
51^ 

Ace. ,^- y ri r\ 
No. - fJ^^S 0 

7590 

532.59 Pto 



To My Mother 





DECLARATION 

I hereby declare that the matter embodied in the thesis entitled "Some studies on 
vortices with density stratification" is the result of investigations carried out by 

me at the Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific 

Research, Bangalore, India under the supervision of Prof. Rama Govindarajan and 

that it has not been submitted elsewhere for the award of any degree or diploma. 

In keeping with the general practice in reporting scientific observations, due acknowl­

edgment has been made whenever the work described is based on the findings of other 

investigators. 

Harish N Dixit 



CERTIFICATE 

I hereby certify that the matter embodied in this thesis entitled "Some studies on 
vortices with density stratification" has been carried out by Mr. Harish N Dixit 
at the Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific 

Research, Bangalore, India under my supervision and that it has not been submitted 

elsewhere for the award of any degree or diploma. 

c 
Prof. Rama Govindarajan 

(Research Supervisor) 



Acknowledgments 

This thesis would not have been possible without the support, encouragement, guidance 
and criticisms of many people. 

I would first like to thank my parents and the rest of my family for keeping their faith 
in me. The decision to stay back in India for a PhD was a tough and lonely decision to 
make, and I thank all the people who believed in me. The work ethic of my mother in 
particular has been an inspiration for me all these years. I thank Appa for imbibing in me 
an ability to think and argue rationally and logically. My sisters and my brothers-in-law 
have all been amazingly supportive. And finally, I thank my wife Gomathi for not just 
being a great companion and friend, but also for sharing my work load, helping me with 
the thesis corrections and doing most of the chores at home during my final days here. 

I thank Rama, my thesis advisor, for putting up with me all these years. She has 
been wonderful and kind to me, and I will always cherish my friendship with her. She 
has helped me in my work at various stages, gave me the freedom to explore many 
tangents along the way, and introduced me to the fascinating subject of hydrodynamic 
stability theory. I also thank her for being very generous with facilities in the lab and 
the department, especially the EMU library. This has helped all the students in the 
department immensely. I also thank her for proof-reading this thesis, correcting many 
errors, and suggesting possible applications of my work. 

I thank Prof. Narasimha for many discussions which has always been very exciting. 
I first heard of JNC after reading one of his popular science articles. I thank Ganesh 
for teaching me boundary-layer theory and many other aspects of fluid mechanics. I 
have had many memorable scientific discussions with him which have brought a lot of 
clarity to my work. I also thank other faculty in EMU for raising questions during my 
presentations and poster sessions which has helped me improve my work. I especially 
thank Prof. Deshpande for providing me valuable computer time on his workstation. I 
thank Prof. O.N. Ramesh for the maths classes in his office and for general discussions 
and Prof. Sengupta for the GFD course. 

I thank Andrew Gilbert, Univ. of Exeter who wilhngly agreed to write the Newton 
fellowship proposal with me. He was also very supportive of my decision to join Prof. 
Homsy for my post-doc. I also thank Professors Jacques Vanneste and Jean-Marc Chomaz 
for agreeing to referee our Newton fellowship proposal. I thank Prof. Shei'win Maslowe for 
discussions on waves and many other topics, and Prof. Jonathan Healey on instabilities 
in stratified shear flows. 

I am immensely grateful to uncle BJ for nurturing in me a deep interest in science. 
Dada and Lalta aunty were always interested in listening to me about my work. I thank 
my teacher, Dr. Babu for being such a wonderful friend all these years, and for my early 
lessons in fluid mechanics. Special thanks to Prasad Perlekar who helped me greatly with 
my DNS code. I thank Sanieen and Vinod for helping me in the early days, and Vinod's 
Linux interests were very helpful to many in the lab. 

A very special thanks to Anubhab. He has been a teacher of sorts to me all these 
years. I have been lucky to have worked on a research problem which overlapped with 
Anubhab's interests, and this provided us with ample opportunity to discuss various 
aspects of stability theory, often benefiting my own research. 



Ratul has been another special friend here, especially since we started our PhD jour­
ney together. He was always there to share the highs and the lows, and I developed an 
interest in western classical music talking to him. Discussions with Mukund, both techni­
cal and non-technical were always fun, especially on music. Sumesh shared my interests 
in evolutionary biology, and our bird-watching sessions were memorable. Working with 
Srikanth on a research problem different from my thesis has been a learning experience. 
I thank him for the collaboration. I thank Prof. Amitabh Joshi for allowing me to ask 
him all kinds of silly questions on evolutionary theory, and also for the books. 

I thank the IISc (Phys. dept.) film society for screening some extraordinary films. I 
developed a deep appreciation to the art of film-making. I thank the complab, academic 
and adminstrative staff for making life very comfortable for the students. Special thanks 
to the administrative officer, Mr.Jayachandra, hostel staff members Mr. Suresh and Mr. 
Nagaraj for their help. 

f thank my lab mates (past and present in no particular order): Anjana, Raji, Vijay, 
Rajaram, Debu, Pinaki, Kaushik, Kirti, Ashish, Rajapandiyan, Aditya, Vivek N P, Bale, 
Gayathri, Ponnu, Shastry, Vivekanand, Rakshith, Priyanka, Dhiraj, Saurabh, Saikishan, 
etc. for making the lab a fun place to work. I thank my dear friends Chintu, Teju and 
Naveen for pestering me with conference calls, and Josena, Datta, Urmi, Venky, Claudy, 
Rinki, Paaty and many others for keeping the mood upbeat. 

And finally, I thank my music teachers, Mani sir and Ramamani Mam for their love, 
and of course the music. I also thank my music colleagues, Nagaraj sir, Karthik, Ran-
garajan sir, Sampath sir, Raghu, Ramesh sir and many others for the practice sessions. 
The Sunday practice sessions with Mani sir was always a very satisfying experience. 

Thanks to all my relatives here in Bangalore, it became a second home to me. I 
especially thank uncle Jayaram, Uma aunty, cousins Aparni, Vinay, Shashi and Gopi for 
being there for me. 



Abstract 

The effects of density stratification on tfie stability and evolution of vortices is investi­
gated. Baroclinic vorticity generated due to density inhomogeneities can have important 
implications for the behaviour of vortices. In atmospheres and oceans, due to strong 
effects of density stratification and rotation, the flow can be considered to be in a quasi 
two-dimensional state. Typically, large scale vortical structures are accompanied by an 
inverse cascade of energy owing to the two-dimensional nature of the flow field. In these 
situations, density stratification occurs along the vortex axis. We have analysed the ef­
fect of density variations on a single vortex, and then considered the interaction of two 
such vortices in a general stratified medium. A combination of linear stability analysis 
and direct numerical simulation of the nonlinear Navier-Stokes equations have been car­
ried out. When density variations occur in the plane of the vortex, it is shown in this 
thesis that small scale instabilities arise in the flow resulting in a strong direct cascade 
of energy. Such variations occur in a variety of situations, example in aircraft trailing 
vortices in a stratified medium, in cyclones/hurricanes travelling across regions of strong 
density gradients as would be encountered when we move in meridional directions or 
across the ocean-land interface, and also in polar vortices. In all the single vortex insta­
bilities, gravity is completely neglected, and density effects arise from the inertial terms 
in the governing equations. The results are also valid for sharp density interfaces in the 
presence of weak gravity. 

We begin with the linear stability of the classical piece-wise continuous mixing layer 
profile. Though a great deal of work has been undertaken using the 'Rayleigh' method in 
normal mode analysis, often, the physical mechanisms of these instabilities is not made 
clear. An exception is the kinematic mechanism for the instability of a vortex sheet 
dealt with by Batchelor in his classic text. A similar understanding in more general 
barotropic and baroclinic instabilities is still lacking. The linear wave interaction mech­
anism attempts to fill this gap in our understanding. We solve an initial value problem 
analytically to obtain further insight into the instabihty mechanism. Specifically, the 
temporal evolution of the initial disturbance into a normal mode is analysed. We then 
extend these ideas to the stability of a simple stratified shear flow problem with two 
interfaces, one with a vorticity jump and the other with a density jump. The phase 
relationship between the waves at these interfaces is explicitly calculated. 

We extend the above analysis to a cylindrical geometry. The problem we investigate is 
the stability of a vortex with radial density distribution. Baroclinic vorticity is generated 
in this geometry due to the presence of centrifugal forces. A heavy-cored vortex, where 
density decreases raonotonically away from the vortex axis is a potentially unstable con­
figuration. Similarly, a light-cored vortex is expected to be stable due to the stabilizing 
effect of a centrifugal buoyancy force. But it is shown that even a light-cored vortex 
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can be unstable, contrary to common intuition. The entire range of vortex profiles of 
smoothness varying from a Rankine vortex to a Gaussian vortex with analogous density 
profiles are studied. This is carried out by defining a single parameter family of vorticity 
and density profiles, all having the same circulation. In the case of a Rankine vortex with 
a step density jump, we again interpret instabilties in terms of wave-interactions between 
Kelvin modes of the vortex and internal waves due to density jump. For smooth prcv-
files which do not possess discrete Kelvin modes, we resort to the ideas of quasi-modes. 
Quasi-modes are exponentially decaying eigenmodes of the inviscid stability problem 
with a wave-like response, and are a manifestation of a pecuhar cooperative effect of the 
continuous spectrum modes localized at the critical layer. It is suggested in this thesis 
that quasi-modes of the vortex interact with internal waves leading to a linearly unstable 
flow. A detailed analysis of quasi-modes of all the vortex profiles is carried out. 

Having analysed the effect of a circular density interface, we then study the effect 
of a flat density interface in the neighbourhood of a vortex. Due to differential rotation 
outside the vortex core, the density interface winds itself into a spiral. Baroclinic vorticity 
in the form of a vortex sheet accumulates at this spiral interface. Using a simple model, 
we predict that the vortex sheet strength increases logarithmically in time, and this 
results in a faster-than-exponential instability of this sheet, typically of the form f^^ 
where (T is a suitable growth rate. We identify two instabilties in this problem, the 
spiral Kelvin-Helmholtz (SKH) instability of the vortex sheet and a centrifugal Rayleigh-
Taylor (CRT) instability of the density interface. Inviscid and viscous stability analysis 
of suitable model velocity proflles are carried out, which is in good agreement with direct 
numerical simulations. These instabilities eventually amplify at the edge of the vortex, 
and lead to significant generation of small scales. The primary vortex is destroyed in this 
process and a final turbulence-like state ensues. Gravity further enhances the instabihty, 
and direct numerical simulations are carried out to corroborate this. 

Using direct numerical simulations, we then extend the above results to understand 
the interaction of two co-rotating vortices in a linearly stratified fluid. Merger of two 
equal co-rotating vortices in a homogenous fluid is a well studied problem, and the merger 
process is attributed to the distortion of the vortex cores, and subsequent generation of 
vorticity filaments. But in a stratified fluid, organised sheet-like structures as well as 
additional filamentary debris are created due to a baroclinic torque. It is shown that the 
rate of merger crucially depends on the Reynolds and Fronde number used. At high levels 
of stratification, the two vortices may repel each other, and merger can be prevented. 
Within the Boussinesq approximation, the centroid of vorticity is invariant during the 
evolution process. The merger process is associated with each vortex describing a spiral 
orbit, and the resultant merged vortex is formed at the vorticity centroid of the system. 
Inclusion of the full non-Boussinesq effects disrupts this symmetry, and the two vortices 
are shown to describe helical paths. 

Some preliminary investigations were also carried out in three dimensional flows. The 
full 3D dispersion relation for a Rankine vortex with step density jump are obtained. In 
3D, a Rankine vortex supports an infinite number of Kelvin modes, and therefore the 
possibilities of wave-interactions with internal waves is significantly enhanced. A detailed 
analysis of the dispersion relation is beyond the scope of this thesis. 
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CHAPTER 1 

GENERAL INTRODUCTION 

The main subject of this thesis is the effect of density stratification on the structure 
and stability of vortices. Idealized problems are studied, and the analysis is restricted 
for the most part to two-dimensions. Though the contents of this thesis are not aimed 
at specific applications, it is useful to understand realistic situations where the results 
obtained here might be applicable. We therefore give a brief overview of a wide class of 
problems where an interplay between density stratification and vortex dynamics takes 
place. We first begin with a discussion on some geophysical flows. Detailed discussions 
on literature directly related to the present work are included at the beginning of each 
chapter. 

The atmosphere and ocean are subject to two main forces: (i) coriolis force due to 
rotation of the planet, and (ii) density variations due to effects of gravity. These two 
features makes the study of these systems both interesting and intruiging. By and large, 
the two effects are studied independently as they are complicated enough to warrant 
a detailed study. The classic text of Greenspan (1968) is devoted to a detailed study 
of rotating fluids. Similarly, the classic texts of Turner (1973) and Yih (1973) focus 
on buoyancy effects due to density and temperature stratifications. In geophysical fluid 
dynamics literature, these two effects appear together, i.e. the influence of planetary ro­
tation or the appearance of a rotating fluids like cyclones, and density stratification along 
the vertical. Meridional variations of density also arise due to temperature differences 
across latitudes. One such example is the formation of a polar vortex during winter, with 
density radially decreasing away from the vortex core as shown in figure 1.1. The left and 
right panels show the temperature contours and satellite image of tropospheric clouds 
over Antartica. Virtually any vortex that is in motion in the atmosphere encounters 
these variations. The study of such vortices is important to understand their impact on 
climate and pollutant dispersion. Another feature of these vortices is the sharp vorticity 
gradient at their edges. It has been known that the edge of the polar vortex is very steep, 
and vorticity inside this region rapidly homogenizes, reaching constant values which are 
2 or more times greater that the surroundings (Vallis (2006), page 575). This suggests 
that models employing piece-wise discontinuous vorticity profiles like a Rankine vortex 
might be a good starting point. 

Such vortices are susceptical to what is known as a 'barocHnic instability' process. In 
fig.(1.2), we present a schematic showing the evolution of a cold mass of fluid on a non-
rotating and a rotating planet. This schematic is adapted from Nadiga & Aurnou (2008), 
an excellent expository article on baroclinic instability. We discuss this phenomenon in 
brief here and encourage the reader to view the original article for more details. In 
the absence of planetary rotation, the cold (heavier) mass of air settles down due to 
gravity as shown in the left panels. But when the same mass of air is on a rotating 
planet, it experiences a coriolis force, Fcor = —217 x u, where CI is the planet's angular 
velocity and u is the velocity of fluid. This force deflects fluid parcels to the right of 
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Figure 1.1: (a) The distribution of temperature in the southern-hemisphere atmosphere in 
winter at midlevel in the troposphere (temperature in degrees Celsius on the 500 milhbar 
pressure surface at 1200 GMT on 25 August 2008. A cold air mass is shown in blue and 
light blue, centered over Antarctica. The surrounding temperature field is shown via light 
green line contours. Because of rotation, the cold Antarctic air mass does not simply 
respond to gravity by settling and flowing outwards and below warmer lower latitude air. 
Instead, rotational eflfects give rise to an azimuthal "thermal wind flow" that circulates 
around the cold air mass. The thermal wind can, however, become unstable and develop 
meanders (visible in green hue contours), (b) NASA image showing tropospheric clouds 
over Antarctica that trace out a pattern of meanders that are qualitatively similar to 
those in (a). Source: Nadiga & Aurnou (2008) 

their motion. The net effect of coriolis force is that gravitational setthng can now be 
arrested reaching a 'thermal wind' balance (Vallis (2006)). But this balanced condition 
is usually unstable to perturbations in the zonal direction leading to what is referred 
to as baroclinic instability (see Pedlosky (1987); Vallis (2006)), which makes the cold 
air leave the central core forming spiral eddies. This results in significant mixing in the 
horizontal direction. Laboratory experiments have been carried out by Saunders (1973) 
by creating density variation in the radial direction using salt-water and fresh-water, 
initially separated by a cylindrical diaphragm. The whole apparatus is set in circular 
motion to replicate the rotation of the planet. Upon attaining a solid-body rotation, 
the diaphragm is removed. This creates a configuration very similar to that shown in 
fig.(1.2). He noticed that the primary vortex disintegrated into smaller parts. A series 
of similar experiments spanning two decades were also carried out by Hide in an annular 
apparatus. Water was used in his experiments and horizonal temperature differences were 
created across the annulus and the apparatus was set into a solid-body rotation (see Hide 
(1953, 1957, 1967, 1977)). The motivation for these experiments were not only in the 
general circulation of the atmosphere, but also in understmiding the origin of earth's 
magnetic field from the motion of its litjuid core. Hide noticed that the nature of the flow-
depended on a non-dimensional parameter characterising the strength of gravitational 
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where p{T) is the density of the water at temperature T, b and a is the radius of outer 
and inner cylinders respectively. He further noted that when 9 fell below a critical 
value, &crit ~ 1-58, the motion was predominanly in the horizontal direction. Wave-like 
motions were noticed in the azimuthal direction, and the wave-number decreased with 
decreasing 9 . The above points suggest that for a rapidly rotating system, the motion 
is predominantly two-dimensional in nature, dominated by effects of centrifugal force. 
Moreover, most of these earlier works were carried out with a fixed angular velocity, where 
shear effects are completely absent. For an arbitrary distribution of angular velocity 
where shear effects cannot be ignored, the role of stratification becomes non-trivial. In 
studies concerning planar geometry, it is well known that an unbounded couette flow, 
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Figure 1.3: Aircraft trailing vortices when the aircraft is in a high-lift configuration 
(flaps deflected, and flow is from left to right). The scale in the horizontal direction is 
compressed by a factor of 5 to 10. Source: Meunier et al. (2005) 

growth rates of Rayleigh-Taylor instability are not altered. But, on considering a region 
of varying shear, like in a Holmboe geometry (see Holmboe (1966)), Rayleigh-Taylor 
instability can be stabilized in a suitable parameter range. In plasma physics literature, 
it was shown recently (Sen & Storer (1997), Sen et al. (1998)) that flow curvature, i.e. 
variation of shear, can stabilize instabihties including the Rayleigh-Taylor instabihty. 
This point will be discussed in greater detail later in the thesis, first with a simpler 
planar geometry. Subsequently, we explore stabilization and destabilization in the more 
complicated vortex geometry with radial density stratification. In this thesis, no rotation 
of the entire system is imposed. 

In this thesis, simple models of the two situations described above are studied, namely 
a vortex in a radial density stratification and a vortex at a linear density interface. 
The study will also be of relevance to situations including counter-rotating vortex pairs 
and can be extend to those. While this extension is not carried out in this thesis, the 
application is described briefly below. A vortex at a flat density interface could be 
relevant in understanding the impact of horizontal/latitudinal/meridional temperature 
(density) gradients on motion and weakening of tropical cyclones. The role of latitudinal 
temperature gradients to climate change has been discussed in Rind (1998), and its role 
in eddy transport has been discussed in Loon (1979). It is possible that sharp changes 
in horinzontal temperature gradients could also have an important role in the physics of 
tropical cyclones (see Chan (2005). 

An important application of vortex stability studies is the problem of aircraft trailing 
vortices. In the context of vortex stability, it can be roughly said that this field began 
with the pioneering work of Lord Kelvin (see Kelvin (1867, 1880)) in his quest for a 
vortex theory of atoms. His theory of atoms was a failure, but was the starting point for 
hydrodynamic stability of vortices. In the last four decades, there has been a resurgence in 
vortex stability studies, and recent reviews of the topic can be found in Ash & Khorrami 



(1995), Rossi (2000) and Jacquin et al. (2003). A schematic view of the trailing vortex 
configuration is shown in fig.(1.3). The mechanics of generation of these vortices, well 
described in standard texts (see Anderson (2001); von Karman (1954)) involves the roll-
up of a vortex sheet into a dipole. Moore & Saffman (1973) showed that this process 
obeys a self-similar evolution in the absence of density variations. Near the centre of 
the spiral, viscous effects become important, resulting in the formation of a circular 
vortex core. Three dimensionjil stability analysis of these vorticex pairs has received 
a great deal of attention. The pioneering work of Crow (1970) showed, for a dipole, 
the presence of a long wavelength instability, in the form of bending waves along the 
vortex axis. This result is now eponymously known as Crow instability. This result 
generated a huge interest in the aircraft industry and a conference titled Aircraft Wake 
Turbulence in 1971 to discuss the implications of this instability. Extensions of Crow's 
result were soon found in the short wave length limit by Moore & Saffman (1975) and 
Tsai & Widnall (1976). Generahzation of this result were obtained by Bayly (1986); 
Pierrehumbert (1986); Waleffe (1990) who showed that any elliptical flow in a straining 
field is susceptical to a short-wavelength axial instability (see Kerswell (2002) for more 
details). Apart from the hazards posed by traihng vortices for other aircrafts, there has 
been efforts to understand the impact of aircraft contrails on the environment. 

In high-lift configurations, two additional vortices of opposite sign also emanate as 
shown in figure (1.3). These additional vortices merge with their neighbours to form a 
single dipole system. The problem of merger of two co-rotating vortices has attracted a 
great deal of attention since the 1980's. This problem is especially relevant in understand­
ing the process of inverse cascade of energy in two-dimensional turbulence. Safi^man & 
Szeto (1980), Meunier et al. (2002) and others showed that merger of two inviscid vortex 
patches always occurs if the vortex size exceeds a certain critical fraction of the separa­
tion distance between them. Statistical models of two dimensional turbulence have often 
involved emperical estimates for this critical fraction (see Carnevale et al. (1991)). 

One of the primary interests of this work is the influence of stratification on vortices. 
Scorer & Davenport (1970) were the first to address the problem of descent of a vortex 
pair in a stratified atmosphere, and their model predicted an accelerated descent of the 
vortex pair. As the vortices more downwards, baroclinic vorticity is generated along 
the streamline separating the two vortices from rest of the ambient fiuid. Their model 
predicts that the vortex separation distance R decreases with time as 

R = Ri/cosh{ At), (1.2) 

and therefore the descent velocity increases as 

W ^Wicosh{At). (1.3) 

The exponential acceleration of the vortices was confirmed by Crow (1974) for weak 
stratifications. But the assumption of constant circulation has been questioned by Tsang 
(1971) using laboratory experiments. Saffman (1972) was also very critical of this as­
sumption. Using a model where the distance betwen the vortices was kept constant and 
circulation was allowed to vary, Saffman arrived at a completely difterent prediction, that 
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the descent height oscillates with a time period 2'n/N as 

H = Hosm{Nt), (1.4) 

where Â  is the Brunt-Vaisala frequency. Narain & Uberoi (1974) attemped to model 
entrainment of the ambient field and showed that trailing vortices first decelerate and 
come to rest, and then are accelerated upwards. Accurate experiments were carried out 
by Sarpkaya (1983) to test the above theoretical predictions, but his experiments had 
the drawback that they were carried out with low aspect ratio wings making the flow 
three dimensional. Oscillations of wake height as predicted by Saffman were not seen. 
The wake velocity was shown to decrease with time, in variance with the predictions 
of Scorer & Davenport (1970) and Crow (1974). The experimental results axe similar 
to the predictions of Narain & Uberoi (1974), but that comparison was unfortunately 
not made by Sarpkaya. We skip a discussion on the early numerical calculations of Hill 
(1974) and Hecht et al. (1981) and focus on the detailed two-dimensional calculations of 
Spalart (1996). As in the theoretical analysis, he considers a pair of compact vortices in 
a linear density stratification. He finds good agreement with Sarpkaya's experiments at 
short time for the descent height of the vortices. In other words, he does not find good 
agreement with either Scorer & Davenport (1970), Crow (1974) or Saffman's theories. 

This discussion puts the present work in a better perspective. The thesis is divided 
into the following chapters. In chapter 2, we consider a simple planar geometry to 
understand instabilities in stratified shear flows. We begin by considering a piece-wise 
continuous velocity profile which supports a Rossby wave at the vorticity jump location. 
Similarly, a discontinuous density profile supports neutral waves for stable stratification, 
and growing waves for unstable stratification. But, when the two profiles are juxtaposed, 
it will be shown that a combined vorticity-density jump problem supports unstable waves 
even when the flow is stably stratified. The instability can be shown to be due to the 
interaction of neutral modes of the two interfaces considered separately. 

In chapter 3, we extend the analysis of chapter 2 to a circular geometry, i.e. an 
axisymmetric vortex with an axisymmetric density distribution. It is shown that a light-
cored vortex can be unstable in spite of the 'stable stratification' of density. Using a model 
flow consisting of step jumps in vorticity and density, we show that a wave-interaction 
mediated by shear is the mechanism for the instability. Exact dispersion relations are 
obtained in this case. The physical mechanism involved in the instability process is 
examined in detail. We then extend the analysis to a smooth vortex and density profile 
where the instability is described as an interaction of 'quasi-modes' of the vortex profile 
and internal waves of the density profile. A detailed analysis is carried out for a wide range 
of vortices, from a Rankine vortex to a Gaussian vortex. Gravity is completely neglected 
in the analysis to emphasise the role of centrifugal force. The unstable stratification case, 
where density decreases radially away from the vortex axis is similar to the polar vortex 
problem discussed earlier. The phenomena of 'critical layer absorption' discovered by 
Booker & Bretherton (1967) in a planar stratified shear flow is shown to occur even for 
a light-cored vortex. Full numerical simulations of Navier-Stokes equations are finally 
presented to reveal the existance of stable non-linear non-axisymmetric structures in the 
flow. 



The equations derived for a Rankine vortex with step-density jump in the previous 
chapter are extended to 3D in chapter 4. Because a 3D vortex supports many Kelvin 
modes, unhke the 2D vortex, it is of great interest to understand the role of wave-
interactions. The 3D dispersion relation is derived in here, but a full analysis of this 
relation is beyond the scope of the thesis. It is shown that the derived relation reduces 
to the well-known 3D dispersion relation of a homogeneous Rankine vortex. 

In chapter 5, we return to 2D and consider the evolution of a flat density interface 
in the neighbourhood of a vortex. This geometry is an idealised version of a vortex in 
a meridionally stratified atmosphere. The interface winds into a tight spiral leading to 
certain instabilities. A simplified model is constructed elucidating the essential physics 
in the problem. Inviscid and viscous stability analysis are also carried out to obtain 
growth rates of these instabilities. Direct numerical simulations are then carried which 
corroborate reasonably well with the model predictions. 

The analysis of chapters 3 and 5 is now extended to a more complicated problem of 
interaction of two identical vortices in a stratified environment in chapter 6. When two 
vortices having the same sense of rotation are placed close to each other, they merge to 
form a single vortex. But when placed in a stratified environment, additional vorticity 
is generated due to the baroclinic effects of density. The position and intensity of this 
additional vorticity in space and time now dictates the evolution of the merger process. 
The problem is studied with the Boussinesq approximation, and also without it. For 
weak stratifications under Boussinesq approximations the presense of certain symmetries 
will be discussed. In certain cases, it is found that merger process accelerates, and in 
a few other cases, merger is completely prevented. Considering the eff'ect of full non-
Boussinesq effects in the flow, non-symmetric flow patterns were found. This work is still 
in progress and some of the existing results will be discussed. 

In chapter 7, we make some concluding remarks. Some directions for future work are 
also offered. The extensions of the present work into three-dimensional flows, both for 
stability analysis and direct numerical simulations are discussed. 

Note: Variables are separately defined in each chapter and do not get carried over, unless 
specified. 





CHAPTER 2 

INSTABILITY IN A STRATIFIED SHEAR FLOW 

Scope of this chapter 

The aim of this chapter is to gain a clear understanding of the hnear wave-interaction 
mechanism. Our main interest is to understand the interaction between a Rossby wave 
and a surface-gravity wave. The ideas of wave-energy are introduced, which serve as 
a powerful yet simple means to understand the outcome of the interaction. Simplified 
model profiles are discussed here, which will then be used to discuss the more complicated 
vortex problem to be discussed in the next chapter. 

2.1 Linear Wave Interaction 

Throughout this thesis, our attention is restricted to wave phenomena which can be 
described by linear theory. Before we proceed, it is helpful to clarify the definition of waves 
and 'discrete modes'. This will be helpful in later chapters when we introduce the ideas 
of 'continuum modes' and 'quasi-modes'. Waves are well-defined physical manifestations 
in a flow, and for the simplest forms in which we are interested in, they possess a well-
defined wave-length, A and a phase-speed, c. The phase speed in general can depend on 
the wave-length (dispersive waves), and the relationship characterizing this dependence 
is called the dispersion relation, given by 

P(a;,fc) = 0. (2.1) 

The above equality gives us the dependence of frequency, a; = A;c on the wavenumber, 
k = 27r/A. Only for simple geometries, can this relationship be calculated analytically. In 
inviscid unstratified fiows, if the velocity profile does not possess a vorticity extremum, 
i.e. it is non-inflectional, then according to Rayleigh's inflection point theorem (see 
Drazin & Reid (1981)), the flow is stable to infinitesimal perturbations. Even if the 
profile has an inflection point, the physical mechanism leading to instability is usually 
not clear. A simple kinematic mechanism explaining instability of a vortex sheet was 
known for a long time (see Batchelor (1980)), but an equivalent explanation for broad 
(piece-wise continuous) profiles has become clear only recently. One way of understanding 
instabilities in shear flows is to view it as a linear wave-interaction of two free waves. 

Taylor (1931) was among the first to note that two free waves can interact and give 
rise to an instabihty. He further observed that 'stable' density stratification can give rise 
to instabilities in a three layer fiuid model. But, a clear physical understanding of this 
process was lacking at his time, as can be remarked from his statement: 'It is curious that 
the effect of stratification in density gives rise to unstable waves for certain velocities when 
the same waves in a homogeneous fluid would he stable'. The first detailed study of wave-
interactions was carried out by Hoskins et al. (1985), who showed that for a homogeneous 

9 



10 Chapter 2. 

shear layer with two vorticity interfaces, instability is due to a Hnear wave-interaction 
of counter-propagating Rossby waves riding at these interfaces. An exhaustive survey of 
stratified shear flow instabilities with broken-line profiles is given in Howard & Maslowe 
(1973). But at the time of that survey, a kinematic understanding of the instability 
process in terms of wave interactions was not clear. The wave-interaction mechanism was 
extended to stratified shear flows by Baines & Mitsudera (1994) and Harnik et al. (2008). 
The focus of Baines & Mitsudera (1994) was still the homogeneous problem, whereas in 
Harnik et al. (2008), the vorticity and density jump locations coincide. We will first 
review the wave-interaction mechanism in detail for a homogeneous flow. Additionally, 
we solve an initial value problem to follow the short time evolution of the disturbance. 

2.1.1 Rayleigh equation 

We consider the stability of small amplitude two-dimensional perturbations to an inviscid 
shear flow. The flow is in the x-direction, and the base-flow velocity U{y) is purely a 
function of the vertical coordinate y. We use Cartesian {x,y) coordinates, with the 
corresponding velocity perturbation components {u,v). The two common approaches of 
solving the linearized stability equations are to either use a normal-mode form of solution, 
or solve an initial value problem (IVP). We will do the former here, and discuss the IVP 
treatment later in this section. We assume solutions of the form 

Re Q^yy(kx-u^t) ^ (2.2) 

where q represents any flow quantity and Re represents the real-part. Here y is the 
direction along which mean flow quantities are allowed to vary, x is the homogeneous 
direction. The above form of the solution is just a mode from the Fourier decomposition. 
A single equation for the vertical perturbation velocity for an incompressible, inviscid 
homogeneous flow can be derived, and is the well known Rayleigh's equation (see Drazin 
& Reid (1981), Schmid & Henningson (2001)). 

{U - c) (L>2 -k'^)v- U"v = 0, (2.3) 

with boundary conditions 

V ^0 as y -^ ±oo. (2.4) 

Here the D and prime denote differentiation with respect to y and are used interchange­
ably. The streamfunction, V' is related to the vertical velocity using the relation 

V — dip/dx = ik-tp. (2-5) 

Discrete modes are just regular wave-like solutions of the linear governing equations. 
A simple example is the waves on a string, which supports a countably-infinite set of 
discrete modes. In reality, a multitude of waves can be found in nature, which can 
be both linear and non-linear (Whitham (1974)). AU wave phenomena are associated 
with a restoring mechanism in the system. It is useful to define various classes of waves 
depending on the restoring mechanism present in the system. For example, presence of 
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Figure 2.1: Vorticity jump profile (left panel), and the Rossby-wave mechanism shown 
in the right panel. The vertical arrows indicate the maximum vertical velocity, and the 
dashed horizontal arrow indicates the direction of propagation of the wave. 

Figure 2.2: A mixing layer profile with a normal mode solution. 

a vorticity gradient in the system supports what is called as a 'vorticity' or a 'Rossby' 
wave. In geophysical flows, vorticity is suitably replaced by isopynic potential vorticity. 
Similarly, discontinuities in density support a 'surface' wave. Water ripples is a common 
example. When density varies continuously in the system, surface waves are replaced by 
'internal gravity' waves. Throughout this thesis we use the term internal gravity wave 
(IGW) even when referring to a surface wave. This minimizes confusion when we consider 
smooth density profiles later in the thesis. 

Before we discuss the problem of wave-interaction between an internal gravity wave 
and a Rossby wave in the next section, we first consider the simpler problem of inter­
action between two Rossby waves. We follow the discussion of Mclntyre (Rossby-wave 
propagation and shear instability, GEFD Summer school, Cambridge) and Hoskins et al. 
(1985) closely. Additionally we solve an IVP to clarify the physical mechanism. Consider 
a vorticity jump at some arbitrary location which supports a discrete neutral wave. The 
interface is a material line which may be perturbed to a wave-like form as shown in figure 
(2.1). 

Since vorticity above the interface is zero, and below the interface is negative, the 
perturbation causes a positive vorticity anomaly, q' below the interface, and negative 
anomaly above it. These are shown by encircled signs. It has to be noted that the 
interface is a material contour. The vertical arrows show the direction of induced velocity 
field obtained from the q' field. The vertical velocity pattern is offset a quarter-wavelength 
from the interface displacement position. As time progresses, the disturbance u and 
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V causes the undulations to move to the left with respect to the local base flow at 
the interface without change of shape and amplitude. The neutrality condition is in 
accordance with the Rayleigh stability criterion which states that a necessary condition 
for instability in an inviscid fluid is that the sign of U" change sign at some y. Thus, 
the present geometry supports a neutral Rossby wave moving to the left as shown by the 
dashed arrow. A key point is to be noted here. The disturbance velocity field, which is 
in quadrature with the interface displacement, cannot make the interface grow by itself. 
For growth of the wave, an external disturbance field needs to be provided. The simplest 
way to do this would be to place another vorticity jump, a certain distance below. This 
yields the well-known mixing layer profile studied by Rayleigh (1894), and is shown in 
figure (2.2). The basic idea is to interpret the instability in this profile as being due to a 
linear wave interaction of two Rossby waves at y = ±b. If the two waves were considered 
separately, then they would propagate in opposite directions relative to each other. The 
disturbance velocity field of each wave slows down the wave at the opposite interface, 
such that the two waves are stationary with respect to each other. This new pattern 
is a normal-mode solution of the system. In the final frozen pattern, if there exists a 
component of v in-phase with the interface displacement, then the amplitude of such a 
disturbance would grow with time indicating instability. Such an in-phase component 
can be created due to the presence of the other wave. To quantify this, we decompose 
the total velocity into a component in-phase with the displacement, and a component 
displaced by a quarter wavelength from it. The in-phase component now can continually 
force the interface position leading to an instability. 

The general solution of the Rayleigh equation for this flow can be written as 

r Asmh{2kb)e-'''^y-^^ {y>b), 
4>=< Asmh{kiy + b)) + Bsmhik{b-y)) {-b<y<b), (2.6) 

[ Bsmh{2kb)e''(-y+'>^ {y <-b), 

where A and B are arbitrary coefficients which depend on u). The dispersion relation can 
be written as 

^ \{2kb - 1)2 - e - ^ H . (2.7) 
( ^ ) - 4fc262 

Skipping algebraic details, it can easily be shown that 

^^(2kb Vsin\x{2kb)\ 
e A V kb{U-c) J 

(2.8) 

From this, the phase shift in the interface displacement (or vorticity) at y — ±b can be 
easily written as 

a = arg (^\ + 2 tan"! (^\ . (2.9) 

This phase-difterence is responsible for an instability in the system. Detailed discussion 
of this mechanism is given in Hoskins et al. (198.5) and Baines & Mitsudera (1994), The 
effect of density variation on a single Rossby wave propagation has recently been treated 
in Harnik et al. (2008). The phase-locking of two free waves into a normal-mode solution 
can be observed from the solution of an initial value problem. 
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2.1.2 Initial Value Problem 

Instead of the normal mode form of the solution, we may assume the vertical velocity to 
be of the form 

v{x,y,t)^v{y,t)e''\ (2.10) 

The governing differential equation now takes the form 

Defining a Laplace transform of i), i.e. 

/•oo 

v{y,s)= / v{y,t)e-''dt, (2.12) 
Jo 

the final differential equation reduces to 
, ^ ikU"v _ '̂ o 2̂ 13) 

where 

$0 = {D^ - k^) vo- (2.14) 

Let G{y, y') be the Green's function of the homogeneous part of equation (2.13), 

( i ; 2 _ ^ 2 ) _ ikU" 
G{y,y') = AS{y-y'), (2.15) 

s + ikU 

where A is an arbitrary constant. The velocity field v can then be calculated as 

/

oo 
Giy,y')4>ody'. (2.16) 

-oo 

The Green's function is defined as 

^2{y)vi{y') 
if y' < y, 

[ ik{u{y')-c)w{c) '^y >y^ 
where vi and V2 are the solution of the homogeneous part of equation (2.13) satisfying 
f;i(—oo) = 0 and i;2(oo) = 0, c is the phase-speed and W{c) = v\Dv2 — V2Dvi is the 
Wronskian. Therefore G is a continuous function of y. 

I V P w i t h a s ing le vor t i c i ty interface 

First, let us consider a single vorticity interface as shown in figure (2.1) and calculate 
the response of an arbitrary disturbance. For convenience, the interface position is chosen 
to be at y = 0, and U = UQ ioi y > 0, and [J = (JQ + -yy for y < 0. The jump in the 
vorticity across y = 0 is given by AU' = - 7 . Equation (2.15) governing the Green's 
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function reduces to 

(^2 _ ^2) _ iHAU>)6{y) 
S + ikU 

G''{y,y') = A6{y-y'), (2.18) 

where G^ represents the Green's function describing a single Rossby wave propagation. 
For \y\ > 0, the above equation reduces to 

{D^-k'')G''{y,y') = Ad{y^y'), y'> 0. (2.19) 

The general solution of this equation satisfying the boundary conditions at ±oo is given 

by 
aje -ky if y > y', 

G^{y.y) = < a^e-f'y + a-^e^y if 0 < y < y', 
046 ky 

(2.20) 
if y < 0. 

The constants ai , 02,03,04 are calculated by imposing the usual conditions on the Green's 
function. G^{y,y') is continuous across y = 0 and y = y', i.e. 

,0+ 
[GX--0, [GX_=0, 

Integrating equation (2.18) across y = 0 and y — y' yields the relations 

dG^ 

dy 

dGf^ 

dy 

0+ 

JO-
s + IKUQ 

(2.21) 

(2.22) 

Using equations (2.20), (2.21) and (2.22), G^ takes the form 

G''iy,y')-wr. 
iAU' 

2k [2{s + ikc) 
f,-k{\y\ + \y'\) _ ^-k(\y\-\y'\) (2.23) 

where c = f/o + AU'/2k. Having obtained the Green's function, it is now possible to 
calculate v{x,y,t) using the inverse Laplace transform of v{k,y,t): 

/

CXD 

v{k,y,t)e'>'''dk 
-00 

aikx roo 

27ri 

Using G^ = G in the above equation, we get 

too 

(2.24) 

v{x,y,t) = 
gifcx ^ 

2iTi 2k in )(2/') 
AU' 

2k{c-U) 
f>-H\y\-i\y'\) -^e-k{\y-v'\) ikUt 

My')^.^^'..^e'-''^^'e-'^^y\+^y'^'> (2.25) 
2k{c-U] 

The above result describes the evolution of an arbitrary distTirbance (t>o{y')j and would 
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involve contributions from both discrete spectrum (a single wave at y = 0) and the 
continuous spectrum. This can be used a starting point in a more detailed analysis 
of the interaction of discrete and continuous spectrum modes, as was carried out by 
Sazonov (1989). Instead of a constant velocity above the interface, one can easily repeat 
the analysis with two different values of shear, 71 and 72 on either side of the interface. 
Then, as a special case, when the shear on either side becomes equal (71 = 72), the flow 
would then reduce to a Couette profile, and the above solution would correspond to the 
solution of Case (1960). Since our main aim is to understand the evolution of the discrete 
mode at y = 0, we impose a vortex sheet at y = 0, i.e. 

My') - B6iy)- (2-26) 

The discrete mode velocity field thus obtained takes the simple form 

^(a;, y, t) = ^e-fclvle'fc(^-'^0. (2.27) 

This would exactly be the form of solution obtained by solving the Rayleigh equation 
using a normal-mode approach. Also, we can identify c with the phase-speed of the wave 
which can be written as 

c=Uo-^. (2.28) 

For the profile shown in figure (2.1), we have 7 > 0. Therefore the speed of the wave with 
respect to the base flow. I.e. c — (/Q < 0, indicating that the wave travels leftward with 
respect to to they local mean flow, consistent with the kinematic view discussed earlier. 

I V P w i t h a m i x i n g - l a y e r profile 

We now consider the stability of arbitrary disturbances with a mixing layer profile 
shown in figure (2.2). Setting UQ = 1 and 7 = — 1, and adding another vorticity interface 
of opposite sign, the mean flow profile is defined as 

1 i f y > l , 
U^^^ = { y if - 1 < y < 1, (2.29) 

- 1 i f 2 / < - l , 

where the superscript ML denotes a mixing layer profile. Therefore, U" = 6{y -f- 1) — 
6{y — 1). A normal-mode solution of the Rayleigh equation (2.3) yields the eigenvalues 

^ ' " - ^ 
( l - 2 A ; ) ' - e ^ ' " ^ . (2.30) 

The flow is neutrally stable for k > 0.639 as can be seen in figure (2.3(a)). The 
corresponding phase-speeds of the unstable modes are plotted in figure (2.3(b)). These 
are compared with corresponding free wave phase speeds obtained by taking the limit 
A; ^ 00 in the mixing-layer eigenvalues. The free wave solutions therefore take the simple 
form 



16 Chapter 2. 

0.15 

3 0 

-0.15 

0.75 

k 
.25 1.5 

0.5 

a 0 

-0.5 

u 
\ : \ 

• \ ; \ 
\ ^ \ 

^ --; \ ,--/ 

/ 

/ 
/ 

/ 
/ 

! : 

0.25 0.5 0.75 

k 
.25 1.5 

(b) 

Figure 2.3: (a) Growth and decay rates of the two normal modes, S(c^'^^). The flow is 
neutrally stable for A; > 0.639. (b) Comparison of phase-speeds of the two normal modes 
for a mixing layer profile (solid lines) with the phase-speeds for two free waves (dashed 
lines) riding at y = ± 1 . 
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The phase-speed obtained from the IVP calculation for a single Rossby wave exactly 
matches with this solution. Focusing attention on the waves moving on the upper (+1) 
interface, the phase-speed of the free wave changes sign at A; = 0.5. As expected, for large 
k, the normal modes of the mixing layer profile reduce to the free wave phase-speeds. 
But an important feature to be noticed is that the phase-speeds of the mixing layer 
profiles are always less then their free-wave counterparts in magnitude. This is clear for 
k > 0.639 where the waves for a mixing layer profile travel to the right slower than the 
corresponding free wave counterparts. In the IVP calculation to be presented below, it 
will be shown that an initial wave-like perturbation at the two interfaces indeed evolves 
like free-waves. Hence, the disturbance at y = 1 is expected to travel to the left for 
y < 0.5, and to the right for y > 0.5. 

For this profile, equation (2.15) simplifies to 

ik{6{y + 1) ~ 6{y - 1)) 
{D^ _ k') ~ 

s + ikU G''Hy,y') A6{y-y'), (2.32) 

When \y\ 7̂  1, the Green's function satisfies equation (2.19). The general solution of 
this equation in various regions of the flow can be written as 

'' aie-''y 

G^''{y,y')={ 

if y > 1, 
026 ''y + a^e^'y iiy' <y < 1, 
a4e~'^y + a^e'^y ii-l<y<y', 

( aee' ky if y < - 1 . 

As mentioned earlier, G^^{y,y') is continuous across y = - 1 , j / ' , 1, i.e. 

1 - 1 + 
[G«]:;_=o, [G^̂ ]̂ , =0, [GX- = O, 

Integrating equation (2.32) across y = - 1 , y', 1 yields the relations 

(2.33) 

(2.34) 

dy 

dy 

dy 

-1+ 
ik 

- 1 -

V 
1+ 

s — ik 

—ik 

G ML, 
• 1 , 2 / ' ) , 

s + ik G ML, 1,2/') (2.35) 
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Using equations (2.33), (2.34) and (2.35), G ^ ^ takes the form 

G'^^y.y') 

+ 

iAe-'^li+yl 

iAe^^\^-y\ 

s + ik 

s — ik 

9is) {( 

1 + 

1 + 

2{s + ik) 
-k\l+y'\ ! i 

- 2 f c 

2{s + ik) 
~fe|i-

ik) 
,-k\l~y'\ -ill̂ e-̂ l 

2(s - eA;) 

2k' 
-kly-y'l 

(2.36) 

where g{s) = 4(s^ + k'^) + 4is — 1 + e '̂*'̂ . Disturbance velocity is now calculated using 
equation (2.24). We do not write the explicit solution here as it is too lengthy. This solu­
tion would describe the evolution of any arbitrary disturbance. But our primary goal is to 
understand the evolution of disturbances at the two interfaces y = ± 1 , and subsequently 
observe the emergence of unstable/stable normal modes at long times. Hence, we solve 
here only a simplified problem. To excite purely discrete waves at the two interfaces, the 
initial condition is chosen to be of the form 

<^o(y') = ^ i % ' - i ) + ^2^(y' + i ) , (2.37) 

where Bi and B2 are arbitrary constants. In particular, this initial condition corresponds 
to vortex sheets at y =; ± 1 , and Bi and B2 control the initial strength and the phases of 
the two vortex sheets. Now the vertical velocity reduces to the calculation of two simple 
integrals. 

v{x,y,t) 
^71"^ Ja-io 

G{y,-1) 
s — ik 

„st ds + ^ B i 
2^1 I 

J a 

(T+lOO g ( y , i ) ^ 
s-\- ik 

,st ds. (2.38) 

Having obtained v(x,y,t), we now plot contours of streamfunction for two different 
values of k. It has already been mentioned above the free waves at the two interfaces 
change their direction of propagation at A; = 0.5. Hence we show the evolution of stream-
function for k = 0.4 and k — 0.6. The contour plots are plotted for one wavelength. We 
choose Bi = 1 and B2 = i such that the vortex sheets at y = ± 1 are displaced by a 
quarter-wavelength from each other. In figure (2.4), streamfunction contours are plotted 
with k = 0.4 for various times. As time progresses, disturbance at y = 1 travels to the 
left, and at y = —1 travels rightwards, in agreement with the evolution of free waves. 
The last figure in the panel is close to the large-time normal mode pattern. For k = 0.6, 
free waves travel rightwards (leftwards) at the upper (lower) interface. The IVP solution 
at this wavenumber indeed confirms this behaviour, as shown in figure (2.5). 

The above analysis shows that waves on the two interfaces indeed behave like free 
waves at short times evolving with the free wave phase-speeds. The disturbance velocity 
field of each wave slows the other one down such that the two waves come to rest relative 
to each other and form a normal-mode solution. 

The kinematic understanding of linear wave-interaction can also be investigated using 
the ideas of wave-energy, a quantity which can have both positive and negative values. A 
wave is said to possess negative energy if its introduction into a medium lowers the total 
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Figure 2.4: Evolution of streamfunction contours with time for an initial condition con­
sisting of two vortex sheets at y — ±1 with k = 0.4. As time increases (downwards in the 
figure), disturbance at j / = 1 travels to the left and at y = —1 travels to the right. But 
the speed of evolution continually slows down eventually reaching a steady-state pattern 
at t M 10. 
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Figure 2.5: Same as figure 2.4 but with k = 0.6. In this case, the disturbance at y = 1 
travels to the right and at y = - 1 travels to the left. 
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Figure 2.6: Schematic of possible wave-interactions possible for two free waves. 

energy of the medium. For example, the kinetic energy of a stratified shear flow before 
the introduction of a perturbation is given by 

KEo f p{y)V^dy (2.39) 

where p{y) is the density and U is the mean flow. On introducing a disturbance velocity 
field (waves), v, the kinetic energy changes to 

KEx f p(y){V+^fdy (2.40) 

Therefore, the change is kinetic energy is given by KEi - KEQ. The same argument can 
be extended to potential energy. If the total energy after the introduction of a wave is 
lower than before it, then the wave is said to be associated with a negative energy, or 
simply called as a negative energy wave. Once it is recognized that waves can possess 
both negative and positive energies, then it easy to show that if energy is extracted from 
the system, then the negative energy wave increases in amplitude indicating instability. 
Cairns (1979) introduced these idea in instabihties of parallel flows, though the basic 
ideas were contained in the works of Landahl (1962) and Benjamin (1963) in the context 
of boundary layer flow over a flexible surface, and also in Acheson (1976) in his discussion 
on over-reflection. The idea is powerful mainly because of its predictive capabihties. If 
two free-waves have the same frequency, i.e the dispersion relations of the two waves 
intersect, then it is possible to predict the outcome of the combined instability problem. 
For example, in the above mixing layer profile, the two waves (solved independently) 
at y ± b possess opposite wave energies, and their dispersion curves intersect as shown 
schematically in figure (2.6). From the dispersion relation of each free wave, the wave-
energy can be calculated using the Cairns formula: 

4 du) ml (2.41) 

where \r]o\ is the wave-amplitude. To derive this formula, one subtracts the total ki­
netic and potential energies of the system before and after the introduction of the wave. 
Another way to arrive at the same result is to use Whitham's averaged Lagrangian for­
mulation (see Whitham (1974)) as was done in Ostrovskii et al. (1986). At the point of 
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interaction, k = fci, if the two modes have the same sign of wave-energy, then the outcome 
is expected to be of form (b) in fig.(2.6). The resulting dispersion curves are distorted 
but remain neutral. Wlaereas, if the modes possess wave-energy of opposite sign, then 
an instability is expected as shown by the form (c) in fig.(2.6). In the region between 
/c_i_ and k^ the frequency in the form of complex conjugates, with one growing and one 
decaying mode. The ideas of wave-energetics are explored in detail in Craik (1985) and 
Fabrikant & Stepanyants (1998). These ideas will be used later in this chapter and in the 
next chapter. We now proceed to consider an interaction between a Rossby wave and an 
internal wave. 

2.2 Taylor-Goldstein equation 

For flows with density inhomogeneity, one usually employs the well-known Boussinesq 
approximation. In this approximation, the effects of density are neglected in all the terms 
in the momentum equation, but retained only in the gravity forcing term. We first write 
the density as 

p{x, y, t) = pm+ p{y) + p{x, y, t). (2.42) 

Here p, the total density is a function of all space and time, and is decomposed into three 
parts. The first part, pm is a vertical mean density, and assumes a fixed number, p is 
a function of just the vertical coordinate, and superposed on this, is a small fluctuating 
component p, which varies in both space and time. We assume that p « pm,P,P- For 
a simple linearly varying density profile, i.e. pocy, bounded between heights y\ and y2, 
Pm is usually related to p as 

'yx + y2\ (2.43) 

The choice of Pm is made by convenience. Substituting these into the governing equations 
of motion leads to the Taylor-Goldstein equation derived independently by Taylor (1931), 
Goldstein (1931) and Haurwitz (1931). 

v" + 
iv2 (;" , j 

— T - /i; 
((y-c)2 {u-c) 

wliere N is the Brunt-Vaisala frequency defined as 

u = 0, (2.44) 

N' =. - ^ ^ . (2.45) 
Pm dy 

In many geophysical applications, density is stably-stratified and varies either linearly or 
exponentially in the vertical direction. As a result, the Brunt-Vaisala frequency is non­
zero for all heights. For stable density stratification, it can be shown from equn.(2.44) 
that internal gravity waves are supported by the system (see e.g. Cohen & Kundu (2004)). 
These waves are usually undamped in the far-field and homogeneous boundary condi-
ticMis are not satisfied in the vertical direction. Therefore, more complicated boundary 
conditions need to be employed when solving equn.(2.44) in a bounded domain. In this 
work, we consider a situation where the density jumps from pi to p2 at some arbitrary 
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Figure 2.7: A parallel flow analogue of the stability of a Rankine vortex with density 
jump outside the vortex core. 

location, say, y = 0 for convenience. This gives us a delta-function profile for the Brunt-
Vaisala frequency. Therefore internal waves are supported only at this location and the 
disturbance decays to zero far away from this interface. p\ corresponds to the density of 
the upper layer fluid {y > 0), and p2 corresponds to the density of the lower layer fluid. 
When pi < p2, the flow is said to be in a statically-stable configuration. When pi > p2, 
the flow supports unstable waves, this is commonly known as the Rayleigh-Taylor in-
stabiHty (RTI). The full dispersion relation obtained by solving equn.(2.44) with (7 = 0 
takes the form 

^=±ffr^l ' ' ' - (2.46) 
Clearly, two normal modes are supported at the density interface. For unstable stratifica­
tion, the solutions are purely imaginary and complex conjugates of each other. Therefore 
in the absence of any background flow, the unstable RTI waves are standing waves. For 
stable stratification, both the eigenvalues are real and are of opposite sign. To understand 
the mechanism of Rossby-gravity wave interaction, it is first important to understand the 
kinematics of density wave propagation. To do this, we write the linear equations gov­
erning vorticity and density anomalies. 

Dt 
-N' 

Dp dp 

1}F = "' 

dx' 

= 0, 

(2.47) 

(2.48) 

(2.49) 

where D/ Dt — d/dt + Ud/dx, C, is the vorticity anomaly and r} is the interface displace­
ment. Assuming a normal mode form of the solution, D/Dt = —i{yj — kU). This reduces 
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Figure 2.8: A parallel flow analogue of the stability of a Rankine vortex with density 
jump outside the vortex core. 

the above equation to the simple form 

c = 

(c-U) V-

(2.50) 

(2.51) 

With U --•- 0, and stable density stratification, N^ > Q and c is real. For c < 0, C and r/ 
are always in anti-phase, and for c > 0, C and r] are exactly in phase with each other. 
The two cases are shown schematically in figure 2.7. The vorticity anomaly for the upper 
panel in this figure is exactly analogous to the Rossby wave schematic shown in figure 
2.1. Therefore, using the same kinematic arguments, it can be shown that the upper 
panel in figure 2.7 travels to the left, and the lower panel travels to the right. In terms 
of wave-interaction, it will be shown in the next section that the Rossby wave of figure 
2.1 and the rightward traveling density wave interact, leading to an instability. 

2.3 Rossby-Gravity wave interaction 

We now consider the problem of interaction of a Rossby wave with an internal gravity 
wave. For simplicity, we employ the standard Boussinesq approximation. We employ 
here the kinematic wave-interaction ideas discussed in section 2.1 to show that a neutral 
Rossby wave and a neutral interface interact giving rise to exponential growth. The 
construction of flow geometry requires two key ingredients: (i) a vorticity jump which 
supports a neutral wave riding on it, (ii) a stable density jump which supports two 
neutral waves traveling in ojiposite directions, and riding at the density discontinuity. As 
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discussed in the previous section, an instability is now possible due to an interaction of 
two oppositely moving waves, which may become stationary relative to each other due 
to the action of shear. A schematic of the geometry is shown in fig.(2.8), and was first 
studied by Baines & Mitsudera (1994). This problem has also been studied by Fabrikant 
& Stepanyants (1998) in the context of an the air boundary layer over an ocean surface. 
The base flow can be written as: 

U 

where 7 is the shear rate. 

\ Ui = Uo + i{y-d) iiy<d, ^^-^^^ 

(2.53) 
f pi if 2/ > 0, 
\ ^ if y < 0. 

For stable density stratification, pi < p2. The governing equation now is the Taylor-
Goldstein equation (2.44). The flow is unbounded in the vertical direction, and we use 
homogeneous boundary conditions on v. The general solution is 

V = Aexp{-k\y\) + exp(-A;|y - d\). (2.54) 

The coefficient A is obtained by matching pressure on either side of the density interface. 

. _ — exp{—kd) 

^ {u - kUo +-ykdy {p2 + pi) 

The complete dispersion relation, T>{u;,k,d,p) takes the form: 

(2.55) 

[^-kUo + ̂ kdf + '-^^^l^ 
(Pi + P2) P\+ P2 

(2.56) 

The right hand terms indicate the coupling between the two interfaces at t/ = 0 and at 
J/ = d. Defining a suitable Richardson number, 

J _ 9 {P2-Pl) 
-^'I'dip. + p,) (2.57) 

which quantifies the effect of density contrast, the growth rate contours are plotted in 
the J ~ k plane, and is shown in fig.(2.9). 

In the absence of shear, the first interface loses identity, and we recover the IGW 
solution at y = 0. In the absence of any density stratification (pi = ^2), IGWs disappear, 
and we recover the discrete mode riding on the vorticity interface at y = /i along with 
the continuous spectrum, i.e. for a given k, an uncountable number of frequencies can 
be supported by the system depending on the location of the origin we choose. The 
continuous spectrum modes are exactly analogous to the modes described in Case (1960). 
We return to this point later in the section where we show that the continuous spectrum 
modes of the homogeneous problem destabilize. The crucial term which determines the 
strength of the coupling is e'^'"''. If the interfaces are very far apart, then no instability 
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^ / 

Figure 2.9: Stability diagram showing twelve equally spaced contours with a spacing of 
0.0136. The thick solid line is the neutral curve, and the dashed line is the resonance 
condition for free waves of Baines & Mitsudera (1994). The region outside these contours 
is neutrally stable. 

arises, and we recover the neutral solutions on each interface. A surprising result is 
obtained when the interfaces are brought very close to each other. This is the limit of 
kh -^ 0. Writing an asymptotic expansion for small kh, the lowest order equation gives 

7 ± 
uiQ = kUo 

I6(jk 
Pi - P2 

Pi + P2 

1/2 

(2.58) 

For closely spaced interfaces, this shows that stable density stratification does not lead 
destabilize. Physically, as the interfaces are brought very close to each other such that 
the spacing between them becomes much smaller than the wavelength of the waves, then 
shear becomes ineffective in adjusting the phase speeds of the two waves for interaction. 

According to Baines & Mitsudera (1994), the phase relationship between interface dis­
placement and vertical velocity is the key to understand the wave interaction mechanism. 
Instead of studying the phase relationship of free waves, we focus on the complete dis­
persion relation (2.56) to understand the underlying phtise relationships between various 
quantities. 

From equn.(2.54), the vertical velocity cUid interface displacement at the lower (den­
sity) interface is given by 

vo = [A + exp{-kd))e''-^-''-"^\ (2.59) 
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^ z(A + exp(-fct/)) i(fc^_^t) 

and for the upper (vorticity) interface is given by 

va = iAexp{-kd) + l)e'^''''-^'\ 

- i{^exp{-kd) + l) n^kx-u^t) 

The phase difference is now given by 

Qj = t a n - 1 Re[vi) 
— tan" 

Re(7/i) 

'^{m) 
i : 0,d, 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

where Re, 3 correspond to real and imaginary parts. Figure 2.10 shows how the phase 
difference changes for various Richardson numbers as a function of wavenumber for both 
the interfaces. As the Richardson number is decreased, the phase angle between rj and 
Ur approaches the near-perfect case of QJ = 0. Clearly, the neutral region is marked 
by the angle's QQ, aa fixed at QOP. The same phase difference appears in the kinetic 
energy equation in the buoyancy flux term. The equations for the perturbation kinetic 
T, potential, V and total energies E, for an incompressible inviscid fluid take the form 
(see Gill (1982)) 

dT dT dU , , 
— gpv, (2.64) dt dx dy 

dv ^av _ 

dE_ dE_ 

dt dx -uv 
_dU_ 

dy' 

(2.65) 

(2.66) 

Here, T = po{v? + v^)/2, V = g^p^/2po^^ and tJ = T + V. Total energy can grow only 
due to an exchange with the mean flow through a Reynolds stress term. Nonetheless, 
kinetic energy can increase at the expensive of potential energy through the buoyancy 
flux term, g'pv. 

pv pv dxdy, 

— iv dpQ 

10 — kU dy 
V dxdy. 

(2.67) 

(2.68) 

(2.69) 

For a sharp density interface, dpo/dy - Ap6{y). Also using the relation Or]/ Dt = v, we 
get 

pv = _- |r ; | |7; |cos(ai). (2.70) 

This shows that no exchange of energy from kinetic to potential forms can take place 
when the phase difference between interface displacement and vertical velocity is 90''. 
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Figure 2.10: Phase difference between interface displacement and in-phase vertical veloc­
ity calculated at the interfaces for various Richardson numbers. Solid lines correspond to 
density interface (subscript 0), and dashed lines correspond to vorticity interface (sub­
script d). 

We now obtain some approximate solutions to equation (2.56). The hmit of small kd 
has already been discussed. We now write approximate solutions to the cubic-dispersion 
equation in the small J limit. It is convenient to re-write equn.(2.56) in the following 
non-dimensional form: 

UJ aQiJ^ + a\ijj + a2u;J + a-i + a.\J — 0, f2.71) 

where CIQ = 2k + 1/2, a^ = k'^ + k, 03 = -k, a^ = fc2/2 and 04 = -fc(l - exp(-2A;))/2. 
The wavenumber A- has been non-dimensionalized by the interface spacing d. At small 
J, the lowest order equation, obtained by setting J = 0, reduces to the form 

'̂0 + ;̂  ) (̂ 0 + kY 0. (2.72) 

,(1) The roots of this equation are purely real. Tlie first root io^^' = —1/2 corresponds to a 
free wave on the vorticity interface at y = d. The other two roots, (̂ Q ' = —A;, reduce 
to the continuous spectrum obtained by considering U = c m the Rayleigh stability 
equation. Using generalized functions, the corresponding eigenfunctions for these roots 
are simply the Green's function of the Rayleigh operator. It also has to be emphasized 
that the inviscid continuous spectrum in the present problem exists only for y < d. Now 



2.4 Summary 

-vs.̂ .̂ .̂ .e-^- /̂ \^^rjxsR 

Ace, 
No. ? 5 9 0 29 

^ " * U - 1 ^ / L,Dr<ARY 

we introduce a small density discontinuity at y — 0 characterized by a small Richardson 
number. The asymptotic expansion for small •/ for the first solution can be written as 

ij (1) J^^ + Jto\'^ + 0{J^), (2.73) 

where u}[ ' = —kexp{—2k)/{2{k — 1/2)^). This solution diverges at A; = 1/2, which is 
(0) (2 3) 

exactly equal to the free-wave interaction obtained by setting ij\ ' — UJ\ . An inner 
solution for this root can be obtained near k = 1/2. But we are specifically interested in 
the two roots, UIQ = —k. Because this root has a multiplicity of two (Nayfeh (1985)), the 
asymptotic form for small J away from k = 1/2, the outer solution, can be written as 

^(2,3) 
outer 4̂ '̂ ' + ji/M'''' + o(j), 

where 

LJ 
(2,3) 

±i 
k 

2 " 

1 1 

2 + r 
-2k 

1/2 

(2.74) 

(2.75) 

This solution again diverges at A: = 1/2. An inner solution can be obtained near k — 1/2 
as a solution of the equation 

;?Q-fc+jV3,i) - j V 3 ^ e -2k 

and the expansion in the inner region takes the form 

w. 
(2,3) ,(2,3) + j i /M'- ' ' + o{J). 

(2.76) 

(2.77) 

The regular form of this expansion clearly suggests that the continuous spectrum modes 
destabilize upon introducing density inhomogeneity in the system. Due to the presence 
of shear below the vorticity interface, continuous spectrum is localized in this region. In 
other words, the role of shear is therefore to facilitate the existence of a continuum of 
modes, which subsequently destabilize for any density inhomogeneity. 

2.4 Summary 

The main goal of this chapter was to gain a physical understanding of instabilities in shear 
layers and stratified shear flows. The stability of a mixing layer profile was therefore 
revisited, and an initial value problem was solved. The role of wave interactions was 
examined in detail. The linear wave interaction mechanism is shown to give a physical 
picture of the instability process. The IVP calculation of the mixing layer profile showed 
that wave-like disturbances on the two interfaces y = ± 1 , initially travel like free waves, 
slowing each other down and eventually freeze into a normal mode structure. We then 
considered the stability of a model stratified shear flow. The physical mechanism of 
internal wave propagation was discussed in detail. The interaction of a Rossby wave with 
a stable density interface was then studied. Specifically, we showed how a neutrally stable 
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Rossby wave can interact with a neutrally stable density wave leading to exponential 
growth. This is the simplest problem where we can explicitly show how stable density 
stratification can destabilize a flow. In the next chapter, the wave-interaction ideas are 
extended to a vortex geometry. 



CHAPTER 3 

STABILITY OF RADIALLY STRATIFIED 

VORTEX 

Scope of this chapter^ 

In this chapter, we extend our study of density stratified flows to a rotating flow. We 
consider an exactly analogous problem to the one studied in the previous chapter, but 
now for an axisymmetric swirling flow. We study the stability of this flow with an 
axisymmetric density distribution. We restrict our study to two dimensions and neglect 
gravity. If gravity were present, then the problem would not be analytically tractable. 
Hence the simplification. A schematic of the flow geometry is shown in fig.(3.1). 

Two specific configurations are studied, one, where density of the fluid decreases 
monotonically away from the vortex axis leading to a heavy-cored vortex, and two, where 
density increases monotonically away from the vortex axis leading to a light-cored vortex. 
The latter configuration receives the bulk of our attention in this study. Earlier studies 
have revealed that heavy-cored vortices can be unstable to a Rayleigh-Taylor instability 
(RTI) which eventually splits the vortex into smaller, but stronger vortices. It has been 
mentioned in earlier studies that shear outside the vortex core can stabilize the RTI. 
Here we show that shear acts as a destabilizing agent for light-cored vortices, a result not 
found earher. Starting with a simple piece-wise model, the origin of this non-intuitive 
destabilization is clarified. A closer examination of the critical layer is necessary to 
understand instability in this case, and asymptotic solutions for growth rate are given at 
small Atwood number. The instability is shown to be due to a linear wave interaction 
between a discrete Kelvin wave and an internal wave due to density contrast. The 
simplified model is then extended to consider smooth vorticity and density profiles, where 
it is argued that the same wave interaction mechanism is now supported due to the 
presence of quasi-modes. It is shown that continuous spectrum modes of the flow profile 
destabihze upon introduction of a density inhomogeneity in the system in a certain range 
of radii immediately outside the core. We then study the nonlinear stages using full 
direct numerical simulations. The initial exponential instability of light-cored vortices is 
arrested due to a restoring centrifugal buoyancy force leading to stable non-axisymmetric 
structures in the flow. 

3.1 Review of relevant literature 

Density variation in the neighbourhood of vortices occurs in many natural systems and 
technological applications. A large scale geophysical vortex can be subjected to strong 
density variations, often along its axis, and occasionally perpendicular to it. The latter 

'A large portion of this chapter's contents have been submitted for publication in .J. Fluid Mech. 
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Density 
core 

Figure 3.1: A schematic view of an axisymmetric vortex with an axisymmetric density 
distribution. Solid circles indicated the location of the vortex cores, either sharp or 
smooth. Tc and rj are the radii of vortex and density cores respectively. Density at the 
vortex axis is pi and far-field density is p2-

configuration, especially in the form of an axisymmetric flow with radial density varia­
tions, has been the subject of numerous papers, and is under study here. A heavy-cored 
vortex, where the density is a monotonically decreasing function of radius, can undergo 
a centrifugal Rayleigh-Taylor instability (CRTI), analogous to the Rayleigh Taylor insta­
bility (RTI) that occurs when a heavy fluid is placed above a lighter fluid. Just as gravity 
acting downwards triggers the RTI, centrifugal acceleration acting radially outwards ren­
ders the heavy-cored vortex flow potentially unstable. However, unlike the classical RTI 
which can exist without a mean flow, centrifugal forces are generated due to the vortex, 
and this makes the analogy incomplete. A more direct theoretical analog of the planar 
RTI is a radial density variation in a flow which is entirely in solid-body rotation, where 
shear is absent. Such a configuration was investigated by F\ing & Kurzweg (1975) with 
an algebraically varying density. They also study the 3D stability of a radially stratified 
Rankine-type vortex, but the density jump was fixed at the edge of the core. This work 
was a generalization of the earlier study of Uberoi et al. (1972) on the stabihty of a 
Rankine vortex. In later work, Fung (1983) studied the stability of a three layer rotating 
fluid, each region with a fixed angular velocity and density. This is analogous to the 
planar three layer fluid first considered by Taylor (1931). In geophysical flows, there is 
an interest in understanding the baroclinic instabiUty process, discussed in detail in Vallis 
(2006). It was shown by Saunders (1973) experimentally that radial density variation 
in a baroclinic vortex drives a CRTI. For an idealized compressible fluid rotating in a 
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pipe, Gans (1975) considered density variations in the radial direction, and noted that 
the stability depends on a 'centrifugal Richardson number'. 

In all the above studies, shear does not play a role. We shall see below how the 
presence of shear in a vortical flow can have important implications for the stabihty of 
the system. In particular, it will be shown that shear can cause the destabilization of 
a light-cored vortex, or stabilize a heavy-cored vortex. The latter situation finds some 
mention in Joly et al. (2005), but the former has not been seen before, to our knowledge. 
In parallel flows, various combinations of density stratification and shear have been well 
investigated. As an extension of the popular semi-circle theorem of Howard (1961), a 
semi-ellipse criterion for plane stratified flows was derived by Kochar & Jain (1979) to 
define the possible range of phase speeds. This theorem was shown to hold for the 
cylindrical case as well by Fung (1983), and applies to the present flow of a vortex with 
radial density stratification. 

Kurzweg (1969) was one of the earliest to consider non-axisymmetric disturbances, 
and derived a sufficient condition for stability for a smooth vortex. The stability of a 
heavy-cored Gaussian vortex with a Gaussian density distribution was studied by Sipp 
et al. (2005) and Joly et al. (2005). These studies are complimentary to each other. 
While the former show that a competition between 3D centrifugal instabilities and 2D 
Rayleigh-Taylor instabilities can occur, the latter restrict their analysis to two dimensions 
and include the nonhnear stages of RTL Here, in agreement with Coquart et al. (2005) 
they show that wave-like motions on the vortex core amplify and result in the breakdown 
of the vortex into multiple parts, reminiscent of the breakdown of a baroclinic vortex 
observed by Saunders (1973). The number of parts is governed by the wavenumber of 
the hnear perturbation. These workers found that CRTI is stabilized for density core 
sizes comparable to the vortex core, and realized that shear has a role to play in the 
stabilization. Incidentally, a similar mechanism was predicted by Lees (1958) in boundary 
layer flow over a convex surface. 

Importantly, Joly et al. (2005) noted that a light-cored Gaussian vortex, where den­
sity increases monotonically away from the vortex centre, is always stable. Our work 
confirms their result for a Gaussian vortex, but we show that the smoothness of the 
vortex profile plays a crucial role, so a light-cored vortex is not always stable. This result 
may appear counter-intuitive at first sight, but is shown to be a natural consequence of 
wave interactions. Using a Rankine vortex and a step density jump located at a given 
radial location, we explicitly show that the Kelvin wave supported at the edge of the vor­
tex core is allowed, due to shear, to interact with density waves, leading to stabilization/ 
destabilization. For a Gaussian vortex however, shear and vorticity gradient co-exist ev­
erywhere, and this clouds the interaction between the two. In our recent work on a more 
generic density stratification (Dixit & Govindarajan (2010)), we obtained one instance 
of a Rankine vortex surrounded by lighter fluid immediately outside the core, where a 
configuration which is unstable in terms of density stratification is rendered neutrally 
stable. A desire to understand this result motivated the present study. 

In chapter 2, it was shown that a neutral Rossby wave and a neutral internal wave 
can interact with each other causing an instability. In the present flow, the interaction is 
between Kelvin waves riding on the vortex core, and internal waves riding on the density 
interface. The Kelvin waves are analogous to Rossby waves due to a potential vorticity 
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gradient, and are sometimes referred to by this name (see McWilliams et al. (2003); 
Schecter & Montgomery (2003)). We neglect gravity, so the internal waves are caused 
solely by centrifugal forces. The wave interaction is easy to obtain analytically when both 
vorticity gradient and density profiles are imposed in the form of step functions. However, 
smooth vorticity profiles with monotonically decreasing vorticity do not support discrete 
Kelvin waves. We hypothesize that the wave interaction mechanism is now between the 
quasi-modes from the vorticity field and internal waves from the density field. For this 
we follow the work of Briggs et al. (1970) and of Schecter et al. (2000) showing that 
when a piecewise continuous profile is smoothened, discrete modes are replaced by quasi-
modes, which are a collective response of the continuous spectrum modes. A detailed 
mathematical treatment of quasi-modes in boundary layer flows is available in Shrira & 
Sazonov (2001), along with a discussion on the usage of piecewise linear approximations 
in stability theory. 

The present work is the first to our knowledge where a quasi-mode, which is expo­
nentially decaying, and a neutral discrete mode are shown to interact to give exponential 
growth. However there have been some studies which have investigated the interaction 
between continuous spectrum modes and discrete modes. Voronovich et al. (1998a,6) 
study the interaction of boundary layer quasi-modes with internal gravity waves in the 
ocean. Similarly Voronovich & Rybak (1978) and Romanova & Shrira (1988) study the 
interaction of boundary layer quasi-modes with gravity-capillary waves at an air/water 
interface. Sazonov (1989) showed that the resonant interaction between discrete spec­
trum and continuous spectrum modes leads to a linear growth of disturbances in time, 
and provided a physical interpretation of this algebraic instability. Vanneste (1996) also 
considered an interaction between discrete (regular) and continuous (singular) spectrum 
modes, and clarified that when dealing with continuous spectrum interaction, one needs 
to consider a packet of these modes together. As a result, contribution of continuous 
spectrum modes appear in terms of integrals over the physical domain, with quasi-modes 
being a special case. 

The chapter is organized as follows. The problem is formulated in section 3.2. Base 
flow profiles and the governing equations are discussed here. The case of a Rankine vortex 
with step density jump is considered in section 3.3, and the mechanism is elaborated for 
heavy and light cored vortices. We then extend the stability of light-cored vortices to 
smooth profiles in section 3.4. Landau poles for various vorticity profiles are extracted, 
and their connection to quasi-modes is discussed. A linear initial value problem is solved 
numerically for comparison. Results from direct numerical simulations for light-cored 
vortices are presented in section 3.6 and concluding remarks are made in section 3.7. 

3.2 Formulation 

We consider the range of vorticity profiles from a Rankine to a Gaussian vortex. The 
density jump may also be step-like or smooth, and can be located at any radial location. 
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3.2.1 Base flow profiles 

We define a family of vorticity profiles with the same circulation as that of a Gaussian 
vortex of core size a. The vorticity profile depends on a single parameter n in the following 
way, 

' r 

X. 
Z = Zi oexp 

2n 

(3.1) 

The core size 6, is defined as 

n 
1/2 

(3.2) 
' Lr(i/n). 

so that the circulation takes a fixed value of nZoo^ for all n. At n = 1, we obtain 
a Gaussian profile, and as n —> oo, the profiles assume a step-like shape as shown in 
fig.(3.2). The total circulation is given by 

E = 2TT r Z{r)rdr = ^ ! J ^ r ( l / n ) 
Jo n 

(3.3) 

where F is the gamma function. While we keep the numerical values of ZQ and a fixed 
at 1 for simplicity, we retain these variables in the algebra for generality. The effect of 
smoothness can also be studied by imposing hyperbolic tangent profiles of varying width 
(see e.g. Hall et al. (2003)), but the present family was chosen for two reasons. The 
Gaussian profile at n = 1 makes for straightforward comparison with earlier work, and it 
is easier in (3.1) rather than with a tanh to enforce the same circulation for each profile. 
We believe our conclusions are valid for all types of smooth profiles. Since the vorticity 
for any n is monotonically decreasing, i.e.. 

dZ_ 

dr 
< 0 , (3.4) 

for all r, discrete vorticity (Kelvin) modes do not exist (see Briggs et al. (1970)) except 
when n = oo. In this hmit we get a Rankine vortex, which supports a single discrete 
mode due to a vorticity discontinuity at r = a. An artifact of the family of profiles thus 
constructed is a small variation of the core size with n. Fi'om equation (3.2) we find that 
the core size 6^ is equal to unity for Rankine and Gaussian profiles, but is slightly higher 
for intermediate profiles, with a maximum of about 1.06 at n ?» 2.17. 

Unless otherwise specified, density profiles are defined analogous to vorticity profiles 

as 

P = P2 + {pi - P2) exp -ii.\ 
2n 

Sj 
(3.5) 

where Sp is the density core size, pi is the density near the vortex centre and p2 is the 
far-field value. We further define the location of the density interface, rj, as 

Vj = - a . (3.6) 

When Tj > a, the density core is larger than the vortex core. Another ai'tiftict of these 
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Figure 3.2; (a) Vorticity and (b) density profiles as functions of n. From left to right 
(indicated by arrow), n — 1,2,4,8,oo going from a Gaussian to a step profile. In this 
representative figure, the core sizes for vorticity and density are chosen as a == 1 and 
Tj = 1.5 respectively, and the Atwood rmmber At — 0.1. 
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Figure 3.3: Dependence of the maximum density gradient, p'{r)\max on n and TJ. This 
value is a measure of the interface steepness, and internal wave properties depend on it. 

profiles is that the density gradient varies with n and rj. The maximum in the density 
gradient, p'{r)\max, plotted in figure (3.3), is a measure of profile steepness. It can be 
seen that varying the location of the density jump affects the gradient value, and this 
becomes severe for large n. To overcome this difficulty, and more importantly, to estimate 
the effect of smoothing the vorticity profile alone, we make use of tanh density profiles 
in the stability analysis of section 3.4, defined by 

'=2 {Pi + P^) - {p\ - /92) tanh 
St 

(3.7) 

For these profiles, steepness does not depend on rj but is controlled by the factor 6t, fixed 
here at a value of 0.1. 

3.2.2 Governing equations 

The appropriate governing equations are the two-dimensional Navier-Stokes equations 
in r — ^ coordinates. A small amplitude perturbation (u^,«'g,p') is imposed on the 
axisymmetric base vorticity and density profiles. Using a Fourier decomposition in the 
azirauthal direction, i.e.. 

[u'^,u'ff,p']{r,6,t) = Re{[xir,ug,p]{r,t)exp[im0]}, (3.8) 
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the system of equations for y = [11^ p] can be written in the form 

d 

dt 
My = -Wy, 

where the operators are given by 

M = 
pC + {Vp)r^V* 0 

0 1 

^f• 
pm{flC - rVZ) + {Vp)Tn{nr^V* - rZ) -im^rVp-

—iDp mf2 

£ = r'V' + 3rD ( m ^ - l ) . 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The azimuthal velocity component UQ can be computed from Uj. using the continuity 
equation. Here Q(r) is the angular velocity of the base state, V = djdr and V>* = V+l/r. 
The boimdary conditions are that perturbations decay to zero at the vortex axis and as 
r —> cxD. The perturbation vorticity C('")^) is related to u^ and ue as 

1 dirue) im , 

r or r 

For a normal mode in time, 

{urir,t),ug{r,t),p{r,t)] = [urir),ue{r),p{r)]exp[-iu)t\, 

and a single equation in Ur can be written as 

(3.13) 

(3.14) 

T>{pr'^V*Ur) + m r Q2 Vp 

^ ) ' 

mr VipVHrn)) o 

mil 
Ur (3.15) 

This equation is analogous to the Taylor-Goldstein equation for planar flow (Drazin & 
Reid (1981)), and has been derived earlier by Fung & Kurzweg (1975) and others. The 
boundary conditions are Uj. = 0, at r = 0 for m > 2, and at r —> 00. We will consider 
only wavenumbers m > 2 as m = 1 is only a translational mode in 2D, and does not 
alter the dynamics. The centrifugal acceleration rVP in the first term in the bracket is 
analogous to gravity in a planar flow. Thus, unlike in the planar situation, internal waves 
supported by density inhomogeneity do not have an existence independent of the flow. 

3.3 Stability of a Rankine vortex with density jump 

The limit n —> 00 corresponding to a Rankine vortex with a step density jump allows for 
analytical solutions, and is therefore considered in some detail. We keep the location of 
the density jump arbitrary. When the vorticity is constant everywhere, i.e., the flow is 
in solid-body rotation, Fung (1983) showed that no instability can occur when Dp > 0, 
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an intuitive result. We repeat this proof for clarity. Substituting Q(r) = QQ, C = w/m 
and Uj. = * / r in equation (3.15), we get, 

where A = 

—m^p 
+ AVp * = 0, 

nl 
+ 

2nn 

( c - ^ o ) ^ ( c - Q , 

(3.16) 

(3.17) 

Equation (3.17) along with homogeneous boundary conditions at r = 0 and oo forms a 
Sturm-Liouville system, so A is purely real, with the same sign as Vp. Rewriting (3.17) 
as 

'{I + A)±VTTA' 
fin 

A 
(3.18) 

we see that a density jump from light to heavy is always stable, since A is now positive 
and so c has only real solutions. Note however that the reverse case of a heavy core is 
not unstable unless A < — 1. 

On the other hand, for the irrotational flow near a point vortex, where angular velocity 
varies as Jl = F/r^, we get 

A = ^ . (3^19) 

Again we arrive at the result that there is no instability when Vp > 0, but when Vp < 0, 
there is always an instability. In our flow, a density jump placed at r « a or r » a 
respectively resemble the limits of solid body rotation or a point vortex. A positive 
density jump being stable in either of these limits, one may expect a light-cored vortical 
flow to be stable wherever the jump is placed. This will be shown below to be not true. 
The reason is that while equation (3.15) can be reduced to equation (3.17) either inside or 
outside the vortex core, it still is not a Sturm-Liouville system as homogeneous boundary 
conditions are not satisfied at r = a, a region of non-zero vorticity gradient. There is 
thus an opportunity for different behaviour if the jump is placed at r ~ a. 

The n ^ oo limit may be described as 

r < a 

Z = Zo 

n = Qo 
P = Pi 

a < r < Tj 

Z = 0 

n = fioaV^^ 
p^ Pi 

r>rj 

Z = 0 
Q = Qoa^/r^ 

P = P2 

(3.20) 

The general solution of equation (3.15) in the above three regions is in the form of 
^(m-i) g^jjj ^(-m-i) jj^ appendix A, the eigenfunctions Ur are given along with the 
necessary steps for the derivation of the dispersion relation. Non-dimensionalizing a; 
by the maximum core vorticity ZQ, a cubic eigenvalue equation can be obtained from 
equation (3.15) as follows: 

w^ + a2W^ + aiw + ao = 0, (3.21) 



40 Chapter 3. 

where 

and At — (pi — P2)/{pi + P2) is the Atwood number. In the homogeneous fluid hmit 

of At = 0, equation (3.21) is solved to give a 2D Kelvin mode, WQ , on the vortex core 
(2 3) 

boundary, and a single continuous spectrum mode, WQ , at any r = TJ given by 

.?) = (m-l)/2, ^ r ' = ' ^ . (3.25) 

The subscript 0 denotes the case of Ai = 0^. The discrete mode is obtained due to a 
non-zero vorticity gradient at r = a. The critical radius for the Kelvin mode is obtained 
by equating the two solutions of equation (3.25) giving 

To = a J - ^ . (3.26) 
V TO — 1 

The angular speed of the base flow at this radius is equal to that of the Kelvin mode. 
In a frame of reference rotating with this speed, disturbance waves rotate in opposite 
directions on either side of r^. The continuous spectrum outside the core can result 
in interesting behaviour for At ^ 0. Romanova (2008) for instance showed that the 
continuous spectrum modes of a homogeneous flow can become unstable eigenmodes in 
the presence of density stratification. We therefore restrict out study to the region r^ > a. 

3.3.1 Heavy-cored Rankine vortex 

We first consider At > 0, which means that fluid within rj is heavier than that outside 
it. Following the standard methods of solving a cubic equation (Press et al. (1992)), a 
criterion for instability can be derived. As the general criterion is cumbersome, we give 
here the small At approximation, retaining up to 0{At). For instability we require 

7 ^ = 1 - m + m — 1 - m + m — - — > 0 . (3.27) 

Figure (3.4) shows curves of V plotted as a function of rj/a. The zero crossing occurs 
when the jump is placed exactly at the critical radius, i.e., rj = re- As the Atwood 

^The continuous spectrum of a Rankine vortex is studied in detail in forthcoming work of A. Roy and 
G. Subramanian. 
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Figure 3.4: Curves of V from equation (3.27) plotted as a function of the density jump 
location rj/a for various wave numbers. In the hmit of small At the flow is unstable 
when P > 0. The dotted vertical hues indicating the zero crossings of V coincide in each 
case with the critical radius for the Kelvin mode obtained from equation (3.26). 

number increases, a jump placed anywhere outside r^. becomes increasingly unstable, and 
the unstable range encroaches within r^ as well, but the flow is neutrally stable for a 
range of rj immediately outside the Rankine core. This can be seen in fig.(3.5(a)) where 
the growth rate is plotted as a function of the Atwood number for a fixed wavenumber 
m — 2. Fig. 3.5(b) shows that a neutral region exists for all m. Here no assumption is 
made on the smallness of At. The complete dispersion relation in the At ~ rj/a plane for 
m = 2 is plotted in fig.(3.6) where a region of stabilization can clearly be seen for small 
At and rj/a. For a density jump which coincides with the core, i.e., rj = a, equation 
(3.21) reduces to the simple form 

m {1 + At) 
1 ± W 1 

imAt 

(1 + At)2 

Therefore instability occurs at the core only if 

[l + At)^ 
m > AAt 

(3.28) 

(3.29) 

When m = 2, this condition is met when At > 0.171, and for m = 3, when At > 0.101. 
A physical explanation of this stabilization is given in section 3.3.3. 
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Figure 3.5: Growth rate for a heavy-cored Rankine vortex as a function of density jump 
location, (a) For various Atwood numbers for m = 2. At increases upwards in powers of 
10 starting from 10^^. (b) At fixed At = 10"^ for various m. In both plots, the dash-dot 
vertical hnes indicate the critical radius obtained from equation (3.26). 
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••.a 

ya 
Figure 3.6: Contours of growth rate in the At—Vj/a plane for heavy-cored vortex {At > 0). 
Only the region outside the core is indicated, since a density jump within the core would 
be stable. Solid lines indicate growth rate, and dashed lines the frequency. Gray shading 
represents neutral regions. 

3.3.2 Light-cored Rankine vortex 

If unstable density stratification can be stabilized, then the natural question that arises 
is whether the reverse is also true, i.e. can a Hght-cored vortex flow ever be unstable. 
To put the present results in perspective, it is re-emphasized that the earlier work of 
Sipp et al. (2005) and Joly et al. (2005) did not find any destabilization for any density 
contrast using Gaussian profiles. In this subsection we see that a Rankine core with a 
step density jump can be unstable. In the next section, we show that instability occurs 
only for steep profiles. 

For a light-cored vortex. At < 0. At low {—At), instability now occurs when V 
in equation (3.27) is less than 0. From equation (3.26) and fig.(3.7), it is again seen 
that instability first occurs at the critical radius as the Atwood number is increased 
(negatively) from zero. Instability is now confined to the region immediately outside the 
core as shown in figures 3.8(a) and 3.8(b). The three solutions of equation (3.21), named 
u!^^\ ŵ ^̂  and w''^' may be obtained from series expansions in Atwood number. We derive 
an outer solution denoted by a superscript o, valid away from the critical radius and an 
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Figure 3.7: Variation of growth rate with Atwood number for m = 2. The vertical 
dash-dot hne indicates r^. 

inner solution, denoted by a superscript J, valid in the neighbourhood of the critical 
radius. 

The first solution, corresponding to the Kelvin wave riding on the vortex core bound­
ary in the homogeneous case, takes the asymptotic form 

,(!).« = J}^^" 

where 

i^n 

(i),o m-\ 
Wn = — r — and 

+ (-A0c^f'''' + O(-A0', (3.30) 

(3.31) 

u; 
( l ) , o 

[rti -- i ) | 
( n^ 

V.7. 

2\\i 

) (m. -- 1 ) - - Im 
(a' 

Kr,. 

2m 

j +m. f "' 
\^i^ 

\ ' l 
) 

2(m - 1)" - 4rn(ni - 0 ( — ) + 2m2 ( - ^ J 

This solution diverges at the critical radius /'c, but since it gives rise to no instability, 
that neighborhood is not studied in detail. The other two solutions, which describe the 
continuous spectrum modes localized at r = TJ, take the asymptotic form 

/2,3),o ^_ ̂ ,(2,3),o ^ (._,1^)1/2 ^(2.;i),o ^ O^^M), (3.32) 
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(a) 

(b) 

Figure 3.8: (a) Variation of growtli rate with the jump location for a light-cored Rankine 
vortex at (a) At = —10 '^, (b) At = — lO^-^. The dash-dot vertical hne indicates TC-
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Figure 3.9: Contours of growth rate in the At-r^ plane for a hght-cored vortex {At < 0). 
SoUd hues indicate growth rate and dashed hues indicate frequency. The gray shading 
represents a neutral region. 

with 

(2,3),o __ wa^ 
''o 2 r | 

and 

cf •̂ '•° = ± 
- 3 1 ^ 

2m + 4 , 4 / ^ ^ 
(2m2 + m) - 3m(m - 1) ( — | + 4m2 

12(m - 1)) 

(3.33) 

1/2 

These solutions too diverge at the critical radius. An inner solution in this neighbor­
hood takes the asymptotic form 

ui 
(2,3),i _ „,(2,3),i l/3,„(2,3),i cj^^''^>'' + {-Aty-'ioY'^''' + Oi-At) ^2/3 (3.34) 
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where the correction term uj\ ' is obtained as a solution to the equation 

(3.35) 

< - - ) - T ( ^ ) ' ( " ' ( ^ 
2 / \ 2m ̂  

Thus a continuous spectrum mode localized at r = rj becomes unstable with a growth 
rate increasing as |ylip/^ when TJ » re- In a small region around the critical radius of 
the Kelvin wave the growth rate increases faster, as |Aip'^. 

3.3.3 Physical Mechanism 

In Sections 3.3.1 and 3.3.2, we showed that a heavy-cored Rankine vortex can be stabihzed 
and a light-cored Rankine vortex destabilized. We now examine the physical mechanism 
behind this process. Our argument proceeds as per the wave-interaction mechanism 
proposed in many earlier studies on other shear flows, e.g. for counter-propagating Rossby 
waves (Hoskins et al. (1985)). The mechanism relies on the existence of two differentially 
moving free'̂  waves, which can slow each other down relatively until they settle into 
a normal mode. In our flow, the interaction is between internal waves at the density 
interface and a Kelvin wave on the Rankine vortex. To understand these, we examine 
separately a radial density interface around a point vortex, and a Rankine vortex in a 
homogeneous density. The replacement of the Rankine vortex by a point vortex of the 
same circulation (= O.Qa^), is valid in the hmit TJ >> a, and incidentally at low Atwood 
numbers, is also found to be good for rj near the vortex core. Solving equation (3.15), 
the dispersion relation reduces to 

w„ = 

'1 m I 
(3.36) 

where the subscript p denotes a point vortex. When At — 0, the eigenvalue reduces to 
the corotation frequency at r = Vy For a point vortex, whether or not At = 0, and 
independently of the eigenvalue, the vortex sheet strength takes the simple form of the 
continuous spectrum mode for a point vortex 

C,- ,p--2zrr™-i5(r-r , ) . (3.37) 

The interface displacement is given by 

Ĵ.p = ^ - (^-38) 

^Free waves are neutral waves having an independent existence. They are associated with perturbation 
vorticity localized in space. The 2D Kelvin mode of a Rankine vortex is an example. 
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Figure 3.10: Variation of frequencies (solid lines) and growth rates (dash-dot-dot) with 
radial location of the density jinnp for (a) light and (b) heavy cored vortices with m = 2 
and At = ^IQ-'^. The dashed curves are obtained by putting At = 0 corresponding to 
equation (3.25) and the vertical dotted line shows re. In (a), dash-dot curves indicate 
the frequencies obtained for a point-vortex system using equation (3.36). 
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To understand the wave-interaction mechanism, it is necessary to examine the phase 
difference between the two interfaces and their corresponding vortex sheets. With a point 
vortex, when At < 0 (hght-core), the flow is always neutrally stable, and the vortex sheet 
strength, Cj,p is either in phase or anti-phase with rjj^p. The two neutral modes travel in 
opposite directions with respect to the local mean flow at rj as shown in the dash-dot 
lines in figure (3.10(a)). But when At > 0 (heavy-core), the flow is always unstable and 
Cj,p is at a maximum at the nodes of the interface. Both unstable and stable modes are 
stationary with respect to the local mean flow (figure 3.10(b)). A homogeneous Rankine 
vortex offers a Kelvin wave of frequency {m— \)Qo, shown by the horizontal dashed line 
in the figure. The eigenfunctions for the internal and Kelvin waves consist of vortex 
sheets at r = rj and r = a respectively. The density wave of branch 1 for At < 0, which 
travels faster than the local mean flow, would be capable of interacting with the Kelvin 
wave to cause an instability. The three eigenvalue branches of the combined system, of a 
Rankine vortex with a density jump, are shown by solid fines in the same figure. At large 
Tj, branches 1 and 3, as expected, approach the point vortex solutions. The frequencies 
of branches 1 and 2 in fig. 3.10(a), and 1 and 3 in fig. 3.10(b), combine at a certain 
radius to give eigenvalues which are complex conjugates. The growth rates corresponding 
to the unstable one are shown by the dash-dot-dot lines. Using the eigenfunctions given 
in Appendix A, interface displacements and perturbation vorticity now take the forms 

la 
-rn~l 

-^] (w - (m - l)Qo) - f̂ o 

^ j 
ir -m — \ 

2 ' 

w — m\l—^ 

(3.39a) 

(3.39b) 

L 

Cj 

2iilQa -rn—1 

^ j (w - (m - 1)^0) - "o 

^ j {u;-{m- l)Qo) 

Y i 5 ( r - a ) , 

-2ir 

( f- \ 2m 
^ j {io - (m - l )no) - "o 

6{r — rj). 

(3.40a) 

(3.40b) 

For the purposes of the physical argument, to above may be replaced by the point vortex 
eigenvalue. 

Before describing an unstable light-cored vortex, it is useful to understand the neutral 
configuration, and our focus is on solution l)ranches 1 and 2, which interact. For the 
Kelvin mode qa and Ca are always in-phase. But the phase difference between r/j and Cj 
depends on rj as well as on w, which in turn depends on At. Using LO « Qoci'^/r'j and the 
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definition of r,., we rewrite Cj as 

<{r,) = -i 
2..".-. (5) 2m 

ma 

B 2m 
ma 

5{r — Tj). (3.41) 

The factor in the square brackets in equation (3.41) is negative for all r j , and therefore 
the two vortex sheets at TJ and a are in-phase for TJ > r^ and in anti-phase for TJ < re-
The former was seen above to be in a neutral configuration. A schematic view of the 
twin vortex-sheet configuration supporting a neutral solution is shown in figure (3.11(a)). 
A positive (negative) interface displacement at the outer vortex sheet is associated here 
with a negative (positive) vorticity anomaly. Maximum radial and tangential velocities 
are indicated by straight solid and dashed arrows respectively. There is no component 
of Ur either abetting or impeding the interface displacement. This is the character of 
all neutral waves. If one rotates the Kelvin wave, being the faster moving, in the anti­
clockwise direction, it can be worked out that the outer vortex sheet will respond so as 
to return the system to the original phase. 

On the other hand when TJ < r^, the vortex sheets are of opposite sign. For a growing 
mode, the interfaces should be positioned such that r]j lags % to within half a wavelength. 
In the most dangerous case, % and rjj are in anti-phase as shown in figure (3.11(b)). 
Here the disturbance velocity from the inner sheet causes T]J to grow. The Kelvin mode 
thus acts as a source of energy, absent in the point vortex case. This is the essential 
mechanism for the instability of a light-cored vortex. In other words, for a neutral wave, 
the kinematic condition, Dr]/Dt = Ur, results in the interface displacement and the 
normal velocity being always out of phase, i.e. there is no production of disturbance 
energy. Once the waves interact and a phase-locking occurs, r/ and Ur need no longer be 
out of phase, and an instability can result. 

We now consider a heavy-cored vortex, and it is natural to begin with the unstable 
case. When rj » a, the growth rate for the Rankine vortex case is well described by 
the point vortex solution. The interface is subjected to the classical centrifugal Rayleigh-
Taylor instability. Disturbance vorticity at the nodes of the unstable interface drives the 
interface progressively away from its initial position. Using w ~ Qoo^/rJ, it is easy to 
show that the two interfaces are displaced by a half-wavelength and the vortex sheets 
are in-phase with each other. This scenario is shown in figure (3.12(a)). The disturbance 
field from the Kelvin wave at r = a adds to the growth of the density interface. This 
resonance is most fruitful near the critical radius TC causing the growth rate to exceed 
the point vortex growth rate. We finally consider the stabilization of the heavy-cored 
vortex. For TJ < r^ the frequency of the interacting branch 1 now satisfies the inequality 
(m — l)flo < (jjj. < mQoa^/r^. Therefore, this internal wave travels faster than the 
Kelvin wave. Using equations (3.39) and (3.40), we can shown that the two interfaces are 
perfectly in-phase with each other in the neutral configuration. Moreover, the vorticity 
disturbance created at the crests and troughs of the interfaces are exactly out-of-phase 
with each other. Such a configuration is seen in figure (3.r2(b)), and u^ does not abet or 
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(a) 

(b) 

Figure 3.11: (a) Neutral configuration showing the interface position for the two waves 
at r = a and r = TJ for a light-cored Rankine vortex. The dashed and solid line circles 
indicate unperturbed and perturbed interfaces respectively. The straight solid arrows 
indicate the induced velocity at the nodes of the interfaces and dashed arrows indicate 
the direction of the tangential velocity disturbance. The circular arrows denote the 
disturbance vorticity, anticlockwise being positive and clockwise negative, (b) Unstable 
configuration for a light-cored Rankine vortex. The radial ciisturbance velocity from the 
inner vortex sheet destabilizes the outer sheet. 
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(a) 

(b) 

Figure 3.12: (a) A schematic of the centrifugal Rayleigh-Taylor instabihty of a heavy-
cored Rankine vortex. The Kelvin mode at r = a further reinforces the RTI, causing the 
growth rate to increase beyond the point vortex case, (b) Neutral configuration showing 
the interface position for the two waves at r = a and r = TJ for a heavy-cored Rankine 
vortex. The convention is the same as used in figure (3.11(a)). 
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Figure 3.13: Phase difference, Q^ and QQ, between interface displacement and radial 
velocity at r = Vj and r = Va respectively. The Atwood number for the curves increases 
from 10"^ to 10^^ in powers of 10 as indicated by the arrow. For m = 2, an angle of 90° 
represents a half wavelength displacement in the azimuthal direction. 

impede the interface displacement, i.e. the essential mechanism of RTI is now removed, 
resulting in a neutral state. 

Fi gure (3.13) shows the variation of phase-angle at both the interfaces for various 
Atwood numbers as a function of density interface position for a light-cored Rankine 
vortex. Since m = 2 in all our analysis, a half wavelength displacement in the azimuthal 
direction is represented by an angle of 90". For the smallest At considered, the two 
interfaces behave like free waves and this results in near-perfect phase-locking below the 
critical radius. The phase-angle at r = a shown in the inset departs marginally from the 
neutral wave condition, i.e. a^ w - 9 0 ° . This indicates that it is the density interface 
that is destabilized, rather than the vortex core. 

We now demonstrate that the relative signs of the disturbance vortex sheets in the 
present flow conform to the mechanism described. The vortex sheet strength for the 
unstable mode are calculated from the cubic dispersion relation. The case of a heavy-
cored vortex is shown in figure (3.14). For comparison, the homogenous case given by 
equation (3.41) is also plotted. Clearly, for low At, the sheet strength changes sign in 
the neighbourhood of the critical layer. More importantly, the second vortex sheet is 
positive for TJ > r^. The reverse would be true for a light-cored vortex. In line with the 
wave-interaction mechanism, at low At, we find an instability for TJ < r^ for a light core 
and for rj > TC for a heavy core. 

The kinematic picture described above is in agreement with the wave-energetic view-
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Figure 3.14: Vortex sheet strengths for a heavy-cored Rankine vortex for various At. The 

vertical dashed hne indicates the location of the critical radius TC- In the vanishing At 

limit, the sheet strength changes sign across re­

paint of linear wave-interactions. The wave-energy concepts first developed in plasma 

physics were introduced into hydrodynamics by Cairns (1979). A detailed discussion of 

wave-energetics is given in Craik (1985) and Fabrikant & Stepanyants (1998). The wave 

energy can be calculated from the dispersion relation using the formula 

p 1 ^ ^ 1 (3.42) 

where £ is the wave energy, D is the cubic dispersion relation of equation (3.21) multiplied 
by a negative sign, and r/o is the interface displacement amphtude. Instability occurs when 
the dispersion curves of two waves with oppositely signed wave energies intersect. It can 
be shown that the two internal waves from the density field are associated with positive 
wave energies. Also as Fukumoto (2003) showed, the Kelvin mode is associated with a 
negative wave energy. Their interaction resulting in instability is thus in agreement with 
the wave energetic idea. 

3.4 Stability of smooth profiles 

Given that a Hght-cored Rankine vortex with step density jump can be unstable, but 
a light-cored Gaussian vortex with a Gaussian density distribution is not (Joly et al. 
(2005)), it is clear that the smoothness of the profile has a crucial role to play. In 
Section 3.4.1 we demonstrate that for smooth profiles too, instabihties similar to that 
for a Rankine vortex can exist, if the variation in the mean flow is rapid enough. With 
increasing smoothness however, the corresponding growth rates decrease and, at some 
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smoothness, instabihties vanish. How may this be explained, i.e., what happens to the 
mathematical construct of free waves we created above, when the discontinuities, as in 
real life, are smoothed out? 

As shown by Briggs et al. (1970) and is now well-known, smooth vorticity profiles 
do not have normal mode solutions. However, a subset of the continuous spectrum, 
lying in the vicinity of the critical radius of a related sharp profile, can take the place 
of the discrete mode. In other words, the collaboration of these continuous spectrum 
modes (which actually appear as singular wave-packet solutions) can lead to remarkably 
wave-like behaviour. When this happens, it is referred to as a quasi-mode (Briggs et al. 
(1970) Schecter et al. (2000) and others). These quasi-modes exhibit an exponential 
decay, much in the manner of a stable discrete wave, for a short time. At longer times 
we have the usual algebraic decay (Case (I960)) of the entire continuous spectrum. The 
exponential decay can often be associated with the least stable Landau pole. Landau 
poles are discrete eigenvalues of the inviscid (Rayleigh) stability equation, obtained from 
an analytic continuation into the complex plane. Since they exist in another Riemann 
surface they have to be distinguished from true eigenmodes. It is well-known now that 
when vorticity gradient at the critical radius is very small, then Landau poles indeed 
become quasi-modes, i.e., manifest wave-like behaviour in the physical Riemann surface. 
On physical grounds, the exponential damping has been interpreted as being due to a 
resonant wave-fluid interaction, analogous to the wave-particle interaction considered by 
Landau. Schecter et al. (2000) showed that this resonant damping is a result of the 
conservation of angular momentum, where phase-mixing of vorticity in the Kelvin's cat's 
eye at the critical layer leads to a decrease in the mode amplitude. The existence of 
quasi-modes can be ascertained by various qualitative measures as we shall see. 

As the base vorticity becomes more spread out, its resemblance to a step vorticity 
change becomes weaker, and so does the connection between the displayed behaviour and 
the Landau pole. Consequently the behaviour will be seen to be no longer wave-like at 
high levels of smoothness. In particular, as Schecter et al. (2000) noted, a Gaussian vortex 
has no noticeable quasi-mode signature. In this case, an initial impulsive perturbation 
results in a spiral structure which does not resemble a normal mode. Secondly the pole 
Hes so far from the real r line that a critical radius is not well-defined. Since the deviation 
from wave-like behaviour is gradual with increase in smoothness, a particular smoothness 
level at which a quasi-mode ceases to exist is not possible to define in this flow. 

By various measures, we show that a profile less smooth than about n = 4 ex­
hibits quasi-mode behaviour. More important, we show that quasi-modes possess another 
property of wave-like disturbances, in that like discrete waves, they can participate in 
interactions with other waves. Interestingly, the interaction in this case between an ex­
ponentially decaying quasi-mode of the vortex profile and a neutral internal wave results 
in exponential growth. This interaction can also be interpreted in terms of wave energies. 
Briggs et al. (1970) showed that quasi-modes possess negative wave-energy. Hence, the 
mode amplitude grows when energy is extracted from these waves, by either introducing 
friction (viscosity) in the system, or by introducing a positive energy wave. The former 
situation occurred in Briggs et al. (1970), while we let ourselves into the latter situation 
by introducing positive-energy waves due to density stratification. 
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3.4.1 Quasi mode - gravity wave interaction 

We now present stability results on the family of smooth vorticity profiles described 
earlier. Equation (3.15) is solved in the domain r = 0 to Rmax, which is fixed at 20 
using the Chebyshev spectral collocation method. The collocation points defined in the 
domain x G [—1,1] are mapped to a subset of the positive real line as s = (x + l ) /2 . The 
grid is clustered in regions of sharp density gradients based on the stretching formula 
given in Govindarajan (2004). To improve accuracy at small growth rates and to obtain 
Landau poles, the integration contour is deformed into the complex plane as follows: 

where 

sinh(/32(s - yo)) + sinh(/;i22/o) 

sinh(/J2yo) 

^0 = ^ ^ °̂S 
^P2 

1 + (e^i - l)/3i 

ia{l - x2), (3.43) 

(3.44) 
1 + (e-/5i - l)/3i • 

Here /?! represents the location where clustering is desired, /32 determines the degree of 
clustering, and a < 0 denotes the extent of deformation. For radially stratified vortices, 
we choose /3i to coincide with the density jump location. For homogenous flows treated 
later in the chapter, /?i is chosen to be equal to the critical radius. /32 is fixed at 10 in all 
our calculations. It was seen above that instability for a Rankine vortex is highest when 
the density jump is placed at the critical radius. To get an estimate of the maximum 
growth rate, we again place the density jump at the critical radius, defined now as the 
real part of the Landau pole location of the homogeneous vortex, as described in detail 
later. In figure 3.15, growth rates for different Atwood numbers are shown as a function 
of profile steepness. For the Atwood numbers considered here, instability always vanishes 
for n less than about 6. On the other hand, for large n, the Rankine limit is approached. 
The density profiles here have the same n as the vorticity. To estimate how much of the 
stabilization at lower n is due to the smoothening of the density profiles, a steep tanh 
density profile, as given in equation 3.7, is used to obtain neutral stabihty curves, shown 
in the n — Vj plane in figure 3.16. The steepening of the density profile does bring down 
the n at which instabilities vanish. Though its exact value is sensitive to At, for small 
At, this n value is always between 2 and 1. Henceforth we use only steep density profiles. 

In the small At limit, waves from vortex and density profiles can be assumed to 
weakly modify each other. For large At, vorticity and density waves strongly influence 
each other, making it difficult to pin down a particular range of n for the transition to 
stability. 

3.4.2 Landau poles and quasi-modes for a homogeneous vortex 

To estimate how wave-like the vorticity perturbation is, we prescribe homogeneous den­
sity conditions in this subsection. Landau poles are recovered from a suitable analytic 
continuation of the dispersion relation, as discussed in Briggs et al. (1970). We then 
qualitatively estimate whether these are also quasi-modes of the system. 

Figure (3.17) shows the frequency and decay rate as per the Landau pole as functions 
of the smoothness parameter n. For large n, the frequency approaches asymptotically the 
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Figure 3.15: Growth rates obtained by varying the value of n for vortex and density 
profiles for different Atwood numbers. The density profiles are placed at re. 

Kelvin mode frequency of a Rankine vortex. The decay rate increases dramatically for 
n < 3.5. Eventually at low enough n, we have Uq^i/ujq^r ~ 0{1), violating the assumption 
of small decay rate of Briggs et al. (1970) and Schecter et al. (2000), under which they are 
able to obtain quasi-modes. An examination of fig.(3.18) reveals that the critical point 
re too drifts rapidly away from the real-r axis for n < 3.5, so the approximation of the 
critical point by its projection on the real axis is not justified. We therefore expect that 
there should be no quasi-mode evident at low n, and apply some diagnostics to support 
this. 

The first is the excitability test of Schecter et al. (2000). The excitabihty, which they 
define as 

{di,r-^-'VZ[r)) 

is a measure of amplification of a given frequency in the perturbation. Here the inner 
product is defined as 

{1,9) 
nr)g{ -r dr. (3.46) 

/o P^Ar) 
and the disturbance vorticity is considered in discretized form, for example in terms of 
Chebyshev polynomials, as 

N 

C{r,t) = YlaMr)e —iujlt (3.47) 
1=1 
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Ŝ  2 -

Figure 3.16: Neutral curves with tanh density profiles (equation (3.7)) oi 6t = 0.1. solid 
line: At=-O.Ol, dashed line: At =-0.02, dash-dot line: At=-0.025. Dash-dot-dot line: 
At = —0.05 with the density profile according to equation (3.5) with n = 10. 

where a( are the expansion coefficients, i?; the vorticity eigenfunction and w; is the fre­
quency. In the case of steep tanh vortices, Schecter et al. (2000) obtained a Lorentzian-
type excitability spectrum, with a peak at the Landau frequency. This is the signature of 
a quasi-mode. However for a Gaussian vortex, a broadband spectrum was obtained with 
no well-defined peak. Our results for the present profiles are in qualitative agreement, 
as seen in the excitability spectra in figure (3.19) for four vorticity profiles of decreasing 
steepness. Given its sharply peaked excitability spectrum, we estimate that a profile of 
n = 4 is steep enough to respond with a wave, and at some lower n, a quasi-mode no 
longer exists. In fact the excitability spectrum for n = 4 is fit well by a Lorentzian, with 
a peak at Re(a;g), where the subscript q stands for the Landau pole, that is orders of 
magnitude greater than for surrounding frequencies. For n = 2 and 1.5, there is only a 
shallow peak, while a Gaussian vortex behaves in accordance with Schecter et al. (2000). 

Fabre et al. (2006), whose primary focus was 3D perturbations, provided a second 
diagnostic. They too noted that a Gaussian vortex does not have a quasi-mode in the 2D 
limit, displaying instead a broadband response. Their viscous L-branches (as they name 
them), the only modes which can possess a critical layer singularity, undergo a dramatic 
change in eigenmode structure as axial wavcnumber is decreased (see their figure 14). For 



3.4 Stability of smooth profiles 59 
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n 
10 

(b) 

Figure 3.17: Variation of Landau pole iOq for m = 2. Subscripts r and i indicate tiie real 
and imaginary parts, oj^^i has a negative value for all n, but is too small to be visible 
when n > 3.5. A sudden drop in w,,. is obtained for n < 3.5. 
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Figure 3.18: Location of the Landau pole in the complex r-plane for various values of n 
with m = 2. The limiting values for a Rankine vortex (n —> oo) with critical radius at \/2 
and a Gaussian vortex (n — 1) along with a few intermediate values of n are indicated 
by bold circles. A large increase in S(rc) is obtained for n < 3.5. 

small axial wavenumber and large Reynolds number, the disturbance is wound into a thin 
spiral structure outside the vortex core, notably with no perturbation in the core region. 
If a resonant wave-fluid interaction were taking place, we would have seen its signature 
in the form of a significant perturbation amplitude at the core. They further showed 
that these viscous L-branch solutions at large Re match the inviscid solutions of Sipp 
fe Jacquin (2003) suggesting that the quasi-modes of the inviscid system become true 
eigenmodes of the viscous problem. Moreover, decay rates of these L-branch solutions 
rapidly increases with decreasing axial wavenumber, such that eventually w^̂ j ~ 0(u;q ,,). 
This led Fabre et al. (2006) to conckide that there are no quasi-modes for a Gaussian 
vortex in the 2D limit. We extend the viscous stability study to other values of n, with 
the governing equations and method described in Dixit & Govindarajan (2010). The 
results at Re = 10^ shown in figure (3.20) indicate that there are significant vorticity 
perturbations inside the core for n > 2, suggesting again that quasi-modes exist for 
steeper profiles. 

3.4.3 Initial value problem 

In the solution of an initial value problem, quasi-modes are associated with exponential 
decay of energy, where the decay rate is precisely that given by the Landau pole. This 
provides a third diagnostic. The linear equations (3.9-3.12) are solved with homogeneous 
boundary conditions at r = 0 and r = Rmax- Radial discretization is given by equation 
(3.43) with a = 0 and we use 3000 collocation points. The initial perturbation consists 
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Figure 3.19: Excitability for vorticity profiles with (a) n = 4, (b) n = 2, (c) n = 1.5 
and (d) n = 1. Note the change of vertical scale for (a). A sharply peaked excitability 
spectrum is indicative of a quasi-mode. 

of a narrow ring of vorticity centered at the real part of the critical radius Re(rc), with 

' - ( r - R e M ) 2 ^ 
C{r, 0) = exp 

(̂ 2 
(3.48) 

A large number of vorticity profiles were studied, but we present only a few. We are 

n 
3.5 
3.0 

2.47 
2.0 
1.5 
1.0 

0.450 -
0.433 -
0.407 -
0.371 -
0.315-
0.222 -

Wq 

- 1.856 X 10-"*/ 
- 1.518 X lO^^i 
- 6.892 X 10 '•'« 
-1.827 X 10 2 i 
- 4.137 X 10 -^i 
- 7.939 X 10-'^i 

re 
1.490-1-0.307 X 10-^i 
1.518-H 0.266 X lO-^i 
1.567-1-0.133 X 10 ^ i 
1.638 4-0.406 x lO^^i 

1.766-h0.118i 
2.022 + 0.370i 

Table 3.1: Variation of Landau pole for select values of profile smoothness. The critical 
location for these modes lies off the real axis, and is obtained by inverting the relation 
ujg — mn(7'c). 
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Figure 3.20: Vorticity eigenfunctions obtained from a viscous calculation at Re = 10^. 
(a) n = 4, (b) n = 2, (c) n = 1.5 and (d) n = I. The dotted circle at the centre indicates 
the vortex core size S^. Twelve equally spaced contour levels are plotted. Solid and 
dashed lines indicate positive and negative vorticity levels respectively. 
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Figure 3.21: Vorticity gradient at the critical radius for various values of n. The solid 
line is the real part of VZ obtained by considering the complex TC and the dotted line is 
obtained by calculating VZ at r = Re(rc). The minima in these two cases are reached 
at n = 1.3 and n = 1.6 respectively. 

n 
2.0 
1.5 
1.0 

Im(u;q) 
-0.01827 
-0.04137 
-0.07939 

(7q 

-0.01827 
-0.04137 
-0.054 

<ye 

-0.01827 
-0.0325 
-0.0245 

Table 3.2: Comparison of decay rate obtained from multipole moment and energy with 
the Landau pole value for three different vortex profiles. The decay rate of energy for 
n = 2 vortex is in excellent agreement Landau pole value, but is poor for the other 
profiles. 

specifically interested in the region between n = 4 and n = 1. One way to measure the 
strength of non-axisymmetric perturbations is to use the m*'' multipole moment defined 
as 

Qm{t) = / r 
/o 

m+1 C,{r,t)dr. (3.49) 

This quantity is a measure of the ellipticity of the vortex (for m = 2) and is related to 
the form of the strcamfunction in the far-field, i.e. 

g ^ ( t ) - 2 m r " V , „ ( 0 , ( r ^ o o ) (3.50) 

(see Bassom k Gilbert (1998); Turner k Gilbert (2007)). For comparison, Table 3.1 
gives Landau pole values and their critical radii for a few vortex profiles. As seen in 
fig.(3.22), the decay rate obtained from the multipole moment, Qm{f), ^^ in excellent 
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Figure 3.22: Evolution of quadrupole moment \Re{Q2{t))\ for four different vortex pro­
files, (a) n = 4, (b) n = 2, (c) n = 1.5 and (d) ?? = 1. The dashed lines are fits for the 
exponential damping rate with the indicated decay rate. 

agreement with Table 3.1 for profiles n = 2 and n — 1.5, but the agreement is not so 
good for n = 1. The exponential decay is seen to last for longer times as the profile is 
made steeper. The noise at late times is probably due to insufficient numerical resolution, 
since the disturbance field becomes progressively finer-scaled. A very small viscosity has 
been used to stabilize some of the calculations (as done by Turner &; Gilbert (2007)). 

Another useful quantity is the kinetic energy of the perturbations, defined as 

E{t) = 
i rn^^ m \\Ur + \\V{rUr)\\'') dr. (3.51) 

At intermediate times, larger than the mean turn-over time, t]{t) being proportional to 
exp{—2uiq^it) is a definitive demonstration of quasi-mode response. Figure 3.23 shows 
the evolution of normalized kinetic energy. After a short early transient, a clear expo­
nential decay can be noticed, similar to the observations of Shrira &; Sazonov (2001) in 
a boundary layer How. A striking distinction between the decay of Qm{t) and fc'(f) is 
the significantly shorter duration of exponential decay in E{t). Decay rates a,j and 20- ,̂ 
obtained by a fit of the exponential portions of Qm{t) and E{t) respectively, are tabu­
lated in Table 3.2. Again the decay of Qm{t) î  hi fair comparison with the Landau pole 
value, but the decay of energy is in poor agreement for n = 1.5 and n = 1 vortices. The 
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1000 

Figure 3.23: Evolution of disturbance kinetic energy E{t) for n = 1,1.5,2,2.47,3 and 4 
indicated by solid lines. An exponential fit of the form ê '̂ * is obtained and is shown 
for the first four curves. Values of a obtained for n = 1,1.5,2 and 2.47 are -0.0245, 
-0.0325, -0.01827 and -0.006892. The inset shows the region near t ^ 0 indicated by a 
rectangle, where transient growth is obtained. Notice a monotonic increase in transient 
energy growth with n, but a non-monotonic variation in energy decay. 

transient growth is seen in the inset of figure 3.23 to increase with increasing n at short 
times. But the exponential decay rate at intermediate times does not change monotoni-
cally with n, at n = 1.5 the decay is more rapid than at n = 1 o r n = 2. The decay rate 
is expected to be directly related to VZ{rc), and a corresponding non-monotonicity in 
that quantity in seen in fig.(3.21). 

To compare the response of the initial value problem with the viscous stability calcu­
lations, a fixed time of 100, close to the beginning of the energy decay, is chosen. Figure 
3.24 shows the contours of perturbation vorticity at t = 100 for four different values 
of n. Figures 3.24(a), 3.24(b) and 3.24(c) are remarkably similar to the viscous results 
shown in fig.(3.20), suggesting that quasi-modes indeed become eigenmodes of the vis­
cous problem. Clearly, a lobed structure analogous to a Kelvin wave can be noticed at 
r ^ a (shown by a dotted circle) for the n = 4 vortex. For an n = 2 vortex, weak lobes 
are noticed at the core boundary. Core perturbations completely vanish for an n = 1.5 
vortex, and in the case of n = 1, the spiral region begins to engulf the vortex core with 
no visible wave-like pattern noticeable. 

Having seen by all measures that no quasi-mode exists for n < 1.5, we now examine 
the light-cored vortex. Clearly from fig. 3.16, the instability vanishes for n between 2 
and 1. We thus conclude that the existence of a quasi-mode is strongly correlated with 
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Figure 3.24: Contours of perturbation vorticity obtained from a linear initial value prob­
lem at t = 100. (a) n = 4, (b) n = 2, (c) ?? = 1.5 and (d) H = 1. 20 equally spaced 
contour levels between the maximum and minimum values are plotted. The positive lev­
els are shown by solid lines and negative levels by dashed lines. The dotted circle shows 
the region of the vortex core. Note the change of scale for (d). 
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the existence of an instability. We surmise that the quasi-mode makes a wave interaction 
possible. 

3.5 Critical layer absorption 

It is often of interest to examine the structure of stable/neutral modes even if these are 
not the most dominant in terms of exponential growth. In this section, we study the 
structure of the eigenmodes of the continuous spectrum which are neutrally stable. If no 
contour deformation is carried out in the stability calculations, then a neutral spectrum 
is obtained. When the density profile is broad, internal waves can propagate in the 
radial direction, unlike in the step density jump case where the internal wave technically 
becomes a surface wave and is restricted to exist only on the density interface. But 
for smooth profiles, an interplay of shear and internal waves can lead to a remarkable 
behaviour near the critical layer of each mode, i.e., where uj — mVl. It was first shown by 
Booker & Bretherton (1967) that in the presence of shear, internal waves get 'absorbed' 
in the critical layer. What really happens is that the group velocity vector of the internal 
waves becomes more and more tangential to the critical layer as the wave approaches 
it. And in a direction perpendicular to the critical layer, the solution becomes highly 
oscillatory. We will show below that the same is true even for a vortex geometry where 
internal waves are supported by restoring buoyancy forces. No assumptions are made on 
the vortex and density profile steepness. The analysis is similar to the one carried out in 
Booker & Bretherton (1967) and Nappo (2002) for a planar stratified shear flow. 

We define a wave angular speed as 

c = — , (3.52) 
m 

and rewrite equation (3.15) as 

dr-' \r J dr r^ r(c—f2) r r(c—VL) r{c — Q,Y 
(3.53) 

where % = —-:-. Let us assume that a wave is approax^hing the critical level, r^. from a 
p dr 

region outside it as shown in figure (3.25). At a distance ^ outside r̂  as shown in figure 
(3.25) and for ^/TC « 1, we expand the background angular velocity to second order 
in ^. For simplicity, we do not expand the background density gradient, and neglect 
variations in %. The effect of varying % can easily be incorporated if needed. 

(dO,\ ^ 1 fd'^Vl\ . 

r=rc 

This gives 

i - l ^ ) ( ^ u 
1 Vl (3.55) 
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Gravity wave 

Figure 3.25: A sketch showing a gravity wave impinging a critical layer, TC, from a region 
outside it. 

where 

dn 
dr 

dr^ 

Including equations (3.55), (3.56b) into equation (3.53), we get 

(3.56a) 

(3.56b) 

~d^ + 

+ 

3 +^,^^_i!!!!^„^ 
rc + $ dr (re + 0^ 

m + {re + 0«2 
1 

rc + ^ 

ĉ '-'̂ )(l)̂ ^ 

+ 

rc + C r,. + t, 

°̂ (2c+2^i4+^2C')' 
'-'011^ 

r-c + C 

For small C, we have up to second order in ^, 

2C2 f/^ 
—Uj. = 0 . 

1 1 ^ 
re + i re 

i e 2̂  
K + 0'^ r\ + ^ 

(3.57) 

(3.58a) 

(3.58b) 
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On substituting equations (3.58) into equation (3.57), we can verify that the dominant 
terms are 0 (1 /^^) . Keeping the first three orders, i.e., 0{l/^'^), ( 1 / 0 and 0(1) and 
neglecting higher order terms, and taking the wave speed to be approximately equal to 
the local angular velocity at the critical layer, i.e., c « fici we get 

+ S-r^ + 7 T - T + 7 U r = 0, (3.59) 
dr-^ dr \ ^^ ^ 

where 

i $ ) rMi 
«o = ^^^14-^. (3.60) 

is the local Richardson number, and 

3 
5^ — + aQ. (3.61c) 

3.5.1 Approximate solution 

Equation (3.59) contains a regular singular point at the critical layer. To understand the 
behaviour of Uj. near the critical layer, we therefore introduce the Frobenius expansion, 

n 

= c o C V ciC^+1 + C2^^+2 ^ ..., (3.62) 

n 

= coA^^-i + ci(A + l ) ^ V c 2 ( A +2)^^+1 + ..., (3.63) 

d^i 

dr"^ 
j+A~2 5]c„ (n + A)(n + A - l ) r ^ 

n 

coA(A - l)e^^-2 ^ ^.^(^ _̂  ^)^^A-i ^ ^^^^ ^ 2)(A + 1)^^ + ..., (3.64) 

Substituting these into equation (3.59), we get 

^^-2 [A(A - 1) + /?,] Co + e^ ' [(A(A + 1) + fic)ci + (<5A - a)col 

+ ^-^[((A + 2)(A + 1) + «,)c2 + {5{\ + 1) - a)ci + 7C0] = 0. (3.65) 
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For non-trivial solutions of equation (3.65), each coefficient of (J must be zero. This leads 
to the recursive relations: 

(a - ^A)(^ 

'^ = A(A+1) + /^.' ^'-''^^ 
[a-6{\+l)][a-6X] \ 

, A(A + 1) + R, 

^̂  = (A + 2)(A + 1) + /?. • (^-^^^^ 

The indicial equation is obtained from the first term of equation (3.65), i.e., 

A(A - 1) + flc = 0. (3.67) 

A = i ± ifi, (3.68) 

where 

M - \ / « c - ^ . (3.69) 

% Q | f 

expand equation (3.62) to second order. 

We see that the Frobenius exponents become complex for Re ~ ZTeJ -̂  7- ^ ^ ^^°^ 

= c+em) + %e'i''*{0, (3.70) 

where 

F ( 0 - l + - ^ + - e ' , (3.71) 
Co Ci 

and CQ" refers to values using A = 1/2 + ifi and c^ refers to values using A = 1/2 — ifi. 
We now know the values of all variables except Cg" and CQ . Taking the radial derivative 
of equation (3.70), we get 

^ = c+eGi^) + c,e'G*{0, (3.72) 

where 

G ( 0 = 7 + - ( A + l ) + - ( A + 2)^ (3.73) 
^ Co Ci 

From equation (3.70) and (3.72), we get CQ" and CQ as 

^ = - ^ ^ (3.74) 

(3.75) 
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where H = F*G — FG*. We now examine the wave in a region just inside the critical 
radius. At a distance ^ inside the critical radius, we have 

« r ( m , r , - 0 = c+i-iYFi-O + c^i-^r F*{-C), 

dUr 
dr 

{m,r,-0 = c+{-O^G{~Q + c~{-O^G*{-Q. 

(3.76) 

(3.77) 

We now need to carry the wave solutions across the critical layer. Because (—O"̂ ; {~0^' 
exhibit a branch-cut across the critical layer, we introduce a small imaginary part to the 
wave speed, c, i.e. 

c—Cj. + ici. (3.78) 

As the wave approaches the critical level from outside TC, we expand the background 
angular velocity as 

n ( r ) = n{r,)+^ (r - re) + ... 

= C r + ^ i ( r - r c ) . (3.79) 

As r ^ re, the centrifugal (last) term in equation (3.53) dominates, and the dominant 
balance yields the simplified equation 

dr^ \r J dr r[~^i{r — r^) + iciY 
Ur — 0. 

Using 1/r « l/r^ and Q^ » fi^, the above equation further simplifies to 

dr"^ dr [ (r-rJ-tP 
Uj. = 0 . 

(3.80) 

(3.81) 

Now using equation (3.62) with (, = r — r,. 

form. 

tCi 
the solution of equation (3.81) takes the 

Ur-{m,r — rr i-i [ r - rr - —-
j + v 

+ Gi U - r-c -
ZCi 

(3.82) 

where Fi and Gi are arbitrary constants. As discussed in Nappo (2002), we switch to a 
polar form, schematically shown in figure (3.26), 

r — rr 
tCi 

pe ,'V (3.83) 

where 

P = J{r - Trf + ^ , 

^p = tan 
r — rr 

(3.84) 

(3.85) 
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/ • « r r»r„ 

r = r,. 

Figure 3.26: The possible paths that can be taken across the singularity r = r^ 

For r > > Tc, <̂  —> 0, but iox r « r^ ^p goes to either TT or — TT depending on the sign of 
^1 ( = ^ 1 ^ j . We are mainly interested in stable angular velocity profiles which satisfy 
Rayleigh's centrifugal criteria, and hence ^\ < 0. But the procedure is vahd even for 
^1 > 0. We wrill therefore restrict the analysis only for ^ i < 0. In this case, ip -^ 7r/2 
as r -^ re, and therefore, we go above the singularity as shown in figure (3.26). On this 
contour, for r < < TC and letting Cj —> 0, we have 

(-0 = -{r -{r - re) 

{r - r , ) e " 

(3.86) 

Therefore, {—£,)^ = i^^e^'"^, where we have used the positive branch of A. To know what 
terms in equation (3.82) correspond to inward and outward moving waves, we calculate 
the wave stress. We first re-write Ur as 

Ur = ?^/2 ('i'ie'^'°g« + Gie- ' ' ' ' °g«) , 

tr (dUr Ur 
and usmg the contmuity equation, ug = — - r 1 , we get ug as 

m \ or -

(3.87) 

m 
- - /.J ^le'^'^g^ + ( 2 +^' 1 Gie-^'''°g« (3.88) 

Similar to planar stratified shear flow, the wave stress is given by (see Booker & Brether-
ton (1967)) 

T oc poRe{ur)Re{ue) (3.89) 

At the critical level, this simplifies to 

r a {Ff ~ Bl (3.90) 

where we need to integrate over one wave-length in the azimuthal direction. Therefore, 
the h\ term represents an outward moving wave contributing to a positive wave stress. 
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and the Gj term represents an inward moving wave contributing to a negative wave 
stress. Above the critical level, we can write equation (3.82) as 

u^ 

and below the critical level, 

U^ = t\r — Tr 

Clearly, for an outward (inward) moving wave, the strength of radial velocity u^ decreases 
(increases) by a factor of e'^'^ as the wave cross the critical layer. Similarly, the wave 
stress changes by a factor of e^'"^ = e^^v^'^"^/'' across the critical layer. This large 
decrease in wave stress (and amplitude) appears like an absorption. It can also be verified 
that the group velocity of these waves also becomes nearly tangential to the critical layer. 
As we approach the critical layer, r -^ r^ due to the logarithmic term, the wave becomes 
highly oscillatory near Vc-

We now carry out a stability analysis of a light-cored Gaussian vortex with Gaussian 
density distribution to show the damping of waves across the critical layer. The same 
phenomenon can be observed even for other smooth profiles. The inviscid spectral calcu­
lation is identical to the one carried out in the previous section. In order to capture only 
neutral modes, and not quasi-modes, we do not deform the contour of integration. Figure 
(3.27) shows the eigenfunction obtained for two different frequencies. These frequencies 
were chosen for purely aesthetic reasons. Across the critical layer, shown with a vertical 
dotted line, a clear reduction in mode amplitude can be noticed. Also notice the strong 
oscillations as r -^ r^ resulting in a decrease in the radial wavenumber. This can also 
be seen from the logarithmic term present in the above solutions for Ur and ue. A more 
detailed description of this process, including a physical interpretation of the absorption 
process in terms of group velocity of a wave packet approaching the critical layer is given 
Booker & Bretherton (1967). 

3.6 Non-linear stages 

We now present results from a viscous direct numerical simulation to understand the 
non-linear stages of these instabilities. Even in stably stratified shear flows like the 
Holmboe instability, there contiimes to be interest in understanding these instabilities in 
the nonlinear regime (see the recent paper of Carpenter et al. (2010)). In the light of 
this interest in a parallel flow, it would be of interest to understand similar situations 
for a rotating flow. Only the results for light-cored vortices are presented, as the heavy-
cored case has already been treated in Joly et al. (2005) and Coquart et al. (2005). In 
many flows, the non-linear pattern bears strong similarities with the most unstable mode 
obtained from a linear analysis. Heavy-cored vortices were shown by Joly et al. (2005) 
to split into m smaller but stronger vortices. But with stable stratification in light-cored 
vortices, it is interesting to know what would be the outcome of an exponentially growing 
instability. We find initial ;idherence to the linear growth rate followed by nonlinear 
saturation. However, unlike in the heavy cored case where the primary vortex splits 
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s " 0 

-0.5 

a" 0 

-0.5 

Figure 3.27: The Ur eigenfunction (solid) siiowiiig a significant reduction in the mode 
amplitude across the critical layer, shown with a vertical dashed line, for two different 
frequencies, {a)uir = 0.9949, (b) w^ = 0.9927. The base flow is a light-cored Gaussian 
vortex with Gaussian density distribution, witii Vj/a = 0.5. 
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into m parts, baroclinically generated vorticity creates m additional satellite vortices 
around the primary vortex, forming a stable non-linear structure. Incidentally, in an 
experimental realization of an unstratified tripolar vortex, van Heijst & Kloosterziel 
(1989); van Heijst et al. (1991) use an initial negative vorticity envelope. This envelope 
makes the vortex susceptible to barotropic instabilities. Carton et al. (1989) exploits 
these unstable modes to obtain stable tripolar vortices in their numerical simulations at 
constant density. 

3.6.1 Numerical method and initial perturbation 

The numerical method is a 2/3-dealiased pseudo-spectral code (Canute et al. (1988)) 
solved in the vorticity-streamfunction formulation with periodic boundary conditions. 
This enforces a solenoidal velocity field. An additional equation is solved for the non-
axisymmetric correction to the density field. The characteristic scales in the problem, as 
given in section (3.2.1) are determined by the vortex core size, S;^, density core size, dp 
and circulation S. For simplicity, we consider the transport coefficients to be constant. 
To enable comparison with the stability analysis presented in section 3.4, we consider a 
large Reynolds number, Re and Peclet number, Fe in the present simulations. This allows 
us to approach inviscid results with viscosity and diffusivity to stabilize the numerical 
scheme. The governing equations solved in cartesian coordinates can be written as, 

dZ \ f dp du dp dv\ 1 2 v 

Here d/dt represents the total derivative, Z and p are the total vorticity and density 
fields. The first term on the right-hand-side of equation (3.93) is responsible for barochnic 
torque created by a misalignment of pressure and density surfaces. We use a unit Schmidt 
number, so Re = Fe = E/u. A large value of 50000 was chosen. A domain size of L ~ 8n 
in X and y directions was chosen and we use 1024^ grid for all the cases. Periodicity 
enforces a net zero circulation in the flow, and hence the velocity field far away from 
the vortex axis is not accurately predicted. This prompts us to use a large domain size. 
This was found to be very important in order to capture the transient periods of the 
instability. 

At t = 0, an initial perturbation is given to the vorticity and density fields. 

Z{r,d,t) = Z{r) + e Zir,e,t), (3.95) 

p{r,0,t) = p{r) + e p{r,e,t). (3.96) 

Here [Z{r),p{r)\ are the base-state vorticity and density profiles as defined in section 3.2, 
[Z{r,d),p{r,9)\ are perturbation vorticity and density fields normalized by max[Z(r,0)], 
and £ controls the initial amplitude of the perturbation, to be discussed later. We fix 
the profile parameter n at 10 for both vorticity and density, as we did not wish to carry 
out a detailed parametric study for the present work. Other values of n are expected to 
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Run 
1 
2 
3 
4 

n 
10 
10 
10 
10 

At 
-0.2 
-0.5 
-0.2 
-0.5 

ni 

2 
2 
3 
3 

Sp/S, 
1.5 
1.5 
1.5 
1.5 

UJr{\m) 

0.5803 
0.6520 
0.9874 
1.0370 

u î(lin) 
0.04606 
0.04377 
0.02826 
0.05190 

Table 3.3: Description of the various parameters used in the numerical simulations. 
u;r(hn) and ^^(lin) are the frequencies and growth rates obtained from a linear stability 
analysis. 

give qualitatively similar results. This choice of n was found to be ideal for the present 
problem as it provided a sufficiently large growth rate for a wide range of Atwood numbers 
which could be easily captured in the numerical simulations, and at the same time, the 
profile was sufficiently smooth to describe the steep gradients well while using a smaller 
number of total grid points. A larger value of n would require a much finer grid than 
used here. 

An inviscid stability analysis was first carried out with a ra = 10 vorticity and density 
profile. For simplicity, we fix the ratio of vortex and density core sizes at a value of 1.5. A 
viscous stability analysis at Re ^ Pe = 50000 did not produce any appreciable difference 
in the results. The numerical simulations carried out are listed in Table 3.3, but only a 
few representative results are presented. In figure 3.28, initial perturbations for vorticity 
and density fields are plotted for runs 1 and 3. The perturbations are organized as 2m 
spiral arms, and an additional rim of vorticity at the density interface can be noticed. 
This additional outer rim of vorticity is crucial to the formation of stable non-linear 
structures. 

These perturbations are now added to base-state vorticity and density, and a small 
value of e, fixed at 0.01 is used. Computations were also carried out with e = 0.05,0.1. 
No appreciable diflference was noticed in the results, but a shorter linear regime was 
obtained. With a value of £ = 0.01, the peak vorticity perturbation value was 1/100 of 
the base-state vorticity value at the vortex axis, and the peak density perturbation value 
was approximately 1/600 of the average density value. These are small enough for linear 
dynamics to be captured well. 

3.6.2 Results 

In figures (3.29)-(3.30), we plot the full nonlinear time evolution of vorticity and density 
fields for run 1, which corresponds to a rn = 2 perturbation with At = -0 .2 . At initial 
time, negative vorticity levels are about two orders of magnitude smaller than the max­
imum vorticity level. Time in these plots is non-dimensionalized by maximum vorticity 
value. After a very early transient adjustment of the perturbation field, an exponential 
growth ensues, whose rate is in good agreement with linear stability prediction. At 
i = 40, a ring of negative vorticity is formed around the vortex. This ring soon organizes 
itself into two satellite vortices. By t = 80, a fully developed tripolar vortex is formed, 
and at t » 100, saturation of 1^2(01 is observed. To quantify the eccentricity of the 
perturbation field, we uumerirally calculate the multipole moment for m = 2. This is 
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Figure 3.28: Vorticity {a,c) and density {b,d) perturbation corresponding to the most 
unstable mode for an n = 10 vortex. At = —0.2 and m = 2 for the first row, and 
At = —0.5 and m = 3 for the second row. Twelve equally spaced contours between 
maximum and minimum values plotted. 
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Figure 3.29: Vorticity contours at various times for Run-1 with m = 2 and At = 0.2. 
Notice the smallness of negative vorticity levels indicated with dashed lines. All figures 
are to same scale as shown in fig.(3.28). The nonlinear saturation into a tripolar state of 
an initially stably stratified configuration is evident. 

plotted in fig.(3.31). Upon saturation, a flat region which survives for many turn-over 
time periods may be seen. The evolution of the square of the density fluctuations av­
eraged over the simulation domain is plotted in fig.(3.32(a)). In our simulations, we 
directly calculate the non-axisymmetric part of the density field, p{x,y,t), and from this 
we obtain 

If 
Jo Jo 

p{x,y,t) dxdy. (3.97) 

We additionally place monitor points across the density interface along a given radial 
line, and instantaneous values of total density were extracted at each time step. The time 
evolution of instantaneous density at five such monitor points is shown in fig.(3.32(b)). 
The first and last monitor points are far away from the density interface, and are placed 
inside and outside the density core respectively. At these two points, there is no change 
in density value up to an error of 10 '^. Whereas at other points, an oscillatory signal is 
obtained. Frequency spectrum yielded a dominant frequency of 0.57, which is in excellent 
agreement with the linear stability calculations. In fact, this rotation rate is seen to vary 
very little even for a fully developed tripolar vortex. 

Because of the finite value of viscasity, vorticity in these satellites slowly homogenizes. 
At ^ = 200, the vorticity in the satellites is still an order of magnitude smaller than in the 
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t=120 

Figure 3.30: Density contours at various times for Run-1 with m ~ 2 and At = 0.2. 12 
equally spaced contour levels between max(^) and min(/)) are shown. 
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Figure 3.31: Multipole moment for Riui-1 with m = 2 and At = 0.2. The dashed 
line indicates prediction from linear stability calculation and has a slope of 0.04606 as 
shown in table (3.3). The best fit for the numerical slope is approximately 0.051, in 
good agreement with the linear stability result. The flattening of |Q2(0| at i > 100 
corresponds to nonlinear saturation into a tripolar vortex. 
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Figure 3.32: (a) Time evolution of pii)"^ averaged over the entire domain, i.e {piff') for 
Run-1 simulation with m = 2 and At — 0.2. (b) Time trace for the same case showing 
evolution of instantaneous density extracted from various monitor points placed along a 
radial line at radii 0.48, 0.97, 1.46, 1.95, 2.44. FFT spectrum yields a dominant frequency 
of 0.57, in excellent agreement with linear stability calculation shown in Table 3.3. 
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primary vortex. The whole structure slowly advects relative to the flow. Density contour 
plots in flg.(3.30) off"er a good visualization of the flow field. The reversal of vorticity field 
in the satellites is clearly accompanied by density contours being twisted in the clock­
wise direction. The final tripolar vortex formed is observed to be stable for a very long 
period of time, and is only weakened slightly due to viscosity. Nonetheless, Re = 50,000 
was observed to be a large enough value for in viscid dynamics to be captured. Smaller 
Reynolds number simulations were also carried out, and they yielded similar results. 

3.7 Summary and Outlook 

The primary focus of this work has been the stability properties of a radially density 
stratified vortex. The bulk of our attention is given to stable density stratification, i.e. 
a light-cored vortex, where density increases monotonically away from the vortex axis. 
Such a light-cored Rankine vortex is remarkably shown to become unstable when the 
density jump is placed at a radial location rj immediately outside its core. Further, we 
show that for small Atwood numbers, instability growth rates of light-cored vortices are 
comparable to their heavy-cored counterparts. This result seems counter-intuitive, and 
moreover not in accord with the finding of Joly et al. (2005), that a hght-cored Gaussian 
vortex is always stable. The difference is shown to arise from the steepness of the profiles. 
The instabihty is explained physically on the basis of a wave interaction mechanism. It 
is seen that shear is necessary for the interaction, so a density jump placed within a 
region of solid body rotation would be uninteresting. The interaction is strongest close 
to the critical radius TC of the Kelvin wave. An expansion for small Atwood numbers 
shows that the growth rate of the instability scales as |Ai|^/'^ in the vicinity of the critical 
layer, and only as lA^I^/^ closer to the vortex core. Thus the instability appears first 
at Tc and is strongest in that vicinity. When rj increases away from TC there is a steep 
fall-off in the instability. Conversely, in a heavy-cored vortex, a jump placed in the region 
immediately outside the core, but within r^, is stabilized. An Atwood number criterion 
for instabihty when the vorticity and density jumps coincide is derived. The physical 
mechanism leading to this destabilization/ stabilization of a light/ heavy-cored Rankine 
vortex is explained as a wave interaction. Further support for the mechanism is given by 
wave-energetic arguments. For a light core, two neutral waves interact to give exponential 
growth for a range of conditions, which may be predicted by our arguments. 

The effect of smoothness of the profiles is studied by defining a class of vorticity and 
density profiles based on a parameter n. The limit n ^ oo corresponds to a Rankine 
vortex and n = I represents a Gaussian vortex. For steep profiles, the instability is 
described as being caused by the interaction between the quasi-mode of the homogeneous 
vortex and an internal wave arising due to density inhomogeneity. A direct mathematical 
proof of this result was found to be too difficult at this stage, but this work demonstrates 
the feasibility of such an interaction within the linear regime. Using steep tank density 
profiles, it is shown that instability vanishes for n between 1 and 2. To understand 
this range, we study the stability characteristics of a wide range of homogeneous vortex 
profiles. Due to a non-zero vorticity gradient at the critical radius, all smooth vortex 
profiles possess Landau poles with an exponentially decaying solution. In the large n 
limit, we show that these Landau poles become quasi-modes of the vortex, but for small 
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n, the exponential decay rate in an initial value problem departs from the Landau pole 
prediction. The eigenfunction structure in this case is dominated by a spiral outside the 
core with no vorticity inside it. This explains the absence of an instability in the work of 
Sipp et al. (2005) and Joly et al. (2005) where a Gaussian vortex with Gaussian density 
distribution was used. 

The quasi-mode concept has been used earUer in interaction of boundary layer modes 
with 'true' eigenmodes of the system. In many such works, quasi-modes were studied 
in the context of non-linear resonant triad interactions. Here we show that it might be 
useful to interpret linear instabilities in smooth profiles through the same quasi-mode 
concept. 

Due to an overall stabilizing influence in a light-cored vortex, it is useful to under­
stand the effect of an unstable mode on the flow structure. Therefore, we study the 
nonlinear stages of these light-cored instabilities using direct numerical simulations. At 
short times, an exponential growth of the non-axisymmetric perturbation was observed 
which compared well with the linear stability analysis. Eventually, nonlinear satura­
tion resulted in stable tripolar and quadrupolar vortices corresponding to m = 2 and 3 
perturbations. 

An extension of the present work to 3D flows would be interesting in many ways. 
Stratification can be considered both in the axial direction as has been recently studied 
by Le Dizes (2008) and Le Dizes & Billant (2009), and in the radial direction as done 
here. With constant axial stratification, internal gravity waves can radiate away from 
the vortex, leading to radiative instabilities. Moreover the fact that a 3D Rankine vortex 
supports an infinite number of discrete Kelvin modes tremendously increases the possi­
bilities of wave interactions. The 3D equations have been derived, as discussed in the 
following chapter. 



CHAPTER 4 

3D STABILITY OF A RADIALLY STRATIFIED 

VORTEX 

Scope of this chapter 

In this chapter we derive the dispersion relation for three dimensional stability of a 
Rankine vortex with an axisymmetric density distribution. This chapter is an extension 
of the 2D analysis carried out in chapter 3. A detailed analysis of the dispersion relation 
is beyond the scope of this thesis. 

4.1 Introduction 

Figure 4.1: A schematic view of a 3D Rankine vortex, of core size, a with a circular 
density jump at r = rj. Solid circles indicated the location of the vortex cores, either 
sharp or smooth, re and rj are the radii of vortex and density cores respectively. Density 
at the vortex axis is pi and far-fleld density is p2-

The 2D stability analysis of a Rankine vortex with circular density jump carried 
out in chapter 3 demonstrated the role of wave interactions in the instability of a light-
cored vortex. To re-emphasize, the 2D Kelvin mode riding at the edge of the vortex 
core and an internal wave riding at the density interface can interact causing a weak 
instability. In a 3D problem, an infinite number of Kelvin modes are supported by the 
system. So, it is important to understand the role of wave-interactions in the 3D problem. 
Sipp et al. (2005) and Joly et ai (2005) motivate their 2D analysis with applications to 
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aircraft trailing vortices. It is well known that most of the dangerous instabihties in 
multiple vortices are three dimensional in nature. It is natural to inquire whether this 
is also true for a single vortex with radial density stratification. Uberoi et al. (1972) 
study the stability of a Rankine vortex with density varying across the vortex core. In 
this study, since the density jump location is kept arbitrary, the result of Uberoi et al. 
(1972) is obtained as a special case. There has been interest in 3D stabihty analysis 
of stratified vortices from a geophysical perspective, but most of the analysis concerns 
density variations along the axis of the vortex. As mentioned in chapter 1, geophysical 
vortices can sometimes experience radial density stratification, a polar vortex being a 
special case. 

4.2 Governing equations 

The base flow is an axisymmetric velocity field, V(r) with an axisymmetric mean density 
distribution, p{r). The inviscid equations in cylindrical polar coordinates are given by 

dUr Ur Idug du, 

dUr dUr Ua dUr dUj- ui 1 dp / , , x 
— - + Kr—- + T ^ + w^i^ - = - - ^ , 4.1b) 
at or r oO oz r par 

dug dug Ug dug dug UrUg 1 dp 

dt dr r d9 dz r rpdU 

du^ du^ ugdu;, du^ I dp t^^A\ 

where Ur,ug and u^ are the velocities in the radial, azimuthal and axial directions 
respectively, and p is the total pressure. We perturb the vorticity and the density interface 
in the normal-mode form as follows: 

r\ — a-\- e\ exp[i(ni^ + fcz — u;^)], (4.2a) 

r2 = Tj + £2 exp[/(m6l + kz - ujt)\, (4.2b) 

This creates perturbation velocity and pressure fields in the form 

^r = !{'') exp[i(«!^ -\- kz — u}t)\, (4.3a) 

xtg = V{r) + g{r) exp[i{mf) + kz - u;/)], (4.3b) 

u^ = h{r) exp[i(n)6' + kz - cot)], (4.3c) 

p= P+ s{r) exp[i{mO + kz - ut)], (4.3d) 

where the mean pressure P balances the base-flow centrifugal acceleration, 

F= [—dr. (4.4) 
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Substituting velocities and pressure from equations (4.3) into equations (4.1), and ex­
pressing all velocity and pressure perturbations in terms of h{r), we get, 

fir) = 
—i(u; — mV/r) 

ID 
dh_ / TnV\ mh /dV_ V_ 

dr \ r I r \dr r 
(4.5a) 

'^'^ = ^ 
dr 'f' J \ r / dr r \ r'^ \ ^^ / 

ph f mV 

u.-—] \h 

where 
^ 2V fdV V 
D = — - r + -

r \dr r 

mV 

(4.5b) 

(4.5c) 

(4.6) 

4.3 Base flow 

The base-flow is a Rankine vortex with an axisymmetric density jump at r = r,-

r < a 
Z = ZQ 

V = rnQ 

p = P\ 

a < r < rj 

z = o 
V = Qoa^/r 

P= P\ 

r>rj 

Z - 0 
V = QoaVr 
P= P2 

(4.7) 

The ratio of the vortex size and density core size can be combined to define an 'aspect 
ratio' as 

A (4.8) 

Substituting equations (4.5a), (4.5b), (4.5c) and (4.6) into the continuity equation, a 

single equation for h{r) can be derived. 

For 0 < r < a, 

• • 2 ^ ^ i + r ^ + ( , . V - m > i = 0 , 

For a < r < rj, 

dr'^ dr 

2d h2 , dh^ (,_i 1 , _ 2 

For r > r J ' 

+ r - ^ - ( K V ' + m')h2 = 0, 

(K^r^ + m^)h-s = 0, 

dr^ dr 

2d?hs dhi 

dr"^ dr 

where 
2 ; 2 

V = k 
Anl 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

The subscripts 1, 2 and 3 denote the three regions in equation (4.7) in the direction 
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away from the vortex centre. The general sokitiou in the three regions is given by 

hi{r) = Cii J,„(i/r) + CnY„^{ur), (4.13a) 

h2(r) = Chil^ikr) + C22Km{kr), (4.13b) 

hi{r) = C-s,lrn{kr) + Gi2Km{kr). (4.13c) 

Jjji and Yyn are the Bessel functions of order rn of first and second kind respectively, 
and Im and K^ are the modified Bessel fimctions of first and second kind respectively 
(Abramowitz & Stegun (1965)). For finiteness of h\ and /i3 as r —» 0 and r -^ oo 
respectively, we require C12 = 0 and C31 =; 0. To calculate the values of the constants in 
equations (4.13a, 4.13b, 4.13c), we use kinematic (continuity of Ur) dynamic (continuity 
of pressure) conditions at r — a^ and r =^ r- . The superscript ± denote the inner and 
outer surfaces of the interfaces. 

At r = a , we have 

-zei (u; - mQo)e''"'*+'''~'^'^, (4.14) 

Using equations (4.3a), (4.5a) and (4.13a), we get 

6 i f c (4Qg- (a ; -mQo)^ ) 
<-ii = 2mn • ^ ' 

-iy{u! - mi}o)J^{i/a) -\ Jm{i^a) 

Similarly, for r — a'^ 

dr+ dr+ 

= -iei(c^-mQo)e'^."'^^'' '""'*^- (4.16) 

Using equations (4.3a), (4.5a) and (4.13b), we get the relation 

C2xKn{ka) + C22K[„{ka) = 61 (u; - mfio)• (4.17) 

At r = rj and using equations (4.3a), (4.5a) and (4.13b), we get 

C2il'^{krj) + C22K[,{krj) = €2 (ĉ  - mJlgA^) , (4.18) 

and T = r-^ and using equations (4.3a), (4.5a) and (4.13c), we get 
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Solving for C21 and C22 from equations (4.17) and (4.18), we get 

—ei(u) — m^o)K'^[krj) -1- £2 (w — mfio-^^) K'^{ka) 

€i{uj - mQo)J'mi^'>'j) - £2 (^ - mUoX'^) i^(fca) 

C21 = 

and 

C22 — K'Jka)I'Jkr^) - K'^{krj)Uka) 

(4.20) 

(4.21) 

We now use the pressure continuity at r = a and r — TJ. For r < a, we have 

and for a < r < TJ, we have 

(4.22) 

P2 
_ -piQl (a^ 

(4.23) 
Equating p\ and P2 at r = a, we get the relation 

CnJm{i^a) = C2ilm{ka) + C22Km{ka). (4.24) 

Using the expressions for Cn, C21 and C22, we can express €2 in terms of ej, i.e., 

e^W 
£2 C + 

{u — mQo)Q{rj;a) 

W (w — mQ.Q\'^)Q{a\ a) 

where the notation Q{-t<\ *) is defined as 

Q{a-(3) = K'^{ka)lm{k(i) - I^{ka)Km{k(3), 

and 

C 
k {4nl - (g; - mQo)^) ^ ^ ( H 

-j/(u; - ni\lQ)J' {va) H Jm\ya) 
a 

(4.25) 

(4.26) 

(4.27) 

VV- = / C ( H C ( ^ - ^ j ) - 4(fca)A™(^-^j)- 4.28) 

To obtain the dispersion relation by matching pressure across r = rj. For r > rj, we 
have 

2 / „ 4 
P3 

-P2^0 / « ^ - «M + '-fCs2K„,{kr^) (u; - mQoA^) e'("'^+'^--*). (4.29) 

Equating p2 and py at r = TJ and after some tedious algebra, we get the dispersion 
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relation as 

WC 
+ 

+ kri 

krj K^{krj] 

{LJ - mUo) Q{rj\a) 

Q{a; a){uj — rnQoX^) [to — mfloX^) Q{a; a) 

-Q{a;r 

Q{rj\a 

- ^ ^ ^ ^ ^ ^ ^ ( Q ( a ; a )g ( r , ; r-,) - g (a ; r , M r , ; a)) + £ ^ ^ — ^ 

WC 

Q{a;a) Q{a;a) 
Lo — mQ()X ) 

IQQX^) 

(4.30) 

4.4 Special cases 

We now show that the above dispersion relation reduces to the known results in literature 
under special cases. 

4.4.1 a 
In this limit, the density jump location coincides with the edge of the vortex core. With 
Tj = a, we have A = 1, 14̂  = 0 and Q{rj\a) = Q{a; a). Equation (4.30) reduces to 

{g-l)nl+^£{uj-mno) 
1 Km{ka) 

mQof 
ka ^ "' ka K^(ka) 

Substituting C from equation (4.27), the above equation reduces to 

(4^2 _ (^ _ rnQo)^) _ {uj-mnpf 
[Q - 1)QQ - Q{U) — mQo) 

ua{uj - m r 2 o ) 4 4 ^ " 2mQo 
J„x{va) Km{ka) 

After some re-arrangement, we get 

{Q-ml 

4 ^ 2 

[uj — miloY 
- 1 

va 
J'^{ua) 2mno 

Jm{va) (w - rn.Qo) 

Using the definition of u, we get 

[Q-mi^ 
Jmiya) 

2r7iQn 

iHo) 

l<m{kn) 

,JUM 
Km{ka) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

Equation (4.34) is the dispersion relation derived in Uberoi et al. (1972) with no axial 
flow along the vortex. Written in this form, it is easy to take the 2D limit (A- -^ 0) of the 
above equation. 
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4.4.2 Q=l 

Substituting g = 1 in equation (4.30), we get 

- ( Q ( a ; a ) Q ( r j ; r j ) - Q ( a ; r j ) Q ( r j ; a ) ) + £-
WQ{a;a) v^ v - ' - ^ - v J ' ' J/ •"^^'•^^-"^'^'^^'' ' ~ Q(a; a) 

+ [u! — Tnilo) 
Q{a;a) Q{a;a) 

(4.35) 

The above relation does not reduce to the famous Kelvin's dispersion relation (see Kelvin 
(1880), SafFman (1992)) in spite of the fact that g = I corresponds to a homogeneous 
flow. A similar situation was seen in chapter 3 where the 2D cubic dispersion relation, 
equation (3.21), did not reduce to the 2D Kelvin mode frequency. Instead, we recover 
the continuous spectrum frequency for a mode localized at r = rj. The same is true of 
equation (4.35) where, in addition to the 3D Kelvin mode dispersion relation, we have 
a continuous spectrum mode localized at r = rj. Note that this is only one family of 
continuous spectrum modes possible. A detailed analysis of the 3D continuous spectrum 
modes for a homogeneous Rankine vortex is contained in Roy & Subramanian (2009). 
To recover the Kelvin mode dispersion relation, we further substitute rj = a in equation 
(4.35) which reduces it to the form 

{ml - (ĉ  - mfio)') Jmii^a) 1 K^{ka) 
— -(u; — muo). (4.3D) -va{u! — mQQ)J^{i/a) + 2mQQjjji{i'a) ka K^{ka) 

On suitable rearrangement, we get the well known 3D dispersion relation of a Rankine 
vortex without axial flow (see SafFman (1992), pp. 216). 

fc2 

i/2 

i>aJ'^{i>a) 2'm,Q(] 

Jm{i^a) (w — mfi!o) 
-.af4^. (4.37) 

4.5 Summary 

In this chapter, we derived the dispersion relation for a 3D perturbations on a Rankine 
vortex with a circular density jump outside the vortex core. A detailed analysis of this 
dispersion relation is beyond the scope of this thesis. It is further shown that this relation 
reduces to existing dispersion relations published in literature, including the Kelvin's 
dispersion relation for a homogeneous Rankine vortex. 

It would be of interest to carry out a similar study with axial density stratification as 
this problem would be greatly relevant to geophysical flows. Surprisingly, the stability of 
a single vortex with axial density stratification has received attention only recently (see 
Billant & Le Dizes (2009), Le Dizes & Billant (2009), Schecter & Montgomery (2004)). 
Most of the earlier studies were carried out in the framework of shallow water equations 
or other similar approximations. 





CHAPTER 5 

VORTEX AT A FLAT DENSITY INTERFACE 

Scope of this chapter ^ 

In the previous chapter, we have studied the stabihty of an axisymmetric vortex with 
an axisymmetric density distribution. This allowed the stability equations to be Fourier 
decomposed in the azimuthal direction, and hence led to a significant simplification in 
the analysis. One of the key findings of the previous chapter is that even light-cored 
vortices can be unstable with significant growth rates. In this chapter, we consider a 
more generic and realistic problem of a vortex encountering a flat density interface as 
shown in fig.(5.1). 

Figure 5.1: A schematic view of an axisymmetric vortex placed at a flat density interface. 
The density interface will wind-up into a spiral due to differential rotation indicated by 
vertical arrows. 

As time progresses, the density interface winds itself into an ever-tighter spiral. We 
show that this results in a combination of a centrifugal Rayleigh-Taylor (CRT) instability 
and a new spiral Kelvin-Helmholtz (SKH) type of instability. The SKH instability arises 
because the density interface is not exactly circular, and dominates at large times. Our 
analytical study of an inviscid idealized problem illustrates the origin and nature of the 
instabilities. In particular, the SKH is shown to grow slightly faster than exponentially. 
The predicted form lends itself for checking by a large computation. From a viscous 
stability analysis using a finite-cored vortex, it is found that the dominant azimuthal 
wavenumber is smaller for lower Reynolds number. At higher Reynolds numbers, distur­
bances subject to the combined CRT and SKH instabilities grow rapidly, on the inertial 
timescale, while the flow is stable at low Reynolds numbers due to homogenization of 
density. Our direct numerical simulations are in good agreement with these studies in 

^The contents of thi.s chapter appeared in .). Fluid Mech. (2010), Vol. 646, pp. 415-439. 
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the initial stages, after which non-linearities take over. At Atwood numbers of 0.1 or 
more, and a Reynolds number of 6000 or greater, both stability analysis and simulations 
show a rapid destabilization. The result is an erosion of the core, and breakdown into 
a turbulence-like state. In studies at low Atwood numbers, the effect of density on the 
inertia! terms is often ignored, and the density field behaves like a passive scalar in the 
absence of gravity. The present study shows that such treatment is unjustified in the 
vicinity of a vortex, even for small changes in density when the density stratification is 
across a thin layer. The study would have relevance to any high Peclet number flow 
where a vortex is in the vicinity of a density-stratified interface. 

5.1 Introduction 

Vortical structures are subject to instabiUties of various kinds, a common cause for the 
instability being the existence of other vortical structures in the neighborhood. The 
Crow instability (Crow (1970)) for a counter-rotating vortex pair of small core is well-
known. Vortices of finite core, rendered non-axisymmetric (often elliptic) by the strain 
field of their neighbours, are then unstable to shorter wave-length disturbances (see e.g. 
Kerswell (2002)). Miyazaki & Fukumoto (1992) and Itano (2004) studied the effect of 
stratification of density perpendicular to the vortex axis on these elhptical instabilities. 
Both found that stratification suppresses the elliptical instability. When placed in a 
density-stratified fluid with the stratification parallel to their axes, systems of two or 
more vortices display the zig-zag instability (Billant & Chomaz (2000)). An important 
effect of density stratification, acting through such instabilities or otherwise, is to flatten 
out the structures and make the flow quasi two-dimensional. This property, and the 
variety of applications, has made the dynamics of vortical structures in a density-stratified 
environment a subject of much interest. The instabilities mentioned above are all three-
dimensional, and involve more than one vortex. Under the Boussinesq approximation, 
a perpendicular density stratification has been studied in two dimensions by Brandt & 
Nomura (2007) in the context of vortex merger. It is shown that at a Prandtl number of 
1 and Reynolds numbers above 2500, a stable density stratification aids vortex merger 
by speeding up their approach towards each other. 

The present study is of a lone vortex with its axis perpendicular to the plane of 
density stratification, with no gravity. For this geometry the dominant effects are again 
expected to be of two-dimensional nature. An initially flat density interface is wound 
up into an increasingly tightened spiral by the vortex, similar to how it would advect a 
patch of passive scalar (see for example Flohr &; Vassilicos (1997); Moffatt & Kamkar 
(1983)). The scaling of the spiral is derived here analytically in a more direct fashion 
than in earlier studies. It is shown that two kinds of instabilities, of a Rayleigh-Taylor 
and Kelvin-Helmholtz types are then triggered. The former aiises from a mechanism 
similar to the centrifugal-acceleration driven Rayleigh-Taylor instabihty of a vortex with 
a heavy core, as studied by Fung (1983); Fung & Kurzweg (1975); Greenspan (1968); 
Saunders (1973); Sipp et al. (2005) and Joly et al. (2005). The novelty here is that we 
have heavy to light and light to heavy jumps occurring alternately, and the resulting flow 
is stiO unstable. The latter arises purely from the fact that the density interface, being 
spiral, is not quite circular. Both instabilities would be missed upon neglecting inertia! 
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effects due to density variations, i.e., we need to include non-Boussinesq effects. Gravity 
is unnecessary in tfiis process, and if it existed, would only act to aid the instability 
in some regions and slow it down in others. Here, and in the following, by the term 
'non-Boussinesq', we mean the inclusion of density stratification effects in inertial terms. 
Note that for simplicity we neglect variations in the transport coefficients. 

A work of relevance that must be discussed here is that of a stratified mixing layer of 
Reinaud et al. (2000). By an inviscid simulation, it is shown that this flow disintegrates 
into turbulence. The process begins with the creation of vorticity braids by the tradi­
tional KH mechanism. Subsequently, baroclinic torque enhances the vorticity in portions 
of the braid and decreases it in others. The vorticity-enhanced regions are further suscep­
tible to a secondary instability, which speeds up the disintegration of the mixing layer. 
An extension of this study to three-dimensional viscous situations by Fontane & Joly 
(2008) showed an increase in the growth of the instability. Importantly the mechanism 
of vorticity enhancement, due to centrifugal forces, is similar to that of the vorticity 
creation we shall see in the spiral interfaces below. The present work however addresses 
a different flow situation, of density interfaces in the vicinity of vortices. We show that 
the density interfaces that initially respond passively to the vortex, can ultimately be the 
cause for the destruction of the main vortex itself. The simplicity of the model configura­
tion allows the analytical treatment of section 5.2, showing the density interfaces to form 
Lituus spirals, where the baroclinic vorticity may be estimated as a function of distance 
from the central vortex core, and time. The instability of the model basic flow is studied, 
and the effect of various parameters, including viscosity, evaluated. We show that sharp 
density interfaces can lead to non-Boussinesq effects even at low Atwood numbers. It 
is also seen that the net effect of alternately placed stabilizing and destabilizing density 
jumps is one of rapid destabilization. 

We begin in section 5.2.1 with the simplest model, of a point vortex at a sharp density 
interface. The flow is taken to be inviscid with zero density difl'usion. We discuss the 
formation and evolution of the spiral, and a scale for the density-homogenized region 
close to the core. For studying the instabilities, the density jumps are first modeled as 
circular, and then in section 5.2.2 as spirals. With the replacement of a point vortex by 
a Rankine vortex (section 5.2.3), conditional stabilization is obtained at the edge of the 
vortex core, while in the interior, the growth rate is constant. In the above, analytical 
solutions were obtained using step changes in density and vorticity. In section 5.3, the 
effect of viscosity, and of smooth vorticity and density profiles are considered. The 
eigenvalue problem is solved using Chebyshev collocation, and the dominant azimuthal 
wave-number and growth rates are obtained for various conditions. Section 5.4 consists 
of direct numerical simulations, of inviscid flow, and of viscous flow at finite diffusivity, 
by a spectral method. The inviscid simulations include a small hyper-viscosity and 
hyper-diffusivity which cut-off numerical (and other) contributions to high wave-numbers. 
Linear effects are displayed up to some time, with good qualitative agreement with the 
predictions of sections 5.2 and 5.3. Afterwards vortex roll-up and other nonlinear eflFects 
are seen, including the appearance of a turbulence-like state at later times. 

The predictions made here have relevance whenever a vortex and a relatively sudden 
density change co-exist in the same neighborhood. A cyclone close to a coastline, moving 
towards it with a velocity component parallel to it, could be one such situation. The 
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Figure 5.2: Evolution with time of aii initially horizontal density interface due to a point 
vortex at the origin. The dotted line is at a later time than the dashed line, which 
in turn has evolved from the solid line. At finite Peclet number, the density would be 
homogeneous within a radius of r^ ~ t^e^l'^^ntYl'^, indicated by the grey circle. 

actual contribution of the present instability in weakening the cyclone are unclear, since 
a cyclone is a complicated entity with barriers which protect it from annihilation, but it 
would be revealing to examine this problem using the non-Boussinesq equations. Other 
situations where this mechanism could apply would be in modifying submarine signatures 
or in an aircraft trailing vortex descending in a stratified atmosphere. 

5.2 Inviscid stability analysis 

5.2.1 A point vortex and a sharp density interface 

Consider a point vortex of circulation T located at an initially straight density interface, 
with a jump Ap in density across it. The flow is taken to be inviscid, and with zero 
diffusivity (K = 0) of the density field. The initial interface is represented as a horizontal 
line in figure 5,2 but, since we do not take gravity into consideration, its orientation does 
not matter. The point vortex causes a spiralhng of the density interface, whose evolution 
is shown in the same figure. Note that each point on the interface moves in a circular path 
at an azimuthal velocity U = r/(27rr), where r is its radial distance from the vortex. In 
the initial phase of the dynamics, the interface advects passively, until its configuration 
allows instabilities to set in. This will be confirmed in the numerical simulations of the 
full equations in section 5.4. 

At a given time t, let r„ be the radial location where the interface has completed n 
full rotations as shown in fig.5.3. Then n = Tt/Air'^rl, and the spacing A„ between two 
zero crossings for density jumps of same sign is given by 

^n — ^ti ^ ^n+1 — r̂  r̂  (5.1) 
47r2/7 Y 47r2(7i + 1)' 

To obtain the spacing between jumps of opposite sign, n+ 1 must be replaced by (?) + 1/2) 
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Figure 5.3; An instantaneous radial cross-section of the density profile showing the r^ 
scaling of the spacing A between neighbouring density jumps. If the diffusivity were to 
be finite, the density would be homogenized to its average value at radial distances below 
r/i. Both the homogenized front and the location r̂  of the largest spiral move radially 
outward with time as t̂ ^ .̂ For large Pe, rg » r/,. 

in the above formula. For large n, the spacing between successive turns of the spiral thus 
scales as 

" rt (5.2) 

Figure 5.3 shows an instantaneous density profile at time t in a radial cross-section across 
the spiral structure. The density jumps alternately to the values p/ and p^ = pi + Ap 
of the light and heavy fluid respectively. In accordance with equation (5.2), the spacing 
between successive jumps rapidly increases away from the origin with an r^ scaling. If 
for a moment we take the diffusivity K to be small but non-zero, corresponding to a finite 
Peclet number Pe = F/K and a diffusion length scale ^ ~ (Ki)V2^ ^e see that for A„ < l^, 
diffusion would have erased the jumps, and homogenized the density to its average value 
Pave = (pi + Ph)/2. The radius r/j of this homogenized front would scale, given equation 
(5.2), as 

Pe'" (5.3) I, 

while inertia would dictate that the spiral extend up to a radial distance 

Ts ~ IdPe 1/2 
(5.4) 

The instantaneous size r^ of the spiral may be taken, for example, to be equal to the 
location where the interface hcis completed one rotation. For a Peclet number tending 
to infinity, we expect many density jumps to exist between Vh and r^. By different and 
more general approaches, Moffatt & Kamkar (1983), Rhines & Young (1983), Flohr & 
Vassilicos (1997) and Bajer et al (2001) had obtained scaling equivalent to equation (5.3) 
for the accelerated diffusion of passive scalars near a vortex, due to the accumulation of 
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discontinuities. Incidentally Gilbert (1988) showed how spiral structures forming around 
coherent vortices affect the spectrum of two-dimensional turbulence. 

We now study the linear stability of an instantaneous snapshot of the flow, taking 
the base flow to be slowly varying in time. The assumption is akin to the parallel 
flow approximation in space for spatially developing flows such as in boundary layers, 
and is valid when the change in the structure is much slower than the frequency of the 
dominant disturbance, which we shall see to be the case for disturbances of high azimuthal 
wavenumber. We first approximate the spiral density interface by concentric circles of 
radii rj,j = l,2,3... .n which are spaced as rj — TJ-\ ~ r | . The fact that the spiral is 
different from a series of circles is also important, and instructive to study separately. 
This is done in section 5.2.2. Here n step changes in density are under consideration, 
and the density (for r > r/,) is given by 

( - I V 
p = Pave ± —"2 ^P ^j-l<^<^j- (5-5) 

The density of the innermost layer, just beyond r^, hops between pi and ph with time, 
and subsequent jumps alternate in sign. The vorticity and density balance equations are 
given in the inviscid, infinite Peclet number limit by 

^ = 0, (5.7) 

where V/Vt = d/dt + u • V, and u = (u^er, ueeg), Z and p denote the velocity vector (of 
radial and azimuthal components), the vorticity and the density respectively. The flow 
is taken to be incompressible, so V • u = 0. If the density in equation (5.6) were to be 
replaced by its average value, that would constitute a neglect of non-Boussinesq effects. 
The right hand side would then be zero, and the flow would remain irrotational forever 
except at the origin. For small Atwood number 

A ^ ^ , (5-8) 
Ph +Pi 

this approximation is made most often, but we shall see that not making this approxi­
mation is crucial to obtaining the correct, and dramatic, dynamics of this flow. 

Linearising equation (5.6) about the base flow, assuming the perturbations to be of 
normal mode form, e.g., u,. = Ur{r) exp[i{m9 — wt)], and eliminating ug, we get 

-p— M. + — = -, F77T«r- (5-9) 
m \ r / r(w — mU/r) 

Around a point vortex, the mean azimuthal velocity U = r/(27rr), and the primes 
denote differentiation with respect to the radial coordinate r. The step changes in 
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density shown in equation (5.5) correspond to delta functions in its derivative, (J = 
[-iy+^Ap6{r - Tj). Away from the discontinuities, equation (5.9) may be simplified to 

Xu, = L - ^ ] [ r 2< + 3™; - (m2 - l )u , ] + mrZ'ur = 0 (5.10) 

For a point vortex, the gradient of the vorticity Z ' =: 0 for r > 0 (but Z' assumes non-zero 
values in section 5.2.3). The solutions are of the form 

u , = / ^_ , . r ' " - i+g j r - ' " - i , j = 0 , l , - - n . (5.11) 

Since Mr is a linear eigenfunction, one of the constants Pj,Qj may be fixed arbitrarily. 
The remaining 2 n + 1 constants and the unknown eigenvalue u; may be resolved as follows. 
The perturbed density interfaces are located at r = {TJ + % ) , j = 1,2,3...n. Integrating 
equation (5.9) between r]j — e and r/j + e for e —> 0 we get n jump conditions 

- 4 3 (--")("'^ ̂ ) - S ("'4)»'} ̂  (K^^STT^I),̂ *' 
(5.12) 

where 
A,,{/} = /|r,+r,j+0 - /|r,+»j^-0- (5-13) 

Recognizing that Ur is continuous at each interface, and decays to zero both at r = 0 
and as r —> GO, gives n + 2 more conditions. The system may then be simplified into a 
dispersion relation for w in the form of a polynomial of degree 2n. 

For a single circular density jump at r = r j the dispersion relation is 

^i (po + Pi) 

and the frequency and growth rate of the perturbation are given respectively by the 
real and imaginary parts of w. The flow is unstable to perturbations of any azimuthal 
wavenumber when PQ > pi, i.e., when there is heavy fluid inside and light fluid sur­
rounding it. This result is perfectly analogous to a planar Rayleigh-Taylor instability 
(see e.g. Drazin & Reid (1981)), with gravity replaced by the centrifugal acceleration 
at a given radius. We shall return to this in section 5.2.3. It may also be derived 
from Rayleigh's criterion for centrifugal instability, modified to account for density. In 
this context, von Karman (see Lin (1955)) proposed that d{pU'^r'^)/dr > 0 for stability. 
Yih (1961) showed that the above criterion is neither necessary nor suflrcient, and that 
dp/dr > 0 and d{lJ'^r'^)/dr > 0 are required separately, for stability. Other stability 
criteria have been formulated, notably by Howard & Gupta (1962); Leibovich (1969) for 
axisymmetric and non-axisymmetric disturbances. A comprehensive review is given in 
Sipp et al. (2005). Fung (1983); Fung & Kurzweg (1975) wrote down expressions similar 
to ours above for simple artificially prescribed circular RT+KH situations. 

In the present flow, in'^U'^r'^ =̂ F'^ is constant for r > 0, while Yih's first criterion 
is violated when light fluid surrounds heavy. The perturbation eigenfunction describes a 
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Figure 5.4: Maximum growth rate of disturbance as a function of the number of density 
jumps. The solid hnes correspond to m = 5 and the dashed hues to m = 2. The circles 
show the growth rate with the innermost fluid layer being heavy, at ph = 1.05, while 
squares are for this layer being light, at pi = 0.95. The first two jumps are located at (a) 
ri = 0.1,r2 = 0.102 (b) n = 0.1,r2 = 0.105, with the remaining jumps spaced out as r'^. 
The growth rate has been normalized by F / r j . 

circular vortex sheet at r i of strength 

Aug = —2iur, 

which is independent of the density difference. When the density difference Ap goes to 
zero, the system would support a neutral mode with the above eigenfunction, one among 
the continuous spectrum of non-Kelvin modes (Roy & Subramanian (2009)). Just as a 
disturbance of small wavelength in a boundary layer does not perceive the downstream 
growth of the boundary layer, a disturbance of large azimuthal wavenumber riding on 
the interface at a certain radial location does not perceive the time variation in the 
spiral structure of the interface. At low wavenumbers too, our results shown in figure 5.4 
indicate that the growth rate of the instability is insensitive to the spacing between the 
jumps, so a frozen interface approximation appears to be valid here too. However, for 
completeness, a global instability analysis accounting for the time variation of the spiral 
would be warranted. 

Figure 5.4 shows the growth rate uii of the instability with multiple density jumps of 
size A/9 = ±0.1, obtained using Mathematica. The single jump (n = 1) result is as in 
equation (5.14). In the two jump case, the second jump, being of opposite sign, partially 
neutralizes the first. When the initial jumps are very closely spaced, the growth rate 
oscillates with the addition of jumps as shown in figure (5.4(a)), but when they are not 
too close (figure 5.4(b)), the growth rate after the first few jumps is insensitive to further 
addition of either a stabihzing or a destabilizing jump. Note that the growth rate of the 
instability is substantial, of the same order of magnitude as the inverse of the inertial 
time scale, whether the first jump is positive or negative. In other words, the flow is 
quite unstable irrespective of whether the central region is light or heavy. This result is 
different from the requirement of a heavy core in earlier work on a single stratified layer 
(Joly et al. (2005); Sipp et al. (2005)). The eigenfunctions in the radial and azimuthal 
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Figure 5.5: (a) Radial and (b) azimuthal eigenfunctions for a point vortex with 5 density 
jumps placed with an r^ spacing, corresponding to the point marked X in figure 5.4(b). 
The solid and dashed lines show the real and imaginary parts respectively. 

direction corresponding to five jumps with a heavy inner layer are shown in figure 5.5, 
the behaviour is as expected. 

5.2.2 Deviation of a spiral density interface from a circular in­
terface 

We have so far assumed the density interface to be in the form of several concentric 
circles, while it actually is two continuous spirals originating from the flat interface on 
either side of the vortex. At a given time t, the spiral interface created by a point vortex 
is described in cyhndrical polar coordinates by 

Os = 
rt 

27rr2 (5.15) 

The instantaneous interface is thus a pair of Lituus spirals (one among the Archimedean 
class of spirals), one of which is shown in figure 5.7. Prom equation (5.15) we may obtain 
the angle a between the spiral and a circle sharing the same origin and radius as 

tana = nr 
Ft' (5.16) 

so the assumption of a circular interface is better at smaller radii or late times. A 
schematic view of the instability mechanism is given in fig.(5.6) showing that instability 
occurs due to the misalignment of density gradient vector and centrifugal acceleration 
vector. Vorticity is generated at these intersection points of spiral and streamline. Re­
turning to the vorticity equation (5.6) and assuming that the effect of the circulation T 
of the point vortex is far greater on the basic flow than of that which is newly created, 
we may write 

VZ 
Vi 

Vp 'V 
(5.17) 
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density interface 

Vp normal to the spiraJ interface 
a ; radial acceleration vector 

Vp X a *() 

streamline 

Figure 5.6: Physical mechanism for the cause of instability. Blue circle indicates a 
streamline, and solid black line is the position of the density interface. Also indicated 
are the density gradient vector, V p and centrifugal force, a^ = U'^/r. (indicated with 
red arrows). Geometrically, it can be seen that V p x a^ ^ 0 for any circular streamline. 

Under this approximation, the streamlines remain circular. In section 5.4 this approxima­
tion is shown to be valid even up to the nonlinear regime at later times (figure 5.20(a)). 
We see that vorticity is created whenever the gradient of the density is not strictly radial, 
i.e., for any deviation from a circular interface. Note that this too is a non-Boussinesq 
effect. Since Vp = ±Ap6{'r9 ~ r6s)n, where n is a unit vector in the direction normal to 
the spiral, using equation (5.16) we may write 

VZ ±Ap 6/2 1 
Pave r ( l+46>2) l /2 

d{rO - r9s (5.18) 

The above equation may be integrated in time at a given r, i.e., moving witli the 
interface on its circular path, to give 

Z{r, t) = TAU log(20, + (1 + i0l)^/^)6{rB - r9s) = AUeS{rO - r^ , ) . (5.19) 

At high 0g, i.e., at large time at a given radius, we have 

A [ / , ^ T ^ f / l o g ( ^ ) . (5.20) 

At every unstable density jump, negative vorticity is created and vice versa, resulting in 
heavier fluid travelling faster and lighter fluid slower. A spiral Kelvin-Helmholtz (SKH) 
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Figure 5.7: A Lituus spiral describing the instantaneous shape of one side of the density 
interface. The dashed lines describe circles. It is seen that the assumption of a circular 
jump made hitherto is better at smaller radii, or at later times at a given radius. 

instability thus ensues, and combines with the centrifugal Rayleigh-Taylor (CRT) insta­
bility. We shall see in figure 5.20(b), section 5.4 that such jumps in the azimuthal velocity 
are obtained in the full numerical solution as well. For a single jump, approximating it 
to be circular for the purpose of studying the instability, we now have the dispersion 
relation 

n(/3o + Pi] 
„ rr , „ rr , , / ( p l ^ f - PO^g)(PO + Pi) ~ 37771 

(5.21) 

where UQ = U and Ui = U +AUg. The first term under the square root sign would reduce 
to a radial gravity term if we set the velocity difference to zero. The second term under 
the square root sign is responsible for the SKH instability. At short times, AUg is small, 
so the instability reduces to the Rayleigh-Taylor one of equation (5.14). At large times or 
at low Atwood number, instability growth would be dictated by the velocity jump AUg. 
Given that AUg increases logarithmically in time, we have a spiral Kelvin-Helmholtz 
instability with a shghtly faster than exponential growth rate, i.e., 

Table 5.1 compares disturbance growth rates between a purely CRT instability and 
a combined CRT and SKH instabihty. Depending on the time chosen, the growth rates 
for the combined instability can become extremely large. In any case, the combined 
instability has a larger growth rate than the CRT alone. Note that the interface is 
unstable everywhere, irrespective of the local sign of the density jump. 

In the work of Reinaud et al. (2000), the flow is of mixing layer type, and therefore 
already unstable. Baroclinic torque in that ctise serves to increase the vorticity in one 
part of the mixing layer allowing a secondary instability to set in, thus contributing to 
a speeding up of the break-up process. In contrast, the SKH is a primary instability, 
with the vortex sheets entirely generated by baroclinic torque. In combination, the SKH 
and CRT instabilities rapidly destabilize a flow which would otherwise survive for an 
extremely long time. 
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j 
1 
2 
3 
4 

Ap 
0.1 
-0.1 
0.1 
-0.1 

{^Ue), 
-0.805 
0.720 
-0.634 
0.547 

Wj (CRT alone) 
0.5 

0.4783 
0.4795 
0.4789 

ui, (CRT+SKH) 
0.6469 
0.5364 
0.5568 
0.5407 

Table 5.1: Rates of instability growth for a purely centrifugal Rayleigh-Taylor instability 
and a combined CRT and SKH instability with multiple jumps. Larger growth rates are 
obtained for the combined instability. The number of jumps is denoted by j . The size of 
the density jump A/9 and that of the last velocity jump {MJg)j across the interface are 
fixed arbitrarily. At later times or lower radius, At/g would be much higher, so the SKH 
can give rise to extremely large disturbance growth rates. Here r\ = 0.1, r2 = 0.105 and 

5. Column 4 corresponds to the uppermost curve in figure5.4(b). m 

5.2.3 Rankine vortex 

The point vortex is replaced by a Rankine vortex, with a core of radius TC and constant 
vorticity ZQ. The vorticity outside is zero. As will be seen in the numerical simulations 
in section 5.4, the exact form of the vorticity does not affect the results much so long as 
it is concentrated within a small core. The approach for obtaining disturbance growth 
rates is as before, except that we obtain a polynomial equation for w which is one order 
higher, e.g. a cubic for a single jump in the place of the quadratic (equation 5.14). 

As expected, a jump far away from the core responds exactly as to a point vortex, 
so the primary effect of a finite core is in the case where a jump is placed in the vicinity 
of the core. As can be seen in figure 5.8(a) the instability growth rate is constant and 
has a large value when the density jump is placed inside the core. This could ultimately 
lead to the destruction of the core. Configurations similar to the one in this subsection, 
i.e., instabilities due to heavy-cored vortices, were studied by Joly et al. (2005); Sipp 
et al. (2005). In both, Gaussian vorticity and density profiles were used instead of the 
discontinuous profiles used here. Due to this, quantitative comparisons with their results 
cannot be made. Qualitatively, in their case too, instability with large growth rate was 
found. For density jumps inside the core, growth rate saturates at a large value as the 
location of the density jump approaches the origin. A similar feature was observed by 
Joly et al. (2005) (see their ftg.6(a)) when the density core was made very small. 

When the density jump is placed close to the edge of the core, figure 5.8(a) shows 
that the instability vanishes suddenly. This result is in qualitative agreement with Sipp 
et al. (2005), who found stabilization when the density-stratified layer overlapped with 
the region of high shear. A similar- observation was made indirectly by Joly et al. (2005). 
This stabilization may be seen explicitly in the simplest case when the density jump is 
exactly placed at the edge of the Rankine core. There the growth rate is described by a 
quadratic rather than a cubic equation in w, and written as 

uj — mQ 0 
Ho 

1 + s 
; i ± v / l - m ( l - s 2 ) ) (5.22) 
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Figure 5.8: (a) Comparison of the growth rates due to a Rankine vortex with r^ = 1 and 
a point vortex for A = 0.005 with m = 2 and (b) Stability domain in the ^ - m plane for 
various jump locations. The region above each curve is unstable, and solid lines between 
integer values of m are only to guide the eye. 

where s = pi/p^. This puts a condition m > 1/(1 -5^) for instability. The cubic equation 
in a;, when the two discontinuities are near each other but do not coincide, gives solutions 
consistent with this condition. From these solutions, we may say a little more about the 
neutral region seen in fig.5.8(a). As Ap -^ 0, we recover the neutral Kelvin mode, and 
a mode with ui ^ mU/r in the continuous spectrum. When Ap ^ 0, apart from this 
Kelvin mode with modified frequency, two neutral waves are supported, which travel in 
a direction opposite to the previous continuous-spectrum mode. These additional waves 
are analogous to internal gravity waves in a planar problem with gravity. On either 
increasing A or TO, these waves destabilize. Density variations within the vortex core and 
near the edge often give rise to interesting features, such as a destabilization of a lighter 
core in some cases. These are being studied, and are not discussed further here to avoid 
diversion from our present focus. 

In this idealized model, the instability grows indefinitely for any yt as w, ~ v^m. In 
reality, at high Peclet number, a mode with azimuthal wavelength comparable to the 
thickness of the density-stratified layer will grow faster than the others, similar to what 
would happen in a planar situation (Drazin & Reid (1981)). Difl̂ usivity and viscosity 
would further affect the results, as shown in the next section. 

5.3 Viscous stability analysis 

Rather than a parametric study, which is very tedious given the number of parameters 
involved in the viscous problem, the purpose of this section is to present characteristic 
results, some of which will serve for comparison with the numerical simulations of section 
5.4. We restrict ourselves to Atwood numbers between 0.05 and 0.2, and the relevant 
Reynolds numbers are 2000 and above. We present results for (i) the eff'ects of viscosity 
on the CRT instability with one and two density jumps, and (ii) the effect of viscosity, 
interface thickness, and Atwood number separately on the combined CRT and SKH 
instability for two jumps. This is deemed sufficient since it has been demonstrated in 
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section 5.2 that the result for multiple jumps is well approximated by that for two jumps 
in either order. We again assume that the density interface is circular, and introduce 
vortex sheets at the density interface as described. The edge of the Rankine vortex, 
and the density profile within each density interface are made smooth by specifying 
Z/Zo = {l-tanh{{r-rc)/d))/2 and p/p^ = l±Atanh{{r-rj)/d) in the neighbourhood. 
For simplicity the smoothing parameter d is kept the same for vorticity and for each 
density interface. The equations are non-dimensionalized by the vortex core size, r^ as the 
characteristic length scale, and the velocity at the edge of the core, Uc as the characteristic 
velocity scale. The Reynolds number is defined as Re = P/z/, the Peclet number as 
i^e = T/K where f and K are the kinematic viscosity and scalar diffusivity respectively, 
and the circulation F = 27rt/c''c- The Atwood number is defined as ^ = Ap/{pfi + pi). 
The densities are scaled by the average density Pa = {Ph + Pl)/"^, Ph and pi being the 
heavy and light densities respectively. In this study the Schmidt number Sc = V/K is 
held constant at 10. Higher values of Sc are expected to show similar behaviour. The 
stabiUty equations in the non-dimensional form may now be written as: 

Ur + irr?rU^ p = -r-Mur, (5.23) 
tie 

mil \ 0 . 2 - 1 

pr lur + p'r^ 

tj 1 r^/9 = -iurr^p' + —Mp, (5.24) 

where the operator I is as defined in equation (5.10), and 

^ " ^ ' ^ + ^ ^ ' ^ + ^ ' - ' " ^ ' ^ ^ ' ^ - ^' + '"^"^^r + ^^" - 1 ) ' ' (^-2^) 

M^{r^-^ + r-^-m^). (5.26) 
dr'^ dr 

The boundary conditions are Ur = u^ = 0 at r = 0 and r —* oo, as valid for m > 2. 
Note that since we are restricted to two dimensions, the m — 0 mode is unphysical, and 
m = 1 is only a translational mode causing no change in the structure of the vortex. 
Equations (5.23-5.26) are solved as an eigenvalue problem by a Chebyshev collocation 
method, with a grid stretching in the density-stratified layer as used in a different con­
text in Khorrami et al. (1989). A typical computational domain size was 25rc and good 
accuracy was obtained with 800 collocation points. The stability calculations were vali­
dated by repeating some of the cases of Joly et al. (2005), and very good agreement was 
obtained. 

In instabilities of this kind, the azimuthal wavenumber m,^^^, at which the growth 
rate is maximum is usually the most noticeable feature even after the flow becomes non­
linear (Coquart et al. (2005); Joly et al. (2005); Saunders (1973)). We therefore devote 
some attention to this parameter, and first examine how it varies with Reynolds (or 
equivalently, Peclet) number for a single density jump in CRT instability. In planar RT 
instability, increasing viscosity progressively stabilizes short wavelength perturbations, 
and therefore reduces the wavenumber of the "most dangerous" mode (see Chandrasekhax 
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Figure 5.9: Effect of Reynolds number on a single density-jump CRT instability. The 
azimuthal wavenumber corresponding to maximum disturbance growth rate is shown, 
with d = 0.02re, ~ . _ - . . . . . 

inset. 
Tj = 2rc, A = 0.05. A schematic of the base flow profile is shown in the 

(1961); Duff et al. (1962)). The same physics may be expected in CRT, and figure 5.9 
shows that rrtmax increases with Reynolds number for a fixed base flow. There was no 
surprise in the qualitative dependence of the single jump CRT instability on the interface 
thickness d. The maximum growth rate (not shown) occurs for the thinnest profile, and 
with an increase in d the instabihty saturated at a smaller wavenumber, roughly as 
d'^ ~ 1/m, the reason for this scaling is unclear at his point. 

We now examine the effect of introducing a second density jump, with the inner 
jump destabilizing and the outer one stabilizing. The thickness of the jumps is fixed at 
d = 0.02rc. Figure 5.10 shows the frequency and growth rate of the CRT instability as 
functions of m and Re. The highest Reynolds number shown is close to the inviscid result 
(not shown). The growth rate, the rrtmax and the range of unstable modes all increase as 
the Reynolds number increases, as is to be expected. The frequency on the other hand 
remains similar to the inviscid predictions, showing a very weak dependence on Reynolds 
number. 

So far, only the effects of density have been considered. We now allow both CRT 
and SKH instabihties to operate in combination. As a suitable base state, we chose the 
flow field at a non-dimensional time, which is 30 for the results presented. Choosing 
the location of the first jump then dictates that of the second, using equation (5.1) and 
noting that ( n+1 /2 ) should be used in place of {n+l), since the second jump, belongs to 
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(a) 

^, 0.025 

(b) 

Figure 5.10: Frequency and growth rate of the most unstable CRT mode for a smooth 
vortex with two circular density jumps at rj = 2rc and TJ = 2.5rc. A = 0.05, and 
d = 0.02rc. The first jump is from heavy to light and the second jump from light to 
heavy. A schematic of the base flow profile is shown in the inset. 

the spiral sheet originating from the opposite side. The vorticity generated at the density 
interfaces due to the baroclinic torque is in the form of thin spiral shear layers. Since 
the spectral collocation method requires smooth profiles to produce reliable results, we 
approximate them to be circular steep Gaussians of the sign of the density jump. The 
idealized base-flow vorticity is therefore prescribed to be 

| = l ( l - t a n h 
(r 

±E .̂- exp 
-ir-rj)' 

(P 
(5.27) 

For simplicity, the same base-flow vorticity and density profiles are used to study the 
eff'ects of viscosity. Though in reality, such an initial condition would relax on the viscous 
time-scale to a Gaussian distribution. Studying diffusive effects with jump-like profiles 
has been carried out in the past by Chandrasekhar (1961); Duff et al. (1962); Villermaux 
(1998). Hence only a qualitative comparison of these viscous results can be made with 
experiments or DNS. Figures 5.12(a) and 5.12(b) show growth rates from inviscid and 
viscous stability analysis respectively. The Atwood numbers used in the two cases are 
0.2 and 0.1 respectively, which enable comparisons with simulations. The first jump is 
located at 1.3rc and the location of the second is obtained to be 1.57r-c from equn. (5.1), 
which is rounded off to 1.6T-C. For simplicity we use Pi = -P2 = 1 in equation (5.27), the 
value chosen to roughly agree with the sheet strengths in the simulations at f = 30 (see 
section 5.4, fig. 5.14). The constructed stability profiles are compared with the actual 
numerical simulation profiles shown in fig. 5.11. Also shown is the initial velocity profile 
in the simulations. To show that the jump sizes are indeed in good agreement, a slightly 
shifted stability profile is shown. 

For the smallest thickness considered, ci = COlr^, the inviscid instability peaks at a 
very large value of m. For larger d, there is a non-monotonic variation of u,'j with m, which 
can be explained as follows. When the interfaces are thin, the dominant wavenumber is 
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Figure 5.11: Azimuthal velocity profile outside the vortex core at t=30 (in the simulations 
shown in fig.5.14). The initial velocity profile used in the numerical simulations has been 
shown for reference, along with the profile used in the stability analysis. A similar profile 
would also be obtained at t=40 (shown in fig.5.14). 

selected by their thickness, hence a large wavenumber instability is obtained. However, 
as the interface thickness becomes comparable to the distance between them, the fact 
that each interface contains a difî used vortex sheet makes the small wavenumber modes 
respond as to a wake-like base flow, and so the fastest growing azimuthal wavelengths are 
comparable to the interface spacing rather than the thickness. Very large wavenumbers 
again display increasing growth. A similar study with two density jumps was carried out 
(not shown) on the CRT instability alone, and no such behaviour was obtained in that 
case. The non-monotonic variation of the growth rate with m is thus a feature of the 
inviscid, combined CRT and SKH instability. 

The major efl'ect of viscosity (figure 5.12(b)) is that the dommant wavenumbers are 
now much smaller, in the range of 3 to 5, and decreasing with Reynolds number. Also 
with a decrease in Reynolds number, the growth rate drops considerably. These results 
will be seen below to be in agreement with simulations. A critical Reynolds number Ŵ r 
is very difficult to define in this case since there are many parameters. An example each 
of stabilization due to decreasing Atwood number and increasing thickness are given by 
the dashed line and the filled circle in the figure respectively. Note that the gi'owth rates 
in figure 5.12(b) are lower than in figure 5.12(a) in large part because of the lower Atwood 
number. 

The KH instability is not studied here in isolation, since it is not relevant to our flow, 
but we remark that planar shear layers are insensitive to viscous effects at high Reynolds 
numbers Villermaux (1998). 
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Figure 5.12: Growth rate for the combined CRT and SKH instability with a smooth 
vortex and two circular density and velocity jumps of same size at r i = 1.3rc and r2 = 
1.6rc, (a) for varying thickness with inviscid analysis, A = 0.2, circles: d = O.Olrc, sohd: 
d = 0.02rc, squares: d = O.OSr .̂ The base flow is shown schematically in the inset, (b) 
Viscous analysis at various Reynolds numbers for ^ = 0.1,c? = O.OSrc- The dashed line 
is for Re = 2000 but with A = 0.05,d ^ O.OSrc. The lone black filled circle shows the 
highest growth rate for Re = 2000, A = 0.\,d = 0.2rc,r2 = lAr^. 

5.4 Direct numerical simulations 

The complete problem including non-Boussinesq efi'ects is now solved by direct simula­
tions. Again gravity is not considered. Both inviscid and viscous simulations are carried 
out, in cartesian coordinates in a doubly periodic domain using the Fourier pseudo-
spectral method. In all the results presented here, we use 1536 collocation points in each 
direction without dealiasing. No visible difference was found with dealiasing. Results 
did not vary significantly for grid sizes of 1024 and 2048. The computational domain is 
Ibnrc for the inviscid simulations and 20nrc for the viscous simulations, which is large 
compared to most numerical simulations found in hterature. Varying it did not alter 
the features of the instability. In all the figures below, x and y shown corresponds to 
the actual domain size scaled by a factor of TT. The effects of using periodic boundary 
conditions for problems involving an isolated vortex is discussed in Joly et al. (2005) and 
Josserand k Rossi (2007). The residual vorticity produced because of the imposition of 
the periodic boundary conditions is about 800 times smaller than the vorticity of the 
central core at early times. With the production of baroclinic vorticity, this residual vor­
ticity becomes 3800 times smaller than the peak value of the vorticity in the (low field. 
Therefore, the results of our numerical simulations can be considered to be a faithful 
representation of an isolated vortex. 

The time discretization is done through an Adams-Bashforth scheme. We split the 
total density field as p = pi(xj) + p{x,y,t) where pi is the initial density field and p has 
information of the time evolution of the density. This allows p to remain a spatially 
periodic function, with a period equal to the domain size. As in section 5.2.3, we non-
dimensionalize the governing equations using the vortex core size, r'c as the characteristic 
length scale, Zo as the characteristic scale for vorticity such that the circulation F = 
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ZoTrr^. In cartesian coordinates, the equations in velocity-vorticity formulation in the 

non-dimensional form are 

VZ^lfdp^ dp\Vu_ 1 ^ P . J _ 
Vt p\dy dyj m pdxVt Re ' 

P + ^=0. (5.30) 
OX ay 

where q is the order of the diffusion term used, and densities are scaled by the average 
density. In the viscous case, q — 2 and lie = Vjv and Fe = T/K are the Reynolds 
and Peclet numbers respectively. In the inviscid simulations, hyperviscous diffusion of 
the vorticity and density fields is included by setting qf = 6, and Re and Fe, defined 
respectively in this case as Tr^/i/h and Fr^/Kh,- The hyperviscous Re and Pe were nearly 
2 X 10^^ Using twice or half of these values did not change the results qualitatively. A 
similar approach was used, for example, by Neilsen et al. (1996) for studying inviscid 
vortex merger. The purpose of the hyperviscosity is to damp out spurious numerical 
modes of large wavenumber, and the difi'usion it causes is found to be very weak, so 
these simulations are referred to here as inviscid. An initial vorticity in the form of 
a smoothed Rankine vortex, as in section 5.3 is used for the inviscid simulations. A 
Lamb-Oseen vortex with Z — Zoexp[—r^/r^] defines the initial vorticity in the viscous 
simulations. A range of Reynolds numbers from Re = 500 to Re = 10000 were studied, 
and three of them are shown here as being representative. For Re larger than the range 
studied, the resolution was found to be insufficient at later times to capture the thin 
spiral structures. And for Re smaller than 2000, dissipation was too rapid for the density 
gradients to play any significant role. The Atwood number was also varied from 0.05 to 
0.4, and it was found that lower Atwood numbers required thinner interface thickness to 
display the instability. At ^ < 0.05 this could lead to difficulties in numerical resolution. 
In each case, the vortex is placed at a horizontal interface separating fluids of different 
densities. The interface is in the form of a thin layer within which density varies in the 
vertical coordinate as a hyperbolic tangent. The straight interface is in contrast to the 
axisymmetric initial density profile with a heavy core in the numerical simulations of 
Joly et al. (2005). The nonlinear terms on the right-hand side of equation (5.28) are 
computed in physical space. 

For comparison, we first carry out an inviscid simulation without any inertia! effects 
due to density stratification. The density field is advected passively into Lituus spirals 
as is evident in figure 5.13. The vorticity field is not shown, but is practically unchanged 
from its initial configuration even at the final time. This also shows that for the sim­
ulations considered in this work, hyperviscous simulations suffice to reproduce inviscid 
behaviour. 

We contrast this result with that from a full simulation including non-Boussinesq 
effects, shown in figure 5.14. It is immediately evident that density in this situation is 
not a "passive" scalar, even though the Atwood number is low and there is no gravity. The 
vorticity profile is completely different from the simulation shown in fig.5.13. Vorticity 
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Figure 5.13: Density field forming a Lituus spiral around a Rankine vortex in an inviscid 
simulation treating the density field like a passive scalar. The vorticity field (not shown) 
is unchanged from its initial value. The black and white regions correspond to light and 
heavy fluid respectively. This image is formed at i = 100, by which time the flow will be 
seen to undergo a complete breakdown in the full simulations including non-Boussinesq 
effects. The time t is scaled by Trr^/F. 

of alternating sign is now produced in the form of two interwound spirals, i.e., along 
the density interfaces, consistent with equation (5.19). The vorticity across an unstable 
density jump is negatively signed, while positive vorticity is produced across every stable 
density jump. The two spiral vortex sheets we now have are unstable in the Kelvin-
Helmholtz sense. The combined action of this and the density jumps is evident in the 
instability displayed at later times. The instability, once visible, grows rapidly. The spiral 
vortex sheet then rolls up into blobs, indicative of the dominance of the SKH instabihty. 
A final breakdown soon follows. The Atwood number in this simulation was 0.2. Note 
that the time f = 30 of the stability analysis is well before the onset of instability as can 
be seen in fig.(5.14). At this time, the first visible jump in the simulations is located 
close to the value l.ir^ used in figure 5.r2(a). Consistent with equation (5.1) and the 
same figure, the second jump was found to occur at LSTr^. The width of the vortex 
sheet was found to lie between 0.0357-^ - O.OS/'c which is comparable to the largest value 
d = 0.03rc used in the stability analysis. The azimuthal wavenumber of about 11 as seen 
in the simulations corresponds to a wavelength of the same order of magnitude as the 
thickness of the interface. It compares well with a wavenumber of 8 - 12 obtained from 
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the inviscid stability analysis for comparable interface thickness in fig.5.12(a). 

A viscous simulation at Re = 8000 is shown in figure 5.15. Snapshots of the density 
field are also given for Re = 6000 and Re = 2000 in figure 5.16. The Schmidt number is 
fixed at 10 as in section 5.3, and the Atwood number is 0.1. The trend in fig.5.15 is very 
similar to that in the inviscid simulation. Note that the main vortex used here is Lamb-
Oseen while the stability analysis is carried out with a Rankine vortex. We therefore make 
only qualitative comparisons in the viscous case. A direct comparison with the viscous 
stability results of fig. 5.12(b) cannot be made owing to differences in the base flow 
profiles. The original vortex is no longer discernible at the end of the simulation. This is 
in contrast to what happens when the density field is treated like a passive scalar at this 
Reynolds number, where the original vortex is slightly diffused but otherwise undisturbed. 
The inertial effects of density stratification thus act in accelerating the collapse of the 
vortex. Note that non-Boussinesq effects are strong even at low A because it is the size 
of the gradient of density which is important, not the density difference alone. 

The instability is less clearly defined for Re = 6000, but one may discern that the 
selected wavenumber is even smaller, at about 5. No instability is visible at Re = 2000. A 
quantitative comparison of this result with the stability predictions is not straightforward 
due to the number of parameters involved which are sometimes difficult to estimate. The 
effective core becomes smaller in the simulations than the one we begin with, as discussed 
below, so the location of the jumps with respect to the core is difficult to estimate. 
The effective Atwood number in the central region decreases progressively due to the 
centrifugal forces making the core lighter. The thickness of the diffused layer is difficult 
to estimate from numerical results. Given the differences between the simulations and 
the idealizations made for stability analysis, both in viscous and in inviscid flow, we may 
conclude that a good qualitative agreement is achieved. 

In order to compare the growth rate with stability analysis, the amplitude of oscilla­
tion of the interface was manually extracted from the numerical data. This was possible 
to do relatively reliably only for the inviscid simulations, and so we present results for 
only this case. The instability becomes visible after a time t > 44. The amplitude r/ of a 
given undulation was measured by hand at various times, after t = 44 when the instability 
becomes visible, till non-linear effects become important at t ^ 53. The superimposition 
of two such measurements at different phases is shown in fig.5.17. A exponential fit gives 
growth as exp(0.32f). At the time and innermost radius of onset of instability, it was 
estimated that the thickness of the spiral interface was approximately O.OSrc. In the 
instability predictions of fig.5.12(a), oJi for this case is approximately 0.37. The jump in 
velocity in the stability analysis was prescribed to match the simulations, but there are 
still many differences between direct simulations and the stability analysis of a simplified 
problem. This comparison may thus be considered quite good. In section 1 the SKH 
disturbance amplitude was predicted to grow as t^*-. Given the small duration of the 
numerical instability is is difficult to differentiate between this and a pure exponential 
growth. A fit of this form is also shown in fig. 5.17, with b ~ uji/tavg where t-avg « 50. 

In the sinuilations, since we have a density interface of finite thickness, two points 
on the interfax;e initially separated by a small distance /Q fire stretched apart due to the 
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Figure 5.14; Evolution of the vorticity (a, c, e, g and i) and density (b, d, t', h and j) 
fields in tlie inviscid simulations. The time t, non-dimensionalized with respect to the 
period of rotation of the vortex core TTT-^/T, is (a,l)) 0, (c,d) 40, (e,f) 45, (g,li) 50 and (ij) 
55. Note that the scale for (a,b) is different from others. The Atwood number is 0.2. 
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(a) 
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Figure 5.15: Evolution of the vorticity (a, c and e) and density (b, d and f) fields in 
the viscous simulations. The picture at the initial time is the same as that in figure 
5.14, except that a Lamb-Oseen vortex is used here instead of a Rankine. The time, 
non-dimensionalized as before, is (a,b) t = 40.7, (c,d) t = 76.4, (e,f) t = 96.76. The 
Reynolds number is 8000, the Peclet number is 80000 and the Atwood number is 0.1. 
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Figure 5.16: Snapshot of the density field in a viscous simulations with (a) Re = 6000, 
Pe = 60000 and (b) Re ^ 2000, Pe = 20000. The instability in (a) is qualitatively similar 
to fig.5.15, whereas there is no instability in (b) owing to smaller centrifugal forces and 
more rapid homogenization. 

0.1 

T| 0.01 

0.00 

— Numerical data 
-- ri ~ exp( 0.32t) 

^ „ 0.065t 
o-o-n-t 

54 

Figure 5.17: Growth rate extracted from the numerical simulation of fig.5.14. The 
straight line is an exponential fit. The stability analysis of fig.5.12(a) predicted a growth 
as exp(0.37/.). 
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spiralling. We have from equation (5.15) 

l{r,t) (5.31) 

Due to this steepening of the density gradient, Gibbs oscillations were encountered at the 
later stages of these simulations which prevented the study of the complete breakdown of 
the vortex cores. Secondly, in the viscous simulations, at the Reynolds numbers consid­
ered, the grid is not sufficient to resolve all the scales up to the Kolmogorov scale. Hence, 
a correct fully turbulent state cannot be achieved in these simulations. Nevertheless, an 
examination of the energy spectrum is a useful indicator of the cascade effects. Figures 
5.18(a) and 5.18(b) show the kinetic energy spectrum for the inviscid and the viscous sim­
ulations respectively, plotted against the scale k = {k^ + ky)^^"^. The difference between 
the inviscid and viscous spectra at the initial time is because in the latter we use a Lajub-
Oseen vortex, while in the former, a Rankine vortex is used, which includes sharp changes 
in the velocity derivative at the edge of the vortex core. This produces a signal with sharp 
dips at the zeros of the Bessel function Ji (Neilsen et al. (1996)). This is because the en­
ergy spectrum for an axisymmetric vortex is given by t][k) = ^ J Q{r)Jo{kr)dr (Gilbert 
(1988)), so for a Rankine vortex we get E{k) oc J\{kr), and a steep tanh vorticity profile 
behaves similarly. 

As time progresses, both spectra broaden and flatten, corresponding to the emergence 
of smaller scales. The final state is turbulence-like, but the simulations are insufficient to 
make more quantitative statements. In the case of gravity driven flows, an exchange takes 
place between the kinetic and potential energies, often with one growing at the expense of 
the other. It is instructive to construct an analogy to this process in the present system. 
The total energy, given by Et = J J | ( M ^ + v"^) dV, is a conserved quantity in the absence 
of viscosity. Writing p = pave + P where Pave is constant, we have 

Et = E + Ep (5.32) 

where E = pQ j ^ J^ (ti^ + v'^)/'2 dxdy is the kinetic energy based on a constant density, 
i.e., the integrand is just the kinetic energy per unit mass, a useful quantity in stratified 
flows (Gill (1982)). The second term Ep = f J ^{u^ + f^) dV is analogous to a potential 
energy in a system with radial (centrifugal) gravity (~ F^/r"^), and arises solely due to 
inhomogeneity in the density field. Such a splitting of the total energy Et highlights 
the contribution of the density variations, since the quantity E increases or decreases at 
the expense of Ep. Figures 5.19(a) and 5.19(b) show the evolution of E and enstrophy 
{Z = JQ jp Q'^dxdy) with time, normalized by their initial value. The residual vorticity 
is first subtracted from the total vorticity field, from which the velocity field is calculated. 
Both the energy and the enstrophy here ai-e calculated in the physical space. The sHght 
increase in E visible in the inviscid case is due to density variations acting as a source. 
In the viscous case this increase is offset by the dissipation. The net enstrophy in the 
inviscid case increases continuously since vorticity is generated continuously at the density 
interface. The viscous case shows a small increase at short times and a decay at long 
times. The difference in enstrophy production could arise from increased diffusion of 
the interface, and from the different initial vorticity distribution. From Kelvin's law, for 
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a given strength JWe of the vortex sheet, the vorticity created in the spiral (equation 
5.21) would increase due to the stretching of the density interface by the factor given in 
equation (5.31). With this taken into account, the prediction of the total enstrophy is 
seen in figure 5.19(b) to agree well with the inviscid simulations up to some time. The 
prediction, being for a point vortex, is of arbitrarily scale so the scales are chosen to 
match the simulations. 

The reduction in instability at large r is easily expected from our analysis, but it 
remains to be explained why the instability first begins at a specific radial location, as 
observed in figures 5.14 and 5.15. From equation (5.3) the homogenized region around a 
point vortex scales as r/j ~ n^'^ for a diffusive flow. In the hyperdiffusive case, similar 

1/18 

arguments lead us to r/j ~ K^' . The prefactor in these scalings is difficult to estimate, 
but we may appreciate that the homogenization in the two simulations is comparable, 
and not too small by the time the instability becomes visible. The instability thus 
appears just outside r^, at the first surviving jump. In section 5.2.2, we assumed that 
the dominant effect on the base flow was from a central vortex, and that the streamlines 
would remain circular. The assumption is validated by the streamlines of the inviscid 
simulations plotted in figure 5.20(a). The radial variation of azimuthal velocity at i = 50 
seen in figure 5.20(b), is also consistent with predictions. It is also noticed that the 
central vortex becomes significantly smaller and stronger at early times, while more or 
less maintaining its circulation constant. The reason for this is that the simulations begin 
with a straight density interface within the vortex core, which is rotated around at early 
times like a solid object. This results in the production of opposite-signed vorticity on 
two halves of the interface within the core, so one part of the core becomes stronger 
and the other weaker. The weaker part is then entrained by the stronger part to give a 
smaller and stronger core slightly shifted away from the original center. A similar drift 
due to an asymmetric vorticity distribution was seen by Bajer et al. (2004). 

5.5 Discussion 

It emerges from this study that the neglect of inertial effects of density stratification is 
often not valid in the vicinity of a vortex in density-stratified flows. This is the case even 
when the difference of density is small, so long as the interface is thin, making the density 
gradient significant, and even when gravity is absent. Non-Boussinesq effects are espe­
cially large in high Peclet number flows, and where density changes over a thin layer. This 
has been demonstrated by following the evolution of a system consisting of a lone vortex 
at an initially flat density interface. The evolution of this system into a spiral density 
interface at first, followed by vorticity generation everywhere on the spiral interface, giv­
ing rise to instability and breakdown is predicted by stability theory and shown to be in 
qualitative agreement with direct numerical simulations, both inviscid and viscous. The 
density field, which would merely have advected as a passive scalar if non-Boussinesq ef­
fects were neglected, now causes an instability of a combined centrifugal Rayleigh-Taylor 
and spiral Kelvin-Helmholtz type. The centrifugal term takes the place of gravity to 
cause the Rayleigh-Taylor instability. Unlike earlier work on CRT instability, the present 
flow is unstable in the Rayleigh-Taylor sense whether the innermost region is light or 
heavy. This is because the tightly wound spirals give rise to density jumps of alternating 



5.5 Discussion 117 

le-10 

E(k) 

le-20 

le-30 
1000 

(a) 

le-10 

E(k) 

le-20 

le-30 
1000 

(b) 

Figure 5.18: The energy spectrum for the (a) inviscid and (b) viscous simulations at 
Re = 8000. 
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Figure 5.19: (a) Variation of E (kinetic energy based on a constant density) with time for 
the inviscid and viscous simulations, (b) Variation of total enstrophy with time. Solid 
line: inviscid simulations. Dashed line: viscous simulations at Re = 8000. Symbols: 
predictions based on section 5.2.2. 
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Figure 5.20: (a) Nearly axisymmetric streamlines near the onset of instability for a 
Rankine vortex. The time is 50, and the corresponding vorticity and density profiles are 
shown in figures 5.14(g) and 5.14(h) respectively, (b) Azimuthal velocity for a Rankine 
vortex at the initial time (symbols) and at t=50 (solid line). 

sign. The small deviation of the spiral from a perfectly circular shape means that the 
density gradient is not perfectly perpendicular to the centripetal acceleration. The result 
is two oppositely signed spiral vortex sheets whose strength increases logarithmically in 
time. The spiral Kelvin-Helmholtz instability which ensues therefore grows as tK Both 
instabilities give rise to large growth rates, with the SKH dominating at large times. Note 
that this prediction is made here by an idealized inviscid model. Physically, the contin­
uous generation of fresh vorticity at the density interfaces stoking the already unstable 
exponential instability, leads one to expect a super-exponential behaviour. However the 
difference between the form i* and that of a pure exponential growth is small, and the 
present simulations are not able to distinguish between them. A larger computation 
where the interface could be resolved better everywhere, and the growth rate could be 
gleaned to better accuracy, would be needed to check this prediction. At small interface 
thickness, the dominant m in inviscid SKH+CRT instability is dictated by the interface 
thickness. For higher interface thickness a flapping mode is observed, with significantly 
lower m. The viscous analysis shows that decreasing the Reynolds number, decreasing 
the Atwood number and increasing the interface thickness all have a stabilizing effect, as 
is to be expected. Decreasing the Reynolds number results in a reduction of the dominant 
wavenumber as well. A detailed parametric study for the viscous case is warranted. 

The azimuthal wavenumbers seen in the viscous and inviscid simulations were in 
good qualitative agreement with the stability results. For yl = 0.1, no instability was 
noticed for Re < 2000, while the critical Reynolds number for this Atwood number and 
comparable thickness was sHghtly lower in the stability studies. The grid used in the 
present simulations is insufficient to completely resolve the final turbulence-like state, 
but the breakdown into a spectrum of small scales, and the annihilation of the original 
vortex are evident. 
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Since inertia and the effective gravity are dictated by the same scales in this flow, 
the effective Froude number based on Ap is of 0{A^^/'^). For a thin density interface, 
the effective Froude number, which depends on the density gradient rather than on the 
density difference, would be much lower ~ {Ap'r/p)~^/'^, so density would play a lead 
role for thin interfaces. 

The effect of continuous density stratification is studied in the following chapter in 
the context of vortex merger. The effect of three-dimensionality and tlie competition 
between the new instabilities which would then occur is also of interest, but is beyond 
the scope of this thesis. 



CHAPTER 6 

VORTEX MERGER IN A STRATIFIED FLUID 

Scope of this chapter 

So far, the emphasis has been on understanding the effects of barodinic torque on a single 
vortex. In this chapter, we consider the effect of density stratification in a twin-vortex 
configuration. When two co-rotating vortices are placed near each other, they mix the 
neighbouring fluid around them, and merge to form a single vortex. In the presence of 
baroclinic vorticity, we show that this process can be significantly altered, and merger 
can sometimes be completely prevented. 

6.1 Literature Survey 

One of the simplest forms of interaction between vortices is the merger of two co-rotating 
vortices. In the last few decades, vortex merger has received a great deal of attention and 
forms one of the fundamental interaction processes in a turbulent flow. This becomes 
more apparent in two-dimensional turbulence where smaller eddies "merge" to form larger 
eddies as the flow evolves, and this is believed to be a fundamental mechanism for the 
transfer of energy to larger scales. Simultaneously, the merger of vortex cores is almost 
always associated with filamentary debris in the form of tight spirals with very thin cross 
sections. These filaments are believed to be a cause of the cascade of enstrophy to smaller 
scales. It has been felt that a better understanding of vortex merging could play a key 
role in developing and improving turbulence models incorporating physics at the level 
of vortex merging. Here we discuss some of the important works on vortex merger and 
the current state of understanding of this problem. The first detailed observations of 
vortex merging can be attributed to the experiments on mixing layers. Freymuth (1966) 
observed coalescence of vortices in a separated laminar boundary layer. More detailed 
observations were made by Winant & Browand (1974) who attributed the growth of a 
turbulent mixing-layer to vortex merger. 

Most of the earlier work studied the process of vortex merger in a purely inviscid 
context in an unstratified flow. The first detailed analysis of vortex merger was due to 
Rossow (1977) who carried out inviscid numerical calculations on various vortex config­
urations including vortices in shear. His eff'orts were aimed at finding the best possible 
vortex configuration which would disperse the vortical structures in the wake of an air­
craft. As shown in figure (6.1), when two vortices of same circulation H and core size a 
are separated by a distance b, they rotate about a common centre because of the induced 
velocities of each on the other. It was found that for inviscid vortices, there exists a 
critical (a/fc)cr below which merger does not occur (Saffman & Szeto (1980), Overman 
& Zabusky (1982), Grifliths & Hopfinger (1987), Meunier et al. (2002)). In the limit of 
a/b -^ 0, the each vortex sees the other effectively as a point vortex. In this case, the two 
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Figure 6.1: Schematic of a two dimensional intial vortex configuration which will lead to 
merger. The anti-clockwise arrows indicate the sense of vorticity, such that the two vor­
tices describe an anti-clockwise revolution of period 2-IT^I)^/E about the vorticity centroid 
'0' . S is the circulation of each vortex. 

vortices rotate about each other endlessly with a constant angular velocity. Such a config­
uration is referred to as an equilibrium configuration, as the vortices appear stationary in 
a frame rotating with the angular velocity of the two vortices. Inviscid vortices with finite 
core can undergo deformations, and the analogy with a point vortex may not hold in all 
cases. Saffman & Szeto (1980) find various non-circular equilibrium configurations and 
conclude that these configurations become unstable if the vortices are too close to each 
other. Deem & Zabusky (1978) in an earlier work had referred to these configurations 
as "V States". Overman & Zabusky (1982) carried out a detailed analysis using a con­
tour dynamics method on these equilibrium configurations. They demonstrate that the 
merger of vortices is the result of an instability of a perturbed equilibrium configuration. 
A stability analysis of these equilibrium configurations was also carried out by Dritschel 
(1985), who also extended it to many vortices rotating about a common centre. For 
symmetric vortex pairs, to arrive at an equilibrium configuration, it suffices to analyze 
the deformation of just one vortex. To further simplify the calculations, the vortex was 
assumed to deform symmetrically about the line joining the two vortices. Cerretelli & 
Williamson (2003a) find many new uniformly rotating equilibrium configurations using 
the above assumptions. They extend previous work to cases where the vortices even 
touch each other. In reality, the assumption of symmetric deformation is not valid as 
the major axis of the vortex tilts from the line joining the vortex centers as shown in 
figure (6.2). This can be compared with figure (3) in CerreteUi & Williamson (2003a). 
Meunier et al. (2002) calculated the equilibrium shapes of two like-signed vortices with 
a non-uniform vorticity distribution to arrive at a more realistic critical separation dis­
tance which could be compared with their experiments. They attribute the merger of the 
vortices to the conservation of angular momentum as the filaments are ejected outside 
the core. 

Griffiths & Hopfinger (1987) carried out detailed experiments on a like-signed vortex 
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Figure 6.2: Tilt of the vortices from the line joining the vortex centers 

pair to understand the merger process in both a baroclinic and a barotropic setting^. 
For barotropic vortices, they confirm the previous theoretical and numerical results on 
the critical separation distance. In the baroclinic case, they find this critical distance to 
depend on the internal Rossby radius, i.e., the radius at which rotational efifects become 
as important as buoyancy forces. For Rossby radius larger than the core size, they find 
merger for larger separation distances. 

In an unstratified flow, when the two vortices are kept sufficiently far, the process 
of merger can be divided into four stages as shown in figure 6.3. In the first stage, the 
viscous diffusive stage, the two vortices behave like point vortices rotating around each 
other about a common axis. Viscous diffusion acts on the vortex cores reducing over 
time, the value of a/b. In the second stage, the convective stage, which begins when 
a/fc crosses a critical value, the vortices rapidly approach each other with the ejection 
of spirals of vorticity in the form of filaments. This stage is nearly independent of the 
Reynolds number and can be explained purely in an inviscid context. The third stage 
can be called the axisymmetrization stage where the vortex cores completely merge into 
each other, and the single final vortex relaxes towards an axisymmetric state. The final 
stage involves the viscous diffusion of the single vortex. We now discuss the literature 
concerning each individual stage of the merger process. In reality, these distinct phases 
can be observed clearly only for flows with very large Reynolds number (based on the 
vortex characteristics). 

The first stage, iis mentioned earlier, is a viscous stage with the size of the core 
increasing owing to viscous diffusion. Apart from this, each vortex is under the straining 
influence of the other vortex and therefore adapts to it. Le Dizes & Verga (2002) using 
direct numerical simulations studied this adaptation process for various vorticity profiles, 
and find two distinct relaxation processes. The first one is an inviscid process where the 
vortex rapidly adapts to the strain field of the other vortex. This is found to be profile 
dependent and is elucidated using the eccentricities of the vortex core. They show that 
the eccentricity exhibits a damped oscillation and attribute this to the damped Kelvin 
modes [quasi-modes) of each vortex (Le Dizes (2000)) resulting in a quasi-stationary state 
(in a rotating frame). Though the shape of the vortex in the numerical simulations is not 
strictly elliptical, unlike in the theoretical case (Le Dizes (2000)), a very good agreement 
is found between the two. The second phase is found to be a vi.scous diffusion of this 

In a barotropic case, isobars and isopycnals are parallel to each other, whereas in a baroclinic ca.se, 
isobars and isopycnals cro.ss each other, and this is a source of vorticity in the flow. 

http://ca.se
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Figure 6.3: Schematic showing the variation of separation distance with time for an 
unstratified co-rotating vortex pair. The stages in the merger process are indicated. 

state to that a Gaussian profile. The vorticity at the central saddle point is found to 
exhibit an Re^^^ scaling. They attribute this to be similar to the cross-stream diffusion 
of a scalar in a shear flow (Rhines & Young (1983)). 

The second stage is the key stage to the merger process and vortex merger actually 
begins at this stage. The bulk of the work on this stage has centered on explaining the 
critical a/b ratio, i.e., to quantify the onset of merger. Some important studies concerning 
this stage have been discussed earlier. The physical mechanism associated with merger 
was first discussed in detail by Melander et al. (1988). They view the flow in a co-rotating 
frame where three distinct regions can be identified, as shown in figure (6.3). The flow 
near the core is vorticity {Z) dominated and consists of closed streamlines around each 
vorticity maximum. This inner core region is surrounded by a band of fluid where each 
streamline encircles both vortex cores. This region is strain dominated and is called the 
exchange band. Surrounding this is ai'e outer recirculation regions, sometimes referred 
to as the 'ghost' regions. These have an opposite sense of rotation as compared to the 
inner core or the exchange band region and exists only in the co-rotating frame. We will 
discuss various regions of flow in detail in section (6.5.1) where the physical mechanism 
leading to merger will be discussed. 

To understand the influence of each region on the merger process, it is useful to 
extract these regions from the velocity field as was done by Brandt & Nomura (2006). 
The inner core and the exchange band region have the same sign of vorticity in the co-
rotating frame, whereas the outer recirculation region has the opposite sign. The core 
and exchange band regions are distinguished by the the value of the second invariant 
of the velocity gradient tensor, fl = (Z^/2 — S'^)/2 where S is the strain rate tensor. 
If n > 0, the flow is vorticity dominated. This corresponds to the inner core regions, 
tor n < 0, the flow is strain dominated and this corresponds to the exchange band 
region. Using the value of 11, Brandt & Nomura (2006) identified various regions in the 
flow. Tliey then siiovved that both the inner core region and the exchange band region 
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contribute to the merging, i.e. cause a decrease of 6 with time, though the dominant 
contribution is from the exchange band region. Huang (2005) also found a similar result 
using a vortex-blob calculation, though he refers to the exchange band region as a 'sheet­
like' region. Cerretelli fc WiUiamson (20036) ascribe the merging velocity, i.e., the rate 
of decrease of 6 with time, to the anti-symmetric part of the vorticity field. This part can 
be attributed to the presence of filaments. But Fuentes (2005) finds that filamentation 
cannot always be the cause of merger, especially in steep vorticity profiles where merger 
begins before the onset of filamentation. As noted by Fuentes (2005), this contradiction 
is due to assumption that the separatrices dividing different flow regions are taken to 
be streamlines in the co-rotating Eulerian frame. This is true only for flows with a 
constant rotation rate. For unsteady cases, i.e., once the second stage of merger begins, 
the rotation rate changes with time, streamlines do not form separatrices. To define the 
separatrices more precisely, Fuentes (2005) analyses the Lagrangian flow geometry and 
finds that filamentation occurs when the stable manifold of a hyperbohc trajectory enters 
the vortex. His results corroborate previous results to a certain extent, in the sense that 
filamentation plays an important role in the merger process, but cannot be said to dictage 
its onset. 

The third stage of the merger process has received very little attention. After a 
rapid decrease in separation distance in stage 2, an abrupt slowing down is observed, 
and the separation distance falls off at a much slower rate, and is sometimes referred to 
as the 'plateau stage'. At the beginning of this stage, though the vortices are very close 
to each other, two distinct maxima can be identified, and the streamUnes are elliptical. 
During this stage, the elhptical streamlines relax towards an axisymmetric stage, and the 
process is therefore an advection-diffusion process, and not just a diffusion stage as noted 
by Cerretelli & Williamson (20036). Therefore, in regions away from the centroid of the 
system where differential shear dominates the flow field, an accelerated diffusion, at a rate 
of Re^''^ is expected to occur. In studies on axisymmetrization of a non-axisymmetric 
vortex, it is shown how this accelerated diffusion occurs (see Moffatt & Kamkar (1983), 
Rhines & Young (1983), Flohr & Vassihcos (1997), and references therein). But near the 
vortex centre, where differential shear vanishes, Bajer et al. (2001) showed that Re^^"^ is 
the relevant scaling to follow. Josserand & Rossi (2007) show that the duration of third 
stage lasts for a time proportional to Re^/"^. 

The final stage of the merger process involves axisymmetrization and diffusion of 
the single merged vortex. In particular, a lot of filamentary debris still exists at the 
beginning of this stage which gets slowly diffused or is engulfed into the vortex at the 
centroid of the system. An very important point in merger studies is to understand the 
relation between the circulations of the pre-merged vortices to the circulation of the final 
merged vortex. Josserand & Rossi (2007) show that approximately (1/3) of the initial 
circulation is lost to filaments, and this value is independent of the Reynolds number. 
The non-axisymmetry in the vortex can be viewed as (damped) Kelvin modes riding on 
the vortex core. It has to be checked whether the axisymmetrization process involves 
quasi-mode damping for these profiles. 

Atmospheric conditions such as stable density stratification can have an important 
role to play in the merger process. In the present work, we study the effect of stable 
density stratification on the interaction of two corotat ing vortices. In brief, we find 
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that apart from the Froude number, Fr which governs the strength of stratification, the 
Peclet number Pe, also plays an important role. For flows with î V ~ 1, merger never 
occurs and, remarkably, the vortices actually move away from each other. Two distinct 
mechanisms are found to operate depending on the value of Peclet number. For flows 
with high Pe, spirals of density field enter the vortex core resulting in the breakdown of 
the vortex core. Whereas for flows with low Pe, the density field diffuses rapidly near 
the vortex core and no such breakdown was observed. 

6.2 Governing equations 

In the previous chapters of this thesis, baroclinic vorticity was generated entirely due to 
inertial effects of density stratification. Centrifugal forces played the role of buoyancy. We 
now consider a more realistic situation where gravitational acceleration is also included. 
Direct numerical simulations in two-dimensions are performed with a corotating Gaussian 
vortex pair in a stably stratified fluid. The initial background density stratification is 
taken to be linear. For simplicity, we further split the total density field, p{x, y, t) in the 
following form (see Turner (1973)). 

p{x,y,t) = po + p{y) + p'{x,y,t), (6.1) 

where x and y are the horizontal and vertical directions respectively, po is a constant 
density value and p{y) is the vertical variation of the mean density about po- We prescribe 
linear stratification, i.e. p{y) has a Unear dependence on the y coordinate. And p' is a 
time dependent perturbation density field generated due to the motion of vortices. The 
governing non-Boussinesq equations in the velocity-pressure formulation can be written 
as, 

V u = 0, (6.2) 

p(-^ + uS7u\ = -yP + p'g + piyV^u, (6.3) 

^ + uVp = KV^P. (6.4) 

In the above equations, u is the kinematic viscosity, K is the thermal diffusivity, and 
these quantities are taken to be constant. Gravity g = gCy where e^ is the unit vector 
in the vertical direction. The fluid is taken to be incompressible, and this allows us to 
define a streamfunction to solve the momentum equation in the vorticity-streamfunction 
formulation. Notice that the total density p appears in the inertial acceleration terms. In 
situations where gravity term is larger than the inertial effects of density stratification, 
it is common to employ the Boussinesq approximation. This approximation is strictly 
valid when the following inequality is satisfied: 

p'^p^p, (6.5) 
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In this limit, re-writing total density as 

^. ,„ ( l + Z + M ) , (6.6) 
V Po Po J 

and retaining only the lowest order terms in the acceleration terms, we get the Boussinesq 
approximation. In many physical systems, pQ + p{y) « pQ on an average. For example, 
in the oceans, po ?» 1000 kg/m^ , the density of fresh water, p[y) occurs due to salinity 
stratification, and there is a fluctuating p' everywhere in space due to fluid motions. In 
the atmospheres, this approximation is restrictive, and so caution needs to be employed 
when dealing with atmospheric flows. Retaining density only in the gravity term, we 
thus have the Boussinesq equations which take the form, 

/9o f-^ + u - V u j = - V P + ^'g + z^o'̂ V^u. (6.7) 

When gravity is small, or when the inequality (6.5) is not satisfied, inertial effects of 
density stratification cannot be ignored. This is certainly true very close to a vortex as 
we have seen in chapter 5 that inertial effects cannot be ignored. Even for flows when 
density variation is small, but the transition region from heavy to lighter fluid occurs 
rapidly, inertial effects of density stratification cannot be ignored. A common case is 
when sharp interfaces arise in a flow leatling to large values of density gradient, baroclinic 
torque generated from inertial effects of density stratification become important. In the 
pure inertial limit, the governing equation (6.3) reduces to 

- ^ + u V u j = - V P + pi/V2u. (6.8) 

An important quantity of interest is the vorticity, Z{x, y,t) = V x u. The evolution 
equation for vorticity for a non-Boussinesq system is obtained by taking the curl of 
equation (6.3). 

dZ ^ , , VpxVP g dp' , 
-^ + u.VZ = ^ L ^ + ± ^ + .V^Z, (6.9) 

where the streamfunction in the fixed frame is related to vorticity in the standard way, 

V V = - 2 . (6.10) 

Therefore the streamfunction in a rotating frame of reference, with angular velocity QQ 
is given by 

A = ^~Y'' • (6.11) 

The initial condition prescribed for vorticity in the simulations is two Gaussian vortices 
with centres at {xi,y^) and (x2,y2), and initial vortex radii of ao. This can be written as 

Z[x,y,0) = ZQ ,,„ I -(u--^-.)',+ (!/-»•)')) ^ ^p /-((x-. . ) ' + fa-ri': 
«o 

(6.12) 



128 ^ Chapter 6. 

The peak vorticity ZQ is a function of the circulation T and the vortex radius, i.e., 
ZQ = E/nal. For simpHcity, we take yi = 2/2 = 0, and the initial vortex separation is 
given by fco = \xi - X2\. 

The non-dimensional numbers characterizing this flow are the Reynolds number, the 
Prandtl number and the Proude number. The first two are defined as before by 

Re=-, (6.13) 
1/ 

Fr=- (6.14) 
A, 

The Peclet number, also used earlier in this thesis, is related to the Reynolds and Prandtl 
numbers by the simple relation, 

Fe^ RePr= - . (6.15) 
K 

The Proude number is defined as 

Fr = —f- ^ f„ , (6.16) 

where N is the Brunt-Vaisala frequency given by 

pQay 

In the above equations, C/Q is a relevant characteristic velocity, and is calculated from 
the initial angular velocity of the two vortices assuming them to be similar to point 
vortices. In the above case we get UQ = E/2iTbQ. The initial time period for a system 
of point vortices is given by Tref = 2TT'^}}Q/'E. We investigate the flow for a wide range 
of Reynolds, Proude and Prandtl numbers. In all the simulations in this chapter, the 
background density stratification is taken to be linear. Also, all the results are presented 
in terms of the non-dimensional time t* = t/T^ef • 

It is useful to remember a few important points regarding Fr and Fr. At large Fr, 
momentum diffuses much more rapidly than density, whereas at small Fr, the reverse 
is true. Therefore, when using a low Fr fluid, the effect of stratification is reduced 
due to rapid homogenization of density gradients, thus killing the source of baroclinic 
torque. Also, strong stratification occurs for small Fr. An Fr — 1 indicates that the time 
scale associated with rotation of the vortices and the time scale associated with density 
oscillations, i.e., l/N, are comparable. Therefore, at this Fr, stratification eflfects will be 
felt very strongly. But clearly, small Fr and small Fr have competing effects. We will 
show some results later in this chapter that strongly stratification effects can be overcome 
by using a small Fr fluid. 
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V^->'; 

(-x,-y)\ 

Figure 6.4: Points (a;, y) and ( - x , -y) have the same vorticity for a symmetric density 
profile. 

6.3 Symmetries in a Boussinesq system 

The buoyancy force is related to the differences in the density field from a mean time 
invariant density profile. In the present scenario, the mean density profile is assumed to 
vary linearly in the vertical coordinate. Consider the following set of transformations as 
shown in figure (6.4): 

{x,y) -^ {-x,-y), {u,v) ^ {-u,-v), Z-^ Z*, {p,p') -* {p*,p'*). (6.18) 

at po ox 

dp* 

at + u-Vp* = KV^P*. 

(6.19) 

(6.20) 

The above equations are satisfied by the following transformations for Z and p, i.e. 

''^*{x,y) -* Z{-x,-y), 

I*, 
p \x 

(6.21) 

(6.22) 

(6.23) 

Because of this symmetry in vorticity, the centroid of vorticity is preserved in a Boussi­
nesq system, fn the present context of vortex merger, it would mean that a successful 
merger of vortices would lead to a single merged vortex at the origin, i.e. the vorticity 
centroid of the initial configuration. In the pr&sence of baroclinic torque, it is evident 
from equations (6.21), (6.22) and (6.23) that this symmetry will no longer be preserved. 
Thus, as will be shown later, symmetry is broken when employing the non-Boussinesq 
equations. 
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6.4 Effect of gravity on a single vortex 

Since gravity has not been taken into consideration in earher chapters, before we deal 
with the two vortex case, we first discuss the effect of gravity on a single vortex. This 
section can also be viewed as an extension to chapter 5, where, in the absence of gravity, 
small scale instabilities were shown to arise along the spiral density interface. Here, we 
briefly treat the same problem with Boussinesq approximation. Gravity is chosen to 
act perpendicular to the axis of the vortex. Though idealized, an understanding of this 
problem will be useful in the early evolution of aircraft trailing vortices in a stratified 
environment (see Crow (1974), Narain & Uberoi (1974), Saff"man (1972)), and in the 
interaction of a vortex with a sharp density interface (see Linden (1973), Dahm et al. 
(1989)). 

Linden (1973) used the problem of a vortex ring impacting a thin density interface as 
a model problem for understanding turbulent entrainment. For the same problem, Dahm 
et al. (1989) showed that the dynamics is governed by two non-dimensional parameters, 
{a/6)At and R where a is the vortex core size, S is the characteristic thickness of the 
density interface. At is the Atwood number and R = [a^g/'E] characterizes the ratio 
of centrifugal acceleration to gravity. Dahm et al. (1989) also showed that the flow is 
weakly influenced by Reynolds and Weber numbers. A direct comparison with their 
results is diflftcult due to two primary reasons: (i) the present geometry is too idealized 
to represented the interaction of an impacting vortex ring, and (ii) the value of At and 
R used in their analysis is different from the present simulations. Though, a detail 
investigation is worthwhile especially, since Linden (1973) used a similar problem to 
understand turbulent entrainment and is beyond the scope of this thesis. Our main aim 
is to study the roll-up process of the density interface as seen in chapter 5 and understand 
its impact on the structure and evolution of the vortex. 

We solve the Boussinesq equations with a tanh vortex placed at a vertically stratified 
tanh density interface. Vorticity and density profiles in this case are defined as 

Z{r) = ^ ( 1 - tanh r — a (6.24a) 

p(y) = p o ( l - ^ t a n h ( | ) ) (6.24b) 

where ZQ is the peak value of voricity, po is the average density, a is the vortex core size, 
6 is the thickness of the vorticity and density interfaces. The Atwood number can be 
defined BS At = Ap/{2po). To keep things brief, we only present one sample result here, 
viz., for At = 0.2, a/S = 20, and Fr — 4.6, based on the maximum density gradient 
in the flow. Since the dynamics is predominantly inviscid, we use hyperviscosity in our 
simulations. The time evolution of vorticity and density is given in figure (6.5). At short 
times, the vortex remains axisymmetric winding the thin density interface into a spiral. 
Baroclinic vorticity in the form of thin vortex sheets gets generated along the density 
interface. Eventually, this vorticity grows and becomes comparable to the primary vortex. 
This vortex sheet is susceptible to a Kelvin-Helmholtz type of instability and rolls up 
into smaller vortices of sign opposite to the primary vortex as can be seen at t* = 68.7. 
Moreover, local regions of unstable density configurations are created making the flow 
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suceptible to Rayleigh-Taylor instabilities. The smaller vortices strain the primary vortex 
elongating it. At low levels of gravity, the strain field of the smaller vortices results in an 
oscillation of the primary vortex, now elliptical. 

A simple model based on point vortices is constructed here capuring the most essential 
physics. Due to the simplicity of the model, we will not attempt to compare the results 
of the model quantitatively with the DNS results. 

Consider an idealised three vortex system as shown schematically in figure (6.6). 
Motivated by simulations, the efFet of baroclinic torque has been clubbed into two point 
vortices here. Let H be the circulation of the primary vortex placed at the origin. And 
let e represent the strength of baroclinically generated vorticity, which is generated at a 
distance b from the origin. The rate of generation of baroclinc vorticity is given by 

§ = - ^ f c o s ( 0 + <̂ ), (6.25) 
at po 0 

where the density gradient is simplified as Vp ^ {Ap)/S, g is the acceleration due to 
gravity, </> is the angle made by the density gradient (normal to the interface) with the 
Hne joining the vortices, and 6 is the angle made by the line joining the vortices with the 
horizontal. The induced velocity of vortex 2 due to the primary vortex 1, and vortex 3, 
is obtained by using the Biot-Savart law, 

" = 16-Is- <''-^^) 
Differentiating this with respect to time, we get 

The rate of rotation of the line joining the vortices is given by 9{t) where the overhead 
dot represent derivative with time. Therefore 9 = V/b. This reduces the above equation 
to a non-linear oscillator equation, 

(Pe 1 Apg , 

with the initial conditions ^ 

^(0) = 0, ^(0) = ^ . (6.29) 

Equation (6.28) is solved using the standard MATLAB program ode45, which uses an 
adaptive Runge-Kutta time-stepping. A parametric study for various values of 6 and 
g' = gAp/po was carried out. The time evolution of angle 9{t) for three arbitrarily 
chosen value of gravity is shown in figure (6.7). For increasing g, the system settles into 
a stable oscillation about the vertical. The amplitude and time period of this oscillation 
varies inversely with gravity. From the solution of (){t), the baroclinic vorticity generated 
can be obtained as 

e{t)=^2E~4nb'^0. (6.30) 
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yp 

Figure 6.6: Three vortex model showing the primary vortex 1 and baroclinically generated 
vortices 2 and 3. The red curve is the density interface with Vp being the direction of 
density gradient normal to it. (p is the angle made by Vp with the line joining the vortices, 
and 6 is the angle subtended by the vortices with the horizontal. 

Figure 6.7: Evolution of angle, 6 made by the line joining the vortices for increasing 
values of stratification. Increasing g reduces the time period of oscillation. 



134 Chapter 6. 

<< 2 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 

Figure 6.8: Variation of aspect ratio with imposed strain rate. At e/Zo > 0.15, the aspect 
ratio diverges. 

This imposes a time dependent strain field on the primary vortex. The non-dimensional 
strain-rate experienced by the primary vortex 1 is given by 

e{t) _f__ fW fay 
Zn~ E \bJ ' 

(6.31) 

The stability of an elliptic vortex patch to an external strain field was studied by Moore 
& Saffman (1971). They find two stable elliptical solutions for |e/Zo| < 0.15, but for 
|e/Zo| > 0.15, no solutions of elUptical form were found. The variation of aspect ratio as 
a function of imposed strain field in their analysis reduces to 

A(A - 1) 

Zo (A2 + 1)(A + 1) ' 
(6.32) 

and is shown in figure (6.8). Clearly, when the strain field reaches 0.15, the aspect 
ratio diverges. For values of strain greater than 0.15, no solutions were found, possibly 
indicating that stable steady elliptical vortex patches cannot exist. We calculate the 
strain rate obtained in our model as a function of b and gravity. This is shown in figure 
(6.9). The values of circulation, Ap were chosen to match the simulation. The region 
inside the thick black curve corresponds to strain rates higher than 0.15. Clearly, for very 
small gravity, the induced strain rate is too weak and a stable elliptical vortex results. 
Similarly, for large b, the point vortices are too far apart to influence the primary vortex. 
An interesting aspect of this plot is the region for small b and small gravity. For small 
gravity, a higher value of b appears to be more dangerous than a lower 6. More work 
needs to carried out, both in terms of simulations, and improved modelling to understand 
these results better. This preliminary analysis, however, leads us to expect a completely 
different behaviour at higher levels of gravity. We now return to the vortex merger 
problem. 
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Figure 6.9: Variation of aspect ratio with imposed strain rate. At C/ZQ > 0.15, the aspect 
ratio diverges. 

6.5 Merger in a homogeneous fluid 

The merger of a two co-rotating vortices in an unstratified fluid is a wefl studied problem 
now. To enable comparisons with the stratified flow cases, we present here results from 
a few numerical simulations at various Reynolds numbers. In all the simulations carried 
out, the initial vortex size and initial separation distance were kept fixed at 0.1 and 1 
respectively. Figure 6.10 shows the time evolution of the vorticity field in a homogeneous 
fluid for Re = 5000. The advection of each vortex by the other causes the two vortices 
to rotate about the centroid of vorticity in an anti-clockwise direction. At short times, 
the vortices behave like point vortices rotating with a constant angular velocity. During 
this time, in response to the straining field from the other vortex, both the vortices 
undergo distortions at their core boundaries. Le Dizes & Verga (2002) showed that these 
distortions eventually relax and the vortices reach an equilibrium shape. They further 
showed that this relaxation is associated with the exponentially damped Landau poles 
of a Gaussian vortex, discussed in Chapter 3. By t* ^ 1.875, filaments ejected from 
diametrically opposite ends of each vortex become clearly visible. In fact, though not 
noticeable clearly, pronounced deformations occur near the centroid of vorticity. This is 
associated with a tilt in the vortices as shown in figure 6.2, a fact recognized in the early 
work of Melander et al. (1988). This tilt has been neglected in the theoretical predictions 
of critical core size for merger in the inviscid contour deformation calculations of Saffman 
& Szeto (1980) and Meunier et al. (2002). In a related work, Kimura & Herring (2001) 
studied the axisymmetrization of a two-dimensional elliptic vortex, and showed that 
palinstrophy, i.e. square of the vorticity gradient, in two dimensions plays a similar role 
as enstrophy in three-dimensions. For an elliptic vortex, palinstrophy growth leads to 
ejection of filaments from the ends of the major axis. Brandt & Nomura (2007) used 
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Figure 6.10: Vorticity contours for Re = 5000, FT = 
non-dimensionalized by the reference time scale, 'il-e/. 

oo. The time, t* indicated is 

these ideas to explain the tilt created in the vortices. These ejected filaments eventually 
grow to engulf both the vortices, and lead to rapid merger of the two vortices. We will 
examine the physical mechanism leading to merger later in the section. The instantaneous 
vorticity profiles are plotted in figure (6.11) at various times. The final merged vortex, 
at the end of the third stage has a core size which is approximately twice the original 
core radius. 

In figure (6.12(a)), the variation of separation distance between the two vortices with 
time is indicated for various Reynolds numbers. Various stages of merger, as shown in the 
schematic figure (6.3) can clearly be observed, especially at large Reynolds number. In 
figure 6.12(1)), the number of rotations completed by each vortex is shown as function of 
time. For example, at Re = 10000, each vortex completes nearly five complete rotations 
with a constant angular velocity, and then undergoes an abrupt change in rotation rate. 
No such abrupt transition in visible for 6*, but clearly, at t* > 5, the value of b* drops 
very rapidly to a value of 0.25. This is the second stage of merger, also referred to 
as the "convective merger stage". To identify a "merging time", i.e., the time when 
the convective merging process begins, we follow the method of Meunier et al. (2002) 
to calculate a critical core size and a critical time. The procedure is as follows. It is 
assumed that the second stage of merger is nearly independent of Reynolds number, i.e., 
is a purely inviscid process. Moreover, during the first stage which is governed mainly 
by viscous diffusion, the vortex core sizes are taken to increase with time as 

a = Aut + constant. (6.33) 

where t is a non-dimensionahzed time based on the rotation timescale of two point vortices 
of equal circulation separated by a distance h^. It is convenient to choose the time origin 
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Figure 6.11: Instantaneous vorticity profiles at various times drawn along a line connect­
ing the two vorticity maxima. 

such that the constant vanishes, i.e. at t* = 0, the evolution consists of two point vortices. 
Rewriting i' in terms of He, the above equation reduces to 

bl 
8T^ 

Re 
t*. (6.34) 

The critical core size, Uc and time, i* are the size of the vortex core and time respectively 
at which convective merger begins. Using the above formula, these two quantities are 
related by the equation 

-2 87r2 

6f ' 7^^* ^ ^* = ^̂ '̂ (6.35) 

where C is a constant. This equation just states that the larger the He, the smaller 
is the diffusion, and therefore, it takes more time to reach the critical core radius, a^. 
This procedure makes it simple for the vortex merger process to be broken into two 
separate stages. Since the second stage is assumed to be purely of convective nature, 
the time it takes for the initial separation distance to decrease from its initial value b^ 
to a certain fraction x of 6o, is therefore assumed to depend purely on x, independent 
of He. The fraction x can be chosen arbitrarily, and we choose three different values of 
0.5, 0.6 and 0.75. The "merging time" for the three different values of x are plotted as 
a function of Re in figure (6.13). The constant slope indicates that the merger time is 
truly independent of He, arid that t* increase with Re owing to a purely viscous diffusion 
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Figure 6.12: (a) Variation of separation distance between vortex maxima with time in a 
homogeneous (hiid for various Reynolds numbers. The vertical dotted lines indicate the 
time when convective merger begins. See text for more details, (b) Variation with time 
of the total angle subtended by the line joining the vortices and the x-axis for various Re 
normalized by 27r. This is equivalent to the number of revolutions made by each vortex. 
In stage 1, the angular velocity of revolution of the vortices is constant, and is similar to 
an equivcilent point vortex system. A distinct change in angular velocity can be noticed 
at the beginning of the convective merger process. 
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Figure 6.13: Convective merger time as a function of the Reynolds number for Fr = oo 
obtained by using three different fractions x. The straight lines are least-square fits to 
the data shown with symbols and the slopes are also indicated. 
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Figure 6.14: Estimation of tiie critical core size as a function of fraction x of the separation 
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Figure 6.15: Trajectory of one of the vortices with time for various Re with Fr = co, (a) 
1000, (b) 2000, (c) 3000, (d) 4000, (e) 5000, (f) 10000. All figures are to the same scale, 
and the dashed-dot circle indicates the trajectory of an equivalent point vortex. 

of the vortex cores in stage 1. From the slope C of the three hnes, the calculated cores 
size are plotted in figure (6.14). An average value of core size obtained is 

6n 
0.198. (6.36) 

This value is slightly lower than the previous estimates obtained by Meunier et al. (2002) 
( « 0.24), Cerretelli & Williamson (20036) and others. But those studies estimate the 
merger time for a much shorter range of Re than has been done here. Knowing the 
critical core size, we can now calculate the critical time, t,. using equation (6.35), to be 

^e«i 4.964 X 10"' '«e. (6.37) 

The vertical dotted lines in figure (6.12(a)) show tc for various Reynolds numbers. As 
mentioned earlier, the earlier stage of the merger process is similar to that of a point 
vortex, and therefore, two vortices describe circular orbits around a common centroid of 
vorticity. When convective merger begins, the trajectory of each vortex deviates from 
this circular trajectory and the vortices spiral inwards towards the vorticity centroid 
obeying the basic symmetries in the system. This is shown in figure (6.15) for various 
Reynolds numbers. This synnnetry is also obeyed by a stratified flow under Boussinesq 
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approximation, and will serve to illustrate the effects of non-Boussinesq equations dealt 

with in later sections. 

6.5.1 Merger mechanism in an unstratified fluid 

We conclude this section examining some basic physical mechanism leading to merger. 
The first detailed examiuation of vortex merger was due to Melander et al. (1988). This 
pioneering work also used the idea of viewing the flow field in a rotating frame of reference. 
Figure (6.16) shows the streamlines in both fixed and rotating frames of reference for two 
positive (anti-clockwise rotation) vortices. The rotating frame streamfunction is related 
to the fixed frame streamfunction by the transformation 

Aot = i>-^^r\ (6.38) 

where il) and i'rot are the streamfunctions in the fixed and rotating frames respectively, 
and Q.ang is the angular velocity of the system. Also shown in figure (6.16) are the 
separatrices, i.e. streamlines which divide different regions of the flow. As can be seen 
from figures (6.16(c)) and (6.16(d)), in addition to the hyperbolic point HQ, moving to 
a rotating frame creates additional saddle/hyperboHc points, tl\ and H2 in the system. 
The curves joining these hyperbolic points creates various separatrices separating different 
regions of the flow. In dynamical systems parlance, the curve passing through HQ would 
be referred to as a homoclinic orbit, and the curves joining H\ and H2 as a heteroclinic 
orbit. 

In figure (6.16(d)), the region within the closed separatrices around the centres Oi 
and O2 are commonly referred to as the inner core region. In this region, fluid parcels 
rotate in an anticlockwise direction obeying the induced velocity field of the vortices. 
The squeezed region between the inner core regions and the separatrices connecting Hi 
and H2, i.e., between the homoclinic and heteroclinic orbits is referred to as the exchange 
band region. In this region, fluid parcels rotate around both the vortices. The two regions 
above and below the exchange band region, but within the outer separatrices are referred 
to as ghost regions. In these regions, fluid parcels rotate in an anti-clockwise direction. 
When the vortices are far apart, i.e. a/h < < 1, all the vorticity is confined to the inner 
core regions as shown in figure (6.17(a)). Due to viscosity, the vortex core size increases 
as given by equation (6.34), and vorticity slowly diffuses across the separatrices into the 
exchange band region. In this way, the two vortices can exchange vorticity with each 
other, and hence the name for this region. This allows the two vortices to strongly 
strain each other. When vorticity slowly diffuses past the hyperbolic points H\ and H2, 
thin filaments are quickly peeled off along the outer separatrices. The filaments enter 
the ghost regions causing further straining of the flow field as shown in figure (6.17(b)). 
Meunier et al. (2002) argued that these filaments, which are essentially antisymmetric 
create a velocity field which causes the two vortices to approach each other. Due to the 
spread-out filamentary 'arms', to conserve angular momentum of the system (at large 
Re), the vortex cores rotate faster, as can be seen in a drastic change in rotation rate 
in figure (6.r2(b)). Cerretelli & Williamson (20036) interpreted this as fliows. They 
split the vorticity field into symmetric and antisynmietric parts and showed that the 
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Figure 6.16: (a,b) Streamlines and (c,d) Separatrices in the fixed and rotating frame of 
reference. In (d) //o, ^^i and ^2 are hyperbolic points and 0\ and O2 are the centres. 
The separatrices divide the flow into various regions as discussed in the text. 
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(a) (b) 

Figure 6.17: Vorticity contours along with corresponding streamhnes in a rotating frame 
for Re = 5000 and Fr = oo at (a) t* = 0 and (b) t* = 1.5. Vorticity diffuses across the 
separatrices and peels off at the hyperbolic points Hi and H2 following the streamline. 

antisymmetric part causes a disturbance field which makes the two vortices move into 
each other. The antisymmetric part was predominantly due to filaments. But the idea of 
describing merger in terms of filaments diverted the attention from the important point 
of asymmetry of the flow field. It was not clear at this stage whether filaments were 
the cause or the effect of vortex merger. In an important contribution, Fuentes (2005) 
showed that filamentation is the effect of merger, and convective merger begins before 
the onset of filamentation as discussed earlier. Brandt & Nomura (2006) calculated the 
induced velocity from various flow regions and showed that the exchange band region 
is responsible for the merger process, not the filaments. The vortices tilt creating an 
asymmetry in the flow field. At this stage, there are multiple explanations for the onset 
of merger. But, it is clear that during the convective merger stage, both filaments and 
the exchange band region contribute significantly to merger. Note that the former in fact 
owes its existence to the latter. 

6.6 Stratified merger with Boussinesq approximation 

We now study the efi'ects of linear density stratification on the vortex merger problem, 
within the Boussinesq approximation. The vorticity equation has another source due to 
baroclinic torque and takes the form 

01 pQ Ox 
(6.39) 

The last term in this equation is the additional vorticity generated due to to density 
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stratification. Note that horizontal gradients of density contribute to vorticity genera­
tion. As the two vortices rotate, they churn the entire density field around them such 
that horizontal density gradients are established. These in turn influences the evolution 
of the two vortices themselves. It can be easily imagined that both positive and negative 
vorticity will be created due to density effects. In a recent work, Brandt & Nomura (2007) 
treated exactly the same problem as the present one, but restricted their study to mod­
erate stratification. At the FYoude numbers they imposed, merger always occurred. For 
larger stratification, where baroclinic torque can dominate the flow field, it will be shown 
that merger can be completely prevented. Figures 6.18 and 6.19 show time evolution of 
vorticity (upper panel) and density (lower panel) fields. This can be contrasted with the 
unstratified case considered earlier (see figure 6.10). Additional filaments created due 
to baroclinic vorticity can be clearly seen in figure 6.18(b). The orientation and sign of 
this additional vorticity can either accelerate or decelerate the merger process. When 
stratification increases further to F r « 1, in all our simulations with P r « 1, merger 
was always completely prevented. But for very small Fr, things can be different, and 
therefore, the role of Fr is separately discussed. In addition, the two vortices gradually 
drifted away from each other. One such scenario with Re — 5000, Fr — 1 and Pr = 1 
is shown in figure (6.19). Notice that baroclinically generated filaments are now much 
stronger than before, and are predominantly of negative sign. This additional vorticity 
not only causes the vortices to drift away from each other, but also causes breakdown of 
the flow into a turbulence-like state. A kinematic view of the flow field and the role of 
various time scales in the flow will be examined later in this section, and this will help 
us understand the reasons behind merger/non-merger. 

6.6.1 Effect of Froude number 

To understand the role of Froude number on the flow, we have carried out a parametric 
study for various Fr at different Re and a fixed Fr = I. The effect of Prandtl number 
is considered separately in the next section. The variation of separation distance with 
time for three different Fr is shown in figure (6.20). For moderate stratifications (figure 
6.20(a) and 6.20(b)), merger was always found to occur for all Re considered in this 
study. Notice that the separation distance does not decrease monotonically with time 
like in the unstratified case. This non-monotonicity is due to the effect of baroclinic 
torque on the two vortices, and depends on the exact orientation of barochnic vorticity 
generated in the flow. 

A series of numerical simulations were carried out for many different Fr for a fixed 
Re = 1000 and Fr = 1. The separation distance with time for this case is shown in 
figure (6.21(a)). At this Reynolds number, as Fr decreases, it takes longer to complete 
the merger process. For comparison, the Re ~ 5000 case with different Fr is also shown in 
figure (6.21(b)). In this case, at low stratification levels, the merger process is accelerated 
with increasing stratification, an effect opposite to the Re = 1000 case. This is in broad 
agreement with Brandt & Nomura (2007). But in both the cases, for Fr K^ 1, merger is 
completely prevented. Therefore, a cross-over exists in the Re — Fr plane as can be seen 
figure (6.22). 

We will briefly discuss the energetics of the system. As the vortices rotate, the density 
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horizontal scale for the figures are different. 
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Figure 6.21: Effect of Fi'oude number shown in the legend on the separation distance for 
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completely prevented for î V = 1, 
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Figure 6.23: Evolution of kinetic (K.E. - solid), potential {P.E. - dashed) and total {Etot 
- dash-dot lines) for Re = 5000 and Fr = \ for four different Froude numbers indicated 
with different colours. The kinetic and potential energies are always in anti-phase with 
each other. 

field is rotated creating a large scale overturning. Thus rotation of the vortices creates 
disturbances in the density field, and small perturbations would oscillate with the Brunt-
Vaisala frequency. The ratio of timescales of rotation of vortices to the time scale of 
density oscillations is given by the inverse of Froude number. By time scale of density 
oscillations, we mean the time it takes for a small parcel of fluid slightly heavier than its 
surroundings to rise upwards and the sink downwards again. This would hold for a lighter 
fluid too. For example, with Fr = 3, the vortices would have completed approximately 
three complete rotations for one complete oscillation of the density field. During the 
first half of density oscillation, the heavier fluid rises upwards and lighter fluid sinks 
downwards. This causes an increase in potential energy (P.E.) at the expense of kinetic 
energy (K.E.) of the vortices. During the second half of oscillation, the heavier fluid 
sinks downwards and lighter fluid rises back upwards. This causes the potential energy 
to decrease. Now the kinetic energy increases at the expense of potential energy. In 
addition, viscosity causes a net dissipation of kinetic energy of the system. Indeed, this 
is seen to happen in our simulations as shown in figure (6.23), though small differences 
exist in the timescales observed. The kinetic and potential energies are in anti-phase with 
each other. Owing to viscous diffusion, the total energy decreases in all the cases, but a 
nmch larger dissipation is observed with Fr = 1. This is due to a significant generation 
of small scales in the flow, as shown in figure (6.19), which makes viscous diffusion more 
effective, whereas for higher Fr, the final state is a single large vortex, with fewer small 
scales, in the form of weak filaments in the flow. 
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6.6.2 Effect of Prandtl number 

In the previous sub-section, the Prandtl number was fixed at unity. The Prandtl number 
is a measure of the rate at which density field diff"uses in relation to diffusion of momen­
tum. Small Pr denotes fast diffusion of density field. Therefore, for a low Fr fluid, any 
density inhomogeneities are rapidly erased, thus removing the source of barochnic torque. 
Figure (6.24) shows the effect of Pr for three different stratifications. With Fr = 1, it 
was shown that merger gets progressively delayed for Re = 1000 as stratification is in­
creased. Therefore as Fr is decreased, due to the reduction of baroclinic effects, we would 
expect this delay to be minimized. In the limit of Fr —> 0, where the density field is 
instantaneously homogenized, no baroclinic torque would be generated, and the merger 
process would be similar to that in a constant density fluid. In figure (6.24), it can be 
seen that merger time decreases with increasing stratification, eventually approaching 
the ^V = oo limit for very small Pr. In this small Fr limit, merger was always found to 
occur, even for very large stratification's, i.e. i'V = 1 as can be seen in figure (6.24(c)). 

6.7 Merger in a non-Boussinesq system 

The Boussinesq approximation employed in the previous section and in the earlier work 
of Brandt & Nomura (2007) preserves basic symmetries in the system, as discussed in 
section 6.3 and showed quantitatively in section 6.6. In this section, we consider the 
effect of non-Boussinesq terms on the merger process. By the adjective non-Boussinesq, 
we only refer here to inertial effects of density stratification, and all transport coefficients 
are held constant for simplicity. Two cases are separately studied: one, where purely 
inertial effects of density variation are considered with gravity being absent, and two, 
where combined inertial-gravity effects are present in the system. This will help us 
compare and contrast Boussinesq and non-Boussinesq effects on the merger process. To 
do this, we choose a fixed mean density profile and adjust gravity such that a desired 
FVoude number is attained. In figure (6.25), we compare variation of separation distance 
with time for unstratified flow, a Boussinesq fluid with F r = 3, a non-Boussinesq fluid 
with Fr = 3 and a purely inertial case where baroclinic vorticity is generated from inertial 
effects of density stratification and gravity is set to zero. Clearly, purely inertial effects 
do not affect the separation distance when compared with an unstratified case. 

To observe symmetry breaking due to inertial effects, we consider a higher Reynolds 
number, viz.. Re = 10000. At this Re, the two vortices complete approximation 5 
rotations before convective merger begins. This provides ample time for baroclinic torque 
to act on the vortices and symmetry breaking to become noticeable. In figure (6.26), the 
trajectory of a single vortex is plotted as a function of time. For clarity, the curves 
are shifted in the vertical scale. It can be seen that for a system governing by purely 
inertial effects of density stratification, the centroid of vorticity is no longer an invariant. 
The vortices are shown to drift leftwards in this case. The exact direction and rate 
of drift depends both on Re and the density stratification employed. The same result 
can be obtained by monitoring the x-coordinate of the two vortices as shown in figure 
(6.27). These results show that for large density stratifications, where inertial effects of 
density field become important, symmetry breaking can lead to large scale meandering 
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Figure 6.24; Effect of Prandtl number on the separation distance for a fixed Re = 1000 
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Figure 6.25: Variation of separation distance with time for Re = 5000 with a mean 
density gradient of {bo/po){dp/dy) = 0.095. For a purely Boussinesq fluid, gravity is 
chosen to give Fr = 3. In a purely inertial case, gravity is neglected and baroclinic 
torque is generated only from non-linear terms in the governing equation. 

of vortices. 

6.7.1 Merger mechanism in a stratified fluid 

We briefly examine some aspects of the physical mechanism in a stratified vortex merger. 
We first discuss merger in a Boussinesq fluid. Figure (6.20) showed that upto t* ^ 0.5, 
the variation of b* in a stratified fluid is similar to that In an unstratified case. Figure 
(6.28) shows the vorticity and density field at t* = 0.5 for various Fr. For comparison, 
an unstratified case is also presented. Clearly, the vorticity and density fields are similar 
in structure in all the cases, but the magnitudes significantly vary. For example, the 
maximum barocUnic vorticity in figures (6.28(b)), (6.28(c)) and (6.28(d)) for Fr = 3 , 2 , 1 
are approximately 0.013, 0.022 and 0.11 respectively. In the Boussinesq approximation, 
vorticity generation is proportional to g, i.e., 1/Fr^ all the other parameters being kept 
the same. In fact, the observed maximum vorticity values indeed closely follow this 
scaling. At this time {t* ~ 0.5), the orientation of this baroclinic vorticity is such that 
the vortices are pushed away from each other as shown schematically in figure (6.29). 
This only explains the initial separation of the vortices as can be seen for t* > 0.5. In 
the case of Fr = 1, due to the much larger baroclinic vorticity, the vortices are strongly 
repelled from each other preventing merger. But for Fr = 3, 2, the vortices approach 
each other for t* > 1. In this case, the orientation of the barocHnic vorticity is such that 
a net inward velocity is induced on the two primary vortices, but it is difRcult to precisely 
show this as both the positve and negative baroclinic vortices stronly overlap with each 
other. Hence a simple kinematic mechanism becomes increasingly ditticult. 
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Figure 6.28: Vorticity (lines) and density (gray scale) contours for Re = 5000, f r = 1 at 
various Fr: (a) Fr — CXD, (b) Fr = 3, (c) Fr = 2, (d) ^V = 1. Solid and negative lines 
represent positive and negative vorticity levels. Note that in (a), the density field is a 
passive scalai\ 
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/ 

Figure 6.29: A schematic of the dominant vorticity based on figure (6.28). The two 
primary vortices are shown in grey circles and the barochnic vorticity is shown by black 
circles. The red arrows show the induced velocity field due to barochnic vorticity on the 
two vortices, and the result velocity field is shown in blue arrows. Note that the net 
velocity at the vorticity centroid is identically zero from symmetry. 

We can construct a simple model with two Gaussian vortices and a single flat density 
interface placed along the line joining the two vortices. This interface can be viewed as 
an approximation of one single isopycnal in a linearly stratified flow or a sharp density 
interface. We first move into a rotating frame of reference where the vortices are station­
ary, and advect this interface passively. But, knowing that density jump discontinuously, 
we can calculate dp/dx. In this case, it will be a ^-function at the interface. We assume 
that the new vorticity is initially too weak to alter the motion of the primary vortices 
themselves. We are primarily interested in knowing the sign and orientation of the vortic­
ity produced, not so much in its magnitude. In any case, it would not be possible in this 
model to predict the vorticity produced quantitatively. To calculate the net barochnic 
vorticity generated, we move into a Lagrangian frame of reference, where each particle 
on the interface is advected by the equations 

dx 

m 
dt 

^rot 5 

Vrot 

(6.40a) 

(6.40b) 

where iirot and Vrot are the x and y component of the velocity field in a rotating frame 
of reference. For a Gaussian vortex system, this can be written as 

Urot — ~ 

'-'rot 

2.lX^ "^ 
E{x-bo/2) / 

27r/, V 

6^ 

exp 

) - 27r/2 

h 
1 — exp -h 

6^ + 
^y 

0̂>- + b^l2) 
2nh 

exp (52 

(6.41a) 

+ ^ (6.41b) 
:zx 

nb\ 0 

where h = [{x - bi)/2)'^ +y^) and I.2 = ((.r + 6o/2)^ + y^^ Initial barochnic vorticity 
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Figure 6.30: Evolution of a passive interface due to a co-rotating Gaussian vortex pair 
viewed in a rotating frame of reference. The color coding represent the strength of 
baroclinic vorticity than can be produced at this interface, where red denotes positive 
values and blue denoted negative values. 

along the interface is taken to be zero. The non-dimensional vorticity equation for each 
particle on the interface takes the form 

dt 

'•K 

• c o s l - (6.42) 

where C is the baroclinic vorticity generated as each particle on the interface is advected 
by the background How and d is the angle made by the interface with tiie horizontal. This 
equation is obtained by knowing that the interface is a material contour across which 
density changes discontinuously, and therefore, dpj'dx can be related to the interface 
orientation. Since we are interested in the sign of the vorticity, the prefactor in the above 
equation is taken to be unity. Therefore, the generated vorticity, C can be taken to be 
suitably normalized. Tlie angle Q can be calculated from the slope made by the interface 
witii the horizontal, i.e.. 

Q = tan" 
dx 

tan 
- 1 Vrot 

y-Tot 
(6.43) 

The position of the interface at various times is shown in figure (6.30). The color 
coding shows the sign and strength of the baroclinic vorticity generated, where blue 
indicates regions of negative vorticity and red, regions of positive vorticity. The symmetry 
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Figure 6.31: (a) Position of a passive interface (red circles) and the streamlines for a 
Gaussian co-rotating vortex pair at t* = 36. The red arrow is normal to the interface, 
and the black arrow shows the direction of centrifugal acceleration, (b) Close-up of (a) 
indicated by a dash-dot rectangle. Vp and e^ are the density gradient vector and normal 
vector to the streamline respectively at the point of intersection of the interface with the 
streamline. 

of the Boussinesq approximation is clearly seen in this figure. Each point on this interface 
can be treated like a point vortex, and the induced velocity from these point vortices at 
the centroid of the system is identically zero, due to cancellations from either side of the 
interface. 

We repeat the same analysis with only inertial effect of stratification, neglecting 
gravity. The interface position and the streamhnes at some arbitrary time is shown 
in figure (6.31). An obvious and striking difference in this case is the reversal of the 
acceleration vector shown with a black arrow. This is absent in the Boussinesq case 
where the direction of gravity is fixed. The induced velocity at the upper and lower 

[)u U"^ 
mterfaces, proportional to V/9 x -—- can be approximated as Vp x — e ^ where U is the 

/• 
total velocity. It is possible to avoid this approximation, but has not been done here for 
simplicity. Since the vorticity on either side of the interface is of opposite sign, as shown 
by blue circles, a net vorticity is created at the centroid of the system. The direction 
of this induced velocity at the centroid of the system is shown by a blue arrow. The 
above analysis is carried out in a rotating frame of reference. As the interface continues 
to wind, greater amount of baroclinic vorticity gets generated at the density interface 
such that a net drift arises in the system. To predict quantitatively, the direction and 
magnitude of the drift, more careful modelling is required. 

The above models are constructed capturing only the essential physics in the problem. 
Though highly simplistic in nature, they explain the basic effect of density stratification 
in the merging process. 
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6.8 Summary 

The present chapter is part of an ongoing work to understand the effect of density strat­
ification on the vortex merging process. The first part of the study dealt with vortex 
merger in a homogeneous flow, and this served as a validation exercize, and also to 
compare the differences upon introduction of stratification. In stratified merger, both 
Boussinesq and non-Boussinesq situations were considered. It is shown that certain sym­
metries are allowed in a Boussinesq fluid. More importantly, a key finding of this work is 
that at high stratifications, baroclinic vorticity generated at the density interface can be 
sufficient to prevent the merger process. A detailed parametric study concerning effects 
of Froude and Prandtl numbers has been carried out. We then dealt with inertial effects 
of stratification, the non-Boussinesq effects on the merger process. Since the symmetries 
allowed by a Boussinesq system need no longer be obeyed, a drift of the entire system 
was observed. A simple kinematic model is constructed to explain the observed feature 
in stratified merger, especially, the process of drift in a non-Boussinesq system. 



CHAPTER 7 

CONCLUSIONS 

In this thesis, a study on the effect of density stratification on the structure and stability 
of vortices was carried out. Conclusions for each chapter has already been made, but me 
summarize here the main findings of this thesis. 

In chapter 2, the wave interaction mechanism has been examined closely to show how 
stable density stratification can sometimes destabilize a flow in the presence of shear. We 
construct a simple flow with a single vorticity jump and a single density jump separated 
from each other. Though these two interfaces support neutral waves themselves when 
considered in isolation, their interaction can give rise to an instability. This result was 
then extended to a Rankine vortex geometry with a circular density jump in chapter 3, 
where the interaction is between Kelvin waves of a Rankine vortex and internal waves 
from the density jump. For smooth profiles which do not possess discrete Kelvin modes, 
the wave-interaction mechanism can be attributed to the presence of quasi-modes. For the 
first time, we show that a light-cored vortex can be unstable, and the physical mechanism 
causing this instability is explained. Quasi-mode properties of a wide range of vortex 
profiles with varying steepness are studied and we recover the Rankine Kelvin mode for 
steep vortex profiles. Direct numerical simulations reveal the presence of stable non-linear 
non-axisymmetric vortex structures. 

In chapter 5, we show the importance of retaining non-Boussinesq eff"ects, i.e., inertial 
effects of density when dealing with flows with sharp density interfaces. The Atwood num­
ber can be small, but the gradient of density can be large generating significant baroclinic 
torque. A key finding of this chapter is the presence of a new spiral Kelvin-Helmholtz 
instability at a density interface caused solely by inertial effects of stratification, and 
also the classical Rayleigh-Taylor instability, similar to the one studied in chapter 3. Us­
ing direct numerical simulations, we show that these instabilities can degrade the flow 
generating turbulence and small scale structures in the flow. 

The last chapter deals with vortex merger in a stratified medium. This is part of an 
ongoing work, and some sample results are presented in this chapter. The main finding 
of this chapter is that for large stratifications, vortex merger is completely prevented. 
At large Reynolds number, with increasing stratification, vortex merger is accelerated, 
up to a threshold value, beyond which, stratification prevents merger. A more detailed 
analysis is beyond the scope of this thesis. 
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A Derivation of Rankine vortex dispersion relation 

In the three regions for a Rankine vortex with a density jump given by equation (3.20), 
the general solutions of equation (3.15) take the form, r"""^ and r " ' " ^ ^ The complete 
solution can be written as 

Ur 

Air"'-^ i f r < a , 
A2r'"-i + Asr-"'-\ if a < r < r j , (A-1) 
,—m—1 if r > rj. 

The constants Ai, Ai and A3 can be found by matching radial velocity at r = a and 
r = Tj and pressure across r = a^ and this gives 

Ax 

A2 = 

(w - mQo)a"^'" 
v2m 

( ^ ) ^ ' " ( u ; - ( m - l ) f i o ) - n o 

( u ; - ( m - l ) Q o ) a " ^ ' " 
v2m 

( ^ ) ^ ' " ( a ; - ( m - l ) Q o ) - f i o 

.2m 
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Finally, matching pressure across the density jump gives us equation 3.21, a cubic disper­
sion relation in the eigenvalue a;. From the continuity equation, the azimuthal velocity 
perturbation can be written as 

UQ = —V*Ur. (A-5) 
m 

The form of Uj. on either side of the two interfaces shows that there exists a jump in UQ 
at r = a and r — TJ, i.e., there is a vortex sheet at each of the two interfaces. The vortex 
sheet strength is given by 

^Ue\r=a = 
liflaa-"'-^ 

( ^ ) ^ ' " ( a ; - ( m - l ) Q o ) - f J c 

Aug\r=r -2ir -m—l 

\2m 
( ^ )^ ' " (u; - (m - l)Qo 

(^) 
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(A-6) 
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