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Abstract

Clouds play a major role in climate change, and the ability to simulate moist convec-

tion patterns is crictical for prediction of tropical weather and climate. Cumulus clouds

in particular can play a significant role in transportig heat across the whole extent of the

atmosphere. Recent laboratory experiments (Narasimha et al. (2011) have successfully

reproduced a variety of naturally occurring clouds, and suggest that the transient diabatic

plume, subjected to off-source diabatic heating is the appropriate cumulus flow model. In

the present work we report the first direct numerical simulation of a transient diabatic

plume as a fluid-dynamical model for understanding cumulus flows.

The simulation solves the 3D Navier-Stokes-Boussinesq equuations for an axisymmet-

ric transient diabatic plume. The equations were solved using a fractional step method

within the finite volume frame work. The solver developed has been validated against

three bechmark cases - (i) lid driven cavity flow; (ii) Rayleigh-Benard convection and (iii)

Turbulent-jet simulations. The visualisations of the cloud flow were carried out using a

coarse grid of around 4 million grid points, The final simulation was performed using 128

million grid points at a Reynolds number of 2000. The computations were carried out in

the ICE cluster housed at CSIR Fourth Paradigm Institute, Bangalore.

As on date only one realisation of the flow has been carried out. The inferences drawn

are therefore subject to certain statistical fluctuations. Nevertheless, the results show

that the forms of the flows generated resemble naturally occurring cumulus clouds. The

variation of the width of the flow with height towards the end of the simulations shows 5

distinct regimes - 1. a nearly laminar constant width regime; 2. a nearly linearly growing

turbulent plume regime; 3. the heat injection zone where the width is nearly constant

with height; 4. a regime of slow growth in width culminating at a maximum and 5. a short

dome like cloud top. Apart from the distribution of the flow width, those of maximum

velocity in the plume and total mass flow across it at each section has been evaluated.

Because the simulation provides complete vorticity field, it is possible to obtain the mass

flow across the plume area bounded by a well defined vorticity edge of the plume. En-

trainment coefficients involving the complete mass flow in the turbulent vortical region

of the plume have therefore become possible for the first time. Using smoothed fields a

preliminary estimate of the entrainment coefficient as it varies with height and in time is
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presented. The development of the code for the transient diabatic plume enables us to ob-

tain more precise statistical estimates by ensemble averaging. This is a task that can now

be completed if adequate computer resources are available, and will be part of future work.
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Chapter 1

Introduction

Clouds have fascinated man for several centuries. Poets and artists fascinated by their

beauty have used them in their works extensively (e.g. Meghaduta by Kalidasa). In the

modern day, they have been a subject of interest to meteorologists across the globe due

to their profound influence on climate change and global warming. Clouds are one of the

least understood domains in climate sciences and are listed in the most urgent problems

requiring attention by the Intergovernmental Panel on Climate Change (Randall et al.

(2007)). According to one estimate (Ramaswamy et al. (2001)) a 5% increase in short

wave cloud forcing would be sufficient to wipe out all the effects of the green house gases

emitted between 1750 and 2000. Clouds are an example of a flow system with complex

interactions among microphysics (multiphase fluid flow, thermodynamics and phase tran-

sition) , flow turbulence and radiation, and to this date remain a challenge to researchers.

A cloud is defined as “a visible aggregate of minute particles of water or ice or both

in the free air”(Houze Jr (1994). Clouds exhibit a wide variety of shapes and sizes, and

each type plays a different role in the global atmospheric circulation. Clouds are classified

based on a nomenclature developed by Luke Howard, a British chemist and amateur me-

teorologist (Narasimha (2012)). Of all the cloud species, the most interesting are the type

called cumulus (Latin word for “heap” or “pile”), because of their scientific importance

and distinct shapes. Cumulus clouds (figure 1.1) are defined as “detached clouds, gen-

erally dense and with sharp outlines, developing vertically in the form of rising mounds,

domes or towers, of which the bulging upper part often resembles a cauliflower” (Houze Jr

(1994)). Clouds have a lifespan that ranges range from the order of a few minutes to almost

a day in the case of large scale systems (Narasimha (2012)), and are unsteady throughout

their evolution. Cumulus clouds play a major role in tropical convection. They have a flat

base and can rise to a height of 15km or more. These tower-like structures can transport

heat across the whole vertical extent of the atmosphere (Narasimha (2012)). Present-

day cloud models have not been able to account for the effects of clouds satisfactorily,

particularly in the tropics. Accurate predictions of rainfall are important for tropical

countries. Particularly in a country like India, the accurate prediction of the monsoons

can have a significant impact on the economy of the country; in fact a Union Finance Min-

ister of India called the Indian monsoon the “real Finance Minister”(Hindustan Times

1



2 Chapter 1. Introduction

2012). Charney & Shukla. (1981) suggest that the predictability in the tropics ought

to be greater than in the higher latitudes. But this potential predictability is yet to

be exploited because the system is dominated by moist convection, for which existing

parameterization schemes are inadequate. For instance, present-day long-range forecasts

with existing models have consistently failed to predict the Indian monsoons satisfactorily.

Cumulus cloud formation generally begins with moist air rising up on the slopes of a

hill or a mountain or in the form of a plume from a hot patch on the surface of the earth.

As the air ascends the temperature drops due to adiabatic expansion. At some height

the ascending air is saturated with respect to water vapour. Further ascent reduces the

temperature and results in the formation of water droplets and ice crystals from the excess

water vapour. The phase transition releases latent heat into the system. The latent heat

released increases the buoyancy locally, and this aids in further ascent. This heat release

plays a significant role in determining the shape and size of the cloud. These complexities

have restricted the number of laboratory simulations of clouds. Until recently most re-

search in clouds was dependent on field measurements, and so the statistics obtained were

not conclusive enough as clouds are intermittent in space and time (Narasimha (2012)).

A major area of concern in a cumulus cloud is entrainment characteristics, as these de-

termine the major features of a cloud. Entrainment with respect to a cloud is a measure

of the amount of ambient dry air entering into an active cloud flow. The rate of ascent

and dilution, and the shape of the cumulus cloud, are predominantly dependent on the

entrainment characteristics. So capturing the entrainment correctly holds a central posi-

tion in the study of cumulus clouds.

1.1 Early Entrainment Models

The controversy on the appropriate entrainment model for clouds started in the late

1940’s. Numerous models have since been proposed. A comprehensive review on the

early entrainment models is presented by Reuter (1986). The issue was first addressed

by Stommel in 1947 (Stommel (1947)); he stated that the cloud entrains dry air laterally

from its surroundings. Thereafter, measurements made by Byers & Braham (1949) and

Starr Malkus (1954) concluded that the theory of lateral entrainment is adequate. In

the meanwhile, the idea of thermals (point sources of buoyancy) as an appropriate model

for cumulus clouds was proposed by Ludlam et al. (1957). The idea that lateral entrain-

ment is unimportant, whereas cloud top entrainment was significant, was first proposed

by Warner (1955). Turner (1963),Turner (1983) had proposed various models, which in-

cluded one based on a solution of Hill’s spherical vortex, thermals, similarity plumes, and

a starting plume (fig 1.2 A-C). The measurements made by Sloss (1967) suggested that
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Figure 1.1: Two typical cumulus cloud shapes: (a) Fluffy; (b) Tower-like formation.
(Image courtesy: Vybhav G. Rao, EMU, JNCASR)

lateral-entrainment theory was not appropriate. A detailed study conducted by Heyms-

field et al. (1978), as part of the National Hail Research Experiment (NHRE), confirmed

the existence of undiluted moist-adiabatic cores on the upstream side of most cumulus

clouds, and observed significant mixing further downstream. An analysis of NHRE data

by Paluch (1979) suggested that most of the entrainment occurred far above the obser-

vational level, and that the dilution occurred mainly due to the penetrative downdraft

mechanism. Analysis showed that the lateral entrainment in these tall clouds may be

small as the observed properties can be explained only if air from the cloud base ascends

to the top without laterally mixing with the ambient.

These observations discredited the classical lateral entrainment hypothesis proposed

by G I Taylor (Taylor (1946)) in a war-time report. The hypothesis states that the mean

inflow velocity entraining into a turbulent free shear flow is proportional to a local char-

acteristic velocity scale. This hypothesis is based on the similarity assumption. This

model was successful in predicting the entrainment in several practical flows like classical

plumes and jets with and without stratification (Morton et al. (1956)). This entrainment

model, when applied to cumulus clouds, underestimates the height of vertical ascent due

to higher dilution as a consequence of over-predicted ambient entrainment.

Flow models have also been proposed based on episodic vertical mixing and shedding

thermals (Blyth (1993)). These were later found to explain only flow properties close to
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Figure 1.2: Schematic of different physical models for cumulus-cloud evolution with time.
Arrows inside the the flow indicate the direction of mean motion relative to plume head.
Narasimha et al. (2011)

the cloud-top. Some recent studies have shown that the entrainment rates in a cloud are

high at the cloud base and drop significantly with altitude (Romps & Kuang (2010)).

This observation was not explained by any of the above mentioned entrainment models.

1.2 Appropriate Cumulus Flow Model

Based on the extensive field experiments conducted, a broad schematic picture of cumulus

clouds is now available. But until recently, the flow models (mathematical and physical)

formulated for a cumulus cloud failed to describe the flow correctly. Several experiments

were conducted to reproduce clouds in laboratory conditions. Most of these studies were

directed towards understanding small-scale dynamics (Warhaft (2009)). Interesting at-

tempts were made by Turner (1963) where the evolution of bubbles was tracked with

their volume increasing with time. But all these attempts failed to shed light on the

special features of a cumulus cloud. None of these flow models was able to capture the

macrodynamics of cumulus clouds. Recent experiments (Narasimha et al. (2011)) have

successfully reproduced a variety of naturally occurring cumulus clouds and were able to

track their entire history. The experimental setup and its details are discussed by Bhat

et al. (1989). Based on new experiments “the transient plume subjected to off-source dia-

batic heating” (fig 1.2 D) is considered as the appropriate flow model for non-precipitating

cumulus cloud flows (Narasimha et al. (2011)). Two interesting cumulus cloud examples,
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simulated experimentally using this flow model and shown in figure 1.3, demonstrate that

this model can capture several features of a cumulus flow. Off-source volumetric heating,

dynamically scaled to mimic the latent heat release due to phase transition in clouds,

plays a significant role in determining the dynamics of the clouds. The variation of the

heating profile in both space and time plays a crucial role in determining the shapes of the

cloud flow. This flow model captures the inherent transient and non self-similar behaviour

of the turbulent cloud flow (Narasimha et al. (2011)).

Figure 1.3: Two matched pairs of natural cloud (left) and laboratory experiments (right).
(Narasimha et al. (2011))

1.3 Previous Studies

The present flow model is an extension of experiments conducted to study the effect

of off-source buoyancy in a round jet (Bhat & Narasimha (1996)) and a round plume

(Venkatakrishnan et al. (1998)). A comprehensive review of the data from these works is

presented by Narasimha (2012) and Diwan et al. (2011). The results presented in these

works are based on steady state measurements as opposed to a transient plume model.

But the insights gained from these studies help in understanding the “anomalous en-

trainment” behaviour in a cumulus cloud flow. Bhat & Narasimha (1996) showed that

entrainment coefficient in a heated jet does not follow Taylor’s entrainment hypothesis.
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The Laser Induced Fluorescence (LIF) images (Venkatakrishnan et al. (1998)) show the

dramatic effect of heat addition on the structure of the flow. The coherent structures in

the flow were disrupted due to the off source heating. The tongue-like structures pro-

truding from the core flow in case of a pure plume or jet were absent when the flow was

subjected to off-source heat, and the spread rate of the flow above the heat injection zone

underwent drastic reduction. The core flow is well mixed with hardly any trace of ambient

fluid, which is very similar to the undiluted protective cores observed in cumulus clouds

(Riehl & Malkus (1958)). Similar investigations were carried out by Agrawal et al. (2004)

and Venkatakrishnan et al. (2003), and similar observations were reported. A detailed

comparison of the data is given in Diwan et al. (2011).

Laboratory experiments have limitations in acquiring all the spatial and temporal

flow field information. This limitation can be overcome in case of a numerical experi-

ment. Basu & Narasimha (1999) simulated a temporally evolving heated jet using the

Boussinesq assumptions as an analogue of the spatially developing flow in the laboratory.

The observations were consistent with the experiments. A dramatic increase in the vor-

ticity was observed post heat injection, and the entraining flow field was altered a great

deal due to the distortion of coherent structures. Spatial simulations were conducted by

Agrawal et al. (2005), but the non dimensional heat release number (sec: 2.3), an impor-

tant simulation parameter, was 40 times higher than the available experimental results

and so a direct comparison is not possible. Konduri (2009) explored the possibility of

studying the dynamics of a cumulus flow by performing a DNS of a starting plume sub-

jected to additional off-source buoyancy.

A key objective in all the experiments and the numerical simulations has been to see

the effect of off-source heat release on entrainment. Figure 1.4, replotted from Narasimha

(2012), shows the variation in entrainment coefficient with height from the cloud base for

each laboratory experiment. The data exhibit a trend very different from steady state

plumes, thermals and other proposed models. There is a mild increase in the entrainment

level just above the cloud base till it peaks and subsequently falls to a value less than

the one predicted by similarity theory. These results are broadly consistent with observa-

tions in real clouds Narasimha (2012). A detailed review of the results is given in Diwan

et al. (2011). A mechanism has been proposed based on which the coherent structures

are disrupted above the heat injection zone, thus disabling the first step (engulfment) in

the entrainment process Narasimha et al. (2011). From experiments on free shear flows it

was proposed that entrainment is a three step process namely engulfment, mingling and

molecular mixing (Brown & Roshko (1974)). The role played by the baroclinic torque,

proportional to g×∇T , in the vorticity equation is discussed by Narasimha (2012). The

heating generates a mean baroclinic torque which peaks radially midway between the flow
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Figure 1.4: Normalized entrainment coefficient data from the experiments on jets and
plumes till date. Narasimha (2012)

axis and the lateral edges (on a roughly cylindrical sheet). The sign of the torque acting

is such that it enhances the axial velocity at the centre and depresses it at the edges.

The engulfment tongues at the edge of the flow are thus folded down and the flow thins

down due to enhanced shear. The core of the flow is well mixed, presumably due to the

explosive growth of turbulent enstrophy at the smaller scales.

With the advent of faster computers in the 1990s Large Eddy Simulation (LES) of

clouds shot to prominence. A detailed review is given by de Rooy et al. (2012). LES is

a powerful tool in obtaining the quantitative entrainment behaviour of clouds (Siebesma

& Cuijpers (1995) and De Rooy & Siebesma (2008)). LES studies have revived interest

in the long-standing question of entrainment and detrainment profiles in cumulus clouds.

Several studies of shallow cumulus clouds reveal that the detrainment (negative entrain-

ment) profiles vary much more than the entrainment profiles do (De Rooy & Siebesma

(2008)). LES studies have been able to reveal a subsiding shell outside the zone of lat-

eral mixing (Jonker et al. (2008)). The simulation by Heus & Jonker (2008) shows that

entrainment from the lateral direction plays a more significant role than the entrainment

from the top in diluting the cloudy updraught, thus contradicting the conclusions by

Squires (1958) and Paluch (1979). The observations reported in the study reproduce the

Paluch mixing lines (Heus & Jonker (2008)) and track the origin of entrained dry air
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by using Lagrangian particles. They concluded that hardly any dry air entrained from

the cloud top penetrates downwards to dilute the cloudy updraft. Recent simulations

have been able to shed some light on the dynamics of deep convection. Romps & Kuang

(2010) reported an LES based on a fully compressible cloud-resolving model with the

objective of studying steady state moist convection. They have been successful in esti-

mating entrainment directly by tracking the dilution rate of passive scalars released at

the cloud base (Romps & Kuang (2010)). These techniques have been able to provide

information on the locally varying entrainment and detrainment coefficients. Recently,

Pauluis & Schumacher (2011) simulated conditionally unstable moist convection in the

Rayleigh-Benard problem. They incorporated models to account for the thermodynamics

and phase transitions in the clouds.

In the present work, we report a Direct Numerical Simulation (DNS) of a transient

diabatic plume to study the features of a cumulus cloud flow. A quantitative study on

the effect of off-source heat release on the entrainment coefficient is reported here. The

rest of the thesis is organised as follows: chapter 2 describes the governing equations and

the numerical method implemented. In chapter 3, the DNS solver developed is validated

with some standard test cases. The results obtained are discussed in chapter 4. Chapter

5 concludes the present work.



Chapter 2

Numerical details

2.1 Introduction

A numerical approach to the study of any turbulent flow (including cumulus clouds) can

be classified into three broad categories: Reynolds Averaged Navier-Stokes (RANS), Large

Eddy Simulation (LES) and Direct Numerical Simulation (DNS). Among these only DNS

has the capability to provide a complete description of the structure of the flow without

appeal to anything beyond first principles, and hence is the most powerful and credible

numerical tool in the study of turbulent flows. In particular all the relevant spatial and

temporal scales are resolved. DNS is compute-intensive and requires state of the art com-

puting facilities to simulate a physically realistic flow.

With the advent of powerful computing resources, DNS has transformed the approach

to understanding turbulent flows at bulk Reynolds numbers of order 103 − 104. An inter-

esting review of DNS as a research tool is given in Moin & Mahesh (1998). To capture

faithfully the multiscale character of turbulent flow sufficient care has to be taken while

discretising the nonlinear governing equations. Unlike in RANS simulations where upwind

schemes have been used extensively to make the solver robust, to do DNS a non-dissipative

and robust scheme is required. Due to their dissipative nature upwind schemes, with a

numerical viscosity that may mask the effects of molecular viscosity, are not widely used

for DNS.

It has been observed that improper discretisation of the advective term in the Navier-

Stokes equations will lead to numerical instability at a higher Reynolds number. The

non-linear terms computed in physical space can result in aliasing errors which in turn

can trigger numerical instability. Arakawa (1966) showed that for long-time numerical

integration of two-dimensional flows using a vorticity-stream function formulation, con-

servation of enstrophy in the absence of physical or numerical viscosity is important. In

the velocity-pressure formulation, the corresponding higher order variable is kinetic en-

ergy. Morinishi et al. (1998) showed that the discretisation of the advective term in the

momentum equation should conserve kinetic energy to ensure numerical stability and non-

dissipative behaviour. Verstappen & Veldman (2002) extended the idea of kinetic energy

9
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conservation in a discrete sense to non-uniform grids, and Mahesh et al. (2004) used these

ideas to develop an algorithm for performing DNS and LES of incompressible flows in an

unstructured frame work. Discrete conservation of mass, momentum and kinetic energy

ensures the robustness of the solution procedure without the use of numerical/artificial

viscosity.

2.2 Governing Equations

From the evidence of the laboratory experiments of Narasimha et al. (2011) and previ-

ous numerical simulations (Basu & Narasimha (1999), Konduri (2009)), the dynamics of

the flow can be considered to be essentially incompressible and the effect of variation of

density appears only as a source term in the momentum equation. So, the Boussinesq

approximation may be used to simplify the compressible Navier-Stokes equations, the

density differences being neglected except when they are coupled with the accleration due

to gravity in the momentum equation (Spiegel & Veronis (1960)). This is equivalent to

saying that the buoyancy force is comparable with the inertia force in the limit of small

density differences because the flow acceleration is small compared to acceleration due to

gravity. The off-source heat injected into the flow appears as a source term in the temper-

ature transport equation as given in Basu & Narasimha (1999). The governing equations

with off-source heat addition (which may be called the diabatic Boussinesq equations) are

Continuity equation:

∇ · u = 0, (2.1)

Momentum equation:

∂tu+ (u · ∇)u = −1

ρ
∇p+ ν∇2

u− gαT, (2.2)

Energy equation:

∂tT + (u · ∇)T = k∇2T +
J(t)

ρcp
H(x, y, z, t), (2.3)

where u is the velocity vector, T is the change in temperature above the ambient, p is

the pressure, ρ is the ambient density, cp is the specific heat at constant pressure, ν is the

kinematic viscosity, k is the thermal conductivity, α the coefficient of thermal expansion,

g is the acceleration due to gravity acting vertically downwards, J(t) is the heat added per

unit volume per unit time as a function of time and H(x, y, z, t) is the heat distribution

function which determines the spatial zone within which the heat is released.
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2.3 Non-dimensionalisation

For the cloud flow, the hot patch diameter do is chosen as the length scale and its tem-

perature differential above the ambient, To, is chosen as the temperature scale. The

velocity scale is obtained as Uo =
√
gαdoTo. These scales are used to non-dimensionalise

the governing equations given in the previous section. The non-dimensional equations so

obtained are

∇∗ · u∗ = 0, (2.4)

∂∗

t u
∗ + u∗.∇∗u∗ = −∇∗p∗ +

1

Re
∇∗2u∗ + T ∗ẑ, (2.5)

∂∗

t T
∗ + u∗.∇∗T ∗ =

1

Re Pr
∇∗2T∗ +G(t)H(x, y, z, t), (2.6)

where, the starred quantities represent the non-dimensional variables. The three non-

dimensional numbers are:

Reynoldsnumber, Re =
Uodo
ν

(2.7)

Prandtlnumber, P r =
ν

k
(2.8)

Heatreleasenumber,G =
J

ρcp

do
UoTo

(2.9)

For convenience, the asterisk (*) will be dropped from the non-dimensional terms in

the following.

2.4 Time discretisation

Due to the presence of multiple time scales, turbulent flows are categorised as a stiff

system with respect to time advancement (Moin & Mahesh (1998)). To capture the

smaller scales accurately smaller time steps are required. So, an implicit time integration

scheme may not be required for lower Reynolds number and Prandtl number. For the

simulations presented here, second order Adams-Bashforth discretisation has been used

for the nonlinear and the viscous terms. The pressure and buoyancy terms are treated

implicitly.
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Figure 2.1: 1D non uniform grid

2.5 Spatial discretisation

As mentioned previously, conservation of mass, momentum and kinetic energy in the dis-

crete system plays a significant role in ensuring the accuracy and robustness that are

essential for DNS of turbulent flows. Morinishi et al. (1998) have discussed the conserva-

tion properties of schemes for incompressible Navier-Stokes equations on a uniform grid.

Verstappen & Veldman (2002) extended the formulation to account for symmetry preser-

vation in a non uniform grid. In the present simulations symmetry-preserving, kinetic

energy conserving discretisation is used in a nonuniform cartesian grid. For example, the

first and second derivatives on a 1D grid (figure 2.1) are given by

∂xu(xi) =
ui+1 − ui−1

xi+1 − xi−1

(2.10)

∂xxu(xi) = [
ui+1 − ui

xi+1 − xi

− ui − ui−1

xi − xi−1

]
2

(xi+1 − xi−1)
(2.11)

An important point to be noted here is that the skew symmetry of the advective operator

is preserved at the expense of the local truncation error. In a nonuniform grid the local

truncation error is O(∆x), which is not of much significance as the global error is O(∆x2)

(Verstappen & Veldman (2002)).

2.6 Solution Algorithm

In the incompressible Navier-Stokes equations, the velocity and pressure fields are strongly

coupled and the continuity equation has no time derivative. Mass conservation has there-

fore to be enforced implicitly through the pressure field in the momentum equation. This

difficulty can be eliminated in a 2D case where a vorticity-streamfunction formulation

can be used, but for a 3D system there is no option but to work with the primitive

variables. In the late 1960’s Chorin (1968) and Temam (1969) introduced the idea of

fractional-step/projection methods to solve the incompressible Navier-Stokes equations

in the primitive variable form, and the methods have since then emerged as a separate

topic of research.
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Figure 2.2: 2D staggered grid

For the simulations presented here, a fractional-step/time-split method is used within

a finite volume framework. The primitive variables are stored in a staggered format(figure

2.2). The pressure (p) is stored at the cell centre and the velocities (ui) are stored at the

cell faces. A non-uniform cartesian grid layout (figure 2.3) is used to provide adequate

resolution in the core flow region.

In the first step of the solution procedure, a pseudo-velocity field (ûi) is calculated from

the non-linear (NL), viscous (V ISC) and buoyancy terms in the momentum equation.

In the following step, the pseudo-velocity field which does not satisfy the divergence-free

criterion locally is projected into a divergence free space through the projection operator.

The steps in the algorithm are given below.

Step1:

ûi − u
n

i

∆t
=

1

2
[3(−NL+ V ISC)n − (−NL+ V ISC)n−1] + T n+1ẑ (2.12)

Step2:
un
i
+1 − ûi

∆t
= −∂pn+1

∂xi

(2.13)

The pseudo velocity obtained from equation 2.12 is used to obtain the correct velocity

field (un+1). Taking divergence of equation 2.13 and using the mass conservation equation

gives the Poisson equation for the pressure field (2.14),
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Figure 2.3: Non-uniform cartesian grid

∇2pn+1 =
∇ · ûi

∆t
(2.14)

The resulting pressure field is correct O(∆t). The divergence-free velocity field (un+1)

is obtained by correcting the pseudo velocity field using the gradient of the pressure field

obtained from equation 2.14. The velocity field obtained is correct O(∆t2). The details

of the order of accuracy are discussed in Perot (1993).

2.7 Scalar equation

The numerical integration of a scalar equation is different from the momentum equation

in the incompressible Navier-Stokes equations. The pressure term in the momentum

equation, coupled with the divergence free criterion, does not permit sharp gradients in

the velocity field (Muppidi & Mahesh (2008)). The absence of a pressure-like term in the

scalar equation can produce gradients sharper than in the velocity field even when the

Schmidt number (Sc) is 1. This can pose numerical constraints on the time step size and

the sharp gradients can trigger dispersive errors. The governing equation for a scalar C

can be written as follows

∂tC +∇ · (Cu) =
1

Re Sc
∇2C + source (2.15)

In the simulations presented in this thesis two scalars are used. One of them is the
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active scalar temperature, and the other a passive scalar analogous to dye concentra-

tion in the laboratory experiment. The Prandtl number (Pr) and Schmidt number (Sc)

used in the simulations are unity to prevent severe restrictions on the size of the time step.

The scalar system considered here has sharp gradients and so a higher order advec-

tion scheme will introduce numerical oscillations (dispersive errors) into the system in the

vicinity of discontinuities. This would affect the boundedness of the scalar field. On the

other hand, a first order upwind scheme preserves boundedness but introduces numeri-

cal diffusion and smears out the sharp gradients. To preserve the boundedness property

a simple predictor-corrector technique, introduced by Herrmann et al. (2004), is imple-

mented. In the predictor step, the scalar equation is integrated using the higher order

discretisation scheme (2nd order central differencing in this case). If the scalar value is

out of bounds at any grid point, then in the corrector step the higher order discretisa-

tion in the predictor step is replaced locally with a first order upwind stencil. So the

scheme is diffusive only in the region having sharp gradients. This scheme is very simple

to implement and is also computationally very efficient.

2.8 Boundary Conditions

A mathematical model of any physical system is incomplete without the appropriate

boundary conditions. In the case of the Navier-Stokes-Boussinesq equations, boundary

conditions are required for the velocity vector, pressure and temperature. Specifying

consistent boundary conditions in a strongly coupled velocity-pressure field is difficult be-

cause of finite domain size (truncation of the computational domain from the rest of the

universe). Inappropriate boundary conditions can trigger non-physical oscillations which

can corrupt the solution field. The most difficult boundary condition is the one where

the flow leaves the boundary. The conditions specified on these boundaries are called

outflow boundary conditions (OBC). A consistent OBC is tractable in case of simple lam-

inar flows by pushing the outflow boundary downstream. This idea is computationally

very expensive in the case of DNS of turbulent flows. The objective of a good outflow

boundary condition is to reduce the upstream effect and allow the flow to exit the domain

gracefully (Sani & Gresho (1994)).

For the cloud flow, the bottom plane is treated as a no-slip wall with a hot circular

patch at the centre. The lateral boundaries are treated as no slip adiabatic walls. At the

top boundary, the normal derivatives of all the variables are set to zero except pressure;

the pressure boundary condition is motivated from the continuity equation and is taken

as
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∂p

∂n
= − δ

∆t
(2.16)

where,

δ = − 1

SN

∫
S

(n · û)dS (2.17)

where SN is the surface area in the normal direction at the outflow boundary, S is the

surface of the computational domain and SN is the area of the outflow boundary. Further

details are given in Sani & Gresho (1994).

2.9 Linear Algebra Solver

Solving elliptic equations numerically is a computationally expensive task. Traditional it-

erative schemes have very slow convergence due to the slow damping of the lower wavenum-

bers. Efficiency of the elliptic linear system solver dictates the computational efficieny

of the incompressible Navier-Stokes solver. The pressure in the incompressible flow is

governed by the elliptic Poisson equation, the source term having contributions from the

non-linear and buoyancy terms in the momentum equation.

A wide variety of efficient algorithms exist to solve the linear system obtained from

the discretisation of a Poisson equation. The efficiency of each of these algorithms varies

depending on the nature of the grid/stencil and the number of unknowns. For instance,

a Fourier-based method coupled with a tridiagonal matrix solver is one of the best com-

binations to solve a 3D problem with at least two periodic directions. But this method

cannot be used if the grid is non-uniform in at least two directions. In such a situation,

the best option is to use an iterative solver within a multigrid framework.

A multigrid based algorithm can give a grid-independent convergence and is the most

general and efficient iterative technique to solve a sparse linear system of equations. The

multigrid frame work consists of two fundamental components namely, error smoothing

and coarse grid correction. Iterative schemes like Gauss-Siedel and Gauss-Jacobi, com-

monly known as relaxation schemes, have slow convergence due to the inefficient damping

of the low frequency errors. Eigenvalue analysis of the iterative method reveals that the

error components belonging to the low frequencies have an amplification value close to

1 and so they converge very slowly. But the higher frequencies are damped effectively.

In a multigrid framework, the relaxation schemes are good smoothers. A few sweeps of

any of these relaxation schemes will smoothen the residue which can be restricted onto

a coarser grid. The low frequency errors in a refined mesh progressively approach higher

frequencies (relatively) as they are projected onto a coarser grid. At each grid level the

high frequencies are damped by the iterative scheme. In a nutshell, the basic iterative
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technique eliminates the high frequency components at different levels of coarsening. This

leads to a rapid convergence to the final solution. The choice of prolongation and restric-

tion operators in the multigrid setup is dependent on the nature of the grid used and the

equation to be solved.

The discrete form of a pressure Poisson equation can be written as AX = b where A

is a sparse matrix, X is the vector of unknowns and b is the source vector. Depending on

the Reynolds number the number of unknowns in the linear system could vary from a few

millions to a few billions (limited by available memory and time on the computer). An

efficient linear algebra solver is required to get results in reasonable time. There are several

open source linear algebra packages like PETSc, HYPRE, Trilinos etc. But to choose an

optimal set of solver and preconditioner for a given linear system is not an easy task. For

the simulations presented here from the HYPRE package (Falgout et al. (2006)), a semi-

coarsening based multigrid preconditioner (SMG) in association with GMRes (GMRES)

as the solver, is used to solve the linear system.

2.10 Code Parallelization

DNS of the incompressible Navier-Stokes equations is computationally intensive with

respect to both CPU time and memory (RAM) requirement. Most of the computational

time is spent in the solution to the pressure Poisson equation. Low resolution(around 106

grid points) simulations can be run on a single processor but as the resolution increases

the simulation has to be run on multiple processors. The solver was parallelized using 3D

domain decomposition methodology, and MPI (Message Passing Interface) protocol was

used for communication among processors. An equal number of processors was assigned

to each direction. So, the total number of processors used was equal to N3 where N

represents the number of processors in each direction.





Chapter 3

Validation

Any numerical code developed to solve a physical problem has to be validated against

benchmark experimental or numerical results in order to establish the accuracy and ca-

pability of the code. The validation exercise should involve standard benchmark cases

and should also include cases relevant to the particular study. Our objective here is to

study the evolution of a transient cumulus cloud flow. To the best of our knowledge no

quantitative experimental or computational results are yet available for this case. In this

chapter we therefore present comparisons between the results generated from our code

and known results for related problems.

3.1 Lid-Driven Cavity Flow

Lid-driven cavity flow (2D and 3D) is a standard problem and has been studied exten-

sively through CFD and laboratory experiments. The simplicity of the geometry and the

unambiguous boundary conditions make the problem a standard benchmark for new com-

putational techniques. With increasing Reynolds number the flow inside a cavity exhibits

most of the phenomena observed in incompressible flows. A detailed review on this class

of flows is given by Deshpande & Shankar (1994). We present the results for both 2D and

3D lid-diven cavity flows. Though 2D cavity flows are not physical, their computation

has been studied extensively by solving the 2D Navier-Stokes equations.

For the 2D (x− y plane) case, a cavity of aspect ratio 1 (square cavity) is considered

here. The top lid at y = 1 moves with a tangential velocity of unit magnitude and zero

normal velocity. The other walls have no penetration and no slip as the velocity boundary

conditions. The simulations presented here are for a Reynolds number of 1000, and the

results are compared with the results from Erturk (2009). Simulations are conducted for

two different grid sizes, 1282 and 2562. The variation of horizontal (u) and vertical (v)

velocities along the vertical (y) and horizontal (x) centerlines is shown in Figures 3.1 and

3.2 respectively. There is good agreement between present simulations and the benchmark

test case. The results from the 2562 grid simulation plot on top of those from the 1282

grid simulation, which demonstrates the grid independence of the results.

For the 3D case, a cavity with square cross section and a spanwise aspect ratio (SAR)

19
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Figure 3.1: 2D Lid Driven Cavity. Variation of x velocity in the y direction at a Reynolds
number of 1000.
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Figure 3.2: 2D Lid Driven Cavity. Variation of y velocity in the x direction at a Reynolds
number of 1000.
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Figure 3.3: 3D Lid Driven Cavity. Variation of x velocity in the y direction on the
symmetry plane at two different Reynolds numbers.
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Figure 3.4: 3D Lid Driven Cavity. Variation of y velocity in the x direction on the
symmetry plane at two different Reynolds numbers.
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of 1 is considered here. The wall at x = 1 is given a tangential velocity of unit magnitude

in the y direction and zero normal velocity. The other five walls have no slip and zero

normal velocity as the boundary conditions. The results on the symmetry plane (z = 0.5)

are discussed here. Calculations are performed for Reynolds numbers of 400 and 1000 on

643 and 1283 grids respectively. The mesh is non-uniform in the x and y directions and

uniform in the spanwise direction. The variation in x and y velocities on the symmetry

plane, along the vertical and horizontal centrelines respectively, are shown in figures 3.3

and 3.4. The results from our computations agree with the pseudo-spectral calculations

by Ku et al. (1987). It can be observed that the results from the 3D computations are

different from those of the 2D computations at the same Reynolds number; the presence

of walls in the spanwise direction has clearly altered the structure and the topology of the

flow.

3.2 Laminar Rayleigh-Benard Convection

Rayleigh-Benard convection is a classical benchmark case for flows involving buoyancy

effects and has applications in the area of atmospheric sciences. The non-dimensional

parameters governing this flow are Rayleigh Number (Ra = Re2Pr) and Prandtl number

(Pr). Extensive stability analyses of this flow have been performed to study the onset

of convection. For benchmarking the code, this system is studied with air as the work-

ing medium (Pr = 0.71) and periodic boundary conditions are imposed in the horizontal

directions for temperature, pressure and all velocity components. For this case the crit-

ical Rayleigh number is 1708. We present steady state results for a Rayleigh number

of 4000. The bottom wall is maintained at a constant temperature Th and the top wall

is maintained at a lower constant temperature Tc. The governing equations are non-

dimensionalised using Th − Tc as the temperature scale and the distance h between the

top and the bottom plates as the length scale. Solid wall boundary conditions are imposed

on the top and bottom walls. The dimensions of the domain in the periodic directions

are 2.8h. The acceleration due to gravity acts in the negative x direction. Solutions are

computed using two different grids of size 163 and 323. The results reported here are from

the larger grid. The system is initialised with a diffusion profile for temperature. Random

fluctuations with zero mean and a maximum amplitude of 10 % of the temperature scale

are superimposed on the base state temperature profile to trigger convection.



3.2 Laminar Rayleigh-Benard Convection 23

Figure 3.5: Non dimensional temperature contours on a vertical section at Ra = 4000.

Figure 3.6: Vertical velocity contours on a vertical section at Ra = 4000.

Figure 3.7: z velocity contours on a vertical section at Ra = 4000.
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Figure 3.8: Temperature contours on a horizontal section at Ra = 4000. The flow field is
two dimensional as the temperature field does not vary in the y direction.

Figure 3.9: Variation of horizontal averaged non dimensional temperature in the vertical
direction.



3.3 Turbulent Round Jet 25

The qualitative features of the steady state flow field along a vertical section are given

in figures 3.5 - 3.7. The temperature field (figure 3.5) depicts rising and descending

plumes. A related horizontal section given in figure 3.8 shows that the flow is essen-

tially two-dimensional. The observations reported here are consistent with the previously

reported numerical results (Biringen & Peltier (1990), Lipps (1976)). Quantitative com-

parisons for average temperature variation are shown in figure 3.9. The averaging is done

over space on a horizontal plane containing the two periodic directions. The distribu-

tion of average temperature between the two plates agrees well with the computations

reported by Lipps (1976). The wall Nusselt number calculated from the present simula-

tion is 1.7745, to be compared with those reported by Lipps (1976) 1.75 and Biringen &

Peltier (1990) 1.79.

3.3 Turbulent Round Jet

A turbulent jet is an example of a free shear flow which has been studied through lab-

oratory experiments and DNS. Jets play a significant role in propulsion, combustion,

acoustics and mixing. Validating the solver with a free shear flow is relavant here because

we intend to study the dynamics of a cumulus cloud flow, which again is a free shear flow.

A particular problem with free shear flows is the specification of the appropriate boundary

conditions to capture the entrainment accurately. Several laboratory experiments have

been conducted to study round jets and two of them are considered as benchmark cases

(Panchapakesan & Lumley (1993) - Reynolds Number ∼ 104; and Hussein et al. (1994) -

Reynolds Number ∼ 105). These will be used to compare the results of our DNS simula-

tions. DNS on a round jet has been performed at a Reynolds Number of 2400 by Boersma

et al. (1998) and Babu & Mahesh (2004). They use different lateral and outflow boundary

conditions but the converged statistics are in reasonable agreement with the experiments.

In the present study, simulations are conducted at a Reynolds number of 2400 based

on exit velocity and exit nozzle diameter. Simulations were performed at two different

grid sizes. Simulation A has a grid size of 10 million (200 x 200 x 250, x, y, z respectively),

and simulation B has a grid size of ∼19 million (240 x 240 x 330). The details about the

domain size and time step size for each simulation are given in table 3.1. A non-uniform

grid similar to that in figure 2.3 is used to resolve the core flow better. The lateral bound-

aries are treated as walls and the bottom boundary is a wall with an orifice of diameter d

through which flow enters the domain with a constant axial velocity of magnitude Uo (top

hat profile). All flow variables are non-dimensionalised with Uo and d as scales. At the

top (outflow) boundary, zero normal derivative condition is used for all the flow variables

except pressure. For the pressure boundary condition the details are given in section 2.8.
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Five diameters away from the outflow boundary the viscosity is increased by a factor of 20

to diffuse the vortical structures before interacting with the outflow boundary. It has been

observed that with the existing outflow boundary conditions numerical instabilities orig-

inating from the outflow boundary propagate upstream in the absence of viscous padding.

Simulation Domain-Size

(x,y,z)

Grid-size Timestep-size

A (100,100,50) (240,240,330) 0.005

B (100,100,45) (200,200,250) 0.005

Table 3.1: Simulation details

The inflow field is perturbed by adding pseudo-random noise with zero mean and uni-

formly distributed with an amplitude of 0.1 % of Uo on to the top hat profile at each

time step. An initial stage of upto t = 1250 was computed to allow all transients to

leave the domain. Statistics were calculated over 1250 < t < 2500 for simulation A and

1250 < t < 3000 for simulation B. The computations were performed in the ICE cluster

(SGI Altix ICE 8400 EX cluster, Intel Xeon CPU X5670 2.93 GHz dual six-core proces-

sor nodes w/Infiniband) at CSIR - 4PI, Bangalore. The statistics and other quantities

calculated from the simulations are discussed below.

In figure 3.10 the variation of the inverse of the center line velocity with axial distance

is plotted. The solid line represents the result from the present DNS and the broken line

represents a linear fit of the form

1

Uc

=
1

Bu

[z − zo] (3.1)

to the data points in the range 22 < z < 37. The parameters obtained from the curve

fit are compared with three other results. The summary is given in table 3.2.

Quantity Panchapakesan

& Lumley

(1993)

Hussein

et al.

(1994)

Boersma

et al.

(1998)

Present

(Sim. A)

Reynolds number ≈104 ≈105 2.4 x 103 2.4 x 103

Bu 6.1 5.8 5.9 6.2

zo - 4.0 4.9 5.45

Table 3.2: Parameters obtained from the linear fit for the decay of the mean centerline
velocity with axial distance.
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Figure 3.10: The inverse of the centerline velocity non dimensionalised with the inlet
velocity plotted against the axial distance from the inlet. The curve fit is obtained from
the equation 3.1.

The inverse dependence of the centere line velocity on the axial distance is evident

from the plot in figure 3.10. The parameter zo, known as the virtual origin, and the con-

stant Bu are functions of experimental conditions and the noise introduced at the inflow.

So these two parameters may vary from case to case. The value of Bu reported here is

close to the values reported by Panchapakesan & Lumley (1993) and Hussein et al. (1994).

The streamwise variation of the turbulence intensities in all the three directions, and

the maximum Reynolds shear stress, are plotted in figure 3.11. It can be observed that

the maximum Reynolds shear stress acheives an asymptotic limit around z >= 25. The

axial intensity does the same at z >= 30 and the radial, azimuthal intensities appear to

saturate around z = 35. These observations are consistent with experimental findings

from which it is known that the Reynolds shear stress attains self similarity before the

turbulence intensities. A similar observation has been reported in the DNS calculations

of Boersma et al. (1998).
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Figure 3.11: The variation of the normalised centerline turbulence intensities in all di-
rections and the maximum of normalised Reynolds shear stress at a given height as a
function of axial distance.
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Figure 3.12: Turbulence intensity in the axial direction normalised with the local center-
line velocity as a function of the similarity variable η. The legend explains the various
cases plotted.
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Figure 3.13: Turbulence intensity in the azimuthal direction normalised with the local
centerline velocity as a function of the similarity variable η. The legend explains the
different cases plotted.

Figure 3.14: Turbulence intensity in the radial direction normalised with the local cen-
terline velocity as a function of the similarity varaible η. The legend explains the various
cases plotted.
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Figure 3.15: The Reynolds shear stress normalised with the local centerline velocity as a
function of the similarity varaible η. The legend explains the various cases plotted.

In figure 3.12 we plot the variation of normalised axial turbulence intensity against

the similarity variable η = (r/(z − zo)). The axial intensity profiles are averaged over 32

< z < 40. Figures 3.13 and 3.14 give the variation of normalised azimuthal and radial

turbulence intensities against η. The profiles are averaged over 35 < z < 40. Figure

3.15 plots the normalised Reynolds shear stress averaged over 28 < z < 38 against the

similarity variable. In these figures it can be seen that the solution improves as the grid

resolution improves. The results obtained from the higher resolution simulation reproduce

the trends observed in the laboratory experiments. There exist some differences between

the present DNS results and the experiments. First of all the two experiments used as the

benchmark cases here do not agree between themselves. There could be several reasons

for these differences. The resolution in simulation A may not be sufficient to capture all

the scales; from Babu & Mahesh (2004) it can be observed that with higher grid resolu-

tion the statistics improve. Another reason for the difference could be that in the DNS

calculation the higher order quantities may not have reached a self-similar state due to

the smaller domain sizes when compared to the laboratory experiments.
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Results and Discussion

We present here preliminary results from a series of exploratory simulations, whose main

objective was to derive certain features of cloud flows in general.

4.1 Cloud flow configuration

The cumulus flow is here modelled as a transient diabatic plume (section 1.2). The gov-

erning equations are discussed in section 2.2. The flow schematic for the cloud flow is

given in figure 4.1. Several geometrical parameters are involved in this configuration.

The region between zb and zt represent the heat injection zone (HIZ). Off-source buoy-

ancy is added to the flow inside the HIZ. The horizontal extent of the HIZ is determined

by tracking the edge of the flow using a passive scalar field. The heat injected within

the HIZ varies both in space and time. The boundary conditions for the simulations are

discussed in section 2.8. The simulations are carried out at a Reynolds number of 2000

and a Prandtl number of 1.0. The details about the domain size and time-step are given

in table 4.1.

Figure 4.1: Flow schematic. (Ref Konduri (2009))
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Simulation Domain-Size

(x, y, z)

Grid-size Timestep

A (40,40,40) (128,128,256) 0.005

B (70,70,39.9) (402,402,798) 0.0025

Table 4.1: Simulation details

Several exploratory runs were carried out to check the capability of the solver to

simulate cloud flows. These runs were carried out using the coarse grid A (Table 4.1).

Temperature noise with zero mean and an amplitude of 10% is added to the warm source

patch at z = 0 to trip the flow. Figure 4.2 shows two pairs of natural clouds and the

present numerically computed clouds. The computed flow field is represented as a cloud

by suitably thresholding the passive scalar concentration to define the cloud edge, and

was volumetrically rendered using PARAVIEW (ParaView (2008)). While comparing the

two images it should be remembered that cumulus clouds are turbulent free shear flows

and no two images of a cloud, whether in nature or in computation, will ever be iden-

tical. So the comparison should be based on the broad features based on the attributes

described in WMO (1975). Figure 4.2 depicts two types of cumulus clouds - one that

rises up like a tower (figure 4.2a) and one with a cauliflower shaped head (figure 4.2b).

The present numerical simulations (simulation A) represent these two clouds qualitatively.

Figure 4.2: Comparison of real cloud (left) and numerical simulation (right)



4.2 Gallery of Cloud Flows 33

4.2 Gallery of Cloud Flows

In this section we illustrate the role played by heating profiles, and show how variations in

heating history can significantly affect the evolution of the flow. Simulations were carried

out using the coarse grid resolution A. At t = 0, all the flow variables are set at zero, the

temperature is switched on over the hot patch. The plume solution is integrated till the

plume head enters the heat injection zone, which occurs at t ≈ 50. The solution at this

time is saved and is used as the initial condition to study the effect of different heating

histories on the evolution of the flow. Not much information is available on the vertical

extent of the HIZ and the horizontal variation of the heat release function in natural

clouds. These parameters were therefore fixed based on trial runs numbering more than

15. Of all the simulations performed, a set of four distinct results are shown here. Two

different HIZ heights and two different horizontal heat distribution functions have been

tested in these simulations. The details are given in Table (4.2).

Simulation

No.

HIZ extent Horizontal

heat distribu-

tion

Heating profile

1 10 - 12.5 gaussian figure 4.11 a

2 10 - 12.5 bimodal figure 4.11 a

3 10 - 12.5 gaussian figure 4.11 b

4 10 - 15 gaussian figure 4.11 c

Table 4.2: Index for the Gallery

In the visualisation images presented here only the region above the base of the HIZ

(i.e z >= zb) is shown. The evolution of the flow with different heating profiles at different

time instants is shown in figures 4.3 - 4.10. At each instant two views, 90 degrees apart

in the azimuthal direction, are shown. It can be observed that at a given instant the flow

field is not axisymmetric. The variable t in each snapshot represents the time after the

heat injection starts. Simulations 1 and 2 have the same heating profile along the axis

and the same heating history in time. The only difference is in the horizontal distribution

at each vertical zone. But the evolution of the cloud flow in the two cases is significantly

different. The gaussian heat distribution with peak at the axis rises very rapidly and

forms a bulbous head only at later stages, whereas the bimodal heat distribution forms

the bulbous head fairly early. So the heat distribution in both space and time plays a

significant role in determining the shape of the cloud flow.



34 Chapter 4. Results and Discussion

Figure 4.3: Simulation 1
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Figure 4.4: Simulation 1 continued
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Figure 4.5: Simulation 2
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Figure 4.6: Simulation 2 continued
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Figure 4.7: Simulation 3
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Figure 4.8: Simulation 3 continued
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Figure 4.9: Simulation 4
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Figure 4.10: Simulation 4 continued



42 Chapter 4. Results and Discussion

(a) Simulation 1 and 2

(b) Simulation 3

(c) Simulation 4

Figure 4.11: Heating Profile
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4.3 Edge Detection: Cloud Flow

In a real cloud a distinct edge is defined by the presence of water droplets or ice parti-

cles. In the present numerical simulation several parameters, including the passive scalar

concentration, temperature field, velocity thickness and vorticity magnitude have been

used to detect the boundary of the active flow. We use the magnitude of the vorticity

vector to define the edge separating the cloud flow from the ambient. Similar ideas have

been used previously (Mathew & Basu (2002),Bisset et al. (2002)) to distinguish between

the irrotational ambient fluid and turbulent rotational fluid. In figures 4.12a and 4.13a

axial sections of the thresholded vorticity magnitude are shown at two different angles (90

degress apart) and in figures 4.12b and 4.13b the corresponding azimuthal vorticity field

with the velocity vectors superposed are presented. It can be observed that the edge of

the flow can be clearly represented as the magnitude of the vorticity vector varies sharply

in the radial direction close to the edge of the flow, particularly near the head. The thin

green layer in figures 4.12a and 4.13a appears to behave like the viscous super layer of

Corrsin & Kistler (1955) separating the rotational and irrotational regions. In figures

4.12b and 4.13b the pink arrows represent positive axial velocity and the blue arrows

represent negative axial velocity. This form of representation of the flow field gives clear

information on the presence of ring like vortical structures close to the edge of the flow.

For instance, the vortex on the top right is clearly visible; the structure is engulfing fluid

from below and expelling fluid from the top. Other such less prominent structures are

similarly visible on either side of the active flow.

4.4 Effect of off-source buoyancy

The most noticeable effect of off-source buoyancy addition is the reduction in the spread-

ing rate of the evolving flow. From figures 4.12a and 4.13a it can be observed that the

flow rises like a tower and does not spread like a classical plume or a jet. Figures 4.14 and

4.15 show a three-dimensional comparison of the vortical structures between an unheated

transient plume and a diabatic transient plume. In the unheated case well-organised

structures can be seen, as opposed to the diabatic case where beyond HIZ the structure

of the flow undergoes a drastic change. The high frequency structure is richer in both

aziumthal and axial vorticity. It can be observed that the large scale oraganised motion

is disrupted/ruptured due to the injection of off-source buoyancy. Similar observations

were reported by Basu & Narasimha (1999) in their temporal simulation of a cloud flow

in a box. The disruption of large scale vortical structures may have a tremendous effect

on the entrainment parameter.
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Figure 4.12: Axial section (at θ = 0 deg.) of a diabatic plume: (a) Edge of the flow
defined based on vorticity magnitude as threshold. (b) Azimuthal vocticity contours with
velocity vectors superposed

Figure 4.13: Axial section (at θ = 90 deg.) of a diabatic plume: (a) Edge of the flow
defined based on vorticity magnitude as threshold. (b) Azimuthal vocticity contours with
velocity vectors superposed
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Figure 4.14: Non-diabatic plume: Vorticity iso-surface

Figure 4.15: Diabatic plume with heat addition: Vorticity iso-surface
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Figure 4.16: Axial section of non-diabatic plume at two different azimuth angles 90 deg.
apart. The contours represent the azimuthal vorticity field and the vectors represent the
velocity field. Pink arrows represent rising motion and blue arrows represent sinking flow

Figure 4.17: Axial section of diabatic plume above HIZ at two different azimuth angles 90
deg. apart. The contours represent the azimuthal vorticity field and the vectors represent
the velocity field. Pink arrows represent rising motion and blue arrows represent sinking
flow
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Figures 4.16 and 4.17 show axial sections for a transient plume and a diabatic plume

post heat injection, representing the azimuthal vorticity field superposed with velocity

vectors (pink arrow for rising flow and blue arrow for sinking flow). It can be seen that

the core of the diabatic plume is disorganised and the azimuthal vorticity is higher by

an order of magnitude when compared with the unheated plume scenario. Azimuthal

vorticity of both signs are present, but close to the edges the negative (shear enhancing)

vorticity is dominant except close to the head. No large scale organisation is seen in the

diabatic plume.

Figure 4.18: Diametral section of a non-diabatic plume at different axial distances. The
contours represent axial vorticity field, inward velocity vectors are red and outward ve-
locity vectors are black.

Figures 4.18 and 4.19 show diametral sections at various heights for transient plumes,

non-diabatic and diabatic respectively; here the velocity vectors in the plane of the section

are superposed on the axial vorticity field (shown as contours). The velocity vectors are
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Figure 4.19: Diametral section of a diabatic plume at different axial distances. The con-
tours represent axial vorticity field, inward velocity vectors are red and outward velocity
vectors are black.

coloured black when the radial velocity is outward, and red when inward. Beyond HIZ

the magnitude of the axial vorticity has increased significantly (by a factor of ≈ 5). The

“entrainment tongues” (vortical structures) sticking out in the case of the non-diabatic

plume are absent in the diabatic plume. The vorticity field is more comapct beyond

HIZ and less organised than in the non-diabatic case. It can also be observed that post

heat injection the contribution of small scale vorticity has increased significantly and this

may be responsible for the crinkled edges of a cumulus cloud, as suggested by Narasimha

(2012).
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Figure 4.20: Axial section of a diabatic plume above the HIZ. (a) Temperature (b) Az-
imuthal component of baroclinic torque (c) Azimuthal vorticity

Figure 4.21: Axial section of a diabatic plume: Azimuthally averaged azimuthal compo-
nent of baroclinic torque
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Figure 4.22: Axial section of a diabatic plume: Azimuthally averaged azimuthal vorticity

Figure 4.20 presents an axial section of a diabatic plume representing the temperature

field, the azimuthal baroclinic torque and the azimuthal vorticity field. The azimuthal

component of the baroclinic torque is representative of the variation of the buoyancy

force in the radial direction, and contributes to the azimuthal component of the vorticity.

It can be seen that the temperature gradients are strongest at some distance (z ≈ 16)

downstream from the HIZ. Close to the head the temperature gradients are small near the

core. The core of the cloud flow is populated with high wavenumber azimuthal vorticity

of both signs. It is in general difficult to make deductions from instantaneous flow field

information, and since the flow considered here is inherently transient time averaging is

not a viable option. The other option available is to perform ensemble averaging, but

this has not been feasible atbpresent because of high computational costs. We exploit the

axisymmetry of the flow field and perform azimuthal averages at a given instant in time.

Figures 4.21 and 4.22 present the radial variation of the azimuthally averaged value

of azimuthal components of the baroclinic torque and vorticity respectively, at t = 7.5,

9.5 and 11.5. Both torque and vorticity are predominantly negative; there is hardly even

a trace of positive torque or vorticity except near the axis. Close to the axis the presence

of positive vorticity and torque maybe due to insufficient averaging because of the small
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Figure 4.23: Diabatic plume: Axial velocity, azimuthal vorticity and baroclinic torque, 5
x temperature at different heights (azimuthally averaged)
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number of grid points close to the axis. In figure 4.21 at t = 7.5 and t = 9.5 there is a

concentration of negative torque (blue region) in a roughly tube-like structure near the

heat injection zone; this is consistent with the idea proposed by Narasimha (2012). As we

move downstream the contribution of baroclinic torque to azimuthal vorticity diminishes.

On comparison between the average and instantaneous vorticty it can be observed that

the fluctuating vorticity component is high, which implies that the fluctuating enstrophy

which enhances mixing is also significantly high. This could be the reason for the well

mixed cores in cumulus clouds. Figure 4.23 shows the radial variation of various averaged

variables at different heights. The temperature profiles show off-axis peaks close to the

HIZ and close to the cloud flow top. Similar observations were reported by Agrawal &

Prasad (2004) in steady flows.

4.5 Entrainment

Entrainment is a key parameter in free shear flows. Following Morton et al. (1956) an

entrainment coefficient αE maybe defined by the relation

dm

dz
= 2πbuαEUc (4.1)

where bu is a measure of the width of the flow, taken as the radial distance at which the

azimuthally averaged axial velocity has fallen to e−1 of its centreline value. If the flow is

self-similar αE is a constant independent of z. In case of a cloud flow where the idea of self

similarity is not applicable we define these scales based on the azimuthal averaged data set.

Figure 4.24 shows the variation of maximum axial velocity with axial distance. A

cubic spline fit is used to smoothen out the fluctuations. The curve fit is shown in red.

Within HIZ the fluctuations appear to be supressed, which may be attributed to the ac-

celeration caused by heat release. Figure 4.25 presents the variation of mass flux in the

axial direction. This mass flux is calculated by integrating across the diabatic plume to

its edge defined by a threshold value based on vorticity magnitude. The closeness of the

three curves based on thresholds varying by an order of magnitude (0.1 - 0.01) emphasises

the sharpness of the edge. These variables along with the characteristic width shown in

figure 4.26 are used to calculate the entrainment coefficient at a given instant for the cloud

flow using equation 4.1. The variation of the entrainment coefficient with height is shown

in figure 4.26.
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Figure 4.24: Variation of maximum axial velocity at different heights (blue), cubic spline
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Figure 4.25: Variation of mass flux with height based on vortcity magnitude as threshold
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Figure 4.26: Variation of entrainment coefficient and width with height
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The variation of the width of the flow with height shows 5 distinct regimes depicted

in figure 4.26. In regime 1 the flow is laminar with constant width, followed by a nearly

linearly spreading turbulent plume in regime 2. Regime 3 is essentially the HIZ, where

the spread rate is arrested and the flow has a nearly constant width. In regime 4 a slow

growth in width is observed, culminating at a maximum, in regime 5, which has a small

dome or cloud head.

The entrainment coefficient obtained from this data set at a given instant has con-

siderable statistical fluctuations. The red line drawn through this data is representative

of a trend. αE is constant in regime 1 and regime 2. Inside the HIZ (regime 3) there is

an increase in the entrainment coefficient which peaks close to the end of regime 3. In

regime 4 αE decreases from its maximum value followed by a negative value in regime 5.

The peaks in the fluctuating αE curve are representative of the presence of strong local

azimuthal/axial vorticity. For example figure 4.19, displaying the diametral section of the

flow at z = 20, shows a strong entraining velocity field close to the edge in the diametral

section, corresponding to the peak in the entrainment coefficient at z ≈ 20.

——————————————————————————————————————

—————————————————-





Chapter 5

Conclusions and Future Work

In this thesis, we have developed and validated a 3D Navier-Stokes-Boussinesq solver

based on kinetic energy conserving schemes capable of performing DNS of incompressible

and Boussinesq flows. The solver so developed is used to perform a DNS of a transient di-

abatic plume to study the dynamics of cumulus cloud flows. The capability of the solver

to simulate cloud-like flows has been shown by the flow visualisations presented from

coarse grid (≈ 4 million) simulations for various heating profiles. It is observed that the

horizontal distribution of the heating profile also plays a significant role in determining

the shape of any cumulus flow.

The effect of off-source heat addition on the vortical stuctures is clearly observed in

the simulations using a resonably resolved (≈ 129 million) grid. The breakdown of large

scale structures into smaller scale structures is observed along with the folding down of

the entrainment tongues. The effect of baroclinic torque on the flow field and the corre-

sponding narrowing of the flow is captured. The observations reported here are consistent

with the proposal made by Narasimha (2012). The organized vorticity field within the

core may enhance entrainment or detarainment in different parts of the flow. The mass

flux in the plume can be evaluated accuarately to a well-defined vorticity edge of the flow.

Because of fluctuations, reliable estimates of the entrainment coefficient demand ensemble

averages, which are left for future work. Further analysis is required to comment on the

variation of the entrainment coefficient.

The highest resolution presented here (namely 129 million) for the cloud flow is not

sufficient to resolve all the scales in the flow. So the resolution has to be improved further

to get grid-independent results. The present solver is based on a second order accurate

spatial discretisation. This can be improved to fourth order, thus helping to improve the

accuracy of the results using a fewer grid points. We now have a reliable numerical code

that can be used to simulate different cloud flows and obtain information about the entire

flow field in a transient diabatic plume for the first time.

——————————————————————————————————————

—————————————————-
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