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Abstract

In present thesis, using large scale computations, universal features in the transient dynam-

ics towards steady state turbulence is investigated. In particular, via simulations of transient

decaying three-dimensional flows, it is suggested that the saturation of vorticity growth takes

place through the onset of transient, and yet universal, appearance of k−3 (log (k/k0))
n spec-

trum, where k0 ∼3 and n ∼ 1. This is indeed confirmed with three different initial conditions

of Kida-Pelz, Taylor-Green and a set of Hill’s vortices. The results of numerical simulations, in

the transient, are reported up to a Reynolds number of 104 and grid resolution of 15363. This

is a comparatively less studied aspect of turbulence, perhaps due to the fact that universal be-

havior is usually associated to time-asymptotic states, whereas transient features, being driven

by morphological details, are typically regarded as inherently non-universal.

These simulations were performed by using two set of tools: the pseudo-spectral (PS) and

multi-relaxation time version of Lattice Boltzmann methods (LB). The former has served as the

workhorse of homogeneous incompressible turbulence for the last four decades, and is widely

described in the literature. The latter is a more recent real-space kinetic method, based on a

minimal lattice formulation of the Boltzmann kinetic equation. The Lattice Boltzmann method

is an attractive option for the direct numerical simulation of turbulent flows, due to its high

parallel scalability and ease of application to complex geometries. The physical phenomena

discussed in the main text has been initially observed with the LB simulation and is later

confirmed using the PS simulations.

However, unlike conventional methods, such as PS for Navier-Stokes, grid-resolution require-

ments and accuracy of the LBM for direct numerical simulations, have been thoroughly tested

for a few setups only. Furthermore, it is empirically known that compressibility-related errors

may lead to poor comparison between PS and LBM at moderate grid-sizes. In the second part

of thesis, the aim is to investigate the limit up to which LB method can be used in subgrid

simulations. In particular effect of collision models was investigated and it was shown that

multi-relaxation LBM with tunable Prandtl number is efficient in damping acoustic oscillations

uniformly both in sub-grid as well as high resolution simulations.
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Chapter 1

Introduction

Transient universality

Turbulence can be defined as that state of matter characterized by a loss of coherence in space

and time, as a result of the non-linear interaction of a large number of degrees of freedom, in

excess of billions even for most familiar phenomena, such as flow past an automobile (Frisch

1995; Chen et al. 2003; Davidson 2004). This raises a formidable computational barrier even for

the most powerful computational methods in the foreseeable future, let alone analytical meth-

ods. It is therefore not surprising that fluid turbulence has continued to attract attention by

scientists from many disciplines. The research and literature on the topic is so vast that even the

problem definition is not the same for different communities of researchers (Sreenivasan 1999;

Frisch 1995; Liepmann 1979; Pope 2000; Lumley & Yaglom 2001). Among others, primary goals

of turbulence research can be summarized as follows: i) unveil statistical universalities (Frisch

1995; Sreenivasan & Antonia 1997; Toschi & Bodenschatz 2009; Dhar et al. 1997), underlying

the irreducible dynamical complexity of different turbulent flows, ii) develop robust and accu-

rate methods to compute the (statistical) dynamics of turbulent flows (Moin & Mahesh 1998;

Germano 1992; Lesieur & Metais 1996; Ansumali et al. 2004; Moin & Mahesh 1998) in realistic

geometries, where universal and non-universal behavior must necessarily coexist, and iii) un-

derstanding the basic mechanisms controlling the transition from laminar to turbulent behavior

(Sreenivasan 1999; Moxey & Barkley 2010).

This thesis contains two parts : In the first part a pseudo-spectral code is developed and

is used to investigate theoretical questions in decaying turbulence. In the second part a lattice

Boltzmann framework is refined using benchmark data from pseudo-spectral method.

In this thesis, numerical results from large-scale, long-time, simulations of decaying homoge-

neous turbulence are reported, which indicate that blowup of inviscid flows is tamed by the emer-

gence of collective dynamics of coherent structures. The simulations performed also suggest that

this collective dynamics might lead to universal behavior during the transient evolution of tur-

bulence. To date, such universality was mostly associated with time-asymptotic states, whereas

transient features, being driven by morphological details, were typically regarded as inherently

non-universal. In particular, simulations with three different initial conditions, show evidence

of a k−3 log k spectrum in the transient stage, before the Kolmogorov k−5/3 asymptotic regime

is attained. Such universal transient might serve as a spectral funnel to the time-asymptotic

Kolmogorov spectrum, which is invariably observed in the late stage of all three simulations

presented in this work. The present work is entirely based on simulation evidence. However,

the statistical analysis of the coherent structures suggests an analogy with population dynamics,

which might be conducive to new mathematical models of transient decaying turbulence.

1



2 Chapter 1. Introduction

Quasi-equilibrium lattice Boltzmann method

The Lattice Boltzmann (LB) method is an attractive option for the direct numerical simulation of

turbulent flows, due to its high parallel scalability and ease of application to complex geometries

(Benzi et al. 1992; Chen & Doolen 1998; Succi 2001; Yu & Girimaji 2005, 2006). However, unlike

conventional methods, such as pseudo-spectral (PS) for Navier-Stokes (Canuto et al. 1988), grid-

resolution requirements and accuracy of the LB method for DNS, have been thoroughly tested

for a few setups only(Bespalko 2011). Furthermore, it is empirically known that compressibility-

related errors may lead to poor comparison between PS and LBM at moderate grid-sizes(Peng

et al. 2010). At this point, we would also like to remind that in sub-grid domain, multiple

relaxation models with high bulk viscosity often perform better than single relaxation models,

which exhibit no bulk viscosity. The typical interpretation for such a behavior is that, in the sub-

grid domain, acoustic oscillations can be effectively suppressed by high bulk viscosity(Asinari

& Karlin 2010). In this work we show that, motivated via multi-relaxation LB method using a

tunable Prandtl number, spurious acoustic fluctuations are efficiently damped in comparison to

tunable bulk viscosity model. The main idea is to increase the stability in sub-grid domain and

accuracy in well resolved domains tuning the Prandtl number. The aim is to push LB code for

hydrodynamics as closer in accuracy as possible, compared to PS code.

The chapters of this thesis are arranged as follows

• Chapter 2 : Pseudo-spectral method In this chapter, pseudo-spectral method that is

used as a simulation tool to study homogeneous turbulence is described. Space discretiza-

tion and time marching schemes used for the simulations are detailed.

• Chapter 3 : Universal mechanism for saturation of vorticity growth This chapter

reports the energy scaling laws and statistical analysis around the transient region where

peak in maximum vorticity is obtained. Several observations and possible universalities in

the transient dynamics are discussed.

• Chapter 4 : Quasiequilibrium lattice Boltzmann models A novel approach to

multi-relaxation LB method using tunable Prandtl number is formulated. This is achieved

by introducing a quasi-equilibrium state before attaining the final equilibrium. Two-

dimensional and three-dimensional results supporting the claim are given.

• Chapter 5 : Summary and conclusions A brief summary and conclusion of this

thesis work is provided in this chapter.

• Appendix : Details of the computational resources used for the simulations is provided.



Chapter 2

Pseudo-spectral method

Pseudo spectral methods are standard tools for the direct numerical simulation (DNS) of

homogeneous turbulence. The trial functions for spectral methods are infinitely differentiable

global functions. The expansion of a function in terms of an infinite sequence of orthogonal

functions {φk}, u =
∑∞

k=−∞ ûkφk, underlies numerical methods of approximation based on PS

methods. The expansion in terms of an orthogonal system introduces a linear transformation

between u and the sequence of its expansion coefficients {ûk}. In a Fourier expansion, the

kth coefficient of the expansion decays faster than any inverse power of k when the function is

infinitely smooth and all its derivatives are periodic as well. In practice this decay is not exhibited

until there are enough coefficients to represent all the essential structures of the function. The

subsequent rapid decay of the coefficients implies that the Fourier series truncated after just a few

more terms represents an exceedingly good approximation of the function. This characteristic is

usually referred to as “spectral accuracy” of the Fourier method. It is also known as exponential

convergence and infinite-order accuracy (Canuto et al. 1988). One of the distinguishing features

of spectral methods is the calculation of derivative in Fourier space, which is just multiplication

of the Fourier coefficients by ‘ık’, where ı =
√
−1 and k is the wave number. The difficulty

with the calculation of convolution sum of non-linear term is addressed by Orszag (Orszag 1971)

using transform methods which has removed the computational head which has led to improved

applications in fluid dynamics, meteorology etc. The most familiar approximation results are

those for periodic functions expanded in Fourier series.

In this chapter, we review the the implementation details of the pseudo-spectral method that

is used to perform the DNS results presented in subsequent chapters. Section 2.1 discusses the

discrete Fourier transforms and the fast Fourier transforms (FFT). Section 2.2 briefs about the

FFT library used and an in-house library called Panini. Finally in section 2.3time integration

schemes used and discretization of governing equations are discussed. Finally, we summarize in

section 2.4.

2.1 Discrete Fourier transforms and FFT

We consider a domain of length 2π divided into N number of equispaced points

xj =
2πj

N
j = 0, 1, ..., N − 1 (2.1)

3
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On such a grid, starting from function values at these discrete nodes u(xj) = uj, one defines the

discrete Fourier transform(DFT) ûk as

ûk =
1

N

N−1∑

j=0

uje
ıkxj k = −N/2, ..., N/2 − 1. (2.2)

Here, we remind that similar to continuous Fourier transform we have discrete orthogonality

relation as

N/2−1
∑

k=−N/2

e−ıkxpeıkxq =

{

N if p = q ± nN, n = 0, 1, 2 · · ·
0 else

(2.3)

which allow us to define the inverse transform as

uj =

N/2−1
∑

k=−N/2

ûke
−ıkxj j = 0, ..., N − 1. (2.4)

Multi-dimensional sums can be evaluated by factoring the three-dimensional basis functions into

a product of three one-dimensional functions. The DFT, equation 2.2, can also be written as

ûk =
1

N

N−1∑

j=0

ujW
jk, −N

2
≤ k ≤ N

2
− 1, (2.5)

where W = e
2πı
N This expression in matrix notation is









û−N/2

û−N/2+1
...

ûN/2−1









=
1

N









1 W−N/2 · · · W (−N/2)(N−1)

1 W−N/2+1) · · · W (−N/2+1)(N−1)

...
...

1 W (N/2−1) · · · W (N/2−1)(N−1)

















u0

u1
...

uN









From this matrix-vector representation, it is evident that a naive implementation would require

O(N2) operations. A key feature of DFT is that the Fourier transform of derivative Duj (where

D ≡ ∂
∂x) of a function uj is

Duj = −ık

N/2−1
∑

k=−N/2

ûke
−ıkxj j = 0, ..., N − 1. (2.6)

In other words taking derivative in Fourier space changes to a simple matrix multiplication









−ı(−N/2) 0 · · · 0

0 −ı(−N/2 + 1) · · · 0
...

...

0 0 · · · ı(N/2 − 1)

















û−N/2

û−N/2+1
...

ûN/2−1









However, an evaluation of non-linear or variable-coefficient problems requires evaluation of
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convolution sums. For example, consider a quadratic function w(x) = u(x)v(x) of some functions

u(x) and v(x), the nonlinear term w(x) when expanded in Fourier series is a convolution sum

given by (Canuto et al. 1988; Boyd 2001)

ŵk =
∑

m+n=k; |m|,|n|≤N/2

ûmv̂n k = −N/2, ..., N/2 − 1 (2.7)

where u(x), v(x) approximated by their respective truncated Fourier series of degree N/2 is

ûk =
1

N

N−1∑

j=0

uje
ıkxj k = −N/2, ..., N/2 − 1,

v̂k =
1

N

N−1∑

j=0

vje
ıkxj k = −N/2, ..., N/2 − 1.

(2.8)

The direct summation takes O(N2) operations, where as in three dimensions, the cost is

O(N4). This is prohibitively expensive, especially when one considers that for a non-linear

term a finite-difference algorithm takes O(N) operations in one dimension and O(N3) in three

dimensions.

2.1.1 FFT

For simplicity in a DFT, if N is even , we can split {uj} into two sequences of length N/2 which

has even and odd coefficients respectively, given by

ûk =

N/2−1
∑

j=0

[

u2jW
2jk + u2j+1W

(2j+1)k
]

= ûek +W kûok

(2.9)

This basic split into even and odd coefficients has reduced the operations from O(N2) to O(N2/2)

and this forms the key idea of FFT. The even and odd coefficients in equation 2.9 can be further

divided into two more parts further reducing the operations by a factor of 2 and so on till

smallest prime number. For example if N = 2M , then we can repeat this factorizing M times,

until transforms of length 1, accounting to only log2 N steps (Boyd 2001). This is known as

Cooley-Tukey algorithm whose cost of computation is O(N log2 N).

2.1.2 Pseudo-spectral transform methods

The approach taken in the transform method is to use the inverse discrete Fourier transform

(DFT) to transform ûm and v̂m to physical space, to perform there a multiplication and then

to use the DFT to determine ŵk (Canuto et al. 1988; Boyd 2001).

Uj =

N/2−1
∑

k=−N/2

ûke
−ıkxj ; Vj =

N/2−1
∑

k=−N/2

v̂ke
−ıkxj j = 0, 1, ..., N − 1 (2.10)
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and define

Wj = UjVj j = 0, 1, ..., N − 1 (2.11)

Ŵk =
1

N

N−1∑

j=0

Wje
ıkxj k = −N/2, ..., N/2 − 1. (2.12)

Using discrete orthogonality relation, it can be shown that

Ŵk =
∑

m+n=k

ûmv̂n +
∑

m+n=k±N

ûmv̂n. (2.13)

The second term on the right-hand side is the aliasing error. This error is because of the

corruption due to high wave numbers. For example consider Uj = sin(2xj) and Vj = sin(3xj)

with N = 8. The Fourier coefficients are

k = [ −4 −3 −2 −1 0 1 2 3 ]

û = [ 0 0 ı 0 0 0 −ı 0 ]

v̂ = [ 0 ı 0 0 0 0 0 −ı ]

The above sequence gives the Fourier coefficients û, v̂ corresponding to wave numbers k. Note

that, for Uj = sin(2xj), the wave number corresponding to k = ±2 is non-zero and Vj = sin(3xj),

the wave number corresponding to k = ±3 is non-zero. The Fourier transform of Wj = UjVj =

sin(2xj) sin(3xj) = 0.5(cos(xj) + cos(5xj)), leads to coefficients

k = [ −4 −3 −2 −1 0 1 2 3 ]

Ŵ = [ 0 −0.5 0 0.5 0 0.5 0 −0.5 ]

Here the coefficients corresponding to the wave numbers k = ±3 are due to the aliasing error.

The high wave numbers, here k = ± 5, introduced due to the non-linear term Wj, corrupts the

low wavenumber, k = ±3 = ±5 ∓ 8, which is the spurious term in equation 2.13. The Fourier

coefficients corresponding to the non-linear term Wj should have been

k = [ −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 ]

Ŵ = [ 0 −0.5 0 0 0 0.5 0 0.5 0 0 0 −0.5 ]

The higher wave numbers, here k = ± 5, are aliased onto the smaller wave numbers because of the

insufficient grid resolution. This is shown in the figure 2.1. If the convolution sums are evaluated

as described above, then the method is not true spectral Galerkin method. Orszag (Orszag 1971)

termed it a pseudospectral (PS) method. The convolution sum in the PS method is evaluated

at the cost of 3 FFTs and N multiplications. The total operation count is (15/2)Nlog2N

multiplications. The generalization of the PS evaluation of convolution sums to more than

one dimension is straight forward. The use of transform methods enables the evaluation in

O(Nlog2N) operations and the three-dimensional generalization in O(N3log2N) operations.

This technique was developed independently by Orszag (1969, 1970) and Eliasen, Machenhauer

and Rasmussen (1970). It was the single most important development which made spectral

Galerkin methods practical for large scale computations (Canuto et al. 1988).
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Figure 2.1: Aliasing errors due to high wave numbers corrupting the lower ones. The same set
of values at discrete points, represents both the functions cos(5xj) and cos(3xj).

2.1.3 De-aliasing

The aliasing error is removed by “padding” or “truncation” technique. This technique employs

a discrete transform with M points rather than N points, where M ≥ 3N/2

Uj =

M/2−1
∑

k=−M/2

ûke
−ıkxj ; Vj =

M/2−1
∑

k=−M/2

v̂ke
−ıkxj j = 0, 1, ...,M − 1. (2.14)

Here ûk is same as described in the above section for k = −N/2, ..., N/2 − 1 and zero for the

rest. Thus the additional wave numbers are padded with zeros.

Wj = UjVj j = 0, 1, ...,M − 1 (2.15)

Ŵk =
1

M

N−1∑

j=0

Wje
ıkxj k = −N/2, ..., N/2 − 1. (2.16)

Use of discrete transform orthogonality relation (equation 2.3) leads to

Ŵk =
∑

m+n=k

ûmv̂n +
∑

m+n=k±M

ûmv̂n. (2.17)

We are only interested in Ŵk for |k| ≤ N/2, and choose M such that the second term on the

right-hand side vanishes for these k. Thus, M ≥ 3N/2. When this de-aliasing technique is
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applied to the example discussed in the previous sub-section, padding gives

k = [ −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 ]

û = [ 0 0 0 0 ı 0 0 0 −ı 0 0 0 ]

v̂ = [ 0 0 0 ı 0 0 0 0 0 −ı 0 0 ]

Inverse transforming these coefficients, calculating the product in real space and then transform-

ing back to Fourier space we get

k = [ −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 ]

Ŵ = [ 0 −0.5 0 0 0 0.5 0 0.5 0 0 0 −0.5 ]

Basically, all the possible higher wave numbers which are responsible for aliasing are resolved.

Here, the coefficients of higher wave numbers introduced for padding are neglected giving

k = [ −4 −3 −2 −1 0 1 2 3 ]

Ŵ = [ 0 0 0 0.5 0 0.5 0 0 ]

These final set of Fourier coefficients are free of aliasing errors, where the coefficients corre-

sponding to wave numbers, k = ±3, which had spurious errors is zero now. The operation count

for this transform method is (45/4)Nlog2(3/2N), which is roughly 50% larger than the simpler,

but aliased method. This technique is sometimes referred to as 3/2-rule. Interpreting the same

rule other way round, considering the actual size as 2N/3 rather than N, we get M ≥ N , which

is known as 2/3-rule. In 2/3-rule we work with an array of size N in which we retain only 2/3

of the Fourier coefficients padding the rest.

2.2 Software details

2.2.1 FFTW3

FFTW (Fastest Fourier Transform in the West) is a well established C subroutine library for

computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input

size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine

transforms or DCT/DST) (Frigo & Johnson 2013). We used FFTW 3.3.2 version for all the

pseudo-spectral results reported. The current version of FFTW incorporates many good ideas

from the past thirty years of FFT literature (Frigo & Johnson 2012). FFTW uses the Cooley-

Tukey algorithm, the prime factor algorithm, Rader’s algorithm for prime sizes, and a split-radix

algorithm (with a variation due to Dan Bernstein). FFTW does not use a fixed algorithm for

computing the transform, but instead it adapts the DFT algorithm to details of the underlying

hardware in order to maximize performance (Frigo & Johnson 2005). Once a FFT algorithm

is chosen in order to achieve best performance for a given size N , FFTW uses a high-precision

timer to measure the cost of different code choices. Hence, the computation of the transform is

split into two phases. First, FFTW’s planner learns the fastest way to compute the transform on

the machine. The planner produces a data structure called a plan that contains this information
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/* create plan for r2c DFT */

plan = fftw_mpi_plan_dft_r2c_3d(nx, ny, nz, &rin[0], rout, MPI_COMM_WORLD,

FFTW_MEASURE);

iplan = fftw_mpi_plan_dft_c2r_3d(nx, ny, nz, rout, &rin[0], MPI_COMM_WORLD,

FFTW_MEASURE);

The ‘plan’ created above is for DFT of a real three dimensional array ‘rin’ of size nx×ny×nz to

a complex array ‘rout’. ‘iplan’ is for the inverse DFT of complex array ‘rout’ into a real array

‘rin’. Subsequently, the plan is executed to transform the array of input data as dictated by the

plan. The plan can be reused as many times as needed by calling execute function

/* compute transforms as many times as desired */

fftw_execute(plan) ;

....

fftw_execute(iplan) ;

In typical high-performance applications, many transforms of the same size are computed and,

consequently, a relatively expensive initialization of this sort is acceptable, like ‘FFTW MEASURE’.

On the other hand, if you need a single transform of a given size, the one-time cost of the plan-

ner becomes significant. For this case, FFTW provides fast planners based on heuristics or on

previously computed plans. FFTW supports transforms of data with arbitrary length, rank,

multiplicity, and a general memory layout.

Once the variable is transformed to from real to Fourier space, by executing a plan, it has

to be normalized accordingly depending on the total size (here oneByNxyz = 1.0/(nx×ny×nz))

of the array as

for (i = 0; i < local_n0; i++){

for (j = 0; j < ny; j++){

for (k = 0; k < nzh; k++){

rin(i,j,k,0) *= oneByNxyz ;

rin(i,j,k,1) *= oneByNxyz ;

}}}

The inverse transform of this normalized Fourier coefficients gives back the original array.

The function fftw mpi local size 2d is called to find out what portion of the array resides

on each processor, and how much space to allocate. Here, the portion of the array on each

process is a local n0 × ny × (nz/2 + 1) slice of the total array, starting at index local 0 start.

The total number of fftw complex numbers to allocate is given by the alloc local return value.

alloc_local = fftw_mpi_local_size_3d(nx, ny, nz/2+1, MPI_COMM_WORLD, &local_n0,

&local_0_start);
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2.2.2 Panini library

Panini is an in-house generic parallel array class built on advanced generic programming method-

ologies like Template Meta programming, operator overloading and lazy evaluation of expression

(Sah & Ansumali 2012). It allows a user to work with high-level physical abstractions for scien-

tific computation. The distinguishing feature of the meta programming used in this library with

that of object oriented programming model used in softwares such as MATLAB is, the concept

of ‘lazy evaluation’, which avoids the use of temporary arrays. It can be efficiently parallelized

for large scale scientific coding. Via operator overloading in C++, it has high performance nu-

merical libraries where abstract mathematical notations can be used. The operations are small

array sizes is made efficient using Loop Unrolling. This framework can be conveniently used

along with the FFTW3 library to make the coding effort minimal.

This framework uses two array templates based vectTiny and vectET based on the array

size. For small size arrays (<400 doubles), where the user knows the size in advance, ‘vectTiny’

class can be used. The syntax for creating an array of doubles of size 3 is

vectTiny <double, 3> a = 3.0 ; // double vector of size 3

vectTiny <double, 3> b ; b = 1.0, 2.0, 3.0 ;

vectTiny <double, 3> c ; c = b ;

In these declarations, ‘double’ can be replaced by other datatypes as well. All the elements of

array: ‘a’ are initialized to 3.0, ‘b’ are initialized to 1.0, 2.0, 3.0 respectively and ‘c’ is initialized

same as the elements of ‘b’. It can support math operations like

b = sin(a) ;

c = a + b ;

c = 0.5*c + a*b ;

For larger arrays whose size is usually dynamically allocated, ‘vectET’ should be used

vectET<double> a(500) ;

vectET< vectTiny <int, 3> > b(400) ;

The first statement creates an array ‘a’ of 500 doubles while the second statement creates an array

‘b’ of 400 vectTinys (of 3 integers) i.e we have an array ‘b’ with 3 integers at each of 400 points.

vectET variables can also handle basic math operations like addition, scalar multiplication etc.

In this library, grid3D is a class to generate three dimensional grid conveniently, hiding the

implementation details, using vectTiny and vectET. For example the below codelet creates a

three dimensional grid of size (local n0)×ny×(nz+2).

grid3D rin(local_n0, ny, nz+2);

Here elements of ‘rin’ can be accessed by using ‘rin(i,j,k)’, where i, j and k are the coordinates

of the point on the grid.
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real-to-complex transforms

The below sample code gives a gist of using Panini with FFTW3 to calculate the derivative of

a 3D- scalar field, in a parallel environment using MPI.

alloc_local = fftw_mpi_local_size_3d(nx, ny, nz/2+1, MPI_COMM_WORLD, &local_n0,

&local_0_start);

grid3D rin(local_n0, ny, nz+2);

rout = (fftw_complex *) &rin[0] ;

/* create plan for in-place r2c DFT */

plan = fftw_mpi_plan_dft_r2c_3d(nx, ny, nz, &rin[0], rout, MPI_COMM_WORLD,

FFTW_MEASURE);

iplan = fftw_mpi_plan_dft_c2r_3d(nx, ny, nz, rout, &rin[0], MPI_COMM_WORLD,

FFTW_MEASURE);

/* initializing rin to some function */

for (i = 0; i < local_n0; i++)

for (j = 0; j < ny; j++)

for (k = 0; k < nz; k++){

double z = 2.0*M_PI*k /(double)(nz) ;

double x = 2.0*M_PI*(i+local_0_start) /(double)(nx) ;

double y = 2.0*M_PI*j /(double)(ny) ;

rin(i,j,k) = cos(x)*cos(y)*sin(z);

}

/* compute transforms as many times as desired */

fftw_execute(plan);

for (i = 0; i < local_n0; i++){

for (j = 0; j < ny; j++){

for (k = 0; k < nzh; k++){

rin(i,j,k,0)*= oneByNxyz ;

rin(i,j,k,1)*= oneByNxyz ;

}}}

vectET<double> kd(nx, 0.0);

/* Wave number k - note the sequence */

for ( i = 0; i < nx/2 ; i++) kd[i] = i ;

for ( i = nx/2; i < nx; i++) kd[i] = i - nx ;

double temp ;

for (i = 0; i < local_n0; i++){

for (j = 0; j < ny; j++){

for (k = 0; k < nzh; k++){

temp = rin(i,j,k,0);
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rin(i,j,k,0) = -kd[k]* rin(i,j,k,1);

rin(i,j,k,1) = kd[k]*temp ;

}}}

fftw_execute(iplan);

FFTW uses a slice decomposition meaning that the 3D domain is decomposed along one of

the axes, here it is X-direction. It uses the real-to-complex transform in FFTW to transform a

real data from real to Fourier space. In-place transform is employed here minimizing the memory

usage, where the real array and the complex array are stored in the same array, hence using

the Hermitian symmetry of the complex data due to a real transform. Note that the brackets

‘()’ are overloaded, which are used for both real and complex data, where the real data has

three inputs corresponding to the three coordinates and the complex data has four inputs, the

fourth input being either zero or one corresponding to the real and imaginary part. The complex

variable (rout) is pointed to the starting address of the real variable (rin) so as to achieve an

in-place transform and the real array address is type casted to complex so as match the pointers.

Array ‘kd’ gives the wave numbers which shows the sequence in which Fourier coefficients are

arranged in FFTW. Finally partial derivative w.r.t z of the 3D field (rin) is computed and then

transformed back to real space.

real-to-real transforms

The Fourier transform of a real-even function f(-x) = f(x) is real-even. For a real-odd function

f(-x) = -f(x), ı times the Fourier transform is real-odd. Similar results hold for a discrete

Fourier transform, and thus for these symmetries the need for complex inputs/outputs is entirely

eliminated. Moreover, one gains a factor of two in speed/space from the fact that the data are

real, and an additional factor of two from the even/odd symmetry: only the non-redundant

(first) half of the array need be stored. The result is the real-even DFT (REDFT) and the real-

odd DFT (RODFT), also known as the discrete cosine and sine transforms (DCT and DST),

respectively.

Because of the discrete sampling, the data is even/odd around a sampling point or around

a point half way between two data points. This gives rise to several invariants in transforms,

depending on the sampling points at both ends. We use for n real numbers (from j = 0...n-1 )

• FFTW REDFT10 (DCT-II, “the DCT”): even around j = -0.5 and even around j = n-0.5

• FFTW REDFT01 (DCT-III, “the IDCT”): even around j = 0 and odd around j = n

• FFTW RODFT10 (DST-II): odd around j = -0.5 and odd around j = n-0.5

• FFTW RODFT01 (DST-III): odd around j = -1 and even around j = n-1

A size-4 REDFT10 (DCT-II) of the data abcd corresponds to the size-8 logical DFT of the even

array abcddcba, shifted by half a sample. The inverse of of REDFT10/ RODFT10 is REDFT01/

RODFT01 and vice versa.
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alloc_local = fftw_mpi_local_size_3d(nxBy2, nyBy2, nzBy2, MPI_COMM_WORLD,

&local_n0, &local_0_start) ;

gridFlow3D u(local_n0, nyBy2, nzBy2);

plan_u = fftw_mpi_plan_r2r_3d(nxBy2, nyBy2, nzBy2, u, u, MPI_COMM_WORLD,

FFTW_RODFT10, FFTW_REDFT10, FFTW_REDFT10, FFTW_MEASURE);

iplan_u = fftw_mpi_plan_r2r_3d(nxBy2, nyBy2, nzBy2, u, u, MPI_COMM_WORLD,

FFTW_RODFT01, FFTW_REDFT01, FFTW_REDFT01, FFTW_MEASURE);

fftw_execute(plan_u) ;

rightShift_comm ( lnx, taskid, numtasks, nyBy2, nzBy2, u ) ;

for ( i = 0; i < nxBy2 ; i++ ) kd[i] = i ;

leftShift_comm ( lnx, taskid, numtasks, nyBy2, nzBy2, u ) ;

fftw_execute(iplan_u) ;

The above sample code shows the forward and inverse transform of a 3D real scalar field ‘u’,

odd in X-direction and even in Y and Z-directions. The array ‘kd’ gives the sequence of wave

numbers in which the Fourier coefficients are given by FFTW. It should be noted that in an odd

transform the wave numbers start from k = 1 rather than k = 0. The function ‘rightShift comm’

shifts the elements of the array ‘u’ in X-direction by 1 unit, so that wave numbers in all the

directions start from k = 0, and the new column created is filled with zeros. This shift is

important, as we deal with different arrays, even/odd symmetric in different directions and

perform operations on them, like finding vorticity, considering that the wave numbers in all three

directions start from k = 0 (else basic operation like adding arrays with different symmetries

in different directions becomes cumbersome in Fourier space). Care should be taken that while

performing an inverse transform of an odd field, it should be shifted back by 1 unit, so that the

wave number starts from k = 1 in the odd direction. The function ‘leftShift comm’ shifts back

the array making it suitable for an inverse transform using FFTW.

2.3 Third order Runge-Kutta scheme

In the current work, we are interested in the time evolution of the ODE of the form

dU

dt
= F [t, U(t)] (2.18)

For this purpose, we use Runge-Kutta (RK) three-stage third order scheme (3,3), which requires

only two levels of storage(2N-storage, where N is the dimension of the system of ODEs) by

Williamson (1980).. This scheme requires evaluation of intermediate quantities.

k1 = F (tn + c1h,Un) ,

k2 = F (tn + c2h,Un + ha2,1k1) ,

k3 = F (tn + c3h,Un + h(a3,1k1 + a3,2k2)) ,

(2.19)
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where h is the time step considered, and c1, c2, c3, a2,1, a3,1, a3,2 are given in table 2.1 . In

terms of these quantities, the 3-stage algorithm is

dUj = AjdUj−1 + hF (Uj) A1 = 0,

Uj = Uj−1 +BjdUj j = 1, 2, 3,
(2.20)

In this method, only dU and U are to be stored at each stage resulting in a 2N storage. In terms

of Butcher table the scalar coefficients are (Carpenter & Kennedy 1994)

c1

c2 a2,1

c3 a3,1 a3,2

b1 b2 b3

=

0
1
3

1
3

3
4 - 3

16
15
16

1
6

3
10

8
15

=⇒
A1 B1

A2 B2

A3 B3

=

0 1
3

-59
15
16

153
128

8
15

Table 2.1: (3,3) RK 2N-storage scheme coefficients

2.3.1 Navier-Stokes in Fourier domain

The PS method solves the three-dimensional Navier-Stokes (NS) equations in periodic domains.

In terms of the Fourier coefficients ũj(k), j labeling the spatial dimensions, the NS equations

read as follows:

∂tũj(kl) = −ν k2ũj −
(

δij −
ki kj
k2

)

Fi(kl), (2.21)

where F (k) is the Fourier coefficient of the non-linear advection term and the pressure term is

eliminated via the projection operator

Pφ =

(

δij −
ki kj
k2

)

φ, (2.22)

which projects the NS equations onto the incompressible manifold (Frisch 1995).

Most applications of spectral methods to partial differential equations the spatial discretiza-

tion is spectral but the temporal discretization uses conventional Taylor series based methods.

The stability restriction arising from the convection terms can be more severe than the viscous

stability limit. Third order low-storage Runge-Kutta time-differencing scheme for the nonlinear

term and an integrating-factor technique on diffusion term are employed. In problems with peri-

odic boundary conditions the preferred technique for handling constant-coefficient linear terms is

exact integration. This integrating-factor technique has found extensive use in Fourier Galerkin

simulations of homogeneous turbulence. In this method, the viscous term is most conveniently

handled via analytical integration (Rogallo 1981), to deliver:

∂t
[
ũj(kl) exp

(
ν k2 t

)]
= − exp

(
ν k2 t

)
(

δij −
ki kj
k2

)

Fi(kl). (2.23)

This equation can be solved numerically by any convenient time-integration scheme. The treat-

ment of the linear term is both unconditionally stable and exact. The accuracy and stability
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restrictions of the method arise solely from the non-linear term.

As a time-integration scheme for equation 2.23, we chose a low-storage version of the Runge-

Kutta third order scheme 2.19, which requires only two levels of storage(Williamson 1980).

2.4 Summary

In this work, a parallel MPI PS solver based on Panini and FFTW is developed. We have

chosen the “2/3” rule, due to its simplicity and ease of parallel implementation. For the MPI

(Message Passing Interface) implementation of parallel Fourier transform, we have used FFTW

library (version 3), which provides a comprehensive collection of fast C routines for comput-

ing the Discrete Fourier Transform (DFT) (Frigo & Johnson 2005). The initial conditions

being highly symmetric in space, only odd (FFTW RODFT10/FFTW RODFT01) and even

(FFTW REDFT10FFTW REDFT10) transforms (as described in previous section) are used,

thus reducing the problem size to one eighth (half in each direction) (Kida 1985), as compared

to the full original domain. The non-linear term requires eight Fourier transforms in our code.

We evaluate three inverse Fourier transforms to obtain the velocity components in real space,

and five forward transforms to evaluate non-linear terms.





Chapter 3

Universal mechanism for saturation

of vorticity growth

3.1 Introduction

Turbulent flow is a chaotic, nonlinear multi-scale phenomenon which we come across in every-

day life. Flow of air over automobiles and aircrafts, smoke from a cigarette, cumulus clouds,

atmospheric and oceanic currents are a few examples of turbulent flows. It can be defined as

that state of matter characterized by a loss of coherence in space and time, as a result of the

non-linear interaction of a large number of degrees of freedom, in excess of billions even for most

familiar phenomena, such as flow past an automobile (Frisch 1995; Chen et al. 2003; Davidson

2004). For many real life flow applications, fluids are incompressible and their dynamics is

governed by Navier-Stokes(NS) equations

∂tuα + uβ∂βuα +
1

ρ
∂αp =

1

Re
∇2uα,

∂βuβ = 0

(3.1)

where ui is velocity, ρ is fluid density, p is pressure and Re is Reynolds number ( = UL/ν where

U is characteristic velocity, L is the characteristic length and ν is the kinematic viscosity of

the fluid). The incompressibility, a non-local constraint, manifests itself as the pressure Poisson

equation, obtained by taking the divergence of NS equations

∇ ·NS =⇒ 1

ρ
∇2p = ∂α∂βuαuβ (3.2)

Though the governing equations are well known for centuries, turbulence is one of the important

unsolved problems of classical physics. Apart from non-locality, another difficulty in solving NS

is the non-linearity of the advection term Fi = uj∂jui which in terms of its Fourier coefficients

is

F̂α(kγ) =
∑

kmγ +knγ=kγ

ıkβûβ(k
m
γ )ûα(k

n
γ ) (3.3)

where ûα(kγ) is the Fourier transform of velocity. It can be clearly seen that F̂α(kγ) is not only

comprised of the scale k, but is a convolution sum of velocity over different scales. This mixing

or interaction of scales leads to enormous degrees of freedom as the Reynolds number increases.

In a direct numerical simulation (DNS), all the length scales till the Kolmogorov length scale

η, which scales as Re−3/4, is resolved. If the largest length scale in the flow is given by l0 then

the degrees of freedom required in one dimension is l0/η ∼ Re3/4. Therefore resolution required

in three dimensions for a DNS is N ∼ Re9/4. Therefore the computational resources required

17
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even for simple turbulent flows, whose Reynolds number is usually of the order of 106, are quite

high. This raises a formidable computational barrier even for the most powerful computational

methods in the foreseeable future, let alone analytical methods. Thus, often the goal of large

scale DNS is to provide insight into phenomenology of turbulence and its origin.

Recent advances in computational hardware allows for long time integration with relatively

large number of degrees of freedom feasible. In the present work, using large scale computations,

we investigate and report universal features in the transient dynamics towards steady state

turbulence. This is a comparatively less studied aspect of turbulence, perhaps due to the fact that

universal behavior is usually associated to time-asymptotic states, whereas transient features,

being driven by morphological details, are typically regarded as inherently non-universal.

The present simulations of transient decaying three-dimensional flows suggest that the satu-

ration of vorticity growth takes place through the onset of transient, and yet universal structures.

The first is the appearance of universal k−3 log k spectrum in the transient towards the Kol-

mogorov’s statistical steady-state, while the second is a concurrent outburst of enstrophy, which

is carried by high-stretch and high-vorticity transient structures. Although rare and short-lived,

such structures are sufficiently strong and long-lived to signal the transit of the system through

a universal k−3 log k state, on its way towards the asymptotic Kolmogorov spectrum. Part of

this work is published in Thantanapally et al. (2013).

This chapter is organized as follows: Section 3.2 discusses the scaling laws in energy spectrum

and Onsager’s criticism on Kolmogorov’s theory. In section 3.3, we review the main arguments

behind vorticity dynamics and blow-up issues. In section 3.4, details of various initial conditions

used in present work is provided. Section 3.5 discuss the energy scaling laws in the transient

and it is argued that initial transient is inviscid. Statistical analysis of the numerical results is

also presented in this section. Finally, a brief conclusion is presented in section 3.7 after which

details of the movies supporting the claims made in this work is given.

3.2 Energy cascade and power laws

The idea of describing a flow in terms of eddies was proposed by Lewis Fry Richardson (Richard-

son & Chapman 1965). He suggested that a flow can be described in terms of eddies of different

sizes. The larger eddies gain kinetic energy from the mean flow and breaks-down to smaller

eddies by stretching and instabilities. These smaller eddies in turn breakdown to even smaller

eddies (as shown in figure 3.1 (Frisch 1995)) and so on till small enough size, where viscous

forces dominate and energy is dissipated. This transfer of kinetic energy from larger to smaller

scales is termed as energy cascade.

This theory was later adopted by A. N. Kolmogorov to give a quantitative assessment using

dimensional arguments. He argued that the time required for an eddy of size l and rms velocity

fluctuation ul, to transfer energy to smaller scales is τl ∼ l/ul, whereas time required for the

same eddy to dissipate its energy using viscosity is τviscousl ∼ l2/ν. Depending on the dominance

among the above two time scales, three different range of scales can be identified namely injective

range, inertial range and dissipative range. He assumed that the statistics of the small scales

are isotropic and universal for all turbulent flows at high enough Reynolds number and that

there is no dissipation of energy in the breaking of eddies to smaller eddies. Therefore there is
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Figure 3.1: Picture of energy cascade showing the breakdown of larger eddies to smaller eddies
in a turbulent flow

a hierarchy of scales created L >> r >> η where L is large scale anisotropic eddies injecting

energy, r is the universal isotropic eddies just transferring energy (because of the dominance of

inertial forces over viscous forces, hence called as inertial range) to smaller ones in their range

and η is the scale where dissipation actually takes place.

In the inertial range energy transfer rate Π(r) should be

Π(r) ∼ E(r)

τr
∼ u2r

r/ur
(3.4)

At statistical steady state, this transfer rate should be balanced with energy dissipation (ǫ) at

smaller scales. Thus, the velocities and time scales in the inertial range is universally determined

only by ǫ and r in that range

ur ∼ ǫ1/3r1/3, τr ∼ ǫ−1/3r2/3 (3.5)

The scale η, also known as the Kolmogorov scale is identified as the scale beyond which viscous

forces dominate, thus at this scale dissipative and transfer times are equal, which imply that

the Reynolds number based on Kolmogorov scales is unity

ηuη
ν

= 1 (3.6)

Using equation 3.5 and equation 3.6, Kolmogorov length scale is

η ∼ ǫ−1/4ν3/4. (3.7)

In the inertial subrange the kinetic energy spectrum E(k) as a function of wavenumber k has

a universal form uniquely determined by ǫ and k, independent of ν giving

E(k) = Cǫ2/3k−5/3 (3.8)



20 Chapter 3. Universal mechanism for saturation of vorticity growth

where C is a universal Kolmogorov constant. This energy scaling in inertial range is qualita-

tively shown in the figure 3.2. The same result can also be arrived from the similarity and scale

invariance arguments in the inertial range, which gives the four-fifths law in real space using the

third order structure function. In the limit of infinite Re number, the third order (longitudinal)

structure function of homogeneous isotropic turbulence, evaluated for increments l small com-

pared to integral scale, is given in terms of mean energy dissipation per unit mass ǫ by (Frisch

1995)

〈(δv||(r, l))3〉 = −4

5
ǫl (3.9)

This scaling in energy spectrum is validated both computationally and experimentally.

log E(k)

log k

energy

-5/3

Figure 3.2: Energy spectrum in 3D turbulence

Another important result using similar dimensional analysis is, in 2D turbulence, put forth

by Kraichnan(Kraichnan 1967). The main difference between 2D and 3D turbulence is that the

vortex stretching term is zero in the former. This difference results in the conservation of both

energy and enstrophy at high enough Reynolds number (vanishing viscosity) which results in an

inverse energy cascade (energy being transferred from smaller to larger wave numbers) with a

slope of -5/3

E(k) = Cǫ2/3k−5/3. (3.10)

and a direct cascade of enstrophy (from larger to smaller wave numbers) with a slope of -3 in

the energy spectrum

E(k) = C ′ǫ2/3w k−3, (3.11)

ǫw being the enstrophy flux.

log E(k)

log k

energy

enstrophy

injection

-5/3

-3

Figure 3.3: Energy spectrum in 2D turbulence
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This scaling in the energy is qualitatively shown in figure 3.3, where the energy is pumped at

an injection wavenumber and we see a inverse cascade of energy towards smaller wave numbers

scaling as -5/3 and a forward cascade of enstrophy towards larger wave numbers scaling as -3.

3.2.1 Onsager’s criticism

Onsager was one of the first to comment on possible ramifications of existence of power law

in energy spectrum as predicted by Kolmogorov’s hypothesis (Eyink & Sreenivasan 2006). His

argument was that Kolmogorov length-scale goes to zero as Re → ∞ because

η ∼ l0Re
−3/4. (3.12)

On the other hand, the total time T ∗ for energy introduced at the scale l0 to cascade down to

scale η is given by

T ∗ =
∑

i

ti = A
∑

i

l
2/3
i , (3.13)

which is the sum of an infinite convergent geometric series for Re → ∞. Thus, it takes a finite

time for energy to cascade to infinitesimal scales.

Furthermore, from mean energy balance, the mean energy dissipation is

ǫ ≡ −dE

dt
= 2 νΩ, (3.14)

where Ω is the average enstrophy in the domain. This equation suggests that for Re → ∞,

energy dissipation rate ǫ is finite only when Ω → ∞ (Frisch 1995). The above argument only

gives a flavor of the singularity argument but there is no rigorous proof for the existence of

singularity in Navier-Stokes equations from smooth initial conditions. This chapter attempts

to comment on the existence of singularity and try to find the universal features, if any, in the

transient dynamics finally leading to statistical steady state of Kolmogorov scaling in energy

spectrum.

3.3 Vorticity dynamics and blow-up

The evolution of a fluid flow is often analyzed in terms of the vorticity field, ~ω = ~∇× ~u, ~u being

the flow velocity. The time evolution for which is

Dωα

Dt
= ωβ∂βuα + ν∆∂β∂βωα

D

Dt
=

∂

∂t
+ uβ∂β

(3.15)

where D/Dt is the material derivative. The term ωβ∂βuα has two effects, tilting and stretching,

on the vortex tube. This can be seen in the coordinate system aligned with the vorticity direction

of a vortex tube as
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ωβ∂βuα = ωz
∂u

∂z
i+ ωz

∂v

∂z
j

︸ ︷︷ ︸

tilting

+ ωz
∂w

∂z
k

︸ ︷︷ ︸

stretching

(3.16)

ω

ω

tilt

ω

ω

stretch

Figure 3.4: Depiction of tilting and stretching of a vortex tube

As shown in figure 3.4, second term in equation tilt-stretch is the stretching component which

stretches the tube along the vorticity axis thereby increasing/decreasing the vorticity in that

direction and the other component (tilting) just tilts the vortex tube giving rise to a vorticity

component perpendicular to the initial vorticity direction.

The dynamics of vorticity can be conveniently analyzed in terms of local enstrophy Ω =

~ω · ~ω/2. The evolution equation for local enstrophy is

DΩ

Dt
= 2sΩ+ νωα∂β∂βωα, s =

ωβ∂βuαωα

ω2
, (3.17)

where s is the vortex stretching term, namely the growth(decay) rate of the local enstrophy.

Hereafter, in the rest of the text we refer s as stretching. This representation elicits the two basic

contributions to the vorticity growth (decay), as it is carried along by the fluid, namely a viscous

dissipative sink, and the stretching term, which vanishes in two dimensions, since vorticity is

then perpendicular to the plane of motion. Vast amount of literature discussing the dynamics of

enstrophy including interplay between its production and dissipation is available(Tsinober et al.

1997; Holm & Kerr 2002; Donzis et al. 2008).

Initial transient dynamics of the flow is expected to be fairly inviscid in which dissipation

can be neglected and viscosity plays a leading role only in the late stage of the evolution. If

the norm of the strain tensor Sαβ ≡ (∂αuβ + ∂βuα)/2 is loosely identified with the vorticity

magnitude |ωα|, times a proportionality factor λ, the equation 3.17 takes the form

dΩ/dt = λΩ3/2. (3.18)

Such an argument of approximating Sij is indeed loose, because the vorticity and strain tensors

carry a fairly different physical content, rotation versus deformation, respectively. Nevertheless,

for λ = Const > 0, this scalar equation exhibits a finite-time singular solution,

Ω(t) = Ω0

(
t− tc
t0 − tc

)−2

(3.19)

at tc = t0 + 2/(λ
√
Ω0), due to the coherent drive of the vortex stretching term (Frisch et al.

2003). This picture of blow up in enstrophy is qualitatively plotted in figure 3.5 Geometrically,
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Figure 3.5: Qualitative picture of blow-up in enstrophy at tc ∼ 2.1

this corresponds to a vortex tube getting increasingly thinner and more intense, until its core

annihilates, thus leading to a singular blow-up. Vast amount of work on finite-time singularities,

starting from symmetric initial conditions, is available in the literature, (Pelz 2001; Cichowlas &

Brachet 2005; Grafke et al. 2008; Hou & Li 2008; Bustamante & Brachet 2012). Several counter

blow-up arguments have also been raised, which usually appeal to more detailed insights into

the dynamic morphology of turbulence (Frisch et al. 2003). Notable among them is the so-

called non-linear depletion mechanism, which proposes that vorticity tubes would naturally

self-tame their growth, upon bending and eventually collapsing into locally two-dimensional-like

structures, which automatically annihilate the non-linear stretching term.

Despite their heuristic appeal, none of the above arguments has managed to gain the status

of a rigorous proof, or theorem, whence the scope for extensive numerical simulations. To date,

these have brought up the following picture: The smooth initial configuration develops a fast-

growing enstrophy stage, driven by a positive average vortex stretching term. The stretched

configurations then undergo a number of sudden morphological events, such as vortex break-up

and mergers. Even though such simulations and analytical studies are typically performed on

inviscid (Euler) flows, one can reasonably expect that such fast-growing transient would remain

virtually inviscid also in high Reynolds number simulations. In the long term for NS simula-

tions, such low dimensional structures, evolve into a tangle of vortices, supporting the k−5/3

Kolmogorov spectrum, eventually inclusive of slight anomalous corrections, due to intermittent

bursts. In line with these expectations, the present analysis is based on high-Reynolds number

Navier-Stokes simulations with smooth initial conditions described in the following section.

3.4 Initial Conditions

This section briefly describes the set of initial conditions for decaying flows used in present work.

Three sets of initial conditions, namely Kida-Pelz, Taylor-Green and Hill’s vortices, are analyzed
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in detail, to show the scaling in the energy spectrum to be discussed in the subsequent sections.

All of these initial conditions represent flows dominated by vortex stretching. The vorticity

equation is invariant under the space translations, the space rotations and plane reflections.

Therefore if the velocity field has a symmetry at an initial instant which is invariant under these

transformations of variables, it will never be lost in the course of evolution (Kida 1985). The

first is the Kida flow, which is most symmetric and the next initial condition is the Taylor-Green

vortex, which is slightly less symmetric than the former. In this work we simulate only one-eigth

of the total domain i.e half in each direction, therefore using only mirror symmetries. Finally, a

set of Hill’s vortices is considered, for which no symmetry is assumed. This order was followed

to rule out effects of special symmetries of the flow on the universal features described in this

work.

3.4.1 Kida-Pelz flow

Kida proposed a class of highly-symmetric periodic initial conditions, for the computational

study of high Reynolds number flows known as Kida-Pelz (KP) initial condition (Kida 1985):

ux (x, y, z) = U0 sin x (cos 3y cos z − cos y cos 3z),

uy (x, y, z) = U0 sin y (cos 3z cos x− cos z cos 3x),

uz (x, y, z) = U0 sin z (cos 3x cos y − cos x cos 3y).

(3.20)

The mirror symmetries and rotational symmetries in this initial condition are compactly given

by

ux(x, y, z) = uy(z, x, y) = uz(y, z, x), (3.21)

ux(x, y, z) = −ux(2π − x, y, z),

= ux(x, 2π − y, z),

= ux(x, y, 2π − z).

(3.22)

ux(x, y, z) = −ux(π − x, z, y),

= ux(x, π − z, y).
(3.23)

These symmetries expressed in terms of Fourier coefficients is

ûx(k1, k2, k3) =







ûy(k3, k1, k2) = ûz(k2, k3, k1)

−ûx(−k1, k2, k3) = ûx(k1,−k2, k3) = ûx(k1, k2,−k3)

±ûx(k1, k3, k2) for k1, k2, k3 = even/odd

0 otherwise

(3.24)

Thus, the information of a single component of the velocity in a fundamental box (0 ≤ x, y, z

≤ π/2) which is 1/64 in volume of the periodic box, with only N3/192 independent degrees of

freedom out of a total 3N3 is sufficient to describe the whole velocity field. This initial condition

is shown by the iso-surfaces of vorticity magnitude in figure 3.6. This reduces both memory and

computational requirements considerably, making this an attractive initial condition for the DNS
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of turbulence. Also, it has been argued by Kerr (1993) that more symmetries than the ones

present in Taylor-Green vortex are preferred in order to observe a singularity. Thus, KP flow is

thought to be a more likely candidate for finite time singularity than the TG flow Cichowlas &

Brachet (2005). Thus, this flow was used as a potential initial condition by many, such as Pelz

(2003); Gulak & Pelz (2005), to study the problem of Euler blow-up. DNS of viscous turbulence

was analyzed, using this initial flow condition by Boratav & Pelz (1994). Spectral methods

are used in Kida & Murakami (1997); Boratav & Pelz (1994, 1995, 1997) for the numerical

investigations starting with these initial conditions. Recent articles on the turbulence analysis

of symmetric flows in a periodic box include Orlandi & Pirozzoli (2010); Orlandi et al. (2012).

Figure 3.6: Iso-surfaces of vorticity magnitude for KP initial condition

3.4.2 Taylor-Green

The Taylor-Green (TG) flow is one of the simplest setup to investigate the generation of small

scales by three-dimensional vortex stretching and the resulting onset of turbulence Brachet et al.

(1983). The TG initial condition is

ux (x, y, z) = U0 sin x cos y cos z,

uy (x, y, z) = −U0 cos x sin y cos z,

uz (x, y, z) = 0.

(3.25)



26 Chapter 3. Universal mechanism for saturation of vorticity growth

The mirror symmetries symmetries in this initial condition are

ux(x, y, z) = −ux(2π − x, y, z),

uy(x, y, z) = uy(2π − x, y, z),

ux(x, y, z) = ux(x, 2π − y, z),

uy(x, y, z) = −uy(x, 2π − y, z),

ux(x, y, z) = ux(x, y, 2π − z),

uy(x, y, z) = uy(x, y, 2π − z).

(3.26)

and the rotational symmetries are

ux(x, y, z) = ux(2π − x, y, z),

uy(x, y, z) = −uy(2π − x, y, z).
(3.27)

The symmetries in this initial condition are shown by plotting iso-surfaces of vorticity in fig-

ure 3.7. Thus for a three dimensional system rather than 3N3 independent degrees of freedom,

only N3/64 are required, thus reducing the memory requirements by factor of 64. The dynam-

ics of both the inviscid and viscous TG three-dimensional vortex flows have been investigated

extensively in the literature.

Figure 3.7: Iso-surfaces of vorticity in Taylor-Green initial condition

3.4.3 Hill’s spherical vortex

The third initial condition investigated in this work is the Hill’s spherical vortex (Aivazis &

Pullin 2001). Each vortex consists of a vorticity-containing sphere, in which the vortex lines are
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circles about the direction of propagation and the magnitude of the vorticity is proportional to

the radius of the circle. Six Hill’s vortex blobs, moving perpendicular to each side of the periodic

cube, towards the center, have been used as an initial condition to trigger turbulence, as shown

in figure 3.8, as a result of their collisions at the center. In cylindrical polar coordinate system

(R, φ, z), if a vortex of radius a moves with speed U along the z-axis, and the location of its

center is Z, then the vorticity distribution, ω = (0, ωφ, 0) is (Aivazis & Pullin 2001)

ωφ =

{

AR if R2 + (z − Z)2 < a2

0 if R2 + (z − Z)2 > a2
(3.28)

where A = 15 U/2 a2. In terms of velocity field it is approximately

uR =







3UR (z−Z)
2a2

if r <= a

3a3UR (z−Z)
2r5

if r >= a

uz =







U 5a2−3(z−Z)2−6R2

2a2 if r <= a

a3U 3(z−Z)2−r2

2r5
if r >= a

(3.29)

where r2 = R2 + (z − Z)2, R = r sinθ, z − Z = Rcosθ such that the component of r along the

direction of advancement is r cosθ. Although the Hill’s vortex is not represented exactly by the

velocity field, (as signaled by a non-zero compressibility), due the jump in vorticity across their

surface, the simulation remains nearly incompressible (|∇ · u| ≤ 10−3).

Figure 3.8: Vorticity iso-surfaces of Hill’s spherical vortices moving perpendicular to the sides
of the cube towards the center at t = 0.



28 Chapter 3. Universal mechanism for saturation of vorticity growth

3.5 Energy spectrum and universality

In this section, we focus our attention on the transient towards steady state, and in particular,

on the time interval around the primary peak in maximum vorticity. Maximum vorticity ωmax

at a given time is

ωmax(t) = ‖ω(xα, t)‖∞ (3.30)

which is same as finding the vorticity magnitude with highest value in the entire domain at a

given point of time, as shown in figure 3.9 for KP flow. In particular, we investigate the time
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Figure 3.9: Maximum vorticity ωmax for KP at Re = 5000 with 10243 resolution.

evolution of kinetic energy spectrum E(k). Our simulations suggest that the spectrum observed

in connection with local enstrophy saturation, around t ∼ 2 (for KP), are convincingly close to

k−3 log k. In order to highlight the generality of our results, figure 3.10, reports a normalized

energy spectrum as a function of the dimensionless wavenumber k η and dimensionless energy

E(k)/En, where En = (ǫ ν5)1/4. This figure highlights the occurrence of k−3 log k spectrum,

which suggest a spontaneous arrangement of the flow towards a quasi 2D structure, as an

effective mechanism to tame vorticity growth (Frisch 1995). Away from the peak, normalized

energy spectrum at later time, when turbulence is well developed, is plotted in figure 3.11 to

inspect the attainment of the Kolmogorov 5/3 law. This indicates that our simulations are

convincingly in high Re domain.

Figure 3.12, presents an extended sequence of energy spectra (top and mid panels), corre-

sponding to the square symbols in the bottom panel, where the time evolution of the maximum

vorticity for the KP flow is shown. This sequence highlights a tendency towards a k−3 log k

spectrum in the initial stage of the evolution, up to about t = 2.5, and the subsequent long-term

rearrangement towards a Kolmogorov spectrum (see also the associated movies in the Supple-

mentary Material). Similar extended sequence of energy spectra is shown for TG simulation in

figure 3.13, where peak event is observed around t ∼ 6.5, around which the energy spectrum

aligns towards a k−3 log k scaling.

To further validate the scaling in energy spectrum around the peak in maximum vorticity,
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Figure 3.10: (Left) Normalized energy spectra of the KP and TG flow, at the t = 2.04 for KP
and t = 6.45 for TG. In both cases, the figures provide neat evidence of a k−3 log k spectrum,
in correspondence with the vorticity peak. (Right) Compensated energy spectra of the KP and
TG flows. The figure provides a clear evidence of a k−3 log k spectrum, to be compared with
the horizontal k−3 line. This highlights a clear need for a logarithmic correction, in synchrony
with the first maximum vorticity.
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Figure 3.11: Normalized energy spectra of the KP and TG flows, at t = 10 and t = 12,
respectively. In both cases, the figure shows evidence of the k−5/3 Kolmogorov scaling.
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Figure 3.12: Energy spectra at t = 1, 1.5, 2.05, 2.5, 3.5, 10 (top and mid panels), corresponding to
the square symbols in the bottom panel, reporting the time evolution of the maximum vorticity
for the KP flow at Re = 5000 with 10243 resolution. Continuous and dashed straight lines
indicate k−3 log k and k−5/3 respectively.

we show an extended sequence of energy spectra in time for a set Hill’s vortices initial condition

(as discussed in the earlier section) in figure 3.14. This spectra also confirms that the energy

scaling has in fact a k−3 log k scaling in sync with the peak in maximum vorticity.

Finally, the spectra tend to adjust towards the long-term −5/3 Kolmogorov shape. Inspec-

tion of the spectral movies (see Supplementary Material) suggests of this “oscillation” between

the k−3 log k and k−5/3 power spectra, the residency time in k−3 log k being shorter and shorter

as time unfolds. The same qualitative picture is observed for both KP and TG vortices, the latter

exhibiting more persistent multiple peaks (at a given Re). This lends further weight to the con-

jecture that freely decaying, three-dimensional homogeneous, incompressible fluid turbulence,

exhibits universality not only in its asymptotic, Kolmogorov, steady-state, but also in the tran-

sient stage towards such an asymptotic steady-state. It seems that the long-term Kolmogorov

state cannot be attained, unless the system goes first through the k−3 log k transient.

Here, it should be noted that, though figure 3.10 is showing less than half a decade of

k−3 log k range, the trend is pretty much towards k−3 log k, the relatively narrow range being

due to limited numerical power for high Reynolds flows. On the other hand, to extrapolate our

results to very high Re domain, Euler simulations are also performed with different resolutions.

From Euler simulation results, as plotted in figure 3.15, it is apparent that the trend is towards a

k−3 log k spectrum, which is then visible for over a decade. Sensitivity analysis of the spectrum,

via plotting k3E(k) as a function of k in figure 3.15 (left), clearly indicates the requirement

for a logarithmic correction. This is indeed confirmed with the curve fit to the simulation data
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Figure 3.13: Energy spectra at t = 4.4, 5.75, 6.45, 7.225, 8.7, 11.725 (top and mid panels), cor-
responding to the square symbols in the bottom panel, reporting the time evolution of the
maximum vorticity for the TG flow at Re = 5000 with 10243 resolution. Continuous and dashed
straight lines indicate k−3 log k and k−5/3 respectively.

yielding, k0 = 3.2 ± 0.6 and n = 1.33 ± 0.09 as shown in figure 3.15 (right), which is decidedly

a better fit to the simulation data than a plain k−3 spectrum.

3.5.1 Initial transient: An inviscid growth

In this section it is argued that the transient dynamics, i.e the attainment of k−3 log k in energy

spectra, observed in the simulations of the KP and TG flows is inviscid in nature. In figure 3.16,

time evolution of energy at different Reynolds number for the case of Kida-Pelz(KP) and Taylor-

Green flows is reported, which demonstrates that, in the initial stage of the evolution (t < 2.5

and t < 6.7 respectively), the system behaves like an almost inviscid fluid. Figure 3.17 presents

the total enstrophy, Ω(t), integrated over the entire volume, as well as the maximum vorticity,

ωmax(t), as a function of time, for the KP and TG flows at Re = 5000 with 10243 resolution.

This figure reveals the existence of a sharp peak in ωmax at t ∼ 2.1 and t ∼ 6.5 respectively,

marking the end of the inviscid exponential enstrophy growth. The primary peak is followed by

a series of minor sub-peaks, on top of a slowly decreasing trend towards the statistical steady

state.

To show that the peak event in maximum vorticity is taking place in the high Re regime

we report the Taylor micro-scale Re for KP and TG in figure 3.18. Reynolds number based on
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Figure 3.14: Energy spectra at t = 1.0, 1.5, 2.1, 2.5, 3.5, 4.96 (top and mid panels), corresponding
to the square symbols in the bottom panel, reporting the time evolution of the maximum vorticity
for a set of Hill’s vortices with 7683 resolution. Continuous and dashed straight lines indicate
k−3 log k and k−5/3 respectively.

Taylor micro-scale is (Frisch 1995)

Reλ =

√

10

3

E(t)

ν
√
Ω
. (3.31)

In figure 3.18, Reλ is plotted as a function of time, for both KP and TG, showing that the Taylor

micro-scale Reynolds number is much above hundred around the peak event in both cases. In

fact Reλ ∼ 380 at t = 2.05 for KP flow and Reλ ∼ 327 at t = 6.45 for TG flow, at Re = 5000

with a resolution of 10243.

Since total dissipation is approaching zero rapidly (Table 3.1), while spectra are becoming

closer and closer to k−3 log k, we believe that vorticity saturation is basically inviscid and even

local dissipation has not much role to play in this stage of the evolution. This scenario is

verified with additional inviscid (Euler) runs, which indicates inviscid nature of scaling as given

in table 3.1. We remind that the minor energy loss in the case of Euler simulations is due to

the numerical dissipation. To back-up this assertion, figure 3.19 reports the peak time, tp, at

which the main peak occurs, as a function of the Reynolds numbers. For both KP and TG

vortices, this peak time is largely insensitive to the Reynolds number, in the full explored range

1000 < Re < 10000 of NS simulations.
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Figure 3.15: Compensated energy spectrum at t = 2.0 for Euler simulations of KP flow, (left)
showing the necessity for logarithmic correction. (Right) Compensated energy spectrum as a
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Figure 3.16: Time evolution of the kinetic energy at different Reynolds numbers for KP and TG
flows respectively. The figure demonstrates that the kinetic energy is conserved up to within
a few percents in the initial stage of the evolution till the peak event (t < 2.5 and t < 6.7
respectively). Total enstrophy and maximum vorticity of the KP and TG flow respectively at
Re = 5000 with 10243 resolution, as a function of time.

Reynolds number % of initial energy Peak time Resolution

5000 95.924 2.050 10243

10000 97.71707 2.040 15363

Euler 99.99867 2.025 10243

Euler 99.99973 2.025 15363

Table 3.1: Total energy dissipation, in correspondence with k−3 log k spectrum, for the case of
KP flow
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Figure 3.17: Total enstrophy and maximum vorticity of the KP (left) and TG (right) flows at
Re = 5000 with 10243 resolution, as a function of time.

Figure 3.18: Taylor micro-scale Reynolds number Reλ for KP (left) and TG (right) flows at Re
= 5000 with 10243 resolution.
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Figure 3.19: Time at which maximum vorticity is attained with Reynolds number for KP and
TG initial conditions. The figure shows that this event is almost independent of Re suggesting
inviscid dynamics in the flow at that particular instant.

3.5.2 Possible mechanisms to tame the vorticity growth

While existing theories based on non-linear depletion concentrate on topological changes of

vortex tubes (Frisch et al. 2003), the simulations of this work suggest that blowup may stop

due to the interactions between vortex tubes of dissimilar stretching and magnitude. This is

illustrated in figure 3.20, where it is shown that each iso-surface of vorticity supports a mix

of positive and negative stretch, throughout the domain. Though any conclusive, direct proof

of the dominance of such interaction cannot be offered, nevertheless a series of indirect proofs,

lending weight to such a conjecture is obtained. The first indirect evidence is the detection of

quasi-two-dimensional spectrum, with exponent close to −3 (in fact k−3 log k), which suggests

that such events would be promoted by an underlying reverse energy cascade (Kraichnan 1967).

For this purpose, we plot the third order structure function given by

S3(r) =

〈[

(vβ(xα + rα)− vj(xα))
rβ
r

]3
〉

(3.32)

where vβ is the velocity, rα is the position vector from a given point xα and 〈〉 denotes spatial

average. The figure 3.21 (left) near peak (t = 2.05), clearly shows that the third-order structure

function S3(r) is positive at sufficiently large separations, r > 10, thereby pointing to an inverse

energy cascade at those scales. On the other hand, around the Kolmogorov time-zone(t = 4.8),

S3(r) is mostly negative, in the small-scale region (r < 10), thereby signaling a direct energy

cascade.

Spectral exponents between 2.68−3.29, right after the rms vorticity maximum, were reported

before, in spectral simulations of TG vortex at Re = 1600 and Re = 3000 (Brachet et al. 1983;

Orlandi & Pirozzoli 2010). However, potential connections between two-dimensionalization of

the local fluid structure and taming of enstrophy blow-up, have not received any special attention
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Figure 3.20: Iso-contours of vorticity in KP flow for Re = 2000 with 7683 resolution at t = 1.15.
(a) High vorticity at ω = 58, with positive (orange) and negative (black) stretching. (b) Low
vorticity at ω = 29 with positive (red) and negative (blue) stretching. These pictures highlight
the coexistence of positive and negative stretch regions within the same iso-surface and shows
the dominance of positive stretch structures at this early stage of the evolution.

Figure 3.21: Structure function S3(r) near peak (left) and near the Kolmogorov time region
(right) of the KP flow at Re = 2000 with 7683.
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to date. The running argument being that transients are relatively uninformative, as they

depend on non-universal morphological details, as opposed to the universal statistical features

exposed by energy spectra in the time-asymptotic regime. Here, it is contended that even the

morphology-driven transient dynamics can exhibit universality. Figure 3.22 shows that ribbon

like two-dimensional structures intertwined with each other, as predicted by non-linear depletion

mechanism emerges due to non-linear interactions.

Figure 3.22: KP flow around the peak at Re = 1000 with 5123 resolution. This figure shows
the ribbon/ lasagna like two dimensional structures intertwined with each other, supporting the
non-linear depletion.

On the other hand, since the spectra obtained look convincingly closer to k−3 log k than

k−3, there is decided scope to pursue a detailed analysis of the transient, especially in the

close vicinity of the primary peak. It is reminded that the logarithmic correction bears a major

conceptual importance, as it implies that the flow is not just locally smooth, but supports instead

non-local effects, leading to quasi-two dimensional physics, namely a significant scale separation

between the large-scale straining structures and the small-scale strained ones. Note that the

departure from a pure k−3 power-law and the associated log k correction, as well recognizable

in figure 3.10, indicates that the flow is marginally non-smooth. This observation is also backed

up by the detection of a local inverse energy cascade in coincidence with the universal quasi-

two-dimensional transient as shown in figure 3.21.
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3.5.3 Statistical analysis

In this section, we describe a statistical analysis of the correlation between the stretch term

s, as defined in equation 3.17 and the local enstrophy. For this purpose we define four basic

types of structures, namely Low-vorticity-Negative-stretch (LN), High-vorticity-Positive-stretch

(HP), Low-vorticity-Positive-stretch (LP), High-vorticity-Negative-stretch (HN) as shown in the

figure 3.23, based on low (high) vorticity and positive (negative) stretch are introduced. In the

Figure 3.23: Stretching versus Enstrophy scatterplot (enstrophy phase-space) for the case of the
KP vortex at t = 2.15 (blue), t = 2.175 (red) and t = 2.2 (green) for Re = 1000 with 5123.
The local stretching s(x, y, z) identifies with the (signed) growth rate of a the local enstrophy
Ω(x, y, z).

figure all points located on the vertical line Ω = Const. belong to the same iso-vorticity contour

|ω|(x, y, z) = Const. The horizontal axis, s = 0, defines the neutral “depletion line”. The

figure demonstrates that the peak of enstrophy is associated with the population of the high-

vorticity quadrants, with a (non-exclusive) prevalence of growing structures. The figure also

shows that the extremal dynamics is entirely dictated by HP’s, as no HN event can be found

beyond approximately Ω ∼ 2.

LN are the weakest structures, the ones most in danger of disappearing, while HP stand just

for the opposite trend; they are high in vorticity and still growing. They would absorb the entire

enstrophy budget upon untamed growth. The other two, LP and HN, are in principle the carriers

of stable behavior. As witnessed by the iso-surfaces shown in the figure 3.20, such four structures

strongly intermix as a consequence of the complex structural dynamics of vorticity tubes(see

Supplementary Movie 2). Though the HP structures are the energetic ones with high vorticity,

interestingly, the highest stretch is realized by the LP events, which feature smax ∼ 1. However,

the HN’s are very ephemeral, as they quickly decay into LN’s. If only in descriptive terms, this
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population-dynamics schematization indicates that the blow-up scenario would correspond to

a complete decoupling of the HP population from the other three, a literal form of untamed

enstrophy growth.
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Figure 3.24: Probability distribution of the local stretch in the LV(< ωmax/2, normalized by
the total number of events in LV) (top) and HV(> ωmax/2) (bottom) regions, respectively, at
t = 2.0 (left), t = 2.1 (middle) and t = 2.2 (right) of KP flow at Re = 104, with 15363.

Figure 3.24, reports the probability distribution function (PDF) of the stretch s in the Low-

Vorticity (LV) and High-Vorticity (HV) regions for the KP flow. The figure demonstrates a

bell-shaped distribution of both positive and negative growth populations in the LV and HV

sectors, with a mild prevalence of positive ones, realizing a positive average stretch. This is shown

in figure 3.25, where iso-contours of stretch, with positive and negative stretch, are shown during

the initial evolution time. The bell shaped form of the distribution demonstrates that non-linear

depletion, s ≈ 0, is indeed taking place in the system. The distribution in the HV sector is very

rough, due to the much smaller number of HV counts, roughly 0.01%, as compared to the LV

ones. The substantial shift towards positive growth, is nevertheless quite visible in both cases.

The mean growth rate is positive in both cases, with a substantial increase in the HV regions,

where the PDF shows a neat shift towards positive s. Visual inspection of the iso-vorticity

contours in figure 3.20 proves fully consistent with the above picture.

It is observed that at any value of the enstrophy, the LV region contains both positive and

negative growth rates, indicating a coexistence of growing and decaying subregions (LP and

LN), within the same iso-vorticity surface(figure 3.20). The bulk population in the LV region

is centered around the “depletion line”, s = 0, with a prevalence of mildly positive stretch. A

progressive shift towards larger positive s is observed while moving towards the HV region. By

and large, the bulk of the events happen around the region |s| ≤ 0.1 , thereby supporting the

picture of non-linear depletion as seen in figure 3.22. It also observed that at all times, the LV

sector is vastly populated than the HV sector. The latter is populated only around the outburst

of the enstrophy peak, as shown in the figure 3.26, through both HP and HN populations,

contributing nonetheless four orders of magnitude less events than the LV populations. In spite
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Figure 3.25: Iso-contours of stretch in the KP flow for Re = 2000, with 7683 resolution at
t = 1.15. (a)High stretch at s = 0.11 with positive (blue) and negative (red) stretching. (b)Low
stretch at s = 0.055 with positive (blue) and negative (red) stretching. Like for vorticity, positive
stretch regions dominate the dynamics.

of their paucity in number, these events carry a sizable weight on the overall enstrophy budget,

and a dominant one on the local enstrophy peak as shown in figure 3.16, which carries de facto

their signature. Both HV populations are ephemeral, i.e. they vanish away from the peak

interval. However, their lifetime is nonetheless fairly appreciable on the overall time scale of

the flow, as it lasts about 0.3 global transit times. Thus the statistics of these populations,

show a strong prevalence of (mildly) growing ones, with an outburst of strong growers, right

before the vorticity peak, followed by subsequent re-absorption after the peak. Figure 3.26

clearly demonstrates the outburst of HV events around the vorticity peak. The HV structures

are formally unstable, in the sense that their lifetime is confined to the time interval around

the peak. Away from the peak, the enstrophy evolution is dictated by a dynamic equilibrium

between growing and decaying low-vorticity structures, which undergo a few damped oscillations

before settling to a steady state. From the above observation, we would like to infer that the

blowup around the peak, due to HV structures, might be avoided by interaction with that of

LV structures, redistributing the energy. The small scale HV structures interact (collision like

events) with large scale LV structures resulting in an inverse energy cascade.

3.6 Movies

The spectral dynamics of the flows explored in this work is best exposed by visual inspection of

the attached movies (see supplementary material), as detailed below.

1. Kida-Pelz (SupplementaryMovie1-a)

This movie refers to the KP initial condition at Re = 5000, with a spatial resolution of

10243, using a PS code. It shows three plots of maximum vorticity versus time, energy

spectrum and Taylor micro-scale Reynolds number versus time, respectively. The k−3 log k

scaling (middle plot) in energy spectrum, in relation with the attainment of the first
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Figure 3.26: Cumulative number and separate enstrophy count in the four quadrants of the
scatter plot, as a function of time of KP at Re = 1000 with 5123 resolution.

maximum in maximum vorticity at t ∼ 2.1, is well apparent in the movie. The spectrum

quickly aligns with the k−3 log k line when the first maximum in maximum vorticity is

reached, and then moves towards the k−5/3 scaling, when the magnitude of maximum

vorticity decreases and the flow enters a constant decay stage. The movie runs from t = 0

to t = 10.

2. Kida-Pelz (SupplementaryMovie1-b) There some indication from tracking of maximum

vorticity that vorticity saturation is driven by collision-like events among high vorticity

blob (0.9 of maximum vorticity at a given time, shown in movie in yellow color) and low

vorticity blobs (0.5 of maximum vorticity at a given time, shown in movie in green color).

It is also shown that the high vorticity zones are initially not only getting more and more

stretched but also approach each other in the central core of the box. However, before high

vorticity zone come very close to each other, their interaction with low vorticity object

(termed by us as collision) manage to stop the growth of vorticity magnitude. This movie

clearly shows that, near t = 2.1, collision-like events are dominant. The snapshots of the

movie at various instants is plotted in the figure 3.27.

3. Taylor-Green (SupplementaryMovie2)

Like the previous one, this movie shows the simulation result of TG initial condition at

Re = 5000 and N = 10243, from t = 0 to t = 12, using a PS code. Unlike the KP

flow, the maxima in maximum vorticity is attained at t ∼ 6.5, where the k−3 log k scaling

is observed. From the movie, it is also evident that the global maximum in maximum

vorticity is reached long after the first local maximum. The flow then goes towards the

steady decay, where k−5/3 scaling in energy spectrum is observed.

4. Hill’s Vortices (SupplementaryMovie3)

This movie refers to the simulation of a group of six Hill’s vortices, one from center of each

side, colliding at the center of the periodic box. This initial condition is different from
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Figure 3.27: Snapshots at t = 0.05, 1.2, 2.06, 2.5, 5.0, 9.0 showing the collision like events at t∼
2.0 for KP at Re = 1000 and 5123 resolution

the previous ones, as it shows no symmetry. Notwithstanding this lack of symmetry, the

movie confirms the existence of k−3 log k scaling, in accordance with the first maximum

of maximum vorticity. It should also be noted that PS methods with periodic boundary

conditions cannot represent exactly the jump in vorticity across the boundary of the vortex.

This implies a small violation of incompressibility which shows however no appreciable

effect on the spectral dynamics of the flow.

3.7 Conclusion

Simulations of decaying turbulence in the range 1000< Re< 10000, with resolution up to 15363

are performed. Three different initial conditions namely KP, TG and set of Hill’s vortices are

used. The results from the simulations suggest that the transient dynamics concurrent with

peak in maximum vorticity might be associated with a universal scaling of k−3 log k in energy

spectrum. This is accompanied by an inverse energy cascade which suggests a redistribution

of energy between high-vorticity small scale structures and low-vorticity large scale structures.

The taming of the vorticity might possibly happen due to these interaction (termed collision like

events) between high-vorticity positive-stretch and low-vorticity structures. Further, statistical

analysis around the peak event shows that the high-vorticity positive structures are avoided from

growing any further by moving towards a zero stretch, possibly by local two-dimensionalization.



Chapter 4

Quasiequilibrium lattice Boltzmann

models

4.1 Introduction

It was recently shown that for high resolution DNS, the energy conserving lattice Boltzmann

models deliver an order of magnitude increase in accuracy, as compared to their athermal coun-

terpart(Singh et al. 2011). This was attributed to the absence of unphysical bulk viscosity in

the thermal model. However, it was also found that in the under-resolved regime, very often,

the athermal model behaves better than the energy conserving model. It can be argued that in

under-resolved domain, the high bulk viscosity present in athermal model, helps damping down

the acoustic oscillations. Thus, it is natural to wonder whether it would be possible to keep best

of both approaches. The aim of the present work is to show that it is indeed possible to de-

sign an energy conserving LB model which is efficient in damping acoustic oscillations and thus

uniformly better than its athermal counterpart. Part of this work is to appear in International

Journal of Modern Physics C (IJMPC).

In section 4.2, we show the empirical observation that models with higher bulk viscosity are

better at reducing acoustic perturbations, is consistent with linearized hydrodynamics. Further-

more in section 4.3, we argue that high energy dissipation introduced via low Prandtl number, is

also an effective mechanism to damp down the acoustic perturbations and that low Prandtl num-

ber simulations are preferable to high bulk viscosity simulations in the non-linear flow regime.

Section 4.4 gives the details of the single relaxation LB formulations. In section 4.5, we in-

troduce the multi-relaxation LB with tunable Prandtl number to effectively damp the acoustic

fluctuations. From two-dimensional and three-dimensional numerical simulations, we show the

advantage of the model discussed over available LB models in section 4.6. Finally we conclude

in section 4.7.

4.2 Linear analysis of compressible Navier-Stokes

In this section, we briefly remind the reader about decay of acoustic perturbation in linearized

hydrodynamics, governed by (Chaikin et al. 2000)

∂jα
∂t

+ ∂αp−
η

ρ
∇2jα − 1

ρ

(

ζ +
η

3

)

∂α∂βjβ = 0 (4.1)

where jalpha is momentum, p is pressure, η is the shear viscosity, ρ is density, ζ is bulk viscosity.

To this aim, we follow the usual prescription of decomposing the momentum j into longitudinal

43
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and transverse components as

jα = jα
l + jα

t, ∇× jl = 0, ∂αjα
t = 0. (4.2)

In this approximation, it is readily shown that the dynamics of the transverse component is fully

decoupled from longitudinal component and obeys diffusion equation

∂tjα
t =

η

ρ
∇2 jα

t, (4.3)

Similarly, the longitudinal part of the dynamics can be written as (Chaikin et al. 2000)

[

−∂t
2 +

1

ρ

(
4

3
η + ζ

)

∂t∇2

]

δρ(x, t) +
∂p

∂ρ

∣
∣
∣
∣
S

∇2δρ+
1

Tρ

∂p

∂s̃

∣
∣
∣
∣
ρ

∇2q̃ = 0, (4.4)

where S is the entropy, s̃ is entropy per unit mass, T is the temperature, q̃ is the heat per unit

mass and ∂tq̃ = κ∇2T (x, t) where κ is thermal conductivity.

This equation can be solved analytically for special initial conditions. A model initial con-

dition for numerical solution is delta perturbation in density. In this case, it is known that

any density perturbation decays at a distance r from the disturbance source as (Lifshitz 1987;

Ansumali & Karlin 2005),

δρ(r, t) = (LaL r)−
1

2 exp

(

−(r − cst)
2

2LaL r

)

, (4.5)

where, L is the characteristic length and La is the Landau number, defined as the ratio of sound

propagation timescale (L/cs) to the viscous dissipation time scale(L2/ν).

The Landau number can be expressed in terms of the Knudsen number Kn (ratio of Mach

number Ma and Reynolds number Re) and the Prandtl number Pr as (Lifshitz 1987)

La = Kn(2− 2

D
+ λ) +

Kn(γ − 1)

Pr
, (4.6)

where D is the spatial dimension, λ is the ratio of bulk to shear viscosity and γ is the ratio of

specific heat at constant pressure and volume.

From this solution, we see that at a given Knudsen number, the density profile becomes

increasingly sharper as the bulk viscosity is decreased. It is known that finite-difference dis-

cretizations of sharp profiles tend to generate spurious waves. Thus, a possible solution for

low-Mach number simulations is to allow for large La, which leads to smoother profile (See

Eq. 4.5). In other words, higher bulk viscosity helps in smoothing the profiles. An alternative

way of increasing La, is to perform simulations at very low Prandtl number. Physically, this

means that acoustic fluctuations die out faster in metals than in gases. Here we remind that

the Prandtl number is largely irrelevant to low-Mach number isothermal dynamics, and conse-

quently, customizing it to effectively dampen acoustic waves, appears to offer a viable strategy.

However, we must stress that linear hydrodynamics cannot predict which one, whether low-

Prandtl number or high bulk viscosity, is to be preferred for numerical simulations.
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4.3 Non-Linear Hydrodynamics

In this section, we briefly analyze the effect of non-linear terms on the previously discussed

issues. The nonlinear term in momentum balance equation is given by

∂β

(
jαjβ
ρ

)

= ∂β

(

jlαj
l
β + jtαj

t
β

ρ

)

+ jtβ∂β

(
jlα
ρ

)

+

(
jtα
ρ

)

∂βj
l
β + jlβ∂β

(
jtα
ρ

)

= ∂β

(

jlαj
l
β + jtαj

t
β

ρ

)

︸ ︷︷ ︸

A

+ ǫαβγǫγθκ∂β

(

jlκ
jtθ
ρ

)

︸ ︷︷ ︸

B

+ jtβ∂β

(
jlα
ρ

)

+

(

jtβ
ρ

)

∂βj
l
α + jlα∂β

(

jtβ
ρ

)

︸ ︷︷ ︸

C

,

(4.7)

where the term {B} does not contribute to the longitudinal dynamics and provides a source

for the transverse component evolution equation. Similarly, the term {C}, which is also linear

in jl, shows that there is a contribution from the longitudinal to the transverse part evolution.

The choice between low-Prandtl number or high bulk viscosity can be made by observing that

the longitudinal and transverse components are coupled in the nonlinear hydrodynamics. In the

non-linear regime, unphysical dynamics of longitudinal part (change in bulk viscosity) also affect

the transverse part. Therefore, it may be argued that introducing a very high bulk viscosity in

the model may corrupt the numerical simulation. This was indeed reported in the recent work,

where it was observed that, when resolution is sufficiently high, models with bulk viscosity do not

converge to the right solution(Singh et al. 2011). Based on the above, we believe that acoustic

fluctuations are best controlled by introducing an artificially high thermal conductivity (low-

Prandtl number). Here, we remind that the error introduced because of temperature dynamics

(driven solely by viscous heating) is at least of second order in momentum.

4.4 Isothermal and thermal LB formulation

The LB method is a real-space, kinetic formulation of the equations of fluid dynamics, based

on a minimal Boltzmann equation defined on very limited set of discrete velocities in a regular

lattice. Since LB is also described in detail in the current literature (for review see Benzi et al.

(1992); Chen & Doolen (1998); Succi (2001); Aidun & Clausen (2010)), here we shall simply

recall the basic ideas behind the method. In the LB formulation, the fluid is represented by a set

of discrete populations f = {fi(x; t)}, describing the probability of finding a particle at position

x in the lattice, at time t and with discrete velocity ci (i = 1, · · · , N). Since the particles are

grid-bound, the number of discrete velocities, N , also defines the connectivity of the lattice.

Therefore the basic variables in LB are the discrete populations fi defined for a set of discrete

velocities ci (i = 1, · · ·N). The evolution equations for these discrete populations are in the

form

∂tfi + ciαfi = Ωi(f), (4.8)

where Ωi is the collision term and it ensures that the dynamics goes to the chosen equilibrium.

In the entropic formulation of LB, in order to define equilibrium one begins by assuming the
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existence of a discrete H functional (Ansumali et al. 2003) in the form

H =

N∑

i=1

[

fi

(

ln

(
fi
wi

)

− 1

)]

, wi > 0, (4.9)

where wi are the normalization weights. Once the lattice H-function is known, the equilibrium

f eq can be evaluated as a minimum of the H-function under constraints of local conservation

of macroscopic variables such as the mass density, ρ, the momentum density Jα ≡ ρuα, and

the energy which is trace of the pressure tensor P ≡ 1
2ρu

2 + D
2 ρ θ, where θ is temperature (in

Boltzmann units) and D denotes dimension, are defined as linear combinations of the discrete

populations

ρ =

N∑

i=1

fi, ρuα =

N∑

i=1

ficiα P =
1

2

N∑

i=1

fic
2
i . (4.10)

The only difference between isothermal and thermal models is that, in an isothermal model,

constraint on energy conservation is relaxed by taking θ=1/3. This formulation of LB, which

lacks energy conservation implies a finite bulk viscosity.

In the current work, we refer to the so called D3Q27 model, for which mass, momentum and

energy conservation is taken into account. The explicit form of the equilibrium, correct up to

O(u3), reads as follows (Ansumali & Karlin 2005):

f eq
i = ρWi(θ)

[

1 +
uαciα
θ

+
uαuβ
2 θ2

(ciαciβ −Ki(θ)δαβ)
]

, (4.11)

where the temperature-dependent weights are given by

Wi(θ) = (1− θ)D
(

θ

2(1− θ)

)(ci/c)
2

(4.12)

and we have set

Ki(θ) =
2D θ2 +

(
ci
c

)2
(1− 3 θ)

D (1 − θ)
. (4.13)

The latter term reduces to the standard lattice sound speed squared, c2s = 1/3, in the limit

θ → 1/3. Also, in the case of θ = 1/3, f eq
i is given by

f eq
i = ρWi(1/3)

[

1 + 3uαciα +
9

2
uαuβciαciβ − 3

2
uβuβ

]

. (4.14)

The set of discrete populations obeys a discrete evolution equation based on two basic steps:

free-streaming and local collisions. This reads as follows

f∗
i (x, t+∆t) = fi(x, t) + Ωi(f(x, t)),

fi(x, t+∆t) = f∗
i (x− ci∆t, t),

(4.15)

where the collision term Ωi, describes the collisions taking the system towards local equilibrium.

For most hydrodynamic purposes, this collision term can be modeled as single-relaxation time,
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known as a Bhatnagar-Gross-Krook (BGK) model

Ωi =
1

τ
(f eq

i − fi). (4.16)

It is worth mentioning that both the approaches towards hydrodynamics and the numerical

stability of the method, are significantly affected by the details of the collision model. The

main advantage of the lattice kinetic representation is that streaming takes place along the

straight lines defined by the constant discrete velocities. This is a numerically exact operation,

regardless of the space-time complexity of the fluid configuration. This stands in sharp contrast

with the fluid dynamic representation, in which the fluid momentum is transported by its own

fluid velocity, a strongly varying function of space and time in a turbulent flow. Furthermore,

collisions are fully local, thus implying excellent amenability to parallel implementations.

In the next section, we describe the entropic quasi-equilibrium procedure to construct colli-

sion model with multiple-relaxation times, which offers a significant improvement of the numer-

ical stability of the method.

4.5 Generalized quasi-equilibrium LB formulation

In this section, following the procedure outlined in Ansumali et al. (2007), we briefly remind

how Prandtl number as an independent parameter is introduced in LB framework via quasi-

equilibrium models. In this framework, multi-relaxation time is introduced, via the method of

Figure 4.1: Approach to equilibrium in two stages. The quasi-equilibrium, f∗, is found as
a minimum of H-function under constraining the quasi-slow variables, and the curved path
denotes the relaxation trajectory under the effect of the actual Boltzmann collision integral.
In principle, the curved trajectory, could be reproduced by introducing the full spectrum of
eigenvalues of the Boltzmann collision operator.

the so-called quasi-equilibrium distribution. As shown in figure 4.1, BGK is a one-step relaxation

to equilibrium, while the actual multi-relaxation formulation makes use of an intermediate quasi-

equilibrium f∗, (found as a minimum of H-function, under constraints on the additional quasi-

conserved variables, such as the energy flux). The two-step relaxation proceeds as follows. First

comes a fast relaxation to the quasi-equilibrium state f∗, which is then followed by a slow
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relaxation to the equilibrium state f eq. Both relaxation mechanisms are taken in the BGK

form, with τ ≤ τ1 (where τ corresponds to the fast relaxation of f to f∗ and τ1 corresponds to

slow relaxation of f∗ to f eq) (Levermore 1996; Ansumali et al. 2007).

As mentioned above, besides the usual conserved quantities, mass-momentum-energy, also a

quasi-conserved one, namely the energy flux (non-equilibrium part), is included in the relaxation

process given by

ρ =

N∑

i=1

fi, ρuα =

N∑

i=1

ficiα, P =
1

2

N∑

i=1

fic
2
i , ρqα =

N∑

i=1

(fi − f eq
i )c2i ciα, (4.17)

which defines quasi-equilibrium as

f∗
i = Wiexp

(
α+ βθcθ + γc2i + κθc

2
i ciθ
)
, (4.18)

where α, β, γ and κ are Lagrange multipliers.

The two-time relaxation operator in equation (4.8) is given by

Ωi =
1

τ
(f∗

i (ρ,u, θ,q)− fi) +
1

τ1
(f eq

i (ρ,u, θ)− f∗
i (ρ,u, θ,q)) . (4.19)

The resulting quasi-equilibrium distribution reads as follows,

f∗
i = ρWi(θ)

[

1 +
ciα
θ

(
uα − u′α

)
+

uαuβ
2 θ2

(ciαciβ −Ki(θ)δαβ) +
qα

(D− 1)θ2(1− θ)
ciαc

2
i

]

, (4.20)

where we have set

u′α = qα
1 + (D− 1)θ

(D− 1)θ(1− θ)
. (4.21)

The relaxation time τ fixes the dynamic viscosity µ via usual relation, µ = τ p, while the second

relaxation time controls thermal diffusion via the Prandtl number

Pr =
5

2

τ

τ1
. (4.22)

There is no additional computational effort required when going from higher to lower Prandtl

number. The trade-off is between the accuracy and stability. Although, the actual increase in

computational cost is using the multi-relaxation model against a single-relaxation model. Apart

from f eq
i only one additional term namely

f∗
i − f eq

i = qαciα
c2i − (1 + (D− 1)θ)

(D− 1)θ2(1− θ)
. (4.23)

is to be calculated in the code (from which f∗
i can also be calculated). The kinetic equation

Eq.(4.8) is integrated along the characteristics, using the trapezoidal scheme to obtain the fol-

lowing evolution equation:

gi(x+ c∆t, t+∆t) = gi(x, t) (1− 2β) + 2β

[(

1− τ

τ1

)

f∗
i (ρ,u, θ,q) +

τ

τ1
f eq
i (ρ,u, θ)

]

, (4.24)
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where g is the auxiliary population defined as,

g(x, t) = f(x, t)− ∆t

2
Ω (f(x, t)) , β =

∆t

2τ +∆t
. (4.25)

The moments in terms of the auxiliary population g are given by:

ρ(g) = ρ(f), uα(g) = uα(f), T (g) = T (f) and qα(g) = qα(f)

(

1 +
∆t

2τ1

)

. (4.26)

4.5.1 Moment chain

The moment chain for the present model is,

∂tρ+ ∂αjα = 0

∂tjα + ∂βPαβ = 0

∂tP + ∂βQβ = 0

∂tPxy + ∂βQxyβ =
1

τ
(ρuxuy − Pxy)

∂tPxz + ∂βQxzβ =
1

τ
(ρuxuz − Pxz)

∂tPyz + ∂βQyzβ =
1

τ
(ρuzuy − Pyz)

∂tN1 + ∂β (Qxxβ −Qyyβ) =
1

τ

(
ρ(u2x − u2y)−N1

)

∂tN2 + ∂β (Qxxβ −Qzzβ) =
1

τ

(
ρ(u2x − u2z)−N2

)

∂tQβ + ∂γRβγ =
1

τ1

(

Qeq
β −Qβ

)

∂tRαβ · · ·

(4.27)

where,

P =
∑

i

fic
2
i , N1 =

∑

i

fi
(
c2ix − c2iy

)
, N2 =

∑

i

fi
(
c2ix − c2iz

)

Qαβγ =
∑

i

ficiαciγciα, Qα =
∑

i

ficiαc
2
i , Rαβ =

∑

i

ficiαciβc
2
i

These system of equations are not closed, however unlike moment chain encountered in continu-

ous kinetic theory, this moment chain is always closed due to discrete nature of the model. The

underlying hydrodynamics model can be derived using Chapmann-Enskog expansion.

4.5.2 Chapmann Enskog expansion

In order to find the transport coefficients, we perform the Chapmann Enskog (CE) expansion of

the present multi-relaxation Prandtl model. Now, following the typical procedure of expanding
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time derivative and moments in term of smallness parameter ǫ, we have

∂

∂t
=

∂(0)

∂t
+ ǫ

∂(1)

∂t

Pαβ = P eq
αβ + ǫP

(1)
αβ

N1 = N eq
1 + ǫN

(1)
1

N2 = N eq
2 + ǫN

(1)
2

Qαβγ = Qeq
αβγ + ǫQ

(1)
αβγ

Qα = Qeq
α + ǫQ(1)

α

Rαβ = Req
αβ + ǫR

(1)
αβ ,

(4.28)

−P (1)
xy = ∂

(0)
t P eq

xy + ∂γ(Q
eq
xyγ)

= ∂
(0)
t (ρuxuy) + ∂x(Q

eq
xyx

︸ ︷︷ ︸

ρuyT

) + ∂y(Q
eq
xyy

︸ ︷︷ ︸

ρuxT

) + ∂z(Q
eq
xyz)

︸ ︷︷ ︸

0

= −ux∂y(ρT )− uy∂x(ρT ) + ∂x(uyρT ) + ∂y(uxρT ) Neglecting higher order term in u

= ρT (∂xuy + ∂yux)

(4.29)

It means

Pxy = −ρT (∂xuy + ∂yux)

Pxz = −ρT (∂xuz + ∂zux)

Pyz = −ρT (∂zuy + ∂yuz)

(4.30)

Finally,

−N
(1)
1 = ∂

(0)
t N eq

1 + ∂γ(Q
eq
xxγ)

= ∂
(0)
t (ρu2x − ρu2y) + ∂x(Q

eq
xxx −Qeq

yyx
︸ ︷︷ ︸

3Tux−ρuxT

) + ∂y(Q
eq
xxy −Qeq

yyy
︸ ︷︷ ︸

ρuyT−3uyT

) + ∂z(Q
eq
xxz −Qeq

yyz)
︸ ︷︷ ︸

0

= −2ux∂x(ρT )− 2uy∂y(ρT ) + 2∂x(uxρT ) + 2∂y(uyρT )

= 2ρT [ρT∂x(ux)− ρT∂y(uy)]

N
(1)
1 = −2ρT [∂x(ux)− ∂y(uy)]

(4.31)

Similarly,

N
(1)
2 = −2ρT [∂x(ux)− ∂z(uz)] (4.32)

Hence, we have,

P neq
αβ = Pαβ − P eq

αβ = τρT

(

∂αuβ + ∂βuα − 2

3
δαβ∂γuγ

)

(4.33)

which gives shear viscosity as µ = τρT



4.6 Results 51

Now,

−ǫ

τ1
Q(1)

x = ∂
(0)
t (Qeq

x ) + ∂xR
eq
xx + ∂yR

eq
xy + ∂zR

eq
xz

= 2ρT∂xT + terms containing u

Q(1)
x =

τ1
−ǫ

2ρT∂xT + ..........with ǫ → τ since τ ≤ τ1

(4.34)

Putting the about expression in energy equation, we get

Qneq
x = Qx −Qeq

x = −τ1ρT∂xT (4.35)

Hence thermal conductivity in this case is τ1ρT which was 5/2τρT in the continuous case.

Therefore Prandtl number Pr is given by

Pr =
5

2

τ

τ1
(4.36)

4.6 Results

We demonstrate the superiority of the Prandtl model over the iso-thermal and energy conserving

LB model using three two dimensional simulations namely, density perturbation in a quiescent

fluid, TG flow and double periodic shear layer. As a three dimensional validation we provide

simulation results of KP flow with other standard methods.

4.6.1 Density perturbations in two-dimensions

In order to support the discussion in section 4.2, we have carried out numerical simulations to

analyze the density perturbations with different LB schemes. The initial condition is a uniform

velocity (u = 0.05, v = 0.05) and density (ρ = 1.0) throughout the domain except at the center

where the density is perturbed(δρ = 0.01). This initial condition is simulated with isothermal,

thermal and quasi-equilibrium (with variable Pr) LB methods with a grid size of 200×200 and

Re = 100. To show the acoustic damping behavior of various methods we show the L2 norm

of the density perturbation in the domain after 100 iterations with varying La (not directly

but by varying Kn and Pr). Figure 4.2(left) qualitatively shows the density fluctuations in the

domain with initial condition given above after 100 iterations. The La number (see eqn 4.6) for

isothermal, thermal and Prandtl models considering λ = {2/3, 0, 0} ,γ = 5/3 and Pr = {4, 4,
0.1} are {11/6 Kn, 7/6 Kn, 46/6 Kn } respectively where Kn = 1.73×10−4. The figure shows

that the density fluctuations indeed decrease with increasing La number. To quantify the results

obtained, these simulations are performed with varying Kn, shown in figure 4.3 (left), to quantify

the effect of La in damping the acoustic fluctuations. As expected the acoustic fluctuations in

the domain decrease with increasing Kn. Further, the quasi-equilibrium (or Prandtl model) LB

simulation is run with the least of the Kn (1.73×10−4) used in other two methods (i.e with

lowest damping of oscillations), but with varying Pr effectively changing the La. The results

of the simulation are shown in figure 4.3 (right) which are supportive of the fact that density

perturbations decay faster with decreasing Pr number. It should be noted that beyond a certain
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Figure 4.2: Variation of density fluctuation with x with same Kn for the three LB methods
discussed.

limit decreasing Pr number any further would result in deteriorating the results.
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Figure 4.3: (Left)Variation of L2 norm of density fluctuation with Kn at a fixed Pr.
(Right)Variation of L2 norm of density fluctuation with Pr at a fixed Kn.

4.6.2 Two dimensional Taylor-Green vortex

To further validate our method, we have chosen the Taylor-Green vortex simulation as a model

problem, in order to analyze the behavior of an isothermal (with a finite bulk viscosity),

thermal(energy-conserving) and quasi-equilibrium model with tunable Prandtl number. Since

there is no boundary effects, the error analysis reveals the accuracy of different models. This set

up was analyzed earlier, to compare isothermal and energy conserving LB (Singh et al. 2011).

In order to compare the performance of the current model with that of Singh et al. (2011), we
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performed a grid resolution study for the velocity profile whose analytic solution is given by

u(x, y, t) = sinx cos y e−2νt

v(x, y, t) = − cosx sin y e−2νt
(4.37)

along the x direction at a fixed Mach (Ma) and Reynolds (Re) numbers. Here, Ma number is

defined as Ma = U0/cs and Re is based on the characteristic length of the flow-field, taken as

1 in a periodic-box of length 2π, thus Re = U0/ν. As the Prandtl number is just a tunable

parameter in the current study, all our simulations have used Prandtl number Pr ∝
√
Kn and

Kn and La is completely dictated by behavior of Pr. In the current simulations of Taylor-Green

flow, we have chosen
√
Kn = 0.0014. As shown in figure 4.4, even at low grid resolution, the

model with a change in Pr, with different τ/τ1 (here, Pr=4τ/τ1), provides a more accurate

simulation of the Taylor-Green vortex, in comparison to isothermal model (except at a very

poorly resolved regime). This result reinforces the fact that the longitudinal and transverse

components of momentum are indeed coupled, and varying Pr is a better choice than changing

the bulk viscosity.

Figure 4.4: L1 and L2 norm for velocity in x direction at Re = 4000 and Ma = 0.05 for
Taylor-Green vortex with different grid size.

4.6.3 Two dimensional double periodic shear layer

To demonstrate the method qualitatively, we consider the set up of doubly periodic shear layer

in two-dimensions (Brown & Minion 1995) given by

u(x, y, 0) =







tanh(κ(y − 1/4)), y ≤ 1/2,

tanh(κ(3/4 − y)), y > 1/2,

v(x, y, 0) = δsin(2π(x + 1/4))

(4.38)

where κ varies the thickness of the shear layer and δ is the magnitude of the initial perturbation

induced in the simulation. Figure 4.5 shows the vorticity contours of this initial condition.
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Figure 4.5: Iso-contours of vorticity field for double periodic shear layer initial condition

Due to the Kelvin-Helmholtz instability triggered by the perturbation in the initial shear

layers, they roll up and move in the domain. This initial condition is sensitive to the compu-

tational method used because of the presence of large velocity gradients in the domain. Thus,

this initial condition permits a stringent comparison between various methods, both in terms of

stability and accuracy. In present simulation as a representative example of high Re, low Ma

flow we choose Re = 30000, Ma = 0.0693 (U0 = 0.04) for isothermal as well as for simulations

with Prandtl model. The ratio between two time scales in the latter i.e. τ/τ1, is taken to be

0.005 and in this case
√
Kn = .00152. Figure 4.6 shows that the Prandtl model is stable, while

the athermal model blows up at a given lower resolution setup. This simple qualitative compar-

ison shows that the range of applicability of Pr model is more than that of isothermal model,

in sub-grid domain, in term of stability. It can be seen from figure 4.7, that the setup with

Prandtl correction converges towards a steady state value at a higher grid resolution, similar to

isothermal setup.

Figure 4.6: Vorticity field at time=1 on 200×200 grid for athermal (left) and Prandtl (right)
models at Re = 30000, Ma = 0.04.
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Figure 4.7: Vorticity field at time=1 on 312×312 for athermal (left) and Prandtl (right) at Re
= 4000, Ma = 0.05.

4.6.4 Three-dimensional benchmark simulations

As a further stringent test for the current formulation, we use KP flow discussed in the previous

chapter. These simulations are compared with the results obtained from the pseudo-spectral

code. In order to show the accuracy of the present formulation, we compare various physical

quantities, like enstrophy and maximum vorticity. As LB is a primitive formulation of hydrody-

namics, vorticity is not directly accessible in LB simulations. However, the energy and enstrophy

can be calculated on the fly, without taking any spatial derivative. We remind that enstrophy

can be computed from the symmetric velocity gradient tensor (Frisch 1995), which is available

in LB simulations locally via

Sαβ =
2

ρT (2τ +∆t)

∑

i

(f eq
i − fi) ciαciβ, τ =

ν

c2s
. (4.39)

Note that this expression which is based on CE expressions, does not require the calculation of

any explicit spatial derivative.

The results show a good agreement between the LB and PS methods. Enstrophy shown

in figure 4.8, which is more sensitive to the numerical resolution than the kinetic energy, is

compared in both PS and LB. The figure shows the behavior of various methods at different

resolutions. It is evident from the figure that the Pr model captures the peaks better than other

LB models assuming that the PS result is most accurate one among them.

Maximum vorticity which is the infinite norm of vorticity in the entire domain at a given

instant is tracked in time as shown in figure 4.9. This quantity is more sensitive to the grid

resolution than the enstrophy, which is an average quantity over the domain. From this figure

we infer that we are still working in the sub-grid domain and that the Pr model is better or as

good as the other methods.

Longitudinal and transverse correlations of the velocity field are important quantities to

show the variation, in terms of accuracy, of different numerical techniques. These quantities are
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Figure 4.8: Comparison of Enstrophy for Kida flow at Re = 1000 using D3Q27.

Figure 4.9: Comparison of maximum vorticity for Kida flow at Re = 1000.
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given by

ρ11(r) =
〈ux(x, y, z)ux(x+ r, y, z)〉
〈ux(x, y, z)ux(x, y, z)〉

ρ22,33(r) =
〈uy,z(x, y, z)uy,z(x+ r, y, z)〉
〈uy,z(x, y, z)uy,z(x, y, z)〉

(4.40)

Figure 4.10 shows a good agreement of the Prandtl model in comparison with the PS results.

Thus, Prandtl model could capture these velocity correlations effectively.

Figure 4.10: Comparison of velocity correlations for KP flow at Re = 1000.

4.7 Conclusion

The multi-relaxation LB method with tunable Prantl number gives consistent performance in

both sub-grid and fully resolved regimes. However, a more quantitative study is needed to

compare efficiency of LB as compared to PS method in massively parallel environments. The sub-

grid and well resolved simulation results, obtained with the Prandtl model are superior to both

isothermal and energy conserving models. It implies that this model is stable than isothermal

in sub-grid domain and as accurate as energy conserving model in fully resolved simulations.

Thus present formulation increases the utility of LB as a tool for sub-grid simulation.





Chapter 5

Summary and conclusions

High-resolution pseudo-spectral simulations performed in this thesis, suggest that the saturation

of vorticity growth in non-equilibrium transients of homogeneous, incompressible turbulence,

might be associated with a universal scaling of k−3 log k in energy spectrum. The attainment of

such universal transient state is signaled by an intense outburst of high-vorticity and positive-

stretch, structures, whose signature manifests in the form of a clearcut peak in the maximum

vorticity. The statistical distribution of the growth rates indicates coexistence of decaying and

growing subregions on each given iso-vorticity surface. We speculate that the aforementioned

universal mechanism might be the result of a built-in vorticity redistribution policy, whereby the

high vorticity structures are prevented from running away by direct interaction with the low-

vorticity ones. Further, the third order structure function suggests an inverse energy cascade

which suggests interactions between high-vorticity small scale structures and low-vorticity large

scale structures. The two-dimensional-like k−3 log k spectrum in the peak stage of vorticity

growth might be associated with local two-dimensionalization as suggested by visual inspection of

the flow morphology and statistical analysis of the local growth rates on each iso-vorticity surface.

Based on the present simulations, we believe that viscosity would not play any significant role on

the physical picture portrayed in this work. The picture presented in this work is entirely based

on simulation evidence yet to be developed into a quantitative mathematical model. Finally,

while the occurrence of similar behavior across three different types of flows sets a strong pointer

to universality, further explorations are certainly needed to verify the conjecture of universality.

The new energy conserving lattice Boltzmann scheme, Prandtl method, allows to extend the

accuracy to lower resolutions, where conventional energy conserving LB schemes are known to

yield poorer results than their athermal counterparts. Prandtl number plays a sub-dominant

role in low-Mach number isothermal flows so that it can be used as a free tuning parameter to

optimize numerical accuracy and stability via efficient damping of the sound modes. Thus, the

Prandtl number is a better parameter to tune over the bulk viscosity in multi-relaxation LB

models. Various simulations have been performed which show the superiority of the Prandtl

model over both iso-thermal and energy conserving LB methods. We have shown that it is

possible to preserve the accuracy of the energy conserving lattice Boltzmann for both sub-grid

and high resolution DNS regime. The Prandtl scheme is more stable than the athermal model

in sub-grid domain, and it converges to the results of thermal model at higher resolutions.
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Appendix A

Computational Resources

Due to the relentless advances of computing technology in the recent years, computational fluid

dynamics simulations with billions of degrees of freedom are now feasible at the level of individual

groups, with no need of accessing top supercomputing platforms. Most of the present simulations

were performed on a 13-node, heterogeneous cluster, based on the resources available in early

2010 in our lab, namely 4 nodes of 16 processors (AMDOpteron(tm) Processor 6136), with 32 GB

RAM (DDR3) each and 9 nodes of 12 processors (Six-Core AMD Opteron(tm) Processor 2439

SE), with 64 GB RAM (DDR2) each, connected by a infiniband switch, providing interconnect

speed of about 10 Gb/s. The peak performance of this system is slightly above 1 Teraflop, with

a total RAM availability of about 896 GB. In fact, the technology change is drastic enough,

that some of the largest simulations performed in the later part of this work, were actually run

on a high-end single server. This system has single node with 32 processors (4 × 8 Intel Xeon

processors E7-4830) with DDR3 RAM of 128 GB and approximate peak performance of 0.25

Teraflop.

The minimum system size used in our simulations was 48 million degrees of freedom, (a

spectral run with 5123 system size, where symmetry was used). We remind that for N3 fluid

points simulated with first octant only would have degree of freedom equals to N3 × 8/3.

The largest PS run was with 1.26 billion degrees of freedom (with symmetry), while the

largest LB simulation was with 27 billion degrees of freedom, corresponding to a grid size 10003,

each lattice site point hosting 27 double-precision variables.
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