependence of viscosity are signatures
of the non-Newtonian rheology of the medium. In kinetic theory, the normal stresses
appear at the Burnett order (Burnett 1935; Grad 1949; Chapman & Cowling 1970)
and hence cannot be taken into account in the standard NS-order hydrodynamic
equations. Higher-order theories such as the Burnett equations (Burnett 1935; Sela &
Goldhirsch 1998) or Grad’s 13-moment equations (Grad 1949; Jenkins & Richman
1985a,b; Torrilhon & Struchtrup 2004) should therefore be used to correctly model
the nonlinear rheology of granular fluids. Although the rest state of the Burnett
equations is known to be unstable for molecular gases, there are ways to regularize
these equations (Rosenau 1989). Moreover, it has been established recently (Santos
2008) that the partial sum of the shear stress converges in the uniform shear of a
granular fluid, with its radius of convergence increasing with increasing dissipation
or inelasticity. On the other hand, in Grad’s method the distribution function is
expanded in a Hermite series around the local Maxwellian of thermal equilibrium,
and the moment equations for an extended set of hydrodynamic fields are written
down.

The sheared granular fluid is known to possess finite normal stress differences for
the whole range of densities (Sela & Goldhirsch 1998; Alam & Luding 2003a,b,
2005a,b) and the rate dependence of viscosity seems to be an inherent feature of
the uniform shear state of a granular fluid (Santos, Garzo & Dufty 2004). Figure 1
indicates that the first normal stress difference is finite in a sheared granular fluid for
a range of densities and its magnitude increases with increasing dissipation. Detailed
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FIGURE 1. Variation of the first normal stress difference N1 = 2(Pxx − Pyy)/(Pxx + Pyy) (see
(4.21)) with area fraction of particles for different values of the restitution coefficient e.
Data (symbols) correspond to event-driven simulations (Alam & Luding 2003a,b) for a
sheared system of smooth inelastic hard disks with Lees–Edward boundary condition (see
§ 5.2 for details); lines are drawn to guide the eye.

simulations in two dimensions, i.e. for disks (Alam & Luding 2003a,b), and three
dimensions, i.e. for spheres (Alam & Luding 2005a,b), have uncovered the following
distinguishing features of normal stresses in a sheared granular fluid: (i) the first
normal stress difference is positive in the dilute limit and undergoes a sign reversal
at a finite density near the freezing point (depending on dissipation) in the dense
limit; and (ii) the second normal stress difference is negative in the dilute limit and
becomes positive beyond a moderate density. Both theory and simulation suggest
that the magnitudes of the first and second normal stress differences increase with
increasing dissipation.

Large normal stresses, such as those in figure 1, must be taken into account to
correctly model a dissipative granular fluid in the rapid shear regime. Jenkins &
Richman (1988) have incorporated normal stresses in their study of steady uniform
shear flow (USF) of inelastic disks, following earlier kinetic theory work of Goldreich
& Tremaine (1978) and Araki & Tremaine (1986) that used the anisotropic Gaussian
as a reference state. They solved the second-moment balance equation in the two
extreme limits of density, and derived analytical results for the stress tensor in dilute
and dense flows, but the solutions for the full range of densities remain unexplored
for the shear flow of inelastic disks. Chou & Richman (1998) analysed the USF of
inelastic spheres and provided numerical solutions for the stress tensor for the full
range of densities. More recently, Lutsko (2004) used an arbitrary Gaussian as a
reference to solve the Enskog equation for a polydisperse mixture of inelastic hard
spheres via the Hermite expansion (Grad 1949) around the anisotropic reference
state, and the related kinetic integrals were simplified using a generating function
technique. Focusing attention on the uniform shear state, he evaluated the stress tensor
numerically and confirmed the previous numerical results of Chou & Richman (1998).
It was further shown that the moment theory predictions for normal stress differences
agree well with those obtained from the direct simulation Monte Carlo (DSMC)
solution of the Enskog equation for a range of densities but can differ considerably
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from molecular dynamics simulations of the same system for moderately dense binary
mixtures. The reason for the latter disagreement remains unclear. It would greatly
help our understanding of the nonlinear and non-Newtonian rheology of particulate
media if such higher-order theories could be tackled analytically or semi-analytically
to obtain closed-form constitutive relations – this forms the primary motivation of the
present work.

In this paper, we derive closed-form analytical expressions for all components of
the stress tensor as well as the collisional dissipation rate of steady USF for the whole
range of densities by considering terms up to super-Burnett order (i.e. third order
in shear rate and temperature anisotropy). To achieve the above goal, we follow the
anisotropic version of Grad’s moment method (Jenkins & Richman 1988) and solve
the balance equation for the second-moment of velocity fluctuations semi-analytically
for the USF of smooth inelastic hard disks. In addition, we generalize this method
for the non-uniform shear state and derive an explicit constitutive relation for heat
flux. Our primary focus is to decipher an analytical understanding of how all the
transport coefficients (shear viscosity, pressure and first normal stress difference)
depend on different control parameters (e.g. density, restitution coefficient, shear rate,
etc.) when one goes beyond the ‘linear’ NS regime via Grad’s moment equations. Our
second goal is to check whether the resulting moment theory can yield quantitative
predictions for normal stress differences and other transport coefficients for the whole
range of densities and restitution coefficients (e.g. at small values of the restitution
coefficient). Both goals are achieved successfully from our super-Burnett-order
constitutive relations as demonstrated in § 4. Furthermore, the validation of the
derived nonlinear constitutive relations, via a comparison with molecular dynamics
simulations (§ 5), at different densities confirms the appropriateness of the Enskog
kinetic equation to describe the dense shear flow of inelastic hard disks.

The rest of this paper is organized as follows. Section 2 provides a brief overview of
the kinetic theory, the Grad-level (second or higher order in gradients) hydrodynamic
equations and the anisotropic Gaussian distribution function. The construction of the
second-moment tensor and its anisotropy in the USF, and the formulation of the
second-moment equation in a rotated coordinate frame, are described in § 3. The
collision integrals in the moment equations are approximated by an infinite series
as outlined in § 4, followed by the explicit forms of resulting moment equations
at Burnett and super-Burnett orders. An exact analytical solution for ‘leading-order’
moment equations is derived in § 4.1. The super-Burnett-order expressions for all
components of the stress tensor, along with shear viscosity, pressure and first normal
stress difference, are discussed in § 4.2. That the Grad-level dissipation rate depends
on both the shear rate and the temperature anisotropy is discussed in § 4.3. The
degenerate nature of the uniform shear state is discussed in § 4.4 in terms of
its inherent ‘non-Newtonian’ rheology. The accuracy of our super-Burnett-order
constitutive relations is verified in § 5.1 via a comparison with the full numerical
solution. In addition to comparing with the molecular dynamics simulation data, § 5.2
establishes the superior predictions of the present moment theory with respect to
an NS-order constitutive model (Lutsko 2005; Garzo, Santos & Montanero 2007).
A comparative discussion of our results with another Grad-level theory (Kremer &
Marques 2011; Garzo 2012) as well as with a Chapman–Enskog-based Burnett-order
theory (Sela, Goldhirsch & Noskowicz 1996) for a dilute system is made in § 5.3.
In § 6 we consider the non-uniform shear state and outline a procedure to derive the
constitutive relation for the ‘non-Fourier’ heat flux. The conclusions are given in § 7.
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2. Overview of Enskog kinetic theory and Grad-level moment equations

Let us consider a dense granular gas consisting of N randomly moving smooth
inelastic hard disks of diameter σ and mass m. Let c1 and c2 be the velocities of
two disks before a collision, with c′

1 and c′
2 being their post-collisional velocities,

respectively. The collision dynamics for instantaneous and binary collisions is
governed by

(g′
· k)= −e(g · k), (2.1)

where g ≡ g12 = c1 − c2 and g′ = c′
1 − c′

2 are the pre- and post-collisional relative
velocities, respectively, and k ≡ k12 = (x2 − x1)/|x2 − x1| is the unit contact vector
joining the centre of disk 1 to that of disk 2 at collision. In (2.1), e is the coefficient of
normal restitution, with e=1 and 0 referring to perfectly elastic and sticking collisions,
respectively. Since the disks are assumed to be smooth, there is no change in their
tangential component of relative velocity (i.e. k × g′ = k × g).

At the mesoscopic level, this system is described by the Liouville equation for an
N-particle distribution function, which can be reduced to an infinite hierarchy of
evolution equations of distribution functions (one-body, two-body, three-body, etc.),
known as the BBGKY (for Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy
(Chapman & Cowling 1970). The first member of this hierarchy deals with the
evolution of the single-particle distribution function f (c, x, t), which, in the absence
of any body force, reads

(
∂

∂t
+ c · ∇

)
f = J( f (2)), (2.2)

where ∇ is the gradient operator in the configuration space and J( f (2)) is the
collision integral, which that depends on the two-particle distribution function
f (2)(c1, x1, c2, x2, t). The transition from the mesoscopic to the macroscopic level
is made via the hydrodynamic or coarse-grained fields, which are nothing but the
moments of f (c, x, t) of various orders. In addition to (i) the mass density

ρ(x, t)≡ m n(x, t)= m

∫
f (c, x, t) dc, (2.3)

where n(x, t) = N/V is the number density of particles, and (ii) the coarse-grained
velocity

u(x, t)≡ 〈c〉 =
1

n(x, t)

∫
c f (c, x, t) dc, (2.4)

we choose (iii) the full second-moment tensor

M(x, t)≡ 〈CC〉 =
1

n(x, t)

∫
CC f (c, x, t) dc, (2.5)

where C ≡ c − u is the peculiar or fluctuation velocity of the particles, as a separate
hydrodynamic field. The trace of (2.5) is the granular temperature

T(x, t)≡
〈

1

2
C · C

〉
=

1

2n(x, t)

∫
C2f (c, x, t) dc, (2.6)

which constitutes a hydrodynamic field at the NS order. Note that this definition of
temperature (2.6) is commonly used in the granular mechanics community (Savage
& Jeffrey 1981; Jenkins & Richman 1985a,b; Goldhirsch 2003; Rao & Nott 2008),
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although the usual definition (Chapman & Cowling 1970) incorporating the mass m

and the Boltzmann constant kB has also been adopted by many (Brilliantov & Pöschel
2004; Santos et al. 2004; Lutsko 2005). In either case, it must be noted that the
granular temperature is not a thermodynamic temperature (Goldhirsch 2003).

The evolution equations for hydrodynamic fields are obtained from the kinetic
equation (2.2) by multiplying it by a particle property ψ = ψ(c) and integrating it
over the velocity space, resulting in the following master balance equation:

∂

∂t
〈nψ〉 = −∇ · 〈ncψ〉 + C[ψ]. (2.7)

Here

C[ψ] =
∫∫∫

g·k>0

(ψ ′
2 −ψ2) f (2)(c1, x − σk, c2, x, t) σ (k · g) dk dc1 dc2

=
∫∫∫

g·k>0

(ψ ′
1 −ψ1) f (2)(c1, x, c2, x + σk, t) σ (k · g) dk dc1 dc2





(2.8)

is the collisional rate of production of ψ per unit area, with g · k> 0 referring to the
constraint of impending collisions. It is straightforward to decompose (2.8) into the
form (Jenkins & Richman 1985a,b; Rao & Nott 2008)

C[ψ] = ℵ[ψ] − ∇ · Θ[ψ] − Θ

[
∂ψ

∂C

]
: ∇u, (2.9)

where Θ[ψ] and ℵ[ψ] are the collisional flux and production or source terms,
respectively, whose integral expressions are given in §§ A.1 and A.2, respectively.
Note that the origin of the collisional flux Θ[ψ] is tied to the excluded volume of
the ‘macroscopic’ particles and hence this term vanishes for a ‘dilute’ system of
point particles. Combining (2.9) and (2.7), the master balance equation simplifies to
(Jenkins & Richman 1985a,b, 1988)

∂

∂t
〈nψ〉 = −

〈
n

(
∂

∂t
+ c · ∇

)
uα
∂ψ

∂Cα

〉
− ∇ · (〈ncψ〉 + Θ[ψ])− Θ

[
∂ψ

∂C

]
: ∇u + ℵ[ψ].

(2.10)

Substituting ψ = 1, cα and CαCβ into (2.10), we obtain the balance equations

Dρ

Dt
= −ρuα,α, (2.11)

ρ
Duα

Dt
= −Pαβ,α, (2.12)

ρ
DMαβ

Dt
= −Qγαβ,γ − Pδβuα,δ − Pδαuβ,δ + ℵαβ, (2.13)

for the mass, momentum and second moment, respectively. In the above, D/Dt =
∂/∂t +uα(∂/∂xα) is the convective derivative, the subscript following a comma denotes
a partial derivative (i.e. uα,α ≡ ∂uα/∂xα) with Einstein’s summation convention over
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repeated indices, and

Pαβ = ρ〈CαCβ〉 +Θα[mCβ] ≡ ρMαβ +Θαβ, (2.14)

Qγαβ = ρ〈CγCαCβ〉 +Θγ [mCαCβ] ≡ ρMγαβ +Θγαβ, (2.15)

ℵαβ = ℵ[mCαCβ] (2.16)

are the total stress tensor (momentum flux), the flux of the second moment, and
the collisional source of the second moment (dissipation), respectively. In (2.14) and
(2.15), the first term represents the kinetic contribution and the second term is its
collisional contribution.

The trace of (2.13) yields the well-known balance equation for granular energy,

ρ
DT

Dt
= −qα,α − Pαβuβ,α − D, (2.17)

where

D ≡ − 1
2
ℵββ = − 1

2
ℵ[mC2] (2.18)

is the rate of dissipation of energy per unit area (i.e. in two dimensions) and

qα ≡ 1
2
Qαββ = 1

2
ρMαββ + 1

2
Θαββ (2.19)

is the heat-flux vector. In (2.13), we assume that the deviatoric part of Qγαβ , i.e.

Q̂γαβ = Qγαβ − 1
4
(Qγ ξξδαβ + Qαξξδγβ + Qβξξδαγ ), (2.20)

is zero, thus leaving only the contracted third moment Mαββ = 〈CαCβCβ〉 as the
relevant hydrodynamic variable at third order.

In summary, the balance equations (2.11), (2.12) and (2.13), along with the
constraint Q̂γαβ = 0, constitute the minimal Grad-level description of a fluidized
granular matter in terms of moment equations that incorporates normal stress
difference. The second-moment balance equation (2.13) can be replaced by its
deviatoric part and the standard granular energy equation (2.17); the former equation
is identically satisfied at the NS-level description. To close the balance equations
(2.11)–(2.13), we need constitutive relations for the stress tensor (2.14), the collisional
dissipation rate D (or the second-moment source term ℵαβ , (2.16)) and the heat flux
(2.19). While the expressions for the first two constitutive quantities are derived
for the uniform shear state as discussed in §§ 3 and 4, the heat flux requires a
consideration of the non-uniform shear flow since the temperature gradient vanishes
in the USF, which is dealt in § 6.

2.1. Anisotropic Gaussian distribution function

The constitutive relations require an evaluation of the collision integrals (see
appendix A), which involve the two-particle distribution function. We adopt
Boltzmann’s stosszahlansatz (molecular chaos assumption) for which

f (2)(c1, x − σk, c2, x, t)= g0(ν) f (c1, x − σk, t) f (c2, x, t). (2.21)
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Here g0(ν) is the contact value of the radial distribution function whose functional
form is taken to be (Verlet & Levesque 1982)

g0(ν)=
(1 − 7ν/16)

(1 − ν)2
, (2.22)

with ν (= nπσ 2/4) being the area fraction (density) of particles. As in the work of
Jenkins & Richman (1988), we assume that the single-particle velocity distribution is
an ‘anisotropic’ Gaussian

f (c, x, t)=
n

2π|M|1/2
exp

(
−

1

2
C · M

−1
· C

)
, (2.23)

where |M| = det(M) is the determinant of the second moment, which reduces to
the standard Maxwellian or Gaussian distribution function for the case of isotropic
Mαβ = Tδαβ . The ansatz of (2.23) as a solution for the homogeneous sheared system is
tantamount to choosing an extended set of hydrodynamic fields, since the anisotropic
Gaussian is a function of all components of the second moment, M = 〈CC〉, of the
fluctuation velocity. Such an approach of choosing the generalized or anisotropic
Gaussian as the reference state for a non-equilibrium system has been pioneered
in the planetary physics community (Goldreich & Tremaine 1978; Shukhman 1984;
Araki & Tremaine 1986; Schmidt et al. 2001; Latter & Ogilvie 2006) dealing with
the modelling of Saturn’s ring (Esposito 2006). This formalism has also been adopted
by the granular matter community (Jenkins & Richman 1988; Chou & Richman
1998; Lutsko 2004) and can be applied to study the rheology of an arbitrary sheared
state (as a perturbation of the homogeneous sheared system) via the well-known
Hermite expansion (Lutsko 2004). This differs from Grad’s original moment method
(Grad 1949; Jenkins & Richman 1985a,b; Torrilhon & Struchtrup 2004; Vega Reyes,
Santos & Garzo 2013) in which the reference state is a Gaussian representing the
rest state of thermal equilibrium, and the deviations from the ‘local’ equilibrium are
modelled via a Hermite expansion with unknown coefficients. In § 6, we will discuss
an orthonormal expansion around (2.23) to derive the constitutive relation for the
heat flux.

3. Steady uniform shear and the second-moment tensor

Let us focus on the two-dimensional coordinate system (since we are dealing with
an assembly of disks) as depicted in figure 2, with x and y denoting the flow and
gradient directions, respectively. The USF is described by the velocity-gradient tensor

∇u =
[

0 2γ̇
0 0

]
≡ D + W , (3.1)

such that the velocity field is u = (u, v)= (2γ̇ y, 0), where 2γ̇ = du/dy is the uniform
(constant) shear rate. The shear and spin tensors are given by

D =
[

0 γ̇

γ̇ 0

]
and W =

[
0 γ̇

−γ̇ 0

]
. (3.2a,b)

The eigenvalues of D are ±γ̇ with respective eigenvectors

|D1〉 =
[

cos 1
4
π

sin 1
4
π

]
and |D2〉 =

[
−sin 1

4
π

cos 1
4
π

]
. (3.3a,b)
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FIGURE 2. A sketch of the coordinate frame: |D1〉 and |D2〉 are the eigen-directions of
the shear tensor D, and |M1〉 and |M2〉 are the eigen-directions of the second-moment
tensor M .

These eigen-directions are sketched in figure 2. To formulate the anisotropic moment
theory for the USF in two dimensions, we follow the work of Jenkins & Richman
(1988) in §§ 3.1 and 3.2. Next we simplify our analysis of the second-moment balance
by working in a rotated coordinate frame as discussed in § 3.3.

3.1. Anisotropy in the second-moment tensor

Here we analyse the second-moment tensor M in terms of its eigenvalues and
eigenvectors. Let M1 and M2 be the eigenvalues of M , with associated eigenvectors
|M1〉 and |M2〉, respectively. We assume that the eigenvector |M1〉 makes an angle φ
with the eigenvector |D1〉 of the shear tensor D (see (3.3)). Since |M1〉 and |M2〉 are
orthogonal, the eigenvector |M2〉 makes the same angle φ with |D2〉; this is illustrated
in figure 2. The expression for the second-moment tensor M is

M = M1

[
cos(φ + 1

4
π)

sin(φ + 1
4
π)

]
[
cos(φ + 1

4
π) sin(φ + 1

4
π)
]

+ M2

[
−sin(φ + 1

4
π)

cos(φ + 1
4
π)

]
[
−sin(φ + 1

4
π) cos(φ + 1

4
π)
]

≡ T

[
1 + η sin 2φ −η cos 2φ

−η cos 2φ 1 − η sin 2φ

]
= T[δαβ] + M̂, (3.4)

where we have defined the following variables:

2T ≡ Mαα = M1 + M2, (3.5)

η ≡ (M2 − M1)/2T, (3.6)

and M̂ is the deviatoric part of the second moment,

M̂ = ηT

[
sin 2φ −cos 2φ

−cos 2φ −sin 2φ

]
. (3.7)

It is clear from (3.4) that the diagonal elements of M are not equal, and η is a measure
of the anisotropy of the second-moment tensor. Moreover, the angle φ (see figure 2)
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measures the rotation that makes M diagonal (see § 3.3). It is straightforward to verify
that

|M| = T2(1 − η2), (3.8)

M1 = T(1 − η) and M2 = T(1 + η), (3.9a,b)

with M2 >M1.
Let us introduce the ‘Savage–Jeffrey’ number (Savage & Jeffrey 1981)

R =
σ γ̇

4
√

T
≡

γ̇

4
√

T/σ 2
, (3.10)

which can be interpreted as the scaled or dimensionless shear rate and also as the
inverse of the square root of the dimensionless temperature. It is evident from (3.4)
and (3.10) that R, η and φ are three unknown parameters that completely characterize
the anisotropic second-moment tensor M in USF. Recall that the stress tensor (2.14)
is P ≡ ρM in the dilute limit. Hence the anisotropy of M is responsible for the first
normal stress difference (Pxx −Pyy ∼η sin 2φ) in the dilute limit, which is one signature
of the stress tensor being non-Newtonian.

3.2. The second-moment balance equation in uniform shear flow

For the steady USF, the number density n, velocity gradient ∇u, granular temperature
T and the components of M are constant, and therefore the mass and momentum
balance equations are identically satisfied. The balance equation for the second-
moment tensor (2.13) reduces to

Pδβuα,δ + Pδαuβ,δ = ℵαβ, (3.11)

where
Pαβ = ρMαβ +Θαβ (3.12)

is the total stress tensor. The kinetic stress ρMαβ is calculated from (3.4), and the
collisional stress can be written as (see § A.1)

Θαβ =
2(1 + e)ρνg0(ν)

π
3/2

∫
kαkβ(k · M · k)G(χ) dk. (3.13)

The collisional source of second moment ℵαβ in (3.11) can be decomposed as (Jenkins
& Richman 1988)

ℵαβ = Aαβ + B̂αβ = Aαβ + Êαβ + Ĝαβ +ΘαγWβγ +ΘβγWαγ , (3.14)

where

Aαβ = −
4(1 − e2)ρνg0(ν)

σπ
3/2

∫
kαkβ(k · M · k)3/2F(χ) dk, (3.15)

and B̂αβ , Êαβ and Ĝαβ represent traceless tensors, which also possess similar integral
expressions as detailed in § A.2. The contact vector k over which the above
integrations have to be performed and its unit normal j can be expressed as

k =
[

cos(θ + φ + 1
4
π)

sin(θ + φ + 1
4
π)

]
and j =

[
sin(θ + φ + 1

4
π)

−cos(θ + φ + 1
4
π)

]
. (3.16a,b)



Stress, dissipation and heat flux in shear flow of inelastic disks 261

We have assumed that θ is the angle between k and |M1〉 (the eigenvector
corresponding to the smaller eigenvalue of M , (3.9)) as illustrated in figure 2. It
is straightforward to verify that

k · M · k ≡ T + k · M̂ · k = T(1 − η cos 2θ) and j · M · k = −Tη sin 2θ. (3.17a,b)

In (3.13) and (3.15) and related collision integrals, the integrands are expressed in
terms of two analytic functions F(χ) and G(χ) defined as (Araki & Tremaine 1986;
Jenkins & Richman 1988):

F(χ) ≡ −
√

π( 3
2
χ + χ 3) erfc(χ)+ (1 + χ 2) exp(−χ 2), (3.18)

G(χ) ≡
√

π( 1
2
+ χ 2) erfc(χ)− χ exp(−χ 2), (3.19)

where

χ =
σ(k · ∇u · k)

2
√

k · M · k
=

2R cos 2(θ + φ)

(1 − η cos 2θ)1/2
≡ χ(η, R, φ, θ). (3.20)

It is clear from (3.16), (3.17) and (3.20) that the integrations over k in (3.13)–(3.15)
are to be carried out over θ via dk = dθ , with θ ∈ (0, 2π). It is worth pointing out that
χ = 0 in the dilute limit, since the origin of this term is tied to the excluded-volume
effects of macroscopic particles.

With the aid of (3.12) and (3.14), the balance of second moment (3.11) finally
reduces to

ρMδβ(Dαδ + Wαδ)+ΘδβDαδ + ρMδα(Dβδ + Wβδ)+ΘδαDβδ = Aαβ + Êαβ + Ĝαβ . (3.21)

This is the central equation that must be solved to obtain the rheological quantities
(shear viscosity, pressure and first normal stress difference) of USF for the whole
range of densities ν. Furthermore, the Grad-level collisional dissipation rate is
calculated from (3.14).

3.3. Reduced second-moment equations in rotated coordinate frame

Equation (3.21) is significantly simplified if M is made diagonal. This is achieved by
using

R =
[

cos(φ + 1
4
π) −sin(φ + 1

4
π)

sin(φ + 1
4
π) cos(φ + 1

4
π)

]
(3.22)

as the rotation matrix with respect to the coordinate frame x′y′, with x′ and y′ being
directed along |M1〉 and |M2〉, respectively (see figure 2). In the rotated x′y′ frame, the
second-moment tensor is diagonal,

M
′ = T

[
1 − η 0

0 1 + η

]
, (3.23)
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with the prime indicating that the quantity is evaluated in this new frame, and

k′ =
[

cos θ
sin θ

]
, j′ =

[
sin θ

−cos θ

]
, (3.24a,b)

u
′ = 2γ̇ [x′ sin(φ + 1

4
π)+ y′ cos(φ + 1

4
π)]
[

cos(φ + 1
4
π)

−sin(φ + 1
4
π)

]
, (3.25)

and

D
′ = γ̇

[
cos 2φ −sin 2φ
−sin 2φ −cos 2φ

]
, W

′ = γ̇

[
0 1

−1 0

]
. (3.26a,b)

It is clear from (3.23) that the anisotropy of M is characterized solely by the
temperature difference η as defined in (3.6). Note that the non-zero component of
vorticity is in the direction orthogonal to the plane of the motion, and hence the spin
tensor is invariant under the planar rotation (3.22).

In the rotated coordinate frame, the components of (3.21) are its trace

− 2ηρT γ̇ cos 2φ + γ̇ (Θx′x′ −Θy′y′) cos 2φ − 2γ̇ Θx′y′ sin 2φ = 1
2
(Ax′x′ + Ay′y′), (3.27)

the deviatoric component

2ρT γ̇ cos 2φ + γ̇ (Θx′x′ +Θy′y′) cos 2φ = 1
2
(Ax′x′ − Ay′y′)+ Êx′x′ + Ĝx′x′, (3.28)

and the off-diagonal component

2ρT γ̇ (η− sin 2φ)− γ̇ (Θx′x′ +Θy′y′) sin 2φ = Ax′y′ + Êx′y′ + Ĝx′y′ . (3.29)

The integral terms appearing in (3.27)–(3.29) can be expressed as

Ax′x′ + Ay′y′ =
−4ρνg0(1 − e2)T3/2

σπ
3/2

H003(η, R, φ),

Ax′x′ − Ay′y′ =
−4ρνg0(1 − e2)T3/2

σπ
3/2

H103(η, R, φ),

Ax′y′ =
−2ρνg0(1 − e2)T3/2

σπ
3/2

H013(η, R, φ),

Êx′x′ =
4ρνg0(1 + e)T3/2η

σπ
3/2

H021(η, R, φ),

Êx′y′ = −
4ρνg0(1 + e)T3/2η

σπ
3/2

H111(η, R, φ),





(3.30)

Ĝx′x′ =
2ρνg0(1 + e)T γ̇

π
3/2

[cos 2φJ020(η, R, φ)

+ sin 2φJ110(η, R, φ)− η sin 2φJ010(η, R, φ)],

Ĝx′y′ = −
2ρνg0(1 + e)T γ̇

π
3/2

[cos 2φJ110(η, R, φ)

+ sin 2φJ200(η, R, φ)− η sin 2φJ100(η, R, φ)],

Θx′x′ +Θy′y′ =
2ρνg0(1 + e)T

π
3/2

J002(η, R, φ),

Θx′x′ −Θy′y′ =
2ρνg0(1 + e)T

π
3/2

J102(η, R, φ),

Θx′y′ =
ρνg0(1 + e)T

π
3/2

J012(η, R, φ).





(3.31)



Stress, dissipation and heat flux in shear flow of inelastic disks 263

Here Hαβγ and Jαβγ possess the integral expressions

Hαβγ (η, R, φ)≡
∫ 2π

0

cosα 2θ sinβ 2θ (1 − η cos 2θ)γ /2F(χ [η, R, φ, θ]) dθ, (3.32)

Jαβγ (η, R, φ)≡
∫ 2π

0

cosα 2θ sinβ 2θ (1 − η cos 2θ)γ /2G(χ [η, R, φ, θ]) dθ, (3.33)

with F(χ) and G(χ) given by (3.18) and (3.19).
Equations (3.27)–(3.29) represent a system of nonlinear integro-algebraic equations,

which we solve using two different methods: (i) semi-analytical method and
(ii) numerical method. In § 4 we outline a semi-analytical series solution (which
reduces to the solution of Jenkins & Richman (1988) in the dense limit) and verify
a posteriori, via a comparison with the full numerical solution (see § 5.1), that
the adopted power-series representation of integrals (3.32) and (3.33) holds for the
whole range of densities. More importantly, this helps to achieve our primary goal
of deriving closed-form analytical expressions for nonlinear transport coefficients as
well as for the dissipation rate that are valid from dilute to dense flows as we show
in §§ 4.2 and 4.3, respectively.

4. Non-Newtonian stress tensor and dissipation rate: constitutive relations

The solution of (3.27)–(3.29) involves evaluating the integrals in (3.32) and (3.33)
whose integrands are functions of F(χ) and G(χ) as defined in (3.18) and (3.19),
respectively, with χ being given by (3.20). Using the power-series representation for
the complementary error function and the exponential, the two functions F(χ) and
G(χ) can be compactly expressed as

F(η, R, φ, θ) = −
√

π

[
3

2

2R cos(2φ + 2θ)

(1 − η cos 2θ)1/2
+
(

2R cos(2φ + 2θ)

(1 − η cos 2θ)1/2

)3
]

+
∞∑

m=0

(−1)m

m!
3

(2m − 1)(2m − 3)

[
2R cos(2φ + 2θ)

(1 − η cos 2θ)1/2

]2m

, (4.1)

G(η, R, φ, θ) =
√

π

[
1

2
+

4R2 cos2 (2φ + 2θ)

(1 − η cos 2θ)

]

+
∞∑

m=0

(−1)m

m!
2

4m2 − 1

[
2R cos(2φ + 2θ)

(1 − η cos 2θ)1/2

]2m+1

. (4.2)

Substituting (4.1) and (4.2) into (3.32) and (3.33) and carrying out term-by-term
integrations over θ ∈ (0, 2π) results in an infinite series in η and R for each integral
in (3.32) and (3.33) (see appendix B). To progress further, we need to truncate each
series after a finite number of terms.

Retaining terms up to second order in η and R (i.e. O(η2), O(ηR) and O(R2)) in the
integral expressions for Hαβγ ((3.32) and (B 6) in appendix B) and for Jαβγ ((3.33)
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and (B 7) and (B 8) in appendix B), (3.27)–(3.29) simplify to

4π
3/2ηR cos 2φ + (1 + e)νg0R(16πR + 2π

3/2η cos 2φ)

= νg0(1 − e2)(3π
3/2ηR cos 2φ + 2π + 3

8
πη2 + 12πR2),

4π
3/2R cos 2φ − (1 + e)νg0(2πη− 1

16
πη3 − 2π

3/2R cos 2φ − 12π
3/2R3 cos 2φ

− 4πηR2 + 8πηR2 sin2 2φ)

= νg0(1 − e2)[3π
3/2R cos 2φ + 3

2
πη],

4π
3/2R(η− sin 2φ)− (1 + e)νg0R(2π

3/2 sin 2φ + 12π
3/2R2 sin 2φ + 4πηR sin 4φ)

= −3π
3/2νg0(1 − e2)R sin 2φ.




(4.3)

At the third order in η and R (i.e. up to O(η3),O(η2R),O(ηR2) and O(R3)) they are

4π
3/2ηR cos 2φ + (1 + e)νg0R(16πR + 16πR3 + 2π

3/2η cos 2φ − 1
2
πη2R

− πRη2 cos2 2φ)

= νg0(1 − e2)(3π
3/2ηR cos 2φ + 2π + 3

8
πη2 + 12πR2),

4π
3/2R cos 2φ − (1 + e)νg0(2πη− 1

16
πη3 − 2π

3/2R cos 2φ − 12π
3/2R3 cos 2φ

+ 8πηR2 sin2 2φ − 4πR2η)

= νg0(1 − e2)[3Rπ
3/2 cos 2φ + 6π

3/2R3 cos 2φ + 3
2
πη+ 3

2
πηR2(2 + cos 4φ)],

4π
3/2R(η− sin 2φ)− (1 + e)νg0R

(
2π

3/2 sin 2φ + 12π
3/2R2 sin 2φ + 4πηR sin 4φ

)

= −νg0(1 − e2)(3π
3/2R sin 2φ + 6π

3/2R3 sin 2φ + 3
2
πηR2 sin 4φ).




(4.4)

It is clear that we have three unknowns η, R and φ to solve for at each order, provided
the restitution coefficient e and the area fraction ν are specified. Both sets of coupled
algebraic equations, (4.3) and (4.4), can be easily solved using the Newton–Raphson
method.

Equations (4.3) and (4.4) can be thought of as analogues of the Burnett-order
(quadratic in shear rate) and super-Burnett-order (cubic in shear rate) equations,
respectively, and this will become evident in § 4.1, where we show that η ∼ O(R)

to leading order. In principle we can retain further higher-order terms to solve the
above three equations but stop at the cubic order as they provide adequate accuracy
to recover the exact numerical solution, as we shall demonstrate in § 5.1.

4.1. Exact solution at leading order: scaling relations

Before moving to numerical solution of (4.3) and (4.4), it is illuminating to consider
the leading-order moment equations that admit an exact solution, which helps to
understand the scaling relations for the three unknowns η, R and φ in terms of
the restitution coefficient e. Retaining only the zeroth-order terms in η and R in
the integral expressions for Hαβγ and Jαβγ (see (B 6)–(B 8) in appendix B), the
following equations for the second-moment balance are obtained:

2
√

πηR cos 2φ − (1 − e2)νg0 = 0,

2
√

πR cos 2φ − (1 + e)νg0η+
√

π(1 + e)νg0R cos 2φ = 0,

2(η− sin 2φ)− (1 + e)νg0 sin 2φ = 0.



 (4.5)
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These equations are amenable to analytical solution, and yield

η =
√
(1 − e)(1 + 1

2
(1 + e)νg0)∼ (1 − e)1/2,

R =
√
(1 − e2)(1 + e) νg0√

2π(2e + (1 + e)νg0)
∼ (1 − e)1/2,

sin 2φ =

√
2(1 − e)

2 + (1 + e)νg0

∼ (1 − e)1/2,

cos 2φ =

√
2e + (1 + e)νg0

2 + (1 + e)νg0

,

η

R
=

√
π(2 + (1 + e)νg0)(2e + (1 + e)νg0)

(1 + e)νg0

,





(4.6)

with each quantity being a function of e and ν only. Note further that

η

R
cos 2φ =

√
π

(
1 +

2e

(1 + e)νg0

)
. (4.7)

It is clear from (4.6) that the temperature anisotropy η, the shear rate R and sin 2φ
scale as ǫ ≡ (1 − e)1/2 (a measure of the inelasticity of particle collisions). More
importantly, that both η and R are of the same order lends credence to the adopted
power-series expansion of the collision integrals (3.32) and (3.33) in terms of η and
R (see appendix B). The leading-order scaling of R and η with ǫ implies that the
NS-, Burnett- and super-Burnett-order terms in the USF are of order O(ǫ), O(ǫ2)

and O(ǫ3), respectively, although we have not attempted to establish this connection
at higher orders (see the discussion in § 4.4). In the rest of this paper, the second-
and third-order terms in R and η are referred to as Burnett and super-Burnett order,
respectively.

4.2. Non-Newtonian stress tensor: analytical expressions for transport coefficients

The dimensionless stress tensor can be written as

P
∗ =

P

ρpU2
R

=
(

P∗
xx P∗

xy

P∗
yx P∗

yy

)
≡
(

p∗ 0
0 p∗

)
−
(

−N ∗
1/2 µ∗

µ∗ N ∗
1/2

)
, (4.8)

where p∗ = (P∗
xx + P∗

yy)/2 is the pressure, µ∗ = −P∗
xy is the shear viscosity and N ∗

1 =
P∗

xx − P∗
yy is the first normal stress difference. Here ρp is the material (intrinsic) density

of particles and UR = 2γ̇ σ is the reference velocity scale. We will express constitutive
relations in terms of the dimensionless temperature, which is defined as

T∗ =
T

U2
R

≡
1

64R2
. (4.9)

The power series (4.2) for G(η, R, φ) is inserted into (3.13) to evaluate the
collisional stress, and the total stress tensor is subsequently obtained from (3.12). In
the following we present only the final analytical expressions for the components of
the stress tensor, thus leaving the related algebraic details to appendix C.
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4.2.1. Shear viscosity: up to super-Burnett order

Retaining terms up to the third order in temperature anisotropy η and shear rate R,
the dimensionless shear stress takes the following form (see appendix C):

P∗
xy

νT∗ = −η cos 2φ −
4νg0(1 + e)√

π

[
R

(
1 +

√
π

8

η

R
cos 2φ

)

+ R3

(
1 −

η2

32R2
(1 + 2 cos2 2φ)

)

︸ ︷︷ ︸

]
+ O(ηmRn,m + n > 4). (4.10)

The first term on the right-hand side represents its kinetic contribution and the
remaining part its collisional contribution. Recall from (4.7) that (η/R) cos 2φ∼ O(1),
and hence the underbraced terms in (4.10) are of super-Burnett (O(R3)) order.

The expression for the dimensionless shear viscosity, µ∗ =µ/ρpσUR ≡−Pxy/ρpU2
R =

−P∗
xy, follows from (4.10):

µ∗ =
ν
√

T∗

8

[
η

R
cos 2φ +

4νg0(1 + e)√
π

(
1 +

√
π

8

η

R
cos 2φ + R2 −

η2

32
(1 + 2 cos2 2φ)

︸ ︷︷ ︸

)]

+ O(ηmRn,m + n > 4). (4.11)

The nonlinear dependence of viscosity on the shear rate R and the temperature
anisotropy η is evident from the underbraced terms in (4.11).

For a check, we consider the NS-order shear viscosity

µ∗ =
ν
√

T∗

8

[
η

R
cos 2φ +

4νg0(1 + e)√
π

(
1 +

√
π

8

η

R
cos 2φ

)]
+ O(R2), (4.12)

which follows from (4.11) by neglecting the nonlinear terms. Substituting the
leading-order solution (4.7) into (4.12), we obtain the expressions for the kinetic
and collisional parts of the shear viscosity as

µ∗
k ≡

ν
√

T∗

8

(η
R

cos 2φ
)

=
ν
√

T∗

8

√
π

(
1 +

2e

(1 + e)νg0

)
, (4.13)

µ∗
c =

ν2g0(1 + e)
√

T∗

2
√

π

[
1 +

π

8

(
1 +

2e

(1 + e)νg0

)]
, (4.14)

respectively, at NS order. These expressions (4.13) and (4.14) with e = 1 agree
perfectly with the known results for the shear viscosity (Jenkins & Richman 1985a)
of an elastic hard-disk system.

4.2.2. Pressure: up to super-Burnett order

At the third-order approximation in η and R, the diagonal components of the stress
tensor are

P∗
xx

νT∗ = (1 + η sin 2φ)+ νg0(1 + e)

(
1 +

1

2
η sin 2φ + 4R2 +

2√
π

ηR cos 2φ

−
1

4
√

π

Rη2 sin 2φ cos 2φ

)
+ O(ηmRn,m + n > 4), (4.15)
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P∗
yy

νT∗ = (1 − η sin 2φ)+ νg0(1 + e)

(
1 −

1

2
η sin 2φ + 4R2 +

2√
π

ηR cos 2φ

+
1

4
√

π

Rη2 sin 2φ cos 2φ

)
+ O(ηmRn,m + n > 4). (4.16)

Note that both contain odd-order terms in η and R having opposite signs, and hence
they cancel each other, resulting in the following expression for the mean pressure:

p∗ = νT∗


1 + νg0(1 + e)


1 + 4R2 +

2√
π

ηR cos 2φ

︸ ︷︷ ︸




+ O(ηmRn,m + n> 4). (4.17)

This expression holds at both second and third order of approximation in η and R. In
any case, it is clear that the collisional part of the pressure depends on the shear rate
R and the temperature anisotropy η, revealing the nonlinear dependence of pressure
at the Burnett order O(R2) and beyond. Neglecting the ‘underbraced’ terms in (4.17),
we arrive at the textbook expression for pressure,

p∗ = νT∗(1 + νg0(1 + e)), (4.18)

which holds at NS order.

4.2.3. First normal stress difference

Subtracting (4.16) from (4.15), we obtain an expression for the first normal stress
difference:

P∗
xx − P∗

yy = 2η sin(2φ)νT∗ + ν2g0(1 + e)T∗
(
η sin 2φ −

1

2
√

π

Rη2 sin 2φ cos 2φ

)
+ h.o.t.

(4.19)

The leading term in (4.19) is of order O(R2), since η sin 2φ = O(1 − e) = O(R2)

following (4.6), and the terms of order O(R) in (4.15) and (4.16) do not contribute
to the normal stress difference. The leading correction in (4.19) comes from the
collisional part of the stress tensor,

Rη2 sin 2φ cos 2φ ≡ R2(η sin 2φ)
(η

R
cos 2φ

)
= O(R4), (4.20)

which is fourth order in the shear rate.
Retaining terms up to O(R4) in (4.19), the scaled first normal stress difference is

given by

N1 =
Pxx − Pyy

p
=
η sin 2φ

(
2 + νg0(1 + e)

(
1 −

1

2
√

π

Rη cos 2φ

))

1 + νg0(1 + e)

(
1 + 4R2 +

2√
π

ηR cos 2φ

) , (4.21)

which is a measure of the normal stress with respect to the mean/isotropic pressure
(4.17). Focusing on the dilute limit (ν→ 0), (4.21) becomes

N1 = 2η sin 2φ = 2(1 − e)∼ R2 ∼ γ̇ 2, (4.22)



268 S. Saha and M. Alam

which scales quadratically with the shear rate. This confirms that the normal stress
difference is a Burnett-order effect (Sela & Goldhirsch 1998). Note from (4.21)
that N1 ∼ η sin 2φ at any density and it approaches zero for η → 0 and/or φ → 0.
The origin of the normal stress difference is, therefore, tied to (i) the temperature
anisotropy η and (ii) the angle φ between the eigen-directions of the shear tensor D

and the second-moment tensor M – both are shear-induced effects.
It should be noted that the elastic limit (e → 1) remains non-singular even though

the temperature diverges (T ∼ R−2 → ∞ as e → 1). The latter divergence is due to
the absence of any mechanism to compensate the shear work, but this can be fixed
by using a thermostat. Therefore, the normal stress difference is finite for perfectly
elastic collisions (Sela et al. 1996; Alam & Luding 2003a,b):

N1 = 0.679
γ̇ 2l2

f

T
, (4.23)

where lf is the mean free path. Note, however, that N1 ∼ O(10−20) in a sheared
molecular gas at standard temperature and pressure with γ̇ = O(1) and hence is
negligible. The expression (4.23) can be understood from (4.22) by tying the in-built
mechanism of energy replenishment in a granular gas with a thermostat in its
molecular counterpart.

4.3. Dissipation rate: dependence on shear rate and normal stress

Employing the series solution for integrals, the collisional dissipation rate in the
energy balance equation can be calculated from (3.14) as

D ≡ −
1

2
ℵββ = −

1

2
(Aββ + B̂ββ)= −

1

2
(Ax′x′ + Ay′y′)

=
2ρνg0(1 − e2)T3/2

σπ
3/2

H003(η, R, φ)

=
4ρνg0(1 − e2)T3/2

σ
√

π

(
1 + 6R2

(
1 +

√
π

4

η

R
cos 2φ

)
+

3

16
η2 + h.o.t.

)
. (4.24)

The neglected terms in (4.24) are of order O(ηmRn) with m + n> 4: the leading-order
corrections are second order in both R and η but the odd-order terms (m+n=1,3, . . .)
are zero. Hence the expression (4.24) is exact up to the super-Burnett order. In the
isotropic limit of zero normal stress difference (η→ 0 and φ→ 0), (4.24) reduces to

D = D (0)(1 + 6R2 + O(R4)), (4.25)

which contains a rate-dependent correction term at the leading order. The origin of
this correction is tied to the excluded-volume effects (3.20) of a dense gas. In (4.25),

D (0) =
4ρpν

2g0(1 − e2)T3/2

σ
√

π

(4.26)

is the dissipation rate for a system of inelastic hard disks (Jenkins & Richman
1985a), which holds at both Euler and NS orders. Equation (4.26), however, differs
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from related NS-order theories (Lutsko 2005; Garzo et al. 2007) that are built around
the homogeneous cooling state as a reference.

Returning to (4.24), we note that the correction terms beyond the NS order
depend quadratically on both (i) the shear rate (γ̇ ∼ R ∼ ǫ ≡ (1 − e)1/2) and (ii) the
temperature anisotropy η (∼ ǫ). The latter finding uncovers a novel dependence of the
collisional dissipation rate on the normal stress difference since η∼ N1. As clarified
in § 4.1, the above quadratic-order corrections in (4.24) can also be translated into an
effective correction of O(ǫ2), which agrees qualitatively with the related Burnett-order
expression for D derived by Sela & Goldhirsch (1998) and Brilliantov & Pöschel
(2003), who used the Chapman–Enskog method to solve the Boltzmann equation in
three dimensions up to the Burnett order (i.e. the second order in the gradients of
hydrodynamic fields). Note that the latter work analysed the homogeneous cooling
state of a granular gas of viscoelastic particles by incorporating the second-order
gradient terms in the two-particle distribution function.

4.4. Inherent non-Newtonian rheology of uniform shear flow

Let us now remark on the dependence of various transport coefficients on (i) the shear
rate R, (ii) the temperature anisotropy η, (iii) the non-coaxiality angle φ, (iv) the
restitution coefficient e and (v) the density or area fraction ν that we uncovered in
§§ 4.2 and 4.3. It is clear from (4.6) that there is an intertwined relationship among R,
η and φ via their dependence on e and ν in the uniform shear state, and this survives
at any order. For example, (4.4) can be solved perturbatively by using (4.6) as the
zeroth-order solution, leading to an approximate solution for η, R and φ as a function
of ǫ= (1 − e)1/2 for the whole range of densities. Substituting these values into (4.11)
results in an expression for the shear viscosity as a function of e and ν. This implies
that specifying ν and e with Lees–Edward boundary condition (Alam & Luding
2003a,b, 2005a,b; Gayen & Alam 2008) sets the granular temperature and the shear
rate simultaneously, which is a consequence of the ‘in-built’ thermostat of collisional
dissipation that balances the shear work. Therefore, it would not be possible to isolate
the shear-rate dependence of viscosity (and other transport coefficients) from its
dependence on inelasticity if we were to measure shear viscosity from the molecular
dynamics simulation (§ 5.2) of a granular fluid under uniform shear.

What is measured in simulations is nothing but the non-Newtonian viscosity, since
the shear rate is always finite, and hence the rheology of the uniform shear state
of a granular fluid is inherently non-Newtonian (Santos et al. 2004) unlike in its
elastic counterpart. The comparisons of transport coefficients in § 5.2 will validate
their dependence on the density and the restitution coefficient at any arbitrary shear
rate. On the other hand, the explicit rate dependence of transport coefficients can
be checked in future with simulations of boundary-driven shear (with imposed
temperature gradient) where the shear rate and the restitution coefficient can be
independently varied (Vega Reyes et al. 2013).

5. Validation of constitutive relations and comparison with particle simulation

5.1. Validation of constitutive relations: are super-Burnett terms required?

Here we validate the constitutive relations for all transport coefficients as detailed in
§ 4.2. This is done by carrying out a comparison between the transport coefficients
obtained from (i) the full numerical solution of moment equations and (ii) those
obtained from their analytical expressions at Burnett (i.e. quadratic order in R and η)
and super-Burnett (i.e. cubic order in R and η) orders. The goal is to check whether
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we need to go beyond the Burnett order for an accurate representation of transport
coefficients at any restitution coefficient for the whole range of densities.

For the complete numerical solution of the moment equations, we evaluate the
integrals in A, Ê, Ĝ and Θ in (3.27)–(3.29) using the standard quadrature rule.
Next we solve the resulting system of three nonlinear algebraic equations by the
Newton–Raphson method, yielding values of η, R and φ for specified values of
the area fraction ν and the restitution coefficient e. This helps to determine (see
appendix C) the pressure p, the shear viscosity µ and the first normal stress difference
N1 as functions of ν and e.

The comparison between the full moment theory and the series solutions at second
and third orders is given in figure 3: panels (a)–(d), respectively, display the variations
of pressure, shear viscosity, granular temperature and first normal stress difference
with area fraction, for four values of the restitution coefficient (e = 0.99, 0.9, 0.6 and
0.3). In each panel, the continuous (black) and dashed (red online) lines represent
the series solution at third- and second-order approximation, respectively, and the
symbols denote the exact solution (full numerical solution) of the moment equations.
We observe excellent agreement between the third-order series solution and the
exact solution even at a strong dissipation of e = 0.3. In contrast, the second-order
series solution does well only up to e = 0.6 for the normal stress difference (see
panel (d)), although the pressure, viscosity and temperature are well predicted by the
second-order solution even at e = 0.3.

On the whole, figure 3 confirms that, while the Burnett-order expressions yield
accurate transport coefficients in the dilute limit, the super-Burnett-order terms are
required to reproduce the correct behaviour of all transport coefficients at higher
densities (ν > 0.2) for the whole range of restitution coefficients (0 6 e 6 1).

To see why the adopted series expansion (4.1) and (4.2) works well, we plot the
variations of η, R and φ in figure 4(a–c), respectively. Again, we observe excellent
agreement between the exact solution (symbols) and the third-order series solution
(solid line) for the whole range of densities up to a restitution coefficient of e = 0.3.
However, the second-order solution (dashed line) for η in panel (a) is seen to deviate
significantly from its exact solution at e = 0.6 beyond a moderate density of ν ∼ 0.35,
and this disagreement occurs at a much lower density (ν∼ 0.2) for e = 0.3. It is clear
that both R and η are small in the dilute and dense limits, respectively, but they tend
to become of order one in opposite limits. Nevertheless, the series representation (4.1)
and (4.2) and the resulting power-series expansion of integrals (3.32) and (3.33) in
terms of η and R (appendix B) works excellently for the whole range of densities
even at strong dissipations, as illustrated in figure 4, if we retain the third-order terms
as in (4.4).

5.2. Comparison of anisotropic moment theory with simulation and Navier–Stokes

model

In this section we make a detailed comparison for all transport coefficients of the non-
Newtonian stress tensor as obtained in § 4.2 from the moment theory with (i) particle
simulations and (ii) an NS order model. The NS-order transport coefficients are taken
from those of Lutsko (2005) as detailed in appendix D. Note that Lutsko’s model
holds for both disks and spheres; Garzo et al. (2007) also derived NS-level transport
coefficients in arbitrary dimension using a modified Sonine expansion, and confirmed
that the viscosity, pressure and dissipation rate are hardly affected in both approaches.
It may be noted that both works carry out a Chapman–Enskog expansion around
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FIGURE 3. (Colour online) Comparison of the numerical solution for the moment theory
(symbols) with approximate series solution: second-order (red dashed lines) and third-order
(black solid line) series solutions for the (a) pressure, (b) shear viscosity, (c) granular
temperature and (d) first normal stress difference.

the homogeneous cooling state, and the NS-level transport coefficients thus obtained
are assumed to hold for all values of the restitution coefficient, since they made no
assumption about the smallness of inelasticity or dissipation.

The event-driven simulation of the USF of inelastic hard disks (i.e. in two
dimensions) has been carried out by Alam & Luding (2003a,b) and we take their data
to compare with the present theory. The disks interact via the standard binary collision
rule of smooth particles, (2.1), for a specified value of the restitution coefficient. The
state of uniform shear is achieved by employing the Lees–Edward boundary condition
(Lees & Edwards 1972). All simulations have been carried out in a square box with
N = 1024 disks for two values of the restitution coefficient, e = 0.9 and 0.7, for a
range of densities (area fractions) ν ∈ (0.01, 0.8) spanning from the dilute to the
dense regime.

Figure 5 shows a comparison for the pressure field between (i) the exact moment
theory (solid line, numerical solution), (ii) the NS-order model (dashed line) and
(iii) simulation data (symbols). Panels (a)–(c), respectively, correspond to the total
pressure (p = pk + pc), and its kinetic (pk) and collisional (pc) components; the data
for e = 0.9 and 0.7 are marked in each panel. The analogue of figure 5 for the shear
viscosity is displayed in figure 6. For both pressure and viscosity, we observe that the
NS model overpredicts the simulation data, and the degree of discrepancy increases



272 S. Saha and M. Alam

10–1

100

10–1

10–2

10–3

100

10–1

100

101

102

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8

R

(a) (b)

(c)

FIGURE 4. (Colour online) Comparison between the ‘exact’ (numerical solution) moment
theory and the approximate series solution for a range of densities: variations of (a) η,
(b) R and (c) φ (degrees) with area fraction. The symbols, dashed (red) and solid (black)
lines represent the full numerical solution, second-order and third-order series solutions,
respectively.

with decreasing value of e (i.e. with increasing dissipation). It is noteworthy that the
deviation between the NS model and the simulation is more prominent for dilute
flows at any restitution coefficient. In contrast, the predictions of the moment theory
agree excellently with simulation even at e = 0.7 for a large range of densities –
up to ν ∼ 0.65, which is close to the freezing point density νf ≈ 0.69 (see figures 5
and 6). A possible reason for quantitative discrepancies at large densities could be the
breakdown of the molecular chaos assumption (§ 2.1), especially beyond the freezing
density (Mitarai & Nakanishi 2007).

Figures 7 and 8 show the variations of the scaled pressure p/T and the scaled
viscosity µ/

√
T , respectively. In each figure, panels (a) and (b) correspond to e =

0.9 and 0.7, respectively, with the solid line, dashed line and symbols denoting the
moment theory, NS theory and simulation data, respectively. Recall that both these
scaled quantities (p/T = f1(ν, e, . . .) and µ/

√
T = f2(ν, e, . . .)) are functions solely

of the density and restitution coefficient in the NS-level theory; however, they have
additional dependence on the shear rate (γ̇ ∼ R) as well as on the normal stress
difference (N1 ∼ η). Figure 7 indicates that the dependence of f1 on R and η is
negligible in dilute to moderately dense flows even at e = 0.7, but a slight deviation
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FIGURE 5. Comparison among the full moment theory (solid line, present work), the
NS model (dashed line, Lutsko 2005) and simulation data (symbols) for the variation of
pressure with area fraction: (a) total pressure p = pk + pc, (b) kinetic pressure pk and
(c) collisional pressure pc. Results for two values of the restitution coefficient (e = 0.9
and 0.7) are shown.

(between the moment theory and the NS-level theory) is noticeable in the dense limit,
which becomes more prominent with increasing dissipation. On the other hand, the
viscosity function f2 deviates strongly from its NS prediction in the dilute limit even
at e = 0.9.

Figure 9 shows the variation of the scaled first normal stress difference N1 =
(Pxx − Pyy)/p with density for three values of e = 0.95, 0.9 and 0.7. The lines
correspond to the moment theory and the symbols to simulation data. Recall that
N1 = 0 for all NS-order constitutive models. The prediction of the moment theory
agrees well with simulation data for e = 0.95 and 0.9, but there are quantitative
differences between theory and simulation that increase with increasing dissipation.
Although the theoretical prediction remains good in the dilute limit (ν → 0) even
at e = 0.7 (see also § 5.3 and figure 10), increasing the density leads to an
underprediction of simulation data – this might be related to enhanced density
correlations at finite densities. The latter assertion is supported by additional
simulations at e = 0.5 (with other simulation parameters being fixed at finite densities)
that show the emergence of particle clusters spanning over the whole system. Another
noteworthy point in figure 9 is that the theory predicts N1 → 0 in the dense limit, but
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FIGURE 6. Same as figure 5 but for the variation of shear viscosity with area fraction:
(a) total viscosity µ=µk +µc, (b) kinetic viscosity µk and (c) collisional viscosity µc.

the simulation shows a sign reversal of N1 at some critical density (near the freezing
density). This sign reversal of N1 is, in fact, tied to changes in the microstructure
(Alam & Luding 2003a,b), i.e. changes in the pair correlation function and its
relaxation under shear. The latter effect is not incorporated in the present theory,
which is likely to be responsible for the disagreement between theory and simulation
in the dense regime.

On the whole, we find that the Grad-level moment theory with anisotropic Gaussian
can quantitatively predict the pressure and shear viscosity for a range of densities
up to the freezing point at very strong dissipations (e = 0.3). In contrast the NS
model (Lutsko 2005; Garzo et al. 2007), which is assumed to hold at any dissipation,
shows quantitative discrepancies even at moderate dissipations (e = 0.9) and the
degree of disagreement increases with decreasing restitution coefficient e. Last but
not least, the missing ingredient of any NS-order constitutive model, the normal
stress difference (N1, figure 9), is well predicted by our anisotropic moment theory,
although quantitative discrepancy remains at finite densities for large dissipations.

5.3. Comparison with another Grad-level theory in the dilute limit

In this section we compare our analytical transport coefficients (§ 4.2) with those
derived from another variant of Grad’s method (Kremer & Marques 2011; Garzo
2012). In the latter two works, the moment theory was developed using a Hermite
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FIGURE 7. Variation of p/T (dimensionless) with area fraction for (a) e = 0.9 and
(b) e = 0.7. The solid and dashed lines represent the exact moment theory (i.e. the full
numerical solution) and the NS-order model (Lutsko 2005), respectively, and the symbols
denote simulation data.
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FIGURE 8. Variation of µ/
√

T (dimensionless) with area fraction for (a) e = 0.9 and
(b) e = 0.7. The solid and dashed lines represent the exact moment theory (i.e. the full
numerical solution) and the NS-order model (Lutsko 2005), respectively, and the symbols
denote simulation data.

expansion around an isotropic Gaussian state, in contrast to the anisotropic Gaussian
reference in our work. Leaving aside the mathematical details, we note that the
balance equation for the second moment in the steady uniform shear state is the
same as (3.11) as elaborated in § 3.2. An approximate expression for the source term
has been determined for hard disks (Garzo 2012):

ℵαβ = −ϕµP̂αβ − ζpδαβ, (5.1)

where P̂αβ = Pαβ − pδαβ is the pressure deviator. The equation of state is p ≡
(Pxx + Pyy)/2 = ρT , and the expressions for the cooling rate ζ , collision frequency
ϕµ (related to shear viscosity) and the coefficient of the fourth velocity cumulant α2

(= 〈C4〉/〈C4〉(0) − 1, with the superscript ‘0’ denoting its evaluation for a Gaussian or
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Maxwellian) are given by

ζ =
4ν

σ
√

π

(1 − e2)

(
1 +

3α2

16

)√
T,

ϕµ =
ν

σ
√

π

(7 − 3e)(1 + e)
(

1 −
α2

32

)√
T,

α2 ≡
(

〈C4〉
〈C4〉(0)

− 1

)
=

16(1 − e)(1 − 2e2)

57 − 25e + 30(1 − e)e2
.





(5.2)

Note that α2 = 0 for a Maxwellian distribution function.
With the aid of (5.1) and taking the overall shear rate in the USF as du/dy = 2γ̇

(defined in (3.1)), (3.11) can be decomposed into its component forms:

ϕµPxy = −2γ̇Pyy,

(ϕµ − ζ )Pxx = (ϕµ + ζ )Pyy,

8γ̇Pxy = −(ϕµ + ζ )Pxx + (ϕµ − ζ )Pyy.



 (5.3)

The solution of (5.3) yields the diagonal components of the stress tensor,

Pxx

4ρpγ̇ 2σ 2
=

ν

64R2

(
ϕµ + ζ

ϕµ

)
and

Pyy

4ρpγ̇ 2σ 2
=

ν

64R2

(
ϕµ − ζ

ϕµ

)
, (5.4a,b)

and the dimensionless shear rate R is

R2 =
γ̇ 2σ 2

16T
=
ν2(7 − 3e)2(1 + e)2(1 − e)(1 − 1

32
α2)

2(1 + 3
16
α2)

16π(3 + e − 1
32
α2(31 − 27e))

. (5.5)

The expression for the first normal stress difference is

N1 =
2(Pxx − Pyy)

(Pxx + Pyy)
=

2ζ

ϕµ
=

8(1 − e)(1 + 3
16
α2)

(7 − 3e)(1 − 1
32
α2)

∼ (1 − e)∼ R2, (5.6)
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FIGURE 10. (Colour online) Comparison of the first normal stress difference obtained
from simulation (symbols) with the present anisotropic Gaussian theory (blue solid line),
the Grad-level theory of Garzo (thick red dashed line, (5.6)) and the Burnett-order theory
of Sela & Goldhirsch (magenta dot-dashed line). The ‘thin’ black dashed line corresponds
to (5.6) with α2 = 0 (see the text in § 5.3 for details). The area fraction is set to ν= 0.01.

which scales quadratically with the shear rate and hence is a Burnett-order effect as
confirmed in § 4.2.3.

The comparison of (5.6) with the present theory and the particle simulation data
is shown in figure 10, marked by the red dashed line, the blue solid line and the
circles, respectively; the simulations were carried out for an average area fraction
of ν = 0.01. The Burnett-order expression of Sela et al. (1996), obtained from the
Chapman–Enskog expansion, is also displayed on the same figure (magenta dot-dashed
line). We observe that the simulation data agree uniformly with the present anisotropic
Gaussian theory for a large range of restitution coefficients e ∈ (0.3, 0.99), but the
Grad-level expression (5.6) of Garzo underpredicts the simulation results for e< 0.8.
On the other hand, the Burnett theory of Sela et al. agrees well with simulation and
present theory up to e = 0.5 and underpredicts N1 for e< 0.5. To ascertain the relative
importance of the fourth velocity cumulant α2 for a quantitative prediction of N1, we
set α2 = 0 in (5.6) and plot the resulting expression as the ‘thin’ black dashed line in
figure 10. It is clear that the fourth velocity cumulant does not affect N1 noticeably
up to a restitution coefficient of e ≈ 0.6 but underpredicts it slightly for smaller e.

From (5.3) and (5.4), the expressions for shear viscosity µ= −Pxy/2γ̇ and pressure
p = (Pxx + Pyy)/2 can be obtained as

µ

2ρpγ̇ σ 2
=
ν2(1 − e2)(1 + 3

16
α2)

128
√

πR3
and

p

4ρpγ̇ 2σ 2
=

ν

64R2
, (5.7a,b)

with R being given by (5.5). These two expressions (5.7) are compared in figure 11,
denoted by the red dashed lines, with (i) the particle simulation (denoted by
symbols) and (ii) the present anisotropic Gaussian theory (blue solid lines). The
curves for two variants of the NS-level theory (Lutsko 2005, green dot-dashed lines;
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FIGURE 11. (Colour online) Comparison for dimensionless pressure and shear viscosity
obtained from molecular dynamics simulation (symbols) with the present anisotropic
Gaussian theory (blue solid lines), the Grad-level theory of Garzo (red dashed lines, (5.7)),
the NS-level theory of Lutsko (2005, green dot-dashed lines) and the NS-level theory of
Jenkins & Richman (1985a, magenta starred lines). Other parameters are as in figure 10.

and Jenkins & Richman 1985a, magenta starred lines) are also displayed. We see
excellent agreement of simulation data with the present theory, but the isotropic
version of the moment theory slightly overpredicts both p and µ for e < 0.5. In
contrast, both the NS-level theories overpredict the simulation data even at e = 0.9,
and the quantitative disagreement worsens significantly with further decrease of
restitution coefficient. It is surprising that the NS theory of Jenkins & Richman
provides a better quantitative prediction for p and µ in comparison to Garzo and
Lutsko’s theory, since the latter theory incorporates the fourth velocity cumulant α2

and makes no assumption about the smallness of the restitution coefficient.
On the whole, figures 10 and 11 confirm that the present anisotropic Gaussian

theory provides better prediction for all transport coefficients (N1, µ and p) for the
whole range of restitution coefficients in comparison to two existing theories (in the
dilute limit) that are based on (i) the Chapman–Enskog expansion (Sela et al. 1996)
and (ii) the isotropic version of Grad’s moment expansion (Kremer & Marques 2011;
Garzo 2012).

6. Constitutive relation for granular heat flux in the dilute limit

Lastly, we outline a procedure to derive the constitutive relation for granular heat
flux focusing on the dilute limit of granular shear flow. Note that the heat flux
vanishes in the uniform shear state since ∇T = 0, and hence we need to consider
non-uniform shear flow (‘non-USF’) in which the gradients of hydrodynamic fields
are non-zero, i.e. ∇(n, T, γ̇ ) 6= 0. Carrying out an orthonormal expansion around the
anisotropic Gaussian state, we will show that the heat-flux vector depends on the
gradients of temperature and the second-moment tensor, and the thermal conductivity
is characterized by an anisotropic second-rank tensor.
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6.1. Distribution function for non-uniform shear flow: expansion around the

anisotropic Gaussian

Following Grad (1949), we choose (1, Cx, Cy, C2
x , CxCy, C2

y , C2Cx, C2Cy) as the basis
set that incorporates the third-degree polynomials. Let us define an inner product,

〈χ, ψ〉 =
1

2π|M|1/2

∫
χψ exp

(
−

1

2
C · M

−1
· C

)
dC, (6.1)

with respect to the anisotropic Gaussian as the weight function. The related
orthonormal basis (1, ξx, ξy, ξ

2
x , ξxξy, ξ

2
y , ξ

2ξx, ξ
2ξy) is obtained by applying the

Gram–Schmidt orthogonalization procedure.
We assume that the single-particle distribution function for the non-uniform shear

flow (non-USF) can be expanded as

f = f0(a + aiξi + aijξiξj + biξ
2ξi), (6.2)

where the anisotropic Gaussian

f0 =
n

2π|M|1/2
exp

(
−

1

2
CαM−1

αβ Cβ

)
(6.3)

is the zeroth state representing the USF. The coefficients a, ai, aij and bi in (6.2) are
to be chosen such that the basic hydrodynamic fields

(n, u, 〈CC〉) (6.4)

are recovered at any order. This implies that the following ‘compatibility’ conditions
must be satisfied:

n(x, t)=
∫

f (c, x, t) dc =
∫

f0(c, x, t) dc,

∫
C f (c, x, t) dc = 0 =

∫
C f0(c, x, t) dc,

Mαβ =
∫

CαCβ f (c, x, t) dc =
∫

CαCβ f0(c, x, t) dc = M
(0)
αβ .





(6.5)

This yields a = 1, ai = 0, aij = 0 and bi 6= 0. Therefore, the distribution function for
non-USF is given by

f =
n

2π|M|1/2
exp

(
−

1

2
CαM−1

αβ Cβ

) [
1 +

qx{C3
x + CxC

2
y − (3Mxx + Myy)Cx − 2MxyCy}

ρ{Mxx(3M2
xx + 6M2

xy + M2
yy)+ 2M2

xyMyy}

+
qy{Mxx(3M2

xx + 6M2
xy + M2

yy)+2M2
xyMyy} − qxMxy(3M2

xx+2MxxMyy+4M2
xy+3M2

yy)

ρ(MxxMyy−M2
xy){M2

xx(3M2
xx+12M2

xy+10M2
yy)−4M2

xy(2MxxMyy−4M2
xy−3M2

yy)+3M4
yy}

×
{

C2
x Cy + C3

y +
3Mxy(Mxx + Myy)

3

Mxx(3M2
xx + 6M2

xy + M2
yy)+ 2M2

xyMyy

Cx

−
M2

xx(3M2
xx + 9MyyMxx + M2

yy)+ MxxMyy(3M2
yy + 16M2

xy)− 8M4
xy

Mxx(3M2
xx + 6M2

xy + M2
yy)+ 2M2

xyMyy

Cy

−
Mxy(4M2

xy + 3M2
xx + 3M2

yy + 2MxxMyy)

Mxx(3M2
xx + 6M2

xy + M2
yy)+ 2M2

xyMyy

(C3
x + CxC

2
y)

}]
, (6.6)
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where

qα =
m

2

∫
C2Cα f (c, x, t) dc (6.7)

is the ‘kinetic’ heat-flux vector.

6.2. Generalized Fourier law from the balance of contracted third moment

In the dilute limit, the collisional fluxes (Θ(·) = 0) are neglected and hence the
balance equation for the contracted third moment Mαββ = 〈CαCβCβ〉 is obtained from
(2.10) as

ρ
DMαββ

Dt
+ Qnαββ,n − 3M(αβPβ)n,n + 3Qn(αβuβ),n = ℵαββ, (6.8)

where Qnαβ ≡ ρMnαβ and the second term on the left-hand side is a contracted fourth-
order moment,

Qnαββ = m

∫
CnCαC2f (x, c, t) dc, (6.9)

and the subscript under (. . .) on the third and fourth terms is defined such that

Qn(αβuβ),n = 1
3
(2Qnαβuβ,n + Qnββuα,n), (6.10)

M(αβPβ)n,n = 1
3
(2MαβPβn,n + MββPαn,n), (6.11)

with the comma on the subscript denoting a partial derivative. The source term in (6.8)
has the following integral expression:

ℵαββ ≡ ℵ[CαCβCβ] =
mσ

2

∫∫∫

g·k>0

1(C2Cα)f (c1, x)f (c2, x)(g · k) dk dc1 dc2, (6.12)

where 1(C2Cα) is defined in § A.3.
Inserting the distribution function (6.6) into (6.12), changing to new integration

variables (c1, c2)→ (g, G), and evaluating the integrals over G, g and k (see § A.3),
we obtain

ℵαββ = −
ρ(1 + e)

√
T

32ρpσ
√

π

Qαγ qγ , (6.13)

where q = (qx, qy) is the heat-flux vector. Note that we have neglected quadratic
nonlinear terms in qγ to derive (6.13). The elements of Q= [Qαγ ] are

Q= [Qαγ ] =
1

1 + η2 + η4

[
Q11 Q12

Q21 Q22

]
, (6.14)

where

Q11 = 608 + 714η2 + 831η4 + 82η6 − e(480 + 594η2 + 606η4 − 33η6)

+ η sin 2φ(160 + 124η2 + 148η4 + 105η6 + e(−96 + 63η2 − 84η4)),

Q12 = −η cos 2φ(160 + 124η2 + 148η4 + 105η6 + e(−96 + 63η2 − 84η4))

= Q21

Q22 = 608 + 714η2 + 831η4 + 82η6 − e(480 + 594η2 + 606η4 − 33η6)

− η sin 2φ(160 + 124η2 + 148η4 + 105η6 + e(−96 + 63η2 − 84η4)).





(6.15)

It is clear from (6.13) that the source term ℵαββ is a combination of qx and qy and
depends on the restitution coefficient e, the temperature anisotropy η and the non-
coaxiality angle φ.
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6.2.1. Heat flux from Maxwell iteration: thermal conductivity tensor

Now we apply the well-known Maxwell iteration scheme (Truesdell & Muncaster
1980) to the contracted third-moment equation (6.8) to obtain the constitutive relation
for heat flux. For this purpose, we rewrite (6.8) as

ℵαββ = 2
Dqα

Dt
+ 2qα

∂uβ

∂xβ
+
∂Qnαββ

∂xn

− 2(Mαβ + Tδαβ)
∂Pβn

∂xn

+ 2(Qnαβ + qnδαβ)
∂uβ

∂xn

, (6.16)

where qα is defined in (6.7). In the Maxwell iteration scheme, the terms on the right-
hand side of (6.16) are replaced by their zeroth-order values obtained by using the
anisotropic Gaussian (6.3) as the distribution function. For the USF (i.e. at the zeroth
order), it is straightforward to verify that

P
(0)
αβ = ρM

(0)
αβ ≡ ρMαβ,

q(0)α = 0 = Q
(0)
αβγ ,

Q
(0)
nαββ = 2ρ(Tδαβ + Mαβ)Mnβ,





(6.17)

and hence

M
(0)
αβ P

(0)
βn,n =

∂ρ

∂xn

MαβMβn + ρMαβ

∂Mβn

∂xn

,

1

2
Q
(0)
nαββ,n =

∂ρ

∂xn

TMnα + ρ
∂T

∂xn

Mnα + ρT
∂Mnα

∂xn

+
∂ρ

∂xn

MnβMαβ + ρ
∂Mnβ

∂xn

Mαβ + ρMnβ

∂Mαβ

∂xn

.





(6.18)

Inserting (6.17) and (6.18) into the right-hand side of (6.16) and equating the resulting
expression with (6.13), we obtain the desired constitutive relation for the heat flux:

qγ = −
64ρpσ

√
π

(1 + e)
√

T
Q−1
γα

(
2Mαn

∂T

∂xn

+ Mβn

∂M̂αβ

∂xn

)
, (6.19)

where M̂αβ is the deviatoric part of the second-moment tensor Mαβ = Tδαβ + M̂αβ , with
Qγα being given by (6.14) and (6.15). (A similar expression for the heat flux was
used by Simon & Jenkins (1994) in the context of modelling planetary rings, made
of inelastic spheres (i.e. in three dimensions), but they did not present the related
derivation.) Equation (6.19) should be treated as a generalized Fourier law, since the
gradient of the deviatoric part of the second moment (or the kinetic stress) also creates
a heat flux, in addition to the standard Fourier contribution due to the temperature
gradient. This indicates that there could be a heat flux even in the absence of a
temperature gradient, driven solely by the gradient of the deviatoric stress M̂αβ . Such
a stress-gradient-driven heat flux is well known in rarefied gases (Grad 1949; Kogan
1969; Chapman & Cowling 1970); in fact, applying the Maxwell iteration scheme to
equation (5.38) of Grad (1949) leads to a similar constitutive relation for the heat
flux as in (6.19). In any case, identifying the coefficient of the temperature gradient
in (6.19) with the thermal conductivity, we find that the thermal conductivity,

κγ n =
128ρpσ

√
π

(1 + e)
√

T
Q−1
γαMαn, (6.20)
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is a second-rank tensor that is anisotropic (κxx 6= κyy and κxy 6= 0). The anisotropy
of (6.20) is a consequence of the imposed shear field, since the ‘cross’ thermal
conductivity coefficient κxy is proportional to η ∼ γ̇ . Therefore, (6.20) can aptly be
dubbed the ‘shear-induced’ anisotropic thermal conductivity tensor. One consequence
of this anisotropy is the well-known rarefaction effect of heat flow along a direction
orthogonal to the temperature gradient (Kogan 1969).

6.2.2. Thermal conductivity at Navier–Stokes order: verification

As a check, we consider the limit of vanishing temperature anisotropy, η→ 0, for
which the following relations hold:

Mαβ = Tδαβ, M̂αβ = 0 and Q−1
γα =

−1

32(15e − 19)
δγα. (6.21a–c)

Inserting these into (6.19) and (6.20), we obtain

qγ = −
16m

√
T√

πσ(19 + 4e − 15e2)

∂T

∂xγ
≡ −κ

∂T

∂xγ
, (6.22)

where

κ =
16m

√
T√

πσ(19 + 4e − 15e2)
. (6.23)

Equation (6.23) agrees exactly with the expression for thermal conductivity for a dilute
system of inelastic hard disks at NS order (Jenkins & Richman 1985a).

To summarize this section, we have found a generalized Fourier law (6.19) and
determined the explicit expressions for the elements of the thermal conductivity tensor
(6.20) in terms of e, η and φ for a sheared system of a dilute granular gas in two
dimensions. This should be extended to a dense granular gas to obtain an expression
for the thermal conductivity tensor for the whole range of densities.

7. Conclusions and outlook

We analysed the Grad-level moment equations (Grad 1949; Jenkins & Richman
1988) for the plane shear flow of smooth inelastic disks, with a goal to obtain
closed-form expressions for the non-Newtonian stress tensor, the collisional dissipation
rate and the granular heat flux. In this moment approach, an anisotropic Gaussian
(Goldreich & Tremaine 1978; Araki & Tremaine 1986), which is a function of
all components of the second moment of the fluctuation velocity (M = 〈CC〉),
was taken as the single-particle distribution function representing the base state
of USF. The mass and momentum balance equations are identically satisfied for USF,
and the equation for the second-moment tensor of velocity fluctuations was solved
semi-analytically via a series expansion of certain collision integrals.

We derived closed-form expressions for all the transport coefficients (shear viscosity
µ, pressure p and first normal stress difference N1) and the collisional dissipation rate
D in terms of five parameters: (i) density or area fraction ν, (ii) restitution coefficient
e, (iii) shear rate R (see (3.10)), (iv) temperature anisotropy η (see (3.6)) and (v) angle
φ between the principal eigenvectors of the shear tensor D = (∇u + (∇u)T)/2 and
the second-moment tensor M . The last two parameters (η and φ) are zero at the NS
order (i.e. at the linear order in the shear rate) and are, therefore, a measure of the
non-Newtonian rheology of the medium. In the uniform shear state, we found that R, η
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and sin 2φ scale with inelasticity ǫ = (1 − e)1/2 at the leading order (see (4.6) and
discussion in § 4.4), and therefore the shear-rate dependence of transport coefficients
can be translated into their dependence on ǫ in USF. The nonlinear nature of the
rheology was analysed by retaining terms up to the super-Burnett order (i.e. third order
in R and η) in the transport coefficients, and our analytical expressions for transport
coefficients reduced to known exact expressions for the Newtonian rheology when they
were truncated at the NS order. The origin of the first normal stress difference was
shown to be tied to (i) the non-coaxiality (φ 6= 0) of the principal directions of the
shear and second-moment tensors and (ii) the temperature anisotropy (η 6= 0). Both
are shear-induced effects and appear at the Burnett-order approximation of transport
coefficients. In particular, both sin 2φ and η are finite and are of the same order in
the dilute limit, leading to N1 6= 0 as ν→ 0.

From a comparison of analytically derived constitutive relations with those obtained
from the full numerical solution of moment equations (see figure 3), we showed
that, while the Burnett-order terms (i.e. second order in R and η) are sufficient for
accurate predictions of all transport coefficients (µ, p and N1) in the dilute limit,
the super-Burnett-order terms must be retained to achieve similar accuracy for dense
flows, especially at large dissipations. The resulting super-Burnett-order transport
coefficients were further validated via a comparison with the event-driven simulation
data for the USF of an inelastic hard-disk system. We found good agreement between
simulation and moment theory for p, µ and N1 (figures 5–9) for a range of densities
spanning from the dilute to close to the freezing point. In contrast, the transport
coefficients obtained from an NS-order constitutive model (which is assumed to
hold at any dissipation (Lutsko 2005; Garzo et al. 2007)) were shown to deviate
significantly from both simulation and the moment theory even at moderate values of
the restitution coefficient (e ∼ 0.9). The success of the anisotropic Gaussian to predict
transport coefficients in the uniform shear state seems to be tied to the fact that the
terms of all orders in the shear rate and the temperature anisotropy are implicitly
incorporated in the anisotropic Gaussian distribution function.

Going beyond the uniform shear state, we derived a constitutive relation for the
granular heat flux in the dilute limit (§ 6) using a perturbation expansion around the
anisotropic Gaussian and subsequently employing the Maxwell iteration scheme on
the balance equation for the contracted third moment (Mαββ = 〈CαC2〉) of fluctuation
velocity. We found that the granular heat flux follows a generalized Fourier law (6.19)
in which the gradients of the deviatoric part of the second-moment tensor drive a
heat current in addition to the standard Fourier conduction driven by the temperature
gradient. This non-Fourier contribution is a rarefaction effect, which appears at the
Grad-level (second order in gradients) description of the granular shear flow, and has
an analogue in rarefied molecular gases too (Grad 1949). The thermal conductivity
is found to be characterized by an anisotropic second-rank tensor (6.20), for which
we derived an explicit expression in terms of the restitution coefficient e, temperature
anisotropy η and non-coaxiality angle φ. In the limits of η → 0 and φ → 0, we
recovered the expression for the scalar thermal conductivity that holds at the NS order.

In addition to considering the three-dimensional case of spheres, the present
anisotropic moment theory can be extended to include the full contracted fourth
moment (Mααββ = 〈C4〉) as a separate hydrodynamic field, which is likely to recover
the density-gradient-dependent term in the constitutive relation for heat flux (Saha
& Alam 2014). This will also generate additional contributions (in terms of the
fourth velocity cumulant, α2 = 〈C4〉/〈C4〉(0) − 1) to (i) the shear viscosity µ (4.11)
and (ii) the dissipation rate D (4.24) that can be checked in future work. For the
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three-dimensional case, the existing Grad-level theories that are based on an expansion
around the isotropic Gaussian state (e.g. Kremer & Marques 2011) predict that the
second normal stress difference is zero, which is in contrast to both the particle
simulation data (Alam & Luding 2005a,b) and the Burnett-order theory (Sela &
Goldhirsch 1998) based on Chapman–Enskog expansion. On the other hand, the
theories based on the anisotropic Gaussian (Chou & Richman 1998; Lutsko 2004)
predict non-zero values for both normal stress differences. Therefore, the present
semi-analytical formalism of the anisotropic moment theory should be extended
to derive closed-form constitutive relations for spheres too. Another direction of
research would be to extend the present approach: (i) to include the rotational motion
for a rough frictional granular gas (Jenkins & Richman 1985a; Mitarai, Nakanishi
& Hayakawa 2002; Rongali & Alam 2014); and (ii) to consider a sheared binary
or polydisperse granular mixture (Alam et al. 2002; Lutsko 2004; Montanero et al.

2006). The present constitutive relations for the stress tensor (§ 4.2) and the heat flux
(§ 6) along with extended hydrodynamic equations (2.11)–(2.13) can also be tested in
dynamic simulations of granular flows, including the stability analyses of shear flows
(Gayen & Alam 2006; Shukla & Alam 2009, 2011a,b).
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Appendix A. Integral expressions for collisional flux and source terms

A.1. Collisional flux of momentum (Θαβ) at second order

For a dense system of disks, the collisional flux of momentum can be expressed as
(Jenkins & Richman 1985a,b, 1988):

Θαβ = Θα[mCβ]

=
m(1 + e)σ 2

4

∫∫∫

g·k>0

(g · k)2kαkβ

×
∫ 1

0

f (2)(c1, x −ωσk, c2, x + σk −ωσk) dω dk dc1 dc2

=
m(1 + e)σ 2

4

∫∫∫

g·k>0

(g · k)2kαkβ

×
∫ 1/2

−1/2

f (2)(c1, x +
(
ξ −

1

2

)
σk, c2, x +

(
ξ +

1

2

)
σk) dξ dG dk dg. (A 1)

The latter expression has been obtained via a change of variables: (c1, c2, ω) →
(g, G, ξ), with g = c1 − c2, G = (C1 + C2)/2, ξ = 1/2 − ω and dc1 dc2 = dg dG.
With the molecular chaos assumption and using the Taylor series expansion on
the single-particle distribution f (1), the two-particle distribution in (A 1) can be
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simplified to

f (2)
(

c1, x +
(
ξ −

1

2

)
σk, c2, x +

(
ξ +

1

2

)
σk

)

=
n2g0

4π
2|M|

exp

{
−

1

4
M−1
αβ [(gα + Vα)(gβ + Vβ)+ 4(Gα − ξVα)(Gβ − ξVβ)]

}
, (A 2)

where |M| ≡ det(M) and V = σk · ∇u.
Combining (A 1) and (A 2), we obtain

Θαβ =
m(1 + e)n2g0σ

2

16π
2|M|

∫∫

g·k>0

(g · k)2kαkβ exp

{
−

1

4

[
(gα + Vα)M

−1
αβ (gβ + Vβ)

]}

×
(∫ 1/2

−1/2

∫
exp{−[(Gα − ξVα)M

−1
αβ (Gβ − ξVβ)]} dG dξ

)
dk dg

=
ρn(1 + e)g0σ

2

16π|M|1/2

∫∫

g·k>0

(g · k)2kαkβ exp

{
−

1

4
[(gα + Vα)M

−1
αβ (gβ + Vβ)]

}
dk dg.

(A 3)

To arrive at (A 3), the identity
∫ ∫
(·) dG dξ = π

√
|M| has been used. Carrying out

the integration over g, a compact expression for the collisional flux of momentum is
obtained as given by (3.13).

A.2. Collisional source of second moment (ℵαβ) at second order

Using the molecular chaos assumption and the Taylor series expansion of a single-
particle distribution about x, the two-particle distribution function can be written as

f (2)(c1, x − σk, c2, x)

=
n2g0

4π
2|M|

exp

{
−

1

2
M−1
αβ [(Cα + Vα)(Cβ + Vβ)+ (CαCβ)]

}

=
n2g0

4π
2|M|

exp

{
−

1

4
M−1
αβ [(gα + Vα)(gβ + Vβ)+ (2Gα + Vα)(2Gβ + Vβ)]

}
, (A 4)

where the last expression involves a change of variables (c1, c2)→ (g, G) and V =
σk · ∇u.

The collisional source of the second moment can be expressed as (Jenkins &
Richman 1985a,b, 1988)

ℵαβ ≡ ℵαβ[mCαCβ]

=
mσ

2

∫∫∫

g·k>0

1(CαCβ) f (2)(c1, x − σk, c2, x)(k · g) dk dc1 dc2

=
mn2g0σ

8π
2|M|

∫∫

g·k>0

1(CαCβ)(g · k) exp

{
−

1

4
[(gα + Vα)M

−1
αβ (gβ + Vβ)]

}

×
(∫

exp

{
−

1

4
[(2Gα + Vα)M

−1
αβ (2Gβ + Vβ)]

}
dG

)
dk dg



286 S. Saha and M. Alam

=
mσn2g0

8π|M|1/2

∫∫

g·k>0

1(CαCβ)(g · k) exp

{
−

1

4
[(gα + Vα)M

−1
αβ (gβ + Vβ)]

}
dk dg

=
ρνg0

2π
2σ |M|1/2

∫∫

g·k>0

1(CαCβ)(g · k) exp

{
−

1

4
[(gα + Vα)M

−1
αβ (gβ + Vβ)]

}
dk dg.

(A 5)

The last expression results from
∫
(·) dG = π

√
|M|. Note further that

1(CαCβ)= − 1
2
(1 − e2)(g · k)2kαkβ − 1

2
(1 + e)(g · k)(g · j)( jαkβ + kαjβ), (A 6)

where j is a unit vector perpendicular to the contact vector k.
Inserting (A 6) into (A 5) and performing integrations over g, a compact expression

for ℵαβ is obtained,
ℵαβ = Aαβ + B̂αβ, (A 7)

where Aαβ is given by (3.15), and the traceless part, B̂αβ , can be further decomposed
into

B̂αβ = Êαβ + F̂αβ, (A 8)

where

Êαβ = −
4(1 + e)ρνg0(ν)

σπ
3/2

∫
( jαkβ + kαjβ)( j · M · k)(k · M · k)1/2F(χ) dk, (A 9)

F̂αβ =
2(1 + e)ρνg0(ν)

σπ
3/2

∫
( jαkβ + kαjβ)(V · M

−1
· j)|M|G(χ) dk

=
2(1 + e)ρνg0(ν)

π
3/2

∫
( jαkβ + kαjβ)(k · (W + D) · M

−1
· j)|M|G(χ) dk

= ΘαγWβγ +ΘβγWαγ + Ĝαβ, (A 10)

and

Ĝαβ =
2(1 + e)ρνg0(ν)

π
3/2

∫
( jαkβ + kαjβ)kξ jγ (TDγ ξ − DδξM̂δγ )G(χ) dk, (A 11)

with M̂ being the deviatoric part of M . The expression for F(χ) is given by (3.18),
with χ as in (3.20).

A.3. Third-order source term (ℵαββ) to calculate heat flux in the dilute limit

In the dilute limit, the third-order source term in (6.8) has the following integral
expression:

ℵαββ = ℵ[mC2Cα]

=
mσ

2

∫∫∫

g·k>0

1(C2Cα) f (1)(c1, x) f (1)(c2, x)(g · k) dk dc1 dc2. (A 12)

Changing the variables of integration from (c1, c2)→ (g,G), with dc1 dc2 = dC1 dC2 =
dg dG and

1(C2Cα) = [(1 + e)2(g · k)2Gβkβkα − 1
2
(1 − e2)(g · k)2Gα

− (1 + e)(g · k)Gβ(kβgα + gβkα)], (A 13)
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we can write

ℵαββ =
mσn2

8π
2|M|

∫∫∫

g·k>0

[
(1 + e)2(g · k)3Gβkβkα

−
1

2
(1 − e2)(g · k)3Gα − (1 + e)(g · k)2Gβ(kβgα + gβkα)

]

× exp

{
−

1

4
M−1

ab (4GaGb + gagb)

}
[Xf1(g,G)+ Yf2(g,G)] dG dg dk

≡ I
(1)
αββ + I

(2)
αββ + I

(3)
αββ, (A 14)

where
X =

qx

2ρ(Mxx(3M2
xx + 6M2

xy + M2
yy)+ 2M2

xyMyy)
, (A 15)

Y =
qy(Mxx(3M2

xx + 6M2
xy + M2

yy)+ 2M2
xyMyy)− qxMxy(3M2

xx + 2MxxMyy + 4M2
xy + 3M2

yy)

ρ|M|(M2
xx(3M2

xx + 12M2
xy + 10M2

yy)+ 4M2
xy(−2MxxMyy + 4M2

xy + 3M2
yy)+ 3M4

yy)

(A 16)

f1(g,G) = {3g2
xGx + g2

yGx + 4G3
x + 2gxgyGy + 4GxG

2
y − 4(3Mxx + Myy)Gx − 8MxyGy},

(A 17)

f2(g,G) =
{

3

2
g2

yGy +
1

2
g2

xGy + 2G3
y + gxgyGx + 2G2

xGy

+
6Mxy(Mxx + Myy)

3

3M3
xx + 6M2

xyMxx + MxxM2
yy + 2M2

xyMyy

Gx

−
2(3M4

xx + 9MyyM
3
xx + M2

yyM
2
xx + 3M3

yyMxx + 16M2
xyMyyMxx − 8M4

xy)

3M3
xx + 6M2

xyMxx + M2
yyMxx + 2M2

xyMyy

Gy

−
Mxy(4M2

xy + 3M2
xx + 3M2

yy + 2MxxMyy)

3M3
xx + 6M2

xyMxx + M2
yyMxx + 2M2

xyMyy

×
(

3

2
g2

xGx +
1

2
g2

yGx + 2G3
x + gxgyGy + 2GxG

2
y

)}
. (A 18)

Now using
∫

exp{−GaM−1
ab Gb} dG = π|M|1/2, (A 19)

∫
GiGj exp{−GaM−1

ab Gb} dG =
π

2
|M|1/2Mij, (A 20)

∫
GiGjGkGl exp{−GaM−1

ab Gb} dG =
π

4
|M|1/2(MijMkl + MikMjl + MilMjk), (A 21)

we carry out the integrations over G to obtain

I
(1)
αββ =

mσn2(1 + e)2

8π|M|1/2

∫∫

g·k>0

exp

{
−

1

4
gaM−1

ab gb

}
(g · k)3kβkα

×
[

X

(
3

2
g2

xMxβ +
1

2
g2

yMxβ + gxgyMyβ − (3Mxx + Myy)Mxβ − 2MxyMyβ

)
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+ Y

{
3

4
g2

yMyβ +
1

4
g2

xMyβ +
1

2
gxgyMxβ +

1

2
(Mxx + 3Myy)Myβ + MxyMxβ

+
3MxyMxβ(Mxx + Myy)

3

3M3
xx + 6M2

xyMxx + MxxM2
yy + 2M2

xyMyy

−
(3M4

xx + 9MyyM
3
xx + M2

yyM
2
xx + 3M3

yyMxx + 16M2
xyMyyMxx − 8M4

xy)

3M3
xx + 6M2

xyMxx + M2
yyMxx + 2M2

xyMyy

Myβ

−
4M3

xy + 3M2
xxMxy + 3M2

yyMxy + 2MxxMyyMxy

3M3
xx + 6M2

xyMxx + M2
yyMxx + 2M2

xyMyy

×
(

3

4
g2

xMxβ+
1

4
g2

yMxβ+
1

2
gxgyMyβ+

1

2
(3Mxx + Myy)Mxβ + MxyMyβ

)}]
dg dk,

(A 22)

I
(2)
αββ = −

mσn2(1 − e2)

16π|M|1/2

∫∫

g·k>0

exp

{
−

1

4
gaM−1

ab gb

}
(g · k)3

×
[

X

(
3

2
g2

xMxα +
1

2
g2

yMxα + gxgyMyα − (3Mxx + Myy)Mxα − 2MxyMyα

)

+ Y

{
3

4
g2

yMyα +
1

4
g2

xMyα +
1

2
gxgyMxα +

1

2
(Mxx + 3Myy)Myα + MxyMxα

+
3MxyMxα(Mxx + Myy)

3

3M3
xx + 6M2

xyMxx + MxxM2
yy + 2M2

xyMyy

−
(3M4

xx + 9MyyM
3
xx + M2

yyM
2
xx + 3M3

yyMxx + 16M2
xyMyyMxx − 8M4

xy)

3M3
xx + 6M2

xyMxx + M2
yyMxx + 2M2

xyMyy

Myα

−
4M3

xy + 3M2
xxMxy + 3M2

yyMxy + 2MxxMyyMxy

3M3
xx + 6M2

xyMxx + M2
yyMxx + 2M2

xyMyy

×
(

3

4
g2

xMxα+
1

4
g2

yMxα+
1

2
gxgyMyα+

1

2
(3Mxx + Myy)Mxα + MxyMyα

)}]
dg dk,

(A 23)

I
(3)
αββ = −

mσn2(1 + e)

8π|M|1/2

∫∫

g·k>0

exp

{
−

1

4
gaM−1

ab gb

}
(g · k)2(kβgα + gβkα)

×
[

X

(
3

2
g2

xMxβ +
1

2
g2

yMxβ + gxgyMyβ − (3Mxx + Myy)Mxβ − 2MxyMyβ

)

+ Y

{
3

4
g2

yMyβ +
1

4
g2

xMyβ +
1

2
gxgyMxβ +

1

2
(Mxx + 3Myy)Myβ + MxyMxβ

+
3MxyMxβ(Mxx + Myy)

3

3M3
xx + 6M2

xyMxx + MxxM2
yy + 2M2

xyMyy

−
(3M4

xx + 9MyyM
3
xx + M2

yyM
2
xx + 3M3

yyMxx + 16M2
xyMyyMxx − 8M4

xy)

3M3
xx + 6M2

xyMxx + M2
yyMxx + 2M2

xyMyy

Myβ
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−
4M3

xy + 3M2
xxMxy + 3M2

yyMxy + 2MxxMyyMxy

3M3
xx + 6M2

xyMxx + M2
yyMxx + 2M2

xyMyy

×
(

3

4
g2

xMxβ +
1

4
g2

yMxβ +
1

2
gxgyMyβ +

1

2
(3Mxx + Myy)Mxβ + MxyMyβ

)}]
dgdk.

(A 24)

To carry out the integrations over g, we need the following results:

∫
(g · k)3 exp

{
−

1

4
gaM−1

ab gb

}
dg = 16π

1/2|M|1/2ϑ3/2, (A 25)

∫
g2

x(g · k)3 exp

{
−

1

4
gaM−1

ab gb

}
dg = 128π

1/2|M|1/2ϑ1/2
[
{ϑkx +̟ky}2 +

1

4
|M|k2

y

]
,

(A 26)
∫

gxgy(g · k)3 exp

{
−

1

4
gaM−1

ab gb

}
dg

= 128π
1/2|M|1/2ϑ1/2[{ϑkx +̟ky}{ϑky −̟kx} −

1

4
|M|kxky], (A 27)

∫
g2

y(g · k)3 exp

{
−

1

4
gaM−1

ab gb

}
dg = 128π

1/2|M|1/2ϑ1/2
[
{ϑky −̟kx}2 +

1

4
|M|k2

x

]
,

(A 28)
∫

gx(g · k)2 exp

{
−

1

4
gaM−1

ab gb

}
dg = 16π

1/2|M|1/2ϑ1/2{ϑkx +̟ky}, (A 29)

∫
gy(g · k)2 exp

{
−

1

4
gaM−1

ab gb

}
dg = 16π

1/2|M|1/2ϑ1/2{ϑky −̟kx}, (A 30)

∫
g3

x(g · k)2 exp

{
−

1

4
gaM−1

ab gb

}
dg

=
32π

1/2|M|1/2

ϑ1/2
{ϑkx +̟ky}[4{ϑkx +̟ky}2 + 3|M|k2

y ], (A 31)
∫

g2
xgy(g · k)2 exp

{
−

1

4
gaM−1

ab gb

}
dg

=
32π

1/2|M|1/2

ϑ1/2
[4{ϑky −̟kx}{ϑkx +̟ky}2 − 2|M|kxky{ϑkx +̟ky}

+ |M|k2
y{ϑky −̟kx}], (A 32)

∫
gxg

2
y(g · k)2 exp

{
−

1

4
gaM−1

ab gb

}
dg

=
32π

1/2|M|1/2

ϑ1/2
[4{ϑkx +̟ky}{ϑky −̟kx}2 − 2|M|kxky{ϑky −̟kx}

+ |M|k2
x{ϑkx +̟ky}], (A 33)

∫
g3

y(g · k)2 exp

{
−

1

4
gaM−1

ab gb

}
dg

=
32π

1/2|M|1/2

ϑ1/2
{ϑky −̟kx}[4{ϑky −̟kx}2 + 3|M|k2

x ], (A 34)
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where

ϑ = k · M · k = T(1 − η cos 2θ) and ̟ = −Tη sin 2θ, (A 35a,b)

and the contact vector k (cf. figure 2) is given by

k =
[

cos(θ + φ + 1
4
π)

sin(θ + φ + 1
4
π)

]
. (A 36)

Note that

(ϑkx +̟ky) = T[cos(θ + φ + 1
4
π)− η cos(θ − φ − 1

4
π)], (A 37)

(ϑky −̟kx) = T[sin(θ + φ + 1
4
π)+ η sin(θ − φ − 1

4
π)], (A 38)

and to within an error of O(η3) we have

ϑ3/2 ≈ T3/2(1 − 3
2
η cos 2θ + 3

8
η2 cos2 2θ), (A 39)

ϑ1/2 ≈ T1/2(1 − 1
2
η cos 2θ − 1

8
η2 cos2 2θ), (A 40)

ϑ−1/2 ≈
1 + 1

2
η cos 2θ + 3

8
η2 cos2 2θ

T1/2
. (A 41)

Using the above results we can carry out the integrations over g and k to yield

I
(1)
xββ =

3ρ(1 + e)2T1/2

32ρpσπ
1/2(1 + η2 + η4)

× [{96 + 114η2 + 118η4 − 7η6 + η sin 2φ(24 − 5η2 + 20η4)}qx

+ {η cos 2φ(−24 + 5η2 − 20η4)}qy], (A 42)

I
(1)
yββ =

3ρ(1 + e)2T1/2

32ρpσπ
1/2(1 + η2 + η4)

[{η cos 2φ(−24 + 5η2 − 20η4)}qx

+ {96 + 114η2 + 118η4 − 7η6 − η sin 2φ(24 − 5η2 + 20η4)}qy], (A 43)

I
(2)
xββ = −

3ρ(1 − e2)T1/2

8ρpσπ
1/2(1 + η2 + η4)

[{16 + 21η2 + 21η4 − η6 + 2η(1 − η2)2 sin 2φ}qx

+ {−2η(1 − η2)2 cos 2φ}qy], (A 44)

I
(2)
yββ = −

3ρ(1 − e2)T1/2

8ρpσπ
1/2(1 + η2 + η4)

[{−2η(1 − η2)2 cos 2φ}qx

+ {16 + 21η2 + 21η4 − η6 − 2η(1 − η2)2 sin 2φ}qy], (A 45)

I
(3)
xββ = −

ρ(1 + e)T1/2

32ρpσπ
1/2(1 + η2 + η4)

× [{704 + 804η2 + 933η4 + 73η6 + η sin 2φ(208 + 157η2 + 184η4 + 105η6)}qx

+ {−η cos 2φ(208 + 157η2 + 184η4 + 105η6)}qy], (A 46)

I
(3)
yββ = −

ρ(1 + e)T1/2

32ρpσπ
1/2(1 + η2 + η4)

[{−η cos 2φ(208 + 157η2 + 184η4 + 105η6)}qx

+ {704 + 804η2 + 933η4 + 73η6 − η sin 2φ(208 + 157η2 + 184η4 + 105η6)}qy].
(A 47)

Substituting (A 42)–(A 47) into (A 14), we obtain the final expressions (6.13)–(6.15)
for the third-order source term.
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Appendix B. Series representation for collision integrals

Recall from § 3.2 that the integration over the contact vector k is transformed into
the integration over another variable θ ∈ (0, 2π) (the angle between k and |M1〉, the
eigenvector corresponding to the smaller eigenvalue of the second-moment tensor M;
cf. figure 2). The expressions for the integrals appearing in (3.27)–(3.29) are

Hαβγ (η, R, φ) ≡
∫ 2π

0

cosα 2θ sinβ 2θ (1 − η cos 2θ)γ /2F(η, R, φ, θ) dθ, (B 1)

Jαβγ (η, R, φ) ≡
∫ 2π

0

cosα 2θ sinβ 2θ (1 − η cos 2θ)γ /2G(η, R, φ, θ) dθ. (B 2)

Now substituting the infinite series representation for F and G, as given in (4.1) and
(4.2), into above integrals, a term-by-term integration can be carried out for both
integrals Hαβγ and Jαβγ . For example, the series representation for H003 is

H003(η, R, φ) = 3π
3/2ηR cos 2φ +

∞∑

n=0

Λ(
3

2
, 2n)π1/2η2n

2Γ (n + 1
2
)

n!

+ 12R2
∞∑

n=0

Λ

(
1

2
, 2n

)
η2n

π
1/2(1 + n + n cos 4φ)Γ (n + 1

2
)

(n + 1)!

+ 8R4

[
3

4
π +

3

64
πη2(3 + 2 cos 4φ)+ O(η4)

]
+ O(R6), (B 3)

J020(η, R, φ) =
1

2
π

3/2 − 4R

∞∑

n=0

Λ(2n +
1

2
, 2n + 1)η2n+1 π

1/2 cos 2φΓ (n + 3
2
)

(n + 2)!

+ 2πR2
∞∑

n=0

η2n
{2 + n + (n − 1) cos 4φ}Γ (n + 1

2
)

(n + 2)!

−
8

3
R3

∞∑

n=0

Λ

(
2n +

3

2
, 2n + 1

)
η2n+1

π
1/2 cos 2φ{6 + n + (n − 3) cos 4φ}Γ (n + 3

2
)

(n + 3)!
+ O(R5), (B 4)

where

Λ(α, β)≡
Γ (α + 1)

β!Γ (α + 1 − β)
, (B 5)

with similar expressions for other integrals of Hαβγ and Jαβγ .
Each of the above infinite series at the third-order approximation in R and η, with

error O(Rmηn) and (m + n)> 4, can be simplified to

H003(η, R, φ)= 2π + 12πR2 + 3π
3/2ηR cos 2φ + 3

8
πη2 + O(Rmηn),

H103(η, R, φ)= −3π
3/2R cos 2φ − 3

2
πη− 6π

3/2R3 cos 2φ − 3
2
πηR2(2 + cos 4φ

︸ ︷︷ ︸
),

H013(η, R, φ)= 3π
3/2R sin 2φ + 6π

3/2R3 sin 2φ + 3
2
πηR2 sin 4φ

︸ ︷︷ ︸
,

H021(η, R, φ)= π − 1
32

πη2 + 3πR2(2 − cos 4φ),

H111(η, R, φ)= −3πR2 sin 4φ,





(B 6)
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J020(η, R, φ)= 1
2
π

3/2 − 1
2
πRη cos 2φ + π

3/2R2(2 − cos 4φ),

J110(η, R, φ)= 1
2
πRη sin 2φ − π

3/2R2 sin 4φ,

J010(η, R, φ)= 4πR sin 2φ − π
3/2ηR2 sin 4φ + 3

8
πRη2 sin 2φ + 4πR3 sin 2φ

︸ ︷︷ ︸
,

J200(η, R, φ)= 1
2
π

3/2 − 3
2
πRη cos 2φ + π

3/2R2(2 + cos 4φ),

J100(η, R, φ)= −4πR cos 2φ + π
3/2ηR2(2 + cos 4φ)− 9

8
πRη2 cos 2φ − 4πR3 cos 2φ

︸ ︷︷ ︸
,





(B 7)

J102(η, R, φ)= −4πR cos 2φ − 1
2
π

3/2η+ 3
8
πRη2 cos 2φ − 4πR3 cos 2φ
︸ ︷︷ ︸

,

J012(η, R, φ)= 4πR sin 2φ − 1
8
πRη2 sin 2φ + 4πR3 sin 2φ
︸ ︷︷ ︸

,

J002(η, R, φ)= π
3/2 + 4R2

π
3/2 + 2πηR cos 2φ.





(B 8)

Removing the underbraced terms yields second-order series approximation for
the above integral expressions. Note that some of the above quantities have zero
contribution at third order, and hence they are equal at both second- and third-order
approximation.

Appendix C. Evaluation of stress tensor for uniform shear flow

Here we present explicit expressions for the transport coefficients of the USF as
obtained from series solutions. The components of the dimensionless stress tensor are

P∗
xx =

Pxx

ρpUR
2

= νT∗
(
(1 + η sin 2φ)+

νg0(1 + e)

π
3/2

[J002(η, R, φ)

− cos 2φJ012(η, R, φ)− sin 2φJ102(η, R, φ)]
)
, (C 1)

P∗
yy =

Pyy

ρpUR
2

= νT∗
(
(1 − η sin 2φ)+

νg0(1 + e)

π
3/2

[J002(η, R, φ)

+ cos 2φJ012(η, R, φ)+ sin 2φJ102(η, R, φ)]
)
, (C 2)

P∗
xy =

Pxy

ρpUR
2

= νT∗
(

−η cos 2φ +
νg0(1 + e)

π
3/2

[cos 2φJ102(η, R, φ)− sin 2φJ012(η, R, φ)]
)
,

(C 3)

where ρp is the density of particles, and the reference velocity scale for non-
dimensionalization is UR = 2γ̇ σ . Substituting the power-series expressions for
J002,J012 and J102 as given by (B 8) in appendix B, we obtain the super-Burnett-
order, O(R3), expression for the stress tensor in § 4.2.
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The pressure p = (Pxx + Pyy)/2 is calculated from the average of (C 1) and (C 2),
which can be further decomposed into its kinetic and collisional parts:

p∗ =
p

ρpUR
2 = p∗

k + p∗
c = νT∗

[
1 +

νg0(1 + e)

π
3/2

J002(η, R, φ)

]
, (C 4)

p∗
k = νT∗, (C 5)

p∗
c =

νg0(1 + e)

π
3/2

T∗J002(η, R, φ). (C 6)

The dimensionless shear viscosity and its kinetic and collisional components are given
by

µ∗ =
−Pxy

ρpUR
2 =µ∗

k +µ∗
c

=
ν

64R2

[
η cos 2φ −

νg0(1 + e)

π
3/2

{cos 2φJ102(η, R, φ)− sin 2φJ012(η, R, φ)}
]
,

(C 7)

µ∗
k =

νη cos 2φ

64R2
, (C 8)

µ∗
c = −

ν2g0(1 + e)

64π
3/2R2

[cos 2φJ102(η, R, φ)− sin 2φJ012(η, R, φ)]. (C 9)

The granular temperature (3.5) is given by

T =
Mxx + Myy

2
H⇒ T∗ =

T

UR
2 =

1

64R2
. (C 10)

For the full numerical solution of the moment equations (3.29)–(3.31), the transport
coefficients are calculated from (C 1)–(C 9) by evaluating the integrals J002, J102 and
J012 in (B 2) by using standard quadrature rules.

On the other hand, for the series solution, (4.3) or (4.4) (at second order or third
order, respectively) are solved for η, R and φ. Next the series expressions for
J002,J102 and J012 ((B 8) from appendix B) are inserted into (C 1)–(C 9) in order
to calculate the transport coefficients.

Appendix D. Constitutive model of Navier–Stokes order (Lutsko 2005)

The constitutive model for an inelastic hard-disk system is taken from Lutsko
(2005), which is almost identical to that of Garzo et al. (2007) up to the first Sonine
approximation:

g0 =
16 − 7ν

16(1 − ν)2
, (D 1)

α2 =
16(1 − e)(1 − 2e2)

57 − 25e + 30(1 − e)e2
, (D 2)

ϕ∗
µ = g0(1 − 1

8
(1 − e)(1 − 3e)), (D 3)

ζ ∗ = 1
2
g0(1 − e2). (D 4)
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The dimensionless pressure with its kinetic and collisional parts are given by

p∗ = νT∗(1 + (1 + e)νg0)= p∗
k + p∗

c, (D 5)

p∗
k = νT∗, (D 6)

p∗
c = (1 + e)ν2g0T∗, (D 7)

and the dimensionless viscosity is

µ∗ =µ∗
k +µ∗

c, (D 8)

µ∗
k =

√
π

8
T∗1/2 (1 − 1

4
(1 + e)(1 − 3e)νg0)

(ϕ∗
µ − 1

2
ζ ∗)

, (D 9)

µ∗
c =

√
π

8
T∗1/2

[
(1 + e){1 − 1

4
(1 + e)(1 − 3e)νg0}νg0

2(ϕ∗
µ − 1

2
ζ ∗)

+
4(1 + e)(1 − 1

16
α2)ν

2g0

π

]
.

(D 10)

The expression for the dimensionless temperature follows from the energy balance
equation:

T∗ =
π(1 − 1

4
(1 + e)(1 − 3e)νg0)(1 + 1

2
(1 + e)νg0)

32(1 − e2)(1 + 3
16
α2)(ϕ∗

µ − 1
2
ζ ∗)ν2g0

+
1 − 1

16
α2

8(1 − e)(1 + 3
16
α2)

. (D 11)
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List of Corrections in Updated Thesis

The thesis has been updated and reorganized following the suggestions of two reviewers.

Chapter 1

1. 1µm is changed to 1mm.

Chapter 2

1. In expressions (2.51)-(2.52), the colour is changed to “blue”.

2. Text quoted from the work of Garzo (2013) is modified and made in italic font.

3. A footnote is added to explain the word “dense” in page 19.

Chapter 3

1. Appendices A-H have been renamed as appendices F-M and pushed to the end of the

thesis.

Chapter 4

Major changes are made in this chapter. Initially in the first draft of my thesis I mistak-

enly assumed terms like λ 2
R

Std
are of third order in shear rate. But actually it is a Burnett order

term (second order in shear rate) and therefore should appear in the Burnett order equations

of second moment balance and consequently there will be changes in the super-Burnett and

super-super-Burnett order equations as well. This inclusion in the Burnett order approxima-

tions of the second moment balance produces quantitative and qualitative improvement of the

analytical solutions at various orders which are manifested in the figures for comparison with

full numerical solution. In summary the list of changes made in chapter 4 are as follows:

1. The Burnett order equations (4.56) are modified and therefore there is some modification

in Sec 4.5.

2. Related results for dry granular gas of Chapter 3 are recovered and a new subsection

4.5.1 is devoted to this.

3. The super- Burnett and super-super-Burnett order equations are modified and are listed

in subsection 4.5.2.

4. The expression for shear viscosity for a dry granular gas is derived in 4.6.2.

5. Figures 4.3-4.12 are updated.

Chapter 5

1. Appendices I-M are renamed to Appendices A-E.
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