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Abstract

We study the merger of three or more identical co-rotating vortices initially arranged on the

vertices of a regular polygon, and compare it to the merger of two like-signed vortices. The

latter is a well-studied problem, with the merger process there consisting of four stages. In

the multiple (three or more) vortex case, we find a new stage in the merger process, where an

annular vortical structure is formed and is long-lived. We find that merger on the whole is slowed

down significantly as the number of vortices goes up, and the formation of the annular structure

is primarily responsible for the delaying of the merger. In the three-vortex case, the vortices

initially elongate radially, and then reorient their long axis closer to the azimuthal direction, and

then diffuse out to form an annulus. The inviscid case is similar at short times, but at longer

times, rather pronounced filaments are visible (in the three and four- vortex cases), which are

practically absent in the viscous case. We find a qualitative change in the tilt history as we

increase the number of vortices from three to six and more. In the six-vortex case, the vortices

initially itself align themselves azimuthally. The annular stage is in contrast to the ‘second

diffusive stage’ in two-vortex merger.

In addition to this, we find that at high Reynolds numbers, the vortices merge asymmetrically

and the annulus even undergoes instabilities. In order to further understand the physics behind

this, we perform a quasi-steady viscous linear stability analysis of an annular vortex. In other

words, we study the cylindrical equivalent of a parallel shear flow in an infinite domain. Assuming

azimuthal symmetry, we find a solution of the Navier-Stokes equation with the initial condition

being that of an infinitesimally thin cylindrical vortex sheet. We obtain a Generalized Lamb-

Oseen vortex profile, which we input as the mean flow for our stability analyses. We find that

in the infinite Reynolds limit (inviscid case), there is an upper cut-off for the azimuthal modes

going unstable. In general, we find that viscosity has a stabilizing effect, tending to preferentially

stabilize the higher modes. We also find two modes going unstable for the azimuthal wavenumber

two, till a low Re limit, where only one mode goes unstable.
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Chapter 1

Introduction

1.1 Introduction

Vortices of the same sign in circulation tend to merge with each other. This thesis is a detailed

study of the merger of several equal like-signed vortices placed initially with their centroids on

the vertices of regular polygons.

Figure 1.1: A schematic showing two equal co-rotating vortices, each having a circulation Γ/2,
radius a and separated by a distance d. If (a/d)i < (a/d)crit, the vortices go around each other
in a circle with a time period T = 4π2d2/Γ. However, if (a/d)i ≥ (a/d)crit, the vortices merge.

Consider first an inviscid system with two co-rotating point vortices each having a circulation

Γ/2, and separated by a distance d. The motion of these vortices is governed by the Biot-Savart

law, which confines the point vortices to motion on a circle of diameter d, with the azimuthal

velocity of each vortex given by uθ =
Γ

4πd
. Next, if the point vortices are replaced by vortices

of finite size (radius a) and finite uniform vorticity, we observe an interesting phenomenon. If

the initial configuration is such that the ratio (a/d)i is less than a critical ratio (a/d)crit, these

vortices obey the point vortex dynamics described previously. However, if (a/d)i ≥ (a/d)crit,

the vortices while rotating around each other, deform and move towards each other. In a viscous

flow they ultimately merge into a single larger vortex along with the formation of filaments of

vorticity. This coalescence of vortices to form a single structure is called vortex merger. In the

inviscid case, one has to keep in mind that the Kelvin’s circulation theorem prevents the vortices

from complete merger into a single structure. If (a/d)i < (a/d)crit, the behavior of these vortices

is similar in the initial stages for the viscous and inviscid cases. However, the viscous vortices

differ in that their cores grow in size (a increases) by diffusion, and at one particular stage,

1



2 Chapter 1. Introduction

(a) Merger. (b) Splitting.

Figure 1.2: A schematic of the two scenarios - Merger of multiple vortices to form an annulus,
and splitting of an annulus into multiple vortices.

(a/d)crit is reached, when the vortices once again merge into a single core. The viscous case is

thus different from the inviscid case in that the final merged structure is a gaussian vortex with

a single vorticity maxima in addition to the filaments being smoothened out by viscosity.

Merger of two co-rotating vortices is one of the simplest and most important forms of in-

teraction in the field of vortex dynamics, and is of both fundamental and practical significance.

As a result, a considerable number of studies have been carried out over the last few decades to

understand the physics governing vortex merger. One of the main reasons behind the increased

attention and scrutiny is that vortex merger plays a key role in the decay of two-dimensional

turbulence, wherein energy displays an inverse cascade, i.e. flows from smaller scales to larger

ones. At the same time, the filaments ensuing from the merger process are believed to play a

role in the enstrophy cascade from larger to small scales. A better understanding of the merger

mechanism would also provide useful insight into the dynamics of coherent structures, which

contain most of the kinetic energy in turbulent flows. The merger phenomenon is also a common

occurrence in separating boundary layers (Freymuth 1966), mixing layers (Winant & Browand

1974) and high Reynolds number turbulent shear layers (Brown & Roshko 1974). On the other

hand, merger and interaction of vortices find relevance in large-scale geophysical flows (Hopfin-

ger & van Heijst 1993), especially in the formation and interaction of cyclones. Apart from this,

vortex merger also finds engineering application in the context of aircraft trailing vortices and

the hazards posed by them.

Most of the studies so far have concentrated on merger of two co-rotating vortices and not

many have examined merger in the case of three or more vortices. In a turbulent flow dense

with vorticity, it is not unusual for three or more vortices to interact simultaneously. Merger

of multiple vortices could thus have an effect on the inverse energy cascade in two-dimensional

turbulence. Multiple co-rotating point vortices of equal strength arranged at equal intervals on

the circumference of a circle behave similar to the the two point vortex case in that they go

around in a circle (time period T =
2n

n− 1

π2d2

Γ
, where n is the number of vortices, Γ is the total

circulation of all vortices put together, and d is the diameter of the circle), with the exception

that they go unstable for eight or more vortices (Thomson 1883; Havelock 1932). In the case of

vortices with finite size, non-linear inviscid studies (Dritschel 1986) so far have indicated that

these vortices collapse into an annulus-like structure (Fig. 1.2a). On the other hand, some papers

(Dritschel 1986) have carried out inviscid studies which find annular vortices to go unstable to

azimuthal disturbances and split into smaller multiple vortices (Fig. 1.2b). In fact, multiple

vortex phenomena have been observed in nature in cyclones and tornadoes. Cylindrical or
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annular vortices can be viewed as the circular version of a plane parallel flow. Although the

stability of parallel flows is well understood (Kelvin-Helmholtz Instability), the stability criteria

and theorems are not directly applicable to rotating flows. There is a body of literature which

addresses the stability of annular vortices (Michalke & Timme (1967), Rotunno (1978) to name

a few), which are once again limited to inviscid studies. In the case of parallel flows, viscosity

is capable of destabilizing rather than stabilizing the flow (higher order derivatives become

important). Hence, there is a possibility of viscosity playing a non-intuitive role in the stability

of rotating fluids too. It would be interesting to see how the merger of multiple vortices, and

the instability of an annular vortex would be affected in the viscous context.

The thesis has been organized as follows. The rest of chapter 1 is dedicated to a literature

survey for vortex merger, and for stability of an annular vortex. In chapter 2, we formulate the

problem to study vortex merger. Here, we derive the vorticity streamfunction equations, and

describe the Fourier pseudo-spectral technique used to solve the equations numerically. Chapter

2 also contains some relevant introduction to Fourier series and transform. In chapter 3, we

validate the Fourier pseudo-spectral code, discuss the results from the vortex merger simula-

tions in the case of multiple vortices, and finally conclude. In chapter 4, we obtain a solution

(Generalized Lamb-Oseen vortex) of the Navier-Stokes equation, with the initial condition of

an infinitesimally thin cylindrical vortex sheet. We also go on to validate the analytical ex-

pression with results from numerical simulations. Chapter 5 contains the formulation of the

stability problem, wherein we derive the viscous and inviscid stability equations in cylindrical

co-ordinates, and prescribe the boundary conditions. This chapter also contains a description of

the Chebyshev collocation technique used to discretize the equations. In chapter 6, we validate

the 2D and 3D viscous and inviscid stability codes, and go on to discuss the results from the

2D stability analysis of an annular vortex (Step, Tanh and Generalized Lamb-Oseen vorticity

profiles). In chapter 7, we present our key findings and conclude the thesis.

1.2 Literature survey for vortex merger

One of the first studies on multiple vortices was carried out by Thomson (1883), where in,

among other interesting problems, he investigated the stability of a system consisting of n equal

straight cylindrical vortices (in other words, line vortices), arranged at equal intervals around

the circumference of a circle. He showed analytically that six was the maximum number of

vortices that can be arranged at equal intervals around the circumference of a circle, beyond

which the system goes unstable. However, he arrived at this conclusion by treating each case

of two, three, four, five, six and seven vortices individually, finding an instability in the last

case. It was Havelock (1932) who generalized the result to n vortices, where in he found six

and below to be stable, seven neutral and eight and above to go unstable. Apart from this,

he also looked at the effects of inner and outer boundaries on such systems. Ever since, there

has been a vast number of studies on the interaction of point vortices arranged in a multitude

of configurations. Although point vortices in inviscid systems are ideal cases, they have been

shown to capture most of the physics related to many problems in vortex dynamics, even those

related to turbulence. This is mainly due to the fact that the interaction of point vortices is

governed by the simple yet powerful Biot-Savart Law, which is a nonlinear relation.
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The next step was then to look at interaction of vortices with finite areas or sizes. With the

help of vortex methods for inviscid flows, Roberts & Christiansen (1972) observed the merger

of two uniform vortex patches for certain critical ratios (a/d > 0.29) between the vortex core

radius (a) and the initial vortex separation distance (d). Rossow (1977) performed similar

inviscid numerical studies to study merger in the context of vortical structures in the wake of an

aircraft. Here, he attempted to find the conditions for which the vortices would merge to form

a dispersed wake, which is less hazardous. In his computations, he found a/d > 0.26− 0.30 for

convective merger. Zabusky et al. (1979) then introduced the concept of contour dynamics for

the inviscid Euler equations, wherein the velocity at any point in the flow depends only on the

boundary of the closed contours encircling the regions of uniform vorticity. Using this technique,

Deem & Zabusky (1978), Saffman & Szeto (1980), Overman & Zabusky (1982) and Dritschel

(1985) were able to find steady configurations of non-circular co-rotating patches (also referred

to as V-States by some of them) for a/d < 0.32. Overman & Zabusky (1982) also analyzed the

perturbed rotating V-States and found that for a/d > 0.32, the co-rotating vortices approached

each other at an exponential rate and merged to reform into a single stable elliptical structure

with filaments. They attribute the cause of merger to an instability of the perturbed V-States

and hint that filaments are formed in order to conserve angular momentum. Dritschel (1985)

extended these results to configurations of multiple vortices (two and above) rotating about

a common center, and with the help of a linear stability analysis, found that the vortices may

destabilize via a new form of instability derived from boundary perturbations, which are distinct

from the displacement type instability occurring in the point vortex case previously discussed.

In his analysis, he assumed the equilibrium configurations to be symmetric about the line joining

the center of rotation to the centroid of the vortex. He also utilized the fact that the uniform

vortex boundary is a streamline in the rotating frame, or that the local velocity is tangent to the

boundary in the rotating frame. Using the same assumptions, Cerretelli & Williamson (2003a)

were able to find a new family of uniform vortices prior to the merger process in the two-vortex

case. Among this is an equilibrium configuration in which the vortices touch each other to form

a dumb-bell. However, it must be noted that the assumptions made regarding the symmetry of

the equilibrium configurations may make them impossible to achieve in reality. In a real merger

process, the major axis of the vortex tilts from the line joining the center of rotation to the

vortex centroids. Another point to note is that the studies mentioned so far have only looked

at vortices with uniform vorticity, whereas, as we know it, real vortices have non-uniform or

distributed vorticity.

Recently, there has been a lot of work on merger of vortices that have distributed vorticity.

Ehrenstein & Rossi (1999) introduced a numerical method to find inviscid equilibrium solu-

tions for co-rotating vortices with non-uniform vorticity profiles, based on computing perturbed

streamlines using Green’s function integrals. Meunier et al. (2002) adopted this technique to find

similar equilibrium solutions for distributed vorticity profiles, and in doing so, deduce a merger

criterion based on a new core radius which they term as the characteristic vorticity radius aω

defined by aω =
√
J/Γ, where J is the angular impulse or the second moment of vorticity and

Γ is circulation or the zeroth moment of vorticity of each vortex. They computed the critical

ratio based on this new vorticity radius and found aω/d ≈ 0.22, which matched reasonably well
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with experimental values for a gaussian vorticity profile. They also argued that their critical

core size showed much lesser variations for a variety of vorticity distributions than previously

used definitions (the most common one being a =
√
Area/π).

Most of the papers mentioned so far have only looked at the conditions for the onset of

merger, and haven’t addressed the physical mechanism underlying the merger phenomenon.

One of the first steps towards understanding the physical mechanism were taken by Melander

et al. (1987). Employing a co-rotating reference frame, they studied the axisymmetrization

of an isolated ellipse of uniform vorticity. They observe that filaments are formed, which are

initially placed inside a region they call as the ‘ghost vortex’ outside the inner vortex core. They

find that as a consequence of the co-rotating reference frame, this ‘ghost vortex’ region has a

sense of rotation opposite to that of the inner core, thus advecting the vorticity away from the

inner core. They argue that the filaments, although a small fraction of the total, breaks the

elliptical symmetry and is the primary cause of the axisymmetrization. In essence, they observe

a tilt in the vorticity contours with respect to the elliptical streamlines, which then leads to the

formation of filaments. They find that this axisymmetrization is an inviscid mechanism acting

on a circulation time scale, whose net effect is to reduce the aspect ratio of the ellipse. Melander

et al. (1988) looked at the physical mechanism for the merger of two co-rotating vortices and

proposed that it is the same axisymmetrization mechanism seen in the case of an ellipse, that

is responsible for the reduction in aspect ratio (reduction in separation distance) of the two-

vortex system. Essentially, it is the tilt in the vorticity contours with respect to the co-rotating

frame streamlines which causes the merger. However, they came short of determining the exact

reason for this tilt. At the same time they recognized two possible stages in merger : the ‘viscous

metastable state’ proceeding on a dissipation time scale, and the ‘convective merger state’, where

merger happens on a circulation timescale.

Following this, there have been many works that have attempted to study the physical

mechanism behind the merger phenomenon. In addition to this, viscous effects have also been

considered in the merger studies. With the help of experiments and simulations, Meunier &

Leweke (2001), Meunier & Leweke (2005) and Meunier et al. (2005) have been able to observe

three different stages in the entire merger process, where in, apart from the first two stages

described by Melander et al. (1988), they define a third stage which happens to be the diffusion

of the merged vortex. Their main finding however is a new cooperative elliptic instability for

Re > 2000 (Re = Γ/ν where Γ is circulation and ν is kinematic viscosity), where the co-

rotating vortices are three-dimensionally unstable, with a distinct phase relationship for the

instabilities in each vortex. They find an excellent agreement between experiments, theory

and computations, for the spatial structure, wavelength and growth rates of this instability.

They also find that these three-dimensional effects, in the form an elliptic short-wave instability

cause significant changes in the merging process, such as earlier merging and larger final vortex

cores. Apart from this, Meunier et al. (2005) also propose a mechanism for merger based on

the conservation of angular momentum. They argue that the formation of filaments increases

the angular momentum of the system, and in order for this to be conserved, the vortices move

closer to each other.

With the help of numerical simulations, Lé Dizès & Verga (2002) have studied the viscous
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interactions between two co-rotating vortices before the onset of merger. They vary the steepness

of the vorticity profile and the Reynolds number, and are able to identify two distinct relaxation

processes. The first one, which is an inviscid phenomenon, is a rapid adaptation of each vortex to

the strain field generated by the other vortex, and results from the fact that the initial condition

is not a solution of the Navier-Stokes equation. They find this process to be profile dependent

and have quantified it by measuring the eccentricity of the vortex core, which relaxes to a non-

zero value in an oscillating fashion. They then relate this oscillating behavior to the damped

linear (Kelvin) mode of each vortex. The second relaxation process is a slow viscous diffusion

phenomenon similar to the evolution of any non-Gaussian axisymmetrical vortex towards the

Gaussian. Apart from this, they also obtain a Re1/3 scaling for the vorticity at the central

hyperbolic point in the range of 500 < Re < 8000. However, the peak of vorticity is bounded

by its initial value, and hence, for a given (a/d), this scaling would break down for sufficiently

large Reynolds numbers.

Cerretelli & Williamson (2003b) were the next to address the mechanism responsible for

the vortex merger of two co-rotating vortices. Here, they propose that it is the antisymmetric

vorticity field (primarily associated with filaments) which causes the reduction in separation

distance between two vortices. With the help of experiments, they directly measure the structure

of the antisymmetric vorticity field, which comprises of two counter-rotating vortex pairs and

find a close agreement between the merging velocity induced by the antisymmetric field and that

measured due to the total flow field. They also propose four stages in the merger process with

an additional second diffusive stage immediately following the convective stage. Towards the

end of the convective merging stage, they find that the antisymmetric vorticity is diminished by

a symmetrization process. Here there is an increase in size of the separatrix (in the co-rotating

frame) bounding the inner region of the flow, which recaptures some of the vorticity which

originally escaped to become asymmetric vortex filaments. During this period, the induced

velocity pushing vortex centroids together becomes too weak to cause the final merger into one

structure. The final merging into one vorticity structure is achieved by a second diffusive stage

which shifts the vortex maxima together form a single vortex.

Velasco Fuentes (2005) however, finds that filamentation does not always lead to merger

and in the case of steep vorticity profiles, merger begins before filamentation takes place. He

points out a weakness in the approach taken by others, who used an Eulerian geometry in the

co-rotating frame (where the flow appears to be stationary) to explain the formation of filaments

with the help of separatrices. Since merger is an unsteady phenomenon, such a system does not

exist. Instead, by analyzing the Lagrangian flow geometry using a dynamical systems approach,

he finds that filamentation occurs when the stable manifold of a hyperbolic trajectory enters

the vortex. In effect, he recognizes the importance of filamentation in merger, but does not

find it to be responsible for the onset of vortex merger. Huang (2005) too analyzes the flow in

terms of Lagrangian flow structures, and shows that a “sheet-like structure” emanating from

the opposite vortex, which includes both filament and exchange band fluid (defined by Melander

et al. (1988) as the band immediately surrounding the inner vortex cores), is responsible for the

induced merging velocity. So far, we have described papers where in it has been established

that the primary reason for merger is the antisymmetric vorticity caused by tilt in the vorticity
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Figure 1.3: Non-dimensional separation distance b∗ vs non-dimensional time t∗ indicating the
two-vortex merger as a four stage process.

contours with respect to the line joining the vortex centers. However, the exact reason for this

tilt had not been explained.

Brandt & Nomura (2006) determine the relative contributions of filament and exchange

band fluid to the reduction in the separation distance, and find the latter to be dominant.

First, the inner circulation (cores and exchange band) and outer recirculation filaments regions

are distinguished by the sign of vorticity ω (outer recirculation is associated with differential

rotation) in the co-rotating frame. Next, the cores and exchange band are distinguished by

considering the second invariant of the velocity gradient tensor in the co-rotating frame, Π =(
ω2 − S2

)
/2, where S is the strain rate tensor.Therefore, Π > 0 represents rotation-dominated

regions, which effectively characterizes the cores, and Π < 0 represents strain-dominated regions,

which characterizes the exchange band. They then calcualte the velocity induced by these regions

using the Biot-Savart law, and find the exchange band to be the main contributor (although

filaments also contribute). One of the main findings in their paper is reason for the tilt in

vorticity contours, which they attribute to the interaction of strain rate and vorticity gradient

near the center of rotation. This then leads to the entrainment of core fluid into the exchange

band and the formation of filaments.

We now paint the overall picture of the symmetric vortex merger of two co-rotating vortices

in a homogeneous fluid having an core radius a and centers initially separated by a distance d.

The entire merger process can be divided into four stages as described by Cerretelli & Williamson

(2003b) (Fig. 1.3, also see Figs. 3.4 and 3.6 from chapter 3).

The first stage is a diffusive stage, acting on a diffusive time scale, and is present if the

initial (a/d) < (a/d)crit. Here the vortices grow in size by viscous diffusion, while they rotate

around each other in a circle with a constant separation distance (similar to behavior of two

point vortices). Apart from this, the strain field of the two-vortex system causes the vortices
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to deform and align themselves radially. Towards the end of this stage, as the vortices grow in

size, they also begin to develop a slight tilt to the line joining their centers. This is once again

caused by the strain field of the vortices.

The second (convective) stage is the key stage in the merger process, where most of the

reduction in separation distance happens. At the end of the first stage, the (a/d) reaches a

critical (a/d)crit (this critical ratio depends on the vorticity profile) when the deformation and

the tilt is prominent enough to causes the vorticity to enter the exchange band fluid. At this

point the vorticity gets entrained into the exchange band and the outer recirculation region

(partly through diffusion), leading to the formation of an antisymmetric vorticity field. Here,

the differential rotation of the outer recirculation region causes the formation of filaments. This

antisymmetric vorticity field, consisting of exchange band fluid and filaments, in turn induces a

velocity which pushes the vortices closer towards each other (the exchange band is found to be the

dominant contributor in the two-vortex case). Towards the end of this stage, the antisymmetric

vorticity is diminished by a symmetrization process (discussed earlier), and hence is no longer

able to push the vortices together. Also, the second (convective) stage, which corresponds to

the motion of the vortex centroids towards each other, is a process which is almost independent

of viscosity, thus proceeding on a convective time scale. One should note that in the inviscid

case, the entire merger comprises of only one convective stage.

The third stage, also known as the ‘second diffusive stage’, is one where in the vortex maxima

are shifted together by viscous diffusion. Although few papers have looked at the Re scaling in

this stage, not much attention has been devoted to this stage so far and is still not very well

understood.

The fourth and final stage in the merger process involves axisymmetrization and growth of

the merged vortex by viscous diffusion. This is also accompanied by the smoothening out of the

filaments by viscosity.

Apart from the various works described above on symmetric merger of two co-rotating vor-

tices in homogeneous fluids, there are also many papers which have looked at asymmetric merger

and also considered the effects of rotation, stratification, etc. However, not many have stud-

ied the merger of multiple vortices (> 2). One paper worth mentioning though is Dritschel

(1986), wherein, as a continuation of the linear analysis performed in the previously mentioned

Dritschel (1985), he goes on to study the nonlinear evolution of perturbed rotating equilibrium

configurations of N uniform vorticity patches. Viewing merger as an instability, he finds non-

linear stability whenever the configurations are linearly stable. In the case of linearly unstable

equilibria, he finds that large-m (m is the azimuthal mode) symmetric neutral disturbances are

the only ones that resist instability. The other disturbances eventually cause the collapse of the

vortices into a central annular region surrounded by substantial streamers of vorticity except for

the clean merger of two vortices into a near 6:1 ellipse. He attributed this to the close proximity

of two vortices to the ellipse on the energy diagram. He also finds that three and four vortices

do not merge cleanly, and believes this to be a consequence of their energy curves being distant

from the energy curves of other equilibria of compatible symmetry. These studies are however

limited to inviscid analyses and uniform vorticity patches.
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1.3 Literature survey for stability of annular vortex

The first studies on the stability of cylindrical vortices were in the context of flow between

concentric cylinders. Here, for zero axial flow, Rayleigh (1880) found a necessary condition for

instability of swirling flows, that the vorticity shouldn’t be a monotonically varying function of

the radius r. In other words, the vorticity must have an extremum value inside the flow region

for an instability to occur. This condition for instability is equivalent to Rayleigh’s inflection

point criterion for parallel flows. The inviscid stability problem for axisymmetric disturbances

in the case of zero axial flow was then investigated by Rayleigh (1917), wherein he showed that

a necessary and sufficient condition for stability is that the square of the circulation, (rV )2

(V being the swirl velocity), should nowhere decrease as the radius r increases. As Rayleigh

suggested, this problem has a strong analogy with the stability of a density-stratified fluid at rest,

under the action of gravity. Restricting the analysis to axisymmetric perturbations, one may

ignore the rotation and think of the fluid as being subject to a radially outward ‘gravitational

field’, and having a ‘density’ which is determined by the distribution of swirl velocity V(r). In

this interpretation, Rayleigh’s criterion is simply the condition that for stability, the ‘density’

should not decrease ‘downward’, i.e. outward. Here, the kinetic energy associated with the swirl

velocity is analogous to the ‘potential energy of gravity ’.

Chandrasekhar (1961)[§78b] went one step further by considering the stability of inviscid

flows with both axial and swirl components of velocity, and concluded that stability is determined

by Rayleigh’s criterion alone (based on swirl component), without any dependence on the axial

component. However, Howard & Gupta (1962) believed this result to be physically implausible

and incorrect. They argued that the swirl component has a stabilizing influence if Rayleigh’s

criterion is satisfied and is capable of producing complete stability, but only if it is sufficiently

strong in comparison to the shear in the axial component. In fact, they picked up a hint from

Rayleigh’s analogy between swirling flows and density stratified fluids, and found that in the

presence of an axial flow, the effect of swirl component is analogous to the effect of density

stratification (in the presence of gravity) on a parallel shear flow. Just like in the stratified

parallel shear flow wherein a statically stable density stratification can have a stabilizing influence

on the axial shear (the stability being governed by the Richardson number, with complete

stability insured if local Richardson exceeds 1/4), they have defined an analogous Richardson

number and a sufficient condition for stability (Ri > 1/4). Here, Ri = Φ/W ′2, where base

flow is given by U = V (r) θ̂ + W (r) k̂, and Φ = r−3d/dr
[
r2V 2

]
. They proceed to show that

the complex wave speed for any unstable mode must lie in a certain semicircle, a result also

known for stratified parallel shear flow. Their result however, is once again applicable only to

axisymmetric perturbations. Although they tried their hand at non-axisymmetric perturbations,

they failed to reach any concrete conclusions beyond the already known Rayleigh Criterion.

Michalke & Timme (1967) then investigated the stability of a two-dimensional cylindrical

vortex in the context of the breakdown phenomenon of vortices observed in the two-dimensional

free boundary layer. With the help of linear inviscid stability theory of rotating fluids, they

first looked at the stability of an infinitely thin cylindrical vortex sheet (cylindrical equivalent

of a planar vortex sheet), and found it to go unstable for non-axisymmetric perturbations (m ≥
1, where m is the azimuthal wave number and integer valued for physical reasons), although
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Rayleigh’s criterion predicted stability. Thus, they showed that Rayleigh’s criterion is applicable

only to axisymmetric disturbances. Next, they studied the stability of a cylindrical vortex of

finite thickness (they first considered a step vorticity profile), and found stability for m = 1

and m = 2 disturbances, with m ≥ 3 going unstable. Also, they found that the finite thickness

placed an upper cut off for m beyond which the flow is once again stable (thinner the cylindrical

vortex, higher the cut off m, which is expected). For m = 1 and 2, there was an inconsistency in

the limit of thickness a→ 0, their result didn’t match with that of the infinitely thin cylindrical

vortex sheet. Apart from this, they also looked at a continuous vorticity profile for which the

Rayleigh criterion predicted stability and found similar results to that of the step profile (note

that unlike the result for the step profile, they found m = 2 disturbance to be now unstable).

In addition to this, they also found two-dimensional disturbances to be more unstable than the

corresponding three dimensional ones for the cylindrical vortex sheet as well as the continuous

vorticity profile, similar to a result well-known for parallel shear flows.

Rotunno (1978) revisited the problem of inviscid stability of an infinitely thin cylindrical

vortex and corrected the inconsistency in Michalke & Timme (1967), in which the stability of

m = 1 and m = 2 modes were uncertain. In fact, he found the m = 1 and 2 disturbances to

be stable, and the rest of the modes from then on to be unstable. In other words, except the

m = 1 and 2 modes, the results are analogous to those for the stability of plane parallel flows

(where in all wavelengths are unstable, the smallest waves growing most rapidly). Motivated

by the occurrence of multiple vortices, especially in the context of tornadoes, where a single

tornado splits into two smaller ones, he went on to further investigate stability of the cylindrical

vortex sheet by considering a central downdraft surrounded by a uniform updraft, and found

the m = 1 and 2 modes to be destabilized in the presence of a non-zero vertical wavenumber k.

He was able to support his result by the fact that double vortices have been observed in nature

(tornadoes) as intertwining spirals i.e they have a vertical structure.

Leibovich & Stewartson (1983) considered the inviscid instability of columnar vortex flows

in unbounded domains to three-dimensional perturbations, and formulated a sufficient condition

for the instability of columnar vortices as

V
dΩ

dr

[
dΩ

dr

dΓ

dr
+

(
dW

dr

)2
]
< 0 , (1.1)

where V (r) is the swirl velocity, W (r) is the axial velocity, Ω = V/r is the angular velocity

and Γ = rV is the circulation. In the large m limit, they were able to develop the solution in

an asymptotic expansion, which they then compared with numerical solutions for the case of a

trailing vortex, finding a reasonable match for the most unstable wave (for values of m as low

as 3, with accuracy increasing with increasing m). However, their theory is applicable only in

the large m limit, and there is also no guarantee that the maximum growth rate should occur

in that limit.

The papers mentioned so far have studied inviscid instability in case of vortices with one

sign only (finite circulation). Gent & McWilliams (1986) studied the linear, normal mode

instability of barotropic circular vortices with zero circulation (vorticity changes sign) in the

f-plane quasi-geostrophic equations. They argued that mean flows with finite circulation are less
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relevant physically because they decay very slowly with increasing radius and have unbounded

kinetic energy in an infinite domain. In contrast, mean flows with zero circulation decay much

quicker with radius and have finite kinetic energy, so that they can be considered as isolated

structures. A new finding of theirs is that the fastest growing perturbation is often three-

dimensional, having a finite vertical scale, but may also be two-dimensional, having no vertical

structure (which is in contrast to the result for parallel shear flows, where the fastest growing

perturbation is always an external instability, as predicted by the the Squire’s theorem). This

they found was dependent on the steepness of the streamfunction profiles (they worked with the

vorticity streamfunction formulation), with instability being internal for less steep profiles and

external for more steep streamfunction profiles. However, their condition was not a strict proof

of the type of instability but just a guide identified by posteriori categorization of particular

streamfunction profiles studied. Flierl (1988) then investigated the instabilities of barotropic

and baroclinic, quasi-geostrophic, f-plane, circular vortices using a linearized contour dynamics

model. He modeled the vortex using a circular region of horizontally uniform potential vorticity

surrounded by an annulus of uniform, but different, potential vorticity. A key finding in his

work is that in the case barotropic perturbations (two-dimensional), the m = 2 elliptic mode

grows only when there is a change in the sign of vorticity (opposite sign vorticity for inner and

outer cores) and the right thickness of annular region. This was not discovered by Michalke &

Timme (1967) as they limited themselves to vorticity of one sign only. In the case of baroclinic

perturbations (three-dimensional), the m = 2 elliptic mode was found to go unstable for the

single signed vorticity case itself. Apart from this, he also found the barotropic eddy to become

unstable in previously stable regimes to the m = 1 perturbations for the case with vortices of

opposite signs in inner core and annular regions. In one of the more recent works, Terwey &

Montgomery (2002) derived a necessary and sufficient criterion for m = 2 mode instability by

considering a piecewise uniform three region vortex model, and confirmed the result obtained

by Flierl (1988), which requires a change in sign of vorticity between the inner core and outer

annulus in addition to an appropriate annulus thickness.

Using contour dynamics, Dritschel (1986) examined the behavior of small perturbations to

an annular region of vorticity in an inviscid system. Here, he added finite-amplitude eigenmodes

from the linear stability analysis to the annulus, and integrated the system in time for a variety

of basic-states and disturbances. He determined that a linearly stable annular vortex is stable

to sufficiently small disturbances. If the basic state is linearly unstable to both even and odd

disturbances, only neutral eigenmodes with m 6= 2 are stable; also m = 2 can generate the m = 4

unstable eigenmode via wave-wave interactions (the reverse is not true). For thicker annuli in

which only m = 3 is unstable, it takes a disturbance with a 3-fold component to cause instability.

Linearly marginal, unstable and stable disturbances always lead to nonlinear instability. As for

the character of the evolution, nonlinearly unstable disturbances tend to break apart the ring

of vorticity. Of course, the ring does not completely break into multiple vortices (by Kelvin’s

circulation theorem in inviscid systems), but just forms distinct centers of vorticity. With

the help of a pseudo-spectral algorithm solving the barotropic non-divergent vorticity model,

Schubert et al. (1999) found a ring of elevated vorticity perturbed with azimuthally broad-banded

initial conditions to go unstable and form multiple vortices, which undergo further rearrangement
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to a near monopolar circular vortex. Thus there have been some studies confirming that multiple

vortex phenomena observed in nature are strongly related to instabilities of annular vortices.

Apart from this, there are quite a few papers which study the instabilities in the context of

hurricanes and tornadoes. They incorporate many more effects and are far more complicated,

and although they are able to capture multiple vortex phenomena, they do not isolate the exact

physics behind the phenomenon of multiple vortex merger. In addition to this, most of the

studies so far have mainly looked at the stability of piecewise constant vorticity profiles which

are not solutions to the Navier-Stokes equations. Another point to note is that none of them

have performed a viscous linear stability analysis of an annular vortex. As observed in plane

parallel flows, viscous effects can lead to an instability. In fact, this has already been observed

in studies of trailing vortices.



Chapter 2

Vortex Merger: Problem formulation

and numerical technique

2.1 Scope

In this chapter, we will first formulate the problem to study the merger of vortices. We numer-

ically solve the vorticity equation for which we use a pseudo-spectral (Fourier bases) technique

for spatial discretization and an explicit Runge-Kutta fourth order technique for temporal dis-

cretization. The chapter also contains some relevant introduction to Fourier series and transform.

2.2 Formulation and numerical technique

We first derive the equation governing the vorticity with viscous effects in a fixed frame of

reference, assuming that the flow is barotropic (fluid density is constant). To begin with, we

write down the set of continuity and Navier-Stokes equations in vector form in the cartesian

co-ordinate system :

∇ · u = 0 , (2.1)

Du

Dt
= −1

ρ
∇p+∇Π + ν∇2u , (2.2)

where

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂, ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

D

Dt
=

∂

∂t
+ u · ∇ , (2.3)

In the above expressions,
D

Dt
is the material derivative, u is the velocity field, p is pressure, ρ is

density, ν is the absolute viscosity and Π is the body force potential.

Vorticity ω is defined as

ω = ∇× u . (2.4)

Taking curl of Eq. 2.1 and noting that the curl of divergence vanishes, we get

∇ · ω = 0 , (2.5)

Taking curl of Eq. 2.2, and using the identity

u · ∇u = (∇× u)× u +
1

2
∇ (u · u) = ω × u +

1

2
∇q2 , (2.6)

13
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and noting that the curl of a divergence vanishes, we get

∂ω

∂t
+∇× (ω × u) = ν∇2ω . (2.7)

We can rewrite the second term in Eq. 2.7 with the help of Eqs. 2.1 and 2.5 as

∇× (ω × u) = (u · ∇)ω − (ω · ∇)u , (2.8)

and finally we are left with

Dω

Dt
= (ω · ∇)u + ν∇2ω . (2.9)

The term (ω · ∇)u represents the rate of change of vorticity due to stretching and tilting of

vortex lines. We assume that the flow is two-dimensional. In other words, there is no variation

of ux and uy velocities and other quantities with z and uz = 0. The stretching and tilting term

(ω · ∇)u vanishes under this assumption and we are left with

Dω

Dt
= ν∇2ω . (2.10)

We can also write velocity in terms of a scalar streamfunction ψ.

u = −k̂ ×∇ψ, u = uxî+ uy ĵ , (2.11)

or

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.12)

Substituting Eq. 2.12 in Eq. 2.4, we get

∇2ψ = −ω, ∇2 =
∂2

∂x2
+

∂2

∂y2
(2.13)

where ω is the vertical component of vorticity, perpendicular to the plane of the flow.

We are finally left with the following coupled system of equations, which will be referred to as

the vorticity-streamfunction equations.(
∂

∂t
+
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
ω = ν∇2ω , (2.14)

∇2ψ = −ω . (2.15)

We numerically solve this system by adopting a pseudo-spectral (Fourier) technique for spatial

discretization and an explicit Runge-Kutta fourth order technique for temporal discretization.
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2.3 Spatial discretization : Pseudo-spectral

Now, we look at some of the important concepts and formulae related to the Fourier pseudo-

spectral technique. In this entire section, we explain the concepts in only one dimension. The

generalization to more than one dimension is straight forward. We start off with the continuous

Fourier expansion :

The Fourier coefficients of a complex-valued function u defined on (0, 2π) can be written as

ûk =
1

2π

∫ 2π

0
u (x) e−ikx dx, k = 0,±1,±2, . . . . (2.16)

The orthogonality relation for the set of Fourier basis functions φk (x) = eikx over the interval

(0, 2π) is given by

∫ 2π

0
φk (x)φl (x) dx = 2πδkl =

0 if k 6= l ,

2π if k = l .
(2.17)

The Fourier series Su and the truncated Fourier series PNu can be written as

Su =

k=∞∑
k=−∞

ûkφk, PNu (x) =

N/2−1∑
k=N/2

ûke
ikx, as N →∞ . (2.18)

The error between u and the truncated expression is termed as the truncation error. Given that

u is continuous, periodic and bounded on [0, 2π], the Fourier series Su is uniformly convergent

to u and we can write

u =
k=∞∑
k=−∞

ûkφk . (2.19)

The Fourier coefficients related to the Fourier cosine and Fourier sine transform of u can be

written as

âk =
1

2π

∫ 2π

0
u (x) cos kx dx, k = 0,±1,±2, . . . (2.20)

and

b̂k =
1

2π

∫ 2π

0
u (x) sin kx dx, k = 0,±1,±2, . . . . (2.21)

From Eqs. 2.16, 2.20 and 2.21, we get

ûk = âk − ib̂k . (2.22)

When u is real, âk and b̂k are real, and û−k = ûk.

Although the standard Fourier treatment looks elegant, there are many practical difficulties

associated with its application. For example, the Fourier coefficients need not be known in a
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closed form. Also, simple non-linearities can lead to complications. Hence, we use Discrete

Fourier expansions to overcome these difficulties :

For an integer N > 0, consider the even set of points for collocation

xj =
2πj

N
, j = 0, 1, . . . , N − 1 . (2.23)

The discrete Fourier coefficients of a complex-valued function u in [0, 2π] with respect to these

points are

ũk =
1

N

N−1∑
j=0

u (xj) e
−ikxj , k = −N/2, . . . , N/2− 1 . (2.24)

The orthogonality relation is

1

N

N−1∑
j=0

e−ipxj =

1 if p = Nm, m = 0,±1,±2, . . . ,

0 otherwise .
(2.25)

Thus, we can write

u (xj) =

N/2−1∑
k=−N/2

ũke
ikxj , j = 0, . . . , N − 1 . (2.26)

2.3.1 Differentiation

The techniques involved in differentiation in spectral methods depends upon whether one is

working in the transform space or in the physical space. Here, we discuss only the method

involved in differentiation in transform space due to its simplicity. To calculate the derivative

in the physical space, one has to simply transform into the Fourier space, multiply each Fourier

coefficient by an imaginary number, and finally transform back to physical space. If the Fourier

series of a function u is given by

u =
k=∞∑
k=−∞

ûkφk , (2.27)

then the Fourier derivative of u is given by

u′ =

∞∑
k=−∞

ikûkφk . (2.28)

In the discrete form, called the Fourier interpolation derivative DNu at the grid points xj (based

on even number of points according to Eq. 2.23) are given by,

(DNu)j =

N/2−1∑
k=−N/2

ũ
(1)
k e2ikjπ/N , j = 0, 1, . . . , N − 1 , (2.29)
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where

ũ
(1)
k = ikũk =

ik

N

N−1∑
l=0

u (xl) e
−2iklπ/N , k = −N/2, . . . , N/2− 1 . (2.30)

2.3.2 Aliasing

The discrete Fourier coefficients can be expressed in terms of the exact Fourier coefficients of u

given that the exact Fourier series converges at the nodal points given in Eq. 2.23 as

ũk = ûk +
∞∑

m=−∞
m6=0

ûk+Nm, k = −N/2, . . . , N/2− 1 . (2.31)

This shows that the k-th mode of the interpolant of u depends on the k-th mode as well as all

the modes of u that alias the k-th mode on the grid. The (k +Nm)-th wavenumber aliases the

k-th wavenumber on the grid since φk+Nm (xj) = φk (xj), making them indistinguishable at the

nodes. Fig. 2.1 illustrates this phenomenon, wherein three sine waves with frequencies k = 10,

2 and −6 are superimposed with nine grid-point values of the function. It is evident that by

using a course grid, both k = 10 and k = −6 waves are misinterpreted as a k = 2 wave. This

phenomenon is called aliasing and is responsible for the aliasing error between the interpolated

polynomial and the truncated Fourier series.

k=10

k=2

k=−6

Figure 2.1: Three sine waves having the same k = 2 interpretation on a nine-point grid. The
filled circles denote the nodes, and the solid curves denote the actual sine waves. By using a
course grid, both k = 10 and k = −6 waves are misinterpreted as a k = 2 wave (dashed curve).
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2.3.3 Convolution sum, the pseudo-spectral method and alias-

ing associated with it

Consider the following product

c (x) = u (x) v (x) . (2.32)

Writing the infinite series expansion

ĉk =
∑

m+n=k

ûmv̂n , (2.33)

where u (x) and v (x) can be expressed as an infinite Fourier series as in Eq. 2.19, and the

coefficients ĉk can be written as in Eq. 2.16. If u and v are finite Fourier series of degree ≤ N/2,

then Eq. 2.33 can be rewritten as

ĉk =
∑

m+n=k
|m|,|n|≤N/2

ûmv̂n, |k| ≤ N/2 . (2.34)

This expression takesO
(
N2
)

operations in one dimension and is costly especially when compared

to finite-difference algorithms which take O (N) operations. To avoid this, Orszag suggested the

pseudo-spectral technique of taking the inverse DFT (Discrete Fourier Transform) to transform

ûm and v̂n to the physical space, perform the multiplication like in Eq. 2.32, and transform back

to Fourier space using the DFT to get the final expression. This greatly reduces the cost to

O (N log2N) operations. However this method leads to an aliasing error as shown below.

Consider

cj = ujvj , j = 0, 1, . . . , N − 1 , (2.35)

where uj and vj are the discrete Fourier series defined similar to Eq. 2.26, and c̃k are the discrete

Fourier coefficients defined similar to Eq. 2.24. Using the orthogonality relation in Eq. 2.25, we

get

c̃k =
∑

m+n=k

ûmv̂n +
∑

m+n=k±N
ûmv̂n = ĉk +

∑
m+n=k±N

ûmv̂n . (2.36)

The second term on the RHS is the aliasing error as previously explained.

2.3.4 De-aliasing by Zero Padding or Truncation

First consider M instead of N points. We will show here that using M ≥ 3N/2 will be able to

de-alias. Assuming the following for the discrete transform :

yj =
2πj

M
, ūj =

M/2−1∑
k=−M/2

ũke
ikyj , v̄j =

M/2−1∑
k=−M/2

ũke
ikyj , c̄j = ūj v̄j , (2.37)
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for j = 0, 1, . . . ,M − 1, where

ǔk =

ûk, |k| ≤ N/2 ,0 otherwise .
(2.38)

Putting it into words, the coefficients ǔk are nothing but the coefficients ûk padded with zeros

for the additional wavenumbers. Now, we can write

čk =
1

M

M−1∑
j=0

c̄je
−ikyj , k = −M/2, . . . ,M/2− 1 , (2.39)

giving

čk =
∑

m+n=k

ǔmv̌n +
∑

m+n=k±M
ǔm .v̌n (2.40)

We now choose M so that the second term on the RHS vanishes for |k| ≤ N/2. Noting that ǔm

and ǔn are zero for |m| > N/2, we can use

−N/2−N/2 ≤ N/2− 1−M, or M ≥ 3N/2− 1 . (2.41)

We thus obtain the de-aliased coefficients

ĉk = čk, k = −N/2, . . . , N/2− 1 . (2.42)

This de-aliasing technique is referred to as the 3/2-rule and requires FFT’s that can handle

multiples of 3 (power of 3). If only a prime factor 2 FFT is available, then this technique can

be implemented by choosing M as the smallest power of 2 that satisfies Eq. 2.41. Then, the

technique is known as truncation, also known as the 2/3 rule. For more information on the

Fourier pseudo-spectral technique, refer Canuto et al. (2006) and Boyd (2001).

2.3.5 Application of Fourier bases to our system

We consider a domain that is doubly periodic. We discretize it into an even number of points

in both x and y directions, and take the Fourier transform in space of Eq. set 2.14. We define

the expressions for 2D DFT and inverse DFT respectively as

ω̂ (m,n, t) =
1

M

1

N

M−1∑
j=0

N−1∑
k=0

ω (xj , yk, t) e
−i(mxj+nyk) , (2.43)

m = −M/2, . . . ,M/2− 1, n = −N/2, . . . , N/2− 1 ,

ω (xj , yk, t) =

M/2−1∑
m=−M/2

N/2−1∑
n=−N/2

ω̂ (m,n, t) ei(mxj+nyk) , (2.44)

j = 0, . . . ,M − 1, k = 0, . . . , N − 1 ,
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where the collocation points are given by

xj =
2πj

M
, j = 0, . . . ,M − 1 and yk =

2πk

N
, k = 0, . . . , N − 1 . (2.45)

Note that the collocation points and wavenumbers defined above and previously are for a periodic

domain of length 2π. The points and wavenumbers corresponding to a two dimensional periodic

domain of arbitrary length Lx and Ly are given by

xj =
Lxj

M
, j = 0, . . . ,M − 1 and yk =

Lyk

N
, k = 0, . . . , N − 1 , (2.46)

m = −(M/2) ∗ dm, . . . , (M/2− 1) ∗ dm, dm = 2π/Lx,

n = −(N/2) ∗ dn, . . . , (N/2− 1) ∗ dn, dn = 2π/Ly . (2.47)

Taking the Fourier transform of Eqs. 2.14 and using some of the basic properties of differentiation

described earlier, we get

dω̂

dt
+ Ĉ1− Ĉ2 = −νl2ω̂ , (2.48)

ψ̂ =
ω̂

l2
, l 6= 0 , (2.49)

where l2 = m2 + n2, and Ĉ1 and Ĉ2 are the convolution sums given by

Ĉ1 =
∂̂ψ

∂y

∂̂ω

∂x
, Ĉ2 =

∂̂ψ

∂x

∂̂ω

∂y
. (2.50)

We have used the 3/2 de-aliasing technique described earlier, in evaluating the convolution.

Also, for l = 0, we set ψ̂ = 0 (mean of ψ is equal to zero).

2.4 Temporal discretization

We have used an explicit Runge-Kutta fourth order time-stepping technique for the temporal

discretization. We perform the time stepping while still in the Fourier space. We move back

to the physical space only when computing the convolution using the 3/2 de-aliased pseudo-

spectral method. The steps involved are given below:

Step 1 :

ω̂1 = ω̂0 +
∆t

2

(
−νl2ω̂0 − Ĉ10 + Ĉ20

)
, (2.51)

Step 2 :

ω̂2 = ω̂0 +
∆t

2

(
−νl2ω̂1 − Ĉ11 + Ĉ21

)
, (2.52)
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Step 3 :

ω̂3 = ω̂0 + ∆t
(
−νl2ω̂2 − Ĉ12 + Ĉ22

)
, (2.53)

Step 4 :

ω̂4 = ω̂0 +
∆t

6

{(
−νl2ω̂0 − Ĉ10 + Ĉ20

)
+ 2

(
−νl2ω̂1 − Ĉ11 + Ĉ21

)
+2
(
−νl2ω̂2 − Ĉ12 + Ĉ22

)
+
(
−νl2ω̂3 − Ĉ13 + Ĉ23

)}
, (2.54)

where ∆t is the time-step and

ψ̂n =
ω̂n
l2
, Ĉ1n =

∂̂ψn
∂y

∂̂ωn
∂x

, Ĉ2n =
∂̂ψn
∂x

∂̂ωn
∂y

. (2.55)

Finally, we take the inverse DFT of Eq. 2.54 to get the value of the vorticity and streamfunction

at each grid point.





Chapter 3

Vortex Merger: Validation and

Results

3.1 Scope

This chapter contains the validation of the pseudo-spectral code and the results from the vortex

merger simulations in the case of multiple vortices. To begin with, we define the initial conditions

and the various parameters involved in the simulations. We go on to discuss our main findings

and then conclude.

3.2 Setting up the problem

(a) n=3

d

a

(b) n=4 (c) n=5

(d) n=6 (e) n=7 (f) n=8

Figure 3.1: A schematic of n equal co-rotating vortices arranged at equal intervals on the
circumference of a circle of radius R and diameter d, on the vertices of regular polygons. Each
vortex has circulation Γ/n.

Here we look at the initial conditions, various parameters and non-dimensional numbers in

23
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our merger simulations. To begin with, we consider n equal co-rotating vortices (n varying from

2 to 8), arranged at equal intervals on the circumference of a circle of radius R and diameter d,

on the vertices of regular polygons (Fig. 3.1). Each of these vortices have a gaussian vorticity

profile given by ω = ω0e
−r2/a2 , and are of equal strength or circulation Γ/n. Here, a is the size

of a vortex core (a2 = 〈r2ω〉/〈ω〉) and ω0 is the maximum vorticity, given by ω0 = Γ/
(
nπa2

)
.

The total circulation in the system is given by Γ and kinematic viscosity is represented by ν.

In all our simulations, we keep the initial (a/d) constant, where a is the characteristic core size

and d is the diameter of the circle on which the vortices lie. From now on, we refer to this as

(a/d)i.

We make comparisons between systems with different number of vortices by first keeping the

(a/d)i constant. To make fair comparisons, we follow two approaches: we either fix the total

circulation or the energy. Hence, we define the Reynolds number in the following two ways.

• In the first case, we keep the total initial circulation Γ constant across the set of simulations.

The Reynolds number is then given by

ReΓ =
Γ

ν
. (3.1)

Here, time is non-dimensionalized by a convective time scale which is the time period of

rotation of point vortices of the same strength, given by

TΓ =
8n

n− 1

π2R2

Γ
. (3.2)

• In the second case, we keep the total initial energy constant across the set of simulations.

The energy calculations are based on the root mean square velocity urms and a cut off

diameter d0, which are then used as the velocity and length scale respectively in the

Reynolds number given by

ReEnergy =
urmsd0

ν
. (3.3)

Here, the time scale chosen for non-dimensionalization is given by

TEnergy =
d0

urms
. (3.4)

The Reynolds number defined in either way is kept constant across a given set of simulations.

We track each vortex individually by defining a separation distance b which is the distance

between the vortex maximum and the center of the circle on which the vortices were initially

placed. We non-dimensionalize this by the initial separation distance b0 at t = 0.

All the results presented here are for a domain size of 2π × 2π. The diameter of the circle

on which the vortices lie is chosen such that the vortices do not feel the effect of the ghost

vortices on account of the periodic boundary condition due to the Fourier basis. By varying the

diameter d, keeping the length L of the domain constant, we conducted a domain independence
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study and found d = 0.5 to be a safe choice (this gives L/d = 12.56637). We the choose the grid

such that we are able the capture the Kolomogorov length scale based on the Reynolds number.

The grids that we have tried are 512× 512, 1024× 1024 and 2048× 2048.

3.3 Validation and results

We performed the first validation of the code by giving the initial condition as a single gaussian

vortex at the center of the domain, and let the vortex diffuse. We compared the time evolution

of the vorticity profile from the simulation with that of the well established analytical result for

a gaussian or Lamb-Oseen vortex given by

ω =
Γo

4πνt
e
−
(
r2

4νt

)
, (3.5)

where Γo is total circulation, ν is the viscosity and t is the time. We choose νt = 0.01, Γo = 1,

and let the vortex evolve. Fig. 3.2 shows the comparison of the numerical solution with the

analytical one and we can immediately see that it is a good match. One must however note that

diffusion of an axis-symmetric gaussian vortex is a linear phenomenon, and thus, this validation

only proves that the code can capture linear effects.

Next, to check if non-linear effects can be captured, we perform the next validation of

our pseudo-spectral code with Brandt & Nomura (2006) and Brandt & Nomura (2007), for the

merger of two vortices. Fig. 3.3 shows the comparison of the non-dimensional separation dis-

tance b∗ vs the non-dimensional time t∗ at two different Reynolds numbers and it can be seen

that there is a good match. It must be noted that the data available from their work is incom-

plete and doesn’t resolve completely the third and final stages of merger, whereas our result is

presented for all four stages and is able to accurately capture and resolve them.

We next move on to the results of our merger simulations. In order to simplify the understand-

ing of the merger phenomenon, we first look at the Figs. 3.4 and 3.5 which depict separatrices

in the co-rotating frame for point vortices placed at equal intervals on the circumference of a

circle. It can be seen that the separatrices divide the fluid flow into distinct regions. We define

the regions as follows: (1) central (not present for two vortices), (2) inner core, (3) exchange

band, (4) outer recirculating and (5) outer flow. Note that the outer recirculating region has

fluid rotating in a sense opposite to the the inner core and exchange band regions. Despite the

name, this region has no net circulation. Note that only region 2 contains vorticity.

We now move on to discuss viscous simulations with patch vortices, and see that the re-

gions discussed above are no longer distinct, but still retain some identity. Vorticity can now

leak preferentially along what used to be separatrices in the point vortex case. Fig. 3.6 shows the

viscous evolution of two gaussian vortices with (a/d)i = 0.1 and ReΓ = 4000. During the first

stage of merger, the vortices first grow in size by viscous diffusion. It can also be seen that each

vortex deforms and elongates slightly, which is due to the strain field produced by the others.

Towards the end of this stage (when (a/d) is close to the (a/d)crit), there is a development of
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Figure 3.2: Validation of pseudo-spectral code (green line) with analytical result (black line),
for an initial condition (νt = 0.01, Γo = 1) of a gaussian or a Lamb-Oseen vortex (line vortex at
t = 0).
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Figure 3.3: Validation of pseudo-spectral code with Brandt & Nomura (2006) (Re =
2000, (a/d)i = 0.177) and Brandt & Nomura (2007) (Re = 10000, (a/d)i = 0.157), Non-
dimensional separation distance b∗ vs non-dimensional time t∗.
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Figure 3.4: Co-rotating frame streamfunction for 2 point vortices. The regions are distinguished
as follows: (2) inner core, (3) exchange band, (4) outer recirculating and (5) outer flow.
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Figure 3.5: Co-rotating frame streamfunction for point vortices arranged at equal intervals
around the circumference of a circle. The regions are distinguished as follows: (1) central (not
present for 2 vortices), (2) inner core, (3) exchange band, (4) outer recirculating and (5) outer
flow.
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Figure 3.6: Viscous evolution of 2 gaussian vortices with (a/d)i = 0.1 and ReΓ = 4000. Observe
the deformation of vortices and tilt with respect to the line joining the centers.
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a slight tilt of the major axes of the deformed vortices with the line joining the the centroids

to the center of rotation, once again due to the strain field. At one stage the critical (a/d) is

reached, when the tilt is more pronounced and this places vorticity in the exchange band and

outer recirculating regions (filaments) leading to the formation of antisymmetric ω. At this

point the antisymmetric vorticity induces a velocity which is then responsible for pushing the

vortices together, which occurs on a convective or circulation time scale. Also, it becomes very

evident from Fig. 3.4 that the formation of filaments is due to the differential rotation of the

outer recirculating region. At the end of the convective stage, the vortices are not yet completely

merged and we still get two vorticity maxima. This is then followed by a second diffusive stage

which is believed to be a diffusive stage where in the induced velocity of the antisymmetric

vorticity field is not enough to push the vortices closer, and the coming together of the vorticity

maxima is achieved by simple diffusion. The final stage is basically the axisymmetrization and

growth in size of the merged vortex, which also includes the smoothening out of filaments.

We next move on to the three-vortex merger case with (a/d)i = 0.1 and ReΓ = 4000.

From Fig. 3.7, It can be seen that initially that the vortex cores grow in size by diffusion. Also,

due to the strain field of the three-vortex system, the vortices deform to elongate into an el-

liptical shape and align themselves radially. Towards the end of this first diffusive stage, the

strain field results in a slight tilt of the vortices to the radius vector. Once a critical (a/d)

is reached, the tilt becomes prominent and results in the formation of antisymmetric vorticity

similar to the two vortex case discussed previously. This once again consists of vorticity in the

exchange band as well as outer recirculation regions. The antisymmetric ω induces a velocity

which causes the vortices to move radially inward (reduction in separation distance b∗). Once

again, the formation of filaments can be explained from Fig. 3.5 based on the differential rota-

tion in the outer recirculating region. Towards the end of the convective stage, we observe that

the vortices realign themselves, changing their alignment from radial to azimuthal to form an

annulus-like vortex structure. This is then followed by a diffusive stage, where the annulus-like

structure forms a single maximum in the centre by viscous diffusion.

In order to improve our understanding of the three-vortex merger phenomenon, we also study

the inviscid evolution of three uniform patch vortices and compare it with the high Reynolds

number viscous evolution of gaussian vortices. These inviscid simulations are carried out with

the help of a contour dynamics code from Pozrikidis (2011). Here, the contour bounding each

vortex patch is discretized into N line segments joining N nodes, with each line segment approx-

imated by an arc drawn for every three successive nodes. The velocity at any point is then a sum

of the contribution from each of the arcs joining the nodes (integration carried out by gaussian

quadrature). This code also includes a provision for the addition, removal and redistribution of

nodes in order to resolve regions with small radius of curvature. Once the velocities are known,

an explicit Runge-Kutta second order scheme is used to march the positions of the contours

in time. Refer Zabusky et al. (1979) for details regarding the concept of contour integration.

For both the inviscid and viscous simulations, we maintain the same (a/d)i = 0.26 and total

circulation Γ = 2. We must remember that in the inviscid case, there is no diffusion and ‘merger’
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Figure 3.7: Viscous evolution of 3 gaussian vortices with (a/d)i = 0.1 and ReΓ = 4000, total
initial Γ = 2 for both cases. Initial radial alignment of vortices with a tilt to the radius vector,
azimuthal realignment towards the end of convective stage, annulus-like structure.
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(f) t∗ = 0.53

Figure 3.8: Inviscid evolution of 3 uniform patch vortices vs Viscous evolution of 3 gaussian
vortices with (a/d)i = 0.26 and ReΓ = 4000. Total initial Γ = 2 for both cases. Observe
similarity (initial radial alignment with a tilt to radius vector, azimuthal realignment towards
the end to form annulus-like structure.
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Figure 3.9: Inviscid evolution of 3 uniform patch vortices, shown in color, with (a/d)i = 0.26
vs co-rotating streamfunction for 3 point vortices. The central band allows for the formation of
annulus.
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will occur only if the initial configuration itself is such that the (a/d)i ≥ (a/d)crit. Hence the

choice of (a/d)i = 0.26. From Fig. 3.8, we can see clearly that the merger phenomenon in the

inviscid case is similar to the viscous case during the convective stage (initial deformation and

radial alignment with tilt to the radius, and azimuthal realignment towards the end) up until

the formation of the annulus. At this point, in the inviscid case, an annular like structure is

formed, but doesn’t evolve any further (except that the filaments wrap around the annulus-like

structure more tightly. As the filaments grow thinner and thinner, the numerical method cannot

be continued forever, and fails at some finite time). Whereas, in the viscous case, as we have

seen previously, this annulus-like structure diffuses to form a single vorticity maximum, with

the added effect of viscosity smoothening out filaments.

The four-vortex merger is similar to the three-vortex case, as seen from Fig. 3.10. In fact the

change in alignment from radial to azimuthal towards the end of the convective stage is more

evident in the four vortex case. Also, the annular structure formed is cleaner in the four vortex

case. Another phenomenon to be observed is the reduction in radius of the annulus to form a

single gaussian vortex during the second diffusive stage. From Fig. 3.11, it can once again be

seen clearly that the inviscid case is similar to the viscous evolution up until the formation of the

annulus. In the inviscid case, Kelvin’s circulation theorem dictates that the vortices cannot join

to form a clean annulus. Whereas, in the viscous case, viscous diffusion assists in the formation

of a clean annulus, followed by the reduction in radius of the annulus to form a single gaussian

vortex. The formation of the annulus can be explained by looking at Figs. 3.9 and 3.12, where

in we have superimposed the inviscid simulations over separatrices for point vortices. It is clear

from these figures that there is an additional central region of fluid circulation which is absent in

the two vortex case. Hence the two vortex case is not able to form an annulus and the multiple

(>2) vortex case does.

Fig. 3.13 shows the viscous evolution of six gaussian vortices for (a/d)i = 0.1 and ReΓ = 4000.

The strain field of the six-vortex case is such that even at short times, the vortices align them-

selves azimuthally. The antisymmetric ω and the formation of filaments is minimal, and hence

the convective stage is completely absent in this case (unlike the two, three, four and five-vortex

cases). It can be seen that this initial azimuthal alignment aids in the formation of an annulus

from the beginning itself. So, the vortices just diffuse to form a clean annulus, which is then

followed by a slow reduction in radius of the annulus on a diffusive time scale, to finally form a

single gaussian vortex.

Fig. 3.14 shows the non-dimensional separation distance b∗ vs non-dimensional time t∗ for

varying number of vortices, at ReΓ = 4000 and same (a/d)i = 0.1. The first thing that we

observe is that the merger history for three or more vortices is quite different from that of the

two-vortex merger case. It can be seen that the separation distance drop during the convective

stage decreases as we increase the number of vortices from two to five, and convective stage

completely disappears for six and more vortices. The most important finding here is that the

second diffusive stage in the two-vortex merger is replaced by an annular stage which is again
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Figure 3.10: Viscous evolution of 4 gaussian vortices with (a/d)i = 0.1 and ReΓ = 4000. Initial
radial alignment of vortices with a tilt to the radius vector, azimuthal realignment towards the
end of convective stage, cleaner annulus.
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Figure 3.11: Inviscid evolution of uniform 4 patch vortices vs viscous evolution of 4 gaussian
vortices with (a/d)i = 0.3 and ReΓ = 4000, total initial Γ = 2 for both cases. Observe similarity
(initial radial alignment with a tilt to radius vector, azimuthal realignment towards the end to
form annulus-like structure.



3.3 Validation and results 37

x

y

2.6 2.8 3 3.2 3.4 3.6 3.8

2.6

2.8

3

3.2

3.4

3.6

3.8

(a) t∗ = 0.81

x

y

2.6 2.8 3 3.2 3.4 3.6 3.8

2.6

2.8

3

3.2

3.4

3.6

3.8

(b) t∗ = 1.62

x

y

2.6 2.8 3 3.2 3.4 3.6 3.8

2.6

2.8

3

3.2

3.4

3.6

3.8

(c) t∗ = 2.43

x

y

2.6 2.8 3 3.2 3.4 3.6 3.8

2.6

2.8

3

3.2

3.4

3.6

3.8

(d) t∗ = 3.24

x

y

2.6 2.8 3 3.2 3.4 3.6 3.8

2.6

2.8

3

3.2

3.4

3.6

3.8

(e) t∗ = 4.05

x

y

2.6 2.8 3 3.2 3.4 3.6 3.8

2.6

2.8

3

3.2

3.4

3.6

3.8

(f) t∗ = 4.86

Figure 3.12: Inviscid evolution of 4 uniform patch vortices, shown in color, with (a/d)i = 0.3
vs co-rotating streamfunction for 4 point vortices. The central band allows for the formation of
annulus.
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Figure 3.13: Viscous evolution of 6 gaussian vortices with (a/d)i = 0.1 and ReΓ = 4000. Observe
initial azimuthal alignment, very clean annulus, reduction in radius of annulus to form single
maximum.
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Figure 3.14: Non-dimensional separation distance b∗ vs non-dimensional time t∗ at ReΓ = 4000,
same (a/d)i = 0.1. Starting with six or more vortices is qualitatively the same as starting with
a pure annular vortex.

diffusive. We clearly observe that the annular stage dominates the merger process as we increase

the number of vortices and spans the entire merger process for six and more vortices. Since the

annular stage proceeds on a diffusive time scale, it is a slow stage and effectively delays the

merger. It can also be seen that as we increase the number of vortices to seven and above, the

process does not depend on the number of vortices. Also note that during the convective stage,

the separation distance curve becomes less steep as we increase the number of vortices from two

to five. In other words, the velocity at which the vortices move inward reduces as we go from

two to five vortices. This is because, as we increase the number of vortices, the antisymmetric

ω formed decreases (there is a reduction in filament formation), thereby decreasing the induced

velocity. In the simulations above, we keep the initial Γ the same as we increase the number

of vortices, and one may argue that in order to make a fair comparison between two different

systems, it is the initial energy which has to be kept the same and not the initial Γ. We ac-

knowledge this fact and have repeated the simulations keeping the initial energy the same as we

change n. From Fig. 3.15, it is clear that the merger trend is similar to the one with constant

initial Γ and that the annular stage once again begins to dominate the merger process as n

increases and effectively delays the merger.

Next we look at the merger trend for varying ReΓ for a particular number of vortices.

We once again maintain the (a/d)i = 0.1 for each of the 3 and 4 vortex cases, and find from

Figs. 3.16 and 3.17, that there is a strong dependence of the final stage of merger on the Reynolds
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Figure 3.15: Non-dimensional separation distance b∗ vs non-dimensional time t∗ at ReEnergy =
2366, same (a/d)i = 0.1.

0 1 2 3 4 5 6

t*

0

0.2

0.4

0.6

0.8

1

b
*

Re 4000

Re 8000

Re 12000

Figure 3.16: Non-dimensional separation distance b∗ vs non-dimensional time t∗ for 3 vortices,
with varying ReΓ, same (a/d)i = 0.1.
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Figure 3.17: Non-dimensional separation distance b∗ vs non-dimensional time t∗ for 4 vortices,
with varying ReΓ, same (a/d)i = 0.1.

number, suggesting that the annular stage is a diffusive stage. First it can be seen that the du-

ration of the first diffusive stage increases as the Reynolds increases. This is expected as critical

(a/d) is reached at a much later stage for higher Reynolds due to slower growth of the vortex

core by diffusion. Next it can be seen that the slopes of the convective stage are the same for

varying Reynolds, suggesting that this stage is more or less independent of Reynolds. But it is

also observed that the durations are slightly longer with increasing Reynolds. This is due to the

fact that the viscous diffusion takes place during the convective stage too. Therefore, in the case

of higher Reynolds, the vortices must come closer to each other to form the annulus because of

slower diffusion. Most importantly the final stage is strongly dependent on Reynolds and the

curves become flatter and the time duration goes as Reynolds.

Now, we try to understand the exact reason for the reduction in radius of the annulus resulting

in a single vortex maximum at the centre. At first viewing, it may seem that this reduction in

radius is a convective phenomenon. However, as we have observed from the simulations, this is

a slower stage. In order to clarify this, we study the evolution of an annulus as an axisymmetric

problem, in polar co-ordinates.

∂ω

∂t
+ u · ∇ω =

ν

r

∂ω

∂r
+ ν

∂2ω

∂r2
. (3.6)

First, from Eqn. 3.6, it is clear that the absence of ur and
∂ω

∂θ
arising from an axisymmetric

vorticity profile of an annular vortex, would cause the non-linear term to disappear. Looking



42 Chapter 3. Vortex Merger: Validation and Results

at the viscous terms, it is evident that the
1

r
term causes more diffusion towards the inside

(towards the axis) than outside. Therefore, the reduction in radius of the annular vortex is just

a simple linear diffusion phenomenon. A solution of Eqn. 3.6 is also shown in Fig. 4.2. It is seen

that once an annulus is formed, the dynamics is governed by Eqn. 3.6.

So far, we have seen simulations in which the merger process is symmetric and all the vor-

tices move inward in the same way. This has been the case for lower Reynolds numbers like

ReΓ = 4000 and ReΓ = 8000. We remember from chapter 1 however, that for many point and

patch vortices on the vertices of a polygon form an unstable mean flow. Clearly this is being

stabilized by viscosity. We wish to see whether the picture changes at higher Reynolds numbers.

As expected, simulations at higher Reynolds such as ReΓ = 12000 in systems with five or more

vortices begin to show asymmetric merger. One such example is the eight-vortex simulation at

ReΓ = 12000 and (a/d)i = 0.1 shown in Figs. 3.18 and 3.19. Here, it is observed initially that

the eight vortices diffuse out to form an annulus-like structure. However, there are vorticity

maxima within the annulus which are still persistent. On close viewing, it can be seen that the

eight vortices merge (diffuse) to form four maxima which further go on to merge to form two

maxima. Although initially the viscous diffusion tries to smoothen out the two maxima to an

annular vortex, they reappear to form a tripole which can be thought of as an m = 2 azimuthal

mode instability of the annular vortex. Viscosity however wins in this case and the tripolar state

diffuses out to form a single vortex maximum. Thus, at low Re, we find symmetric merger of

multiple vortices and at high Re we are able to observe asymmetric merger.
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Figure 3.18: Viscous evolution of 8 gaussian vortices with (a/d)i = 0.1 and ReΓ = 12000.
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Figure 3.19: Viscous evolution of 8 gaussian vortices with (a/d)i = 0.1 and ReΓ = 12000 -
Continued. Observe the tripolar vortex indicating an m = 2 mode instability.
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3.4 Conclusion

With the help of a pseudo-spectral code, we studied the merger of n equal co-rotating vortices

(n varying from 2 to 8), arranged at equal intervals on the circumference of a circle, for a viscous

homogeneous flow. We find a new stage in the merger of multiple (three or more) vortices -

an annulus which is long-lived. This stage, which is absent in the two-vortex merger, appears

mainly because of the presence of a central region of fluid flow in the streamlines observed in the

co-rotating frame for three or more vortices. Also, this stage evolves on a diffusive time scale

and involves the reduction in radius of an annular vortex by a simple diffusion process to form

one single vortex maximum.

We also observe a quantitative and quantitative change in the separation distance as we

go from two to six vortices. The second diffusive stage in the two-vortex merger gives way

to an annular stage from three onwards. In fact, this stage begins to dominate the merger

process as we proceed from three to six vortices, where it is observed that the convective stage

completely disappears. Thus the annulus begins to dominate the merger process as we increase

the number of vortices and effectively delays the merger, as it then proceeds slowly due to radial

diffusion. We attribute the change in separation distance history to a change in the vortex tilt

history as the number of vortices increases from two to six. For three, four and five vortices, we

observe that the vortices initially align themselves radially with a slight tilt towards the radius

vector. This deformation and alignment, attributed to the strain field of the vortex systems,

places vorticity in the exchange band and outer recirculation (filaments) regions giving rise to

antisymmetric vorticity. It is this antisymmetric vorticity which induces a velocity and pushes

the vortices radially inward. Towards the end of the convective stage, we find that the vortices

realign themselves azimuthally to aid in the formation of an annulus. As the number of vortices

increases from three to five, the radius at which the annulus is formed also increases, which is

expected. However, for systems with six and more vortices, the vortices even at short times align

themselves azimuthally due to the strain field, assisting in the formation of an annular vortex

and thus leading to the absence of the convective stage. In essence, the tilt history changes,

whereas the merger mechanism remains the same.

In addition to this, we also find the annulus to be more stable at low Re where we are able

to observe symmetric merger in which all the vortices move inwards in the same fashion. At

high Re, we observe asymmetric merger and even instabilities setting in leading to the breakup

of the annular vortex. Analyzing such a problem using DNS can can be costly and thus, this

necessitates a viscous stability analysis of the annular vortex, which we deal with in the coming

chapters.





Chapter 4

Viscous Evolution of a Cylindrical

vortex sheet

4.1 Scope

Our objective in this chapter is to see whether there exists a vortex of cylindrical structure,

which is axisymmetric, i.e vorticity pointing outside the plane which is a function of the radial

coordinate alone. We find that the Navier-Stokes equations do support such an annular vortex,

with its maximum vorticity at the radial location rmax. We call this a generalized Lamb-Oseen

vortex, since the Lamb-Oseen is the limiting case of an annular vortex, with rmax = 0. We

find that any cylindrical vortex will diffuse inwards, i.e rmax reduces with time, until it adopts

a classical Lamb-Oseen form at a large time. We utilize Laplace transforms to convert a PDE

in space and time, into an ODE in space, and solve the problem using variation of parameters.

It must be noted that this problem can even be solved using other techniques such as Fourier

transform, Hankel transform, etc.

4.2 Formulation and solution

Consider the two-dimensional vorticity equation in cylindrical co-ordinates obtained by tak-

ing the curl of the Navier-Stokes equations. Assuming symmetry in the azimuthal direction(
∂ (anything)

∂θ
= 0

)
, and zero radial velocity (ur = 0), we can drop the non-linear term (u.∇ω)

and simplify the viscous term to obtain

∂ω

∂t
=
ν

r

∂

∂r

(
r
∂ω

∂r

)
, (4.1)

where ω is the axial vorticity and ν is the kinematic viscosity. The initial condition prescribed

is that of a cylindrical vortex sheet at a radius a with a total circulation of Γo, as follows :

ω (r, 0) = ωo =
Γo
2π

δ (r − a)

r
= f (r) . (4.2)

From symmetry we have

∂ω (0, t)

∂r
= 0 . (4.3)

We also consider the farfield to be a vorticity-free one, i.e

ω (r →∞, t)→ 0 . (4.4)

47
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Now we define the Laplace transform as

L{ω (t)} = ω̂ (s) =

∫ ∞
0

ω (t) e−st dt . (4.5)

Taking the Laplace transform in time of Eqs. 4.1, 4.3, 4.4 and using the Eq. 4.2 as the initial

condition,we get the following equation set

d2ω̂

dr2
+

1

r

dω̂

dr
− sω̂

ν
= −ωo

ν
= f (r) , (4.6)

dω̂ (0, s)

dr
= 0 , (4.7)

ω̂ (r →∞, s)→ 0 , (4.8)

where ω̂ is the laplace transform, defined in the standard way as append A. To solve the above

set, we first find the solution to the homogeneous equation

d2ω̂h
dr2

+
1

r

dω̂h
dr
− sω̂h

ν
= 0 . (4.9)

Putting y ≡ r
√

s
ν , we get

y2d
2ω̂h
dy2

+ y
dω̂h
dy
−
(
n2 + y2

)
ω̂h = 0, where n = 0 . (4.10)

This is a modified form of the Bessel equation to which the solution can be expressed as a

linear combination of the modified Bessel functions In and Kn, n being the order of the Bessel

function. We thus have

ω̂h = c1I0 (y) + c2K0 (y) , (4.11)

where I0 and K0 are given by Abramowitz & Stegun (1965):

I0 (y) = 1 +
y2

4

(1!)2 +

(y2)
2

4

(2!)2 +

(y2)
3

4

(3!)2 + . . . , (4.12)

K0 (y) = −{ln (z/2) + γ}I0 (y) +
y2

4

(1!)2 +

(
1 +

1

2

) (y2)
2

4

(2!)2 +

(
1 +

1

2
+

1

3

) (y2)
3

4

(3!)2 + . . . , (4.13)

By using the method of variation of parameters, we get the particular solution as

ω̂p = −I0

(
r

√
s

ν

)∫ r

0

f (r′)K0

(
r′
√

s
ν

)
W (r′)

dr′ +K0

(
r

√
s

ν

)∫ r

0

f (r′) I0

(
r′
√

s
ν

)
W (r′)

dr′ , (4.14)

where W (r) is the Wronskian given by

W (r) = I0

(
r

√
s

ν

)
K1

(
r

√
s

ν

)
− I0

(
r

√
s

ν

)
I1

(
r

√
s

ν

)
= −1

r
. (4.15)



4.2 Formulation and solution 49

The complete solution is given by ω̂ = ω̂h + ω̂p, i.e

ω̂ = c1I0

(
r

√
s

ν

)
+ c2K0

(
r

√
s

ν

)
−I0

(
r

√
s

ν

)∫ r

0

f (r′)K0

(
r′
√

s
ν

)
W (r′)

dr′ +K0

(
r

√
s

ν

)∫ r

0

f (r′) I0

(
r′
√

s
ν

)
W (r′)

dr′ . (4.16)

Now we apply the boundary conditions. At r = 0, we find that K0 (0) is divergent. In order for

ω̂ to be well-defined, c2 must be 0. Next, since ω̂ → 0 as r →∞, we get

lim
r→∞

{
c1 −

∫ r

0

f (r′)K0

(
r′
√

s
ν

)
W (r′)

dr′

}
I0

(
r

√
s

ν

)
= 0 . (4.17)

Since I0

(
r
√

s
ν

)
is divergent at r →∞, the only way eqn (17) can be satisfied is if

c1 =

∫ ∞
0

f (r′)K0

(
r′
√

s
ν

)
W (r′)

dr′ . (4.18)

We therefore have

ω̂ = I0

(
r

√
s

ν

)∫ ∞
r

f (r′)K0

(
r′
√

s
ν

)
W (r′)

dr′ +K0

(
r

√
s

ν

)∫ r

0

f (r′) I0

(
r′
√

s
ν

)
W (r′)

dr′ . (4.19)

Now, substituting for f (r′) from Eq. 4.2 into eq. 4.19, we get

ω̂ =


Γo

2πν
I0

(
r

√
s

ν

)
K0

(
a

√
s

ν

)
for r ≤ a ,

Γo
2πν

I0

(
a

√
s

ν

)
K0

(
r

√
s

ν

)
for r > a .

(4.20)

It must be noted that we did not have to use the symmetry condition (Eq. 4.7) to obtain Eq. 4.20.

It can be seen that this condition (Eq. 4.7) is automatically satisfied by Eq. 4.20. Taking the

inverse Laplace transform of the convolution in the above expression, and using the following

standard result from Erdélyi (1954),

L−1

{
Kn

[√
s
(√

α+
√
β
)]
In

[√
s
(√

α−
√
β
)]}

=
1

2t
e−(α+β2t )In

{
α+ β

2t

}
, (4.21)

we get

ω =
Γo

4πνt
e
−
(
a2+r2

4νt

)
I0

{ ar
2νt

}
. (4.22)

This is a generalized form of the Lamb-Oseen vortex. Note that this is not a similarity solution

as we have a natural length scale (a) in the problem. The Lamb-Oseen vortex, which is a

similarity solution, is obtained by putting a = 0 (initial condition of a line vortex), to get

ω =
Γo

4πνt
e
−
(
r2

4νt

)
. (4.23)
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Now, in addition to the solution given by Eq. 4.22, we can find other solutions for cylindrical

vortices which satisfy the Navier-Stokes, by differentiating Eq. 4.22 with respect to time t. How-

ever, we will only consider the first solution obtained, which has a finite circulation associated

with it. We will now look at some interesting features of the Generalized Lamb-Oseen vortex.

For t → 0, we expect the vortex to diffuse symmetrically about r = a. Let y = ar/ (2νt).

As t→ 0, y →∞ and at leading order,

I0 (y) =
ey√
2πy

=
e
ar
2νt√
πar
νt

. (4.24)

Also, we can consider r = a + ε + ε2 + . . . and write ar ∼ a2 at leading order. Using this

asymptotic approximation and Eq. 4.24 in Eq. 4.22, we get

ω =
Γo

4π
√
πνtar

e−
(r−a)2

4νt =
Γo

4πa
√
πνt

e−
ε2

4νt . (4.25)

Note that this is a similarity solution and is similar to the diffusion of a planar vortex sheet,

which is as expected.

4.2.1 Evolution of vorticity maximum

Now we track the vorticity maximum (ωmax) to understand how the annular vortex diffuses

inward reducing in radius to ultimately evolve into a regular gaussian or the Lamb-Oseen vortex.

Applying
∂ω

∂r
= 0 to Eq. 4.22, we get

rmaxI0 (y) = aI1 (y) , where y =
(armax

2νt

)
. (4.26)

This can be solved numerically. In addition, we can also find the asymptotic behavior when

t→ 0, and at rmax → 0.

When t→ 0, y →∞, and

Io (y) ∼ ey√
2πy

(
1 +

1

8y

)
, I1 (y) ∼ ey√

2πy

(
1− 3

8y

)
. (4.27)

We therefore get

rmax =

(
4a2 − νt

)
+
√

16a4 + ν2t2 − 56a2νt

8a
,when t→ 0 . (4.28)

When rmax → 0, y → 0, and

Io (y) ∼
(

1 +
y2

4

)
, I1 (y) ∼

(
y

2
+
y3

16

)
. (4.29)
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Figure 4.1: Evolution of position of vorticity maximum rmax with time t, for a = 1 and ν = 1.

Therefore, we get

rmax =
4νt

a

√√√√ a2

4ν − t
t− a2

8ν

, when rmax → 0 . (4.30)

From this it is clear that we can pick out a time scale for the vorticity maximum to reach the

center (axis).

T |(rmax=0) =
a2

4ν
. (4.31)

At any time less than this, the vorticity has a maximum away from the axis. Beyond this time,

the vorticity is a monotonically reducing quantity, radially.

Fig. 4.1 contains plots for Eqs. 4.26, 4.28 and 4.30. Here it can be seen that initially, the

vorticity maximum moves inward in a ballistic manner. Later on its behavior is different as the

thickness of the annulus increases, and finally the vorticity maximum hits the axis after a time

scale corresponding to Eq. 4.31.

4.2.2 Validation with pseudo-spectral code

To further validate the obtained analytical expression for the generalized gaussian vortex, we

input the vorticity profile as the initial condition in our 2D pseudo-spectral code previously

discussed. To compare the analytical result with the numerical one, we take a section of the

vorticity profile from the 2D numerical result and plot its evolution with time for a particular

set of initial conditions. We superimpose the profile obtained from the 2D pseudo-spectral code
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with that from the analytical result and observe that the two plots are a perfect match (Fig. 4.2).

It must be noted that we never switched off the non-linear terms in the pseudo-spectral code

while running it. The symmetry of profile automatically removes the non-linear advective terms

as it should.

4.2.3 Circulation and velocity

The circulation associated with the generalized Lamb-Oseen is given by

Γ (r) =

∫
A
ω · dA = 2π

∫ r

0
rω dr . (4.32)

Therefore total circulation

Γ (∞) = 2π

∫ ∞
0

rω dr = Γo . (4.33)

However, we have not been able to arrive at a closed form expression for Γ (r), and hence the

azimuthal velocity, which is given by Uθ =
Γ

2πr
. The velocity can be calculated with the help

of a numerical integration technique such as gaussian quadrature. At the same time, it is useful

to note the asymptotic behavior of Uθ as r → 0 and ∞. As r →∞, it is evident from Eq. 4.33

that Uθ ∼
1

r
. For r → 0 asymptotic limit, we write out the leading order terms of ω in Eq. 4.22

as

ω =
Γo

4πνt
e
−
(
a2

4νt

){
1 +

r2
(
a2 − νt

)
4ν2t2

+ · · · (4.34)

From Eqs. 4.32 and 4.34, it is evident that as r → 0, Γ ∼ r2, and hence Uθ ∼ r.

4.3 Conclusion

Thus, we have obtained an analytical expression for a generalized Lamb-Oseen vortex which is a

solution of the Navier-Stokes equations, with the initial condition of a cylindrical vortex sheet.

We find that this shows short time (planar vortex sheet) and long time (regular Lamb-Oseen

or gaussian vortex) similarity solutions. More importantly, the annular vortex obtained reduces

in radius by pure diffusion and ultimately evolves into a regular gaussian vortex. Next, we will

perform a linear stability analysis of this vorticity profile frozen at a given instant of time.
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Figure 4.2: Validation of analytical result (black line) with pseudo-spectral code (green line), for
an initial condition (νt = 0.01, Γo = 1) of a generalized Lamb-Oseen vortex (cylindrical vortex
sheet at t = 0).





Chapter 5

Linear stability analysis of annular

vortex: Formulation and numerical

technique

5.1 Scope

In this chapter, we carry out a quasi-steady linear stability analysis of an annular vortex. We sys-

tematically derive the stability equations using a standard technique and obtain a set of ordinary

differential equations. We employ a Chebyshev collocation technique to discretize the ensuing

set of differential equations, which can then be formulated as an eigenvalue problem. Some of

the important properties of the Chebyshev interpolation technique used are also discussed.

5.2 Formulation and solution-2D perturbations

Consider the two-dimensional continuity and Navier-Stokes equations for an incompressible ho-

mogenous fluid in plane polar co-ordinates:

1

r

∂

∂r
(rur) +

1

r

∂

∂θ
(uθ) = 0 , (5.1)

∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2

θ

r
= −1

ρ

∂p

∂r
+

1

Re

(
∇2ur −

ur
r2
− 2

r2

∂uθ
∂θ

)
, (5.2)

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

= − 1

ρr

∂p

∂θ
+

1

Re

(
∇2uθ +

2

r2

∂ur
∂θ
− uθ
r2

)
, (5.3)

where

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
. (5.4)

We decompose the total motion into a background state plus perturbations, as

urtot = Ur + ũr , (5.5)

uθtot = Uθ + ũθ , (5.6)

ptot = P + p̃ , (5.7)

where the variables with tildes (˜) denote the perturbations. Substituting the background state

and the total motion separately into Eqs. 5.1,5.2 and 5.3, we obtain equations for the base state

and the total motion respectively. Subtracting the equation for the background state from the
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equations for the total motion, we obtain a set of equations for the perturbations. Neglecting

non-linear terms in the perturbations, we finally get

1

r

∂

∂r
(rũr) +

1

r

∂

∂θ
(ũθ) = 0 , (5.8)

∂ũr
∂t

+
Uθ
r

∂ũr
∂θ
− 2Uθũθ

r
= −1

ρ

∂p̃

∂r
+

1

Re

(
∇2ũr −

ũr
r2
− 2

r2

∂ũθ
∂θ

)
, (5.9)

∂ũθ
∂t

+ ũr
∂Uθ
∂r

+
Uθ
r

∂ũθ
∂θ

+
ũrUθ
r

= − 1

ρr

∂p̃

∂θ
+

1

Re

(
∇2ũθ +

2

r2

∂ũr
∂θ
− ũθ
r2

)
. (5.10)

Assuming the perturbations or infinitesimal disturbances to be of the normal mode form in θ

and t, characterized by an azimuthal wavenumber m and a complex frequency f :

{ũr, ũθ, p̃} = {ûr (r) , ûθ (r) , p̂ (r)}ei(mθ−ft) , (5.11)

and substituting Eq. 5.11 in the Eqs. 5.8 to 5.10, we obtain a set of ordinary differential equations.

Eliminating p̂ and ûθ from the set of ODE’s, we are left with a single ODE in ûr, which can

eventually be expressed as an eigenvalue problem of the form :

Aûr = fBûr . (5.12)

Let us denote fr as the real part of the eigenvalue f , and fi as the complex part of f . The

system is stable if the fi < 0, neutral if fi = 0 and unstable if fi > 0.

A and B are linear differential operators given by

A =
i

Re

{
r4D4 + 6r3D3 +

(
5− 2m2

)
r2D2 −

(
1 + 2m2

)
rD +

(
m2 − 1

)2}
+mΩr2

((
r2D2 + 3rD +

(
1−m2

))
−mrZ ′

)
, (5.13)

and

B = r2
(
r2D2 + 3rD +

(
1−m2

))
, (5.14)

where D ≡ d

dr
, angular velocity Ω =

Uθ
r

, and base vorticity Z = U ′θ +
Uθ
r

. Note that ′ or prime

here denotes derivate with respect to r and it not related to perturbations as previously used in

deriving the equations.

In the inviscid case, we are left with

A = mΩ
(
r2D2 + 3rD +

(
1−m2

))
−mrZ ′ , (5.15)

and

B = r2D2 + 3rD +
(
1−m2

)
. (5.16)
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5.2.1 Boundary Conditions

The physically relevant solutions, which must be continuous, can be expanded as a Taylor series

about r = 0 and r = ∞. The boundary conditions depend on the background flow or mean

profile being studied. All our mean profiles are such that Uθ ∼ r as r → 0, Uθ ∼
1

r
as r → ∞.

The boundary conditions are then deduced from inspection of the leading order terms of the

Taylor series, and depend on the azimuthal wavenumer m,

For r→ 0,

ûr = O(r|m|−1), ûθ = O(r|m|−1) . (5.17)

For r→∞,

ûr = O(r−|m|−1), ûθ = O(r−|m|−1) . (5.18)

5.3 Formulation and solution-3D perturbations

Consider now the three-dimensional continuity and Navier-Stokes equations for an incompress-

ible homogenous fluid in cylindrical polar co-ordinates:

1

r

∂

∂r
(rur) +

1

r

∂

∂θ
(uθ) +

∂

∂z
(uz) = 0 , (5.19)

∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ uz
∂ur
∂z
− u2

θ

r
= −1

ρ

∂p

∂r
+

1

Re

(
∇2ur −

ur
r2
− 2

r2

∂uθ
∂θ

)
, (5.20)

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+ uz
∂uθ
∂z

+
uruθ
r

= − 1

ρr

∂p

∂θ
+

1

Re

(
∇2uθ +

2

r2

∂ur
∂θ
− uθ
r2

)
, (5.21)

∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

= −1

ρ

∂p

∂z
+

1

Re

(
∇2uz

)
, (5.22)

where

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
+

1

r2

∂2

∂z2
. (5.23)

As before, we decompose the total motion into a background state plus perturbations:

urtot = Ur + ũr , (5.24)

uθtot = Uθ + ũθ , (5.25)

uztot = Uz + ũr , (5.26)

ptot = P + p̃ . (5.27)
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Following the same procedure as before, we get

1

r

∂

∂r
(rũr) +

1

r

∂

∂θ
(ũθ) +

∂

∂z
(ũz) = 0 , (5.28)

∂ũr
∂t

+
Uθ
r

∂ũr
∂θ

+ Uz
∂ũr
∂z
− 2Uθũθ

r
= −1

ρ

∂p̃

∂r
+

1

Re

(
∇2ũr −

ũr
r2
− 2

r2

∂ũθ
∂θ

)
, (5.29)

∂ũθ
∂t

+ ũr
∂Uθ
∂r

+
Uθ
r

∂ũθ
∂θ

+ Uz
∂ũθ
∂z

+
ũrUθ
r

= − 1

ρr

∂p̃

∂θ
+

1

Re

(
∇2ũθ +

2

r2

∂ũr
∂θ
− ũθ
r2

)
, (5.30)

∂ũz
∂t

+ ũr
∂Uz
∂r

+
Uθ
r

∂ũz
∂θ

+ Uz
∂ũz
∂z

= −1

ρ

∂p̃

∂z
+

1

Re

(
∇2ũz

)
. (5.31)

Assuming the perturbations or infinitesimal disturbances to be of the normal mode form in θ,

z and t, characterized by an axial wavenumber α, an azimuthal wavenumber m and a complex

frequency f :

{ũr, ũθ, ũz, p̃} = {ûr (r) , ûθ (r) , ûz (r) , p̂ (r)}ei(mθ+αz−ft) , (5.32)

and substituting Eq. 5.11 in the Eqs. 5.9 and 5.10, we obtain a set of ordinary differential

equations. Eliminating p̂ and ûz from this set, we are left with set of simultaneous ordinary

differential equations in ûr and ûθ, which can be expressed as an eigenvalue problem of the form

:

Aû = fBû, û =

[
ûr

ûθ

]
, A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
. (5.33)

Again, the system is stable if the fi < 0, neutral if fi = 0 and unstable if fi > 0.



5.3 Formulation and solution-3D perturbations 59

A and B are linear differential operators given by

A11 =
i

Re

{
mr3D3 + 2mr2D2 −m

(
1 +m2

)
rD −mα2r3D +m

(
1−m2

)
− 3mα2r2

}

+

{
m2r2UθD +mαr3UzD −mαr3U ′z +m2rUθ + α2r4U ′θ +mαr2Uz + α2r3Uθ

}
, (5.34)

A12 =
1

Re

{
−m2r2D2 − α2r4D2 +m2rD − α2r3D −m2

(
1−m2

)
+ α2

(
1 + 2m2

)
r2 + α4r4

}

+ i

{
m3rUθ +mα2r3Uθ +m2αr2Uz + α3rUz

}
, (5.35)

A21 =
i

Re

{
−mr2D2 +mrD +m

(
m2 − 1

)
+mα2r2

}

+

{
− r3U ′θ − r2UθD − r2U ′θ − r3Z ′ −

(
1 +m2

)
rUθ −mαr2Uz

}
, (5.36)

A22 =
1

Re

{
r3D3 + 2r2D2 −

(
1 +m2

)
rD + α2r3D +

(
1−m2

)
− α2r2

}

+ i

{
−mr2UθD − αr3UzD −mr2U ′θ − 2mrUθ − αr3U ′z − αr2Uz

}
, (5.37)

B11 =
(
mr2 +mr3D

)
, (5.38)

B12 = i
(
α2r4 +m2r2

)
, (5.39)

B21 =
(
−mr2

)
, (5.40)

B22 = −i
(
r3D + r2

)
. (5.41)

Note that ′ or prime again denotes derivate with respect to r.

In the inviscid case, we are left with

A11 =

{
m2rUθD +mαr2UzD −mαr2U ′z +m2Uθ + α2r3U ′θ +mαrUz + α2r2Uθ

}
, (5.42)

A12 = i

{
m3Uθ +mα2r2Uθ +m2αrUz + α3Uz

}
, (5.43)

A21 =

{
− r2U ′θ − rUθD − rU ′θ − r2Z ′ −

(
1 +m2

)
Uθ −mαrUz

}
, (5.44)

A22 = i

{
−mrUθD − αr2UzD −mrU ′θ − 2mUθ − αr2U ′z − αrUz

}
, (5.45)

B11 =
(
mr +mr2D

)
, (5.46)

B12 = i
(
α2r3 +m2r

)
, (5.47)

B21 = (−mr) , (5.48)

B22 = −i
(
r2D + r

)
. (5.49)
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5.3.1 Boundary conditions

As explained earlier in the 2D case, we inspect the leading-order terms in the Taylor series

expansion about r = 0 and r =∞. Depending on the azimuthal wavenumber m, we get

As r→ 0,

if m = 0,

ûr = O (r) , ûθ = O (r) , ûz = O (1) , p̂ = O (1) ; (5.50)

if m 6= 0,

ûr = O(r|m|−1), ûθ = O(r|m|−1), ûz = O(r|m|), p̂ = O(r|m|) . (5.51)

As r→∞,

ûr → 0, ûθ → 0, ûz → 0, p̂→ 0 (exponential decay). (5.52)

Note that while 3D perturbations decay exponentially, 2D perturbations decay algebraically.

These boundary conditions were originally derived by Batchelor & Gill (1962) in the form of

compatibility relations, and were formalized later on by Lessen & Paillet (1974) and Khorrami

et al. (1989).

5.4 Chebyshev collocation technique

We solve the eigenvalue problems formulated above using a Chebyshev collocation technique.

Here, we describe some of the basic formulas and important aspects of the technique.

The Chebyshev polynomials of the first kind, Tk (x), k = 0, 1, 2, . . . , are the eigenfunctions

of the singular Sturm-Liouville problem

(√
1− x2T ′k (x)

)′
+

k2

√
1− x2

Tk (x) = 0 . (5.53)

Normalizing Tk so that Tk (1) = 1, we get

Tk (x) = cos kθ, θ = arccosx . (5.54)

From this, we see that Chebyshev polynomials are basically cosine functions after a change of

independent variable. The transformation x = cos θ lets us take advantage of many properties

related to the Fourier system (being a Fourier cosine series).

Using the trigonometric identity cos (k + 1) θ+cos (k − 1) θ = 2 cos θ cos kθ, we get the following
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recurrence relation

Tk+1 (x)− 2xTk (x) + Tk−1 (x) = 0, k ≥ 1 , (5.55)

with T0 (x) = 1 and T1 (x) = x. Some other interesting properties of Chebyshev polynomials are

|Tk (x) | ≤ 1, − 1 ≤ x ≤ 1 , (5.56)

|T ′k (x) | ≤ k2, − 1 ≤ x ≤ 1 , (5.57)

Tk (±1) = (±1) , T ′k (±1) = (±1)k+1 k2 , (5.58)

Tk (−x) = (−1)k Tk (x) . (5.59)

Also, Tk (x) vanishes at Gauss points xi defined by

xi = cos

(
i+

1

2

)
π

k
, i = 0, . . . , k − 1 , (5.60)

and reaches its extremal value (±1) at Gauss-Lobatto points xi defined by

xi = cos
πi

k
, i = 0, . . . , k . (5.61)

Chebyshev polynomials are orthogonal on [−1, 1] with the weight w =
(
1− x2

)−1/2
as follows :

(Tk, Tl)w =

∫ 1

−1
TkTlw dx =

π

2
ckδk,l , (5.62)

where δk,l is the Kronecker delta and ck is defined by

ck =

2 if k = 0 ,

1 if k ≥ 1 .
(5.63)

The discrete orthogonality relationship based on Gauss-Lobatto points xi, i = 0, 1, . . . , N can be

deduced from quadrature formula and is given by

N∑
i=0

1

c̄i
Tk (xi)Tl (xi) =

c̄k
2
Nδk,l 0 ≤ k, l ≤ N , (5.64)

where

c̄k =

2 if k = 0, N ,

1 if 1 ≤ k ≤ N − 1 .
(5.65)

Now, let us consider the Chebyshev expansion of a function u (x) defined for x ∈ [−1, 1] :

u (x) =

∞∑
k=1

ûkTk (x) , ûk =
2

πck

∫ 1

−1
u (x)Tk (x)w (x) dx . (5.66)
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In the discrete case based on Gauss-Lobatto points xk, k = 0, 1, . . . , N , we use a truncated

Chebyshev series given by

uN (x) =

N∑
k=1

ûk cos kθ, ûk =
2

c̄kN

N∑
i=0

1

c̄i
ui cos

kπi

N
, k = 0, . . . , N . (5.67)

As observed in Eq. 5.67, we will use the Chebyshev Gauss-Lobatto method in our interpolation,

for which the quadrature points and weights are given by

xj = cos
πj

N
, wj =


π

2N
, j = 0, N ,

π

N
, j = 1, . . . , N − 1 .

(5.68)

5.4.1 Differentiation

By using the trigonometrical identity 2 sin θ cos kθ = sin (k + 1) θ − sin (k − 1) θ, we can get the

following recurrence relation on the derivative :

2Tk (x) =
T ′k+1 (x)

k + 1
− T ′k−1 (x)

k − 1
, k ≥ 1 . (5.69)

We can then write

T ′k (x) = 2k

K∑
n=0

1

ck−1−2n
Tk−1−2n (x) , K = (k − 1) /2 . (5.70)

So the first order derivative can be written as

u′N (x) =
N∑
k=0

ûkT
′
k (x) =

N∑
k=0

û′kTk (x) =
N∑
k=0

û
(1)
k Tk (x) . (5.71)

From Eq. 5.70, we get

û
(1)
k =

2

ck

N∑
p=k+1
p+k odd

pûp, k = 0, 1, . . . , N − 1 . (5.72)

Eq. 5.69 gives

2kûk = ck−1û
(1)
k−1 − û

(1)
k+1, k ≥ 1 . (5.73)

To find the derivative in physical space, one can transform the expression into Chebyshev space

(this can be done using an FFT), find the discrete Chebyshev coefficients of the derivative

using the recurrence relation, and then transform back into physical space. We will however use

another technique to find the Chebyshev interpolation derivative. The pth Chebyshev collocation
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derivative u
(p)
N can be expressed in terms of the grid values of the function as :

u
(p)
N (xi) =

N∑
j=0

d
(p)
i,j uN (xj) , i = 0, . . . , N . (5.74)

The coefficients d
(p)
i,j can be calculated as follows. First, we eliminate ûk from the derivative

u
(p)
N (xi) =

N∑
k=0

ûkT
(p)
k (xi) , (5.75)

by using Eq. 5.67. Then, by applying trigonometrical identities, we evaluate the sums which

contain Tk (xi) and T ′k (xi)(which are in turn in the form of cosines and sines (Tk = cos kθ)).

The first order derivative is then given by

d
(1)
i,j =



c̄i
c̄j

(−1)i+j

(xi − xj)
, 0 ≤ i, j ≤ N, i 6= j ,

− xi

2
(
1− x2

i

) , 1 ≤ i = j ≤ N − 1 ,

2N2 + 1

6
, i = j = 0 ,

−2N2 + 1

6
, i = j = N .

(5.76)

The higher order derivatives are obtained as follows :

d
(2)
i,j =

N∑
k=0

d
(1)
i,kd

(1)
k,i and so on (5.77)

In vector form, the derivatives can be expressed as

U (1) = DU, U (2) = D(2)U, . . . , U (p) = D(p)U , (5.78)

where

U = (uN (x0) , . . . , uN (x0))T , U (p) =
(
u

(p)
N (x0) , . . . , u

(p)
N (x0)

)T
, (5.79)

and the differentiation matrix D is defined by

D =
[
d

(1)
i,j

]
, i, j = 0, 1, . . . , N . (5.80)

Finally, Eqs. 5.76 and 5.79 are the ones we use, to calculate the derivative in our system. For

more information on Chebyshev collocation technique, refer Boyd (2001).
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5.5 Grid Stretching

The domain for our problem is [0,∞]. We first discretize the equations on a Chebyshev grid

[−1, 1], and later map it algebraically or exponentially to [0, Rmax].We have used three types of

stretching to map the Chebyshev grid to the required grid [0, Rmax].

(a)

y =
1− ξ
b+ ξ

, b = 1 +
2a

Rmax
, (5.81)

where ξ is the Chebyshev coordinate defined by Eq. 5.68, and a is the radius within which

close to half the points lie (Khorrami et al. 1989).

(b)

y =
1− ξ

b+ cξ + dξ3
, b = 1 +

2a

Rmax
, a =

pRmax
Rmax − 2p

, (5.82)

(0.5 ≤ c ≤ 0.8) , d = (1− c) ,

where p is the radius at which clustering is required.

(c)

y =
aRmax

sinh (byo)

{
sinh

[(
(ξ + 1)

2
− yo

)
b

]
+ sinh (byo)

}
, (5.83)

yo =
0.5

b
log

{ [
1 +

(
eb − 1

)
a
]

[1 + (e−b − 1) a]

}
, (5 ≤ b ≤ 20) ,

where p = (aRmax) is the radius at which clustering is required (Govindarajan 2004).

It must be noted that mappings (a) and (b) are algebraic while mapping (c) is exponential. Also

mapping (a) clusters the points near the origin and de-clusters the points away from it, while

mappings (b) and (c) cluster the points at a chosen finite radius which in our case are regions

of high shear. In other words, mapping (a) is used mainly for a mean profile of the q-vortex or

Batchelor vortex (during the validation of the 3D code), while mappings (b) and (c) are used

for a mean profile of an annular vortex which has regions of high shear at a finite radius away

from the axis.



Chapter 6

Linear stability analysis of annular

vortex: Validation and Results

6.1 Scope

This chapter contains the validation of the stability code and results from the linear stability

analysis of an annular vortex. To begin with, we define the vorticity profiles and the various

parameters involved in the analysis. We go on to discuss our main findings and then conclude.

6.2 Setting up the problem

Here we describe the mean vorticity profiles, the various parameters and non-dimensional num-

bers. We keep the total circulation Γ constant (Γ = Γo = 2π) throughout the analyses. The

Reynolds number for the viscous studies is defined as Re = Γ/ν. We then study the linear

stability for the following three mean vorticity profiles

• Step profile (annular Rankine):

ω =



0, 0 ≤ r < b ,

2

(1− b2)
, b ≤ r < 1 ,

0, r ≥ 1 .

(6.1)

We define a thickness parameter δ as the ratio of the thickness to the mean radius of the

annular vortex. Here, δ =
2 (1− b)
(1 + b)

.

• Tanh profile:

ω =
ωmax

2

[
tanh

(
r − b
c

)
− tanh

(
r − 1

c

)]
, (6.2)

where ωmax =
2

(1− b2)
. This vorticity maximum gives Γ = 2π. This profile is similar to

the step profile and approaches the step profile in the limit c→ 0. In our studies, we take

c = 0.01.

• Generalized Lamb-Oseen (GLO) from chapter 4:

ω =
Γo

4πνt
e
−
(
a2+r2

4νt

)
I0

{ ar
2νt

}
. (6.3)

65
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For our stability analysis, we first consider profiles frozen in time by fixing the term ‘νt’

(we are performing a quasi-steady stability analysis). Next, we choose a = 1 and calculate

the thickness of the annular vortex by looking at the radii at which the vorticity drops to

1/e of its maximum value. We then normalize this thickness by mean radius of the annulus

(radius of vorticity maximum) to get δ (thickness parameter). From now onwards, we will

refer to this profile as GLO.

It must be noted that the mean flow for our analysis is two-dimensional with no variation in the

axial or vertical direction. We then perturb this mean flow in the usual manner (normal modes)

and see if the perturbations grow or decay in time.

6.3 Validation and results for 2D perturbations

Here, we subject the mean flow to two-dimensional perturbations as discussed in chapter 5 and

look for eigenvalues with positive imaginary part for the growth of perturbations. For the 2D

analysis, we use the mappings 5.82 and 5.83 discussed in chapter 5. These mappings cluster the

points at a region away from the axis where velocity and vorticity gradients are high. We find

that both the algebraic and exponential mappings give similar results (which by itself is a valida-

tion). In the 2D case, we proceed to use the algebraic mapping 5.82 as the boundary conditions

dictate that the eigenfunctions decay algebraically. Also, we must remember that our physical

domain is [0, Rmax], following the mapping from the Chebychev grid [−1, 1]. For convergence of

eigenvalues, we first keep Rmax constant and vary the number of collocation points N . We then

repeat this by increasing Rmax. We start from Rmax = 20 and go on till Rmax = 1000. The

Rmax for convergence is large since the eigenfunctions decay algebraically (and not exponen-

tially). For the tanh and GLO profiles, we vary the number of Chebychev collocation points N

from 200 to 1000, with which we are able obtain convergence of eigenvalues up to decimal places.

By taking a look at the 2D inviscid and viscous equations in chapter 5, one can observe that

for every growing mode with a positive m, there exists a corresponding decaying mode with

a negative m (the equations remain unchanged when f and m are replaced by −f and −m
respectively). Hence, we consider only positive values of m for our analysis. In addition to this,

the periodicity in cylindrical co-ordinates dictates that m must be an integer. Also, we do not

consider m = 1 disturbance as it only represents a translation.

In order to validate our 2D inviscid code, we compare the growth rate fi vs the azimuthal

wavenumber m for the step and tanh profiles. The dispersion relation for the step profile can

be found analytically (Michalke & Timme 1967) and is given by

f = fr + fii =
m

2
+
{4b2m −

[
m
(
1− b2

)
− 2
]2}1/2

2 (1− b2)
i , (6.4)
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Figure 6.1: Validation of 2D code for inviscid case: Growth rate fi vs azimuthal wavenumber
m for Step (analytical result) and tanh (numerical result) profiles. δ = 0.2222 and 0.10526
correspond to b = 0.8 and 0.9 respectively.

where fr is the cyclic frequency and fi is the growth rate. In the limit b → 1 (infinitely thin

cylindrical vortex sheet), this relation reduces to that of Rotunno (1978) given by

f = fr + fii =
m

2
+

[m (m− 2)]1/2

2
i . (6.5)

Thus, except for modes m = 1 and 2, the result for the infinitely thin cylindrical vortex sheet is

analogous to that for a plane shear flow (there all wavelengths are unstable, with the smallest

waves growing most rapidly). Apart from this, the step profile with finite thickness has an upper

cutoff for unstable m beyond which it is stable again. This is in contrast to the infinitely thin

cylindrical vortex sheet where all m beyond 2 are unstable.

As a validation, Fig. 6.1 shows growth rate fi vs the azimuthal wavenumber m for step

and tanh profiles. It can be seen that there is an excellent agreement in values of fi for smaller

wavenumbers. However, as we proceed to larger wavenumbers, there is a slight deviation of fi

for the tanh profile from that of the step profile. This is because of the presence of a length scale

associated with the change in vorticity at the edges of the annulus for the tanh profile. Hence,

the larger wavenumbers (smaller wavelengths) begin to sense the length scale over which the

vorticity changes in the tanh profile. In the case of a step profile, the vorticity gradient at the

edges of the annulus is a delta function (occurring over an infinitesimally small length scale),

and the larger m do not sense this length scale. The deviation for larger values of m can be

reduced by considering smaller values of the parameter c (to effectively reduce c/δ) in our tanh
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Figure 6.2: Growth rate fi vs azimuthal wavenumber m for tanh profile with δ = 0.2222 (b = 0.8)
and varying Reynolds. Observe the multiple branches for Re = 10000.

profile (we use c = 0.01).

In the 2D viscous case, we validate the code by prescribing the mean flow as a simple Lamb-

Oseen vortex (we use mapping 5.81, which clusters points near the axis). It is well known that

the Lamb-Oseen is stable to two-dimensional disturbances, which is what we observe. In addi-

tion to this, we also check if the results for the annular vortex profiles at high Reynolds numbers

tend to that of the inviscid case. This is evident from the figures discussed below.

We now move on to our results and findings in the linear stability analysis of the tanh and

GLO vorticity profiles. Fig. 6.2 shows the growth rate fi vs azimuthal wavenumber m for a

tanh mean vorticity profile with δ = 0.2222 (b = 0.8) and varying Reynolds. First, it can be

seen that the Re = 10000 curve is very close to the inviscid curve for m = 3 to m = 6. From

m = 7 onwards, the inviscid modes do not grow. It may be remembered that point vortices

beyond seven in number on a circle were unstable. Thus, the inviscid result for a thin continuous

circular sheet is in contrast to the inviscid result for discrete vortices. In the viscous case, there

is an anomalous behavior for Re = 10000 case, wherein we obtain two local maxima for the

growth rate. Viscosity seems to destabilize modes m ≥ 7 till an upper cut off m, beyond which

they are stable again. Note that this result is unusual. There is a high wavenumber viscous

unstable mode, which is stabilized in the inviscid case. Also, the m = 2 disturbance is unstable

for the viscous cases, with multiple (two) modes present for Re = 1000 (remember that m = 2 is

stable for step profile in inviscid case). We also observe multiple branches (and multiples modes)
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Figure 6.3: Growth rate fi vs azimuthal wavenumber m for GLO profile with δ = 0.183 (νt =
0.002) and varying Reynolds. m = 2 is unstable with multiple modes at higher Re.

for higher m at Re = 10000. As we decrease Re from 10000 to 1000, the curve shifts slightly

towards the right with the anomalous behavior disappearing (m = 9 to 21 become stable) to

give a single maximum for growth rate. As we go from Re = 1000 to 100, the maximum growth

rate decreases strongly along with the unstable range of m.

Fig. 6.3 shows the growth rate fi vs azimuthal wavenumber m for a generalized Lamb-Oseen

profile with δ = 0.183 (νt = 0.002) and varying Reynolds. It is evident from this that as Re

decreases, the maximum growth rate decreases along with the unstable range of m (upper cut

off decreases). However, the decrease is stronger when going from Re = 1000 to 100 than that

from Re = 10000 to 1000. As we increase Re, the curve tends to that of the inviscid case, which

is expected. In addition to this, m = 2 disturbance is once again unstable, having multiple

(two) unstable modes for the inviscid as well as the viscous cases (except for very low Re = 100,

which has only one mode). This can be clearly observed in Fig. 6.4. We have also plotted the

radial velocity perturbation eigenfunctions for m = 2, 3 and 7 for various Reynolds numbers,

as depicted in Figs. 6.5, 6.8, 6.6 and 6.7. Also, Fig. 6.9 reveals two branches or modes for the

m = 2 disturbance. We can clearly observe a crossover (primary mode becomes secondary and

vice versa) of the two modes at a particular Reynolds number. From Figs. 6.5 we can see the

evolution of the shape of the eigenfunction with varying Re. Strangely enough, the eigenfunction

for Re = 600 (for which only one mode is unstable) closely resembles that of the secondary mode

for Re = 1000 and not that of the primary mode. This is surprising, as from Fig. 6.8, one can

observe that it is the primary mode (higher growth rate) which remains unstable for very low Re.
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Figure 6.4: m = 2 disturbance growth rate for GLO profile with δ = 0.183 (νt = 0.002) and
varying Reynolds. Observe multiple modes for higher Re

Next, we fix the Reynolds (Re = 10000) and vary δ for the GLO profile. From Fig. 6.10,

we can see that as δ decreases, the maximum growth rate increases strongly along with the

unstable range of m (upper cut off increases). In other words, the thinner the vortex sheet, the

more unstable it is, which is in accordance with intuition. In addition to this, we once again

observe multiple modes for m = 2 for all δ.

Figs. 6.11 and 6.12 show a comparison of tanh and generalized Lamb-Oseen profiles, where we

have plotted the growth rate fi vs azimuthal wavenumber m for δ = 0.183. It can the observed

that the maximum growth rate is slightly higher for the tanh profile for Re = 1000 and 10000.

However, due to the anomalous behavior of the tanh profile for higher modes at Re = 10000

case, we are unable to come to any conclusions about the range of modes going unstable.
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Figure 6.5: Real and imaginary parts of radial velocity perturbation eigenfunctions for m = 2
disturbance.
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Figure 6.6: Real and imaginary parts of radial velocity perturbation eigenfunctions for m = 3.
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Figure 6.7: Real and imaginary parts of radial velocity perturbation eigenfunctions for m = 7.
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Figure 6.8: Evolution of radial velocity perturbation eigenfunctions for m = 2 disturbance with
varying Re.
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Figure 6.10: Growth rate fi vs azimuthal wavenumber m for GLO profile with Re = 10000 and
varying δ. δ = 0.183, 0.26 and 0.324 correspond to νt = 0.002, 0.004 and 0.006 respectively.
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Figure 6.11: Comparison of tanh and GLO profiles: Growth rate fi vs azimuthal wavenumber
m for Re = 10000 and δ = 0.183.



6.4 Validation for 3D perturbations 75

0 2 4 6 8 10 12 14
m

0

0.25

0.5

0.75

1

1.25

f i
GLO

Tanh

Figure 6.12: Comparison of tanh and GLO profiles: Growth rate fi vs azimuthal wavenumber
m for Re = 1000 and δ = 0.183.

6.4 Validation for 3D perturbations

Here, we subject the mean flow to three-dimensional perturbations as discussed in chapter 5

and look for eigenvalues with positive imaginary part for the growth of perturbations. Only a

validation exercise has been carried out so far, and the 3D study on the annular vortex is left

for the future. In order to validate our code for 3D perturbations, we consider a well-known

three-dimensional mean flow, namely the q-vortex. This vortex is widely used to model trailing

line vortices, with the velocity distribution given by

Ur = 0, Uθ =
q

r

(
1− e−r2

)
, Uz = U∞ + e−r

2
, (6.6)

where Ur, Uθ and Uz are the radial, tangential and axial velocities, respectively. The swirl

parameter, q, is related to the ratio of the maximum swirl velocity to the maximum axial

velocity excess (or defect). The Reynolds number Re is based on the axial velocity scale and

the dispersion radius of vorticity. The q-vortex actually corresponds to a simplification of the

Batchelor (1964) vortex (trailing vortex model), which is a spatially evolving similarity solution

of the incompressible Navier-Stokes equations under a quasi-parallel approximation. We use

mapping 5.81, which clusters the points near the axis of the vortex. A closer look at 6.6 reveals

that for r > 3, the axial velocity is essentially zero and the azimuthal velocity approaches q/r,

which is a potential vortex. Therefore, we set the value of a in mapping 5.81 to 3. We follow the

same procedure used in the 2D analysis for convergence of eigenvalues. In the 3D case, we vary

the domain size Rmax from 20 to 100, and number of collocation points N from 60 to 200. Note
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that the Rmax for convergence in the 3D case is much smaller than that for the 2D case because

of exponential decay of eigenfunctions in the 3D case. We are able to obtain convergence of

eigenvalues up to eleven decimal places. We have validated our 3D code with a few papers and

the results are summarized below.

• m = 1, α = 0.5, q = −0.5, Inviscid, most unstable modes

Mayer & Powell (1992):

f1 = 0.0497186499174 + 0.2026281012942i

f2 = −0.01620888889 + 0.10582318954i

f3 = −0.029538003 + 0.060053650i

Our Code:

f1 = 0.0497186499 + 0.2026282013i

f2 = −0.0162088889 + 0.10582318954i

f3 = −0.0295380031 + 0.0600536528i

• m = −1, α = 0.811, q = 0.458, Inviscid, maximum growth rate

Fabre & Jacquin (1992): fi = 0.2424

Our Code: fi = 0.24244262434

• m = −2, α = 1.180, q = 0.691, Re = 10000, maximum growth rate

Fabre & Jacquin (1992): fi = 0.3119

Our Code: fi = 0.31189428825

• m = −3, α = 1.582, q = 0.656, Re = 100, maximum growth rate

Fabre & Jacquin (1992): fi = 0.1431

Our Code: fi = 0.14305692

6.5 Conclusion

We successfully validated the two and three-dimensional Chebychev spectral collocation codes

developed in chapter 5. With the help of the 2D code, we performed a preliminary study of the

inviscid and viscous linear stability analysis of an annular vortex. The mean vorticity profiles

that we examined include step, tanh and the generalized Lamb-Oseen profile obtained in chapter

4. We find similar trends for growth rate vs m for the step, tanh and GLO profiles in that there

is an upper cut off for unstable m. However, for the tanh and GLO profiles, we find the m = 2

disturbance to go unstable with two modes for a particular range of Re. In fact, this is also

observed by Michalke & Timme (1967) for their smooth vorticity profile, where they find m = 2

unstable with a single mode. This behavior is in contrast to that of the step profile, where the
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m = 2 is neutrally stable. Next, we observe that as we decrease Re, the maximum growth rate

decreases along with the range of unstable m (upper cut off decreases). This is more so the case

for the GLO profile than the tanh profile (where we observe anomalous behavior for high Re).

Thus, in general, viscosity seems to have a stabilizing effect, damping out the higher modes. On

the other hand, as the annulus becomes thinner, the maximum growth rate increases strongly

along with the unstable range of m (upper cut off increases). Thus, an annulus of vorticity can

go linearly unstable and potentially lead to the formation of multiple vortices. This however,

would only happen if the growth rate of the instability is larger than the rate at which the radius

of the annulus decreases by viscous diffusion.





Chapter 7

Conclusions

This thesis is a study of the merger of multiple vortices arranged on the vertices of regular

polygons, and the work is summarized as follows.

In chapter 2, we developed an OpenMP fourier pseudo-spectral code to solve the vorticity

streamfunction equations. In chapter 3, we validated the code and then studied the merger of

n equal co-rotating vortices placed on the vertices of regular polygons. A key finding here is a

new stage in the merger of multiple (three or more) vortices - an annulus which is long-lived, in

contrast to the ‘second-diffusive stage’ in the two-vortex merger case. This stage involves the

reduction in radius of an annular vortex by viscous diffusion to form one single vortex maximum.

We are able to observe a quantitative and qualitative change in the separation distance as we go

from two to six vortices, with the annular stage dominating the merger process as the number

of vortices increases, effectively delaying the merger. In the three-vortex case, the vortices

initially elongate radially, and then reorient their long axis closer to the azimuthal direction,

and then diffuse out to form an annulus. The inviscid case is similar at short times, but at longer

times, rather pronounced filaments are visible (in the three and four- vortex cases), which are

practically absent in the viscous case. However, in the six-vortex case, the vortices initially

itself align themselves azimuthally. Thus, we find a qualitative change in the tilt history as we

increase the number of vortices from three to six and more, which is ultimately responsible for

the change in separation distance history.

However, at high Reynolds numbers, the vortices merge asymmetrically and the annulus

even undergoes instabilities. To gain a better understanding of the physics involved in this, we

perform a linear stability analysis of an annular vortex. Assuming azimuthal symmetry, we find

an analytical solution of the Navier-Stokes equation, (chapter 4) with the initial condition of

an infinitesimally thin cylindrical vortex sheet. We obtain a Generalized Lamb-Oseen vortex

profile, which reduces in radius by pure diffusion and ultimately evolves into a regular gaussian

vortex. In chapter 5, we derived the viscous stability equations in cylindrical co-ordinates, and

discretized them using a Chebyshev collocation technique. In chapter 6, we carried out a quasi-

steady 2D viscous linear stability analysis of the time-frozen Generalized Lamb-Oseen vorticity

profile. We find that in the infinite Reynolds limit (inviscid case), there is an upper cut-off for

the azimuthal modes going unstable. In general, we find that viscosity has a stabilizing effect,

tending to preferentially stabilize the higher modes. We also find two modes going unstable

for the azimuthal wavenumber two, till a low Re limit, where only one mode goes unstable. In

addition to this, we also validated the 3D viscous linear stability code, with a q-vortex as the

mean flow.
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