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Abstract

In the last few decades, simulations of stochastic processes have gained prominence in many fields
of science and engineering. These simulations rely on Random Number generators (RNGs), rou-
tines that produce seemingly random sequence of numbers. Currently two paradigms exist for
building RNGs — extracting noise from physical devices and complicated mathematical con-
structs based mostly on number theory. In this thesis we show that a synergy of these two
paradigms, that a simulation of a stochastic process can in fact form the basis of an RNG. We
illustrate this via simulating gas molecules which follow a collectively chaotic motion. This thesis
also shows that various numerical schemes that can solve for hydrodynamics at a mesoscopic
level generate random sequences of numbers. We propose a new algorithm with these concepts
as foundation that can generate Gaussian and exponential random numbers orders-of-magnitude
faster than existing methods. By employing this algorithm we simulate reaction-diffusion prob-
lem and binary gas mixtures modeled at a mesoscopic level.
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Chapter 1

Introduction

1.1 Motivation

Stochastic models have gained prominence in many fields of engineering and sciences such as
physics, chemistry, finance etc (Gardiner, 1985a) as the behaviour of many systems such as
quantum particles are inherently random and hence their state is defined in probabilistic terms.
This is also true for phenomena where the large amounts of information required acts as a
major deterrent (Risken, 1996). Such processes require stochastic modelling where the random
contributions are accounted for thereby providing an estimate of the qualitative behaviour of
the system. Consider the case of a Brownian particle immersed in a fluid at rest, the particle
exhibits a “zig-zag” motion in a haphazard manner. In order to ascertain the nature of the
system, the position and velocities of each fluid molecule is required hence rendering it to be an
infeasible approach. However, the statistics of such processes can be inferred by understanding
the phenomena that drives them. For the case of Brownian motion, there are essentially two
mechanisms which dictate the motion of the particle. The first being the drag faced by the
particle against its velocity and the second is the constant buffeting the particle experiences
from the fluid molecules (Uhlenbeck & Ornstein, 1930). The equation governing the motion of
the Brownian particle immersed in a fluid at rest is

m
d2x

dt
= −λdx

dt
+ η(t), (1.1)

where m and x denote the mass and the position of the particle respectively, λ the damping
coefficient associated with the viscosity of the fluid and η(t) the random force component re-
sulting from the collisions with fluid molecules. The statistics of the force component can be
deduced by simple reasoning. It is argued that at a time scale when the particle has faced many
collisions, the sum total of these forces would be Gaussian in nature as guaranteed by the central
limit theorem with mean zero and the variance directly proportional to the temperature of the
system, as it is a measure of the thermal motion of the fluid molecules (Uhlenbeck & Ornstein,
1930). In addition to this, the forces must be independent of each other in time and direction.
Hence, the probability density function of the force is Gaussian with mean and variance

〈ηα(t)〉 = 0 〈ηα(t)ηβ(t′)〉 = 2λkBTδαβδ(t− t′), (1.2)

where 〈.〉 is the operator symbolizing an average of the quantity over many ensembles, δαβ the
Kronecker delta, δ(t− t′) the Dirac delta function and kB is the Boltzmann constant. In order
to numerically solve this equation, one would require a sequence of Gaussian random numbers
which could imitate the behaviour of the random force component. This is achieved by using
a class of algorithms known as Pseudo-Random Number Generators (PRNGs), which produce
empirically random sequences that can be used to mimic these seemingly random contributions
(Knuth, 1981). While these routines are restricted to producing sequences that are distributed
uniformly, by using appropriate transformations they can be converted to sequence of Gaussian
random numbers and subsequently used to simulate the motion of a Brownian particle.

Numerically solving stochastic models require random numbers from a variety of distributions
such as – exponential, Poisson etc. There have been many advances in the field of PRNGs and are
mostly rooted in number theory and generate uniformly distributed random numbers (Knuth,
1981). Techniques for generation of non-uniform distributions rely on complicated mathematical

1



2 Chapter 1. Introduction

transformations which are computationally expensive and thus render many large-scale scientific
simulations expensive. Many problems such as whole-cell simulation have not been solved yet
because of the large number of sequences required, driving the expected computational time
to years, hence it is imperative to develop new methods which can mitigate this problem and
open up new possibilities in the realm of large-scale scientific computation. This thesis aims to
address this problem by proposing a new algorithm to generate non-uniform distributions and
highlight its capabilities in the context of large-scale scientific simulations. In particular the
following aspects are dealt with, in the thesis:

• Mesoscale hydrodynamic solvers as PRNGs: The existing methods to generate ran-
dom sequences either rely on the random measurements made from physical devices or
complicated iterative schemes rooted in number theory. We explore whether a synergy
of the two approaches — simulation of an inherently stochastic process is able to gen-
erate high quality random sequences. A visual representation of this idea is presented
in Fig.(1.1). For this purpose a simple rarefied gas dynamics simulation is chosen as the
probability distribution of positions and velocities of the molecules can be easily computed
from the Boltzmann equation. Numerous methods exist to simulate fluid flow at a meso-
scopic scale. Such solvers aim to produce desired macroscopic behaviour by considering a
particular microphysical possibility. In this thesis, a new algorithm is designed along these
principles which generate Gaussian and exponential random numbers orders-of-magnitude
more efficient than contemporary methods.

Figure 1.1: The central idea of the thesis. Random sequences ahdering to non-uniform distri-
butions can be generated without using complicated mathematical functions by simulating an
inherently stochastic process.

• Stochastic simulation of chemical reactions: For small system sizes, fluctuations
and perturbations can play an important role in dictating its behaviour (Gardiner, 1985a).
Hence, in order to incorporate these, a stochastic description of chemically reacting systems
is employed. The numerical method used to solve resulting equations requires a high
number of exponential and uniform random numbers (Gillespie, 1977). This problem is
further exacerbated in the cases of reaction-diffusion systems where diffusion is treated as
individual reaction events. The proposed algorithm is used to implement this scheme and



1.2 Organization of the thesis 3

the resulting speedup is observed.

• Simulation of binary mixtures: The Fokker-Planck model for hydrodynamics has
emerged as an alternative method for simulating fluid flows. Solving the resulting equa-
tions require a high number of Gaussian random numbers rendering the technique com-
putationally expensive. We extend the existing model for binary mixtures based on the
multi-relaxation scheme. This model is then benchmarked by simulating three canonical
problems.

1.2 Organization of the thesis

The thesis is organized in the following manner:

• In Chapter 2, standard approaches to generate uniformly distributed random numbers is
introduced along with various methods to generate non-uniform distributions. In addition,
the characteristics of a high quality PRNG is discussed.

• In Chapter 3, the basic concepts associated with hypothesis testing and various statistical
tests used to quantify and subsequently establish the quality of PRNGs is discussed.

• In Chapter 4, a new paradigm to generate random numbers is discussed. A new algorithm
which could generate Gaussian and exponential random numbers orders-of-magnitude
faster than contemporary algorithms is proposed.

• In Chapter 5, the basics of the stochastic formulation of chemically reactive systems along
with numerical methods used to solve it is explained. Additionally, methods to solve
reaction-diffusion systems are also discussed. Three problems are solved to demonstrate
the efficacy of the proposed algorithm — bi-stable biochemical reaction network of proteins
binding to a DNA, the Goldbeter-Koshland switch and pattern formation in bacteria.

• In Chapter 6, The Fokker-Planck approximation to the Boltzmann equation is briefly
described followed by a summary of the numerical method used to solve the resulting set
of equations and simulate fluid flow.

• In Chapter 7, A new model based on the Fokker-Planck equation for binary mixtures
is introduced. This model is then benchmarked by solving three canonical problems —
Couette flow, Graham’s law for effusion and static diffusion.

• In Chapter 8, a summary of thesis is presented and further avenues resulting from this
work are suggested.





Chapter 2

Random Number Generators
(RNGs)

2.1 Introduction

The progression of many processes in nature such as – decay of radioactive matter, Brownian
motion, queueing systems etc. cannot be predicted using simple deterministic equations because
of their apparently random behaviour (Gardiner, 1985a). Such cases are better handled in a
stochastic framework wherein the inherent randomness is accounted for and modelled accord-
ingly. Hence, numerically simulating these models requires techniques which could mimic these
random perturbations. These disturbances are incorporated in simulations in the form of stream
of random numbers. There are essentially two paradigms to generate such sequences — extract-
ing noise from hardwares exploiting the inherent fluctuations present in physical devices, and
iterative schemes built on mathematical formulae which produce apprently random sequence of
numbers (Knuth, 1981).

In this chapter different methods to generate random numbers used to numerically solve
stochastic differential equations and different methods to generate non-uniform distributions
are explained. The chapter ends with a brief discussion on the qualities of a good RNG.

2.2 Hardware based Random Number Generators

A simple but robust method to incorporate the randomness in systems is to use the measurements
made from an actual physical device (Symul et al., 2011). If the nature of noise produced from
a given device can be quantified, it can be used as a stream of random numbers to numerically
simulate stochastic models. For example, the electronic noise arising from thermal agitation of
charge carriers inside a conductor observed in the values of the voltage, is Gaussian distributed
with zero mean and variance

v2
n = 4kBTR∆f, (2.1)

where kB is the Boltzmann constant, T the temperature, R the resistance and for a given
bandwidth, ∆f the bandwidth (Johnson, 1928; Nyquist, 1928). This is a well known result
in statistical physics and referred to as the Johnson-Nyquist Noise. An example of how such
observed noise can be used to generate sequence of random numbers presented in Fig.(2.1).
Sequences generated using such techniques are termed as “true” random numbers and are highly
reliable (Marandi et al., 2012). However, the cost of providing these numbers in millions is
computationally expensive owing to data transfer from the device to computers and in many
cases specialized hardware is required to facilitate this transfer. In addition to this, the sequences
generated using this method can be correlated or might not follow an exact distribution because
of flaws in measuring instruments and techniques (Krishnan, 2015). As large-scale scientific
simulations require large number of random sequences following a specified distribution such
methods cannot be employed. However, this class of methods has found widespread use in the
field of cryptography as it needs random sequences which cannot be predicted using statistical
procedures (Jun & Kocher, 1999).

5
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Figure 2.1: Thermal white noise from an electric resistor can be used to generate “true” random
numbers. The noise is sampled periodically. Noise greater than theoretical value corresponds to
a 1 bit and a 0 bit otherwise. For the case shown, the number generated in bitwise representation
is 111100111000011. Since it is equally likely for the noise to be on either side of the baseline,
this produces a uniform distribution

2.3 Pseudo Random Number Generators (PRNGs)

A computer algorithm is fundamentally restricted to produce deterministic outputs and no se-
quences any algorithm generates can be “truly” random. There exists, however, a class of
algorithms known as Pseudo Random Number Generators (PRNGs) that can generate se-
quences of uniformly distributed numbers which cannot be distinguished from truly random
sequences through standard statistical tests (Chorin & Hald, 2009). These sequences are con-
sidered “pseudo” random as they are the outputs of deterministic equations and would invariably
start repeating after a finite period of time. The core idea of PRNGs is to define a function F
such that an iterative scheme

xn = F (x0, ..., xn−1), (2.2)

which produces an apparently random sequence of numbers (Knuth, 1981). Many such functions
have been determined and have engendered different families of PRNGs such as — Xorshift
(Marsaglia et al., 2003), Permuted Congruential Generators (ONeill, 2015) etc. In the following
section the Linear Congruential Generator (LCG) family is discussed which would provide an
insight into the framework of most PRNGs.

2.3.1 Linear Congruential Generators (LCGs)

A highly useful class of PRNGs is the Linear Congruential Generators (LCGs), wherein the
function F is chosen in manner which yields the iterative scheme

xn = (axn−1 + b) mod m, (2.3)
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this scheme generates all numbers between [0,m) if and only if the following conditions are
satisfied

1. m and b are co-primes, i.e, their greatest common divisor is 1.

2. (a− 1) is divisible by 4 if and only if m is.

3. (a− 1) is divisible by all prime factors of m.

these set of conditions are known as the Hull-Dobell theorem (Hull & Dobell, 1962). While these
conditions guarantee that xn attains all the values between [0,m), it does not ensure absence
of correlations and random behaviour. For example, Fig.(2.2) shows a plot of the output of
an LCG which satisfies these conditions, but generates numbers which exhibit obvious pattern.
In the last few decades various combinations of (a, b,m) have been determined which produce
satisfactory results and have been adapted widely for scientific simulations (Knuth, 1981). As
an example, a plot for the drand() function is shown Fig.(2.3) which clearly lacks discernible
patterns as opposed to the plot in Fig.(2.2).
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Figure 2.2: Scatter plot of consecutive numbers (xi, xi+1) generated in a sequence by the iter-
ative scheme xn+1 = (1093xn + 18257) mod 86436. a) A complete picture of the plot shows
considerable mesh-like pattern. b) A close-up view of the bottom left corner of the complete
plot shows that sequence of numbers mainly fall in selective planes.

LCGs are the foundation for many canonical PRNGs such as the drand() family of C/C++.
The simple nature of the function F associated with LCGs renders the computation to be quite
fast and has been shown to hold good statistical properties for a variety of parameters. The rate
of random number generation for two commonly used LCGs on different computers is tabulated
in Table(2.1). The speeds of rand() are in integers/second while the speed of drand48() is in
doubles/sec. The configuration of the two computers are, Computer 1 – Intel(R) Xeon(R) CPU
E5-2650 v2 @ 2.60GHz and Computer 2 – Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz.

2.4 Generating non-uniform distributions

There exists three techniques namely — inverse transform sampling, transformation methods
and the acceptance-rejection method which can be used to generate non-uniformly distributed
random numbers, and will be described briefly in the following sections.
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Figure 2.3: Scatter plot of consecutive numbers (xi, xi+1) generated in a sequence by the drand()
function of C++. a) A complete picture of the plot lacks any discernible pattern. b) A close-
up view of the bottom left corner of the complete plot shows that sequence of numbers have
apparently random behaviour

drand() drand48()

Computer I 1.12× 108 1.32× 108

Computer II 1.64× 108 1.65× 108

Table 2.1: Speeds of two commonly used LCGs on two different computers

2.4.1 Inverse transform sampling

The central idea behind inverse transform sampling is to map the uniform random numbers to the
desired distribution (Chorin & Hald, 2009). This is made possible by the fact that the cumulative
distribution function is monotonically increasing with range [0, 1). Provided that a routine to
generate uniformly distributed random numbers U in the interval [0, 1) exists, random numbers
X with cumulative distribution function FX(x) can be generated by using the transformation
F−1
X (U), which is the inverse of the cumulative distribution function FX(x). Since FX(x) is a

monotonically increasing function, it must have an inverse. Consider the cumulative distribution
function of the random variate X

FX(x) = P [X ≤ x] = P [F−1
X (U) ≤ x], (2.4)

which can be re-written as

P [F−1
X (U) ≤ x] = P [U ≤ FX(x)] = FU [FX(x)], (2.5)

where FU (u) is the cumulative distribution function of the uniformly distributed variate U .
Since, the cumulative distribution function, FU (u) = u, we have

FU [FX(x)] = FX(x). (2.6)

This proves that the transformation of uniform random numbers, U by F−1
X (U) does indeed gen-

erate random streams generated with the cumulative distribution function FX(x). As an exam-
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ple consider the exponential distribution with density function, fX(x) = λe−λx, with cumulative
distribution function, FX(x) = 1 − e−λx, then as per inverse transform sampling exponentially
distributed random numbers can be generated using

X = − 1

λ
log

1

1− U
. (2.7)

However, this method is mostly useful to distributions whose cumulative distribution functions
are explicitly invertible (Krishnan, 2015). As an example, the cumulative distribution function
of the Gaussian distribution with mean µ and variance σ2 is

FX(x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
, (2.8)

where erf is the error function, which does not have an analytically tractable inverse function.
For such cases, this method is highly inefficient and more sophisticated techniques must be
employed.

2.4.2 Transformation methods

An alternative to inverting the cumulative distribution function is to find a simple transforma-
tion scheme that would provide numbers generated as per the desired distribution. Different
transformations produce a rich variety of statistics, for example consider the transformation

Y = X2, (2.9)

where X is distributed according to some density fX(x) and cumulative distribution FX(x),
then the cumulative distribution function of Y is

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√y ≥ X ≤ √y) = FX(
√
y)− FX(−√y). (2.10)

Following this, the cumulative distribution can be differentiated to obtain the probability density
function of Y as (Casella & Berger, 2002)

fY (y) =
dFX(

√
y)

dy
−
dFX(−√y)

dy
,

=
1√
2y

(f(
√
y) + f(−√y)) .

(2.11)

If X is a Gaussian random variable with 0 mean and variance 1, then the density of Y is

fY (y) =
1√
2π

1
√
y
e−y/2, (2.12)

such a probability density function is known as chi-squared distribution with 1 degree of freedom.
Similarly, the equivalent transformation for a random variable Y , distributed according to a chi-
squared distribution with n degrees of freedom is

Y = X2
1 +X2

2 + ...+X2
n, (2.13)

where {X1, ..., Xn} are independent Gaussian random numbers with mean 0 and variance 1.
The probability density function of Y can be calculated using a n−fold convolution

fn(y) =
1

2n/2Γ(n/2)
yn/2−1e−y/2, (2.14)
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where Γ(.) is the gamma function, and n is the number of degrees of freedom. Hence, sequences
distributed according to some complex distribution might be easy to generate if a suitable
transformation is found. An important example of such a method is presented in the next
section.

Box-Muller method

One of the earliest and most important techniques to generate Gaussian random numbers, is the
Box-Muller method which transforms a pair of uniform random numbers, i.e from R2 instead
of R, to a pair of normally distributed random numbers (Box et al., 1958). The transformation
is given by

Y1 =
√
−2σ2 log(U1) cos(2πU2),

Y2 =
√
−2σ2 log(U1) sin(2πU2),

(2.15)

where U1 and U2 are uniformly distributed in (0, 1]. Geometrically, the pair (Y1, Y2) are points
on a circle of radius

√
−2σ2 log(U1), with the log() function guaranteeing that the probability

of finding a circle with larger radius decreases exponentially. The uniform distribution in angle
ensures that the values for each co-ordinate average out to zero. For analyzing the distribution
of the transformed variables Y1 and Y2 the Jacobian matrix is calculated as

∂(u1, u2)

∂(y1, y2)
= − 1

2π
exp

(
−1

2
(y2

1 + y2
2)

)
, (2.16)

provided that U1, U2 follow a bivariate uniform distribution, Y1, Y2 are Gaussian distributed with
zero mean and variance σ2. This method transforms independent and uniformly distributed
pairs of random numbers which can be represented by points on a plane, in a manner such that
resulting variables are distributed along concentric circles. While the resulting variables are
symmetric azimuthally, they tend to cluster around the centre thereby imitating the behaviour
of Gaussian random numbers as shown in Fig.(2.4). A plot of a typical realization of Brownian
motion in a 2-D domain obtained using the Box-Muller method is presented in Fig.(2.5). As
expected the particle follows a “zig-zag” and haphazard trajectory.

2.4.3 Acceptance-rejection method

The acceptance-rejection method is particularly helpful when the probability density function
fX(x) of the desired variates is known but the respective cumulative distribution function and
its inverse is not easily computable (Casella et al., 2004). An outline of the method is as follows

1. A bounding function g(x) is considered such that g(x) ≥ fX(x) for all x, and a probability
density function wY (x) = g(x)/c is constructed where c is the normalization factor given

by c =

∫ ∞
−∞

g(x)dx.

2. Independent and identically distributed random numbers yi are generated as per the con-
structed probability density function wY (y).

3. A random number uniformly distributed between [0, 1) is generated.

4. If the condition ui ≤ fX(yi)/g(yi) is met then yi is accepted to be a random number with
probability density function fX(x), else it is rejected and steps 2− 3 are followed until the
condition is met.
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Figure 2.4: A geometrical interpretation of the Box-Muller method, suggests that points on a
plane once transformed and plotted in a polar co-ordinate system tend to cluster around the
origin.

Figure 2.5: Typical realization of a Brownian particle immersed in fluid obtained using Gaussian
random numbers generated by the Box-Muller method.
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It can be shown that this procedure does indeed generate random sequences distributed according
to fX(x) (Krishnan, 2015). Let A be the event when the condition mentioned in the final step
of the algorithm is met, then we have

P (X ≤ x) = P (Y ≤ x|A) =
P (Y ≤ x ∩A)

P (A)
, (2.17)

where X is a random variable distributed with required density function fX(x) and Y is a
random variable distributed according to the constructed density function wY (y). For a given
value of Y = y we have

P (A|Y = y) = P

(
U <

fX(y)

g(y)

)
, (2.18)

where U is uniformly distributed in the range [0, 1). Similar to the inverse transform sampling
method, the quantity P (U < fX(y)/g(y)) is the cumulative distribution function of the random
variable U and hence we have the relation

P (A|Y = y) =
fX(y)

g(y)
. (2.19)

This can be used to calculate P (A)

P (A) =

∫ ∞
−∞

P (A|Y = y)wY (y)dy =
1

c
. (2.20)

The numerator in Eq.(2.17) can now be calculated as

P (Y ≤ x ∩A) =

∫ ∞
−∞

P (A ∩ Y ≤ x|Y = y)wY (y)dy, (2.21)

since y = Y and Y ≤ x, the integrand can be simplified by considering the upper limit of
integration to be x instead of ∞

P (Y ≤ x ∩A) =

∫ x

−∞
P (A|Y = y)wY (y)dy,

=

∫ x

−∞

fX(y)

g(y)

g(y)

c
dy,

=
FX(x)

c
.

(2.22)

Hence, we have

P (X ≤ x) =
FX(x)/c

1/c
= FX(x). (2.23)

This completes the proof for the acceptance-rejection method. An important use of this method
is to generate random variates distributed according to beta distribution whose probability
density function is given by

fX(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1, (2.24)

owing to the presence of the Gamma function, this particular density function does not yield a
closed form solution for its cumulative density function and hence incapable of being inverted.
The acceptance-rejection method was used to generate random numbers distributed according
to the beta distribution with parameters α = 6, β = 3. A histogram of these numbers is plotted
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Figure 2.6: Plot comparing the histogram of beta-distributed random numbers generated by the
acceptance-rejection method and the theoretical probability density function. The dotted lines
indicate the bounding function and the domain of the variates.

and compared with theoretical density, presented in Fig.(2.6). As can be seen, there is good
agreement between the two.

2.5 Qualities of a good PRNG

As we have determined, a PRNG capable of generating uniformly distributed random numbers
can practically generate sequences from any specified distribution (Chorin & Hald, 2009). Large-
scale scientific simulations require a large number of such streams at low computational costs
for multiple realizations. The selection of the function F , which dictates the iterative scheme of
the PRNG, must be such that it satisfies the following conditions

1. The sequence of numbers generated must be independently and identically distributed,
must not be correlated and must satisfy as many statistical tests as possible.

2. For different realizations of the same system, one would need multiple sequences which
are qualitatively similar, hence a PRNG must be able to generate significantly different
sequences with relative ease.

3. The number of finite states ensures that the sequence starts repeating after a given pe-
riod and given that stochastic simulations require high number of random sequences, the
said period after which these sequences start repeating must be greater than the number
required by the simulation.

4. Since the number of such sequences required for simulations is high, the function F must
be be such that it can be evaluated quickly.

In some sense, two rather contradictory requirements are imposed on F : it should be complex
enough to produce a seemingly unpredictable stream of numbers but be simple enough to be
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evaluated quickly. Satisfying these conditions is a well settled aspect in modern computing
(Knuth, 1981). Families of PRNGs such as Xorshift, PCG, Mersenne Twister etc. have been
shown to fulfill these conditions quite well and have found considerable success in the field of
large-scale scientific simulations.



Chapter 3

Statistical Tests

3.1 Introduction

The random contributions to stochastic processes are incorporated in simulations by utilizing
Pseudo-Random Number Generators (PRNGs). PRNGs are simple routines which produce
stream of numbers which are apparently random. These sequences while being the outputs
of deterministic programs closely mimic the behaviour of a predefined distribution and exhibit
absence of any discernible pattern (Knuth, 1981). For scientific simulations, the requirement is
that the stream of numbers produced by the PRNG should be empirically random, i.e, statistical
tests should not be able to differentiate between such sequences and the ones found in nature
(Chorin & Hald, 2009). Visual tests as briefly mentioned and exhibited in Chapter 2, can serve
as a preliminary test to observe patterns in a generated sequence of numbers, but it is imperative
to employ tests which provide a measure of the deviation of generated sequence from its expected
behaviour. These tests allow us to establish the quality of PRNGs and if they are good enough
to be used for scientific purposes (Knuth, 1981).

In the following sections the basic concepts and terminologies associated with statistical
testing will be explained first. This is followed by descriptions of some canonical tests which can
be used for random numbers from any given distribution. The chapter ends with explanations of
various tests used for testing uniform random numbers, which can also be used to test random
numbers from other distributions once the appropriate transformation to uniform distribution
has been implemented.

3.2 Hypothesis testing

Statistical testing is employed when authenticity of a claim is to be studied. For example, if
an oil company on an exploration project comes across oil reserves, they need to gauge the
grade of the petroleum before the actual drilling as it is an expensive process. Hence for testing
purposes a small batch from the reserve is extracted to characterize the reserves. Such a batch
is known as sample of the population. If selected randomly and carefully the sample should be
representative of the entire population, i.e, the characteristics of the sample, for example the
specific gravity, should be close to that of the population itself (Freedman et al., 2007). Any
quantity derived from the sample is known as an estimate or a statistic. Suppose a populations
comprises N elements (X1, ..., XN ), with their individual statistics as

E[Xi] = µ, E[(Xi − µ)2] = σ2, i = 1, ..., N, (3.1)

where E[.] is the expectation operator, µ the population mean and σ2 the variance. From this
population a sample of n independently and identically distributed elements such that n � N
is drawn, thus the individual statistics of the elements are the same as the population and the
mean and variance of the sample is

µ̂ =
1

n

n∑
i=1

Xi, σ̂2 =
1

n

n∑
i=1

(Xi − µ̂)2. (3.2)

As it desirable to have the sample mirror the actual population, the statistics of the sample
must converge to the true values in some limit

15
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E[θ̂] = θ, (3.3)

where θ̂ is the sample statistic and θ the true population parameter. Estimates which satisfy this
equation are termed unbiased, and denote that on an average the sample statistic converges to
the population parameter (Krishnan, 2015). The expectation of the sample mean is calculated
as

E[µ̂] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi]

=
1

n
· nµ = µ, (3.4)

which implies that sample mean is unbiased. The variance of the sample mean can be calculated
as

Var(µ̂) = E[(µ̂− µ)2] = E

[(
X1 + ...+Xn

n
− µ

)2
]
,

=
1

n2
E[((X1 − µ) + ...+ (Xn − µ))2],

=
1

n2
E

 n∑
i=1

(Xi − µ)2 +
n∑

j=i+1

n−1∑
i=1

(Xi − µ)(Xj − µ)

 ,
(3.5)

the quantity E[(Xi − µ)(Xj − µ)] for i 6= j is called correlation and effectively measures the
degree of linear relationship between Xi and Xj , hence for independently distributed variables
the correlation is 0. Then Eq.(3.5) reduces to

Var(µ̂) =
1

n2
E

[
n∑
i=1

(Xi − µ)2

]
,

=
1

n2
· nσ2 =

σ2

n
.

(3.6)

which indicates the fact that with an increase in sample size the sample mean better approxi-
mates the true mean of the population. The expectation of the sample variance can be calculated
as
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E[σ̂2] = E

[
1

n

n∑
i=1

(Xi − µ̂)2

]
= E

[
1

n

n∑
i=1

((Xi − µ)− (µ̂− µ))2

]
,

= E

[
1

n

n∑
i=1

(Xi − µ)2 − 2

n

n∑
i=1

(µ̂− µ)(Xi − µ) +
1

n

n∑
i=1

(µ̂− µ)2)

]
,

= σ2 + E

[
1

n
(µ̂− µ)2

n∑
i=1

1

]
− E

[
2

n
(µ̂− µ)

n∑
i=1

(Xi − µ)

]
,

= σ2 + E[(µ̂− µ)2]− E
[

2

n
(µ̂− µ)(nµ̂− nµ)

]
,

= σ2 − E[(µ̂− µ)2],

= σ2 − E

( 1

n

n∑
i=1

Xi − µ

)2
 =

(
1− 1

n

)
σ2.

(3.7)

This proves that the sample variance is actually smaller than the true population variance, hence
making it a biased estimator. This issue can be solved by considering the quantity

σ2 =
1

n− 1

n∑
i=1

(Xi − µ̂)2, (3.8)

the expectation can be calculated in a manner similar to the procedure for σ2

E[σ2] = E

[
1

n− 1

n∑
i=1

(Xi − µ̂)2

]
, (3.9)

=
n

n− 1
E

[
1

n

n∑
i=1

(Xi − µ)2

]
, (3.10)

=
n

n− 1
·
(

1− 1

n

)
σ2 = σ2. (3.11)

proving that it is an unbiased estimator. Hence, it is reasonable to assume that effects of the
proposed claim on the sample can be generalized to the entire population (Freedman et al., 2007).
It must be noted that sample statistics only approximates the true population parameters, given
the sample mean and variance the probability for the true mean to lie in a certain range is

P (|µ̂− µ| ≥ kσ) ≤ 1

k2
. (3.12)

This is known as Chebyshev’s inequality which is used for calculating the chances of obtaining
a random variate k standard deviations away from the mean (Chorin & Hald, 2009). Stricter
bounds can be imposed by considering that the sample mean is in fact the sum of independently
and identically distributed variates and should hence tend to a Gaussian distribution. This
allows one to calculate the probability of observing the true population parameter in a given
range using the definition of Gaussian distribution

P (µ̂− k · σ ≤ µ ≤ µ̂+ k · σ) = F (µ̂+ k · σ)− F (µ̂− k · σ) (3.13)

where F (.) is the cumulative distribution function of the Gaussian distribution function with
mean µ̂, variance σ and k the parameter to decided the range of the interval. This range is termed
as the confidence interval and the probability associated with it is known as the confidence level
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(Freedman et al., 2007). For the given case, the quantitative measure that would allow one
to make an inference or the qualitative conclusion is the average specific gravity of the batch
extracted for testing. The average density is found within a certain confidence level and can be
compared against previously available data to verify the quality of petroleum. However, it is
entirely possible that the difference between the observed value and the expected value stems
from “chance error”, i.e the inference made about the claim may change subject to the sample
selected. Consequently a well-defined procedure, commonly known as hypothesis testing in
literature, has been established to study and provide accurate conclusions from available data.
Given that the probability density of specific gravity for petroleum f(x) and the probability
density g(x) of some other suspected substance, say paraffin, is known then a parameter called
significance level can be defined as

α =

∫ ∞
tcut

f(x)dx, (3.14)

which is the total probability of observing the test statistic t to be at least tcut, if the substance
is petrol. Similarly, another parameter β can be defined as

β =

∫ tcut

−∞
g(x)dx, (3.15)

which is the total probability of observing the test statistic t to be at most tcut, if the substance is
paraffin. The quantity (1−β) is called power of the test (Cowan, 1998). Once these parameters
are established, the test statistic is then calculated. In present example, say five batches are
extracted from the reserves and their average specific gravity, t is found. The total probability
of finding the specific gravity of petrol at least as extreme as t is

P =

∫ ∞
t

f(x)dx. (3.16)

The quantity P is known as the p−value of the statistic, it is the total probability of observing
a statistic at least as unlikely as t. Hence it is a good quantitative measure to facilitate the
qualitative measure. Typically, it is understood the claim is rejected if the p−value is much
less than the significance level. If it is close then experiments are repeated and in case the
p−value is much greater than the significance level then the claim is not rejected. Essentially,
the significance level is the total probability of rejecting the claim when it is true and the power
of test is the total probability of not rejecting the claim it is false. The value of α is set by the
practitioner and depends on the field and requirement of the study. It is usually accepted that
P-value close to α = 0.05 indicate some evidence against the claim (Freedman et al., 2007). This
entire procedure can then be formalized and enumerated as follows

1. State the hypotheses: A statement of the expected outcome, conventionally known as
the null hypothesis, denoted by H0, is stated and an alternate hypothesis, denoted by
Ha different from the expectation is stated. For given example, the null and alternate
hypotheses are:

H0: ρ ≤ ρ0 and hence petroleum.

Ha: ρ ≥ ρ0 and hence paraffin.

2. Decide the significance value: A value for the significance level is set. The higher
this value the more purity is assured in the present case, as Fig.(3.1) suggests. The value
α = 0.05 is considered to be “statistically significant”.

3. Characterize the expected behaviour: The various parameters associated with the
expected outcome either theoretically or experimentally. The parameter derived for present
case is the probability density function of the specific gravity of high grade petroleum.
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Figure 3.1: Sketch of the probability density functions of the specific gravity of petrol and
paraffin for the hypothetical test case.

4. Construct the test statistic: From the observed values of the experiments, a test
statistic is constructed. For given example, the average specific gravity of the five batches,
t, is the test statistic.

5. Calculate the p−value: The p−value or the observed significance level, can be calculated
using Eq.(3.16). An inference is made about the population using the p−value. Table(3.1)
lists the interpretation of different p−values

p−value Interpretation

α >0.1 No evidence against null hypothesis

0.05 <α <0.1 Slight evidence against null hypothesis

0.01 <α <0.05 Moderate evidence against null hypothesis

α <0.01 Strong evidence against null hypothesis

Table 3.1: Interpretation of p−values for a test of significance

Tests of significance and the resulting p−values provide evidence against the null hypothesis,
no statistical test actually confirms it. Hence, by convention a null hypothesis can only be
rejected and not accepted. Fig.(3.1) suggests that such a procedure would lead to two kinds of
errors (Cowan, 1998). The first error is to reject the null hypothesis when it is actually true, this
is known as a type I error. Such an error is encountered when P ≤ α despite the fact that the
null hypothesis is actually true, for example it is entirely possible that the specific gravity of the
batch of petrol from reserves is rather high and lies somewhere on the right tail of f(x) beyond
tcut but the hypothesis would be rejected nonetheless. The second kind of error is encountered
when the null hypothesis is not rejected while the alternate hypothesis is true, this is known
as type II error. This is possible when P ≥ α but the actual substance is paraffin with its
specific gravity lying somewhere on the left tail of g(x) and such that t ≤ tcut. Hence, if purity
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is prioritized the value of α is set higher by shifting tcut to the left and if quantity is prioritized
the value of α is set lower by shifting tcut to the right.

3.3 Testing for PRNGs

PRNGs generate stream of numbers which behave randomly despite being outputs of determin-
istic algorithms, hence it is imperative to quantify how well observed datasets compare with
expected values, which help determine if they could be used for simulation purposes. Since
various characteristics of random numbers can be derived theoretically, tests for individual char-
acteristic can be constructed to assess the quality of PRNGs (Knuth, 1981). The methodology
of constructing such a test is essentially the same as the procedure outlined in the previous
section and can be summarized as

1. The various characteristics of a population can be determined theoretically. One simple
check could to be test for the deviation from the expected mean of the population. Such
statistics are usually termed as point estimators (Casella & Berger, 2002). Another class of
tests are specific to the distribution being tested. For example, exponentially distributed
random numbers must have the property E[Xn]/E[Xn−1] = nλ.

2. The PRNG to be tested is then used to generate a dataset which can then be compared
against the theoretical prediction.

3. The generated dataset is then used to calculate the relevant the test statistic(s).

4. Once the test statistic is calculated it can be used to calculate the p−value, as previously
explained.

A test can be devised corresponding to a characteristic of the theoretical distribution. An ideal
PRNG would be able to satisfy as many statistical tests as possible. However, it must be noted
that if a test satisfies n statistical tests, there is absolutely no guarantee that it will satisfy the
(n+ 1)th test (Knuth, 1981). Tests of significance are inherently negative in nature, hence tests
of randomness are capable of specifying major anomalies or flaws of PRNGs and do not confirm
its quality, hence it is important to conduct a rather high number of tests on a PRNG before
deciding on its quality.

3.4 Preliminary distribution-free tests

There exists a few tests which can be used for any dataset regardless of their distribution. Such
tests are known as distribution-free tests and can be used as a screening process for PRNGs
(Knuth, 1981). We outline some of the basic tests in the following sections.

3.4.1 Pearson’s χ2 test

Pearson’s χ2 test, is an important statistical tests for random numbers (Knuth, 1981). The core
idea of this test is to quantify the deviation between the histogram of observed data and the
theoretical probability density function (Pearson, 1900). Consider the histogram of uniformly
generated random numbers presented in Fig.(3.2). Some bins have more than the expected
number and others fewer, it is necessary to understand whether the deviation is within acceptable
limits. For every bin, a simple statistic can be constructed as

t′ =
(νi − µi)

µi
, (3.17)
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Figure 3.2: Plot comparing the histogram of uniformly distributed random numbers generated
by a PRNG and the theoretical probability density function

where νi is the number of data points is present in the ith bin and µi is the expected number
for that particular bin. If the PRNG is indeed high quality, this statistic should fluctuate
around zero for different samples. However it is not practical to test for such behaviour with
large number of bins. An alternative is to consider the sum total of deviations from each bin.
For this purpose, the deviation calculated must be in absolute terms as the sum total of all
deviations might end up as zero as in the case of uniform distribution. Hence, the test statistic
is constructed as

t =

N∑
i=1

(νi − µi)2

µi
. (3.18)

This is similar to the prevalent technique of calculating the mean square error in many areas of
statistics and physics. We show that for the null hypothesis to hold true t must in fact follow a
chi-squared ditribution with N − 1 degrees of freedom, which is equivalent to the sum of N − 1
independently and identically distributed Gaussian random numbers. A detailed proof of this
statement can be found in Appendix A. Once the test statistic t is calculated, the p-value is
obtained using

P =

∫ ∞
t

fN−1(x)dx, (3.19)

where fN−1 is the chi-squared probability density function with (N − 1) degrees of freedom, as
defined in the previous chapter. The p−value obtained via this procedure is a mathematical
statement comparing the histogram of observed data and expected distribution. It has been
noted that for this test to hold good, in general a minimum of 5 counts are required in each bin
(Knuth, 1981).

This procedure can be best explained by an example. Consider that the fairness of a die
is to be tested. Then following the procedure we first conduct the experiments, i.e, toss the
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die 120 times. A set of sample observations are tabulated in Table(3.2). Given these values,
the fairness of the die might be suspected as the face with 6 dots up considerably fewer times
than expected. In order to establish the quality (fairness) of the die, a chi-squared test can be
performed to quantify the deviation of the available values from expected behaviour and check
if there is strong evidence against the fairness of the die.

Observation Frequency

1 17

2 24

3 22

4 23

5 20

6 14

Table 3.2: Observations of a die experiment

The null and alternate hypotheses are stated as
H0: The die fair. p(X = i) = 1/6 for i = 1, ..., 6.
Ha: The die is biased.
We decide on the significance level to be 0.05, as it is considered to be statistically significant

in literature (Freedman et al., 2007). The value of test statistic is now calculated

t =

(
(17− 20)2

20
+

(24− 20)2

20
+

(22− 20)2

20
+

(23− 20)2

20
+

(20− 20)2

20
+

(14− 20)2

20

)
= 3.7.

(3.20)
The p−value can then be calculated by using the definition of the chi-square distribution for
N = 5 degrees of freedom. This integral can be calculated using a chi-square table or a statistical
package such as R. The value for proposed example is

P =

∫ ∞
3.7

f5(x)dx = 0.41. (3.21)

this denotes that there is nearly a 41% chance that an ideal die would produce results at least
as extreme as the ones obtained, and since this much higher than set significance level, there is
no strong evidence against the null hypothesis and the fairness of the die.

3.4.2 Kolmogorov-Smirnov Test

As opposed to the Pearson’s chi-squared test, the Kolmogorov-Smirnov test checks for the ad-
herence of random numbers with their respective cumulative distribution functions (Massey Jr,
1951). The empirical distribution function, Fn, of a sample of n numbers is calculated using

Fn(x) =
1

n

n∑
i=1

I[−∞,x](Xi), (3.22)

where I[−∞,x](Xi) is the indicator function defined as

I[−∞,x](Xi) =

{
1 Xi ≤ x
0 otherwise.

The test statistic can then be calculated as:

Dn = supx|Fn(x)− F (x)|, (3.23)
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where supx is the maxima of the set of distances between the cumulative distribution function
expected under the null hypothesis and the observed distribution function. It is found that if
F (x) is continuous then the quantity

√
nDn converges to the Kolmogorov distribution whose

cumulative distribution is

F (x) = 1 + 2
∞∑
k=1

(−1)ke−2k2x2 (3.24)

A p−value is then returned on the basis of the Kolmogorov distribution (Wang et al., 2003).

3.4.3 Ljung-Box Test

An important quantity while testing for dependence in datasets is the correlation, defined as

C(X,Y ) =
E[(X − µX)(Y − µY )]

σXσY
, (3.25)

where X and Y are two random variates, while µ and σ denote their mean and standard
deviation respectively. Correlation, C(X,Y ), measures the linear dependence between the two
quantities, i.e if C(X,Y ) is positive it denotes that an increase in X is likely to be accompanied
with an increase in Y (Freedman, 2009). In case of perfectly linear relationship, C(X,Y ) = 1
(C(X,Y = −1 in case of perfect anti-correlation), and it should be as close to zero as possible
if the data are completely independent. Similarly, the autocorrelation is defined as

R(τ) =
E[(Xτ − µ)(Xt+τ − µ)]

σ2
, (3.26)

which basically defines the relationship between a random variable with itself at a given time lag
τ . This can be extremely significant for cases such as simulation of Brownian motion wherein
the random force must be uncorrelated in time. Hence, for a PRNG it would be desired for
the autocorrelation to be as close to zero as possible. The Ljung-Box test is a very stringent
statistical test to measure the independence of data in a time series (Ljung & Box, 1978). For
a series with n elements, the autocorrelation residual at lag i is defined as

Ri =

n−i∑
j=1

Xj ·Xj+i

n∑
j=1

Xj ·Xj

. (3.27)

The test statistic is then defined as the normalized sum of square of the autocorrelation residuals
for lags upto ith index

t = n(n+ 2)

k∑
i=1

R2
i

n− i
, (3.28)

It has been shown that t must follow a chi-squared distribution with k degrees of freedom, as the
sum of these residuals are equivalent to the sum of squares of independent normally distributed
random numbers (Box & Pierce, 1970).

We selected N = 108 random numbers generated from drand48 and Mersenne Twister.
Table(3.3) enumerates the p−values for different methods of random number generation for all
the three tests.

The P−values mentioned in Table(3.3) indicate that the preliminary tests did not find any
evidence against the null hypothesis – sequences of numbers generated by drand48 and Mersenne
Twister are independently and identically distributed uniform random numbers.
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Chi-Squared Kolmogorov-Smirnov Ljung-Box

drand48 0.12 0.76 0.25

Mersenne Twister 0.35 0.47 0.88

Table 3.3: p-values for different tests

3.5 Tests for uniform random numbers

Since most PRNGs are capable of generating uniformly distributed integers, most efforts to
construct statistical tests have been directed towards this particular distribution (Knuth, 1981).
If one is interested in testing the quality of a PRNG which generates non-uniform distribution
then the numbers must be first transformed to uniform random numbers using the inverse
sampling method (Thomas et al., 2007). For exponential numbers:

U = e−ξ

Similarly, for Gaussian random numbers we have:

U =
1

2
erfc

(
− η√

2

)
Tests described in the previous section are quite useful in determining a dataset’s adherence to
the distribution and the correlation between the numbers generated. In order to better examine
the behaviour of PRNGs, tests have been designed which compare a particular characteristic of
generated sequence to the theoretical value of independent and identically distributed numbers
(L’Ecuyer & Simard, 2007). However, it is to be noted these tests only verify how well sequences
generated from PRNGs satisfy a given aspect of the actual distribution and in no way assure
or confirm that these sequences are indeed independently and identically distributed as per a
specified distribution. It is desired that a given PRNG passes as many tests as possible with
satisfactory p−values and not fail any test consistently.

3.5.1 Serial Test

This test is performed in order to check if the PRNG generates successive pairs of uniformly
distributed random integers in the range [0, d). A sample of n pairs is generated using the
PRNG with each elemnt of pair assumed to be uniformly distributed under the null hypothesis.
Each time the pair (X2i, X2i+1) = (q, r) the count for that particular pair (q, r) is increased.
The probability of finding a given pair, provided that the generated pairs are independently and
identically distributed is

f(X2i = q,X2i+1 = r) =
1

d
× 1

d
=

1

d2
, (3.29)

hence each pair is expected to be observed n/d2 times, i.e, the product of the probability and
the total number of samples. The deviation of observed from expected values can then be used
to obtain a chi-squared statistic in a manner similar to the Pearson’s chi-squared test. This test
can naturally be extended to triples, quadruples etc. However, this would significantly increase
the sample size that would be needed, as the number of possible combinations increase with a
factor of d (Knuth, 1981).

3.5.2 Gap Test

The probability that an identically and independently generated random number drawn from a
PRNG is contained in the interval [a, b) after r trials is
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fgap(p; r) = p(1− p)(r−1)

where p is the probability of finding a random number between [a, b). The distribution fgap(p; r)
is called a geometric distribution and the number of trials before a number is generated in the
interval [a, b) is termed as “gaps”. Although this test can be used for any distribution, for most
test suites the uniform distribution is chosen with 0 ≤ a < b < 1. Once enough samples of r have
been drawn the observed counts for each gap is compared against the theoretical distribution,
which provides a chi-squared statistic.

3.5.3 Marsaglia’s tests for empirical randomness

Developed in the last decade, it is suite of three highly stringent tests namely — Birthday
Spacings, GCD and Gorilla. These tests are designed for 32−bit uniform random integers, with
each test characterizing a significantly different quality and thus providing a holistic overview
of the PRNG (Marsaglia & Tsang, 2002). The birthday spacings test checks for the adherence
to the distribution, the GCD test for pairwise independence and the Gorilla test examines the
manner in which a sequence appears. These three tests will be briefly described in the following
sections.

Birthday Spacings Test

For this test, m uniformly distributed integers U1, ..., Um, are generated the interval [0, n) and
then sorted. Then this sorted list provides (n− 1) spacings

Si = U(i+1) − U(i) (3.30)

where U(i) are elements of the sorted list. The number of duplicates of spacings is asymptotically
Poisson distributed with parameter λ = m3/(4n) (Marsaglia & Tsang, 2002). This suite chooses
m = 4096 and n = 232, hence ending up with λ = 4. The program generates m uniform random
integers in the range [0, 232) from the PRNG to be tested. These numbers are then sorted and
the spacing between them is calculated, following which the number of duplicates is enumerated,
this process is repeated 5000 times. Pearson’s χ2 test is then performed on observed data against
the expected Poisson distribution and a p−value is returned. A typical output of the Birthday
test for a good RNG is shown in Table(3.4).

Birthday spacings test: 4096 birthdays, 2ˆ32 days in year
Table of Expected vs. Observed counts:

Duplicates 0 1 2 3 4 5 6 7 8 9 ≥10
Expected 91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7
Observed 81 387 715 971 915 802 531 340 155 62 41

(O-E)2̂/E 1.2 1.2 0.4 0.0 3.9 0.5 0.2 6.0 0.3 0.3 0.0
Birthday Spacings: Sum(O-E)ˆ2/E= 14.023, p= 0.828

Table 3.4: An output for the Birthday Test

Gorilla Test

The idea for Gorilla Test is rooted in the monkey test which hypothesize that a monkey with
a typewriter would produce absolutely random words. Streams of integers are generated in the
range [0, 232), and represented in the binary format. For each bit position, sequences of 26 bits
(1’s and 0’s) are considered to be a “word”. The total number of possibles words is then 226.
The test generates (226 + 25) numbers and computes the missing sequences. The number of
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these missing sequences, x, is approximately normally distributed with mean µ = 24687971 and
variance standard deviation σ = 4170. Hence, Φ((x − µ)/σ) is uniformly distributed in [0, 1),
where Φ() is the cumulative normal distribution function. This quantity provides the p−value
for the test for each bit position. Once the p−value of each bit position is obtained, the 32
values are then subjected to a Kolmogorov-Smirnov test with the presumption that they are
distributed uniformly between [0, 1), which provides a final p−value for the entire test. A typical
output of a Gorilla test for a good RNG is shown in Table(3.5):

Gorilla test for 226 bits, positions 0 to 31:
Note: lengthy test—for example, 20 minutes for 850MHz PC

Bits 0 to 7−−− > 0.845 0.941 0.574 0.671 0.355 0.850 0.297 0.703
Bits 8 to 15−−− > 0.679 0.720 0.045 0.295 0.906 0.580 0.109 0.481
Bits 16 to 23−−− > 0.112 0.228 0.378 0.630 0.065 0.889 0.436 0.458
Bits 24 to 31−−− > 0.413 0.667 0.431 0.841 0.471 0.732 0.211 0.039

KS test for the above 32 p values: 0.065

Table 3.5: An output for the Gorilla Test

GCD Test

The GCD test relies on the statistical implications of Euler’s GCD test used to determine
the greatest common divisor of two integers. The procedure for calculating the GCD, is best
explained by an example, consider two integers, u = 366 and v = 297.

366 = 1 ∗ 297 + 69

297 = 4 ∗ 69 + 21

69 = 3 ∗ 21 + 6

21 = 3 ∗ 6 + 3

6 = 2 ∗ 3 + 0

This procedure produces in a list of two identically and independently distributed parameters:

• The number of iterations required to find the GCD.

• The GCD itself

from empirical studies it has been shown that the first variable, steps to GCD, is normally
distributed with mean, µ = 18.5785 and variance σ = 3.405, which can be approximated by a
Binomial Distribution with parameters n = 50 and p = 0.376. The distribution of the GCDs
is close to the theoretical limit P (i = GCD) = c/i2 where c = 6/π2. The test follows the
procedure for 107 such pairs. The observed data is then compared against the expected values
and a p-value is returned through the familiar χ2 test procedure. There are many statistical
tests, each built on a particular quality of the theoretical distribution. Many such canonical
tests are compiled in the TestU01 library (L’Ecuyer & Simard, 2007). The Crush battery of
tests, which implements 96 highly stringent statistical tests (with 144 statistics), was used to
test the quality of drand48 and Mersenne Twister. The results are tabulated in Table(3.6), both
these generators fail the Linear complexity test consistently.
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RNG Statistics Failed Systemic

drand48 5 LinearComp, HammingWeight

Mersenne Twister 2 LinearComp

Table 3.6: Performance of drand48 and Mersenne Twister in Crush battery of tests

3.6 Outlook

The results of stochastic simulations significantly depend on the quality of the RNG used, as
ones with poor statistical qualities can lead to erroneous results (Marsaglia, 1968). Although
no number of statistical tests can characterize the behaviour of a given PRNG in entirety, it
is important for a PRNG to satisfy at least all canonical tests before they are employed for
scientific simulations.





Chapter 4

Molecular Dice

4.1 Introduction

Noise inherent to a large class of stochastic processes does not follow a uniform distribution, but
other specified distributions such as Gaussian, exponential and Poissonian (Gardiner, 1985a).
These non-uniformly distributed random variables are generated on computers by applying
suitable algebraic transformations on uniformly distributed numbers. These transformations
often involve multiple evaluations of computationally expensive transcendental functions, as
in the case of Box-Muller method to generate Gaussian random numbers or simple inversion
method for exponential random numbers. While uniform random number generation requires
≈ 20−30 FLOPS, Gaussian and exponential random number generation requires ≈ 200 FLOPS
(Thomas et al., 2007). Thus, while on a typical modern processors, it is possible to generate
uniform random numbers which passes most statistical tests - at the rate of 108 − 109/second,
one can generate Gaussian or exponential random numbers only at the rate of 106−107/second,
hence becoming a bottleneck for many algorithms.

An alternate route is to choose the function F based on a chaotic map wherein specific
choices would lead to unique distributions (Kohda & Tsuneda, 1997). Successful application
of this idea, if any, is scarce, as given a distribution from which random numbers are to be
sampled, a chaotic map that would asymptotically converge to the desired distribution are
often not readily available. A notable exception is the tent map (Yoshida et al., 1983), which
produces a stream of uniform random numbers. This map is known to be qualitatively similar
to the discrete version of the Navier-Stokes equation and has been used to explain the emergence
of chaotic turbulent motion from a fully deterministic evolution equation (Frisch, 1995). This
suggests that a discrete model of fluid motion can be a source of stochastic dynamics. On the
other hand, Boltzmann showed that a stochastic description emerges at the mesoscopic level from
the microscopic deterministic motion of particles (Chapman & Cowling, 1970). This symbiotic
relationship between deterministic and stochastic descriptions suggests that they are entwined
in the non-linear evolution of fluid motion. This suggests that fluid motion can act as a source of
randomness, hence simulations of fluid flow at mesoscopic scale wherein the Boltzmann equation
is solved using particle dynamics should be capable of generating stream of random numbers.
The distribution of these sequences can be gauged from the Boltzmann equation.

In this chapter, the basics of kinetic theory are explained first, followed by details of the
distributions of various quantities at equilibrium. Various numerical methods used to solve the
Boltzmann equation are then used as model PRNGs. Finally, a new algorithm is proposed
which attempts to maximize the rate of generation of random numbers while maintaining high
statistical quality.

4.2 The Boltzmann equation

The kinetic theory of gases developed by Boltzmann and Maxwell relies on describing the time-
evolution of probability distributions (Cercignani, 1998). The entity central to this theory is the
distribution function,f(x,v, t), which is the probability density of finding a particle in (x + dx),
possessing velocity (v + dv) at a given time t (Chapman & Cowling, 1970). The Boltzmann
Equation describes the evolution of the distribution function in time while accounting for the
effects of binary collisions between particles:

29
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Figure 4.1: The geometry of collision between two particles. k is the vector joining the centres of
the two molecules and bisecting the angle made between the pre and post-collisional velocities,
g12 and g′12. The quantity, b is known as the impact parameter and is the perpendicular distance
from the centre of the molecule to g12, and χ is the angle between g12 and g′12

.
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= ΩBM (4.1)

where ΩBM is the change in distribution function arising from random collisions between two
particles. The kinetics of collision can be understood by considering two particles with velocities
c and c1 which undergo an elastic collision, then their post-collisional velocitites are

c′ = G− g21
′ c′1 = G + g21

′ (4.2)

where G is the centre-of-mass velocity and g21
′ is the relative velocity post-collision. For con-

servation of energy it is necessary that the magnitude of g21
′ is the same as g21. The direction

of the the relative velocity then provides a complete picture of the binary collision dynamics.
Fig.(4.1) shows the geometry of a typical collision. The Boltzmann collision kernel for a dilute
gas is

ΩB =

∫
(f

′
f

′
1 − ff1)|c− c1|α12dedc1, (4.3)

where e′ is the unit vector of the relative velocity post-collision (hence de′ being a differential solid
angle) and α12 is a positive scalar function given by b|∂b/∂χ|/ sinχ. The derivation of the Boltz-
mann equation is based on the assumption of molecular chaos (also known as Stosszahlansatz),
which hypothesizes that the velocities of colliding particles are statistically independent. Par-
ticles undergoing ballistic motion collide with other particles which in turn alters their course,
and hence imparts randomness to the system.

Boltzmann equation satisfies the conservation equations and recovers the Navier-Stokes equa-
tion in the limit of low Knudsen numbers. Hence, it is an important tool which relates the
random motion of molecules to fluid flow. In addition to preserving the conservation laws and
retaining hydrodynamical behaviour, the Boltzmann equation also extends the second law of
thermodynamics, known as the H−theorem for non-equilibrium situations which is also instru-
mental in defining the behaviour of gas particles at equilibrium (Chapman & Cowling, 1970).
The non-equilibrium generalization of the entropy is known as the H−function, and is defined
as

H =

∫
f ln fdc. (4.4)
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It can be shown that the evolution of the H−function takes the form:

dH

dt
=

1

4

∫ ∫ ∫
ln
ff1

f ′f ′1
(f ′f ′1 − ff1)|c− c1|αdedcdc1. (4.5)

Hence, for the system to reach a state of equilibrium, we must have:

ln f + ln f1 = ln f ′ + ln f ′1, (4.6)

this relation indicates that ln f is a conserved quantity, i.e, it remains unaffected by collisions
and hence must be a linear combination of the collisional invariants - mass, momentum and
energy

ln fMB = α+ β.mc + γ.
mc2

2
, (4.7)

where fMB is the distribution function at equilibrium. The various coefficients (α,β and γ) and
therefore the distribution fMB at equilibrium is calculated by considering the constraint that
the moments of fMB must retain the local density, momentum and energy. In the following
section, we calculate the probability distributions for various quantities.

4.2.1 Distributions at equilibrium

For the simplest of systems, for example a rarefied gas in a periodic box with no external force
offers a plethora of distributions.

Velocity distribution

For the distribution of velocities and energy Eq.(4.6) is used, which signifies the fact that the
quantity ln f remains unaffected by collisions. The expression in Eq.(4.6) can be rewritten as

ln fMB = lnα(0) − γ · 1

2
m

[(
cx − βx

γ

)2

+

(
cy − βy
γ

)2

+

(
cz − βz
γ

)2
]
, (4.8)

where α(0) is a constant such that

lnα(0) = α− m

2

β2
x + β2

y + β2
z

γ
. (4.9)

Using Eq.(4.8) the f eq can be written as

fMB = α(0) · e−γ
1
2
mC′2

, (4.10)

where ξ = c − β/γ. To find these constants, fMB is integrated over the velocity space and
equated with the respective quantities. Firstly, the integral of fMB over the velocity space must
yield the number density

n =

∫
fMBdc = α(0)

(
2π

mγ

)3/2

. (4.11)

The first moment of fMB provides the momentum and results in the relation

ρu =

∫
mcfMBdc = ρβ/γ, (4.12)

where u is the mean velocity. This relation, simplifies the expression for ξ = c − u, which is
defined as the peculiar velocity and provides the definition for temperature as
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D

2
nkBT =

∫
m

2
ξ2fMBdc =

D

2γ
, (4.13)

where kB is the Boltzmann constant, T the local temperature and D the number of dimensions.
These relations then determine the form of fMB to be

fMB =

(
m

2πkBT

)D
2

e−mc
2/2kBT . (4.14)

This is known as the Maxwell-Boltzmann distribution and conveys the idea that velocity of
particles in each direction are Gaussian distributed with the local velocity as the mean and the
local temperature as the variance.

Energy distribution

With the expression for velocity distribution at hand, the distribution for energy can be calcu-
lated in any number of dimensions. For example, the energy in three dimensions is

E = m(c2
x + c2

y + c2
z)/2, (4.15)

the distribution for E can be calculated by expressing the Maxwell-Boltzmann distribution in
spherical coordinates

fMB(r, θ, φ) =

(
m

2πkBT

)3/2

r2 exp

(
− mr2

2kBT

)
. (4.16)

Since r2 = 2E/m, an expression for the probability density for E can be found simply by
integrating over θ and φ and is

p(E) =

(
1

kBT

)3/2
√

2

π

(√
E exp

(
− E

kBT

))
. (4.17)

Similarly, the distribution of energy can be calculated for any number of dimensions. A special
case of interest is two dimensions, where the speed follows a Rayleigh distribution and the energy
is exponentially distributed. The energy and speed in two dimensions are defined as

v =
√
c2
x + c2

y,

E = mv2/2.
(4.18)

The Maxwell-Boltzmann distribution for two dimensions, in the polar co-ordinates is

fMB(v, θ) =

(
m

2πkBT

)
exp

(
− mv2

2kBT

)
. (4.19)

Integrating over θ to obtain an expression for distribution of v, we have

p(v) =

(
m

kBT

)
exp

(
− mv2

2kBT

)
. (4.20)

It can be readily seen that this is equivalent to the Rayleigh distribution which has the form

p(x) =
x

σ2
exp−

( x

2σ2

)
. (4.21)

Hence the speed in two dimensions is a Rayleigh distributed with scale parameter σ =
√
kBT/m.

The probability distribution of E can be computed by making a change of variables in Eq.(4.20)
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p(E) =
1

kBT
exp−

(
E

kBT

)
. (4.22)

Hence, energy in two dimension is exponentially distributed with λ = 1/kBT . Proceeding in
a similar manner, many different distributions can be obtained simply by considering different
number of dimensions.

Position distribution

At equilibrium under zero external force and periodic boundary conditions the density of the
system must be uniform,i.e,

ρ(x) =
N

L3
, (4.23)

where N is the number of particles in the system and L is the length of the periodic box. This is
a mathematical statement of the fact that at equilibrium a particle is equally likely to be found
anywhere in the domain of interest. Hence, the positions of the particles in a system must follow
a uniform distribution in [0, L).

Poisson distribution

It can be shown that the number density, which is the number of particles in a sub-cell, follows
a Poisson distribution. Suppose in a domain of volume V a sub-cell of volume δV is considered,
then the probability of finding a particle in this sub-cell is p = δV/V , as the distribution in space
is uniform. Then, given N particles, the probability of finding n particles inside this sub-cell is
given by the binomial distribution

P (n) =

(
N

n

)
pn(1− p)N−n. (4.24)

If δV � V , then p � 1 and if N is large, then as per Poisson’s limit theorem P (n) can be
approximated to (Casella & Berger, 2002)

P (n) ≈ λne−λ

n!
, (4.25)

where λ = Np is finite. Hence, even the simplest of systems have physical quantities that follow
uniform, Gaussian, exponential and Poisson distributions making it a rich source of randomness.

Molecular Dice hypothesis

We propose that any model of dilute gas dynamics (whether operating at hardware or software
level) can be used as source of randomness. Hence, this method can be regarded as a synergy
of the two existing methods - mathematical constructs and utilizing randomness of devices; a
mathematical model of an actual physical process. Therefore a computer code that simulates
dilute gas dynamics is similar to Maxwell’s demon, an omniscient being holding the knowledge
of each particle’s position and velocity. To an observer not privy to these details, these state
variables will seem devoid of any discernible pattern and hence can be used as stream of random
numbers. A visual description of our ideas is presented in Fig.(4.2). A multitude of numerical
methods to solve the Boltzmann equation or its approximation exist. In the following sections,
we explore if these particle based numerical methods are capable of producing high quality
random numbers.
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Figure 4.2: A computer code simulating gas dynamics is similar to Maxwell’s demon. To an
observer, the values of positions and velocities act as sequence of random numbers.

4.3 Molecular Dynamics simulations as PRNGs

Particle based methods such as — molecular dynamics with Lennard-Jones poetntial and event-
driven molecular dynamics solve the N−body problem of classical mechanics, wherein N inter-
acting particles follow Hamiltonian dynamics. It has been shown that in the dilute gas limit
(known as the Boltzmann-Grad limit), it is equivalent to solving the Boltzmann equation. Since
Boltzmann dynamics assumes molecular chaos, i.e, the velocities of interacting particles are sta-
tistically independent, it is expected that for simulations in the low density limit, the particles’
positions, velocities and energies should provide stream of random numbers. In the following
sections, some regular methods used to simulate gas dynamics are briefly described.

4.3.1 Lennard-Jones

The Lennard-Jones model is a simple model of molecular interaction, wherein, the potential of
each pair is calculated using

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
, (4.26)

where ε is the energy scale of the system and σ the length scale. The equation can be expressed
in the dimensionless units as

V (r) = 4

[(
1

r

)12

−
(

1

r

)6
]
, (4.27)

where r is the distance between the two particles. This signifies that their interaction is strongly
repulsive when they’re close, it becomes attractive as r gradually increases and eventually be-
comes zero as the two particles are far apart (Jones, 1924). A plot of the potential is presented in
Fig.(4.3). The pairwise force is calculated by considering the gradient of the potential function,
V (r), and is found to be

fij = 48

[(
1

rij

)14

− 1

2

(
1

rij

)8
]

rij , (4.28)
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Figure 4.3: Plot of pairwise potential V (r) vs. r

where rij is the position vector separating particles i and j. Since, the force is close to zero,
for particles that are far away, cut-off distance was decided beyond which the interparticle force
is set to zero. Once the total force exerted on each particle is calculated, their positions and
velocities are updated using the Leapfrog-scheme (Rapaport, 2004)

ẋ

(
t+

h

2

)
= ẋ

(
t− h

2

)
+ hẍ(t),

x(t+ h) = x(t) + hẋ

(
t+

h

2

)
.

(4.29)

where x(t) is the position of a given particles at time t, ˙x(t) the velocity of the particle, ẍ(t)
is the acceleration experienced by each particle at any given instant owing to the sum total of
inter-particle force, and h is a small time step of O(10−2) (Rapaport, 2004). Such a scheme
ensures that the phase space volume is conserved and the total energy remains conserved on
an average. Since the pairwise potential is to be calculated in each iteration the computational
complexity of the algorithm is O(N2).

The positions, velocities and the contribution of kinetic energy in two dimensions are sampled
after every 103 iterations and were considered to be streams of uniform, Gaussian and expo-
nential numbers. Consistent with the hypothesis, these streams of numbers managed to satisfy
Marsaglia’s difficult-to-pass tests for randomness (Marsaglia & Tsang, 2002). This numerical
experiment suggests that collective chaotic behaviour emerging from the Boltzmann picture of
gases provides an alternate conceptual framework to analyse and create apparent randomness
on computers. We now investigate whether simpler numerical methods are capable of generating
random sequences.

4.3.2 Hard-sphere systems

An alternative to Lennard-Jones framework is the hard-sphere system, an event driven system
wherein the motion of every particle is tracked and the velocity of a pair of particles are updated
when they are just touching each other (Rapaport, 2004). Essentially, it is a simplfied version
of the Lennard-Jones system wherein the repuslive soft-sphere potential is replaced by a step
potential. The positions and velocities of the particles are initialized randomly and possible
collisions between all pairs are considered. The time between the ith and jth particle can be
calculated by

δt = − b+
√
d

vij · vij
, (4.30)
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where b = vij · rij and d = b2 − v2
ij(r

2
ij − σ2), with vij = vi − vj and rij = ri − rj and σ is the

diameter of the particles. The velocities of the colliding pair are updated as

vi = vi −
b

σ2
rij ,

vj = vj +
b

σ2
rij .

(4.31)

This ensures that momentum and energy are conserved. Unlike the Lennard-Jones model, the
hard-sphere system needs to update only the possible collisions for the pair of particles that
have undergone collision, and is therefore an O(N) algorithm. Hence, the hard-sphere system
turns out to be around ten times faster than the Lennard-Jones model, for a given number of
particles. The positions, velocities and energies when sampled after a few hundred iterations,
produce stream of random numbers corresponding to their expected distributions. These streams
of numbers have been validated with statistical tests. While both Lennard-Jones model and
hard-sphere system produce stream of random numbers, the rate of generation is only a few
thousand per second making them unsuitable for large-scale scientific computations. The rate
of generation of random numbers from both methods is listed in Table(4.1). These numerical
experiments show that the concepts of randomness associated with Boltzmann dynamics are in
fact consistent with statistical inference techniques used in computer science.

Quantity Method Speed (doubles/second)

Uniform
MT19937 1.8× 108

Lennard-Jones 0.01× 106

Hard-sphere system 0.07× 106

Gaussian
Box-Muller 1.0× 107

Lennard-Jones 0.01× 106

Hard-sphere system 0.02× 106

Exponential
Inverse sampling 1.2× 107

Lennard-Jones 0.005× 106

Hard-sphere system 0.01× 106

Table 4.1: Rates of generation of uniform, Gaussian and exponential random numbers (in dou-
bles/sec) by Lennard-Jones dynamics and hard-sphere system compared with the widely used
MT19937 (Matsumoto & Nishimura, 1998). The Gaussian and exponential random numbers
were generated using the same.

4.4 Mesoscale methods

The fact that the hard-sphere model generates random sequences at a higher rate than Lennard-
Jones indicates that coarse-grained modelling, which operate at larger time scales are better
suited to generating uncorrelated numbers. Hence, mesocopic methods for simulating gas flows
seem an attractive alternative. The key idea of such methods is a “top-bottom approach” (Succi
et al., 2002), wherein, the macroscopic behaviour of the system is preserved while considering one
of many microphysical possibilities. This framework has led to the emergence of hydrodynamic
solvers such as — Direct Simulation Monte Carlo (DSMC) (Bird, 1978), Multiparticle Collision
Dynamics (MPCD) (Kapral, 2008), Dissipative Particle Dynamics (DPD) (Hoogerbrugge &
Koelman, 1992) and Lattice Boltzmann Methods (Succi, 2001). The Lattice Boltzmann methods
are grid-based techniques which discretize the velocity space to a set of finite discrete velocities,
consquentially this is not suitable for generating random numbers. Dissipative Particle Dynamics
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on the other hand is a particle-based method which considers pairwise interactions in addition to
stochastic forces, hence this algorithm requires large number of computations as well as random
sequences making it unsuitable for our purpose. In the following subsections, we discuss DSMC
and MPCD methods and their performance as PRNGs.

4.4.1 Direct Simulation Monte Carlo

The DSMC is a numerical tool which can be used to solve the Boltzmann equation for any
value of Knudsen number. The central idea behind this algorithm is to emulate the Boltzmann
collisional operator. Particles are sorted into cells on the basis of their positions and it is assumed
that any pair of particles in the same cell can collide with each other and exchange momentum
and energy (Bird, 1978). Particles in a cell are chosen via uniformly distributed random numbers
and their relative velocity is modified is such that the magnitude remains unchanged, and the
two other parameters of collisions are taken to be

φ = cos−1(1− 2U1) , θ = 2πU2, (4.32)

where U1 and U2 are uniformly distributed random numbers, following which the components
of relative velocity, vij is modified as:

(vij)x = vij sinφ cos θ,

(vij)y = vij sinφ sin θ,

(vij)z = vij sin θ.

(4.33)

Every cell undergoes a fixed number of collisions which determines various transport coefficients
of the system and parameters such as the Knudsen number. Once the required number of
collisions is satisfied, the particles are streamed with their new velocities and the entire procedure
is repeated again. This method is quite reliable and can be used for the entire range of rarefaction
and even capture shock structures. Since the objective is to generate random numbers, the
resolution of the grid can be coarser and the number of collisions required for each particle is
much lower as compared to when solving for actual flows.

4.4.2 Multiparticle Collision Dynamics

MPCD is a particle based mesoscopic method used to simulate complex fluids (Kapral, 2008).
As opposed to DSMC, this method does not account for inter-particle collisions and focuses on
collective behaviour of particles. Once the particles are sorted into cells, their velocities are
updated by

v′ = v + R(v − u), (4.34)

wherein, u is the mean velocity and R is the stochastic rotation matrix, associated with the
cell the particle occupies. Since interparticle interactions are not taken into account, the MPCD
algorithm has a lower order of computations than DSMC and hence faster. However, the nature
of algorithm requires it to be used for complex system which display collective behaviour such
as — colloidal solutions and polymers.

It was found that the aforementioned algorithms did indeed satisfy Marsaglia’s difficult-to-
pass tests. The rate of generation of various distribution using DSMC and MPCD are tabulated
in Table(4.2). It is seen that while DSMC generated Gaussian and exponential random numbers
at the same speed as standard methods, and uniformly distributed numbers much slower than
state-of-the-art PRNGs, MPCD accelerated Gaussian random number generation by a factor of
7 and exponential random number generation by a factor of 3, although uniform random number
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generation is around the same speed as existing PRNGs. It was also found that when subjected
to a more stringent set of tests namely the Crush battery of tests in TESTU01 library (L’Ecuyer
& Simard, 2007), it failed many statistics, indicating that sequences generated by MPCD are not
high quality. The mesoscale methods are a significant improvement over determinsitic solvers,
however they prove to be only a slight upgrade over standard methods. Therefore, it is imperative
to design a new algorithm rooted in the new framework capable of generating random numbers
at higher speeds.

Quantity Method Speed (doubles/second)

Uniform
MT19937 1.8× 108

DSMC 2.5× 107

MPCD 7.3× 107

Gaussian
Box-Muller 1.0× 107

DSMC 3.3× 107

MPCD 7.4× 107

Exponential
Inverse sampling 1.2× 107

DSMC 1.6× 107

MPCD 4.0× 107

Table 4.2: Rates of generation of uniform, Gaussian and exponential random numbers (in dou-
bles/sec) by mesoscopic methods namely – DSMC and MPCD, compared with MT19937.

4.5 Final algorithm

Keeping in tandem with the “top-bottom approach”, we choose a system whose microphysics
would be computational friendly and provides uncorrelated random numbers. We adopt an ap-
proach similar to the DSMC and borrow concepts from MPCD The final version of the algorithm
chooses a pair of particles and updates their velocities using a simple collision rule as defined
by:

v′i =
vi + vj

2
−R

vi − vj
2

, v′j =
vi + vj

2
+ R

vi − vj
2

. (4.35)

where R is a stochastic rotation matrix . Once the velocities of the pair of particles are
modified, their positions are updated with periodic boundary conditions by:

x′i = xi + v′i.δt, x′j = xj + v′j .δt. (4.36)

An explicit description of the final algorithm is provided in Table(4.3).
A key feature of this algorithm is that the uniform random numbers needed for instantiating

the stochastic rotation matrix and for pair selection can be directly sampled from the positions
of the particles

4.5.1 Pair selection

The method to select pairs of molecules for collisions is central to hydrodynamic solvers such as
DSMC and even for proposed algorithm. We found the following methods of pair selection to
provide satisfactory results:
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Table 4.3: Overview of the “Molecular Dice” algorithm

1. N particles are initialized with uniformly distributed positions and
normally distributed velocities in D dimensions.

2. A stochastic rotation matrix, R, with its entries being trignomteric transformations
of uniform random numbers is chosen.

3. A pair of particles is chosen and then selected and their velocities updated
using Eq.(4.35).

4. The velocities of both the particles are returned as Gaussian random numbers.
5. If uniform random numbers are required then the positions of the pair of particles

are returned and are updated using Eq.(4.36) with periodic boundary conditions.
6. The contribution of kinetic energy of both particles in 2-dimensions is returned as

exponential random numbers.
7. Steps 3-6 are repeated for W iterations, after which step 2 is executed once

to re-intialize the stochastic rotation matrix.

1. Classical method: Two integers (i, j) are chosen in the range [0, N − 1], from a uniform
distribution such that i 6= j. The particles with these indices are then considered to be the
colliding particles. We found that for this method W = N/2 provided satisfactory results.

2. LCG-style method: The Hull-Dobell theorem guarantees that the iterative scheme Xn+1 =
(aXn + b) mod N provides all integers in the range [0, N − 1] once for N iterations under
a certain set of conditions. For N = 2s(s > 2), the conditions are quite simplified — b
must be an odd integer and that (a− 1) must be a multiple of 4 in the range [0, N − 1] .
The choice of a, b and X0 is made using uniformly distributed numbers and which satisfy
the aforementioned conditions. These choices are replenished after every W iterations to
avoid engendering pattern. Choosing W = N/2 ensures that every particle takes part in
the collision process and clears most statistical tests.

3. Offset-and-jump method: The index for first particle is offset every iteration by a uniformly
distributed integer in the range [0, N/W ) and the index for second particle is chosen by
adding a jump to it which is uniformly distributed between [1, N−1]. If the index of either
particle exceeds N , then modulus of the value with N is taken. The choices for offset and
jump is renewed after every W iterations. We found that W = N/4 provided the most
satisfactory results.

In the following sections the results and the speed of the proposed algorithm for all three
pair selection methods is presented.

4.6 Statistical tests

As discussed in the previous chapter, the quality of a PRNG is established via the standard
statistical tests as outlined in the previous chapter. In addition to the tests mentioned in
Chapter 3, the Crush battery of tests contained in TestU01 suite (L’Ecuyer & Simard, 2007)
was also used for testing empirical randomness. It is a set of 96 highly stringent statistical
tests providing a p−value for 144 statistics for 32−bit uniform integers. To test Gaussian and
exponential random numbers, they are first transformed to uniform integers as explained in
Chapter 3. The proposed algorithm was tested with all three methods of pair selection and
for all the three quantities (uniform, Gaussian and exponential), for 100 different seeds. The
tests which failed consistently, i.e, generated p−values outside the interval [10−3, 1− 10−3) were
deemed to be systemic failures. Table(4.4) presents the results.



40 Chapter 4. Molecular Dice

Pair selection method Quantity Systemic failures Test(s) failed

Classical
Exponential 1 Gap

Gaussian 2 Gap, CollisionOver
Uniform 0 —

LCG-syle
Exponential 2 WeightDistrib, HammingWeight2

Gaussian 1 WeightDistrib
Uniform 0 —

Offset and jump
Exponential 1 Gap

Gaussian 1 Gap
Uniform 0 —

Table 4.4: Results for Crush battery of tests. The results are for all the three quantities –
uniform, Gaussian and exponential with the three different methods for pair selection outlined
in Sec.(4.5.1)

As can be seen, the quality of random sequences generated by proposed algorithm is at least
at par with established and widely used routines such as MT19937.

4.7 Speed of RNGs

The speed of generation of the proposed algorithm was calculated using a program to calculate
the mean of 108 numbers drawn from the generator and the time spent for the same. Such a
methodology is known sequential testing and is an appropriate method to determine the speed of
generators to be used for large-scale scientific computations. The speeds for all algorithms were
tested on a Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz machine. The results are presented
in Table(4.5).

Quantity Method Speed (doubles/second)

Uniform

MT19937 1.8× 108

Classical 7.1× 107

LCG-style 8.5× 107

Offset and jump 1.0× 108

Gaussian
Box-Muller 1.0× 107

Classical 1.8× 108

LCG-style 2.0× 108

Offset and jump 3.6× 108

Exponential
Inverse sampling 1.2× 107

Classical 8.5× 107

LCG-style 1.6× 108

Offset and jump 1.9× 108

Table 4.5: Rates of generation of uniform, Gaussian and exponential random numbers (in dou-
bles/sec) by the final algorithm for all the three methods of pair selection outlined in Sec.(4.5.1),
compared with MT19937.

The values in Table(4.5) suggests that proposed algorithm while providing high quality
sequences is a good upgrade over standard methods in terms of speed.
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4.8 Outlook

Existing methods to generate random numbers include extracting noise from devices or utiliz-
ing complex formulas rooted in number theory. It can be shown that a unification of the two
methods – simulation of a stochastic process such as the motion of molecules produces sequences
of number which are apparently random. An algorithm was designed based on existing hydro-
dynamics solvers capable of generating Gaussian and exponential random numbers at a much
higher rate. As generation of non-uniform random numbers have often acted as a bottleneck
(Thomas et al., 2007), for example taking upto 90% of the total computational time for a simple
Brownian motion simulation, we expect that this algorithm to generate Gaussian and exponen-
tial random numbers can speed-up simulations of many large-scale problems. This opens up the
possibility of tackling problems such as whole-cell simulations which have been restricted due to
the computational cost involved.





Chapter 5

Chemical Reactions

5.1 Introduction

Chemical reactions are pervasive in natural phenomena and central to the dynamics of many
systems such as gene networks (Becskei & Serrano, 2000), combustion (Kraft & Wagner, 2003)
etc. Simulations of such systems for long-time scales is important in engineering and scien-
tific applications (Espenson, 1995). Typically chemical reactions have been modelled using the
deterministic rate law of mass action, which describes the change in concentration of various
components of a system in time (Érdi & Tóth, 1989). This method of simulating chemical reac-
tions produces satisfactory results for large system sizes, however the discrete nature of molecules
and fluctuations can play an important role in governing the behaviour for small systems (Sri-
vastava et al., 2002; Turner et al., 2004). Such dynamics are often encountered in biochemical
networks such as the switching between lysis and lysogeny phases in λ−phage which is driven
from small perturbations (Arkin et al., 1998). Thus, for such cases a stochastic formulation
which accounts for fluctuations about the mean behaviour and the discrete nature of molecules
provides a better insight into the dynamics of small systems. The stochastic simulation algo-
rithms for chemical reactions have in fact been found to produce accurate results faster than
deterministic solutions for some cases (Kraft & Wagner, 2003). Although simple, this algorithm
requires a large number of exponential and uniform random numbers, the former particularly
acting as a major detriment. The “Molecular Dice” algorithm introduced in the last chapter
produces both exponential and uniform random numbers in a single iteration and is therefore
ideally suited to this algorithm.

In this chapter, the deterministic formulation for modelling chemical kinetics is explained
first followed by the stochastic formulation, following which various numerical methods used
to solve the latter are discussed. A demonstration of the usefulness of the “Molecular Dice”
algorithm presented in the previous chapter in context of these numerical methods is presented
via simulation of a bi-stable biochemical reaction network. The chapter ends with a discussion
on reaction-diffusion processes and a simulation of pattern formation in E.Coli bacteria which
highlights the difference between stochastic and deterministic formulations.

5.2 Deterministic formulation

The deterministic formulation of chemical kinetics is known as the rate law of mass action and
states that for a given reaction the rate of change of the concentration of various species is
directly proportional to the concentration of the participating reactants, for example given a
simple first order reaction

A
k−−→ B (5.1)

the rate law of mass action states that:

dCA
dt

= −kCA,

dCB
dt

= kCA, (5.2)
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where Ci denotes the concentration of ith species and k is the rate constant associated with the
reaction. The explicit solution of these differential equations is

CA(t) = CA(0)e−kt,

CB(t) = CA(0)
(

1− e−kt
)
.

(5.3)

While this particular example does yield a deterministic solution, most chemically reactive
systems of the form

dx

dt
= f(x), (5.4)

where f(x) denotes some function of the components of the vector x, result in highly complex
non-linear ordinary differential equations, which can only be solved using numerical techniques.
To solve this system numerically, the Taylor expansion of this system is written as

x(t+ δt) = x + δt · dx
dt

+O(δt2). (5.5)

There are two simple methods to evaluate dx/dt from Eq.(5.4). Either the value of the derivative
is considered at t itself or t + δt. The former leads to a very simple set of discrete equations,
using which the value of x can be updated at every time step using

x(t+ δt) = x + f(x(t)).δt. (5.6)

Such a technique is called Euler’s forward method. The second option, that is to evaluate dx/dt
at t+ δt, leads to

x(t+ δt) = x + f(x(t+ δt)).δt. (5.7)

In this case, as opposed to Eq.(5.6), f(x(t + δt)) cannot be evaluated directly as x(t + δt) is
unknown at time t. This implicit approach is known as Euler’s backward method. Although
the latter is more cumbersome, it allows for large time steps and thus is generally preferred for
cases with stiff non-linear terms (Kraft & Wagner, 2003). More advanced backward solvers exist
and are routinely used for solving stiff systems.

A deterministic formulation effectively does not account for the fluctuations, hence making
it suitable only for large system sizes (N → ∞). In order to capture the correct qualitative
behaviour of the system it is imperative to consider these complications and employ a stochastic
formulation as opposed to a deterministic one (Gillespie, 1977).

5.3 Stochastic formulation of chemical rate equations

The stochastic formulation is considered to be a more detailed description of reaction dynamics
as it manages to incorporate perturbations about the deterministic mean thereby providing a
better insight to the behaviour of the system (Oppenheim et al., 1969). For the stochastic
approach, the fundamental quantity of interest is the probability of finding a given number of
molecules of a species at a particular time and is denoted by P (x, t). Here x is a vector with
components x ≡ (x1, x2, ..., xN ) where xi is the number of molecules of the ith species in the
system. The key idea here is that chemical reactions are considered to be Markov processes
(Gardiner, 1985a), i.e, the progression of the system only depends on the current state and
does not take its history into account. In an infinitesimal time interval, there are several paths
through which the system can arrive at or depart from a given state x, the evolution equation
for P (x, t) using detailed balance is
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∂P (x, t)

∂t
=
∑

(gain)−
∑

(loss), (5.8)

where the summations are over all the paths that either lead to or away from x. The following
assumptions are made in order to describe chemical kinetics as a stochastic process

1. The process of chemical reaction itself is modelled as a birth-death process and it is assumed
that the probability of a particular reaction being triggered in a infinitesimal time dt is
kdt.

2. A given control system is considered to be homogenous, i.e, all possible combinations of
reactants are capable of reacting with each other. For example, the probability of a first

order reaction A + B
k−−→ φ being triggered in time dt is kNANBdt, where (NA, NB) are

the number of (A,B) molecules present in the given control system.

3. It is assumed that the molecular chaos hypothesis introduced in Chapter 3 holds, using
which it can be argued that the joint probability density of a transition is a product of the
individual transition probabilities. In mathematical terms, can be stated as:

P (x1 ± a1; ...;xN ± aN ) =
N∏
i=1

P (xi ± ai).

These assumptions lead to the Chemical master equation, a statement of the rate of change
probability densities of different chemical species in the system (Oppenheim et al., 1969). Its
derivation can be explained by the example considered in previous section. In an infinitesimal
time dt, the following transition probability law hold

P (NA → NA − 1;NB → NB + 1) = kNAdt, (5.9)

as per the assumptions made it is the only path in the system that brings change. The rate of
change of the joint probability density is then

P (NA, NB, t+ dt)− P (NA, NB, t)

dt
= k(NA + 1)× P (NA + 1, NA − 1, t)− kNA × P (NA, NB, t).

(5.10)
In the limit dt → 0, the time evolution of the probability is obtained. Similarly for a general
case of N components interacting chemically through R reaction channels the chemical master
equation is

∂

∂t
P (x, t) =

R∑
i=1

[ai(x− νi)P (x− νi, t)− ai(x)P (x, t)] (5.11)

where ai(x) known as propensity function is the total probability per unit time that the reaction i
occurs in the system. It is the product of total number of available combinations of the reactants
and the rate constant associated with the reaction. Another quantity of relevance is the vector,
νi, whose components νji signify the change in the number of molecules of species, j, brought
about by one i reaction. It is evident that Eq.(5.11) is detailed version of Eq.(5.8), where the gain

term is given by
R∑
i=1

[ai(x − νi) which is total probability that the system makes the transition

(x − νi → x) and the loss term is ai(x)P (x, t) which brings the system away from the state x.
(Gillespie, 2000). For the normalization of the probability density function to hold, we must
have
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∑
P (x) = 1, (5.12)

where the sum is over all possible values (0,∞) for all components. Similarly, the mean behaviour
of the system can be calculated using

µ =
∑

xP (x). (5.13)

It has been shown that this formulation of chemical kinetics converges to the rate law of mass
action in the thermodynamic limit (N → ∞, V → ∞), a necessary condition for it to be
considered canonical (Kurtz, 1972; Oppenheim et al., 1969). While accurate, the chemical
master equation is more often than not too complex to be solved analytically, hence use of
efficient numerical technqiues must be employed.

5.4 Simulation Algorithms

A naive algorithm that can be utilized to produce trajectories of the chemical master equation
would be to generate a random number and check whether it statisfies the first assumption
of the stochastic formulation. For the simple single reaction system introduced in Eq.(5.1), a
∆t = 10−3k can be selected which would signify λ = A(t)k∆t to be the probability of observing
a reaction event. A uniform random number, U , between [0, 1) is generated, then

P (U ≤ λ) = λ = A(t)k∆t (5.14)

when satisfied, a reaction event has occurred in accordance with the first assumption made
for the stochastic formulation and the number of A molecules is decreased by one. Realizations
of this algorithm are presented in Fig.(5.1). While this algorithm does solve the chemical master
equation exactly and produces correct realizations, it is highly inefficient as most of the time
is spent generating random numbers while observing no changes in the system (Erban et al.,
2007).

5.4.1 Gillespie algorithm

The Gillespie algorithm also known as the next reaction method, is an efficient method to
generate statistically correct possible realizations of the chemical master equation (Gillespie,
1976). The naive approach discussed earlier has long waiting-times, i.e, most iterations do not
fulfill the criterion and are hence rejected bringing about no change in the system. As opposed to
the naive scheme, the Gillespie algorithm treats time intervals between two successive reaction
events as a random variable and aims to quantify its distribution. This allows one to build
a scheme where every Monte-Carlo move is accepted thereby eliminating the computing time
wasted for observing an event, the primary drawback in the former implementation. For this
purpose, a new quantity known as reaction probability density function, P (τ, µ), is defined as
probability that next reaction occurs in the interval [t + τ, t + τ + dτ ], and is the Rµ reaction.
It is assumed that the time dτ is small enough that only a single reaction occurs during the
interval [t + τ, t + τ + dτ) (Gillespie, 1976). The probability that no reaction event occurs in
the time interval [t, t+ τ), denoted by P0(τ), can be calculated by considering that no reaction
events occur in K infinitesimally small partitions, ε = τ/K and accounting for the assumption
that each event (or lack of) in a given subinterval is statistically independent, then P0(τ) is

P0(τ) = [1−
∑

aµ(x)ε]K . (5.15)

In the limit ε→ 0,K →∞, we have
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Figure 5.1: Plots comparing the results of the deterministic solution of the chemical reaction

A
k−−→ B. The solid, coloured lines represent the various realizations of the naive implementation

and the dashed line represents the deterministic solution. It can be seen that large number of
such realization when averaged converge to the deterministic solution. These figures represent
a) degradation of A and b) degradation of B.

P0(τ) = e−
∑
aµτ
∑

aµ. (5.16)

A numerical scheme can then be constructed by calculating the waiting time distribution at
every time t and then generating a random variate distributed according to P0, following which a
reaction is chosen to be triggered in accordance with their respective propensities. The algorithm
can be summarized as follows

1. Calculate the propensity function aµ, which is the total probability of observing a particular
reaction event and compute their sum a0 =

∑
aµ

2. Generate an exponential random number with the parameter a0. Using inversion method,
τ can be simply generated as:

τ =
1

a0
log

(
1

U1

)
(5.17)

where U is a uniform random number between (0, 1).

3. Generate a uniform random number, U2, and find an j such that:

U2 ≥
1

a0

j−1∑
i=1

ai and U2 <
1

a0

j∑
i=1

ai (5.18)

this j signifies the reaction that has occurred in (t + τ, t + τ + dτ). This is essentially
choosing the reaction to be triggered based on their propensities, as τ only indicates when
the next reaction event takes place and does not specify the reaction itself.

4. The number of molecules of each species are updated as per the reaction chosen, and steps
1− 3 are repeated until desired time is achieved.
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While this algorithm eliminates a major drawback of naive implementation discussed before by
calculating the waiting time distribution and is quite efficient for homogebous cases, it spends
roughly 85% time on random number generation indicating a major scope for improvement.

5.4.2 Convergence and performance of Gillespie algorithm

To study the convergence and performance of the algorithm, a prototype reaction the Goldbeter-
Koshland switch is simulated (Goldbeter & Koshland, 1981). It is a reaction system comprising
six reactions and six species

S + E1

k1−−⇀↽−−
k2

C1
k3−−→ P + E1

P + E2

k4−−⇀↽−−
k5

C2
k6−−→ S + E2

(5.19)

The network is simulated with initial conditions

XS(0)
XE1(0)
XC1(0)
XP (0)
XE2(0)
XC2(0)

 =



0.275
0.25
0.075
0.075
0.25
0.075


where Xi denote the different mole fractions of the species. The values of the rate constants
were k1 = 0.05, k2 = 0.1, k3 = 0.1, k4 = 0.01, k5 = 0.1, and k6 = 0.1. The comparison between
the stochastic and deterministic solutions is shown in Fig.(5.3). The computational performance
of the Gillespie algorithm with the two methods of random number generation are presented
in Fig.(5.2). It is evident that the Gillespie algorithm using the standard methods to generate
random numbers or with Molecular Dice converge in the same manner, with the latter proving
to be faster by a factor of almost 4.

The total computational time spent for Gillespie algorithm using standard methods and the
“Molecular Dice” algorithm are listed in Table(5.1).

Method Error Std. Deviation Time(s)

Gillespie - standard 4.2× 10−4 6.2× 10−3 83.78

Gillespie - Molecular Dice 6.4× 10−4 5.9× 10−3 19.56

Table 5.1: Time comparisons for the three methods to calculate the mole fraction of the specie
S after t = 100.

While the stochastic formulation does indeed converge to the deterministic solution, the
computational time taken to implement this method is higher than the deterministic numerical
method. However, for large reaction networks, simple numerical schemes as the one employed in
present case might not be useful as the resulting equations are highly non-linear and stiff (Kraft
& Wagner, 2003; Gillespie, 2007). In such cases, the Gillespie algorithm might indeed prove
to be computationally cheaper than deterministic numerical schemes. The Gillespie algorithm
provides a reliable measure for large system sizes, however it is highly useful for small system
sizes wherein small perturbations drive the system from one stable state to another. An example
is presented in the following section to highlight this issue.
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Figure 5.2: Simulation of the reaction network presented in Eq.(5.19). The plots depict the
error observed for different number of moleclues present in the system for Gillespie algorithm
when implemented with standard and Molecular Dice algorithms. Both methods converge with
log(1/N), with Molecular Dice being around 4 times faster.
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Figure 5.3: Plot comparing the results of Gillespie algorithm and the deterministic solutions
of Eq.(5.19). The plots depict a) progression of mole fraction of S and b) progression of mole
fraction of P
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5.4.3 Rare event sampling in biological system

Bi-stable chemical networks are a mainstay in cellular biology, as they are central to cell fate
determination (Elf & Ehrenberg, 2004), such as the lysis-lysogeny switch in λ-phage (Arkin
et al., 1998). We consider a simplified model, wherein, two proteins namely A and B try and
bind with the DNA O, the reaction network is given by:

2 A
5k−−⇀↽−−
5k

A2 2 B
5k−−⇀↽−−
5k

B2

O + A2

5k−−⇀↽−−
k

OA2 O + B2

5k−−⇀↽−−
k

OB2

OA2 + B2

5k−−⇀↽−−
k

OA2B2 OB2 + A2

5k−−⇀↽−−
k

OA2B2 (5.20)

O
k−−→ O + A O

k−−→ O + B

OA2
k−−→ OA2 + A OB2

k−−→ OB2 + B

A
0.25k−−−→ φ B

0.25k−−−→ φ

The double negative feedback nature of the network arising from the fact that both A and B
inhibit each other’s production after binding with the DNA O renders it to have two stable states
(Allen et al., 2005). There essentially two stable states of the system – one where number of A
molecules is much larger than B and the other where number of B molecules is much larger than
A. The switching between the two states is almost instantaneous and is driven by fluctuations.
Hence for such systems, stochastic simulation algorithms are employed as they manage to capture
rich and complex behaviour as opposed to solving equations arising out of rate law of mass action.
The time interval between switching events is exponentially distributed, p(t) = kABe

(−kABt). The
associated parameter, kAB, was calculated using the proposed algorithm and was found to be
4.19× 10−5, which is in good agreement with reported data (Allen et al., 2005). Progression of
∆ = (nA + 2nA2 + 2nOA2)− (nB + 2nB2 + 2nOB2) for a typical simulation is shown in Fig.(5.4).
For 109 reaction events, the time spent on random number generation via traditional methods
was found to be 94 seconds and 12 seconds for proposed method, thereby speeding up the entire
algorithm by a factor 4.

5.5 Reaction-Diffusion Systems

Systems considered in the chapter were idealized to be homogenous. However, it has been
observed that spatial heterogeneity imparts an extra layer of complexity and is in fact the basis
for many important phenomena such as — morphogenesis (Turing, 1952), chemotaxis (Thar &
Kühl, 2003) etc. The stochastic formulation can be tweaked to account for diffusion of molecules
in space.

The entire domain is divided into sub-cells wherein all molecules are considered to be close
enough to react with each other. The diffusion is incorporated in the system by treating move-
ment of molecules between neighbouring cells as reaction events. The rate constant of this
“pseudo-reaction” is given by k = D/h2, where D is the diffusion constant and h the length
parameter associated with the subcells (Baras & Mansour, 1997; Gardiner, 1985a).

5.5.1 Pattern formation in bacteria

Cell division in bacteria such as E.Coli is facilitated by a system known as the MinCDE system of
proteins. These proteins while transferring between the cytoplasm and cytoplasmic membrane
diffuse over the length of the bacteria with their concentrations being minimum around the



5.6 Outlook 51

-60

-30

 0

 30

 60

200·10
3

400·10
3

600·10
3

∆

time/k
-1

Figure 5.4: Plot of ∆ = (nA + 2nA2 + 2nOA2)− (nB + 2nB2 + 2nOB2) for the reaction network
presented in Eq.(5.4.3). It can be seen clearly that small perturbations can lead to switching
between multiple steady states.

center of the cell which indicates the site for cell division (Howard et al., 2001). However, the
number of protein copies in a cell is low (around 3000) which results in significant fluctuations
and drive the oscillations of the min proteins across the cell while the deterministic formulation is
unable to capture these effects owing to suppression of noise which drives this system (Howard &
Rutenberg, 2003). The rate law of mass action coupled with diffusion in space is used to describe
the concentrations of various components – MinD in cytoplasm (CD), MinD on the cytoplasmic
membrane (Cd), MinE in the cytoplasm (CE) and MinE in the cytoplasmic membrane (Ce)

∂Cd
∂t

=
σ1CD

1 + σ′1Ce
− σ2CeCd

∂CD
∂t

= DD
∂2CD
∂x2

− σ1CD
1 + σ′1Ce

+ σ2CeCd

∂Ce
∂t

=
σ4CE

1 + σ′4CD
− σ3CDCE

∂CE
∂t

= DE
∂2CE
∂x2

− σ4CE
1 + σ′4CD

+ σ3CDCE (5.21)

and the various σi are the associated constants of the various reactions. Similar to the
deterministic formulation, the concentration of MinD proteins is close to the center of the cell.
A scatter plot of the concentration of MinD over an oscillation cycle is plotted in Fig.(5.5a).
Additionally, the ratio of this protein on either side of the center has been observed to oscillate
periodically, a phenomenon that is observed in actual experiments also. The oscillation of MinD
protein in time across space is presented in Fig.(5.5b). Hence, through this example it can be
seen that the stochastic formulation of spatio-temporal phenomena provides a more detailed
description as compared to their deterministic counterparts.

5.6 Outlook

Simulation of reactive systems and reaction-diffusion systems is an important problem in compu-
tational physics. The deterministic formulation provides an accurate description of the average
behaviour of large systems where fluctuations about the mean are insignificant, however for
small systems these perturbations can prove to be highly important and subsequently lead to
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Figure 5.5: Simualtion of the reaction-diffusion process presented in Eq.(5.21). The plots depict
a) a scatter plot of the averaged density profile of MinD protein over an oscillation cycle. A
minima can be observed close to the center of the cell, indicating the site for cell division. This
is in good agreement with the deterministic formulation of the process. b) A plot of the ratio
of MinD protein in the left-hand 30% to right-hand 30%. The solid line is observed in the
stochastic simulation while the dotted line is the determinsitic solution. While the latter fails to
capture the oscillations observed in experiments, the stochastic version of the model manages
to capture this phenomena.
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highly complex characteristics such as random switching between multiple stable states of the
system. This is also the case for reaction-diffusion systems where spatial heterogeneity plays
an important role in the dynamics of the system such as pattern formation in bacteria. The
diffusion of various components can be handled in a stochastic framework, by treating diffusion
of molecules across neighbouring cells as reaction events. However, this method has major draw-
backs as the time scales for chemical reactions is much lower than diffusion, hence the entire
system progresses at the time scale of the former, hence a major fraction of the computational
time is spent simulating diffusion. Since stochastic numerical schemes to simulate chemical re-
actions require large number of random sequences, the cost of computation for such algorithms
increases drastically making it unfeasible for most real-world problems.





Chapter 6

Fokker-Planck model for rarefied
gases

6.1 Introduction

The simulation of fluid flows is an important problem and finds applications in many areas of
science and engineering. Typically, these simulations are achieved via numerically solving the
Navier-Stokes-Fourier (NSF) equations, which are mathematical statements of momentum and
energy balance of fluid flow. While these numerical methods have achieved considerable success,
they are only applicable to flows where the mean free path (λ) is considerably smaller than the
characteristic length of the flow (L). The ratio of λ and L is known as the Knudsen number (Kn)
and is an important dimensionless parameter which characterizes the flow (Chapman & Cowling,
1970). Low Kn numbers (≤ 0.01) indicate the validity of continuum hypothesis, a regime where
ther NSF equations are applicable. However, for setups such as fuel cells and shale gas transport
the characteristic length is of the order of micrometers and the continuum approximation breaks
down. For such cases, the dynamics of the fluid flow is well described by the Boltzmann equation
for dilute gases (introduced in Chapter 4). This equation is difficult to solve analytically, and
therefore numerical methods such as the Direct Simulation Monte Carlo (DSMC) are employed
(Bird, 1978). Although DSMC provides accurate solutions to the Boltzmann equation, the
computational time for low Kn cases tend to be high due to large statistical fluctuations (Bird,
1994). Numerical methods such as the Lattice Boltzmann (LB) utilize simplified collision models
and discrete velocity models resulting in higher computational efficiency (Succi, 2001). While
the lower-order velocity models have been shown to produce correct results for Kn < 0.1, the
higher-order models provide correct results for Kn < 0.25 for isothermal setups. The last decade
has seen a revived interest in the Fokker-Planck approximation to Boltzmann equation and
equivalent Langevin dynamics, for computational reasons. It provides results as accurate as
DSMC while proving to be computationally cheaper, hence posing as a viable alternative in the
context of mesoscopic simulation methods (Singh et al., 2016).

In this chapter, the basics of kinetic modelling of rarefied gases is explained first, followed
by a brief outline of the Fokker-Planck approximation. The chapter ends with a description of
the numerical method used to solve this model and the algorithm overview.

6.2 Kinetic modelling of rarefied gases

Kinetic theory of gases models the molcular motion and is based on statistical description in
terms of the the distribution function, f , where f(x, c, t)dxdc is the probability of finding a
particle with position in the range (x,x + dx), possessing a velocity in the range (c, c + dc).
The relevant macroscopic quantities can then be found by taking the appropriate moment of
the distribution function. The lower order moments are defined as

n = 〈1, f〉 , ρ = mn, ρu = 〈mc, f〉 , E =
〈
mc2/2, f

〉
, (6.1)

where n is the number density, m mass of the particle, ρ the mass density, ρu is the mass flux
or momentum, E the energy density and the < ., . > is an operator denoting
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〈φ1, φ2〉 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

φ1φ2dcxdcydcz. (6.2)

The energy density E can be seen as a sum of two parts – energy arising from the bulk motion
of the fluid and the random motion of particles stemming from thermal energy. The energy
density is defined as

E =
ρu2

2
+
DnkBT

2
, (6.3)

where kB is the Boltzmann constant and T the temperature. Using this definition, the temper-
ature can then be simply defined as

DnkBT

2
=
〈
ξ2/2, f

〉
(6.4)

where ξ = c − u is the peculiar velocity. The Boltzmann equation introduced in Chapter 4,
describes the evolution of the distribution function in time and space for the dilute limit

∂tf + ∂cαf = ΩB, (6.5)

where ΩB is the Boltzmann collisional operator quantifying the change in the distribution func-
tion from binary collisions between particles. By taking appropriate moments and integrating
over the velocity space, the dynamics of various macroscopic quantities can be derived (Chapman
& Cowling, 1970). Some salient features of the Boltzmann equation are

1. Conservation of density, momentum and energy as no changes happen due to binary col-
lision, that is

〈
ΩB, {m,mc,mc2/2}

〉
= {0,0, 0}, (6.6)

using this result and calculating appropriate moments of the Boltzmann equation, the
conservation laws are obtained as

∂tρ+ ∂αjα = 0,

∂tjα + ∂β(ρuαuβ + pδαβ) + ∂βσαβ = 0,

∂tE + ∂α ((E + p)uα + σαγuγ) + ∂αqα = 0,

(6.7)

where p is the pressure, σαβ the stress and qα the heat flux defined in kinetic terms as

p = nkBT, σαβ =
〈
ξαξβ, f

〉
, qα =

〈
ξ2

2
ξα, f

〉
, (6.8)

with Aαβ indicating the traceless part of the tensor.

2. The system reaches a statistical steady state ΩB = 0, i.e, the collisions do not bring about
any change to the distribution function when, f attains a Maxwell-Boltzmann of the form

fMB = ρ

(
m

2πkB T

)3/2

exp

(
− m

2 kBT
(c− u)2

)
. (6.9)

3. The Boltzmann equation extends the idea of entropy to non-equilibrium situations. This
is highlighted from the evolution of the H−function
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H =

∫
dc(f lnf − f), (6.10)

which is essentially the non-equilibrium generalization of entropy. The evolution of this
quantity is given by the equation

∂tH + ∂αJα = −σS (6.11)

where Jα is the entropy flux term. The Boltzmann collisional operator holds the property

σS =
〈
ΩB, lnf

〉
≤ 0 (6.12)

which ensures that entropy production is greater that 0 and hence the Boltzmann equation
for rarefied gases is in accordance with the laws of thermodynamics. It is also noted that
entropy production is zero at equilibrium, that is when f = fMB.

The Boltzmann equation while accurate is highly complex and thus analysis is often difficult. In
order to mitigate this problem, the Boltzmann collisional operator is approximated in manner
such that all the aforementioned properties (conservation laws, zero of collision and H−theorem)
are preserved. A highly popular example of such an approximation is the BGK approximation
(Bhatnagar et al., 1954a)

ΩBGK =
1

τBGK

(
fMB − f

)
, (6.13)

where τBGK is the mean free time and fMB the Maxwell-Boltzmann distribution defined previ-
ously. It can be seen that such a collisional term maintains all the canonical properties of a valid
kinetic model. With this approximation, the Boltzmann equation can be solved using numerical
methods such as the Lattice Boltzmann (LB), which rely on discretization of the velocity space
to a finite set of discrete velocities (Succi, 2001).

6.3 Quasi-equilibrium models

A major drawback of BGK approximation is that it is incapable of icorporating the different
time scales at which the higher order moments relax to their respective equilibrium values. The
quasi-equilibrium modelling approach ameliorates this problem by accounting for these different
time scales. In this approach, the moments are categorised as

M = (M slow,Mquasi-slow,M fast)

where M slow represents the conserved quantities – mass, momentum and energy which are not
perturbed from their equilibrium values, Mquasi-slow represents thes set of higher-order moments
which equilibriate fast and M fast is the set of higher order moments which relax to their equilib-
rium values slowly. Hence, the quasi-equilibrium distribution represents the state of the system
once the quantity relaxing faster has assumed its equilibrium value. The dynamics of the system
is modelled as a two-step process, where the distribution function first approaches the quasi-
equilibrium, the distribution function that is constrained by conservation of quasi-conserved
variables and then proceeds to the Maxwell-Boltzmann distribution (Levermore, 1996). This
idea is visually represented in Fig.(6.1). The quasi-equilibrium following such dynamics is

ΩBGK =
1

τ1

(
f∗(M slow,Mquasi-slow)− f

)
+

1

τ2

(
fMB(M slow)− f∗(M slow,Mquasi-slow)

)
(6.14)
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H1

H2

feq

H2 < H1

f

f∗

Figure 6.1: Sketch representing the two-step relaxation to equilibrium.

where τ1 and τ2 are different time scales of the system such that (τ1 < τ2) and f∗ is the quasi-
equilibrium distribution function.

A simple example is to consider f∗(ρ, uα, θαβ) given by

f∗ = n(i)

(
m(i)

2π|θαβ|

) 3
2

exp

(
−m(i)ξαθ

−1
αβξβ

2

)
, (6.15)

where θαβ = 〈mξαξβ, f〉/n . This quasi-equilibrium distribution function corresponds to the case
where the pressure attains its equilibrium value faster than than the heat flux and other higher-
order moments. This case would correspond to systems with high Prandtl Numbers (Levermore,
1996).

6.4 Fokker-Planck approximation

The Fokker-Planck model approximates the Boltzmann collisional operator as (Lebowitz et al.,
1960a)

ΩFP =
1

τ
∂cα

(
ξαf +

kBT

m

∂f

∂cα

)
, (6.16)

which is essentially the diffusion dynamics in velocity space, with ξα acting as the drift constant,
kBT/m as the diffusion constant and τ−1 as the friction constant. It is quite evident that this
particular form of the collision kernel ensures correct form of conservation laws and that zero of
collision is indeed the Maxwell-Boltzmann distribution. For this model, the entropy production
is

σ(FP ) = −
〈
ΩFP , f

〉
=

1

τ

∫
dc

(
ξα +

1

f

kBT

m

∂f

∂cα

)
∂f

∂cα
, (6.17)

which is positive as (Singh & Ansumali, 2015a)

σ(FP) = −3ρ

τ
+
kBT

mτ

∫
dξξξ

1

f

∂f

∂ξα

∂f

∂ξα
=
kBT

mτ

∫
dξξξ f

∂ ln
(

f
fMB

)
∂ξα

2

≥ 0, (6.18)
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this is so because the integrand in the last term is completely positive by the virtue of f being
a positive quantity which in turn is multpiled to a perfect square. To show this, the following
identity was used

∫
dξξξ f

∂ ln
(

f
fMB

)
∂ξα

2

=

∫
dξξξ

[
1

f

∂f

∂ξα

∂f

∂ξα
+ f

∂ ln fMB

∂ξα

∂ ln fMB

∂ξα
− 2

∂f

∂ξα

∂ ln fMB

∂ξα

]

=

∫
dξξξ

[
1

f

∂f

∂ξα

∂f

∂ξα
+ f

m2 ξ2

k2
BT

2
+ 2

∂f

∂ξα

mξα
kBT

]
= −3 ρm

kBT
+

∫
dξξξ

1

f

∂f

∂ξα

∂f

∂ξα
.

(6.19)

This proves that this approximation is consistent with the H−theorem. Hence, the Fokker-
Planck approximation satisfies all the properties of Boltzmann collisional operator and is hence
considered to be a valid kinetic description of gaseous flow.

6.4.1 Transport Coefficients

The stress evolution equation obtained by taking the appropriate moment of Eq.(6.16) is

∂tσαβ + ∂γ(σαβuγ) + 2p∂αuβ + 2σαγ∂γuβ + ∂γQαβγ +
4

D + 2
∂αqβ = −2

τ
σαβ, (6.20)

and similarly the evolution equation of heat flux is

∂tqα + ∂β

(
qαuβ +

Rαβ
2

+
R′δαβ

2D

)
+

(D + 2)

2
p∂α

p

ρ
+

2

D + 2
(qγ∂αuγ + qα∂βuβ)

−
σαβ∂βp

ρ
+
D + 4

D + 2
qβ∂βuα +Qαβγ∂βuγ −

(D + 2)p

2ρ
∂βσαβ −

σακ∂βσκβ
ρ

= −3

τ
qα, (6.21)

where the higher order moments are defined as

Qαβγ =

∫
dcfξαξβξγ , R′ =

∫
dcfξ2ξ2 − 15

p2

ρ
, Rαβ =

∫
dcfξ2ξαξβ. (6.22)

Here, D denotes the number of dimensions. This model yields different relaxation times for
stress and heat flux evolution as compared to the BGK model, where the relaxation rates are

〈ΩBGK, ξαξβ〉 = −1

τ
σαβ 〈ΩBGK, ξαξ

2/2〉 = −1

τ
qα. (6.23)

Hence the Prandtl number associated with BGK model is 1 while it is 3/2 for the Fokker-Planck
model. However, the latter can be tuned to adjust the Prandtl number (Singh & Ansumali,
2015a).

These evolution equations form a moment chain where the evolution equation of a given
quantity includes terms of a higher order. To derive the transport coefficients, the standard
Chapman-Enskog methodology is used, wherein the non-equilibrium distribution function f is
expanded about fMB as a perturbation series with τ being the smallness parameter, and the
time derivative is also expressed as a pertubation series
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∂tφ = ∂
(0)
t φ+ τ∂

(1)
t φ+ τ2∂

(2)
t φ+ ...

f = fMB(ρ,u, T ) + τf (1) + τ2f (2) + ...
(6.24)

The higher orders of the distribution function must satisfy the constraint〈
f (n), {m,mc,mc2/2}

〉
= {0,0, 0} (n ≥ 1), (6.25)

this ensures that the conservation laws for mass, momentum and energy are satisfied at the
zeroth order. The expressions can for the time derivative can be found from the conservation
laws by considering that the distribution function is a function of conserved variables (Liboff,
2003). Other higher order moments, in terms of this expansion can be written as

σαβ = τσ
(1)
αβ + τ2σ

(2)
αβ + ...

qα = τq(1)
α + τ2q(2)

α + ...
(6.26)

Similarly, other higher-order moments are written as

Qαβγ = τQ
(1)
αβγ + τ2Q

(2)
αβ + ...

Rαβ = τR
(1)
αβ + τ2R

(2)
αβ + ...

(6.27)

Using this series in the respective evolution equations and considering terms upto first order
which corresponds to the hydrodynamic limit, the following set of relations are found

σαβ = −pτ∂αuβ, qα = −τ D + 2

6
p∂α

p

ρ
(6.28)

then the viscosity (µ) and thermal conductivity (κ) are found to be

µ =
pτ

2
, κ = τ

(
D + 2

6
p

)
. (6.29)

Using this expression for µ and that µ = ρvλ/2, where v is the root mean velocity, the expression
for Kn can then be formulated as

Kn =
τ

L

√
kBT0

2m
, (6.30)

where L is the characteristic length associated with the flow, and T0 the characteristic temper-
ature of the system.

6.5 Numerical solution

The solution to the Fokker-Planck model is achieved using the equivalent Langevin equations
(Risken, 1996; Singh et al., 2016)

dxα
dt

= cα

dcα
dt

= −ξα
τ

+

√
2kBT

m

dWα

dt
, (6.31)
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where dWα is the standard Weiner process, a random force with Gaussian distribution as
encountered in the case of Brownian motion. These sets of equations can be discretized using
the stochastic Verlet scheme (Ladd, 2009)

x(1)
α = xα +

cα(t)

2
∆t

cα(t+ ∆t) = cα(t)− ϑ

1 + ϑ/2
(cα(t)− Uα) +

√
2Dϑ

1 + ϑ/2
φt (6.32)

xα(t+ ∆t) = x(1)
α +

cα(t+ ∆t)

2
∆t

where ϑ = ∆t/τ and φt are normally distributed random variables.
The resulting algorithm is a particle based method, where the computational domain is

divided into cells such that the length of each cell is of the order of mean free path and each of
these are populated with particles whose positions and velocities are distributed in accordance
with the initial conditions. The positions and velocities are updated as per Eqs. (6.32), and
the relevant macroscopic quantities are calculated for each cell, these steps are iterated over
until desired simulation time is achieved. It is evident that this algorithm has a computational
complexity of O(N), and like Brownian motion codes majority of the computational time is in
fact spent on generating Gaussian random numbers.

6.6 Outlook

The Fokker-Planck approximation to the Boltzmann equation provides an efficient alternative
to numerical methods such as the Lattice Boltzmann and Direct Simulation Monte Carlo to
solve for hydrodynamics at mesoscale. Since the major bottleneck for this algorithm is the
generation of Gaussian random numbers and given that an algorithm for producing Gaussian
random numbers at a high rate exists, this algorithm can indeed prove to be highly efficient
for simulating fluid flow. As mentioned previously, a major drawback of Gillespie algorithm
for reaction-diffusion processes is the manner in which it handles diffusion. Being a particle
based method, intuitively the Fokker-Planck model can be coupled with Gillespie algorithm
to simulate reaction-diffusion processes. However, the current formulations of Fokker-Planck
approximations are limited to simulating single components and hence must be extended to
correctly model multicomponent gas mixtures.





Chapter 7

Fokker-Planck model for binary
mixtures

7.1 Introduction

Kinetic modelling of gases for boundary value problems pertaining to engineering needs have
found success for single component case. However, techniques dealing with gas mixtures haven’t
yet attained the same level of sophistication. Analytical techniques based on classical Boltzmann
equation are difficult to implement for mixtures beyond stationary linearized problems. Stan-
dard approaches based on molecular dynamics such as direct simulation Monte Carlo (DSMC)
while highly useful for simulating flows at large Knudsen numbers, becomes computationally
expensive as one approaches the continuum limit. Since high dimensionality and complexity
of the Boltzmann collision kernel render analytical and numerical solutions difficult and expen-
sive, it is imperative to approximate this kernel. In this regard, the Bhatnagar - Gross - Krook
(Bhatnagar et al., 1954b) approximation (Lebowitz et al., 1960b) has found considerable success.
Building on this approximation, efforts have been made to kinetically model binary mixtures
(Sirovich, 1962; Morse, 1964; Hamel, 1965; Sirovich, 1966; Goldman & Sirovich, 1967). These
models have been shown to converge to the Navier-Stokes equation and Stefan-Maxwell diffu-
sion equation in the hydrodynamic limit and uphold both the H−theorem and indifferentiability
principle. These models such as the BGK-model are numerically solved via a class of methods
known as Lattice Boltzmann methods (LBM), which have evolved as an attractive approach to
simulate gas flows. Although a highly efficient method, it is limited to simulating flows in the
low Knudsen number regime and also faces issues for system with sharp density gradients.

An alternative route based on Fokker-Planck approximation of the collision kernel was re-
cently explored, and was shown to produce satisfactory results (Singh & Ansumali, 2015b). As
opposed to traditional grid based methods such as LBM, the solution to Fokker-Planck models
is obtained by discretizing the equivalent Langevin equation in the entire phase space, hence the
resulting algorithm updates the velocity of each particle via a combination of drift and diffusion
terms instead of modelling binary collisions. Hence unlike DSMC, this model is O(N) and hence
proves to be a computationally attractive alternative for low to intermediate range of Knudsen
numbers (Singh et al., 2015).

In this chapter, the basics of kinetic modelling of binary mixtures is explained first followed
by a description of the quasi-equilibrium models. Following this, two models for binary mixtures
based on the Fokker-Planck approximation is presented. In these sections, we prove the models
correspondence with conservation laws, the H−theorem and indifferentiability principle. In the
following section, we calculate the expression for the trasnport coefficients associated with two
models. Lastly the numerical scheme to solve these models is present along with three canonical
problems to demonstrate the efficiency of this formulation — Graham’s Law for effusion, Couette
flow and binary diffusion.

7.2 Kinetic modelling of binary mixtures

For binary mixtures, the basic dynamic quantity is the distribution function, fi for (i = A,B),
where fi(x, ci, t)dcidx is the probability of finding a particle of ith type in the neighbourhood of
the point (x, ci, t) (Chapman & Cowling, 1970). The relevant macroscopic variables are defined
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as

ni = 〈1, fi〉, n =
∑
i=A,B

ni,

ρi = mini, ρ =
∑
i=A,B

ρi,

ρu =
∑
i=A,B

〈mici, fi〉,

D

2
nkBT =

∑
i=A,B

〈
mi(ci − u)2

2
, fi

〉
,

(7.1)

where ni is the component number density n is the number density, ρi the component mass
density, ρ the mixture mass density, u the mixture velocity and T the mixture temperature, D
the number of dimensions and 〈φ1, φ2〉 operator denotes

〈φ1(ci), φ2(ci)〉 =

∫ ∞
−∞

φ1(ci)φ2(ci)dci. (7.2)

Additionally, another two useful variables – component velocity denoted by ui and component
temperature Ti are defined as

ρiui = 〈mici, fi〉,
3

2
nikBTi =

〈
mi(ci − ui)

2

2
, fi

〉
.

(7.3)

The Boltzmann equation describes the time evolution of the distribution function by considering
the different collisional possibilities, as schematically shown in Fig 7.1. The Boltzmann equation
for binary mixtures is (Chapman & Cowling, 1970)

∂fA
∂t

+ cAα
∂fA
∂xα

= ΩBM
A = ΩBM(fA, fA)︸ ︷︷ ︸

Self-collision

+ ΩBM(fA, fB)︸ ︷︷ ︸
Cross-collision

,

∂fB
∂t

+ cBα
∂fB
∂xα

= ΩBM
B = ΩBM(fB, fB)︸ ︷︷ ︸

Self-collision

+ ΩBM(fB, fA)︸ ︷︷ ︸
Cross-collision

,

(7.4)

where the right-hand side of the equation is the change in distribution of the respective com-
ponents arising from self collisions and cross collisions. Using this equation, the time evolution
of the macroscopic quantities can be calculated. The Boltzmann collision kernel for binary
mixtures statisfies the following constraints

1. The mass of individual species as well as the total momentum and energy of the mixture
are conserved as binary collisions do not contribute any change to these quantities, this is
represented as

〈ΩBM
i ,mi〉 = 0,∑

i=A,B

〈ΩBM
i , {mici,mic

2
i /2}〉 = {0, 0}, (7.5)

using which the conservations laws can be calculated similar to the single component case.
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Figure 7.1: The three types of collisional possibilities – A-A, B-B and A-B

However, the component momentum and energy are not conserved as the two components
exchange momentum and energy between themselves through cross-collisions (A-B type
collisions). It is in fact these collisions that facillitate the relaxation of the component
momentum and energy to the mixture momentum and energy (Hamel, 1965).

2. Similar to the single component case, the system reaches a state of statistical equilibrium.
The distribution of a component at equilibrium is

fMB
i = ni

(
mi

2πkB T

)3/2

exp

(
− mi

2 kBT
(ci − u)2

)
, (7.6)

thus the distribution function at equilibrium is of the form fMB
i (ρi,u, T ). The converse for

this also true, i.e, when ΩBM
i = 0 then the distribution function attains the form f = fMB

i

3. The Boltzmann collision kernel for binary mixtures, satisfies the H−theorem, with the
H−function defined as

H =
∑
i=A,B

∫
dci(fi ln fi − fi), (7.7)

which extends the idea of entropy to non-equilibrium cases.

The Boltzmann equation does not assume the continuum hypothesis thereby correctly pre-
dicts the behaviour of fluids at higher Knudsen numbers (Cercignani, 1975), but its highly com-
plex form is a deterrent to finding its solution. Thus, approximations are made to the collisional
term in order to simplify the form of the equation and devise efficient numerical schemes.

7.3 Quasi-equilibrium models for binary mixtures

The corresponding BGK collision kernel for a binary mixture is

ΩBGK =
1

τ
(fMB
i (ρi,u, T )− fi). (7.8)

The fundamental drawback with such a model is that there is only a single relaxation rate for
all quantities whereas for the case of a binary mixture, there are two important time scales
present in the system – the rate of mass diffusion and the rate of momentum of diffusion. The
dimensionless parameter that is used to characterize these time scales is known as the Schmidt
number and is defined as (Bergman et al., 2011)



66 Chapter 7. Fokker-Planck model for binary mixtures

Sc =
viscous diffusion rate

mass diffusion rate
=

µ

ρDAB
, (7.9)

where µ is the viscosity, ρ the density and DAB is the mass diffusion coefficient. In this context,
qausi-equilibrium models are a simple alternative (Levermore, 1996). The collision kernel for
quasi-equilibrium model is

ΩQE
i =

1

τ1
(f∗i (Mqausi-slow,M slow)− fi) +

1

τ2
(fMB
i (M slow)− f∗i (Mqausi-slow,M slow)), (7.10)

where f∗i (Mqausi-slow,M slow) is the quasi-equilibrium distribution function and is a function of
the quasi-slow and the slow moments (Levermore, 1996). In accordance with the slow-fast dy-
namics that emerges from quasi-equilibrium models, two possible forms for the quasi-equilibrium
distribution can be chosen – for low Sc where mass diffusion occurs at higher rate as compared
to momentum diffusion and vice versa for the high Sc case. For the first case, the physically
quasi-slow variables impose the following conditions on quasi-equilibrium distribution function
f∗i

〈mi, f
∗
i 〉 = ρi,

〈mici, f
∗
i 〉 = ρiui,〈

mi
(ci − ui)

2

2
, f∗i

〉
=

3

2
nikBTi.

(7.11)

By minimizing the H− function as defined in Eq.(7.7) under these constraints, the form of f∗i
is (Arcidiacono et al., 2006)

f∗i = ni

(
mi

2πkBTi

)3/2

exp

(
−mi(ci − ui)2

2kBTi

)
. (7.12)

Similarly, for the second case where the momentum diffuses faster, the set of constraints under
which the H−function is to be minimized are

〈mi, f
∗
i 〉 = ρi,

〈mici, f
∗
i 〉 = ρiu,∑

i=A,B

〈miξiαξiβ, f
∗
i 〉 = nθαβ,

(7.13)

where ξiα = ciα − uα and

θαβ =
1

n

∑
i=A,B

〈miξiαξiβ, fi〉 . (7.14)

The quasi-equilibrium distribution function assumes the form (Arcidiacono et al., 2006)

f∗i = ni

(
mi

2π|θαβ|

) 3
2

exp

(
−miξiαθ

−1
αβξiβ

2

)
, (7.15)

where |θαβ| is the determinant. These two distinct forms of quasi-equilibrium can be used to
build two different collision kernels based on the Fokker-Planck approximation, which can solve
for binary mixtures.
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7.4 Model I: Momentum and temperature difference as the slow
variable

For the form of quasi-equilibrium presented in Eq.(7.12), the Fokker-Planck approximation to
the binary collisional kernel is

Ω
FP(1)
i =

1

τ1
∂ciα

(
(ciα − uiα)fi +

kBTi
mi

∂fi
∂ciα

)
+

1

τ2
∂ciα

(
(uiα − uα)fi +

kB∆T

mi

∂fi
∂ciα

)
, (7.16)

where τ1 and τ2 are the relaxation times and ∆T = T − Ti. For the model to be acceptable,
it must satisfy the collisional invariants. By intergrating over the velocity space ci, it can be
verified that

〈ΩFP(1)
i ,mi〉 = 0,∑

i=A,B

〈ΩFP(1)
i , {mici,mic

2
i /2}〉 = {0, 0}. (7.17)

Using this the evolution equations for component mass, mixture momentum and energy are

∂tρi + ∂αρiuiα = 0,

∂tρuα + ∂β(ρuαuβ + pδαβ) + ∂βσαβ = 0,

∂tE + ∂α((E + p)uα + σαγuγ) + ∂αqα = 0,

(7.18)

where E is the energy, p the pressure, σαβ the stress and qα the heat flux, with their expressions
given as

E =
∑
i=A,B

〈mic
2
i /2, fi〉,

p = nkBT,

σαβ =
∑
i=A,B

〈miξiαξiβ, fi〉,

qα =
∑
i=A,B

〈miξiαξ
2
i /2, fi〉,

(7.19)

where Aαβ denotes the traceless part of tensor. Hence, the collision operator Ω
FP(1)
i does indeed

satisfy the conservation laws. The component momentum and energy equations are as expected
in the relaxation form

〈
Ω

FP(1)
i ,miciα

〉
=

1

τ2
(ρiuα − ρiuiα) ,〈

Ω
FP(1)
i ,mic

2
i /2
〉

=
1

τ2

(
(ρiuiαuα +DkBniT )− (ρiu

2
iα +DkBniTi)

)
,

(7.20)

this is the case because the component velocity and temperature equilibriate to the mixture
velocity and temperature. This proves that proposed model satisfies collisional invariants. In
addition to the conservation laws, the model must also satisfy the H−theorem. The evolution
equation for the H−function is given by
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∂tH + ∂αJ
H
α = −σS , (7.21)

where JHα is the flux of the entropy and σS the entropy production term. For the model to hold
H−theorem, one must have

σS = −
∑
i=A,B

〈
Ω
FP (1)
i , lnfi

〉
≥ 0. (7.22)

For the proposed model, the expression for σS is

= −
∑
i=A,B

∫
ln fi

[
1

τeff
∂ciα

(
(ciα − uiα)fi +

kBTi
mi

∂fi
∂ciα

)

+
1

τ2
∂ciα

(
(ciα − uα)fi +

kBT

mi

∂fi
∂ciα

)]
dci

=
∑
i=A,B

∫ [
1

τeff

(
(ciα − uiα)fi

∂ ln fi
∂ciα

+
kBTi
mi

∂fi
∂ciα

∂ ln fi
∂ciα

)

+
1

τ2

(
(ciα − uα)

∂fi
∂ciα

+
kBT

mi

∂fi
∂ciα

∂ ln fi
∂ciα

)]
dci

=
∑
i=A,B

∫ [
1

τeff

(
(ciα − uiα)

∂fi
∂ciα

+
kBTi
mi

1

fi

∂fi
∂ciα

∂fi
∂ciα

)

+
1

τ2

(
(ciα − uα)

∂fi
∂ciα

+
kBT

mi

1

fi

∂fi
∂ciα

∂fi
∂ciα

)]
dci

=
1

τeff

∑
i=A,B

−Dni +

∫
kBTi
mi

1

fi

∂fi
∂ciα

∂fi
∂ciα

dci +
1

τ2

∑
i=A,B

−Dni +

∫
kBT

mi

1

fi

∂fi
∂ciα

∂fi
∂ciα

dci,

(7.23)

where τeff = τ2τ1/(τ2 − τ1). It can be verified that, the following equalities hold

∑
i=A,B

−Dni +

∫
kBTi
mi

1

fi

∂fi
∂ciα

∂fi
∂ciα

dci =
∑
i=A,B

∫
kBTi
mi

fi

(
∂ ln(fi/f

∗
i )

∂ciα

)2

dci︸ ︷︷ ︸
positive∑

i=A,B

−Dni +

∫
kBT

mi

1

fi

∂fi
∂ciα

∂fi
∂ciα

dci =
∑
i=A,B

∫
kBT

mi
fi

(
∂ ln(fi/f

MBi)

∂ciα

)2

dci︸ ︷︷ ︸
positive

,

(7.24)

where expression of f∗i is given Eq.(7.12). Then Eq.(7.23) suggests that

σS ≥ 0, ∀ τ1 ≤ τ2. (7.25)

Therefore, proposed model satsifies the H−theorem for τ1 ≤ τ2.
An important condition for ΩFP (1) to be considered valid is that at equilibrium it must follow

the Maxwell-Boltzmann distribution. At equilibrium, we have

〈
Ω

FP(1)
i ,miciα

〉
= 0,〈

Ω
FP(1)
i ,mic

2
i /2
〉

= 0,
(7.26)

then as per Eq.(7.20) equilibrium uiα = uα and Ti = T , hence Ω
FP (1)
i = 0 reduces to
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∂ciα

(
(ciα − uα)fi +

kBT

mi

∂fi
∂ciα

)
= 0. (7.27)

Integrating Eq.(7.27) with respect to the velocity space and using the fact that the distribution
function and its derivatives tend to zero at infinity. We have

(ciα − uα)fi +
kBT

mi

∂fi
∂ciα

= 0. (7.28)

Solving Eq.(7.28), we get the Maxwell-Boltzmann distribution as the solution. Additionally for
the model to be consistent with the indifferentiability principle, one must be able to recover
the Fokker-Planck approximation for single component case. In the case when τ1 = τ2 = τ and
mA = mB = m, the Fokker-Planck collision kernel for binary mixtures reduces to

ΩFP =
1

τ
∂cα

(
(cα − uα)f +

kBT

m

∂f

∂cα

)
, (7.29)

indicating that proposed model abides by indifferentiability principle.
As demonstrated, the proposed model does indeed satisfy the conservation laws, H−theorem,

zero of collision and indifferentiability principle. Thus, this model is an acceptable approximation
to the Boltzmann equation for binary mixtures.

7.5 Model II: Pressure as the slow variable

In this model, we consider the situation where the particles assume their equilibrium velocity
fast, and then there is a slow transition wherein the pressure tensor relaxes to the equilibrium
temperature slowly. The quasi-equilibrium distribution function for this case is mentioned in
Eq.(7.15) and the corresponding collision operator is

Ω
FP(2)
i =

1

τ1
∂ciα

(
(ciα − uα)fi +

θαβ
mi

∂fi
∂ciβ

)
+

1

τ2
∂ciα

((
kBTδαβ
mi

−
θαβ
mi

)
∂fi
∂ciβ

)
(7.30)

We proceed in a manner similar to the previous section. By simple integration over velocity
space, it can be seen that this model satisfies the collisional invariants as

〈ΩFP(2)
i ,mi〉 = 0,∑

i=A,B

〈ΩFP(2)
i , {mici,mic

2
i /2}〉 = {0, 0}, (7.31)

this results in a set of conservation laws same as the one referred in Eq.(7.18). However, one
difference that is observed between the two models is relaxation of the component momentum
and energy. For this case, the relaxation of component momentum and energy is

〈
Ω

FP(2)
i ,miciα

〉
=

1

τ1
(ρiuα − ρiuiα) ,〈

Ω
FP(2)
i ,mic

2
i /2
〉

=
1

τ1

(
(ρiuiαuα +DkBniT )− (ρiu

2
iα +DkBniTi)

)
.

(7.32)

The component momentum relaxes with the time scale τ1 as opposed to the first model where
it relaxes with the time scale τ2. This is the case because this model is for high values of Sc
where the momentum diffuses faster.
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To test for the validity of H−theorem, we proceed in a manner similar to the previous section
and find the expression for the entropy generation term

σS =
1

τeff

∑
i=A,B

−Dni +

∫
1

fi

∂fi
∂ciα

θαβ
mi

∂fi
∂ciβ

+
1

τ2

∑
i=A,B

−Dni +

∫
kBT

mi

1

fi

∂fi
∂ciα

∂fi
∂ciα

, (7.33)

for this case, the following identities hold

∑
i=A,B

−niD +

∫
θαβ
mi

1

fi

∂fi
∂ciα

∂fi
∂ciβ

dci =
∑
i=A,B

∫
fi
∂ ln (fi/f

∗
i )

∂ciα

θαβ
mi

∂ ln (fi/f
∗
i )

∂ciβ
dci︸ ︷︷ ︸

positive

,

∑
i=A,B

−niD +

∫
kBT

mi

1

fi

∂fi
∂ciα

∂fi
∂ciα

dci =
∑
i=A,B

∫
kBT

mi
fi

(
∂ ln (fi/f

∗
i )

∂ciα

)2

dci︸ ︷︷ ︸
positive

,

(7.34)

where the expression for f∗i is given by Eq.(7.15). The integrand of the second term is same as
the first model while the first term is of the form xTAx where A is a positive definite matrix
and x is any arbitrary vector. Since, θαβ is a positive definite matrix, we have

σS ≥ 0, ∀ τ1 ≤ τ2. (7.35)

This confirms that this model for binary mixture also holds H- theorem.
Equilibrium distribution: At equilibrium θαβ = nkBTδαβ, hence zero of the collision for this

model reduces to

∂α

(
(ciα − uα)fi +

kBT

mi

∂fi
∂ciα

)
= 0. (7.36)

As was shown before, the solution to this equation is the Maxwell-Boltzmann distribution.
Indifferentiability principle: By substituting mA = mB and τ1 = τ2 in Eq.(7.30) one recovers

the Fokker - Planck model for single component. Hence, the indifferentiability principle is valid
for this model.

7.6 Transport Coefficients

In order to obtain the transport coefficients, we perform the Chapman-Enskog expansion,
wherein the time derivative, distribution function and other relevant variables are represented
as a series with Kn acting as the smallness parameter (Chapman & Cowling, 1970). The time
derivative and distribution function expressed in series form as (Arcidiacono et al., 2006)

∂t = ∂
(0)
t + Kn∂

(1)
t + Kn2∂

(2)
t + ...,

fi = fMB
i + Knf

(1)
i + Kn2f

(2)
i + ...,

(7.37)

with the following constraints imposed on fi
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〈mi, f
(n)
i 〉 = 0,∑

i=A,B

〈miciα, f
(n)
i 〉 = 0,

∑
i=A,B

〈mic
2, f

(n)
i 〉 = 0 ∀ n ≥ 1.

(7.38)

These constraints ensure that component density, mixture momentum and energy are slow
moments. As stipulated, fi can only be a function of the conserved variables, hence time
derivative of fi is (Liboff, 2003)

∂fi(ρi,u, T )

∂t
=
∂fi
∂ρi
· ∂ρi
∂t

+
∂fi
∂u
· ∂u

∂t
+
∂fi
∂T
· ∂T
∂t
, (7.39)

where the expression for time derivatives of the conserved variable can be calculated from the
conservation laws. The higher order moments in series form are

σαβ = Knσ
(1)
αβ + Kn2σ

(2)
αβ + ...,

qα = Knq(1)
α + Kn2q(2)

α + ...,
(7.40)

as the stress and heat flux are zero at equilibrium.

Viscosity

The stress evolution equation for the first model is

∂tσαβ + ∂γ(σαβuγ) + 2p∂αuβ + 2σαγ∂γuβ + ∂γQαβγ +
4

D + 2
∂αqβ =

− 2

τ1

σαβ + ρuαuβ −
∑
i=A,B

ρiuiαuiβ

− 2

τ2

 ∑
i=A,B

ρiuiαuiβ − ρuαuβ

 ,
(7.41)

where Qαβγ =
∑

i=A,B〈miξiαξiβξiγ〉. Retaining terms upto O(Kn), the stress evolution equation
yields

2p∂αuβ = −
2σ

(1)
αβ

τ1
. (7.42)

and comparing with the Navier-Stokes law for stress tensor, we have

µ =
pτ1

2
(7.43)

Similarly, for the second model the right hand side of the stress evolution equation is∑
i=A,B

〈miξiαξiβ,Ω
FP(2)
i 〉 = − 2

τ2
σαβ. (7.44)

Hence, the expression for viscosity for this model is

µ =
pτ2

2
. (7.45)

These expressions can be further used to determine the Knudsen number of the system.
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Diffusion coefficient

The diffusion coefficient can calculated by comparison with the Stefan-Maxwell diffusion equa-
tion (Bergman et al., 2011)

∂αXA =
XAXB

DAB

Vα
mAB

+ (YA −XA)
∂αp

p
, (7.46)

where Xi = ni/n is the component mole fraction, Yi = ρi/ρ is the component mass fraction and
Vα is the diffusive flux defined as

Vα = mAB(uAα − uBα), (7.47)

where mAB = (ρAρB)/ρ. Diffusive flux essentially quantifies the difference between the momen-
tum of a given component and the momentum of the mixture. The series expansion for this
quantity is

Vα = KnV (1)
α + Kn2V (2)

α + ... (7.48)

Similar to stress and heat flux, at equilibrium the diffusive flux attains zero values as momenta
of both components relax to the mixture momentum. In order to calculate the expression for
Vα we write the expression for individual component velocities. For the first model, we have

∂tρAuAα + ∂αPAαβ =
1

τ2
(ρuα − ρAuAα),

∂tρBuBα + ∂αPBαβ =
1

τ2
(ρuα − ρBuBα),

(7.49)

where Piαβ = 〈miciβciβ〉 and at equilibrium attains the value Piαβ = piδαβ+ρiuαuβ. Subtracting
one equation from another, we have

(uAα − uBα)

τ2
=

(
∂tρBuBα
ρB

− ∂tρAuAα
ρA

)
+

(
∂αPBαβ
ρB

−
∂αPAαβ
ρA

)
,

(uAα − uBα)

τ2
=

(
uBα∂tρB
ρB

− uAα∂tρA
ρA

)
+ (∂tuBα − ∂tuAα) +

(
∂αPBαβ
ρB

−
∂αPAαβ
ρA

) (7.50)

The temporal derivatives of the component density can be eliminated using the continuity equa-
tion

∂tρi = −∂α(ρiuiα). (7.51)

Considering quantities upto O(Kn), and after some rearrangement we have

V (1)
α = τ2

ρAρB
ρ

[
uα

(
∂βρAuβ
ρA

−
∂βρBuβ
ρB

)
+

(
∂βnBkBT

ρB
−
∂βnAkBT

ρA

)
+

(
∂βρBuαuβ

ρB
−
∂βρAuαuβ

ρA

)]
,

(7.52)

on simplification, we obtain

V (1)
α = τ2

(
ρA
ρ
∂αp

0
B −

ρB
ρ
∂αp

0
A

)
, (7.53)

which upon simplifications leads to
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V (1)
α = τ2

[
ρA
ρ
∂αp−

(
p∂α

(nA
n

)
+
nA
n
∂αp
)]
,

V (1)
α = τ2 [YA∂αp− p∂αXA −XA∂αp] .

(7.54)

This provides an expression for the gradient of the molar fraction which is

∂αXA = −V
(1)
α

τ2p
+ (YA −XA)

∂αp

p
, (7.55)

Now, comparing this with Stefan - Maxwell equation (Eq.(7.46)) we get following expression for
the diffusion coefficient

DAB = XAXB
p

mAB
τ2. (7.56)

The Schmidt number can now be computed as

Sc =
µ

ρDAB
=

τ1

2τ2

mAB

XAXB

1

ρ
=

τ1

2τ2

YAYB
XAXB

. (7.57)

Existence of H− theorem for this model suggests that τ1 ≤ τ2, hence

Sc ≤ YAYB
2XAXB

. (7.58)

The model has an upper limit on Schmidt number and this is in accordance with the character-
istics of the quasi-equilibrium distribution. Similarly, for the second model, the Schmidt number
is calculated as

Sc =
µ

ρDAB
=

τ2

2τ1

mAB

XAXB

1

ρ
=

τ2

2τ1

YAYB
XAXB

. (7.59)

and since the limitation τ1 ≤ τ2 exists, as consistent with the hypothesis there is a lower bound
on the Schmidt number, which is

Sc ≥ YAYB
2XAXB

. (7.60)

Hence, both models in conjunction can cover a large range of Schmidt numbers.

7.7 Numerical scheme

Analytically solving the Fokker-Planck equation for many cases is not possible, hence numerical
techniques must be employed in order to reach a solution. A Fokker-Planck equation which
describes the evolution of probability density function of the random variable η, of the form

dp(η, t)

dt
= −Λ(1)

α (η, t)
∂p(η, t)

∂ηα
+
ζ

(1)
αβ (η, t)

2

∂2p(η, t)

∂ηα∂ηβ
− Λ(2)

α (η, t)
∂p(η, t)

∂ηα
+
ζ

(2)
αβ

2
(η, t)

∂2p(η, t)

∂ηα∂ηβ
,

(7.61)
where Λ(i) are the drift terms and ζ(i) are the diffusion coefficients. This form of Fokker-Planck
equation is equivalent to the Langevin equation (Risken, 1996)

η̇α = h(1)
α (η, t) + g

(1)
αβ (η, t)Γβ(t) + h(2)

α (η, t) + g
(2)
αβ (η, t)Γ′β(t), (7.62)
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where h(i) are the the drift terms, g(i) the diffusion coefficients and Γ,Γ′ are Gaussian distributed
random numbers which hold the following properties

〈Γα(t)〉 = 0, 〈Γα(t)Γβ(t′)〉 = δ(t− t′)δαβ. (7.63)

Under certain conditions, which are satisfied by the proposed models the following relations hold
(Risken, 1996)

Λ(1)
α = h(1)

α (ξ, t), ζ
(1)
αβ = g(1)

αγ g
(1)
γβ

Λ(2)
α = h(2)

α (ξ, t), ζ
(2)
αβ = g(2)

αγ g
(2)
γβ

(7.64)

The central idea is that solution to Fokker-Planck equation is approximated by considering an
ensemble of trajectories generated by the Langevin dynamics. In this case, a large number of
particles have their position and velocities updated using Eq.(7.62). We now discuss the

7.7.1 Model I

For the first model the equivalent Langevin equations are

dxα
dt

= ciα

dciα
dt

= −
(

1

τeff

)
(ciα − uiα)− 1

τ2
(ciα − uα) +

√
2kBTi
mi

dWα +

√
2kBT

mi
dW ′α,

(7.65)

where dWα and dW ′α denote random forces with following statistics

〈dWα〉 = 0, , 〈dW ′α〉 = 0, 〈dWαdW ′α〉 = 0. (7.66)

More specifically, dW = W (t + ∆t) −W (t) is the standard Weiner process, where W (t) is a
rapidly changing random force with mean and variance as (Gardiner, 1985b)

〈dWα(t)〉 = 0, 〈dWαdWβ〉 = dtδαβ. (7.67)

Thus, the detailed binary collision description is approximated by a random collision with a heat
bath in the model.

These Langevin equations can be solved efficiently using the the stochastic version of the
Verlet algorithm. For the present model the discretization scheme is (Singh & Ansumali, 2015a)

x(1)
α = xα(t) +

1

2
ciα(t)∆t,

ciα(t+ ∆t) = ciα(t)−
(

ϑ1

1 + ϑ1/2

)
(ciα(t)− uiα)−

(
ϑ2

1 + ϑ2/2

)
(ciα(t)− uα)

+

√
2D(1)

i ϑ1

1 + ϑ1/2
φα +

√
2D(2)

i ϑ2

1 + ϑ2/2
φ′α,

xα(t+ ∆t) = x(1)
α +

1

2
ciα(t+ ∆t)∆t,

(7.68)

where ϑ1 = ∆t/τeff, ϑ2 = ∆t/τ2 and φα, φ
′
α are Gaussian random numbers with mean zero

and variance one and D(1)
i and D(2)

i are kBTi/mi and kBT/mi respectively. This scheme works
efficiently for small time step such that max{ϑ1, ϑ2} ≤ 0.001.
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7.7.2 Model II

The formulation for this model remains largely unchanged and the equivalent Langevin equations
are

dxα
dt

= ciα,

dciα
dt

= −
(

1

τeff

)
(ciα − uα)− 1

τ2
(ciα − uα) +

√
2θ′iαβdWβ +

√
2kBT

mi
dW ′α,

(7.69)

where θ′iαγθ
′
iγβ = θiαβ/mi. The discretization scheme for this model is

x(1)
α = xα(t) +

1

2
ciα(t)∆t,

ciα(t+ ∆t) = ciα(t)−
(

ϑ1

1 + ϑ1/2

)
(ciα(t)− uα)−

(
ϑ2

1 + ϑ2/2

)
(ciα(t)− uα)

+

√
2ϑ1θ

′
iαβ

1 + ϑ1/2
φβ +

√
2D(2)

i ϑ2

1 + ϑ2/2
φ′α,

xα(t+ ∆t) = x(1)
α +

1

2
ciα(t+ ∆t)∆t.

(7.70)

The expression for θ′αβ can be obtained by using Cholesky decomposition of θαβ/mi.
In order to validate the numerical scheme, we started with a mixture with mB/mA = 2 with

N = 105 particles in a single periodic box. For Model I, the velocities of the lighter particles
were initialized uniformly in the range [0, 1) and the heavier particles in the range [0, 2). For
Model II, the velocities of lighter particle were initialized with a Gaussian distribution with
mean 4 and variance 10, and the heavier particles were Gaussian distributed with mean 1 and
variance 1. The plots of energy of the two components and the mixture with time over averaged
an ensemble of 15 trajectories and the ditribution of velocities in the x-direction, for both cases
are shown in Fig.(7.2). A detailed description of the algorithm is provided in Table(7.1).

Table 7.1: Summary of the algorithm for binary mixtures

1. The computational domain is divided into cells with its length parameter of the
order of the mean free path.

2. Each cell is then populated with particles in accordance with the initial conditions
and the local equilibrium.

3. The relevant variables – component density, velocity and temperature as well as the
mixture density, velocity and temperature is calculated for each cell.

4. The positions and velocities of all particles are updated using either Eq.(7.68)
or Eq.(7.70).

5. Once the updates are implemented, the particles are sorted into the cells based on
their positions.

6. Steps 3-5 are repeated until desired simulation time is acheived.

7.8 Simulation results

In this section, we explain and present the results for three benchmark problems – Graham’s law
for effusion, Couette flow and binary diffusion. The first model was tested for these problems.
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Figure 7.2: Plot of the distribution of velocities of the light and heavy component at equilibrium
for a)Model I, and b) Model II. Plot of ratio of energy at time t to the initial energy (E(t)/E0)
vs. time for individual components and the mixture for c) Model I, and d) Model II.

7.8.1 Graham’s law for effusion

Effusion is a process wherein gas molecules escape through a small hole. The length parameter
of this hole is much smaller than the mean free path of the gas, i.e, d � λmfp. A sketch of the
process has been shown in Fig.(7.3). The number flux of the gas through this small hole is

Φi = 〈ciz, f(ci)〉, (7.71)

where Φi is the number flux and ciz the molecular velocity in the direction perpendicular to the
plane of the hole. By intergrating over velocity space, facillitated by a shift to the spherical
co-ordinate system, the expression of Φi is

Φi =
P√

2πmikBT
, (7.72)

where P is the pressure and T the temperature of the gas. Then, for a well-mixed binary mixture
the ratio of the fluxes is (Mason & Kronstadt, 1967)



7.8 Simulation results 77

Figure 7.3: The process of gas molecules escaping through a small hole is known as effusion.
The lighter particles (in this case blue) escape through the hole faster than the heavier particles,
with a factor proportional to the square root of their mass ratios.

ΦA

ΦB
=

√
mB

mA
. (7.73)

We simulated this system for three mass ratios mB/mA = 4, mB/mA = 16 and mB/mA = 100.
The boundary conditions in the transverse directions were taken to be periodic while maintaining
constant pressure in the system. The results have been plotted in Fig.(7.4). As can be seen, the
simulations are in excellent agreement with the analytical solution.

7.8.2 Couette Flow

Couette flow is an important problem in fluid mechanics. The setup of the problem is simple,
fluid between two plates is sheared in opposite directions with equal magnitudes, a sketch of
the problem is shown in Fig.(7.5). In order to validate the model, we calculate the global stress
tensor defined as (Sharipov et al., 2004)

Π = − v0

2UP0
Pxy. (7.74)

This quantity is calculated in the entire range of rarefaction parameter, which is essentially the
inverse of the Knudsen number and is defined as

δ =
HP0

µv0
, (7.75)

where µ is the mixture viscosity and v0 the characteristic molecular velocity of the mixture
defined as

v0 =

√
2kBT0

m0
, (7.76)

where m0 = C0mA+(1−C0)mB, with C0 being the concentration of the lighter component. We
simulated the system from two mixtures Neon-Argon (Ne-Ar) and Helium-Argon (He-Ar), for
rarefaction parameters ranging from [0.01, 40] for three different concentrations - (0.1, 0.5, 0.9).
The results for (Ne-Ar) are tabulated in Table(7.2) and results for (He-Ar) are tabluated in
Table(7.3). Both sets of results were found to be in good agreement with the results obtained
via the Discrete Velocity Method (DVM) (Sharipov et al., 2004). This proves that proposed
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Figure 7.4: Model I was used to simulate a setup that could mimic Graham’s law for effusion.
Plot shows that results observed are in great agreement with expected behaviour, for all three
cases

Figure 7.5: A representative sketch of the Couette flow steup. Two walls with a seperation H
are sheared in the opposite directions with velocity U/2.
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method is indeed capable of simulating flows in a wide range of Knudsen numbers.

δ
Π values for Ne-Ar mixture

Fokker-Planck DVM

C0 = 0.1 0.5 0.9 0.1 0.5 0.9

0.01 0.2671 0.2731 0.2751 0.2786 0.2757 0.2778
0.1 0.2533 0.2504 0.2522 0.2601 0.2576 0.2594
1.0 0.1655 0.1636 0.1651 0.1689 0.1657 0.1685
10.0 0.0413 0.0416 0.0415 0.0415 0.0414 0.0415
40.0 0.0119 0.0119 0.0119 0.0119 0.0119 0.0119

Table 7.2: Comparison of the values of Π between the Fokker-Planck and DVM methods, for
Ne-Ar mixture at three different concentrations C0 = (0.1, 0.5, 0.9) for a range of rarefactions

δ
Π values for He-Ar mixture

Fokker-Planck DVM

C0 = 0.1 0.5 0.9 0.1 0.5 0.9

0.01 0.2704 0.2467 0.2443 0.2732 0.2484 0.2471
0.1 0.2479 0.2240 0.2232 0.2555 0.2335 0.2324
1.0 0.1617 0.1447 0.1472 0.1668 0.1566 0.1562
10.0 0.0418 0.0387 0.0398 0.0414 0.0407 0.0406
40.0 0.0121 0.0120 0.0119 0.0119 0.0118 0.0118

Table 7.3: Comparison of the values of Π between the Fokker-Planck and DVM methods, for
He-Ar mixture at three different concentrations C0 = (0.1, 0.5, 0.9) for a range of rarefactions

7.8.3 Binary diffusion

The profile of the mixture in this setup is determined by the step function

XA = 90%, XB = 10% if x < 0

XB = 10%, XB = 90% if x ≥ 0
(7.77)

where the mass ratio of the components was chosen to be mB/mA = 5. The step function is
used instead of a smooth profile as it is a more severe check for the numerical scheme. Under the
assumption that at infinity, the initial concentrations remains unchanged, this problems yields
the analytical solution (Bergman et al., 2011)

Xi =

[
1

2
+

∆Xi

2
erf

(
x√

4DABt

)]
(7.78)

where DAB is the diffusion constant. The simulation was done for 20, 000 time steps and the
plots for both the components compared against their respective analytical solutions are plotted
in Fig.(7.6). The simulation results were very close to the analytical solution. This exercise
proves that the value of DAB set by the numerical scheme is accurate.
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Figure 7.6: Plot of the concentrations after 20,000 time steps of the component a) A and b) B,
in comparison with the analytical solution given by Eq.(7.78)

7.9 Outlook

We developed two new Fokker-Planck approximations to the Boltzmann equation, based on
quasi-equilibrium models. These models were subjected to numerical experiments and it was
determined that the algorithm is capable of simulating flow for a wide range of Knudsen numbers
and diffusion coefficients. Since the algorithm relies on generation of Gaussian random numbers,
a significant speedup was observed by employing use of the “Molecular Dice” algorithm, and
hence proves to be an efficient alternative for solving binary mixtures.

The extension of the existing Fokker-Planck model to binary mixtures, is an indication that
it could also be extended to solve for mixtures with many components. Future work is to extend
this model to multi-component mixtures and possibly couple it with the Gillespie algorithm to
design an efficient reaction-diffusion solver.



Chapter 8

Outlook

Numerical solutions of many stochastic models utilize non-uniformly distributed random num-
bers which are computationally expensive as they require evaluations of functions such as
log(), sin() etc. In this thesis, a new framework to generate random numbers is presented based
on the inherent randomness present in Boltzmann dynamics. The main hypothesis is that a
computer routine which simulates a stochastic process such as the motion of gas molecules is
capable of generating random sequences on computers and can therefore form the basis for a
new class of PRNGs. We tested our hypothesis by employing standard methods to simulate
rarefied gases – Lennard Jones model, hard-sphere model, DSMC and MPCD. We considered
the stream of numbers generated by these simulations as random sequences and found that these
stream of numbers managed to satisfy statistical tests used to check for empirical randomness,
thereby confirming our hypothesis that simulations of stochastic processes can indeed be used to
create apparent randomness on computers. However, the rate of generation of random sequences
using these methods was quite low and thus unsuitable for use in context of large-scale scien-
tific computations. Based on these ideas a new algorithm was formulated capable of producing
high quality Gaussian and exponential random numbers offering higher rate of exponential and
Gaussian random number generation. Using canonical statistical tests, we found the quality of
random sequences generated by proposed algorithm was at par with widely used PRNGs such as
– drand48 and Mersenne Twister, while generating Gaussian and exponential random numbers
25 and 15 times faster than standard methods, respectively. Hence, proposed algorithm can
be used to mitigate the problem of spending large fraction of computational time on random
number generation for stochastic simulations.

Chemical reactions are modelled deterministically by the rate law of mass action, which
provides accurate results for large systems. However for small systems fluctuations can have
major impact on its behaviour and hence stochastic models must be used for such phenomena.
The Gillespie algorithm is a numerical scheme to solve the stochastic models of chemical reactions
and relies on generation of an exponential and a uniform random number each iteration while
spending roughly 85− 90% on the same. Since proposed “Molecular Dice” algorithm generates
both exponential and uniform random numbers in the same pass, it is well suited to the Gillespie
method. To test the efficiency of proposed algorithm we simulated two biochemical networks –
a bi-stable system wherein two proteins attempt to bind to a DNA and another of a reaction-
diffusion system used to study pattern formation inside bacteria. We found that proposed
“Molecular Dice” method produced accurate results and was around 4 times faster than standard
methods.

The Fokker-Planck approximation to the Boltzmann equation, has emerged as an efficient
alternative to simulate flows in a wide range of Knudsen numbers. We extended this model to
solve for binary mixtures, similar to quasi-equilibrium based models. Two models were proposed
– one for low Schmidt number another for high Schmidt numbers. We tested proposed model
with three benchmark problems – Graham’s law for effusion, Couette flow and binary diffusion
and found that results for all three problems were accurate. Since, the solution to Fokker-Planck
methodology involves use of Gaussian random numbers, the “Molecular Dice” algorithm adds
to the computational efficiency of the Fokker-Planck approach to solve for hydronyamics.

Thus, the proposed approach of generating random numbers using hydrodynamic solvers
can indeed prove to be beneficial for large-scale scientific simulations which have hitherto been
difficult owing to the huge number of random streams required and the associated computational
cost involved. In addition, we also extended the Fokker-Planck model for hydrodynamics to solve
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for binary mixtures. We expect that this model can act as base to devise a scheme for multi-
component mixtures, which can then be coupled with the Gillespie algorithm to form an efficient
advection-diffusion-reaction solver.



Appendix A: Proof of chi-squared
test

The proof of Pearson’s chi-squared test is completed by building a histogram of an arbitrary
distribution. We consider N bins B1, ..., BN in which r balls X1, ..., Xr are thrown with proba-
bilities

P (Xi ∈ Bj) = pj , (8.1)

such that
N∑
j=1

pj = 1. As can be seen, this is qualitatively the same as generating random

sequences and binning them to plot a histogram. The number of balls in the ith bin is then
found to be

νi =

r∑
j=1

I(Xj ∈ Bi), (8.2)

where I(Xj ∈ Bi) is the indicator function defined as

I(Xj ∈ Bi) =

{
1 Xj ∈ Bi
0 Xj /∈ Bi.

(8.3)

The sum of number of balls in each bin is equal to the total number of balls and that it is
impossible for one ball to be in two bins at the same time. The constraints on the system can
then be expressed as

N∑
i=1

νi = r and I(Xi ∈ Bj)I(Xi ∈ Bk) = 0 for j 6= k. (8.4)

Hence, the indicator function must follow a Bernoulli distribution with its mean and variance
being

E[I(Xi ∈ Bj)] = pj Var(I(Xi ∈ Bj)) = pj(1− pj). (8.5)

The sum of indicator function provides the number of balls in a particular bin and its
statistics can then be used to determine the behaviour of observed number of balls in a given
bin. It can be seen that, as per the central limit theorem∑r

i=i I(Xi ∈ Bj)− nE[I(Xi ∈ Bj)]√
rVar(I(Xi ∈ Bj))

→ N(0, 1), (8.6)

where N(0, 1) is shorthand for standard Gaussian distribution. This can be simplified to

Zj =
νj − npj√

npj
→
√

1− pjN(0, 1) = N(0, 1− pj), (8.7)
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hence, the observed number of balls in each bin is indeed a Gaussian random number.
However, owing to the constraints I(Xi ∈ Bj)I(Xi ∈ Bk) = 0 forj 6= k, the quantities Zj
and Zk are not independent. The covariance matrix can be derived and then diagonalized for
translating Zj to independent Gaussian random numbers. The cross-correlations are found to
be

E[ZjZk] = −√pjpk.

Hence, the structure of the covariance matrix associated with the Z vector is

Σ = Cov(Z) =

 1− p1 −√p1p2 · · ·
−√p1p2 1− p2 · · ·

...
...

. . .

 . (8.8)

it can be readily observed that Σ = I− ppT, where p is the column vector of the quantities
(
√
p1,
√
p2, ...). Since Σ has this particular form its determinant can be calculated easily using

Sylvester’s determinant theorem and thereby making it simple to calculate the eigenvalues of
this matrix. These eigenvalues can then be used to diagonalize the covariance matrix. The
solution of the characteristic equation of the covariance matrix Σ is found to be

Det(Σ− λI) = (1− λ)n−1λ = 0, (8.9)

the covariance matrix has (n− 1) eigenvalues that are 1 and a single eigenvalue equal to 0.
Therefore, a matrix A exists such that

AΣAT =


0 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

 . (8.10)

A new vector X = AZ is defined, it can be shown that X is Gaussian distributed with a co-
variance matrix AΣAT . Given that one of the eigenvalues is 0, the form of X is (0, X1, ..., XN−1)
where Xi are independent and identically distributed normal random variables. Since the norm
of the vector doesn’t change under rotation, we infer

N−1∑
i=1

X2
i =

N∑
i=1

Z2
i =

N∑
i=1

(νi − µi)2

µi
, (8.11)

hence proving the original claim that the test statistic, t =
∑N

i=1(νi−µi)2/µi is equal to the
sum of the square of (N − 1) independent Gaussian random numbers.
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