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Abstract

In this work we study two problems involving fluid flow and transport phenomena at small

length scales. The first is concerned with solving the fundamental problem of heat or mass

transfer from neutrally buoyant drops in an ambient shearing flow, where the rate of heat or

mass transfer is calculated by a boundary layer analysis in the strong convection limit. In the

second, we investigate through numerical simulations, the conditions for the onset of collective

motion in a micro-scale swimmer suspension. This thesis is organized in two distinct parts with

the drop heat transfer problem appearing first followed by the study on micro-scale swimmers.

Heat Transfer from Drops in Shearing Flows

The transport of heat or mass from suspensions of solid particles or drops is ubiquitous in many

industrial processes. We study the heat transfer problem for a suspension of drops of one liquid

(dispersed phase) suspended in another liquid (suspending medium); a system formally termed

as an emulsion. We consider the heat transfer problem in the dilute limit where each dispersed

phase droplet may be regarded as isolated and suspended in an infinite ambient. The size of

the drops is small, usually in the range of a few micrometres to millimetres, which in turn

leads to viscous effects dominating over inertial ones. It is a general feature of fluid flow in

the limit of zero inertia (the Stokesian regime), arising from the principle of reversibility, that

freely suspended particles or drops in shearing flows are completely surrounded by a region of

closed streamlines. This makes the transport of heat or mass diffusion limited. The diffusion

limitation is manifested in the Nusselt number (Nu: the dimensionless rate of heat transfer

measured in units of conduction) saturating to an O(1) value even as the Peclet number (Pe:

which measures the relative magnitudes of convective and diffusive transport) is increased to

infinity. A small but finite amount of (fluid) inertia though, results in a vastly different picture,

greatly enhancing transport by destroying the closed streamline configuration. In this work,

we develop a theoretical formulation to study the effects of weak inertia on transport from a

density-matched drop in a planar linear flow. This makes the heat transfer problem a function

of two main parameters; α which is a flow parameter characterizing the relative magnitudes of

extension and vorticity in the ambient linear flow and λ, the ratio of drop fluid to the ambient

fluid viscosity. The aim is to determine the dependence of Nu on α and λ in the limit of weak

inertia (Re ≪ 1) and strong convection (Pe ≫ 1). While our results apply equally well to both

heat and mass transfer, we will restrict our discussion to heat transfer from hereon. There are

some key points which serve to distinguish the flow and transport problem for drops from a solid

particle. It is shown that, unlike a solid particle, the near-surface streamlines are closed only

when the viscosity ratio exceeds a critical value, λc = 2α/(1−α). There exists a second critical

vii



viscosity ratio λ′c = (5α+1)/(2(1−α)) , which is important for characterizing the flow topology

in the drop interior and therefore does not directly affect the external heat transfer. The drop

heat transfer problem thus presents a parameter space which is general and rich in physics due

to the appearance of both open and closed-streamline regimes; one expects fluid inertia to play

a non-trivial role in the latter regime. Further, we find that the near-field streamlines for a

drop are not circular as for a solid particle, but are Jeffery orbits. Using this observation, we

characterize the streamlines on the drop surface using a complex-valued analogue of the (C, τ)

coordinate system originally used to describe Jeffrey orbits of an axisymmetric particle. We

show that the shapes of the orbits are characterized by an effective aspect ratio (γ) analogous

to the geometric aspect ratio of the original Jeffery orbits, here γ being a function of the flow

parameters α and λ. This effective aspect ratio serves as an elegant means of distinguishing

the open and closed-streamline regimes. The open-streamline regime is characterized, rather

intuitively, by a purely imaginary value of the aspect ratio since the surface streamlines are

not true closed orbits. The closed-streamline regime, on the other hand, is characterized by a

real-valued effective aspect ratio.

In the open-streamline regime (λ < λc, γ → Imaginary), enhanced convective transport

occurs even with zero inertia, and for large Peclet number, the Nusselt number is expected to

scale as F(α, λ)Pe1/2. In this regime the effect of small inertia is perturbative in nature and does

not affect the heat transfer at leading order (except in a vanishingly small neighbourhood of the

critical viscosity curve). We present a novel solution to this non-axisymmetric problem via a

boundary layer analysis in the aforementioned (C, τ) coordinate system, and thereby, determine

F(α, λ).

In the closed-streamline regime (λ > λc, γ → Real), similar to the solid particle, inertia plays

a crucial role in the transport, and the Nusselt number is seen to scale as G(α, λ)Re1/2Pe1/2,
in the limit RePe ≫ 1. For this case, we develop a methodology to analyse convection due to

spiralling streamlines in the (C, τ) coordinate system developed for the open streamline analysis.

The method relies on the separation of time scales characterizing motion (nearly) along a Jeffery

orbit, and that across Jeffery orbits (caused by the spiralling), and the boundary layer analysis

is formulated in terms of a ‘Jeffery-orbit-averaged’ convection. Further, we show that, using a

physically intuitive coordinate system, where the analogue of the radial coordinate corresponds

to non-circular isothermal streamlines, leads to a crucial simplification of the analysis allowing us

to proceed towards a closed-form solution. Interestingly we find that, for the drop, the thermal

wake that arises due to the spiralling inertial convection shows a novel bifurcation. The wake,

originally in the plane of symmetry (the flow-gradient plane), lifts off the flow-gradient plane in

a certain region in the (α, λ) space. Finally, we also present some scaling analyses for the limit

λ→ λc, which we term as an ‘intermediate regime’. In this limit there exists a thin region near

the flow-vorticity plane where Stokes and inertial convection are comparable. This allows us to

define the range of validity for the open and closed streamline analyses outlined above.

Collective Motion in Micro-scale Swimmer Suspensions

Recent experiments have shown that suspensions of swimming micro-organisms are characterized

by complex dynamics involving large-scale correlated motions much greater than the size of the



microorganism, enhanced swimming speeds and enhanced tracer diffusion. On length scales of

the order of the size of the microorganisms, viscous effects dominate inertial ones and the fluid

flow is governed by the Stokes equations. This leads to an instantaneous balance between thrust

and drag forces on the swimmer, making them force-free. We study two kinds of swimmers,

pushers and pullers, which are so named due to the opposing signs of the intrinsic dipole that

arises based on their swimming mechanism. It is in suspensions of pushers that the above

phenomena associated with collective motion are observed. Pullers, on the other hand, do not

show such behaviour, and therefore, serve as a valuable baseline for contrast. Our main goal is to

characterize (numerically) the threshold governing the onset of collective motion. The threshold

is expected to be a function of parameters intrinsic to the suspension, and that characterize the

motion of the swimmers on the micro-scale.

Towards this end, we develop a particle-based computational model to study an infinite

suspension of hydrodynamically interacting rod-like swimmers with the relation between the

swimming velocity and intrinsic stress being enforced from slender body theory. Such an a

priori specification reduces the computational cost since one now has a ‘kinematic’ simulation

with a fixed interaction law between swimmers. The interaction law governs the rate of change

of swimmer positions and orientations, and is again obtained from slender body theory. The

kinematic nature of the simulations does not restrict our study of the dynamics since the destabi-

lizing mechanism has been attributed to the intrinsic (rather than the induced) stress field. The

long-ranged nature of the hydrodynamic interactions motivates the use of periodic boundary

conditions to simulate an infinite system, and an Ewald summation based method to reduce the

computational cost. Importantly, the model includes intrinsic de-correlation mechanisms found

in bacteria such as rotary diffusion and tumbling whose effects have so far not been studied via

simulations. Swimmers which do not have any intrinsic orientation de-correlation mechanisms

are termed smooth swimmers, and collections of such swimmers have been explored previously

by other researchers. For such swimmers, the only cause for orientation de-correlation is due

to hydrodynamic interactions, that is, on account of the disturbance fields of other randomly

positioned swimmers. In light of the availability of earlier results, we use our smooth-swimmer

simulations as a proof-of-principle to demonstrate that a kinematic simulation is indeed suf-

ficient in capturing the instability predicted for a suspension of pushers. The solution of the

equations of motion and the resulting satisfaction of the no-slip boundary conditions via the

induced forces is thus shown to be an inessential detail. The smooth swimmer results also show

that the diffusivity of passive tracer particles is the most sensitive measure of the bifurcation be-

tween pushers and pullers. By calculating tracer diffusivities we go on to show that a suspension

of smooth swimmers has a box-size-dependent stability threshold for the suspension concentra-

tion in agreement with linear stability theory. The finite size of the periodic box results in an

artificial stabilization and the concentration threshold scales inversely with box size (the true

threshold for an unbounded suspension being identically zero).

The main effect of adding orientation de-correlation mechanisms such as tumbling and rotary

diffusion is to stabilize the suspension. Importantly, however, even in the presence of intrinsic

de-correlation mechanisms, suspensions of pushers and pullers behave in a qualitatively different

manner. To begin with, we validate our simulations by comparing our results for a suspension



of tumbling swimmers in the stable regime to theory, and use this to characterize the non-

trivial effect of finite box size on the predicted tracer diffusivity. Next, we explore suspensions

of swimmers which tumble and those that undergo rotary diffusion both as a function of the

swimmer number density (n) and the intrinsic decorrelation time. Our study leads us to our

main finding that a dimensionless parameter exists that characterizes the onset of instability

in a suspension of pushers, and that depends only on intrinsic suspension parameters. These

parameters include the swimming speed (U), swimmer length (L), mean run time (τ) and rotary

diffusivity (Dr); thus, the stability in a suspension of tumblers is governed by nUL2τ , and that

in a suspension of rotary diffusers is governed by nUL2/Dr . Such a parameter is expected to

be useful in understanding the dynamics of suspensions of swimming microorganisms as well as

artificial micro-swimmers.
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Chapter 1

Introduction

The transport of heat or mass from solid particles or liquid drops, freely suspended in a fluid

medium is a problem in transport phenomena which is both of fundamental and practical inter-

est. Several industrial applications involve flows with suspended particles or drops undergoing

chemical reactions which lead to both heat and mass transfer across the interface. A partic-

ular example is the process of suspension polymerization (Vivaldo-Lima et al. (1997), Brooks

(2010)), where the process starts with the liquid monomer in the form of suspended drops in an

ambient fluid. As the exothermic polymerization process progresses, heat is released from the

drop which needs to be convected away efficiently. At the same time the viscosity ratio between

the drop fluid and ambient increases as a function of time due to the polymerization reaction.

Other problems involve vapourization of fuels in internal combustion engines which may have a

direct impact on the efficiency and emission levels of the engine. Phenomenon in nature such

as cloud formation where there is condensation of drops in an ambient turbulent flow also in-

volve the transfer of heat from and mass to water drops (Beard & Pruppacher (1971), Duguid

& Stampfer Jr (1971), Kinzer & Gunn (1951)). More recently, there have been applications

such as drug release from porous polymer particles which involve such heat or mass transport

from particles. Applications may also be found in bio-reactors using immobilized cells or cell

aggregates.

In this thesis we study the problem of heat or mass transfer from single spherical drops in

general shear flows under conditions where viscous effects dominate the momentum transport

and convective effects dominate the transport of heat or mass. We will consider the case where

the dominant resistance to the transport is from the region exterior to the drop. Importantly,

we also study the effects of small but finite inertia of the ambient fluid on this transport. These

conditions correspond to small values of the Reynolds number, defined based on the radius a of

the drop as Re = γ̇a2/ν, where γ̇ is a scale for the ambient shear rate and ν is the kinematic

viscosity of the ambient fluid. Strong convection, on the other hand, corresponds to large values

of the Peclet number which is a relative measure of the importance of convective to diffusive

transport, and is defined as Pe = γ̇a2/D, where D is the diffusivity of heat or mass in the

ambient fluid. We note that Pe = RePr, where Pr is the Prandtl number (or the Schmidt

number for mass transfer) and is defined as Pr = ν/D. In order to set the stage for the work

presented in this part of the thesis, we first provide a brief survey of relevant earlier work. We

will only summarise efforts which have looked at the problem from a single particle or single drop

viewpoint, and in doing so elucidate some aspects of the underlying physics. In general, these

analyses, for purposes of simplicity, deal with transport from cylinders or spheres in various

types of ambient flows. The main result in these efforts is an expression for the Nusselt number

Nu (ratio of the overall heat transfer to that due to diffusion alone), as a function of Re and

Pe, since the overall heat transfer is usually the primary quantity of interest. We focus here on

3
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works which deal with Peclet numbers ranging from very small to large values, but in the limit

of small Reynolds numbers. However, it is the large Pe limit which is relevant to this thesis.

1.1 Transport from Solid Particles

Acrivos & Taylor (1962) first solved the problem of heat transfer from a sphere in a uniform flow

at small values of the Peclet number. They realized that in the limit of small Pe, the conduction

approximation is a not a uniformly valid one in an unbounded domain since, at large enough

distances from the particle, convection effects will eventually dominate. Therefore, the analysis

of the effect of small Pe requires a singular perturbation expansion about the pure conduction

result. This expansion led to an O(Pe) enhancement in the heat transfer. Acrivos & Goddard

(1965) considered the heat transfer at low Reynolds and high Peclet number (implying Pr ≫ 1),

for heat transfer from an isothermal sphere held in a uniform flow. They found the Nusselt

number as a function of Pe and showed that Nu ∼ Pe1/3 + O(1) for Pe ≫ 1 and for Re ≪ 1.

This scaling arises because in the limit of large Pe, convective effects dominate everywhere in

the flow except for a thin thermal boundary layer next to the surface of the body where they

are comparable to diffusion. For a solid particle it is straightforward to show that the thickness

of this thin layer scales as Pe−1/3, thereby leading to Nu ∼ O(Pe1/3), since the temperature

gradient driving the heat transfer scales inversely as the boundary layer thickness. Higher order

contributions arise due to the fluid velocity outside the boundary layer and also from the thermal

wake behind the body. In a related paper, Goddard & Acrivos (1966) considered the other case

where Re is high with a fixed value of Pr. Here, the thermal and momentum boundary layers are

comparable in thickness which is different from the earlier case where there was no momentum

boundary layer due to Re being identically zero.

The problems discussed above involved particles in a uniform flow and typically arise when

there is a density mismatch between the particle and the ambient fluid, leading to a non-zero

relative velocity between the two phases. Another fundamentally distinct class of problems

involve freely suspended density matched particles, in which case, the dominant heat transfer

is due to the ambient shear flow. Frankel & Acrivos (1968) were the first to study, theoreti-

cally, the heat transfer from small spheres and cylinders freely rotating in a shear flow at both

small and large Pe. In the low Pe limit they predicted that the Nusselt number for a cylin-

der increases as O(logPe)−1 on account of the Stokes paradox in two dimensions, while for a

sphere it increases by an amount O(Pe1/2) over the pure diffusion value of order unity. We note

that the O(logPe)−1 Nu scaling for a cylinder holds both for a uniform flow as well as a shear

flow. As for the case of uniform flow, these weak convective enhancements are obtained from

a singular perturbation expansion that accounts for convective effects becoming important at

leading order, at large distances from the particle. For the large Pe limit, in the case of a freely

suspended cylinder in simple shear flow, Yu-Fang & Acrivos (1968) predicted the surprising re-

sult that the Nusselt number is independent of Pe, implying the absence of any boundary layer

enhancement. Although a similar situation prevails for a sphere, owing again to the existence of

closed streamlines, they were, however, unable to extend this method to the case of the sphere,

to obtain a quantitative estimate of Nu, due to the more complicated and three-dimensional

nature of the flow field. The result for cylinders was confirmed by Robertson & Acrivos (1970b)
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who performed experiments on a freely rotating cylinder in a shear flow apparatus. They found

that, for Pe > 70, the Nusselt number was indeed independent of Pe. On the other hand, when

the cylinder was held fixed and not allowed to rotate, they found that the Nusselt number did

scale with Pe as Nu = 1.641Pe1/3 in agreement with the existence of a thermal boundary layer.

The reason for this difference in scaling may be found by noting that the streamlines around

a freely rotating cylinder in a shear flow are closed, as shown in experiments by Robertson

& Acrivos (1970a), and in numerical simulations by Kossack & Acrivos (1974). The presence

of closed streamlines makes even strong convection ineffective in carrying away heat from the

body thereby making the transport diffusion limited, and leading to a Nusselt number which is

independent of Pe.

Another set of experiments were carried out by Poe & Acrivos (1975), who considered freely

rotating cylinders and spheres in a simple shear flow. Here they found that, just as in the

case of a cylinder, a freely rotating sphere is again completely surrounded by a region of closed

streamlines. Again, for a sphere that is held fixed, the streamlines adjacent to the body are

open, and as we saw before, can contribute effectively to the transport through the formation

of a thermal boundary layer. The result for freely rotating spheres implies that we expect the

transport at high Pe to be diffusively limited and therefore independent of Pe. This was verified

by Acrivos (1971) using an approximate method to calculate the heat transfer from a freely

suspended sphere in a simple shear flow. He found that Nu ≈ 9 at high Pe, which, according

to the definition of the Nusselt number, is 4.5 times the pure diffusion value. This analysis

was extended for a general planar linear flow by Poe & Acrivos (1976) , who found that except

in the case of an extensional flow for which the sphere is surrounded by open streamlines, the

Nusselt number becomes independent of Pe, for sufficiently large Pe, due to the presence of

closed streamlines surrounding the particle.

The presence of closed streamlines around cylinders and spheres in a general planar linear

flow was originally shown by Cox et al. (1968) and Kao et al. (1977). Acrivos and co-workers

used these results in their analysis of the heat transfer problem above. Cox et al. (1968) studied

cylinders and spheres which were free to rotate in a simple shear and theoretically predicted

that, in either case, there are regions of closed streamlines surrounding the body. This was then

confirmed by experiments (Cox et al. (1968)). Kao et al. (1977) later extended this theoretical

analysis for a general, one-parameter (denoted by α) family of planar linear flows, with the

extremal members of this family consisting of purely rotational flow (α = −1) and extensional

flow (α = 1), and with simple shear flow (α = 0) as an intermediate case. They found that there

were regions of both closed and open streamlines for flow regimes between simple shear and

extensional flow whereas for flows between pure rotational and simple shear, all the streamlines

were closed. They also derived an expression for the radial extent of the separatrix surface which

separates regions of closed and open streamlines.

Batchelor (1979) analysed the problem of mass transfer from a sphere under fairly general

assumptions for the ambient linear flow at both low and high Pe. In the high Pe calculation,

of relevance to our work in this thesis, he considered two broad classes of problems. The first

involved two flows in which the particle is stationary due to the absence of an ambient vorticity:

a steady three-dimensional extensional flow and a two-dimensional extensional flow. For these
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cases, he showed that, in the limit of large Pe, the transport is dictated by a thin thermal

boundary layer adjacent to the particle. Batchelor used a flow-aligned orthogonal coordinate

system along with a suitable transformation of the independent variables to derive a similarity

solution for this boundary layer problem. By suitably defining the Peclet number based on the

parameters of the linear flow, the Nusselt number for any arbitrary extensional flow was shown

to be given by:

Nu = 0.90

(
a2E

D

)1/3

, (1.1)

where E is a scale for the rate-of-strain tensor. The results for a spherical particle (and drop), in

simpler limiting cases, had been obtained earlier. For instance, both a solid particle and a drop,

in an axisymmetric extensional flow, had previously been considered by Gupalo & Riazantsev

(1972). The analysis for a particle (and drop) in a planar extensional flow was done by Polyanin

(1984). Batchelor (1979) goes on to analyse a second class of linear flows with a vorticity

vector aligned with one of the principal axes of the rate-of-strain tensor. For this case, a freely

suspended sphere rotates with the angular velocity (ω/2) of the vortical part of the flow. Unlike

the case of a planar linear flow, where the streamlines adjacent to the sphere would be closed,

here the contribution from the extensional component of the velocity gradient along the axis of

rotation, causes the streamlines to become tightly wound spirals. Fluid elements therefore follow

helical paths with a drift along the axis of the rotation. Thus, for the case of heat transfer at

high Pe, Batchelor showed that it was only the component of the rate-of-strain tensor along the

axis of rotation (Eω = E:ωω) which leads to this drift, and therefore, contributes to the heat

transfer. Hence, for a fairly general class of linear flows the expression for the Nusselt number

was found to be:

Nu = 0.968

(
a2Eω

D

)1/3

, (1.2)

with the conditions that |ω| is not much smaller than E or that |Eω| is not asymptotically small

(in which case the spirals would cease to be tightly wound). When Eω is zero, the drift which

contributed to the heat transfer vanishes and we recover a closed streamline region near the

sphere with the heat transfer becoming diffusion limited.

The above discussions have mainly looked at heat transfer in the low Reynolds number

limit where the Stokes approximation is assumed valid. The Reynolds number entered, if at

all, in the form of a regular perturbation about a leading order Stokesian contribution to the

heat transfer. Subramanian & Koch (2006a) showed that, in the case of small spheres freely

suspended in a planar linear flow, weak inertia has a fundamental effect on the heat transfer by

destroying the region of closed streamlines which existed at Re = 0 (Acrivos (1971), Robertson

& Acrivos (1970a), Poe & Acrivos (1975)). The streamlines become spirals, thereby opening up

new channels of convection. Subramanian & Koch (2006a) showed that, in the limit of small

but finite Re and for Pe≫ 1 and RePe ≫ 1, when the near-surface streamlines are tightly wound

spirals, the Nusselt number once again scales with Pe and is given by:

Nu = 0.33(RePe)1/3 , (1.3)

for simple shear flow. Subramanian & Koch (2006b) extended this analysis for a general planar
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linear flow and derived an expression for the Nusselt number which is given by:

Nu = 0.33(1 + α)2/3(RePe)1/3. (1.4)

Yang et al. (2011) have carried out simulations of heat transfer from spheres at finite Re which

find good agreement in the relevant asymptotic limits of large Pe with the theoretical predictions

by Subramanian & Koch (2006b).

1.2 Transport from Drops

While it is evident that the problem of transport from solid particles has received a great deal of

attention, the analogous problem for drops in an ambient linear flow has been less widely studied,

at least using a first-principles approach. Torza et al. (1971) analysed the streamlines in the

interior and exterior of a drop in a simple shear flow. Their theoretical analysis predicted closed

streamlines adjacent to the drop as well as open streamlines further away, and the existence

of a limiting separatrix surface which separates regions of closed and open streamlines. The

ratio of drop fluid to ambient fluid viscosity (λ) was found to influence the extent of this closed

streamline region and the shape of the limiting separatrix surface. Additionally, Torza et al.

(1971) performed experiments which confirmed their theoretical predictions and showed the

presence of a closed streamline region. Importantly, their experiments showed that a closed

streamline region also forms around a slightly deformed drop, implying that the deformation does

not fundamentally modify this aspect of the flow. The theoretical analysis for streamlines interior

and exterior to drops was extended to the case of a general one-parameter family of planar linear

flows by Powell (1983), and equations were derived for the two families of streamsurfaces which

intersect to give the streamlines. It was shown that extent of the closed streamline region and

the limiting surface depended on both the linear flow parameter (α) as well as the viscosity ratio

(λ). Interestingly, it was shown that, for any λ <∞, there were values of α for which the region

of closed streamlines around the drop was absent and only open streamlines were present. We

note that λ → ∞ corresponds to a solid particle, in which case, as seen earlier, all streamlines

remain open only in the case of extensional flow. Thus, we have the important result that for

a drop in a give planar linear flow, unlike a solid particle, we have two fundamentally distinct

regimes with respect to the streamlines in the near-field. In turn, these regimes must reflect in

the differing nature of the Nu-surface when plotted as a function of α and λ.

A first-principles solution of the problem of heat transfer from a neutrally buoyant, immiscible

drop at high Pe has not received much attention in literature. The problem has only been solved

for specific cases of the ambient flow, and a general expression for the Nusselt number, along

the lines of that obtained by Batchelor (1979) for a solid particle, is not available. Among the

problems which have been solved is the case of a drop in a uniform flow which is straightforward

on account of the axisymmetric nature of the temperature field (Leal (2007)). The case of an

ambient axisymmetric extensional flow, which is comparable in difficulty to the case of uniform

flow was examined by Gupalo & Riazantsev (1972). Gupalo et al. (1975) have carried out the

analysis for an ambient flow which is a sum of an axisymmetric extension and a uniform flow,

again an axisymmetric problem.The only other example includes the case of a drop in a planar
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extensional flow for which the drop is again surrounded by open streamlines and the approach

used by Batchelor (1979) can be used. This calculation was done by Polyanin (1984). For all

these cases, the flow field adjacent to the drop is entirely composed of open streamlines, and

in the limit of high Pe, there is a thin thermal boundary layer which forms next to the drop

whose thickness scales as Pe−1/2. This results in the Nusselt number scaling as Nu ∼ O(Pe1/2).

Note that this scaling implies that the heat transport from a drop is asymptotically larger

than that from a solid particle at the same Pe, since the no-slip boundary condition in the

latter case weakens convective effects. The problem for a general linear flow (planar or three-

dimensional) has not been solved till date. Additionally, for the case of planar linear flows, the

drop is surrounded by a region of closed streamlines and in this case inertia is expected to have

a major effect on the heat transfer as seen for solid particles (Subramanian & Koch (2006a),

Subramanian & Koch (2006b)). This problem has not received any attention in literature.

1.3 Our Work

The above literature survey motivates us to study, in this part of the thesis, the fundamental

problem of heat transfer from single spherical drops in a general linear flow. We first consider

drops in the one-parameter family of planar linear flows. Interestingly, for this case, depending

on the flow parameter (α) and the viscosity ratio (λ), the streamline pattern may be classified

into two distinct regimes. The first is an open-streamline regime which exists for viscosity ratios

below a critical value(λc = 2α/(1 − α)), and where a boundary-layer-enhanced heat transfer

leads to Nu ∼ O(Pe1/2) for large Pe, as seen above. In the other regime, which exists for λ > λc,

the drop is completely surrounded by closed streamlines and the heat transfer is diffusion limited

at Re = 0 even as Pe→ ∞. Recall that, for a solid particle in a planar linear flow, transport is

always diffusion limited except when α = 1 (extensional flow). The addition of inertia only has

a perturbative effect in the open-streamline regime. Small but finite inertia however, leads to a

widely different picture in the closed streamline regime. Thus, the drop heat transfer problem

considered here consists of a rich parameter space, displaying both open and closed streamline

patterns, which lead to fundamentally distinct transport characteristics. Our analytical study

of this problem offers insights into the two limiting cases where the resistance to transport is

entirely confined to either the open or closed streamline region, thus offering insights into the

more general case which may involve resistances due to a combination of these.

The rest of this part of the thesis is organised as follows:

In chapter 2, we study the flow topology in both the interior and exterior of a spherical

drop in a planar linear flow, first with the Stokes approximation (Re = 0) and then with small

but finite inertia. Following the approach of Kao et al. (1977) and Powell (1983), we derive the

equations for the two families of streamsurfaces which intersect to give the Stokesian streamline

pattern. Importantly, we show through a graphical approach that allows for a unified analysis

of both the interior and exterior streamline patterns. Using this, one may predict the nature

of streamlines in the interior as well as exterior regions for given values of the flow parameter

α and viscosity ratio λ. Through or analysis of the Stokesian streamline pattern, we make the

important observation that the streamlines exterior to a drop show two distinct regimes namely

the open and closed streamline regimes mentioned above. We then derive the important result
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that the Stokesian surface streamlines for a drop are not circles (as for a solid particle) but

are Jeffery orbits (Jeffery (1922)) with an aspect ratio which depends on the flow parameters

α and the viscosity ratio λ. The original Jeffery orbits refer to the trajectories traced out

by the orientation vector of an axisymmetric particle in a linear flow. Note that the Jeffery

orbits, for a general axisymmetric particle, are describable in terms of an effective aspect ratio

which differs from the true aspect ratio except for a spheroid. The above insight allows us to

derive a flow-aligned non-orthogonal coordinate system which is used later in the heat transfer

analysis. We then study the effect of a small amount of inertia on the external flow field which is

relevant to the exterior heat transfer problem considered here. We show that, just as in the solid

particle case, inertia breaks the region of closed streamlines, transforming them into spiralling

ones. However, in contrast to the solid particle case, these are not circular as mentioned above

implying that the heat transfer problem is non-axisymmetric and hence non-trivial. Further, we

find a distinct regime, not observed in the case of solid particles, where the direction of spiralling

near the plane of symmetry is reversed in a certain region in (α, λ) plane.

In chapter 3, we derive a solution for the heat transfer from a drop, in the open streamline

regime for two families of linear flows: planar linear flows with viscosity ratios less than λc,

and three-dimensional extensional flow. For this case inertia only plays a perturbative role, and

does not enter the solution at leading order. We recast the Stokesian heat transfer problem in

the non-orthogonal coordinate system derived in chapter 2. Next we derive a solution for the

temperature field in the drop exterior, and thence, for the Nusselt number. This has the form:

Nu = F(α, λ)Pe1/2, (1.5)

where a closed form expression for the pre-factor F (α, λ) is derived in our analysis. We then

proceed to solve the heat transfer equation for the case of a drop in a three-dimensional exten-

sional flow with no vorticity. We show that we can derive a non-orthogonal coordinate for this

case as well which is analogous to the one used for planar linear flows. Using this coordinate

system we derive an expression for the Nusselt number which has the form:

Nu =
G(ǫ)

(1 + λ)1/2
Pe1/2, (1.6)

where ǫ = E2/E1 and E1, E2 are the principal rates of strain of the extensional flow. Our

analysis recovers the known results for planar extensional flow and axisymmetric (uni-axial or

bi-axial) extensional flow as special cases of the above general solution with E2 = 0 and E1 = E2,

respectively.

In chapter 4, we consider the regime λ > λc for which the drop is completely surrounded

by closed streamlines in the absence of inertia and for which the transport is diffusion limited

for Pe → ∞. We consider the case of small inertia in the flow and devise a method of solution

using the coordinate system derived in chapter 2. The O(Re) flow field for this case has been

derived by Raja et al. (2010). Briefly, the spiralling streamlines, which arise at finite Re, open

up new convective channels, and our method allows us to calculate the Jeffery-orbit-averaged

drift due to inertia which contributes to the convective heat transfer. We solve the problem with

the assumption that this inertial convection still dominates diffusion everywhere except in a thin
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layer near the drop; the thickness of this thermal boundary layer is O(Re−1/2Pe−1/2). While

the analysis is more intricate than the open-streamline analysis in chapter 3, we show that the

three-dimensional heat transfer problem for this case can be simplified to a one-dimensional one

using our coordinate system. We show that this coordinate system, in effect transforms the drop

heat transfer problem which is non-axisymmetric to a much simpler axisymmetric one akin to

the one solved for a solid particle (Subramanian & Koch (2006b)). The Nusselt number for this

case is shown to be given by:

Nu = H(α, λ)Re1/2Pe1/2 (1.7)

in the limit of Pe ≫ 1 and RePe ≫ 1. The pre-factor H(α, λ) is given by our analysis. We

conclude the chapter by examining the connection between the open and closed streamline

regimes which corresponds to λ near λc. In this so-called intermediate regime, there exist

regions on the drop surface where both the inertial and Stokes velocity fields are comparable.

Analysis of the intermediate regime via scalingn arguments allows us to estimate the asymptotic

region of validity of our open and closed(inertial) streamline solutions.

In chapter 5 we conclude and give some suggestions for future work.



Chapter 2

Flow Topology

In this chapter we study the interior and exterior flow fields for a neutrally buoyant drop of a

given Newtonian fluid immersed in an ambient suspending medium which is again Newtonian.

The ambient medium is assumed to be undergoing a general two-dimensional linear flow; these

comprise a one-parameter family, the parameter being a certain ratio of vorticity to extension,

where the requirement of two-dimensionality implies the vorticity vector is perpendicular to

the plane of the extensional flow. We assume that the Reynolds number defined based on the

drop radius is small such that viscous forces dominate inertial forces on the scale of the drop.

The Reynolds number is defined as Re = γ̇a2/ν, where, γ̇ is a characteristic magnitude of the

velocity gradient of the ambient flow, a the radius of the drop and ν is the kinematic viscosity

of the suspending fluid. We note that the small length scale of the drop compared to the length

scale over which the ambient velocity gradients vary, and also the fact that the drop is neutrally

buoyant, are directly related to our assumption of an ambient linear flow. This is because, with

the above assumptions, any complicated flow appears, in a frame of reference moving with the

drop, as a linear flow at leading order. Further, we consider the case where surface tension

forces dominate viscous forces leading to the drop interface remaining spherical at all times.

This corresponds to a regime where the capillary number (Ca) is small, where Ca = µγ̇a/Γ,

and µ is the dynamic viscosity of the ambient fluid, Γ is the interfacial tension between the drop

and ambient fluid. The onset of drop deformation at finite Ca will not qualitatively alter the

conclusions of our analysis. For instance, the main objective of this first part of the thesis is

to determine the Nusselt number as a function of the flow parameters and the drop-to-medium

viscosity ratio. The key qualitative features of this Nusselt number surface will remain insensitive

to the effects of small drop deformation. As we shall subsequently see, with these assumptions,

we get a problem which is rich in physics and is also relevant in practical applications.

Beginning with the inertialess(Re = 0) flow topology we will move on to discussing the

effects of inertia on the velocity field. Importantly, we will look at the flow from a geometrical

perspective to best appreciate the spatial organization of the flow field around a spherical drop.

Other than being of fundamental interest, this characterization will lay the foundation for the

heat transfer analysis carried out in subsequent chapters. As we shall see, the flow topology

for drops in an ambient planar linear flow shows two distinct regimes: the open and closed

streamline regimes. The open streamline topology at Re = 0 will serve as a basis for the heat

transfer analysis carried out in chapter 3, while the effects of inertia on the closed streamline

topology will serve as a basis for the heat transfer analysis in chapter 4.

11



12 Chapter 2. Flow Topology

2.1 Governing Equations and Boundary Conditions

We denote the viscosities and densities of the fluids inside and outside the drop as µ̂, µ, ρ̂ and

ρ, with the variables with carets corresponding to the fluid within the drop. Neutral buoyancy

implies that ρ̂ = ρ. The governing equations for fluid flow in the low-Reynolds-number limit are

the Stokes equations given by:

−∇p+ µ∇2u = 0,

∇ · u = 0,
(2.1)

where u is the fluid velocity and p the associated pressure field. To convert these equations to

dimensionless form, we use the radius of the undeformed drop as a characteristic length scale,

lc = a; the characteristic velocity based on the ambient flow, uc = γ̇a for the velocity scale; and

the viscous scalings for the interior and exterior pressure fields, pc = µuc/lc and p̂c = µuc/lc.

Using these scalings, the governing equations in dimensionless form for the flow inside and

outside the drop are, respectively, given by:

−∇p̂+ λ∇2û = 0

∇ · û = 0

}
interior problem,

−∇p+∇2u = 0

∇ · u = 0

}
exterior problem, (2.2)

where λ = µ̂/µ is the drop to ambient fluid viscosity ratio. The ambient flow considered here

will be a one-parameter family of two-dimensional linear flows which is defined by the velocity

gradient tensor Γ given, in dimensionless form, by:

Γ =




0 −2 0

−2α 0 0

0 0 0


 . (2.3)

The second order tensor Γ can be written in terms of its symmetric and anti-symmetric compo-

nents as:

Γ = E+Ω, (2.4)

where E is the rate-of-strain tensor and Ω is the vorticity tensor. The parameter α in Eq. 2.3

measures the relative strengths of extension and vorticity, and is given by α = (E−Ω)/(E+Ω),

where 2E/(E +Ω) and 2Ω/(E +Ω) denote the normalized magnitudes of the rate-of-extension

and vorticity, respectively. Therefore, α = −1 (E = 0) represents pure vortical flow (solid body

rotation); α = 0 corresponds to simple shear flow (E = Ω) and α = 1 corresponds to two-

dimensional extensional flow (Ω = 0). In our coordinate system depicted in Fig. 2.1, x1, x2 and

x3 are the flow, gradient and vorticity axis, respectively, of the ambient simple shear flow. We

also note that the principal axes of the extensional flow are rotated by π/4 with respect to the

x1 and x2 axes. While the flow, gradient and vorticity axes are specifically relevant to a simple

shear flow, they will be used in this thesis to refer to the x1, x2 and x3 axes, respectively, for a

general linear flow.

It is convenient to split the exterior velocity field for the drop as:

u = Γ · x+ u′, (2.5)
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where u′ is the exterior disturbance velocity due to the drop. Since any linear flow (with a

trivial pressure field) is a solution of the Stokes equations, the disturbance field also satisfies Eq.

2.2.

The other major parameter entering into the analysis is the viscosity ratio (λ), defined as

ratio of drop to ambient fluid viscosity. The boundary conditions imposed on the flow inside

and outside the drop are given by

u′ → 0 as r → ∞ (disturbance velocity decays off at infinity)

û = u′ + Γ.x at r = 1 (continuity of velocity at interface)

u · n̂ = û · n̂ = 0 r = 1 (stationary spherical interface),

(σ · n̂) · (I − n̂n̂) = (σ̂ · n̂) · (I− n̂n̂) at r = 1 (continuity of tangential stress at the interface)

where n̂ is the unit radial vector and σ, σ̂ are the stress tensors in the exterior and interior

fluid, respectively. Also we note that the condition of normal stress balance at r = 1 is not

required to solve the system of equations for the velocity and pressure fields due to the assumed

spherical shape of the interface. Based on the velocity and stress fields obtained at leading order,

the normal stress balance would be used to determine the small, O(Ca), drop deformation on

account of viscous stresses. In turn, one may use this O(Ca) interfacial deformation to determine

the O(Ca correction to the velocity and stress fields; the normal stress balance may then be used

to calculate the O(Ca2) deformation, and so on, in what is essentially an asymptotic expansion

for small Ca.

The Stokes equations (Eq. 2.2) subject to the above boundary conditions can be solved to

yield the well-known result for the velocity field in the drop interior and exterior (Leal (2007),

Cox (1969)). In spherical polar coordinates with the polar axis aligned along the vorticity

direction of the ambient flow, the components of the velocity field are given by:

ur = −(1 + α)r[A(r;λ)r2 +B(r;λ)] sin2 θ sin 2φ, (2.6)

uθ = −(1 + α)

2
rB(r;λ) sin 2θ sin 2φ, (2.7)

uφ = −(1 + α)r sin θ [B(r;λ) cos 2φ− β] , (2.8)

where A(r;λ) and B(r;λ) are functions of r and λ which take different forms in the interior and

exterior of the drop and β = (1− α)/(1 + α). A(r;λ) and B(r;λ) are given by:

A(λ) = − 1

1 + λ
,

B(r;λ) =
5r2 − 3

2(1 + λ)





interior (2.9)

A(r;λ) = − 5λ+ 2

2(λ+ 1)r5
+

5λ

2(1 + λ)r7
,

B(r;λ) = 1− λ

(1 + λ)r5
.





exterior (2.10)
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Figure 2.1: Schematic of the coordinate system used showing the flow, gradient and vorticity
axes for the particular case where the ambient flow is a simple shear flow.

2.2 Streamline Topology: Fixed Point Analysis

Based on the expressions for the interior and exterior velocity fields given earlier, we now analyze

the topology of streamlines in the interior and exterior regions. To help orient oneself, the

position of the drop and direction of the base flow with respect to the coordinate system is

shown in Figure 2.1. The x1x2 plane corresponds to the plane of the base linear flow. For

simple shear flow, in particular, x1, x2 and x3 denote the flow, gradient and vorticity directions,

respectively. We will study the behaviour of the fixed points with respect to the (α, λ) parameter

space to gain insight into different regimes which exist which regard to the flow topology.

To obtain the location of the fixed points we solve the equations u = 0 and û = 0. Keeping

α fixed, from Fig. 2.2a we see that at a small value of the viscosity ratio(λ), there are eight

fixed points on the symmetry plane (x3 = 0) excluding the origin, which is always (trivially)

a fixed point. Two pairs lie on the x1 = 0 and x2 = 0 axes within the unit circle, while

another two pairs are at an intermediate φ location between the axes, but on the unit circle.

The location of the first pair is found to be {r̂10, θ̂10, φ̂10} = {[3/5 + (2/5)β(1 + λ)]1/2, θ, (0, π)}
and that of the second is {r̂20, θ̂20, φ̂20} = {[3/5− (2/5)β(1 + λ)]1/2, θ, (π/2, 3π/2)}. The fact that

θ is arbitrary means that the first two pairs of fixed points on the x3 = 0 plane are actually

parts of fixed circles of radii r̂10 and r̂20, inside the drop, and lying on the flow-vorticity and

flow-gradient planes, respectively. It is interesting to note that these two circles will, in general,

not intersect, but do so for the special case of α = 1. The other two pairs of fixed points are

true points lying on the symmetry plane at the surface of the drop, two of which are given by

(r̂30, θ̂
3
0, φ̂

3
0) = (1, π/2, (1/2)cos−1 [β(1 + λ)]) and (r̂40, θ̂

4
0, φ̂

4
0) = (1, π/2,−(1/2)cos−1 [β(1 + λ)]).

The respective pair for each is at a π separated location given by (1, π/2, π−(1/2)cos−1 [β(1 + λ)])

and (1, π/2, π + (1/2)cos−1[β(1 + λ)]), respectively.

All eight of these fixed points exist on or within the drop, as shown in Fig. 2.2a, when λ is

below a certain critical value denoted by λc. As one increases λ from below λc, the first pair
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of fixed points moves radially outwards along the x1 axis while the second pair moves radially

inwards along the x2 axis. From a three-dimensional perspective, this is because the fixed circle

of radius r̂10 expands with increasing λ, while the fixed circle of radius r̂20 shrinks. The third and

fourth pairs of fixed points move along the drop surface towards φ = 0 and φ = π locations (see

the arrows in Fig. 2.2a). At the first critical point, λc, the first, third and fourth pairs merge

together at the φ = 0 and φ = π points (Fig. 2.2b). Again, in a three-dimensional picture, this

corresponds to the fixed circle of radius r̂10 expanding to lie on the drop surface. Thus λc can be

calculated by solving the equation, r̂10 = 1, yielding:

λc =
2α

(1− α)
. (2.11)

For λ values greater than λc, the fixed circle resulting from the merger of the third and fourth

pairs of fixed points with the fixed circle of radius r̂10 moves outside the drop. At a second critical

viscosity ratio λ′c, the second pair of critical points merge and become coincident with the origin

and remain so for all higher viscosity ratios (see Fig. 2.2c). In a three dimensional picture this

corresponds to the fixed circle of radius r̂20 shrinking to a point. This second critical viscosity

ratio can therefore be calculated by solving r̂20 = 0 giving:

λ′c =
5α+ 1

2(1− α)
. (2.12)

The two critical viscosity ratio curves with respect to α are plotted in Fig. 2.3.

We now return to the first critical viscosity ratio λc which, as we show later, is important in

the exterior heat transfer problem. As mentioned above, with an increase in λ beyond λc, the

fixed-circle moves outside the drop interior, and its radius is given by

r0
1 =

[
(1 + α)λ

2α(1 + λ)

]1/5
, (2.13)

where r0
1 > 1 for λ > λc. Thus the only fixed points in the exterior flow lie on a circle and

are given by (r0
1, θ, φ = 0, π). Importantly, these lie on a separatrix surface which lies at the

interface between closed and open streamline regions, the projection of which is shown in Fig.

2.2c. The exact three-dimensional nature of the closed streamline region will be elucidated in

the following sections. To summarize, the fixed point analysis has shown us that, with respect

to the exterior flow field, there are two regions of interest in the (α, λ) plane separated by the

critical viscosity ratio curve λ = λc(α): (1) An open streamline regime for λ < λc(α) where

the drop is surrounded by open streamlines only. (2) A closed streamline regime for λ > λc(α),

where the drop is completely surrounded by closed streamlines. The second critical viscosity

ratio, while important in the context of the interior flow, will not directly play a role in the

exterior heat transfer problem. The latter is the focus of this work.
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(a) λ < λc (b) λc < λ < λ′

c (c) λ > λ′

c

Figure 2.2: Streamlines and fixed point locations interior and exterior to the drop at a fixed
value of α = 0.25 as a function λ. The arrows indicate the direction of movement of the fixed
points lying on the x3 = 0 plane with increasing λ
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Figure 2.3: The two critical curves for the viscosity ratio λ. Solid red curve : λc and the green
dashed curve : λ′c
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2.3 Streamline Topology: Characterization using Streamsur-

faces

In this section, we derive the equations of the streamlines interior and exterior to the drop. The

streamlines will be characterized as curves resulting from the intersections of two families of

streamsurfaces. By calculating the relevant bounds on the streamline coordinates, we distinguish

between regions of closed and open streamlines and also analyse their three-dimensional topology.

This analysis will closely follow that of Kao et al. (1977) and Powell (1983). We first derive the

equations separately in the interior and exterior regions and later go on to present a systematic

and unified analysis valid in both regions. We also make connections to the fixed point analysis

presented earlier.

Our starting point is the velocity field equations for the drop given by Eqs. 2.6 - 2.8. By

definition (Batchelor (2000)), the equations that define a streamline, in spherical coordinates,

are given by:
dr

ur
=
rdθ

uθ
=
r sin θdφ

uφ
(2.14)

2.3.1 Interior Streamlines

We first derive the equations for the interior streamlines. Substituting for ur and uθ from Eqs.

2.6, 2.7 and 2.9 in Eq. 2.14, and upon integrating, one obtains:

cos θ = D̂r−1(1− r2)−1/3, (2.15)

where D̂ is a constant of integration and characterizes a one-parameter family of invariant

streamsurfaces in the drop interior (r ≤ 1). Similarly, considering the second relation in Eq.

2.14 and substituting for uθ and uφ from Eqs. 2.7 and 2.8, one obtains:

dθ

(1 + α) sin θ cos θ sin 2φB(r;λ)
=

dφ

(1 + α)B(r;λ) cos 2φ− (1− α)
, (2.16)

and, upon rearranging, we get:

sin θ cos θ sin 2φ
dφ

dθ
= cos 2φ− β

B(r;λ)
, (2.17)

sin θ cos θ sin 2φ
dφ

dθ
+ 2 sin2 φ = 1− β

B(r;λ)
, (2.18)

where, recall that β = (1− α)/(1 + α). This is a linear first-order differential equation and the

integrating factor is found to be sin θ/(cos3 θ). Multiplying both sides by the integrating factor,

one obtains:
d(tan2 θ sin2 φ)

dθ
=

[
1− β

B(r;λ)

]
sin θ

cos3 θ
. (2.19)
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Substituting for B(r, λ) from Eq. 2.9 (corresponding to the interior flow), rewriting the RHS

and integrating both sides with respect to θ, one obtains:

tan2 θ sin2 φ = [1− β(1 + λ)]

∫
sin θ

cos3 θ
dθ + 5β(1 + λ)

∫
(r2 − 1) sin θ

(5r2 − 3) cos3 θ
dθ. (2.20)

Integrating the first term on the RHS, one obtains:

tan2 θ sin2 φ =
1− β(1 + λ)

2 cos2 θ
+ F̂ + 5β(1 + λ)

∫
(r2 − 1) sin θ

(5r2 − 3) cos3 θ
dθ, (2.21)

where F̂ is a constant of integration. Substituting for θ(r) from Eq. 2.15, and performing the

second integration, one obtains:

sin2 θ sin2 φ =
1− β(1 + λ)

2
+ F̂ D̂2r−2(1− r2)−2/3 − β(1 + λ)

2
r−2(1− r2). (2.22)

Simplifying the RHS further and denoting the combination F̂ D̂2 by the constant Ê, we get the

final expression for the second set of interior streamsurfaces, termed the “Ê surfaces”, as:

sin θ sinφ = ±
[
1

2
− β(1 + λ)

2r2
+ Êr−2(1− r2)−2/3

]1/2
. (2.23)

We now use Eqs. 2.15 and 2.23 to comment on both the topology of the streamsurfaces and

thence, their curves of intersection, the streamlines. Rewriting the Eqs. 2.15 and 2.23 for the

interior region, one obtains:

x2 = ±r
[
1

2
− β(1 + λ)

2r2
+ Êr−2(1− r2)−2/3

]1/2
, (2.24)

x3 = D̂(1− r2)−1/3. (2.25)

Note that x3 and x2 in the above equations are functions of r alone. This implies that the D̂

and Ê surfaces form one-parameter families of surfaces-of-revolution about the x3 and x2 axes,

respectively. From Eq. 2.25 we see that the streamsurface identified by D̂ = 0 corresponds both

to the surface r = 1, which is the drop surface and also the symmetry plane θ = π/2 (x3 = 0).

The drop surface is also a limiting member of the “Ê surfaces” family and corresponds to the

surface Ê = 0. One consequence of the drop surface (unit sphere) being a member of both

families is that the surface streamlines cannot be recovered as the curves of intersection from

the present analysis. We consider these streamlines independently in section 2.4.

A streamline is thus defined by an intersection of a given D̂ and Ê surface and can be uniquely

identified by the labels (D̂, Ê). To analyze the nature of the interior streamlines further, we

make a note of the following bounds that exist for the streamline expressions. Since 0 ≤ |x2| ≤ r

we can write down the following relations for the Ê surfaces:

Ê ≤ (1− r2)2/3

2

[
β(1 + λ) + r2

]
= F̂1(r), (2.26)

Ê ≥ (1− r2)2/3

2

[
β(1 + λ)− r2

]
= F̂2(r). (2.27)
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Eqs. 2.26 - 2.27 allow us to study the nature and spatial extent of the streamlines. For a given

streamline (identified by the pair of streamsurface labels, as mentioned above), we can calculate

the interval in the spatial coordinates bounded by (rmin, θmin, φmin) and (rmax, θmax, φmax) for

which the above relationships are satisfied. For instance, when the lower and upper bounds

for the radial coordinate of a streamline are both finite, one can conclude that these are closed

streamlines (in the Re = 0 limit). This lets us distinguish between open and closed streamlines.

Open streamlines are characterized by an interval in the radial coordinate where the upper bound

is at infinity, since an open streamline, by definition, comes from or goes to infinity relative to

the drop position

To calculate the allowed intervals in r, we consider the behaviour of the RHS of Eqs. 2.26-2.27

as a function of r. Starting with the RHS of Eq. 2.26, given by F̂1(r), we see that this function

varies non-monotonically from β(1 + λ)/2 at r = 0 to zero at r = 1 with a single maximum at

r1 = [3/5− (2/5)β(1+λ)]1/2 . The location of this maxima is nothing but the second fixed circle

derived for the interior flow given by (r̂20 , θ̂
2
0, φ̂

2
0) which was identified in section 2.2. Similarly,

the RHS of Eq. 2.27, given by F̂2(r), varies between the same two limits as F̂1(r), but with an

intermediate minimum at r2 = [3/5 + (2/5)β(1 + λ)]1/2. Again, this is the first fixed circle in

the interior flow (r̂10, θ̂
1
0, φ̂

1
0), which was identified in section 2.2. It is straightforward to see that

r2 ≥ r1. The curves F̂1(r) and F̂2(r) are plotted for the most general case, where the maxima of

F̂1(r) and minima of F̂2(r) (and hence the two fixed circles) are found within the drop (r ≤ 1),

in Fig. 2.4.

In-plane Streamlines

It is possible, using the afore-mentioned curves (see Fig. 2.4), to comment on the geometry of

the interior streamlines based on their streamline label for the most general behaviour of F̂1(r)

and F̂2(r) (both fixed circle lying within the drop). We will first discuss streamlines lying on the

symmetry plane (x3 = 0), all of which have the D̂ = 0 label. This in turn helps one understand

the three-dimensional topology of the interior streamlines. For different values of Ê (horizontal

lines in Fig. 2.4), we now derive the allowed ranges in the radial coordinate using Eqs. 2.26 -

2.27. The allowed ranges are depicted as hashed green lines in Fig. 2.4.

• Ê < F̂2(r2): No interior streamlines are defined for this range of the streamline label since

Eq. 2.27 is not satisfied for any value of r ∈ [0, 1].

• F̂2(r2) ≤ Ê < 0: For this range of the streamline label we have a closed streamline

branch with an r̂min2 and r̂max2 which are solutions of E = F̂2(r) (see Fig. 2.4 (i)). At

Ê = F̂2(r2) these maxima and minima coincide and the streamline label corresponds to the

fixed points (r̂10 , π/2, φ̂
1
0) and (r̂10 , π/2, π − φ̂10)(see Fig. 2.4 (i)). For off-plane streamlines

for which D̂ 6= 0, this corresponds to the fixed circle given by (r̂10, θ̂
1
0, φ̂

1
0).

• 0 ≤ Ê < β(1+λ)/2: We have a closed streamline branch with an r̂min2 which is a solution

of E = F̂2(r), and an r̂max1 arising from a solution of E = F̂1(r) (see Fig. 2.4 (ii)). Ê = 0

corresponds to a separatrix streamline separating two classes of interior streamlines ((i)

and (ii) in Fig. 2.4) and is depicted by a red dashed curve in Fig. 2.4 (ii).
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• β(1 + λ)/2 ≤ Ê < F̂1(r1) : This corresponds to a closed streamline branch with an

r̂min1 and an r̂max1 both of which are solutions of E = F̂1(r) (see Fig. 2.4 (iii). Ê =

β(1 + λ)/2 corresponds to a second eight-shaped separatrix streamline separating two

classes of interior streamlines ((ii) and (iii) in Fig. 2.4) and is depicted by a red dashed

curve in Fig. 2.4 (iii).

• F̂1(r1) ≤ Ê: At Ê = F̂1(r1), the minima and maxima of the closed streamline are coinci-

dent and correspond to the fixed points given by (r̂20, π/2, φ̂
2
0) and (r̂20, π/2, π− φ̂20)(see Fig.

2.4 (iii)). In a three-dimensional picture for which D̂ 6= 0, this corresponds to the fixed

circle given by (r̂20, θ̂
2
0, φ̂

2
0). Greater values of Ê do not correspond to interior streamlines.

One can also comment about the φ and θ locations where the streamlines attain their minima

or maxima value in r. This in turn helps one deduce the three-dimensional structure of the

streamlines. The roots of E = F̂1(r), in light of Eqs. 2.23 and 2.26, give rise to the condition

that sin θ sinφ = 0, which means that the streamline attains r̂min2 and r̂max2 at (θ, φ = 0, π),

where θ is arbitrary. Roots of E = F̂2(r), using Eq. 2.23 and 2.27, give rise to the condition

that sin θ sinφ = ±1. Thus, r̂min1 and r̂max1 occur at (θ = π/2, φ = π/2, 3π/2).

Thus, in general, there are three distinct classes of interior streamlines. The first has an

rmin2 and an rmax2, both lying at φ = (0, π) (Fig. 2.4 (i)). The second has an rmin2 and an

rmax1 at φ = (0, π) and φ = (π/2, 3π/2), respectively (Fig. 2.4 (ii)). The third has an rmin1

and an rmax1, both at φ = (π/2, 3π/2) (Fig. 2.4 (iii)). As we comment later in the combined

analysis of interior and exterior streamlines (2.3.3), all three types occur only when λ < λc. We

note that the first and third classes of streamlines correspond to two in-plane closed streamlines

for each value of the streamline label Ê, while the second class corresponds to a single, in-plane,

closed streamline per streamline label.

2.3.2 Exterior Streamlines

Next, we derive the streamline equations in the exterior region. As for the interior case, we first

consider the streamline equation for the r and θ coordinates, to obtain:

B(r;λ)dr

r [A(r;λ)r2 +B(r;λ)]
= tan θdθ. (2.28)

Substituting for A(r;λ) and B(r;λ) from Eq. 2.10 in Eq. 2.14 corresponding to the exterior,

and upon performing the straightforward integration of Eq. 2.28, one obtains for the exterior

flow field:

cos θ = Df(r), (2.29)

f(r) =

[
r3 − 5λ+ 2

2(λ+ 1)
+

3λ

2(λ+ 1)r2

]−1/3

, (2.30)

where D is a constant of integration and characterizes the first set of streamsurfaces, the so-

called “D surfaces” in the drop exterior. Now, considering the equation relating θ and φ and

proceeding as before, we get Eq. 2.19, where B(r) is now for the exterior flow. As before the
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Figure 2.4: Plots of F̂1(r) and F̂2(r) with respect to r in the interior region, horizontal lines
denote different values of the streamline label Ê. There are three classes of interior streamlines
(in general) which are labelled (i), (ii) and (iii). The green dashes depict the allowed range
in r of a given class of streamlines. Black arrows connect each of the green hashed lines to
the corresponding class of streamlines. Red(dashed) arrows connect the red dashed lines to the
separatrix streamlines which separate two different classes of streamlines.
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integrating factor is given by sin θ/ cos3 θ. Rearranging the RHS, and integrating both sides

with respect to θ, gives:

tan2 θ sin2 φ =

∫ [
2α

1 + α
− βλ

(λ+ 1)r5 − λ

]
sin θ

cos3 θ
dθ.

Integrating the first term, one obtains:

tan2 θ sin2 φ =
α

cos2 θ(1 + α)
+ F −

∫ [
βλ

(λ+ 1)r5 − λ

]
sin θ

cos3 θ
dθ,

where F is a constant of integration. Substituting for θ in terms of r from 2.29, and transforming

the integral, one obtains:

tan2 θ sin2 φ =
α

cos2 θ(1 + α)
+ F − βλ

(1 + λ)D2

∫
f(r)r−3dr. (2.31)

Rewriting the above and substituting for cos θ from Eq. 2.29, one obtains:

sin2 θ sin2 φ =
α

(1 + α)
+ FD2[f(r)]2 +

βλ

(1 + λ)
[f(r)]2

∫ ∞

r
f(y)y−3dy (2.32)

We note that f(r)r−3 goes to zero as r → ∞. Denoting the combination FD2 by E, we have the

final expression for the second set of stream-surfaces in the drop exterior which will henceforth

be referred to as the “E surfaces”:

sin θ sinφ = ±
[

α

(1 + α)
+ Ef(r)2 +

βλ

(1 + λ)
f(r)2g(r)

]1/2
, (2.33)

where g(r) =
∫∞
r f(y)y−3dy.

As for the interior streamlines, we use Eqs. 2.29 and 2.33 to comment on the topology of

the stream surfaces, and thence, the exterior streamlines. Rewriting Eqs. 2.29 and 2.33 for the

exterior region, one obtains:

x2 = ±r
[

α

(1 + α)
+ Ef(r)2 +

βλ

(1 + λ)
f(r)2g(r)

]1/2
, (2.34)

x3 = rDf(r). (2.35)

Just as in the interior case, the D and E surfaces are surfaces of revolution about the x3 and

x2 axes, respectively. In the exterior flow, the D = 0 label corresponds to the surface r = 1 and

also x3 = 0(the symmetry plane), as seen from Eq. 2.35. Thus the near-field D surfaces hug the

drop for the most part and become parallel to the symmetry plane near x3 = 0. Further, the

nature of the constant D surfaces can be deduced by noting that as r → ∞ the equation for the

D surface reduces to x3 = D, implying that the D surfaces far away from the drop are parallel

to the symmetry plane. From Eq. 2.35, surfaces with positive values of D leads to surfaces with

x3 > 0 while negative values of D lead to a surfaces which are mirrored across the x3 = 0 plane.

This symmetry implies that it is sufficient to restrict our attention to positive values of x3, and

hence positive values of D.
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Based on Eq. 2.34, we now write down the bounds that exist for the streamlines. Since

0 ≤ |x2| ≤ r, we can write down the following relations for the E surfaces:

E ≤ 1

(1 + α)f(r)2
− βλg(r)

1 + λ
= F1(r), (2.36)

E ≥ −α
(1 + α)f(r)2

− βλg(r)

1 + λ
= F2(r). (2.37)

We now proceed to use Eqs. 2.36 and 2.37 to study the nature and spatial extent of the exterior

streamlines. The RHS of Eqs. 2.36, given by F1(r), is a strictly increasing function and has a

value of −βλg(1)/(1+λ) at r = 1. The RHS of Eq. 2.37, given by F̂2(r), is non-monotonic with

a single maximum at a value of r given by:

r0 =

[
λ(1 + α)

(1 + λ)2α

]1/5
. (2.38)

Note that this is the same radial location as the fixed circle in the exterior flow field which

was calculated earlier and is given in Eq. 2.13 (section 2.2). The value of the streamline label

corresponding to this maximum is given by E0 = F2(r0). The shape of the curves F1(r) and

F2(r) are plotted with respect to r in Fig. 2.5 for the most general case, for which the maximum

of F2(r) occurs at r0 ≥ 1, which corresponds to the aforementioned fixed circle.

In-plane Streamlines

We now comment on the nature of streamlines lying in the symmetry plane (x3 = 0) by con-

sidering different values of the streamline label E. Note that for these streamlines, D = 0. We

can further deduce the nature of the E surfaces by generating the surface of revolution of these

streamlines about the x2 axis.

• E < −βλg(1)/(1 + λ) : For this case the streamlines have a minimum r given by rmin2

above which Eq. 2.37 is not satisfied. These are open streamlines since their maximum

allowed radial distance is infinity (see Fig. 2.5 (i)).

• −βλg(1)/(1 + λ) < E < E0 : Here we have two streamline branches. The first of these

corresponds to a closed streamline branch with an rmin1 which is a solution of F1(r) = E

and an rmax2 which is a solution of F2(r) = E (see Fig. 2.5 (ii)). The second is an open

streamline branch with an rmin2 given by a second solution of F2(r) = E (see Fig. 2.5 (i)).

Since F1(r) ≥ F2(r), we see that rmax2 > rmin1 and rmin2 > rmax2.

• E = E0 : For this case rmax2 and rmin2 are coincident and this corresponds to a separatrix

which separate the region of closed and open streamlines. The separatrix consists of a

closed portion with an rmin1 from F1(r) and an rmax2 from F2(r); it also consists of an

open portion which has an rmin2 = r0. Both these are depicted as red, dashed curves in

(ii) and (iii), respectively, in Fig. 2.5.

• E > E0 : For this case we have a single open streamline branch given by F1(r) with an

rmin1 (see Fig. 2.5 (iii)).
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Figure 2.5: Plots of F1(r) and F2(r) with respect to r in the exterior region, horizontal lines
depict various cases for the streamline label E. There are three classes of exterior streamlines
(in general) which are labelled (i), (ii) and (iii). The green dashes depict the allowed range
in r of a given class of streamlines. Black arrows connect each of the green hashed lines to
the corresponding class of streamlines. Red(dashed) arrows connect the red dashed lines to the
separatrix streamlines which separate two different classes of streamlines.
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As for the interior flow we comment on the θ and φ locations where the streamlines achieve their

maximum or minimum distance of approach to the drop. If we consider the rmin1 limit imposed

due to F1(r), it is clear that E = F1(rmin1) also means that sin θ sinφ = ±1, as seen from Eqs.

2.33 and 2.36. Thus rmin1 occurs at (θ = π/2, φ = π/2, 3π/2). Similarly from Eqs. 2.33 and

2.37, we see that E = F2(rmax2) and E = F2(rmin2) is equivalent to sin θ sinφ = 0, meaning

that the streamlines are at rmin2 and rmax2 at (θ, φ = 0, π), where θ is arbitrary.

In summary, in the exterior flow field we have, in general, three classes of streamlines. There

are two distinct classes of open streamlines, the first has an rmin2 at φ = (0, π), while the second

has an rmin1 at φ = (π/2, 3π/2). These correspond to (i) and (iii) in Fig. 2.5. There is a single

class of closed streamlines with an rmin1 at φ = (π/2, 3π/2) and a rmax2 at φ = (0, π) (see (ii)

in Fig. 2.5). We note that streamline labels corresponding to the open streamline branches,

correspond to two streamlines each (see (i) and (iii) in Fig. 2.5), while the closed streamline

branches correspond to a single streamline per label (see (ii) in Fig. 2.5). There also exists a

separatrix (with an open and closed portion) which separates the regions of closed and open

streamline regions (depicted as red, dashed curves in (ii) and (iii) in Fig. 2.5 ).

Off-plane Streamlines

It is possible to use the streamline shapes on the symmetry plane along with our knowledge of

the D surfaces to understand the nature of off-plane streamlines. Since the in-plane streamlines

are a result of the intersection of E surfaces with the D = 0 surface (x3 = 0), we can generate

the three-dimensional E surfaces as surfaces-of-revolution of these streamlines about the x2 axis.

The closed streamlines surrounding the drop, which exist when λ > λc and−βλg(1)/(1+λ) <
E < E0, lead to E surfaces which enclose a finite volume, since they are surfaces-of-revolution of

a closed curve. These have the same minimum and maximum distance of approach to the drop

(given by rmin1 and rmax2) as the in-plane closed streamlines and may be likened to a saturn

shape since they bulge out at the flow-vorticity plane (where their maximum radial distance

rmax2 occurs), and are flattened along the gradient axis (where they attain their minimum

radial distance rmin1). The largest of these closed surfaces is a portion of the separatrix surface

which is given by E = E0. This surface is the limiting surface separating the region of closed

streamlines adjacent to the drop from the open streamline region. The separatrix surface has

a maximum radial distance r0 and a minimum radial distance given by rmin1. The maximum

radial distance can be used as a measure for the extent of the closed streamline region. As seen

from the expression for r0 this region is infinite in extent for simple shear flow (α = 0). On the

other hand, for planar extensional flow (α = 1), this radial extent is smaller than the drop radius

for any finite value of the viscosity ratio, indicating the absence of a closed streamline region in

the drop exterior. For E < −βλg(1)/(1 + λ) the E surfaces are topologically equivalent to one-

sheeted hyperboloids of revolution about the x2 axis with a minimum distance of approach given

by rmin2 and a maximum which is unbounded. Similarly, the second open streamline branch

which occurs for E > −βλg(1)/(1 + λ) leads to a set of surfaces are topologically equivalent to

two-sheeted hyperboloids of revolution about the x2 axis. The open portion of the separatrix

surface E = E0 is topologically like a distorted double cone along the x2 axis with a unit sphere

inserted at the origin.

The off-plane closed streamlines, which play a role in the O(Re) heat transfer problem, are
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Figure 2.6: In-plane and off-plane closed streamlines along with in-plane open streamlines for a
drop. The in-plane separatrix is shown as a red dashed curve

then given by intersection of the saturn shaped E surfaces for (−βλg(1)/(1+λ) < E ≤ E0) with

the D surfaces for D 6= 0. From the shapes of the D and E surfaces, we see that the off-plane

closed streamlines are nearest to the x3 = 0 plane at φ = π/2, 3π/2 and are farthest away at

φ = 0, π (see Fig. 2.6). Also the separatrix, which is given by E = E0, places a bound on the D

surfaces which contribute to closed streamlines. The separatrix surface has an rmax2 = r0 and it

intersects the largest D surface at a point at distance of r0 along the x3 axis. This corresponds

to the value of the D surface satisfying D∗f(r0) = 1, giving D∗ = 1/f(r0). Thus the closed

streamline region is bounded by −D∗ < D < D∗ and (−βλg(1)/(1 + λ) < E < E0). Fig. 2.6

shows a plot of both in-plane and off-plane closed streamlines.

As we mentioned previously, a version of this analysis, involving the interior and exterior

streamlines for a drop in a planar linear flow, has been carried out by Kao et al. (1977) (sim-

ple shear flow), Powell (1983) (general planar linear flows). However, our emphasis is on the

implications of the streamline topology for the heat transfer and this has motivated us to inde-

pendently carry out this analysis. For instance, our fixed point analysis enables us to distinguish

between regimes where the drop is surrounded by open or closed streamlines, which is important

for carrying out the heat transfer analysis. Further, in the next section, we present a unified

picture of the interior and exterior streamlines which has not been done previously. Also, in

a subsequent section (section 2.4), we derive a non-orthogonal coordinate system based on the

streamlines on the drop surface, which, as we shall see in subsequent chapters, will play a crucial

role in both the open streamline and closed streamline heat transfer analyses.

2.3.3 Combined Analysis of Interior and Exterior Streamlines

While the analysis presented above considers the most general behaviour of the RHS functions,

their behaviour is a function of both α and λ as seen from Eqs. 2.26, 2.27, 2.36 and 2.37, and
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need not always subscribe to the general scenario. Also these curves are not independent of each

other with respect to α and λ. For instance, we note that for a given value of (α, λ), F̂2(r) cannot

have a minimum in r ∈ [0, 1], while F2(r) has a maximum in r ∈ (1,∞). In other words, there is

a transition between monotonicity and non-monotonicity (in opposite directions for F̂2(r) and

F2(r)) at the same critical value of λ. The flow field within the drop is therefore connected

to the flow field outside. Apart from a theoretical understanding, there is also an important

utility of doing such a combined analysis from an experimental view point. It is in general

more challenging to study the flow inside a drop via experiments whereas the flow outside is

more readily accessible (Torza et al. (1971)). Thus one can, by understanding the relationship

between the interior and exterior flow, deduce the interior flow field using observations of the

exterior field. This motivates the streamline classification in a unified manner for the interior

and exterior regions using a single streamline label. In order to do this, we rewrite the streamline

label E in the exterior coordinate as G = E + βλg(1)/(1 + λ). This allows G = Ê, and the

transformed variable G = E + βλg(1)/(1 + λ), to be the single streamline label describing both

the interior and exterior flow since the RHS curves with respect to r for Eqs. 2.26, 2.27, 2.36

and 2.37 are now continuous across the drop interface(r = 1). We find that, as seen above in

the fixed-point analysis, there are two critical values of the viscosity ratio λc and λ
′
c resulting in

three distinct regimes for the streamlines interior and exterior to the drop. A summary of this

analysis is presented in Table. 2.1. This table is best understood in conjunction with Figs. 2.2,

2.4 and 2.5. We will use the labels (i), (ii) and (iii) to identify the three classes of interior and

exterior streamlines depicted in Figs. 2.4 and 2.5, respectively.
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Range in

viscosity

ratio

Behaviour of RHS functions Eqs. 2.26,

2.27, 2.36 and 2.37
Classification of streamlines

0 ≤ λ ≤ λc

Three classes of interior streamlines

and two classes of exterior stream-

lines

G < G2: A pair of exterior open stream-

lines with rmin2 at φ = 0, π

G2 < G < 0: A pair of exterior open

streamlines with rmin2 at φ = 0, π (class

(i)); a pair of interior closed streamlines

with r̂min2 and r̂max2 at φ = 0, π (class

(i))

0 < G < β(1 + λ)/2: A pair of exte-

rior open streamlines with rmin1 at φ =

π/2, 3π/2 (class (iii)); an interior closed

streamline with r̂min2 and r̂max1 at φ = 0

and φ = π/2, respectively (class (ii)). G =

0 corresponds to a separatrix streamline,

with r̂max2 = 1, separating the first and

second class of interior streamlines (see

Fig. 2.4 (ii)). This also corresponds to the

separatrix streamline in the exterior flow,

with rmin2 = 1, separating the two classes

of exterior open streamlines (see Fig. 2.5

(iii)).

β(1 + λ)/2 < G < G1: A pair of exte-

rior open streamlines with rmin1 at φ =

π/2, 3π/2 (class (iii)); a pair of interior

closed streamlines with r̂min1 and r̂max1

both at φ = π/2, 3π/2 (class (iii)). G =

β(1 + λ)/2 corresponds to the separatrix

between the second and third class of inte-

rior streamlines (see Fig. 2.4 (iii)).

G > G1: A pair of exterior open stream-

lines with rmin1 at φ = π/2, 3π/2 (class

(iii)); interior closed streamlines not de-

fined.
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λc ≤ λ ≤ λ′c

Two classes of interior streamlines

and three classes of exterior stream-

lines

G < 0: A pair of exterior open stream-

lines with rmin2 at φ = 0, π (class (i)). No

interior streamlines defined.

0 < G < G0: A pair of exterior open

streamlines with rmin2 at φ = 0, π (class

(i)); an exterior closed streamline with

rmin1 and rmax2 at φ = π/2 and φ = 0,

respectively (class (ii)). An interior closed

streamlines with r̂min2 and r̂max1 at φ =

0 and φ = π/2, respectively (class (ii)).

G = G0 corresponds to a pair of separa-

trix streamlines (one open, one closed) in

the exterior flow separating the open and

closed streamline regions, and also the two

classes of open streamline regions (see Fig.

2.5 (ii) and (iii)).

G0 < G < β(1 + λ)/2: A pair of exte-

rior open streamlines with rmin1 at φ =

π/2, 3π/2 (class (iii));an interior closed

streamline with r̂min2 and r̂max1 at φ = 0

and φ = π/2, respectively (class (ii)). G =

β(1 + λ)/2 corresponds to the separatrix

streamline which separates the two classes

of interior closed streamlines (see Fig. 2.4

(iii)).

β(1 + λ)/2 < G < G1: A pair of exte-

rior open streamlines with rmin1 at φ =

π/2, 3π/2 (class (iii)); a pair of interior

closed streamlines with r̂min1 and r̂max1

both at φ = π/2, 3π/2 (class (iii).

G > G1: A pair of exterior open stream-

lines with rmin1 at φ = π/2, 3π/2 (class

(iii)); interior closed streamlines not de-

fined.
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λ′c ≤ λ ≤
∞

One class of interior streamlines and

three classes of exterior streamlines

G < 0: A pair of exterior open stream-

lines with rmin2 at φ = 0, π (class (i)). No

interior streamlines defined.

0 < G < G0: A pair of exterior open

streamlines with rmin2 at φ = 0, π (class

(i)), and a closed streamline branch with

rmin1 and rmax2 at φ = π/2 and φ = 0,

respectively (class (ii)). An interior closed

streamline with r̂min2 and r̂max1 at φ = 0

and φ = π/2, respectively (class (ii)).

G = G0 corresponds to a pair of separa-

trix streamlines (one open and one closed)

in the exterior which separate the closed

and open streamline regions, and also sep-

arate the two classes of open streamlines

(see Fig. 2.5 (ii) and (iii)).

G0 < G < β(1 + λ)/2: A pair of exte-

rior open streamlines with rmin1 at φ =

π/2, 3π/2 (class (iii)); an interior closed

streamline with r̂min2 and r̂max1 at φ = 0

and φ = π/2, respectively (class (ii)).

G > β(1 + λ)/2: A pair of exterior open

streamlines with rmin1 at φ = π/2, 3π/2

(class (iii)); interior closed streamline not

defined.

Table 2.1: Combined analysis of interior and exterior streamlines for a drop.

2.4 The Surface Streamlines at Zero Re - The (C, τ) Coordinate

System

It is of interest to separately analyze the streamlines on the surface of the drop, given the

important role these play in the exterior heat transfer problem. Since our problem assumes

the limit of small Ca, the deformation of the drop is small and therefore neglected. The radial

velocity at the surface is thus identically zero, and the surface streamlines are trajectories on the

unit sphere determined by the velocity components in the θ and φ directions. On the surface,

these components reduce to:

uθ|r=1 = − (1 + α)

2(1 + λ)
sin 2θ sin 2φ1 =

dθ

ds
, (2.39)

uφ|r=1 =
(1 + α)

(1 + λ)
sin θ [cos 2φ1 + β(1 + λ)] = − sin θ

dφ1
ds

, (2.40)

where we have used the transformation φ1 = π/2 − φ, so that φ1 is measured from the x2 axis.

Also, s is the dimensionless time (time measured in units of γ̇−1). We can rewrite the above
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equations as:

dθ

ds
= − (1 + α)

2(1 + λ)
sin 2θ sin 2φ1, (2.41)

dφ1
ds

= −(1 + α)

(1 + λ)
(β(1 + λ)− 1)

[
β(1 + λ) + 1

β(1 + λ)− 1
cos2 φ1 + sin2 φ1

]
, (2.42)

where we have defined

γ =

[
(β(1 + λ) + 1)

(β(1 + λ)− 1)

]1/2
. (2.43)

Using this we can write the above equations in the form:

dθ

ds
= −(1− α)(γ2 − 1)

2(γ2 + 1)
sin 2θ sin 2φ1, (2.44)

dφ1
ds

= −2(1− α)

γ2 + 1

[
γ2 cos2 φ1 + sin2 φ1

]
. (2.45)

We make the important observation by comparing the above equations to Eqs. 2(a) and 2(b) in

Leal & Hinch (1971) that these have the exact same form as the equations for the Jeffery orbits

of an axisymmetric particle in a shear flow. While in the original Jeffery orbits, the shape of the

orbits depended on a geometric aspect ratio (this being the actual aspect ratio for the special

case of spheroidal particles), in the present case of a drop, its place is taken by an effective-

aspect-ratio γ which depends on the flow parameters α and λ as defined in Eq. 2.43 1. This

insight allows us to define a new coordinate system on the drop surface to describe the surface

streamlines. Proceeding as in Leal & Hinch (1971), and by integrating Eq. 2.45, one obtains:

tanφ1 = γ tan
−2(1− α)s

γ + 1/γ
. (2.46)

Introducing a new variable τ = (−2(1 − α)s)/(γ + 1/γ), we have the equation:

tan φ1 = γ tan τ. (2.47)

Similarly, we can integrate Eq. 2.44, after substituting for φ1 in terms of τ , and one obtains:

tan θ = C[cos2 τ + γ2 sin2 τ ]1/2. (2.48)

Eqs. 2.47 and 2.48 form the basis of the (C, τ) coordinate system. This is a coordinate system

where the coordinate lines C and τ are in general not orthogonal to one another. Physically, as

seen in Fig. 2.7b, the C coordinate defines which orbit (or trajectory if the streamline is not

closed) we are on while the τ coordinate gives the phase along that orbit (trajectory). Following

Leal & Hinch (1971), the metrics of the coordinate system h and k and also the skewness angle

1We note here that while we have highlighted the analogy between the surface streamlines on a drop and Jeffery
orbits and a drop for the case of a planar linear flow, the same remains true for a general linear flow. This can be

seen by noting that Jeffery orbit equations (Hinch & Leal (1972)) are given by ṗ = Ω·p+ γ′2
−1

γ′2+1
[E · p− p(E : pp)],

where γ′ is the geometric aspect ratio of the particle. As we show in chapter 3, the drop surface streamlines
obey the same equations but with an effective aspect ratio depending on the flow parameters.
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α1 (α1 would be π/2 in an orthogonal coordinate system) are found to be given by:

h = gCC = θC , (2.49)

k = gττ = (θ2τ + sin2 θφ21τ )
1/2, (2.50)

gCτ = θCθτ , (2.51)

sinα1 = φ1τ sin θ(θ
2
τ + sin2 θφ21τ )

−1/2, (2.52)

where θC , θτ etc, denote derivatives with respect to the subscript variable, and gCC , gττ and gCτ

are the components of the metric tensor of the (C, τ) coordinate system on the unit sphere sur-

face, as per the conventional notation (Aris (2012)). The contravariant unit vectors of the (C, τ)

coordinate system (i.e the unit vectors along the coordinate lines) in terms of the conventional

spherical coordinates unit vectors are given by:

Ĉ = θ̂, (2.53)

τ̂ = cosα1θ̂ + sinα1φ̂1, (2.54)

where φ̂1 = cosφ1x̂1 − sinφ1x̂2 and is the unit vector in the φ̂1 direction where φ1 is measured

in a clockwise sense from x2 axis. We note that Ĉ is still along the meridional direction, but

τ̂ is along the streamline/Jeffery orbit, rather than along the azimuth, which leads to the non-

orthogonality. The (C, τ) coordinate system is depicted in Fig. 2.7a. The components of the

velocity field on the drop surface, in the (C, τ) coordinate system are given by

u = uCĈ + uτ τ̂ , (2.55)

where

uC = uθ −
uφ1θτ
φ1τ sin θ

, (2.56)

uτ =
kuφ1

φ1τ sin θ
. (2.57)

For the case of Stokes flow, we can show that the velocity along Ĉ is:

u
(0)
C = 0, (2.58)

where we have used the expressions for uθ and uφ given in Eqs. 2.39 and 2.40, respectively. The

above result is because the τ coordinate is aligned along the surface streamlines of the Stokes

velocity field. This simplification of the velocity field in the (C, τ) coordinate system (i.e the

reduction of u @ r = 1 to a one-dimensional field), is helpful in proceeding towards a solution

of the heat transfer problem, both in the open and closed streamline regimes, which we solve in

Chapters 3 and 4.

The surface streamlines for the open and closed streamline regimes are shown in Fig. 2.8.

We now show that our definition of the (C, τ) coordinate system, enables a natural means of

distinguishing the presence or absence of closed streamlines in the exterior flow. When closed
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streamlines are present, the surface streamlines are true closed orbits, and in this case, they

must be characterized by a real valued effective-aspect-ratio γ (as for the case of the original

axisymmetric particle). This can be easily seen by noting from Eq. 2.43 that, for λ > λc, γ
2 > 0.

On the other hand, for λ < λc, for which the drop is surrounded by open streamlines, we see

that γ2 < 0 leading to a purely imaginary value of γ. This makes intuitive sense since, for

the open streamline case, the surface streamlines are not true closed orbits but are trajectories

which begin and end at the fixed points on the symmetry plane (see Fig. 2.8a). Thus the value

of γ gives us an elegant method to distinguish the closed and open streamline regimes. Another,

equally important feature of the parameter γ is that the open streamline heat transfer analysis

(discussed in chapter 3), to within a multiplicative factor (1 − α), only depends on γ. Thus,

instead of studying a single linear flow and varying the viscosity ratios, we can study at a range

of linear flows and viscosity ratios corresponding to a given value of γ.

The mapping from the (C, τ) coordinate system to the spherical polar coordinate system

is clear from Eqs. 2.48 and 2.47 at least for the closed streamline regime where γ is real and

positive. For the open streamline regime, the imaginary value of γ means that both C and τ

describing the surface streamlines are in general complex valued. We elucidate this further while

solving the open streamline heat transfer problem in Chapter 3, where an understanding of this

complex-valued coordinate system is essential. Here we comment only on the simpler case of the

closed streamline regime. The (C, τ) coordinate system and the physical mappings are depicted

in Fig. 2.7b. From Eq. 2.48, we see that θ = 0 corresponds to C = 0 with τ arbitrary, and

θ = π/2 corresponds to C = ∞ with τ again arbitary. The τ mapping can be inferred from Eq.

2.47 and we see that as φ1 varies from 0 to 2π,

τ varies between the same limits. Importantly however, the rates of variation of φ1 and τ

along a streamline are not the same and differ by a factor which depends on α and γ. Indeed,

we will see in subsequent chapters that τ varies with the dimensionless time s at a constant

rate along a surface streamline which only depends on α and γ. This fact, as we shall see later,

plays a crucial role in simplifying the heat transfer analysis when the problem is cast in terms

of the (C, τ) coordinate system. In effect, the choice of the (C, τ) coordinate system allows for

the problem of heat transfer from a drop to be analysed in a manner similar to the solid particle

(due to τ along a surface streamline changing at a constant rate).

Thus, the surface streamlines on a drop in both the open and closed streamline regimes

can be regarded as generalized Jeffery orbits. This is in contrast to the streamlines near a

solid particle (Kao et al. (1977)) in a planar linear flow which are circles owing to the fluid

elements being dragged along by the rotating solid particle (the no-slip boundary condition). In

addition, unlike the case of a drop, the near field streamlines for a solid particle are always closed

(Subramanian & Koch (2006b)) in the presence of any amount of finite vorticity in the ambient

linear flow. This can be inferred from the principle of reversibility of the Stokes equations which

exclude spiralling streamlines at Re = 0. The effect of varying the viscosity ratio while keeping

α constant is shown in Fig. 2.8. For viscosity ratios below λc (Fig. 2.8a), we have the open

streamline regime where the surface streamlines are trajectories that begin and end at fixed

points on the symmetry plane. For viscosity ratios close to λc, the surface streamlines are nearly

meridional in nature (Fig. 2.8b). The surface streamlines become closed orbits for viscosity
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(a) (C, τ ) coordinate system (b) Mapping on drop surface

Figure 2.7: (a) Plots of the unit vectors and metrics of the (C, τ) coordinate system. (b)
Depiction of the coordinate system on the drop surface showing mapping to spherical polar
coordinates

ratios greater than λc (Fig. 2.8c. It can be clearly seen that for λ→ ∞ the surface streamlines

reduce to circles as expected for a solid particle (Fig. 2.8d).

2.5 Streamline Topology with Small but Non-zero Inertia

In this section we discuss the effects of small but non-zero inertian on the streamline topology.

The inertial velocity field, to O(Re), may be written as

u = u(0) + Reu(1) +O(Re3/2), (2.59)

where u(1) is the O(Re) correction to the Stokes velocity field for a drop in a linear flow calculated

by Raja et al. (2010) and reproduced in appendix A. We note that the above correction is

restricted in its validity to the viscous dominated region at distances (from the drop) smaller

than the inertial screening length of O(aRe−1/2) (Raja et al. (2010)). However, we will be

interested mainly in heat transfer at small and finite Re in the strong convection limit, and the

above lack of a uniform validity of the velocity field is hardly a restriction. In the context of the

heat transfer problem, only the form of the velocity field in a thin thermal boundary layer region

near the drop is of consequence. The form of the O(Re3/2) field, close to the drop, is known

(Subramanian et al. (2011b)), but its addition is only expected to alter the heat transfer results

by a small amount of O(Re1/2). We therefore do not consider it any further in the analysis that

follows. The discussion of the streamline topology is based on the O(Re) velocity field.

In the case of a solid sphere, for any ambient planar linear flow with non-zero vorticity, we
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(a) Open streamline regime (λ < λc) (b) Intermediate regime (λ → λc)

(c) Closed streamline regime (λ > λc) (d) Closed streamline regime (λ → ∞)

Figure 2.8: The surface streamlines on a drop for distinct cases (a) Open streamline regime
(λ < λc), (b) Intermediate regime (λ→ λc) (c) Closed streamline regime (λ > λc) and (d) Solid
particle (λ→ ∞)
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always have a fore-aft symmetric region of closed streamlines surrounding the particle Subrama-

nian & Koch (2006b). This is similar to the two-dimensional case of a cylinder in a linear flow

which also exhibits such a region of closed streamlines (Robertson & Acrivos (1970a)). Addition

of inertia in the two-dimensional case however does not lead to any qualitative changes to the

flow (although the streamlines lose their force-aft symmetry) since the centrifugal forces which

are present due to small inertia are exactly balanced by pressure forces (Subramanian & Koch

(2006b)). However, in the three-dimensional case of a sphere in a linear flow it was shown by

(Subramanian & Koch (2006a), Subramanian & Koch (2006b)) that inertia breaks the degen-

erate region of closed streamlines. In this case, unbalanced centrifugal forces along a streamline

lead to the streamlines within the separatrix region no longer being closed.

For the case of drops the effect of inertia is very different based on whether one is in the

open streamline or closed streamline regimes. In the open streamline regime (λ < λc), the effect

of inertia is merely perturbative in nature, except in the vicinity of λ = λc. On the hand, in the

closed streamline regime (λ > λc), inertia fundamentally alters the streamline topology, and just

as in the case of a solid particle, leads to a disappearance of the closed streamlines which now

become finite-Re spiralling streamlines. From a heat transfer perspective, inertia therefore opens

up new channels for convection, and fundamentally alters the nature of the heat transport. We

will present a solution to this transport problem in chapter 4.

In the case of a solid sphere the velocity disturbance and hence the centrifugal forces are

strongest at the equatorial plane leading to convective channels which carry heat away from the

particle. The mass conservation constraint implies that to compensate for this efflux, fluid is

drawn in from the polar regions. A distant fluid parcel in effect, moves towards the solid particle

at a certain value of the vorticity coordinate (x3), spirals around the sphere and finally exits via

an outgoing channel, closer to the plane of symmetry (Subramanian & Koch (2006b)).

However, for a drop, the spiralling behaviour is more interesting with the presence of two

regimes based on the direction of the spiralling. The first is a regime similar to a solid particle

where the direction of spiralling is towards the equatorial plane (see Fig. 2.9 and 2.10). The

second is a regime where the direction of spiralling reverses close to the equatorial plane. As a

result, spiralling trajectories from close to the equatorial plane (C = ∞), and those from close

to the poles (C = 0), converge onto an intermediate location 0 < C <∞, from where they spiral

away from the drop (see Figs. 2.11 and 2.12). Thus for a drop, a fluid parcel moves near the drop

via an incoming channel, spirals towards the intermediate C location and then exits through

an outgoing channel. A few representative trajectories for the single wake and bifurcated wake

regimes are plotted in Fig. 2.10 , 2.11 and 2.12 . From a heat transfer perspective, the first of

these regimes corresponds to the thermal wake being located at the equatorial plane, henceforth

called the “single-wake” regime. This is similar to what is seen for a solid particle (Subramanian

& Koch (2006b)). The second regime corresponds corresponds to the thermal wake being located

at an intermediate value of C for each of the symmetric hemispheres of the drop. This regime

will be henceforth termed the “bifurcated-wake” regime.

We now present a method to determine the location of the wake based on the averaged drift

velocity of the streamlines. The Stokes and O(Re) velocity in terms of the (C, τ) coordinate
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system, at the drop surface, are given in what follows:

u
(0)
C |r=1 = 0, (2.60)

u(0)τ |r=1 = −
√
2C
√
1 + (1 + 2C2) γ2 + (−1 + γ2) cos 2τ

γ(1 + λ) (−2− C2 (1 + γ2) + C2 (−1 + γ2) cos 2τ)
(
(−2 + (−1 + α)λ) cos2 τ + γ2(−λ+ α(2 + λ)) sin2 τ

)
. (2.61)

We note that:

u
(0)
τ

k

∣∣∣∣∣
r=1

=
−2γ(1 + α)

(1 + λ)(γ2 − 1)
=
dτ

ds
, (2.62)

which is a constant independent of C and τ . This implies, as mentioned in the previous section

that the rate of change of τ along a surface orbit/trajectory is a constant in the (C, τ) coordinate

system. The Stokes streamlines (Re = 0) are closed orbits each denoted by an orbit constant C

for λ > λc (the closed streamline regime). Being closed orbits, the net displacement of a fluid

element over a complete orbit is identically zero. However, the addition of a small amount of

inertia causes these orbits to become spiralling trajectories that have a net displacement over an

orbital period. In the limit of Re≪ 1, this drift is small over a given orbit and we can think of

the spiralling streamlines as a set of closely spaced Stokes(Jeffery) orbits. Expressing the O(Re)

velocity field along the unit vectors of the (C, τ) coordinate system, one obtains:

u(1) = u
(1)
C Ĉ + u(1)τ τ̂ . (2.63)

The expression for the O(Re) drift along the C direction is given by:

u
(1)
C

h
=

(
C
(
1 + C2

(
cos2 τ + γ2 sin2 τ

)) ((
14C2(1 + α)2

(
1032 + 3718λ + 2145λ2

)

(
cos4 τ − 6γ2 cos2 τ sin2 τ + γ4 sin4 τ

)
+

1

5 + 2λ

(
cos2 τ + γ2 sin2 τ

) (
1 + C2

(
cos2 τ + γ2 sin2 τ

))

(
−
(
256256

(
−1 + α2

)
(1 + λ)

(
3 + 8λ+ 3λ2

) (
cos2 τ − γ2 sin2 τ

))
/
(
cos2 τ + γ2 sin2 τ

)

+
(
2(1 + α)2(5 + 2λ)

(
4
(
7896 + 27742λ + 19305λ2

)
+ 3C2

(
8120 + 28314λ + 20735λ2

)
cos2 τ + 3C2γ2

(
8120 + 28314λ + 20735λ2

)
sin2 τ

))
/
(
1 + C2 cos2 τ + C2γ2 sin2 τ

)))
/
(
1 + C2

(
cos2 τ + γ2 sin2 τ

))2

−
(
28(1 + α)

(
−1 + γ2

)
cos τ sin τ

(
9152(−1 + α)

(
3 + 11λ+ 11λ2 + 3λ3

)
+ C2 (−14312 − 70990λ

−73073λ2 − 18018λ3 + α
(
3992 + 29682λ + 36751λ2 + 9438λ3

))
cos2 τ + C2γ2 (−3992− 29682λ

−36751λ2 − 9438λ3 + α
(
14312 + 70990λ + 73073λ2 + 18018λ3

))
sin2 τ

)
sin 2τ

)
/ ((5 + 2λ)

(
1 + C2 cos2 τ + C2γ2 sin2 τ

)2)))
/
(
576576(1 + λ)3

(
cos2 τ + γ2 sin2 τ

))
. (2.64)

Instead of the detailed inertial drift at every τ , one may also determine the net inertial drift

across Jeffery orbits. This implies integrating the O(Re) velocity field with respect to τ , with C



38 Chapter 2. Flow Topology

held fixed, which gives us the net inertial drift across the orbit C. This can be written as:

udrift(C) =

∫ 2π

0

(
u
(1)
C

h
Ĉ +

u
(1)
τ

k
τ̂

)
dτ. (2.65)

Now, the velocity along the τ direction, by definition does not lead to a net displacement across

a Jeffery orbit, since it is always tangential to the orbit. Thus the only remaining contribution

is from the component u
(1)
C , which leads to drift across Jeffery orbits in the Ĉ direction, whose

magnitude is given by:

udrift(C) =

∫ 2π

0

u
(1)
C

h
dτ. (2.66)

At the location on the drop surface where the fluid elements spiral away from the drop, the

above drift goes to zero. Furthermore, this occurs at an intermediate location 0 < C <∞, in a

certain region in the (α, λ) plane. To determine this region in the (α, λ) plane and to find the

neutral curve C∗ (the location of the thermal wake from a heat transfer perspective) where the

fluid elements spiral away from the drop, we solve the equation udrift(C) = 0 using the symbolic

computing software MATHEMATICA. We find that the neutral curve(wake) is always at the

equatorial plane for α > αbif where αbif ≈ 0.35. For α < αbif , the neutral curve(wake) is at the

equatorial plane for λ > λbif , but for λ < λbif lies at an intermediate C orbit. λbif is found to

be given to be the largest positive root of the following polynomial equation in λ:

−7274042944 − 10390640512α − 7274042944α2 + (−12278826336 − 170633994048α (2.67)

−12278826336α2
)
λ+

(
86362141836 − 746700261976α + 86362141836α2

)
λ2 + (363709811676

−1527740177528α + 363709811676α2
)
λ3 +

(
588400542515 − 1737399173366α + 588400542515α2

)

λ4 +
(
488697797302 − 1165205754284α + 488697797302α2

)
λ5 + (215692744839 − 455237203278

α+ 215692744839α2
)
λ6 +

(
46799172420 − 93598344840α + 46799172420α2

)
λ7

+
(
3736032300 − 7472064600α + 3736032300α2

)
λ8 = 0

The Jeffery orbit (neutral curve) satisfying udrift(C) = 0 and denoted by C∗ is plotted in Fig.

2.14. The expression for the same is given in appendix B.

The region in the (α, λ) plane showing this bifurcated wake region is depicted in Fig.2.13.

We now study the location of the neutral curve (wake) as a function of α and λ by plotting

the streamlines of the O(Re) velocity field in the exterior of the drop. For a fixed α < αbif as

we increase λ from zero, we first cross the open streamline regime, where the effect of inertia

is perturbative. At λ = λc the neutral curve is at the poles (Cneutral = 0) and the spiralling is

from the equator to the poles (Fig. 2.11). As we increase λ further the wake location moves

towards the equator (Fig. 2.12) so that at λ = λbif the wake is at the equator and remains

there for all greater values of λ (Fig. 2.10). The dashed curve in Figs. 2.11 and 2.12 show the

neutral curve as determined by solving Eq. 2.66, and we see that it is indeed the C orbit where

the fluid elements spiral away from the drop. The location of the wake in terms of the C orbit

where Eq. 2.66 is satisfied is plotted with respect to the viscosity ratio in Fig. 2.14.



39

(a) (b)

(c)

Figure 2.9: Figure showing a spiralling trajectory of a fluid element around a solid particle.
Flow parameters: α = 0.1, Re = 0.5 (a) A 3D view, (b) projection on the flow-gradient plane
and (c) projection on the flow-vorticity plane.
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(a) (b)

(c)

Figure 2.10: Figure showing a spiralling trajectory of a fluid element around a drop in the
single wake regime for λ > λbif . Flow parameters:α = 0.1, λ = 0.5, λc = 0.222, λbif = 0.3458,
Re = 0.1. (a) A 3D view, (b) projection on the flow-gradient plane and (c) projection on the
flow-vorticity plane. Note that the neutral curve in this case lies at the equatorial plane.
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(a) (b)

(c)

Figure 2.11: Figure showing a spiralling trajectory of a fluid element around a drop in the
bifurcated wake regime for a λ value close to λc (λc < λ < λbif ). Flow parameters:α = 0.1,
λ = 0.23, λc = 0.222, λbif = 0.3458, Re = 0.1. (a) A 3D view, (b) projection on the flow-gradient
plane and (c) projection on the flow-vorticity plane. The black dashed curve in (a) shows the
neutral curve as predicted by Eq. B.1.
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(a) (b)

(c)

Figure 2.12: Figure showing a spiralling trajectory of a fluid element around a drop in the
bifurcated wake regime for a λ value close to λbif (λc < λ < λbif ). Flow parameters: α = 0.1,
λ = 0.34, λc = 0.222, λbif = 0.3458, Re = 0.1. (a) A 3D view, (b) projection on the flow-
gradient plane and (c) projection the flow-vorticity plane. The black dashed curve in (a) shows
the neutral curve as predicted by Eq. B.1. Note how the neutral curve is closer to the equatorial
plane compared to Fig. 2.11a.
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Chapter 3

Open Streamline Heat Transfer

3.1 Introduction

In the last chapter we studied in detail the flow topology inside and outside a drop in an

ambient planar linear flow. These flows constitute a one-parameter family, where the parameter

α denotes the ratio (E−Ω)/(E+Ω), where 2E/(E+Ω) and 2Ω/(E+Ω) denote the dimensionless

magnitudes of the rate-of-extension and vorticity, respectively. We saw, based on the parameters

in the problem (α, λ), that there were two topologically distinct regimes with respect to the

exterior flow field. We found that for viscosity ratios below a certain critical, α-dependent

value (λc = 2α/(1 − α)), the drop was exposed only to open streamlines. In other words, the

drop surface is accessed by streamlines which are not confined to a bounded domain and ensure

convectively enhanced transport from and to the ambient fluid at large distances from the drop

when the Peclet number is sufficiently large. On the other side of the critical viscosity ratio

curve, we had a region of closed streamlines surrounding the drop; as a result, transport even

at large Peclet numbers, remains diffusion limited.

Before moving on to the heat transfer problem for specific families of linear flows, it is

instructive to paint a broader picture of the heat transfer from a drop in a general linear flow in

terms of the parametric dependence of the Nusselt number (Nu). An incompressible linear flow is

characterized by a traceless velocity gradient tensor, and therefore has eight independent pieces

of information defining the flow. But, if we factor out the magnitude of the velocity gradient

tensor (i.e the shear rate), then we are left with seven dimensionless pieces of information.

For the special case of irrotational (purely extensional) linear flows, after factoring out the

magnitude, and accounting for the zero trace constraint, there are only four pieces of information

remaining since the relevant rate-of-strain tensor is symmetric. Three of these are used in

considering a principal-axes-aligned coordinate system. The remaining piece then enters as the

parameter which measures departure from axisymmetry in the rate-of-strain tensor. In our

analysis this will be the ratio ǫ = E2/E1, where E2 and E1 are the magnitudes of the rate-

of-strain tensor along two of the principal axes. This is the second one-parameter family of

flows we consider in this chapter. For a general linear flow, there are four pieces of information

remaining after we have chosen a principal-axes-aligned coordinate system. One of them would

be the ratio E2/E1 mentioned above and a second would measure the relative magnitudes of

vorticity and extension. The remaining two would help fix the orientation of the vorticity vector

relative to any two of the principal axes. In the case of a planar linear flow, which is the

first family we consider for the heat transfer analysis, the vorticity vector is constrained to lie

along one of the principal axes, along which, additionally, there is no extensional component (so

as to impose planarity). Thus three pieces of information are specified (two angles to fix the

orientation of the vorticity vector and one of the rate-of-strain components). This leaves one

45
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piece of information. Thus, a planar linear flow can be reduced to a one-parameter family where

the parameter signifies the relative magnitudes of extension and vorticity. This parameter in

our analysis is α, which is defined above.

Having gained a broad outlook of the different classes of linear flows, we now move on to

our heat transfer analysis. In this chapter we present the solution to the heat transfer problem

for a drop in two one-parameter families of linear flows: (1)planar linear flows in the open

streamline regime and (2) three-dimensional extensional flows with zero vorticity (which always

correspond to open streamlines). We will consider the limit of small Reynolds numbers and

large Peclet numbers. The Peclet number quantifies the relative importance of convective to

diffusive transport, and in our case is defined as Pe = γ̇a2/D, where γ̇ is the shear rate (a

characteristic magnitude of the velocity gradient), a the drop radius and D the diffusivity of

heat or mass. The limit of large Pe implies that the transport is dominated by convection and

in this convectively dominated regime, for the first family of flows, we determine the Nusselt

number, as a function of α and λ 1. As we have seen before (chapter 2), in the open streamline

regime the effects of inertia do not fundamentally alter the streamline topology and therefore

are not expected to alter the transport at leading order. Thus for small but finite Re, one

only expects a small O(Re) correction to the Nu obtained in the Stokesian regime; this is no

longer true in the vicinity of the critical viscosity curve (λ→ λ−c ), but this aspect is beyond the

scope of this work. Our approach will use the (C, τ) coordinate system as defined in the last

chapter (chapter 2) to simplify what is, in essence, a non-trivial heat transfer calculation owing

to the absence of axisymmetry. We show that our approach based on this natural albeit non-

orthogonal coordinate system has several advantages and offers a simple and elegant method of

solution. In particular, a modified C, τ) coordinate system may also be used to solve the heat

transfer problem for the second family of flows mentioned above, whereby Nu is obtained as a

function of ǫ

3.2 Preliminaries

In this section we will set up the heat transfer problem for a drop in a general linear flow in

the open streamline regime. We consider a drop whose surface is maintained at a constant

temperature T0 and is suspended in an ambient fluid of temperature T∞. The presence of open

streamlines near the drop surface implies that in the limit of large Peclet (Pe ≫ 1), there is

formation of a thin thermal boundary layer across which almost the entire temperature drop

occurs. We measure the efficiency of the transport using the Nusselt number, which is the

dimensionless rate of heat transfer (measured in conduction units), and is defined as the ratio

of total heat transfer rate to the transfer rate due to conduction alone (the Nusselt number is

defined such that Nu = 1 for purely conductive heat transfer):

Nu =
Ql

kA(T0 − T∞)
, (3.1)

1We note here that our analysis is equally applicable for heat or mass transfer, and we henceforth restrict ourselves
to the former. The large Pe limit, however, naturally pertains to mass transfer since the Schmidt number
(Sc = ν/D) (specially for liquids) is much larger than unity.
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(a) Solid particle (b) Drop

Figure 3.1: Schematic representations of the thermal boundary layer (a) near a solid particle
and (b) near a drop or liquid interface. The scalings of the boundary layer thickness and hence
the dimensionless heat transfer with Peclet number can be inferred by taking a ratio of the time
scales of convection and diffusion

where Q is the total heat transfer rate, k the thermal conductivity of the ambient fluid, l is a

relevant length scale and A is a scale for the area across which the heat transfer occurs. In our

problem the length scale will be the drop radius and the scale for the area will be the surface area

(of O(a2)) of the drop. For a thermal boundary layer near a solid surface, the boundary layer

thickness scales as Pe−1/3. This can be seen by comparing the time scales of convective transport

given by a2/(Uy) and diffusive transport given by y2/D as shown in Fig. 3.1a. The convective

time scale has this form since the no-slip boundary condition for the velocity at the solid surface

makes the flow inside the thermal boundary layer appear locally linear (a simple shear flow).

This scaling for the boundary layer thickness leads to the Nusselt number scaling as Nu ∼ Pe1/3

(Goddard & Acrivos (1966), Acrivos (1971), Acrivos (1980), Batchelor (1979)). For a drop,

on the other hand, the thermal boundary layer forms at a fluid-fluid interface. The convective

time scale in this case is just a/U , since a no-slip condition is absent. The diffusive time scale

for a drop is again given by y2/D, giving us a boundary layer thickness scaling as Pe−1/2, and

the Nusselt number scaling as Nu ∼ Pe1/2 (see Fig. 3.1b) 2. Schematic representations of the

thermal boundary layer for the case of a solid particle and drop along with the related convective

and diffusive time scales of the transport are depicted in Fig. 3.1. Clearly, the absence of a

no-slip boundary condition implies that the Nu for a drop is asymptotically larger than that for

a solid particle at the same (large) Pe.

3.2.1 Governing Equations

The heat transfer problem is governed by the convection-diffusion equation for the energy conser-

vation with the convection being driven by the Stokesian velocity field. For purposes of simplicity

and in order to highlight the underlying physics, we assume that the heat transfer is decoupled

from the momentum conservation equations and that the changes in temperature do not cause

variations in the fluid properties. This is usually a sound assumption when the temperature

differences are not large. The convection-diffusion equation can be written in dimensionless

2In the scaling arguments above, the Nusselt number is related to the inverse of the thermal boundary layer
thickness, because the dominant heat transfer from the drop occurs across the thin boundary layer. This is no
longer true in the vicinity of certain points or singular curves where the boundary layer approximation breaks
down, implying the presence of a thermal wake. Unlike the large Re momentum wake, the thermal wake at
large Pe occupies a vanishingly small portion of the drop’s surface, and therefore, contributes negligibly to the
heat/mass transfer.
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form as:

Pe(u.∇Θ) = ∇2Θ, (3.2)

where we have used the non-dimensional temperature Θ = (T − T∞)/(T0 − T∞). As mentioned

earlier, we will solve these equations in the limit of Pe ≫ 1. The boundary conditions for the

heat transfer are given by:

Θ = 1 at r = 1(Isothermal drop surface with temperature T0), (3.3)

Θ → 0 as r → ∞ (Ambient temperature is T∞ at infinity). (3.4)

Having setup the general open streamline heat transfer problem for a drop, we now present the

solutions for two families of linear flows. In section 3.3, we consider the one parameter family

of planar linear flows followed by general three-dimensional extensional flows in section 3.4.

3.3 Drop in a Planar Linear Flow: (λ < λc)

The flow field for this class of linear flows was derived in chapter 2 and will be used here to

solve the heat transfer problem. We begin by setting up the (C, τ) coordinate system for the

flow field in the open streamline regime which corresponds to viscosity ratios smaller than λc.

3.3.1 (C, τ) Coordinate System

Having described the (C, τ) coordinate system for the closed streamline regime in chapter 2

section 2.4), we now do so for the open streamline regime in which the form of the (C, τ) equations

remain the same. The details of the (C, τ) coordinate system are nevertheless reproduced here

for convenience. The equations relating the (C, τ) and (θ, φ1) coordinate systems on the drop

surface are given by:

tan θ = C(cos2 τ + γ2 sin2 τ)1/2, (3.5)

tanφ1 = γ tan τ. (3.6)

We also saw that the metrics and the angle between the contravariant unit vectors for this

coordinate system are given by:

h = θC , (3.7)

k = (θ2τ + sin2 θφ21τ )
1/2, (3.8)

sinα1 = φ1τ sin θ(θ
2
τ + sin2 θφ21τ )

−1/2, (3.9)

and the unit vectors are given by:

Ĉ = θ̂, (3.10)

τ̂ = cosα1θ̂ + sinα1φ̂1. (3.11)
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(a) Projection of trajectories on x1x2 plane

(b) Trajectories on the unit sphere

Figure 3.2: Depiction of the (C, τ) coordinate system on the drop surface in the open streamline
regime. The four regions are marked I through IV, where regions (I, III) and (II, IV) are
equivalent. The streamline trajectories begin and culminate at one of four stagnation points
which lie on the equatorial plane. The phase variable for the position along a given trajectory
is given by τ̂ and varies from −∞ at the inlet to +∞ at the outlet. The trajectory itself is
parametrized by the trajectory constants, C and Ĉ, in region I and II respectively. These vary
from 0 at the poles to ∞ at the equatorial plane
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In the open streamline regime, the surface streamlines are not true orbits, hence we interpret

the orbit constant C as a trajectory constant instead. For the open streamline case, the effective

aspect ratio γ is purely imaginary (recall that γ is purely real for the closed streamline regime)

and it is therefore convenient to define:

γ = iγ̂, (3.12)

where γ̂ is purely real and

γ̂2 =
1 + β(1 + λ)

1− β(1 + λ)
, (3.13)

where β = (1−α)/(1+α). Noting that φ1 corresponds to a physical coordinate and is therefore

real valued, we have by rearranging Eq. 3.6:

τ = −i tanh−1(tan φ1/γ̂). (3.14)

Using the well known form of the inverse hyperbolic tangent in terms of the logarithm function,

one obtains:

τ =
i

2
log

(
γ̂ − tanφ1
γ̂ + tanφ1

)
. (3.15)

Similarly, we can rearrange Eq. 3.5 to get:

C =
tan θ(γ̂2 − tan2 φ1)

1/2

| sec φ1|γ̂
. (3.16)

The branch points of the logarithm in Eq. 3.15 are to be found at tanφ1 = ±γ̂. For φ1 ∈
[0, 2π], this corresponds to four values distinct values of φ1 (see Fig. 3.2a). These values in our

coordinate system are given by:

φ
(1)
1 = tan−1(γ̂), (3.17)

φ
(2)
1 = tan−1(−γ̂), (3.18)

φ
(3)
1 = π + φ

(1)
1 , (3.19)

φ
(4)
1 = π + φ

(2)
1 = −φ(1)1 . (3.20)

It is interesting to note that these values of φ1 correspond to the four stagnation points which

were seen to exist on the drop surface at the equatorial plane for the open streamline regime

(see Section 2.2 of chapter 2). The φ1 = const lines corresponding to these four stagnation

points separate the drop surface into four regions I-IV, where the pairs (I,III) and (II, IV) are

equivalent, and merely separated by π in the azimuthal coordinate (see Fig. 3.2). This arises

due to the underlying symmetry (to a π rotation) of the one-parameter family of linear flows

which we are considering. Therefore, it is sufficient to confine our analysis to two of these regions

(I and II).

We see that the logarithm in Eq. 3.15 is purely real for tan2 φ1 < γ̂2, which corresponds

to −φ(1)1 < φ1 < φ
(1)
1 and φ

(2)
1 < φ1 < φ

(3)
1 , making τ purely imaginary in these two regions

(I and III). Also, from Eq. 3.16 we see that the trajectory constant C is purely real in these

regions. The other two regions, II and IV, lie in the range φ
(1)
1 < φ1 < φ

(2)
1 and φ

(3)
1 < φ1 < φ

(4)
1 ,

respectively. In these regions, we see that the combination (γ̂−tanφ1)/(γ̂+tanφ1) < 0, implying
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the logarithm is complex valued. In these regions, we rewrite the equation for τ as:

τ =
i

2
log

[
tan φ1 − γ̂

tan φ1 + γ̂
exp(iπ)

]
, (3.21)

where (tan φ1 − γ̂)/(tan φ1 + γ̂) > 0. Expanding this we have:

τ =
i

2
log

[
tan φ1 − γ̂

tan φ1 + γ̂

]
− π

2
, (3.22)

where τ + π/2 is now purely imaginary. This motivates the introduction of a new variable:

τ ′ = τ +
π

2
, (3.23)

where τ ′ is purely imaginary. In regions II and IV we see from Eq. 3.16 that the trajectory

constant C is purely imaginary.

Thus in both regions we have redefined the τ coordinate such that the phase variable along

a trajectory is purely imaginary, and we further define:

τ = iτ̂ , (3.24)

τ ′ = iτ̂ , (3.25)

in the regions I and II, respectively, such that τ̂ is real. Since the original ’trajectory’ constant

C is real in regions I and III, and is purely imaginary in regions II and IV, this motivates us to

define

C = iĈ, (3.26)

where Ĉ like τ̂ , is purely real in all regions concerned. The above relation is valid in regions II

and IV. In summary, (C, τ) ≡ (C, iτ̂ ) in regions I and III, and (C, τ) ≡ (iĈ, iτ̂ − π/2) in regions

II and IV. Fig. 3.2 depicts the (C, τ) coordinate mapping on the drop surface.

From Fig. 3.2 we see that the surface streamlines on the drop surface begin and end at these

stagnation points and are therefore entirely confined to one of the four regions. Focussing our

attention to region I and II, we see that the stagnation point corresponding to φ1 = φ
(1)
1 is an

inlet since fluid outside the drop moves radially inwards towards the drop (see Fig. 3.2). This

inlet location corresponds to τ̂ = −∞ in both regions (regardless of the particular value of C).

The φ1 = φ
(2)
1 and φ1 = φ

(4)
1 locations are outlets, as can be seen from Fig. 3.2. These outlet

points correspond to τ̂ = ∞ for both the regions (regardless of the particular value of C). Thus

along a surface streamline, as it moves from an inlet to outlet location, the phase variable along

the trajectory, τ̂ varies from −∞ to +∞ (for any non-zero value of C).

The trajectory constants C and Ĉ are mapped as follows: From Eq. 3.16, the C = 0

and Ĉ = 0 trajectories in regions I and II respectively correspond to the constant φ1 lines

corresponding to the inlet and outlet stagnation points and thus also include the intersection

of these lines at θ = 0 (see Fig. 3.2b). Thus the C = 0 and Ĉ = 0 trajectories for the open

streamline case are fundamentally different from the closed streamline case since they are the

intersection of two meridional trajectories corresponding to the inlet and outlet values of φ1.

We recall that in the closed streamline case the C = 0 coordinate was just the par of points
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corresponding to the poles of the unit sphere (see Fig. 2.7b in chapter 2). As we increase C

or Ĉ, these trajectories move closer to the equatorial plane such that the C → ∞ and Ĉ → ∞
correspond to trajectories in the plane θ = π/2.

3.3.2 Boundary Layer Analysis

We now write down the convection-diffusion equation in the (C, τ) coordinate system which has

the form:

u(0)r
∂Θ

∂r
+
u
(0)
C

h

∂Θ

∂C
+
u
(0)
τ

k

∂Θ

∂τ
=

∇2Θ

Pe
, (3.27)

where u
(0)
r is the velocity along the radial direction; u

(0)
C and u

(0)
τ are the velocities in the C

and τ directions respectively and are given by Eqs. 2.56 and 2.57 in chapter 2. In the above

equation u
(0)
C is identically zero by definition of the coordinate C. Thus the equation simplifies

to:

u(0)r

∂Θ

∂r
+
u
(0)
τ

k

∂Θ

∂τ
=

1

Pe

∂2Θ

∂r2
, (3.28)

where we have assumed the radial derivatives in the diffusion terms to be dominant since, in the

limit of large Pe, there is formation of a thin thermal boundary layer next to the drop surface.

Since the thickness of this boundary layer is small (scaling as O(aPe−1/2) for a drop; see below)

compared to the drop radius for large Pe, it is only the velocity field near the drop surface which

is relevant in the heat transfer analysis. Defining the boundary layer coordinate, y = r − 1 and

expanding the velocity field (expressed in the (C, τ) coordinate system) near the drop surface,

we get from Eqs. 2.6 and 2.57, respectively, in chapter 2:

u(0)r =

[
− 3C2(1 + α)γ sin 2τ

(1 + λ)(1 + C2(cos2 τ + γ2 sin2 τ))

]
y +O(y2), (3.29)

= hr(C, τ, α, λ)y +O(y2), (3.30)

u
(0)
τ

k
=

−2γ(1 + α)

(1 + λ)(γ2 − 1)
+O(y), (3.31)

= hτ (α, λ) +O(y). (3.32)

We note that the dependence of hr(C, τ ;α, λ) and hτ (α, λ) on α and λ has a specific form; there

is an implicit dependence via the effective aspect ratio γ and an explicit dependence via the

factor (1 + α)/(1 + λ). As a result, we will see later that one may include the dependence on

(1 + α)/(1 + λ) into the Peclet number so that the residual dependence of the heat transfer

is solely a function of the effective aspect ratio γ. Rescaling the boundary layer coordinate as

Y = Pemy, where m is an exponent which gives the boundary layer thickness scale and Y is

O(1), we get:

hr(C, τ, α, λ)Y
∂Θ

∂Y
+ hτ (α, λ)

∂Θ

∂τ
=

Pe2m

Pe

∂2Θ

∂Y 2
, (3.33)

where the leading order balance implies m = 1/2 giving the expected the boundary layer thick-

ness scaling as y ∼ Pe−1/2Y . Note that the use of a non-orthogonal (C, τ) coordinate system

has led to a major simplification with the rate of convection in the ‘tangential’ τ direction being

independent of both C and τ . We note that the (C, τ) coordinate system has allowed us to
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establish parallels between the analysis for a drop and that for a rotating solid particle for which

uφ is a constant (Subramanian & Koch (2006b)). Therefore, τ plays the role of φ in the solid

particle case. From here on the analysis is standard (Leal (2007)). Defining a similarity variable

η = Y/g(C, τ), where g(C, τ) characterizes the dependence of the boundary layer thickness on

the position on the drop surface, the non-dimensional temperature is found to satisfy:

d2Θ

dη2
+ 2η

dΘ

dη
= 0, (3.34)

where

hτg
dg

dη
− hrg

2 = 2. (3.35)

The boundary conditions for the non-dimensional temperature are given by:

Θ = 1 @ r = 1, (3.36)

Θ → 0 as r → ∞. (3.37)

Solving Eq. 3.34 and using Eqs. 3.36 and 3.37, we get:

Θ(η) = 1− 2√
π

∫ η

0
exp(−t2)dt. (3.38)

Next, we solve the equation for the boundary layer thickness given by Eq. 3.35. Introducing a

new variable f = g2/2, we get:

hτ
df

dη
− 2hrf = 2 (3.39)

Substituting for hr and hτ the equation has the form:

df

dη
− 3C2(γ2 − 1) sin 2τ

[1 + C2(cos2 τ1 + γ2 sin2 τ1)]
f = −(1 + λ)(γ2 − 1)

(1 + α)γ
. (3.40)

It is simple to show that the integrating factor is given by [1 + C2(cos2 τ + γ2 sin2 τ)]−3, and

upon integrating we get the expression for the boundary layer thickness as:

g =

[
−2(1 + λ)(γ2 − 1)[1 +C2(cos2 τ + γ2 sin2 τ)]3

(1 + α)γ

∫ τ

τinlet

[1 + C2(cos2 τ1 + γ2 sin2 τ1)]
−3dτ1

]1/2
,

(3.41)

where the boundary condition on Eq. 3.35 is the constraint that the boundary layer thickness

remains finite at the inlet stagnation points located at φ1 = φ
(1)
1 and φ1 = φ

(3)
1 on the symmetry

plane (θ = π/2). It is instructive to note that the boundary layer thickness g(C, τ) has the form:

g(C, τ) =

[
−2(1 + λ)(γ2 − 1)

(1 + α)γ
Q(C, τ)I(C, τ)

]1/2
, (3.42)

I(C, τ) =
∫ τ

τinlet

Q(C, τ1)
−1dτ1, (3.43)

where Q(C, τ) = [1 + C2(cos2 τ + γ2 sin2 τ)]3.
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We can now proceed to write down the form of the boundary layer thicknesses in the two

distinct regions which exist on the drop surface in the open streamline regime (regions (I,III)

and (II,IV) in Fig. 3.2). The forms of γ and τ in regions (I,III) are given by Eqs. 3.12 and 3.24,

and we further note that C is purely real in this region. The integral appearing in the boundary

layer thickness equation now has the form:

II(C, τ̂ ) =
∫ τ̂

−∞
QI(C, τ̂1)

−1dτ̂1, (3.44)

where QI(C, τ̂ ) = [1 + C2(cosh2 τ̂ + γ̂2 sinh2 τ̂)]3. Using this, we get the boundary layer thick-

ness expressions in region I(and III) as:

gI(C, τ̂ ) =

[
2(1 + λ)(γ̂2 + 1)

(1 + α)γ̂
QI(C, τ̂ )II(C, τ̂ )

]1/2
. (3.45)

It is possible to perform the integration involved in Eq. 3.45 analytically, and II(C, τ̂ ) in regions

(I,III) is given by:

II(C, τ̂ ) =
1

(C2γ̂2 − 1)3A5

[
3A4 − 2A2 + 3

8
{tan−1 (tanh τ̂ /A)− tan−1 (−1/A)}

+
A(1−A4) tanh τ̂

2(A2 + tanh2 τ̂
+
A(1 +A2)2(A2 − tanh2 τ̂) tanh τ̂

8(A2 + tanh2 τ̂)2

−3A(A2 − 1)

8

]
, (3.46)

where A = [(1 + C2)/(C2γ̂2 − 1)]1/2.

We now show that the boundary layer thickness is finite at the inlet stagnation point φ(1).

As mentioned earlier, The inlet stagnation point, expressed in (C, τ) coordinates, is given by

τ̂ → −∞ and C arbitrary. Applying the inlet condition τ̂ → −∞ to Eq. 3.45, and noting that

as τ̂ → −∞, Q(C, τ̂ ) ∼ e−6τ̂ and II(C, τ̂ ) ∼ e6τ̂ , we see that the boundary layer thickness is

indeed finite at the inlet stagnation point and is given by:

gI(τ̂inlet) =

[
(1 + λ)(1 + γ̂2)

3(1 + α)γ̂

]1/2
. (3.47)

The outlet of the surface trajectories corresponds to τ̂ → ∞ and C arbitrary. We note that for

τ̂ → ∞, Q(C, τ̂ ) ∼ e6τ̂ and from Eq. 3.46 we see that II(C, τ̂ ) is a function of C only. Thus the

boundary layer thickness is divergent in the limit τ̂ → ∞, indicating the presence of a thermal

wake.

Now, in regions (II,IV), we saw that the τ coordinate has the form given by Eq. 3.23 and

we can define τ̂ using Eq. 3.25. Further, the C coordinate in this region is purely imaginary

and a new variable Ĉ can be defined using Eq. 3.26. Using these transformations the integral

appearing in the boundary layer thickness equation in region II(and IV) has the form:

III(C, τ̂ ) =
∫ τ̂

−∞
QII(Ĉ, τ̂1)

−1dτ̂1, (3.48)
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where QII(Ĉ, τ̂) = [1 + Ĉ2(γ̂2 cosh2 τ̂ + sinh2 τ̂)]3. Using Eq. 3.48, we get the boundary layer

thickness expressions in region II(and IV) as:

gII(C, τ̂ ) =

[
2(1 + λ)(γ̂2 + 1)

(1 + α)γ̂
QII(Ĉ, τ̂ )III(C, τ̂ )

]1/2
. (3.49)

Again, performing the integration with respect to τ̂ analytically, we see that the integral III(C, τ̂ )
in region II(and IV) takes the form:

III(C, τ̂ ) =
1

(Ĉ2 − 1)3Â5

[
3Â4 − 2Â2 + 3

8
{tan−1 (1/Â tanh τ̂)− tan−1 (−1/Â)}

+
Â(1− Â4) tanh τ̂

2(Â2 tanh2 τ̂ + 1)
+
Â(1 + Â2)2(Â2 tanh2 τ̂ − 1) tanh τ̂

8(Â2 tanh2 τ̂ + 1)2

−3Â(Â2 − 1)

8

]
, (3.50)

where Â = [(1+ Ĉ2γ̂2)/(Ĉ2 − 1)]1/2. We note that, as expected, since regions (I,III) and (II,IV)

share a common inlet and outlet (see Fig. 3.2), the boundary layer thickness given by Eq. 3.49

has a finite value given by Eq. 3.47 at the inlet (τ̂ → −∞) and is divergent at the outlet,

indicating the presence of a thermal wake.

3.3.3 The Nusselt Number

Having calculated the boundary layer thickness as a function of (C, τ) on the drop surface, we

can now proceed to calculate the dimensionless rate of heat transfer. The Nusselt number in

our case is given by:

Nu = − 1

4π

∫

S

∂Θ

∂y

∣∣∣∣
y=0

dS, (3.51)

= −Pe1/2

4π

∫

S

∂Θ

∂Y

∣∣∣∣
y=0

dS,

where S denotes the surface area of the drop. Rewriting this in terms of the similarity variable

η, we get:

Nu = − 1

4π

∫

S

1

g

dΘ

dη

∣∣∣∣
η=0

dS (3.52)

=
Pe1/2

2π3/2

∫

S

dS

g(C, τ)
(3.53)

In the (C, τ) coordinate system the differential area element is given by:

dS = hk sinα1dCdτ. (3.54)
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Since the boundary layer thickness has different forms in regions (I,III) and (II,IV), we write

them out separately as:

Nu = (4)
Pe1/2

2π3/2

[∫

SI

dSI
gI

+

∫

SII

dSII
gII

]
, (3.55)

= NuI +NuII ,

where the prefactor of four is included since, in our analysis, the drop surface is divided into

eight regions, four which are equivalent to region I and four to region II (Note that Fig. 3.2a

depicts only one hemisphere); the integrals SI , SII denote integration over regions I and II,

respectively. At this point we show that it is always possible to perform the integration with

respect to the τ̂ variable analytically. Considering the Nusselt number contribution to regions

(I,III), and substituting for the boundary layer thickness from Eq. 3.45, we get:

NuI =
2Pe1/2

π3/2

∫

SI

[
(1 + α)γ̂

2(1 + λ)(γ̂2 + 1)QI(C, τ̂ )II(C, τ̂ )

]1/2
dSI , (3.56)

=
(2(1 + α)γ̂)1/2Pe1/2

π3/2(1 + λ)1/2(1 + γ̂2)1/2

∫ ∞

0

∫ ∞

−∞

[
1

QI(C, τ̂ )II(C, τ̂ )

]1/2
hk sinα1dCdτ̂ . (3.57)

From Eqs. 3.7, 3.8 and 3.9, we see that combination hk sinα1 in terms of C and τ is given by

hk sinα1 =
Cγ̂

[1 + C2(cosh2 τ̂ + γ̂2 sinh2 τ̂)]3/2
,

=
Cγ̂

QI(C, τ̂ )1/2
. (3.58)

Substituting this expression in Eq. 3.57, we get:

NuI =
[2(1 + α)γ̂]1/2Pe1/2

π3/2(1 + λ)1/2(1 + γ̂2)1/2

∫ ∞

0

∫ ∞

−∞

1

[II(C, τ̂ )]1/2QI(C, τ̂ )
dCdτ̂ , (3.59)

where, upon noting from Eq. 3.44 that ∂II(C, τ̂ )/∂τ̂ = 1/QI(C, τ̂ ), we see that the integral over

τ̂ is in the form of an exact differential. Carrying out this integration, we get:

NuI =
23/2(1 + α)1/2γ̂3/2Pe1/2

π3/2(1 + λ)1/2(1 + γ̂2)1/2

∫ ∞

0
C[II(C,∞)1/2 − II(C,−∞)1/2]dC, (3.60)

where II(C,−∞) = 0 from Eq. 3.44. This gives the Nusselt number for a drop in an ambient

linear flow in terms of a single integral over the C coordinate. Physically, this form for Nu

implies that one may first calculate the heat transfer along a given streamline (τ̂ integration)

and then calculate the average acoss streamlines (C integration). Substituting for II(C,∞) from

Eq. 3.46, the final expression for the Nusslelt number in region I is given by:

NuI =
21/2γ̂3/2(1 + α)1/2

π3/2(1 + λ)1/2(1 + γ̂2)1/2
FI(γ̂)Pe

1/2, (3.61)

FI(γ̂) =

∫ ∞

0
C

[
(3A4 − 2A2 + 3) tan−1 (1/A) − 3A(A2 − 1)

(C2γ̂2 − 1)3A5

]1/2
dC. (3.62)
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Similarly, we find the Nusslelt number for regions equivalent to region II is given by:

NuII =
21/2γ̂3/2(1 + α)1/2

π3/2(1 + λ)1/2(1 + γ̂2)1/2
FII(γ̂)Pe

1/2, (3.63)

FII(γ̂) =

∫ ∞

0
Ĉ

[
(3Â4 − 2Â2 + 3) tan−1 (1/Â)− 3Â(Â2 − 1)

(Ĉ2 − 1)3Â5

]1/2
dĈ, (3.64)

where A = [(1 + C2)/(C2γ̂2 − 1)]1/2 and Â = [(1 + Ĉ2γ̂2)/(Ĉ2 − 1)]1/2. Thus, we have the

expression for the Nusselt number in terms of a one-dimensional integral which can be carried

out numerically. The total Nusselt number is then given by the sum of NuI and NuII :

Nu =
21/2γ̂3/2(1 + α)1/2

π3/2(1 + λ)1/2(1 + γ̂2)1/2
(FI(γ̂) + FII(γ̂))Pe

1/2. (3.65)

We can absorb the prefactor [(1 + α)/(1 + λ)]1/2 into the Peclet number so as to define an

effective Peclet number P̃e given by:

P̃e =
(1 + α)Pe

1 + λ
. (3.66)

The Nusselt number expressed in terms of P̃e now has a prefactor which only depends on γ̂ and

is given by:

Nu =
21/2γ̂3/2

π3/2(1 + γ̂2)1/2
(FI(γ̂) + FII(γ̂))P̃e

1/2
. (3.67)

Discussion

A surface plot of Nu/Pe1/2 in the (α, λ) plane, confined to the open streamline region, is shown

in Fig 3.3a. We observe a decreasing trend of the Nu prefactor with the viscosity ratio, with the

highest heat transfer rates corresponding to that of a bubble (λ = 0) in purely extensional flow

(α = 1).

In Eq. 3.65, we can see that the prefactor appearing in the Nusselt number expressions can

be alternatively written in terms of γ̂. The resulting Nu is given by:

Nu =
21/2γ̂3/2(1− α)1/2

π3/2(γ̂2 − 1)1/2
(FI(γ̂) + FII(γ̂))Pe

1/2. (3.68)

We also see from Eq. 3.68 that Nu/(1−α)1/2 is purely a function of γ̂. The variation of Nusselt

number with respect to γ̂ is shown in Fig. 3.3b. We can show from Eq. 3.13 that γ̂ lies in

the interval [1,∞] for (α, λ) in the open streamline regime. It is clear from Fig. 3.3b that

Nu/(1−α)1/2 is a rather weak function of γ̂ for even moderately large values of γ̂. We can thus

conclude that the dependence on (1−α)1/2 is sufficient to capture the behaviour of the Nusselt

number in the open streamline regime. For purely extensional flows, for which case γ̂ = 1, we

write the expression for Nu in the earlier form (Eq. 3.65). In this case, we see that dependence

of Nu on the viscosity ratio is captured solely by the (1 + λ)−1/2 term. We see later in section

3.4 that this scaling of Nu with the viscosity ratio seems to be a general feature of any purely



58 Chapter 3. Open Streamline Heat Transfer

(a) Varition of the prefactor to the Nusselt number with α and λ

(b) Variation of Nusselt prefactor with γ̂

Figure 3.3: Plots of two prefactors to the Nusselt number (a)Nu/Pe1/2 as a function of α and λ
for λ < λc and (b) Nu/(1− α)1/2 as a function of the effective-aspect-ratio γ̂.
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extensional flow. For other values of α we see that the dependence on the viscosity ratio is more

complicated since for these cases γ̂ remains a function of λ.

Special Cases

• α = 1: This corresponds to planar extensional flow, and the stagnation points on the drop

surface lie at odd multiples of π/4, since γ̂ = 1. In this case the regions I and II are

equivalent with the Nusselt number expressions in the two regions reducing to the same

form. The total Nusselt number is now given by eight times the integral over a single

region (now an octant):

Nu =
23/2

π3/2(1 + λ)1/2
FI(1)Pe

1/2 (3.69)

FI(1) =

∫ ∞

0
C

[
(3A4 − 2A2 + 3) tan−1 (1/A) − 3A(A2 − 1)

(C2 − 1)3A5

]1/2
dC (3.70)

A =

(
C2 + 1

C2 − 1

)1/2

. (3.71)

Evaluating the definite integral numerically, we find:

Nu =
1.0380

(1 + λ)1/2
Pe1/2. (3.72)

Note that, here, Peclet is defined as Pe = γ̇a2/D. In terms of an effective Peclet number

P̃e, defined above, the Nusselt number is given by:

Nu = 1.0380P̃e
1/2
. (3.73)

Alternatively, if the Peclet number is defined based on the actual component of the velocity

gradient tensor (Eq. 2.3 in chapter 2) as PeD = γ̇(1 + α)a2/D, then the Nusselt number

for the case of α = 1 is given by:

NuD =
0.734

(1 + λ)1/2
Pe

1/2
D . (3.74)

This agrees well with the prefactor of 0.737 derived by Polyanin (1984) for transport

from a drop in a planar extensional flow. We note, however, that their approach used an

orthogonal coordinate system and is therefore more involved than the approach presented

above (in addition to being less elegant and, more importantly, less general).

• γ̂ → ∞: This corresponds to the limit λ → λ−c . In this case the streamlines on the drop

surface have a meridional nature and the region II and IV are vanishingly small. This is

because the pairs of stagnation points lying on the drop surface as well as the symmetry

plane at φ
(1)
1 , φ

(2)
1 and φ

(3)
1 , φ

(4)
1 , are almost coincident, and now lie near the flow axis

at φ1 = π/2 and φ1 = −π/2. We now estimate the Nu in this limit, which only has

contributions from regions I and III. Taking the limit γ̂ → ∞ in Eqs. 3.61 and 3.62, and
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noting that A ∼ O(1/γ̂) in this limit, the expression for the Nu simplifies to:

NuI =
31/2

π

(
1 + α

1 + λ

)1/2

Pe1/2
∫ ∞

0

C1/2dC

(1 + C2)5/4
. (3.75)

We note that, in the above simplification, we assume that the dominant contribution to

the Nu from region I still comes from O(1) values of C (justified posteriori). Evaluating

the integral over C numerically, we get:

NuI = 0.66

(
1 + α

1 + λ

)1/2

Pe1/2. (3.76)

It is straightforward to show that NuII → 0 as γ̂ → ∞. Thus, the above expression

gives the total Nu in this limit. We note that this matches very well with our numerical

evaluation of Nu near λc using Eq. 3.65. The above analysis has resulted in a finite

estimate for Nu even as γ̂ → ∞, however, this is expected to change with the inclusion of

weak inertia. Inertia is expected to have a singular effect in this limit, and we explore this

further in chapter 4.

3.4 Drop in a 3D Extensional Flow

Next we consider the one-parameter family of three-dimensional extensional flows. For these

flows the vorticity is identically zero, thus leading to open streamlines in the drop exterior for

all values of the viscosity ratio unlike the planar linear flow case. This family of linear flows

is characterized by the rate-of-strain tensor (the vorticity tensor being identically zero), which,

when expressed in a principal-axis-aligned coordinate system, has the following form:

E =



E1 0 0

0 E2 0

0 0 −(E1 + E2)


 , (3.77)

where E1 and E2 are magnitudes of the rates-of-strain along two of the principal axes. We

can factor out a characteristic magnitude of the velocity gradient and express the rate-of-strain

tensor in dimensionless form as:

E =




1 0 0

0 ǫ 0

0 0 −(1 + ǫ)


 , (3.78)

where ǫ = E2/E1 and we have used E1 as a scale for the rate-of-strain tensor. Thus, the Peclet

number for this case is defined as Pe = E1a
2/D.

3.4.1 (C, τ) Coordinate System

For purposes of our analysis using a (C, τ) coordinate system, in order to have a clear mapping

between the (C, τ) coordinates and the (θ, φ) coordinates on the unit sphere, we find it simpler to
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move to a coordinate system where the surface streamlines begin and end at distinct φ locations.

This merely involves a rearrangement of the principal axes of the rate-of-strain tensor such that

the new rate-of-strain tensor is given by:

E =




−(1 + ǫ) 0 0

0 1 0

0 0 ǫ


 . (3.79)

Such a choice of coordinate system is counter-intuitive, and we can see this by considering the

simple case of uni-axial extensional flow (ǫ = 1). The usual way of analyzing the heat transfer

problem for such an ambient flow would be to use a spherical coordinate system with the polar

axis along the axis of symmetry, but in this case the streamlines do not migrate along φ, which

is necessary for us to use the (C, τ) coordinate system. Our choice of coordinate system for this

case does not exploit the axisymmetry of the problem, but this is for the additional benefit that

accrues for all non-axisymmetric extensional flows.

Now to simplify our analysis we assume, without loss of generality, that E1 ≥ E2 (ǫ ≤ 1)

and E1, E2 ≥ 0 (ǫ ≥ 0). It is straightforward to see that if one or both of E1 and E2 are

negative, a rearrangement of the principal axes of the rate-of-strain tensor will ensure the surface

streamlines begin and end at distinct φ locations, as required. Also, a reversal in the direction

of the trajectories between two φ locations will be shown to not affect the heat transfer result

which is consistent with similar predictions by Batchelor (1979), Brenner (1963) in the context

of a solid particle. This result implies that the Nu remains the same despite the temperature

field, over the entire drop, being very different for the reversed flow. This is because, in the

absence of tangential diffusion, all that matters to the rate of heat transfer is the cumulative

distribution of boundary layer thicknesses along a single surface streamline, and this remains

unaltered even on flow reversal. The velocity field expressions in the drop exterior, expressed in

the spherical coordinate system (with x3 as the polar axis), are given by:

ur = r(A(r)r2 +B(r))[ǫ cos2 θ − 1

2
(ǫ+ (2 + ǫ) cos 2φ) sin2 θ], (3.80)

uθ = −1

4
B(r)r[3ǫ+ (2 + ǫ) cos 2φ] sin 2θ, (3.81)

uφ = B(r)(2 + ǫ)r sin θ sinφ cosφ, (3.82)

where A(r) and B(r) have the same definition as in the planar linear flow case (see Chapter 2

section 2.1). On the drop surface ur = 0, while uθ and uφ reduce to:

uθ|surface = − 1

4(1 + λ)
[3ǫ+ (2 + ǫ) cos 2φ] sin 2θ =

dθ

ds
, (3.83)

uφ|surface =
1

(1 + λ)
(2 + ǫ) sin θ sinφ cosφ = sin θ

dφ

ds
, (3.84)

where s is the dimensionless time coordinate (which is measured in units of E−1
1 ). Proceeding as

for the planar linear flow case, we integrate Eqs. 3.83 and 3.84 in order to obtain the streamline
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equations. From Eq. 3.84 we get:

tanφ = exp(τ), (3.85)

τ =
(2 + ǫ)s

1 + λ
. (3.86)

Similarly, integrating Eq. 3.83, we get:

tan θ = C(1 + exp 2τ )1/2 exp−(1 + 2ǫ)τ

2 + ǫ
, (3.87)

where C is a constant of integration. Eqs. 3.85 and 3.87 constitute the (C, τ) equations for a

drop in a general three-dimensional extensional flow.

Defining the metrics of this coordinate system just as we did for the planar linear flow case,

we see that they have the same form. Thus the metrics in the C, τ directions and the non-

orthogonal angle are still given by Eqs. 3.7, 3.8 and 3.9, respectively, while the unit vectors in

the C and τ directions are given by Eqs. 3.10 and 3.11, respectively. We note that Ĉ still points

in the θ since for the new (C, τ) coordinate system φ is independent of C.

A physical picture of the new (C, τ) coordinate system and its mapping to the spherical coor-

dinate system follows. As we have seen before, the surface streamlines begin and terminate at one

of the surface stagnation points. In this case, these stagnation points lie at φ = 0, π/2, π, 3π/2

and θ = π/2 as seen from Eqs. 3.83, 3.84 and shown in Fig. 3.4a. The drop surface is thus

divided into eight equivalent octants and we can therefore confine our attention to one of these

octants. We note that this division into eight octants is no longer true for ǫ = 1 (E1 = E2), for

which case the inlet(outlet) for E1, E2 > 0(E1, E2 < 0) is a stagnation ring lying on the x2x3

plane (see Fig. 3.4b). Nonetheless, we show later that this flow may be analyzed as a limit of

the general case. Another limit we consider is when ǫ = 0 (E2 = 0), which corresponds to a

planar extensional flow already analyzed above, and where the plane of the ambient flow is the

x2x3 plane (see Fig. 3.4c). For the general case, the stagnation points at φ = 0, π act as inlets

while those at φ = π/2, 3π/2 are outlets (see Fig. 3.4a). The mapping of the τ coordinate is

thus immediately apparent from Eq. 3.85. At the inlet points τ → −∞ and τ → ∞ at the

outlet. Similarly, C = 0 corresponds to the poles (θ = 0) as well as φ = 0, π/2 for arbitrary θ,

and C → ∞ is the equatorial plane (θ = π/2). These mappings are depicted in Fig. 3.4a.

3.4.2 Boundary Layer Analysis

The boundary layer analysis for this case closely follows the one presented for the planar linear

flows. The convection-diffusion equation expressed in the (C, τ) coordinate system is given by

Eq. 3.27, and as before, uC is identically zero. In the limit of Pe≫ 1, it is the velocity field near

the drop surface (within the thin thermal boundary layer) which contributes to the leading order

heat transfer. Expanding the radial and tangential velocities expressed in (C, τ) coordinates in
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(a) Non-axisymmetric extensional flow: ǫ = 1/2 (E1 = 2,
E2 = 1)

(b) Axisymmetric extensional flow: ǫ = 1 (E1 = E2)

(c) Planar extensional flow: ǫ = 0 (E2 = 0)

Figure 3.4: Surface streamlines plots for drop in an extensional flow (a)General three-dimensional
extensional flow E1 6= E2 , (b) Axisymmetric (about x1 axis) extensional flow with E1 = E2

and (c) Planar extensional flow E2 = 0, E1 6= 0 (plane of the flow is the x2x3 plane.
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terms of the boundary layer coordinate y = r − 1, we get:

ur =




3
[
C2((exp(2τ) − 1)− ǫ) + exp

[
2(1+2ǫ)τ

2+ǫ

]
ǫ
]

[
exp

[
2(1+2ǫ)τ

2+ǫ

]
+C2(1 + exp(2τ))

]
(1 + λ)



 y +O(y2), (3.88)

= hr(C, τ, ǫ, λ)y +O(y2), (3.89)

uτ/k =
2 + ǫ

1 + λ
+O(y), (3.90)

= hτ (ǫ, λ). (3.91)

We note that, as a consequence of the (C, τ) coordinate system, the convective term in the τ

direction is independent of C and τ ; again mimicking the much simpler case of a solid particle in

a vortical linear flow wherein the surface velocity is independent of both θ and φ. Substituting

the above in the convection-diffusion equation and defining a scaled boundary layer coordinate

Y = Pemy, we find, as expected, that m = 1/2. Defining a similarity variable η = Y/g(C, τ),

where g(C, τ) denotes the boundary layer thickness, we see that the non-dimensional temperature

satisfies Eq. 3.34 and the boundary conditions are given by Eqs. 3.36 and 3.37. The non-

dimensional temperature is therefore given by Eq. 3.38. The boundary layer thickness satisfies

Eq. 3.35, and proceeding as in the earlier case, we get the final expression for the boundary

layer thickness as:

g(C, τ) =

[
4(1 + λ)

2 + ǫ
Q(C, τ)I(C, τ)

]1/2
(3.92)

where

Q(C, τ) = exp

[
−6(1 + ǫ)τ

2 + ǫ

]{
exp

[
2(1 + 2ǫ)τ

2 + ǫ

]
+ (1 + exp(2τ))C2

}3

, (3.93)

and

I(C, τ) =
∫ τ

−∞
Q(C, τ1)

−1dτ1. (3.94)

It is interesting to note that the boundary layer has the same form as in the planar linear

flow case (see Eq. 3.45). Also just as in the previous case, it is straightforward to see that the

boundary layer thickness is finite at the inlet τ → −∞. This is because Q(C, τ) ∼ exp
[
−6(1+ǫ)τ

2+ǫ

]

as τ → −∞ and I(C, τ) ∼ exp
[
6(1+ǫ)τ
2+ǫ

]
, so that their product is finite.

3.4.3 Nusselt Number Calculation

The dimensionless heat transfer rate is given by:

Nu = (8)
Pe1/2

2π3/2

∫ ∞

0

∫ ∞

−∞

hk sinα1

g(C, τ)
dCdτ, (3.95)

where the prefactor of eight appears since the total drop surface consists of eight equivalent

octants (see Fig. 3.4a which depicts only one octant). The combination hk sinα1 for this case
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is given by:

hk sinα1 =
C exp

[
3(E1+E2)τ
2E1+E2

]

{
exp

[
2(E1+2E2)τ
2E1+E2

]
+ C2(1 + exp(2τ))

}3/2
, (3.96)

= CQ(C, τ)−1. (3.97)

Substituting from Eqs. 3.92 and 3.97 in Eq. 3.95, we see that the integration with respect to τ is

in the form of an exact differential and can therefore be readily carried out. Since I(C,−∞) = 0,

we get:

Nu = Pe1/2
4(2 + ǫ)1/2

π3/2(1 + λ)1/2

∫ ∞

0
C[I(C,∞)]1/2dC, (3.98)

where I(C, τ) is given by Eq. 3.94. Thus, we have the expression for the Nusselt number in

terms of a one-dimensional integral which can be carried out numerically. The above expression

can be rewritten by defining an effective Peclet number:

P̃e =
(2 + ǫ)Pe

(1 + λ)
, (3.99)

using which the expression for the Nusslelt number becomes:

Nu = P̃e
1/2 4

π3/2

∫ ∞

0
C[I(C,∞)]1/2dC, (3.100)

Thus making the prefactor to the Nusslet number purely a function of ǫ. This prefactor is plotted

in Fig. 3.5 as a function ǫ, for ǫ varying between 0 and 1, where the end points correspond to

planar extensional flow and axisymmetric extensional flow (about x1 axis).

Special Cases

• ǫ = 1 (E1 = E2): This corresponds to the axisymmetric extensional flow (with respect to

x1 axis), and I(C, τ) reduces to:

I(C, τ) =
∫ τ

−∞

exp(4τ1)dτ1

[exp(2τ1) + (1 + exp(2τ1))C2]3
, (3.101)

which can be integrated to yield:

I(C, τ) = exp(4τ)

4C2[C2 + (1 +C2) exp(2τ)]2
, (3.102)

and

I(C,∞) =
1

4C2(1 + C2)2
. (3.103)

The rather simple expression for I(C, τ) allows an entirely analytical estimate of the

Nusselt number. Substituting this in Eq. 3.98, we can evaluate the resulting integral with
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Figure 3.5: Plot of the prefactor to the Nusselt number given in Eq. 3.100 as a function of ǫ for
0 ≤ ǫ ≤ 1. The end points correspond to planar extensional flow and axisymmetric extensional
flow (about x1 axis).

respect to C to give:

Nu =

[
3

π(1 + λ)

]1/2
Pe1/2, (3.104)

where the Peclet number is defined as Pe = E1a
2/D. We remark that this agrees exactly

with the expression derived by Gupalo & Riazantsev (1972) for the case of a drop in an

axisymmetric extensional flow, thus serving as a validation for our approach. In terms of

the effective Peclet number this becomes:

Nu =

(
3

π

)1/2

P̃e
1/2
. (3.105)

• ǫ = 0(E2 = 0): This gives us back the planar extensional flow (α = 1) for which we derived

the Nusselt number in section 3.3, only here, the plane of the ambient flow is the x2x3

plane. Evaluating the definite integral in Eq. 3.98 for this case, we find:

Nu =
0.734

(1 + λ)1/2
Pe1/2 (3.106)

where the Peclet number is defined as Pe = E1a
2/D. The equivalence with the earlier

analysis can be seen by noting that E1 = γ̇(1+α). As expected, this is the same result we

reported previously, though here we have used a different version of the (C, τ) coordinate

system. This internal consistency provides a valuable validation of our (C, τ) coordinate

system approach.
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Although not shown here, the (C, τ) method used here may be used to analyze non-axisymmetric

heat transfer problems involving a solid particle, for instance, those analyzed by Batchelor

(1979). For the three-dimensional extensional flows considered here, where the particle is sta-

tionary, the τ̂ vector would be along the surface tangential stress vector (referred to by Batchelor

as ‘surface streamlines’).





Chapter 4

Closed Streamline Heat

Transfer:Inertial Effects

4.1 Introduction

In the previous chapter, we explored the heat transfer from a neutrally buoyant drop immersed,

in certain classes of ambient linear flows driven by open streamlines in the Stokes limit. In this

chapter, we move to a fundamentally distinct regime where the drop is completely surrounded

by a region of closed streamlines in the limit of zero Reynolds number. In the case of a drop

in a planar linear flow, we saw that this regime exists for viscosity ratios greater than a critical

value which depends on the flow parameter α. We now focus on this “closed streamline” regime

and the associated heat transfer problem for drops.

The presence of closed streamlines surrounding a body suspended in a fluid has important

consequences for heat transport. Since the streamlines are closed and confined to a bounded

region next to the body, they cannot transport heat away from the drop by convection (Yu-Fang

& Acrivos (1968), Poe & Acrivos (1975), Poe & Acrivos (1976), Subramanian & Koch (2006b)).

As a result, transport in a flow field with closed streamlines remains limited by the rate of

diffusion across isothermal closed streamlines (see Fig. 4.1).

The above statement that the closed streamlines, at steady state, are isotherms is a non-

trivial result worthy of some attention (see Rhines & Young (1983)). Consider an initially

stationary sphere in a quiescent ambient fluid with an arbitrary temperature field. Once the

sphere begins to rotate there is a region of closed streamlines formed as a consequence of the

no-slip boundary condition at the sphere surface. However, there exist temperature differences

along these closed streamlines arising from the initial temperature field which cannot be wiped

out due to convection alone. Therefore, a naive explanation of the isothermal nature of these

streamlines based u · ∇T = 0 is misleading at best. To understand the mechanism, let us

consider two closed streamlines separated by a small distance ∆y, which have a relative velocity

of O(γ̇∆y). Portions of these streamlines with different temperatures will be brought next to

each other in a time O(a/(γ̇∆y)). Diffusion then wipes out the temperature differences in a

time scale of O(∆y2/D). Equating the above two time scales, one obtains ∆y/a ∼ O(Pe−1/3).

Using this, we can estimate the time scale for the temperature differences to be wiped out as

ta ∼ O(∆y2/D) ∼ O(Pe−2/3a2/D). Thus shear-enhanced diffusion is crucially important for

removing the temperature differentials along a closed streamline leading to isothermal closed

streamlines at steady state. The heat transfer analysis in this chapter involves inertial transport

on time scales which is O([(PeRe)−1/2]2)a2/D for a drop and O([(PeRe)−1/3 ]2)a2/D for a solid

particle (this is the time scale for diffusion of heat across the thermal boundary layer). In

both cases, the time scales are much larger than the time scale for the closed streamlines to

69
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become isotherms, since Pe−2/3 ≪ (RePe)−1 and Pe−2/3 ≪ (RePe)−2/3 when Re ≪ 1. Thus,

our assumption that the closed streamlines are isotherms at the time scale of our heat transfer

analysis is consistent.

The transport at zero Reynolds, for times much longer than the time taken for the closed

streamlines to bceome isothermal, is therefore due to diffusion across these isotherms. This is

manifested in the Nusselt number, in the limit of large Pe, plateauing out to an O(1) value.

While this is the scenario in the Stokes limit (Re = 0), things are vastly different with the

addition of a small but finite amount of inertia. Even weak inertia leads to a breakdown of

the degenerate region of closed streamlines, transforming them into tightly spiralling ones at

small Re. Physically, this is because fluid elements moving around the drop now experience an

additional centrifugal force which leads to a net displacement during a complete orbit, and every

fluid element now comes from and goes to infinity. Since the inertial streamlines are no longer

limited to a finite region next to the immersed body, heat can be transport effectively. These

newly formed ‘convective channels’ due to inertia, lead to the Nusselt number increasing with Pe

at large Pe; for any Re, however small, the Nu far exceeds the geometrical limit (diffusion limited

regime) attained in the limit Re = 0, Pe → ∞. Therefore, unlike the open streamline regime,

where the effects of inertia were perturbative in nature, in the closed streamline regime, inertia

has a dramatic effect and modifies the heat transport at leading order. This provides general

motivation for the study of heat transfer from suspended bodies at small but finite inertia.

The inertial heat transfer calculation for solid particles immersed in a planar linear flow was

carried out by Subramanian & Koch (2006a), Subramanian & Koch (2006b), who found that

the Nusselt number scales as Nu ∼ Re1/3Pe1/3, in the limit of Re ≪ 1, Pe ≫ 1, RePe ≫ 1.

We note that for the solid particle case, there is always an annular region of closed streamlines

present for any non-zero vorticity in the ambient linear flow. In this chapter, we carry out

the heat transfer analysis for drops, which pose several novel and interesting features when

compared to solid particles. For instance, as discussed in chapter 2, drops in a planar linear

flow are surrounded by closed streamlines only when λ > λc = 2α/(1 − α). Further, we have

shown that, unlike a solid particle, the near-field and surface streamlines for a drop are not

circles, but are Jeffery orbits (see chapter 2). Therefore, the streamline geometry is inherently

non- axisymmetric and requires use of the (C, τ) coordinate system developed earlier for the

closed streamline regime (section 2.4 in chapter 2). We show that the simplifications resulting

from the use of this coordinate system are crucial in solving this non-axisymmetric heat transfer

problem. After writing down the governing equations in section 4.2, we revisit, in section 4.3, the

streamline topology in the closed streamline region, first at Re = 0 and then at finite Re, to get

a sense of the spatial organization of the streamlines near the drop surface. This understanding

will help us set up the relevant equations and boundary conditions for the heat transfer problem

using the (C, τ) coordinate system in section 4.4. Our final result, just as in the open streamline

case, is an expression for the Nusselt number as a function of the flow parameters for the region

λ > λc in the (α, λ) space which we give in section 4.5. We conclude this chapter with a brief

discussion of the so-called “intermediate regime” in section 4.6, which corresponds to λ close to

λc, where we show that both the inertial and Stokes velocities become comparable (as far as

their contribution to convection is concerned) over certain regions on the drop surface.
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Figure 4.1: Depiction of a body at temperature T0 in an ambient fluid of temperature T∞.
The body is completely surrounded by a region of closed streamlines, which at steady state are
isotherms. Convection is rendered ineffective in transporting heat, which is transported only
through diffusion across these isotherms.

4.2 Governing Equations

The governing equations in dimensionless form for the fluid motion outside the drop, in the

presence of inertia, are given by:

Re u · ∇u = −∇p+∇2u, (4.1)

∇ · u = 0. (4.2)

The velocity field in the drop exterior, which we will utilize in our heat transfer analysis, was

derived by Raja et al. (2010) using a regular perturbation procedure. To O(Re), the exterior

velocity field around the spherical drop may be written as:

u = u(0)(r;α, λ) + Reu(1)(r;α, λ) +O(Re3/2), (4.3)

where, for a planar linear flow u(0) is given in Eqs. 2.6 to 2.8 in chapter 2. The expressions

for the O(Re) velocity field are given in u(1) is given in Raja et al. (2010) and reproduced in

appendix A. 1

We will consider the limit of small but finite Re, since we are interested in studying the

leading order effect of inertia on the heat transfer. Further, we will consider the large convection

limit (Pe≫ 1 and RePe≫ 1), such that convection due to the finite Re spiralling flow dominates

diffusion everywhere except in a thin thermal boundary layer near the drop surface and in a

wake, which however does not contribute to the leading order heat transfer. Using our analysis,

1Note that u(1) arises from inertial forces acting in a region around the drop of the order of its own size. The next
correction, at O(Re3/2), arises from distances of O(Re−1/2) (and thus, has a singular origin), and was considered
by Subramanian et al. (2011b) in the context of the exterior streamline topology (especially at large distances).
It is not considered here, since it would only lead to an O(Re1/2) correction to the leading order O(RePe)1/2

estimate for the Nusselt number.
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Figure 4.2: Figure showing the inertial surface streamlines for a drop in the single wake regime,
α = 0.2, λ = 2 (λbif = 0.547)

we obtain an asymptotic solution for the temperature field which is valid when PeRe ≫ 1,

and arises from a balance of the convective and diffusive terms in the thermal boundary layer

mentioned above.

The heat transfer is governed by the convection-diffusion equation, written here in non-

dimensional form:

Pe(u · ∇Θ) = ∇2Θ, (4.4)

where Θ = (T − T∞)/(T0 − T∞) and Pe = γ̇a2/D. This is subject to the boundary conditions:

Θ = 1 at r = 1 (Isothermal drop surface with temperature T0), (4.5)

Θ → 0 as r → ∞ (Ambient temperature is T∞ at infinity). (4.6)

Having set up the governing equations, we now proceed to describe the coordinate system which

will be used in the analysis. Beginning with the tangential coordinates (C, τ) on the drop surface,

described in chapter 2, we show the need for a modified radial coordinate only for the case of

drops (for solid particles, as shown by Subramanian & Koch (2006b), the usual radial coordinate

suffices for the large Pe boundary layer analysis).

4.3 Solution Approach and Coordinate System

We begin by writing down the convection-diffusion equation expressed in the (r, C, τ) coordinate

system:

(u(0)r + Reu(1)r )
∂Θ

∂r
+

(u
(0)
C + Reu

(1)
C )

h

∂Θ

∂C
+

(u
(0)
τ + Reu

(1)
τ )

k

∂Θ

∂τ
=

∇2Θ

Pe
, (4.7)

where the (C, τ) components of the velocity field, in terms of the (θ, φ) components, are given

by Eqs. 2.56 and 2.57 in chapter 2. By definition of the (C, τ) coordinate system, the Stokes

velocity component in the C direction is identically zero. Since we are interested in the transport

in a thin thermal boundary layer adjacent to the drop, it is the near-field form of the velocity
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field which enters into the analysis. The near-field form of the Stokes velocity field is given by:

u(0)r = h(0)r (C, τ ;α, λ)y, (4.8)

u
(0)
C = 0, (4.9)

u
(0)
τ

k
= h(0)τ (α, λ), (4.10)

and the O(Re) field has the form:

u(1)r = h(1)r (C, τ ;α, λ)y, (4.11)

u
(1)
C

h
= h

(1)
C (C, τ ;α, λ), (4.12)

u
(1)
τ

k
= h(1)τ (C, τ ;α, λ). (4.13)

Here, y = r− 1 and y is expected to be of the order of the boundary layer thickness at large Pe.

The expressions for h
(0)
r and h

(0)
τ are the same as those given in section 3.3.2 of chapter 3. h

(1)
r ,

h
(1)
C and h

(1)
τ are found to be given by:

h(1)r (C, τ ;α, λ) =
(
1/
(
288288 (λ+ 1)3

)) (
(α+ 1)

(
−
((
4C2

(
γ2 sin2 τ + cos2 τ

)
(− ((32032 (α− 1)

(λ+ 1) (3λ+ 1)
(
γ2 tan τ − 1

))
/
(
γ2 tan τ + 1

))
− 2 (α+ 1)

(
36465λ2 + 54626λ + 15456

)))

/
(
C2
(
γ2 sin2 τ + cos2 τ + 1

))
−
(
35C4 (α+ 1) γ2

(
4290λ2 + 7436λ + 2064

)
sin2 2τ

)

/
(
C2
(
γ2 sin2 τ + cos2 τ

)
+ 1
)2 − 8 (α+ 1)

(
19305λ2 + 27742λ + 7896

)))
, (4.14)

h
(1)
C (C, τ ;α, λ) =
(
C
(
1 + C2

(
cos2 τ + γ2 sin2 τ

)) ((
14C2(1 + α)2

(
1032 + 3718λ + 2145λ2

)

(
cos4 τ − 6γ2 cos2 τ sin2 τ + γ4 sin4 τ

)
+

1

5 + 2λ

(
cos2 τ + γ2 sin2 τ

) (
1 + C2

(
cos2 τ + γ2 sin2 τ

))

(
−
(
256256

(
−1 + α2

)
(1 + λ)

(
3 + 8λ+ 3λ2

) (
cos2 τ − γ2 sin2 τ

))
/
(
cos2 τ + γ2 sin2 τ

)

+
(
2(1 + α)2(5 + 2λ)

(
4
(
7896 + 27742λ + 19305λ2

)
+ 3C2

(
8120 + 28314λ + 20735λ2

)
cos2 τ + 3C2γ2

(
8120 + 28314λ + 20735λ2

)
sin2 τ

))
/
(
1 + C2 cos2 τ + C2γ2 sin2 τ

)))
/
(
1 + C2

(
cos2 τ + γ2 sin2 τ

))2

−
(
28(1 + α)

(
−1 + γ2

)
cos τ sin τ

(
9152(−1 + α)

(
3 + 11λ+ 11λ2 + 3λ3

)
+ C2 (−14312 − 70990λ

−73073λ2 − 18018λ3 + α
(
3992 + 29682λ + 36751λ2 + 9438λ3

))
cos2 τ + C2γ2 (−3992− 29682λ

−36751λ2 − 9438λ3 + α
(
14312 + 70990λ + 73073λ2 + 18018λ3

))
sin2 τ

)
sin 2τ

)
/ ((5 + 2λ)

(
1 + C2 cos2 τ + C2γ2 sin2 τ

)2)))
/
(
576576(1 + λ)3

(
cos2 τ + γ2 sin2 τ

))
, (4.15)
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h(1)τ (C, τ ;α, λ) =
(
(1 + α)

(
9152(−1 + α)(1 + λ)(3 + λ(8 + 3λ)) + C2 ((−14312 − λ(70990 + 1001λ

(73 + 18λ)) + α(3992 + λ(29682 + 143λ(257 + 66λ)))) cos2 τ + γ2(−3992

−λ(29682 + 143λ(257 + 66λ)) + α(14312 + λ(70990 + 1001λ(73 + 18λ)))) sin2 τ
))

sin 2τ
)

/
(
20592(1 + λ)3(5 + 2λ)

(
1 + C2

(
cos2 τ + γ2 sin2 τ

)))
. (4.16)

It is important to note that the radial velocity is O(y), while the tangential velocities are

O(1) near the surface. Also, as we saw in the open streamline analysis, the combination h
(0)
τ /k

is independent of both C and τ . This is analogous to a rotating solid particle for which uφ is

independent of both θ and φ (Subramanian & Koch (2006b)). The Stokes velocity in the drop

exterior, allowed us to derive the flow-aligned and non-orthogonal (C, τ) coordinate which we

described in chapter 2. The details of the coordinate system, for the closed streamline regime,

are given in chapter 2 section 2.4.

From Fig. 4.2 we see that the inertial streamlines are tightly wound spirals for small Re, with

each turn closely resembling an inertia-less Jeffery orbits. The trajectories are, of course, not

closed, since there is a net displacement along the drop surface during a given revolution. The

rapid convection due to the Stokes velocity along the orbit compared to the slow drift due to the

O(Re) velocity field means that, for the purposes of the heat transfer analysis, these spiralling

streamlines can be approximated as a series of inertia-less Jeffery orbits. The condition that

drift across the orbits is slow is met when Re ≪ 1. In this limit, the inertial convection may

now be interpreted in a τ -averaged sense, where the inertial drift is given by the τ average of

the O(Re) velocity field along a Jeffery orbit. This is analogous to the much simpler φ-averaged

used for a solid particle by Subramanian & Koch (2006b). Recall that this τ -averaged approach

was earlier used by us to calculate the location of the wake on the drop surface (chapter 2).

Using this estimate for the inertial convection, we can estimate the scale of the boundary layer

thickness in the limit RePe≫ 1. The convective time scale is O[a/(Reaγ̇−1)], while the diffusive

time scales is O(y2/D), where y is a scale for the boundary layer thickness. Equating these time

scales, we obtain y ∼ O(RePe)−1/2.

As already discussed at the beginning of this chapter, a consequence of the rapid convection

along an orbit is that the leading order temperature field is independent of τ . Physically, this

τ -independence, of course, corresponds to isothermal streamlines. For large Pe, the heat transfer

depends on the nature of the near-field streamlines. These streamlines are circular for the case of

a solid particle, while for the drop, these near-surface streamlines are close to being Jeffery orbits

(curves of constant C in the (C, τ) coordinate system). In both cases of a solid particle and a

drop, the radial distance along a streamline remains unchanged at leading order. This distance

varies by an amount O(y2) for a solid particle, and by O(y) for a drop as can be deduced by the

scaling for the Stokes radial velocity in each case (see Subramanian & Koch (2006b) and Eq.

4.8). This difference in the order of variation, however, proves to be crucial. This is because, for

a drop, this radial distance varies by an amount of order the boundary layer thickness. Holding

the radial coordinate constant while averaging over an orbit, will lead to an O(1) error in the

estimate of the temperature field. This is because in our rescaling, the temperature varies by an

O(1) amount over a distance of O(y). This is unlike the solid particle case, where integration
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along the azimuthal coordinate in order to compute the averaged inertial drift, can be carried

out at a constant radial distance from the particle surface, leading only to an asymptotically

small error in the estimate of temperature (see Subramanian & Koch (2006b)).

Thus, in the case of a drop, we need to define a new radial coordinate which takes into

account the radial displacements of the inertia-less streamlines, displacements that are of the

same order as the boundary layer thickness. The “D surfaces” and “E surfaces”, which were

derived while analysing the exterior streamlines in chapter 2, serve as natural candidates for

the constant coordinate surfaces in the radial direction (instead of spheres as was the case for

the solid particle). However, of these, we choose the “E surfaces”, since these do not exhibit

a singularity at the equatorial plane shown by the “D surfaces”. The latter family of surfaces

become parallel to the plane of symmetry (see the discussion in section 2.3.2, chapter 2). This

causes the normal to the surfaces, that is in the radial direction for most of the drop surface, to

become tangential close to the plane of symmetry. In turn, this leads to a spurious dominance

of tangential diffusion close to the plane of symmetry.

We now derive the near-field form of the D and E surfaces. Writing down the near-field

Stokes velocity in a spherical coordinate system, we have:

ur = −3(1 + α)

1 + λ
sin2 θ sin 2φ1y =

dy

ds
, (4.17)

uθ = − (1 + α)

2(1 + λ)
sin 2θ sin 2φ1 =

dθ

ds
, (4.18)

uφ = −(1 + α)

1 + λ
sin θ (cos 2φ1 + β) = sin θ

dφ1
ds

. (4.19)

Recall that φ1 = π/2 − φ. Dividing Eq. 4.17 by Eq. 4.18, we get:

dy

dθ
=

3y sin θ

cos θ
. (4.20)

Upon integrating this, we get the near-field form of the D surfaces, denoted here by ψ, as:

ψ = cos3 θy. (4.21)

Note that ψ and D (derived in chapter 2) can be shown to be related as follows:

ψ = D3

[
3(λ+ 2)

2(λ+ 1)

]−1

. (4.22)

Similarly dividing Eq. 4.19 and 4.18, we get:

sin θ cos θ sin 2φ
dφ

dθ
= cos 2φ+ β(1 + λ). (4.23)

Upon rearranging, this becomes:

d(tan2 θ cos2 φ1)

dθ
= [1− β(1 + λ)]

sin θ

cos2 θ
. (4.24)
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Dividing Eq. 4.24 by 4.20, we get:

d(tan2 θ cos2 φ1)

dy
=

[1− β(1 + λ)]

cos2 θ
. (4.25)

Integrating from ym to y and substituting for cos θ from Eq. 4.21, we have:

∫ y

ym

d(tan2 θ cos2 φ1)

dy
dy =

[1− β(1 + λ)]

3ψ2/3

∫ y

ym

y−1/3. (4.26)

Imposing that tan2 θ cos2 φ = 0 at y = ym, we get after some algebra:

ym = y

[
1− 2 sin2 θ cos2 φ1

1− β(1 + λ)

]3/2
, (4.27)

where ym is the required new radial coordinate which characterizes the near-field inertia-less

orbits. We note that the constant ym surfaces are the near-field form of the constant E surfaces

derived in chapter 2. Writing this in terms of the (C, τ) coordinate system, we have the expression

for the new radial coordinate as:

ym =M(C, τ)y, (4.28)

in terms of the original radial coordinate, where:

M(C, τ) =

[
1 + C2γ2

1 + C2(cos2 τ + γ2 sin2 τ)

]3/2
. (4.29)

We see that this new radial coordinate is a rescaled version of the spherical radial coordinate

y, where the scaling prefactor being a function of C and τ . As we show later, physically this

prefactor is related to the radial extent of a fluid element in the near-field; the prefactor changes

as a function of τ in such a manner as to enforce the incompressibility constraint for the fluid

element as it moves around the drop in a Jeffery orbit. Thus, a near-field streamline is defined

by a constant value of ym and C. Also, ym = y at τ = π/2, which corresponds to φ1 = π/2 (see

Fig. 4.3).

4.4 Boundary layer analysis

Having characterized the coordinate system required for the analysis, we now transform the

convection-diffusion equation from the (y,C, τ) coordinate system to a (ym, C, τ) coordinate

system. Using the chain rule for differentiation, we can write:

∂Θ

∂y

∣∣∣∣
C,τ

=
∂Θ

∂ym

∣∣∣∣
C,τ

∂ym
∂y

∣∣∣∣
C,τ

, (4.30)

∂Θ

∂C

∣∣∣∣
y,τ

=
∂Θ

∂ym

∣∣∣∣
C,τ

∂ym
∂C

∣∣∣∣
y,τ

+
∂Θ

∂C

∣∣∣∣
ym,τ

, (4.31)

∂Θ

∂τ

∣∣∣∣
y,C

=
∂Θ

∂ym

∣∣∣∣
C,τ

∂ym
∂τ

∣∣∣∣
y,C

+
∂Θ

∂τ

∣∣∣∣
ym,C

. (4.32)
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Figure 4.3: A schematic depiction of a near-field Stokes streamline, showing the varying radial
distance from the drop surface. We see that these streamlines can be described by the equations
ym = C1 and C = C2, where C1 and C2 are constants. To satisfy the continuity constraint a
fluid element moving along such a streamline has a volume which is independent of τ .

Note that in the derivative with respect to the radial coordinate, we have not included terms

which involve changes to the C and τ coordinates with respect to y. Such terms will, in general,

be non-zero since the (C, τ) coordinate system is defined at the drop surface and therefore, in

principle, we need to consider a perturbation to this coordinate system when we are at a radial

distance of O(y) from the drop surface. However, for the purposes of the heat transfer analysis,

it is straightforward to show that this perturbation to the (C, τ) coordinate system does not

contribute at leading order since it is O(y) and is therefore of order the boundary layer thickness.

The physical significance of Eqs. 4.31 and 4.32 can be understood from Fig. 4.3. As we move

across Jeffery orbits (across constant-C curves) at a constant y, we also end up moving across

constant-ym surfaces in the process. A similar argument applies for Eq. 4.32 with respect to τ .

These, therefore, appear as additional ‘radial’ velocity contributions in our (ym, C, τ) coordinate

system.

Using the above expressions, the convection-diffusion equation in the (ym, C, τ) coordinate

system is given by:

(
ur
∂ym
∂y

+
uC
h

∂ym
∂C

+
uτ
k

∂ym
∂τ

)
∂Θ

∂ym
+
uC
h

∂Θ

∂C

∣∣∣∣
ym,τ

+
uτ
k

∂Θ

∂τ

∣∣∣∣
ym,C

=
1

Pe

∂2Θ

∂y2m

(
∂ym
∂y

)2

, (4.33)

where considering only the Stokes velocity contribution to the convection terms, to begin with,

we get:

(
u(0)r

∂ym
∂y

+
u
(0)
C

h

∂ym
∂C

+
u
(0)
τ

k

∂ym
∂τ

)
∂Θ

∂ym
+
u
(0)
C

h

∂Θ

∂C
+
u
(0)
τ

k

∂Θ

∂τ
=

1

Pe

∂2Θ

∂y2m

(
∂ym
∂y

)2

, (4.34)
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where u
(0)
C = 0. The term (∂ym/∂y)

2, physically, captures the variation of the diffusion term

which is larger in regions where the constant-ym surfaces (isotherms at zero Re) are squeezed

close together and smaller when they are far apart. Near the surface of the drop, the above

equation becomes:

(
h(0)r y

∂ym
∂y

+ h(0)τ

∂ym
∂τ

)
∂Θ

∂ym
+ h(0)τ

∂Θ

∂τ
=

1

Pe

∂2Θ

∂y2m

(
∂ym
∂y

)2

. (4.35)

Further, if we look at the rate of convection in the ym direction, we see that:

h(0)r y
∂ym
∂y

+ h(0)τ

∂ym
∂τ

= 0. (4.36)

This is simply a mathematical statement of the fact that the Stokes velocity, by definition, cannot

lead to convection across the constant-ym surfaces, which are the invariant streamsurfaces of the

Stokes velocity field. Thus, at leading order, in the limit of Pe≫ 1, we have:

∂Θ(0)

∂τ
= 0, (4.37)

which implies that the leading order temperature field is independent of the τ coordinate. Note

our earlier argument which shows that this statement is only valid for times much longer than

O(Pe−2/3)a2/D. This is true in our case since the time scale for inertial convection which

is O([(RePe)−1/2]2)a2/D. Evidently, the transformation to the new radial coordinate system

has helped us see directly that the Stokes streamlines, on account of being closed orbits, must

be isothermal. Mathematically, in the chosen coordinate system, this leads to a temperature

field independent of τ . Also, we see that the isotherms, even at leading order, are constant-

ym (and constant-C) curves and not constant-y curves. Expanding the temperature field in a

perturbation series:

Θ = Θ(0)(ym, C) + f(Re,Pe)Θ(1)(ym, C, τ), (4.38)

where f(Re,Pe) is a small parameter, proportional to the boundary layer thickness, which will be

determined by the balance of terms within the thermal boundary layer. Writing the convection-

diffusion equation to O(Re) in the velocity field, and making use of Eqs. 4.36 and 4.37, we

get:

(
Reu(1)r

∂ym
∂y

+ Re
u
(1)
C

h

∂ym
∂C

+ Re
u
(1)
τ

k

∂ym
∂τ

)
∂Θ(0)

∂ym
+ Re

u
(1)
C

h

∂Θ(0)

∂C
(4.39)

+Ref(Re,Pe)
u
(0)
τ

k

∂Θ(1)

∂τ
=

1

Pe

∂2Θ(0)

∂y2m

(
∂ym
∂y

)2

.

Since u
(0)
τ /k is a constant, we can average the above equation over τ , to get:

Re

[∫ 2π

0

(
u(1)r

∂ym
∂y

+
u
(1)
C

h

∂ym
∂C

+
u
(1)
τ

k

∂ym
∂τ

)
dτ

]
∂Θ(0)

∂ym
+ Re

[∫ 2π

0

(
u
(1)
C

h

)
dτ

]
∂Θ(0)

∂C
(4.40)

=
1

Pe

[∫ 2π

0

(
∂ym
∂y

)2

dτ

]
∂2Θ(0)

∂y2m
.
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Expanding the inertial velocity components in the near-field using Eqs. 4.11 to 4.13 we get:

Re

[∫ 2π

0

(
h(1)r y

∂ym
∂y

+ h
(1)
C

∂ym
∂C

+ h(1)τ

∂ym
∂τ

)
dτ

]
∂Θ(0)

∂ym
+ Re

[∫ 2π

0
h
(1)
C dτ

]
∂Θ(0)

∂C
(4.41)

=
1

Pe

[∫ 2π

0

(
∂ym
∂y

)2

dτ

]
∂2Θ(0)

∂y2m
.

The τ -average used above points to a crucial difference between the particle and drop cases. In

the particle case, the uniform angular velocity implies that one just has an integral with respect

to φ. On the other hand, for a drop, the weighting is not uniform (since uτ is a function of τ

along a Jeffery orbit), and the non-trivial relation between τ and φ implies that, when written

as an average over φ, the parts of the orbit where the fluid elements are moving slower have a

greater weightage since inertia, acting over a longer time, leads to a greater drift; and vice versa.

From the above equation, clearly, it is the τ -averaged inertial velocity which leads to a net

convection, implying that the scale for the boundary layer thickness is O(Re−1/2Pe−1/2). Indeed,

on postulating a rescaling for the modified radial coordinate ym of the form Ym = m(Re,Pe)ym,

where Ym is strictly O(1), we see that the leading order balance gives m(Re,Pe) = Re1/2Pe1/2.

In terms of this rescaled coordinate, the τ -averaged convection-diffusion equation is now given

by:

[∫ 2π

0

(
h(1)r Ym + h

(1)
C

∂Ym
∂C

+ h(1)τ

∂Ym
∂τ

)
dτ

]
∂Θ(0)

∂Ym
+

[∫ 2π

0
h
(1)
C dτ

]
∂Θ(0)

∂C
(4.42)

=

[∫ 2π

0

(
∂ym
∂y

)2

dτ

]
∂2Θ(0)

∂Y 2
m

.

Using Eq. 4.28 the above equation can be rewritten as:

Ym

[∫ 2π

0

(
h(1)r +

h
(1)
C

M

∂M

∂C
+
h
(1)
τ

M

∂M

∂τ

)
dτ

]
∂Θ(0)

∂Ym
+

[∫ 2π

0
h
(1)
C dτ

∂Θ(0)

∂C
(4.43)

=

[∫ 2π

0

(
∂ym
∂y

)2

dτ

]
∂2Θ(0)

∂Y 2
m

,

which is of the form:

YmA(C)
∂Θ(0)

∂Ym
+ B(C)

∂Θ(0)

∂C
= D(C)

∂2Θ(0)

∂Y 2
m

, (4.44)

where

A(C) =

∫ 2π

0

(
h(1)r +

h
(1)
C

M

∂M

∂C
+
h
(1)
τ

M

∂M

∂τ

)
dτ, (4.45)

B(C) =

∫ 2π

0
h
(1)
C dτ, (4.46)

D(C) =

∫ 2π

0

(
∂ym
∂y

)2

dτ. (4.47)

It is noteworthy that a three-dimensional non-axisymmetric heat transfer problem has been

reduced, through the use of a suitable coordinate system and an averaging procedure, to a one-
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dimensional problem in the C variable. The physical interpretations of the three terms A(C),

B(C) and D(C) follow naturally. A(C) represents the convective flux across the constant-ym

surfaces due to the τ -averaged inertial velocity. B(C) is a quantity which we already encountered

in chapter 2, when determining the location of the wake on the drop surface. This represents the

τ -averaged convective flux across inertia-less orbits, which leads to a net convection tangential

to the drop surface; the thermal wake is the location (a constant-C Jeffery orbit to the order

considered) at which this tangential convection vanishes. D(C) is the scaling parameter for the

diffusion term, and physically, it represents the fact that the near-field isotherms, in the absence

of inertia are not at a constant radial distance from the drop surface. This is a consequence of the

displacement, of the order of a boundary layer thickness, undergone by the near-field closed orbits

as was shown previously. When inertia is added, we showed that leading order temperature field

still satisfies ∂Θ(0)/∂τ |ym,C = 0, implying that the constant ym surfaces are still the isotherms.

Since heat must diffuse across these isotherms, which are at a scaled radial distance from the

drop surface, we have the emergence of the scaling factor D(C) multiplying the diffusion term.

This term is larger in regions where the constant-ym surfaces are squeezed together and is smaller

in regions where they are farther apart from one another. It is important to note that this scaling

factor arises due to the topology of the near-field streamlines and is present over and above the

conventional scaling terms with respect to the boundary layer thickness.

We now introduce a similarity variable of the form η = Ym/g(C), where g(C) characterises

the dependence of the boundary layer thickness on the position on the drop surface. Note that,

unlike the open streamline regime, the boundary layer thickness on account of τ averaging is

only a function of C. Transforming Eq. 4.44, we find that the non-dimensional temperature

satisfies:
d2Θ

dη2
+ 2η

dΘ

dη
= 0, (4.48)

and the boundary layer thickness is governed by:

df

dC
− 2A(C)

B(C)
f =

2D(C)

B(C)
, (4.49)

where f = g2/2. The boundary conditions for the non-dimensional temperature are given by:

Θ = 1 at r = 1, (4.50)

Θ → 0 as r → ∞. (4.51)

Solving Eq. 4.48 and using Eqs. 4.50 and 4.51, we get:

Θ(η) = 1− 2√
π

∫ η

0
exp(−t2)dt (4.52)

In order to proceed towards a solution for the boundary layer thickness, and thence, the Nusselt

number, we rewrite the convective term involving the ‘radial’ velocity A(C). From the continuity

equation written for the Stokes velocity field, expressed in the (y,C, τ) coordinate system, we

get:

∂(hk sinα1u
(0)
r )

∂y
+
∂(k sinα1u

(0)
C )

∂C
+
∂(h sinα1u

(0)
τ )

∂τ
= 0, (4.53)
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where u
(0)
C = 0 by definition. In terms of the velocity field near the drop surface, the remaining

two terms take the form:

∂(hk sinα1h
(0)
r y)

∂y
+
∂(hk sinα1h

(0)
τ )

∂τ
= 0. (4.54)

Noting that the term h
(0)
τ is independent of both C and τ and that the metric factor hk sinα1

is independent of the radial coordinate, we can write the above equation as:

hk sinα1h
(0)
r + h(0)τ

∂(hk sinα1)

∂τ
= 0. (4.55)

From Eq. 4.28 and 4.36, we see that the radial Stokes velocity may be written as:

h(0)r = − 1

M

∂M

∂τ
h(0)τ , (4.56)

where M(C, τ) is given by Eq. 4.29. Substituting for h
(0)
r in Eq. 4.55, we get the relation:

1

M

∂M

∂τ
=

1

hk sinα1

∂(hk sinα1)

∂τ
. (4.57)

Physically, this is a statement of the fact that the volume of a fluid element (the element

being a column sandwiched between the drop surface and the near-field constant ym surface)

as it moves along an inertia-less Stokes orbits is conserved as required by continuity (see Fig.

4.3). This can be seen by noting that the volume of an infinitesimal fluid element is given by

∆V = hk sinα1∆C∆τym/M(C, τ) and the above equation is the same as the condition that:

∂(∆V )/∂τ |ym,C = 0. (4.58)

The variation of the shape of this element can be understood by considering a fluid element

moving along a constant-ym trajectory lying on the plane of symmetry (C → ∞). We see that

M(C, τ) = [(1 + C2γ2)/(1 + C2)]3/2 > 1 at τ = 0, π and M(C, τ) = 1 at τ = π/2, 3π/2. From

the expression for ∆V given above, this implies that a fluid element is compressed in the radial

direction near the gradient axis (x2, τ = 0, π), while it is stretched in the radial direction near

the flow axis (x1, τ = π/2, 3π/2) as shown in Fig. 4.3.

Next, the continuity equation, at O(Re) expressed in a (y,C, τ) coordinate system, is given

by:

hk sinα1
∂u

(1)
r

∂y
+
∂(k sinα1u

(1)
C )

∂C
+
∂(h sinα1u

(1)
τ )

∂τ
= 0. (4.59)

Rewriting this equation for the near-field inertial velocity, we have:

h(1)r +
1

hk sinα1

∂(hk sinα1h
(1)
C )

∂C
+

1

hk sinα1

∂(hk sinα1h
(1)
τ )

∂τ
= 0, (4.60)

h(1)r +
1

hk sinα1

∂(hk sinα1h
(1)
C )

∂C
+

h
(1)
τ

hk sinα1

∂(hk sinα1)

∂τ
+

(1)
τ

∂τ
= 0. (4.61)
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Using the relation given by Eq. 4.57, we get:

h(1)r +
h
(1)
τ

M

∂M

∂τ
= −

[
∂h

(1)
τ

∂τ
+

1

hk sinα1

∂(hk sinα1h
(1)
C )

∂C

]
. (4.62)

We note that the LHS of the above equation contains the first and third terms in the integrand

in the expression for A(C) (see Eq. 4.45). Upon substituting, we get:

A(C) =

∫ 2π

0

[
−∂h

(1)
τ

∂τ
− 1

hk sinα1

∂(hk sinα1h
(1)
C )

∂C
+
h
(1)
C

M

∂M

∂C

]
dτ. (4.63)

The first term in the above expression is in the form of an exact differential and hence is zero

when integrated from 0 to 2π. Upon rearranging the expression further, we have the following:

A(C) =

∫ 2π

0

[(
1

M

∂M

∂C
− 1

hk sinα1

∂(hk sinα1)

∂C

)
h
(1)
C − ∂h

(1)
C

∂C

]
dτ. (4.64)

We see that the term:

1

M

∂M

∂C
− 1

hk sinα1

∂(hk sinα1)

∂C
=

2C2γ2 − 1

C(1 + C2γ2)
, (4.65)

which is independent of τ and can therefore be pulled out of the integral. The remaining terms

can be expressed in terms of B(C), leaving us with the final expression for A(C) as:

A(C) =
2C2γ2 − 1

C(1 + C2γ2)
B(C)− dB(C)

dC
(4.66)

Physically, the above expression is a statement of the τ -averaged continuity equation for the

O(Re) velocity field. The τ averaging trivially excludes any convection in the τ direction, even

at O(Re), which leaves only the convection in the radial direction (across constant-ym surfaces)

and in the C direction (across constant-C orbits) denoted by A(C) and B(C), respectively. The

continuity equation dictates that these two must be related and that relation is given by Eq.

4.66.

4.4.1 Solution to the boundary layer thickness equation

Substituting Eq. 4.66 in Eq. 4.49, we get:

df

dC
− 2

[
2C2γ2 − 1

C(1 + C2γ2)
− 1

B(C)

dB(C)

dC

]
f =

2D(C)

B(C)
, (4.67)

which can be rewritten to give:

d

dC

[
fB(C)2C2

(1 + C2γ2)3

]
=

2D(C)B(C)2C2

(1 + C2γ2)3
. (4.68)
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Integrating this between the limits Cinlet to C, we get:

f(C) =
2(1 + C2γ2)3

B(C)2C2

∫ C

Cinlet

[D(C ′)B(C ′)2C ′2

(1 +C ′2γ2)3

]
dC ′, (4.69)

g(C) =

[
4(1 + C2γ2)3

B(C)2C2
I(C)

]1/2
, (4.70)

where

I(C) =

∫ C

Cinlet

D(C ′)B(C ′)2C ′2

(1 + C ′2γ2)3
dC ′. (4.71)

The detailed expressions for B(C) and D(C) are found to be given by:

B(C) = −
(
π(1 + α)

(
14
(
−1 +

√
(1 + C2) (1 + C2γ2)

) (
13144 + 29682λ + 27599λ2 + 9438λ3

− γ2
(
23464 + 70990λ + 63921λ2 + 18018λ3

)
+ α

(
−23464 − 70990λ − 63921λ2 − 18018λ3 + γ2

(
13144 + 29682λ + 27599λ2 + 9438λ3

)))
+ C2

(
−170968 − 516778λ − 497211λ2 − 143286λ3 + 6γ2

(
38360 + 151194λ + 143715λ2 + 35750λ3

)
+ γ4

(
85288 + 187926λ + 143429λ2 + 48906λ3

)

+ α
(
85288 + 187926λ + 143429λ2 + 48906λ3 + 6γ2

(
38360 + 151194λ + 143715λ2 + 35750λ3

)

−γ4
(
170968 + 516778λ + 497211λ2 + 143286λ3

)))))
/
(
72072C

(
−1 + γ2

)2
(1 + λ)3(5 + 2λ)

)
,

(4.72)

and

D(C) =
π
√

1 + C2γ2
(
8 + 8C2

(
1 + γ2

)
+ C4

(
3 + 2γ2 + 3γ4

))

4 (1 + C2)5/2
. (4.73)

The boundary conditions above are specified such that the boundary layer thickness is finite at

the inlet. The value of Cinlet is decided by which regime we are on in the (α, λ) plane. Cinlet

is always at C = 0 (poles) for the single wake regime, where the inertial flow has a bi-axial

extensional character, whereas it can be at both the poles and the equator for the bifurcated

regime. The values of Cinlet in both these regimes is given in Table. 4.1. g(C) gives the thickness

variation of the boundary layer with C. We now consider the boundary layer thickness at the

outlet, which corresponds to the C → ∞ in the single wake regime or to an intermediate orbit

C∗ in the bifurcated wake regime. In both cases, we note that C value at the outlet satisfies

the equation B(C) = 0 (see our analysis of the neutral curve C∗ in 2.5, chapter 2). Now, in the

expression for the boundary layer thickness, the denominator which is proportional to CB(C),

goes to zero at the outlet C orbit, whereas the numerator remains finite. This is true even in

the case of the single wake regime where (1 + C2γ2)3/2/CB(C) → ∞ as C → ∞, while I(C)

remains finite. This divergence of g(C) at the outlet indicates the presence of a thermal wake

at this location.
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(a) three-dimensional view of surface streamlines (b) Projection on gradient-vorticity plane

Figure 4.4: Figures showing the inertial surface streamlines for a drop in the single wake regime,
α = 0.2, λ = 2 (λbif = 0.547), Re = 0.1 (a) three-dimensional view (b) projection on x2x3
plane (gradient-vorticity plane). The thickness and growth of the thermal boundary layer is
schematically represented as the shaded portion. Note the existence of a single wake at the
equatorial plane

α, λ Cinlet and Coutlet

α < αbif and λ < λbif Cinlet = 0,∞, Coutlet = C∗

α < αbif and λ > λbif Cinlet = 0, Coutlet = ∞
α > αbif and any λ Cinlet = 0, Coutlet = ∞

Table 4.1: The inlet and outlet values of the C orbits for different regimes in the (α, λ) space

4.5 Nusselt number calculation

Using the expression for the boundary layer thickness derived above, we can proceed to calculate

the dimensionless heat transfer defined as:

Nu = − 1

4π

∫

S

∂Θ

∂y
dS, (4.74)

= −Re1/2Pe1/2

4π

∫

S

∂Θ

∂Ym

∂ym
∂y

dS,

where S denotes the surface area of the drop. Rewriting this in terms of the similarity variable

η, we get

Nu = −Re1/2Pe1/2

4π

∫

S

1

g

dΘ

dη

∂ym
∂y

dS (4.75)

=
Re1/2Pe1/2

2π3/2

∫

S

∂ym
∂y

dS

g
(4.76)

The limits of integration for calculating the Nusselt number are different in the single wake and

bifurcated wake regimes and are given in table. 4.1. As we have shown in chapter 2, in the

single wake regime, which exists for two distinct regions in (α, λ) space, (1) α > αbif or for (2)

α < αbif and λ > λbif , the spiralling is from the poles towards the equator.
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(a) three-dimensional view of surface streamlines (b) Projection on gradient-vorticity plane

Figure 4.5: Figures showing the inertial surface streamlines for a drop in the bifurcated wake
regime, α = 0.2, λ = 0.52 (λbif = 0.547), Re = 0.1 (a) three-dimensional view (b) projection
on x2x3 plane (gradient-vorticity plane). The thickness and growth of the thermal boundary
layer is schematically represented as the shaded portion. Note the existence of a bifurcated wake
lifted off from the equatorial plane and at an intermediate C orbit.

4.5.1 Single wake regime

In this regime, the wake exists at the equator, corresponding to C → ∞ and the inlet is at

the poles (C = 0) (see Fig. 4.4). Using these limits, and noting that dS = hk sinα1dCdτ , the

Nusselt number in this region is given by:

Nu = (2)
Re1/2Pe1/2

2π3/2

∫ ∞

0

∫ 2π

0

∂ym
∂y

hk sinα1

g(C)
dCdτ, (4.77)

where the prefactor of two denotes that the total heat transfer occurs over two symmetric

hemispheres on either side of the symmetry plane, only one of which is described by the above

limits. Substituting for ∂ym/∂y from Eq. 4.28, we get:

Nu =
Re1/2Pe1/2

π3/2

∫ ∞

0

dC

g(C)

∫ 2π

0
dτM(C, τ)hk sinα1, (4.78)

We note that the term:

hk sinα1 =
Cγ

[1 + C2(cos2 τ + γ2 sin2 τ)]3/2
. (4.79)

Substituting for hk sinα1 and for M(C, τ) from Eq. 4.29, we get:

Nu =
Re1/2Pe1/2

π3/2

∫ ∞

0

dC

g(C)

∫ 2π

0
dτ

Cγ(1 + C2γ2)3/2

[1 + C2(cos2 τ + γ2 sin2 τ)]3
, (4.80)
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which can be rewritten to give:

Nu =
Re1/2Pe1/2

π3/2

∫ ∞

0

dC

g(C)

Cγ

(1 + C2γ2)3/2

∫ 2π

0
dτ

(1 + C2γ2)3

[1 + C2(cos2 τ + γ2 sin2 τ)]3
. (4.81)

Using Eq. 4.47, we can rewrite the above equation as:

Nu =
Re1/2Pe1/2

π3/2

∫ ∞

0

dC

g(C)

CγD(C)

(1 + C2γ2)3/2
. (4.82)

where D(C) is given by Eq. 4.73. Substituting for the boundary layer thickness from Eq. 4.70,

and noting that in the single-wake regime the inlet occurs at C = 0, we have:

Nu =
Re1/2Pe1/2γ

2π3/2

∫ ∞

0
dC

D(C)B(C)C2

(1 + C2γ2)3I(C)1/2
, (4.83)

where, we see that the integral is in the form of an exact differential, because:

dI(C)

dC
=

D(C)B(C)C2

(1 +C2γ2)3
. (4.84)

Using the above, we get:

Nu =
Re1/2Pe1/2γ

π3/2

[
I(∞)1/2 − I(0)1/2

]
, (4.85)

where I(0) = 0, since Cinlet = 0. Simplifying, we get the final expression for the Nusselt number

as:

Nu =
Re1/2Pe1/2γ

π3/2

[∫ ∞

0

D(C)B(C)2C2

(1 + C2γ2)3
dC

]1/2
. (4.86)

Thus we have the expression for the Nusselt number in terms of a one-dimensional integral which

can be carried out numerically. Unlike the open streamline case, here it is not possible to define

an effective Pe such that the prefactor to Nu is solely a function of γ. This is so because of the

nature of the inertial velocity field which is a complicated function of α and λ.

4.5.2 Bifurcated wake regime

As we saw in chapter 2, there exists a bifurcated wake regime in which the wake exists at an

intermediate location between the poles and equator (see Fig. 4.5). The bifurcated wake regime

occurs for α < αbif and λc < λ < λbif . Denoting the C orbit where the wake occurs as C∗, we

now have two convective branches (I and II) in each hemisphere of the drop (see Fig. 4.5). In

the first, the fluid spirals from the pole towards the equator, before exiting at the wake location

C∗. In the second branch, the spiralling causes a drift from the equator towards the poles with

the outlet again at C∗. The Nusselt number is therefore the sum of contributions from each of

these branches. The τ integral remains identical to the single-wake case. Thus, starting from
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Eq. 4.82 we have, for the case of a bifurcated wake:

Nu =
Re1/2Pe1/2

π3/2

[∫ C∗

0
dC

1

gI(C)

D(C)Cγ

(1 + C2γ2)3/2
+

∫ ∞

C∗

dC
1

gII(C)

D(C)Cγ

(1 + C2γ2)3/2

]
, (4.87)

where

gI(C) =

[
4(1 + C2γ2)3

B(C)2C2
II(C)

]1/2
, (4.88)

II(C) =

∫ C

0

D(C ′)B(C ′)2C ′2

(1 + C ′2γ2)3
dC ′, (4.89)

gII(C) =

[
4(1 + C2γ2)3

B(C)2C2
III(C)

]1/2
, (4.90)

III(C) =

∫ C

∞

D(C ′)B(C ′)2C ′2

(1 + C ′2γ2)3
dC ′. (4.91)

Substituting in the expression for the Nusselt number and carrying out the integration as before,

we get:

Nu =
Re1/2Pe1/2γ

π3/2

[
II(C∗)1/2 + III(C∗)1/2

]
, (4.92)

Nu =
Re1/2Pe1/2γ

π3/2



(∫ C∗

0

D(C)B(C)2C2

(1 + C2γ2)3
dC

)1/2

+

(∫ C∗

∞

D(C)B(C)2C2

(1 + C2γ2)3
dC

)1/2

 . (4.93)

The location of the neutral curve C∗, which is the location of the thermal wake from a heat

transfer perspective, was derived in chapter 2. The variation of C∗ with λ in the bifurcated wake

regime is depicted in Fig. 2.14 in chapter 2. At a fixed α < αbif , for λ close to λc, we have the

wake near the poles corresponding to C∗ close to zero (the inertia flow now having predominantly

a uni-axial character), so that the first term in 4.93 has a small contribution to the heat transfer.

As the viscosity ratio is further increased the value of C∗ increases and we have contributions

to the heat transfer from both the convective branches. As one approaches λ = λbif , the value

of C∗ is very large and the contribution from the second term in 4.93 diminishes and finally for

λ ≥ λbif , the wake is at equator and we recover the single wake regime. We remark here that

the bifurcated wake region is a finite one and is depicted in (α, λ) space in Fig. 4.6 (inset). We

also have a single wake regime with the wake at the equator for α > αbif and any λ.

4.5.3 Discussion

Fig. 4.6 shows the variation of the prefactor multiplying the scaling term Re1/2Pe1/2 with α and

λ in both the single and bifurcated wake regimes. The part of the Nu-prefactor-surface plotted

corresponds to the closed streamline region, where inertia plays a critical role (λ > λc). The

strong dependence of the prefactor on γ is clearly noticeable as we approach the λc curve since

γ increases as one approaches λc. However, as we commented previously, it is not possible in

this case to isolate an effective Pe such that the remaining Nu prefactor is a sole function of γ,

as we did in the open streamline case. In the closed streamline regime, the complicated nature
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of the inertial velocity field leads to a complicated dependence of the Nu prefactor on α and λ.

In the bifurcated wake region (α < αbif and λ < λbif ) we see a minimum in the Nu-prefactor-

surface (see Fig. 4.6). This appears to be due to the presence of the bifurcated wake, where a

greater area of the drop surface is occupied by the wake region consisting of slowly moving fluid,

thereby making the heat transfer less efficient. This can be shown by considering the scaling

of the τ -averaged tangential inertial velocity component u
(1)
C |τ−averaged =

∫ 2π
0 u

(1)
C dτ near the

plane of symmetry (C → ∞). This scaling can be estimated from the scaling of B(C) by noting

that the metric factor h ∼ O(1/C2) as C → ∞. Thus u
(1)
C |τ−averaged ∼ B(C)/C2. Using this,

we find that:

u
(1)
C |τ−averaged ∼ O(1/C) for λ > λbif ,

while

u
(1)
C |τ−averaged ∼ O(1/C3) for λ→ λbif .

This means that the tangential velocity near the wake (C → ∞) falls away asymptotically faster

in the vicinity of the curve λ = λbif compared to λ > λbif . This is depicted in Fig. 4.7, where

the term B(C)/C2 is plotted as a function of 1/C. We find that the tangential velocity near

the wake (C → ∞ and 1/C → 0) is indeed smaller when we are near λ = λbif . This explains

the minimum observed in the Nu-prefactor-surface (plotted in Fig. 4.6) in the vicinity of the

λ = λbif curve.

Fig. 4.8 shows the Nu prefactor to Pe1/2 in both the open and closed streamline regimes.

The Reynolds number in the closed streamline regime is chosen to be Re = 0.1. The kink

in the surface near λ = λc approaching from the closed-streamline regime is clearly visible.

This is due to the divergence of the prefactor as O(γ) as γ → ∞ near λ = λc. Although not

present in the Stokesian estimate (see Eq. 3.67 in chapter 3, a similar divergence is expected

in the open streamline side when the O(Re) correction terms are added to the analysis. The

reasons for the breakdown of our analysis close to λ = λc will be considered in section 4.6.

Thus, we see that the leading order analyses in the open and closed streamline regimes fails to

predict a smooth connection between these regions. This motivates us to study the intermediate

regime corresponding to a thin band of viscosity ratios close to λ = λc to better understand the

connection between the portions of the Nu-surface corresponding to the two regimes.

4.6 The intermediate regime

In chapter 3, we looked at the flow topology and heat transfer in the open streamline regime

(λ < λc). In this regime, we found that the Stokes velocity field was the main agent of convective

heat transfer with inertia having only a perturbative effect, so that the Nusselt number scaled

as Nu ∼ Pe1/2 for Pe ≫ 1. On the other side of the critical curve (λ > λc), we saw that the

Stokes streamlines were closed orbits, incapable of transporting heat from the drop, leading

to a Nusselt number that is independent of Pe for Pe ≫ 1. Addition of a small amount of

inertia, however, fundamentally modified the nature of the closed streamlines. Inertia opens
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Figure 4.6: A surface plot of the prefactor multiplying the scaling factor Re1/2Pe1/2 to give
the Nusselt number. Note that the surface is plotted in the region λ > λc on the (α, λ) plane
corresponding to the closed streamline regime with inertia. The scaling with γ is clearly visible
with the prefactor increasing with increasing γ (as one approaches the λc curve). The inset
shows an expanded view of the bifurcated wake regime (shaded portion). αbif and λbif serves
as the upper bounds below which we see the bifurcated wake regime for λ > λc.
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Figure 4.8: A surface plot of the prefactor multiplying the scaling factor Pe1/2 to give the Nusselt
number in the open and closed streamline regimes for Re = 0.1. Notice the kink in the surface
due to the divergence of the Nu predicted close to the λ = λc curve from the closed streamline
side.
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up convective channels, causing the Nusselt number to scale as Re1/2Pe1/2 for RePe ≫ 1. In

this case, the convective enhancement of heat transfer was due to the O(Re) inertial velocity

field. We now analyse what we call the “intermediate regime” (λ rightarrowλc), where both the

Stokes and inertial velocity fields are comparable in certain regions on the drop surface. While

the λ = λc curve can be approached from either the open-streamline or closed-streamline sides,

we consider here first the approach from the closed-streamline side. We look at the flow topology

near the critical viscosity ratio curve and then move on to making scaling estimates for the heat

transfer. We find that this scaling analysis allows us to define the regions of validity for our

open streamline and closed streamline heat transfer analyses. In particular, a scaling analysis

of the intermediate regime allows us to understand the connection between the open and closed

streamline regimes across the critical viscosity curve as regards the heat transfer. To reiterate,

such an understanding is essential because the leading order analysis in the two regimes fails to

predict a smooth transition across λ = λc.

4.6.1 Flow topology for λ → λc

It is instructive to first study the flow topology without inertia. Fig. 4.9 shows the surface

streamlines for λ→ λc. The surface streamlines in this case have a nearly meridional character,

there being a radial convergence in the vicinity of the intersection of the flow axis with the unit

sphere (these points serves as the ‘poles’ of the meridians). Further, the circle of fixed points in

the exterior flow is now close to the drop surface. The radius of this fixed-circle, which is also

the maximum radial extent of the separatrix surface is given by r0, and for λ → λc, has the

form:

r0 − 1 ∼ (λ− λc)(1 − α)2

10α(1 + α)
. (4.94)

Therefore, as λ→ λc, the separatrix surface lies very close to the drop surface and the extent of

the closed streamline region diminishes. At λ = λc, the separatrix surface is coincident with the

drop surface and there are no closed streamlines in the drop exterior. The parameter γ diverges

when λ→ λc as:

γ2 =
2(1 + λc)

λ− λc
∼ O(λ− λc)

−1. (4.95)

Using Eqs. 4.94 and 4.95, we have the scaling of the fixed-circle radius as r0 − 1 ∼ 1−α
5γ2α . Thus,

near the flow-vorticity plane, the radial extent of the closed streamline region scales as y ∼ 1/γ2.

From Eq. 4.28, we see that this scaling is only valid in a φ ∼ O(1/γ) angular region measured

from the flow-vorticity plane. While this gives us the scaling of the maximum extent of the

closed separatrix surface, which occurs at the flow-vorticity plane, we are also interested in the

extent of the separatrix for the remaining portion of the drop (this would determine the scaling

of the geometrically-limited estimate of Nu for Pe→ ∞. This can be inferred using the equation

for the constant ym surfaces (Eq. 4.28), of which the separatrix is radially the outermost closed

surface. From Eq. 4.28, in the limit γ ≫ 1, we see that scaling is indeed different for the rest

of the drop and we have y ∼ ym/γ
3 for φ ∼ O(1). However, we have shown that at the flow

vorticity plane y = ym = 1/γ2, which implies that for the remaining portion of the drop we

must have y ∼ 1/γ5. Thus, the extent of closed streamline region over most of the drop is
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asymptotically thinner by a factor of 1/γ3, compared to the O(1/γ) angular region near the

flow-vorticity plane. Fig. 4.10 shows the extent of the closed streamline envelope on the drop

surface along with the scalings. This small extent of the closed streamline region has important

consequences to the heat transport which we consider in the next section.

Recalling our original observation that the surface streamlines for a drop in a linear flow are

described by exactly the same equations as those describing the Jeffery orbits of an axisymmetric

particle in simple shear flow (Leal & Hinch (1971), Hinch & Leal (1972)), we note that the limit

of γ → ∞ corresponds to the Jeffery orbits of an infinitely slender rod. The orientation of such

a rod changes very quickly, on a time scale of order the inverse shear rate, when not aligned with

the flow axis, while changing very slowly in the nearly aligned orientation. This is exactly true

for the drop surface streamlines as λ → λc. A given fluid element moves very rapidly between

the two fixed points lying on the flow axis, while spending a large amount of time in the vicinity

of the flow-vorticity plane (see Fig. 4.9). These statements can be made precise by considering

the scalings for the near-field velocity along τ direction, and the coordinate metrics:

u(0)τ

∣∣∣
r→1

∼ O(1/γ2),

k ∼ O(1/γ)



 Near flow-vorticity plane (4.96)

Recalling the definition of the τ coordinate, we can write:

dτ

ds
=
u
(0)
τ

k
= h(0)τ ∼ O(1/γ), (4.97)

where s is the non-dimensional time. From the definition of τ in chapter 2, we see that it is

O(1) near the flow-vorticity plane. Therefore, we must have the time t scaling as O(γ). Away

from the flow vorticity plane, we have the following scaling relations:

u(0)τ

∣∣∣
r→1

∼ O(1),

k ∼ O(γ).



 Away from flow-vorticity plane (4.98)

Once again dτ/ds ∼ O(1/γ), however in this region τ ∼ O(1/γ), leading to t being O(1). Thus,

a fluid element spends a time of O(γγ̇−1) near the flow vorticity plane and a time of O(γ̇−1),

for the rest of its orbit, where γ̇ is the shear rate.

On the addition of weak inertia, the originally closed trajectories become spirals just as

before. Now, however, inertia has an O(γγ̇−1) time to act on the Stokes trajectories near the

flow-vorticity plane with γ → ∞. For Re however small, for γ → ∞, weak inertia leads to a drift

across several Jeffery orbits, close to the flow vorticity plane (since the Jeffery orbits are tightly

bunched close to the flow-vorticity plane). Having crossed several Jeffery orbits, the Stokes

velocity is dominant away from the flow-vorticity plane and this leads to the inertial streamline

rapidly traversing the drop surface before again starting to drift on reaching the π separated

flow-vorticity plane. Clearly, for Re finite and with γ → ∞, the near-surface inertial streamlines

are no longer expected to be tight spirals as was implicitly assumed in the analysis presented

earlier in section 4.4.

A typical trajectory of an inertial streamline, in the intermediate regime, is shown in Fig.
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4.11 for λ → λc in both single (α > αbif ) and bifurcated wake (α < αbif ) regimes. That the

drift is across several orbits is apparent since, in a very few number of turns, the trajectory has

drifted a sizeable distance on the drop surface. The following simple scaling argument confirms

this. We note that the inertial velocity field scales as O(Re), apart from the scaling due to other

flow parameters. Writing down the scaling for the inertial velocity along C direction, near and

away from the flow-vorticity plane, we have:

u
(1)
C |r→1 ∼ O(Re/γ)

h ∼ O(1/γ)

}
Near the flow-vorticity plane, (4.99)

u
(1)
C ∼ O(Re),

h ∼ O(1).

}
Away from the flow-vorticity plane. (4.100)

So that, in both regions, the drift across orbits can be written as:

dC

ds
=
u
(1)
C

h
∼ O(Re). (4.101)

However, since the time spent near the flow-vorticity plane is O(γ), we must have dC ∼ O(γRe)

in this region, implying the drift occurs across a large number of orbits when one is close enough

to the critical viscosity ratio such that γ ∼ O(1/Re) for Re ≪ 1. The change in orbits in the

region away from the flow-vorticity plane, remains O(Re), so that these portions still look like

sections of Jeffery orbits. This picture is clearly corroborated by the trajectories in Fig. 4.11. A

fluid element enters the region near the flow-vorticity plane and undergoes a large shift in orbits,

leaving along a trajectory which is very different from the one it entered on. The portion of the

trajectory away from the flow-vorticity plane is close to an inertia-less trajectory and does not

undergo any significant drift. In summary, with the addition of inertia, we have the emergence

of a spatial boundary layer near the flow-vorticity plane, where the Stokes and inertial velocities

are comparable. Although the above discussion has been in the context of the closed streamline

regime, a similar situation prevails even on the other side of the critical viscosity ratio curve.

On the open streamline side, for λ sufficiently close to λc, the streamline is expected to undergo

a significant inertial drift after it enters and before it leaves the boundary layer on the drop

surface.

4.6.2 Heat transfer in the intermediate regime

We now consider the heat transfer in the intermediate regime. The two characteristic features

of this regime namely, the drift across a large number of orbits and the small extent of the

closed streamline region, both restrict the validity of our heat transfer analysis presented earlier.

Consideration of inertial effects enables one to explicitly see the breakdown of the analysis on

the closed streamline side as λ → λc, while seeing such a breakdown on the open streamline

side requires inclusion of an O(Re) correction. Therefore, a useful result of the ensuing scaling

analysis is a clear idea of the regions in the (α, λ) plane where the open and closed streamline

(inertial) analyses, given in earlier sections, are valid; specifically, the narrow interval of viscosity

ratios around λ = λc which requires a separate analysis. Also, we comment on the changes in
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Figure 4.9: Figure showing the inertia-less Stokes streamlines on the surface of the drop in the
intermediate region (λ → λc). Here α = 0.5 and λ = 2.001 (λc = 2). The streamlines have a
meridional character and converge and diverge away near the flow-vorticity plane.

Figure 4.10: A schematic of the extent of the annular region of closed (spiralling) streamline
adjacent to the drop surface in the limit of large γ (intermediate regime on the closed streamline
side). The asymptotically different radial extents near the flow-vorticity plane compared to the
rest of the drop region is shown. Also shown is the radial extent of the fixed-circle which gives
the maximal radial extent of the separatrix surface.
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(a) Single wake regime (b) Bifurcated wake regime

Figure 4.11: Inertial surface streamlines in the intermediate regime (α = 0.2, λc = 0.5, λbif =
0.547, Re = 0.1) for (a) single wake (λ = 0.6) and (b) bifurcated wake (λ = 0.501) regimes. The
large drift during a given turn is apparent from the small number of turns taken to drift across
a large portion of the drop surface. Note the different drift direction in the two regimes even
though the inertia-less streamlines in both cases have the same character (see Fig. 4.9)

the nature of the heat transport (that is, the nature of the Nu surface) as one moves from the

open streamline regime, across the critical viscosity ratio curve and into the closed streamline

regime.

We begin by rescaling the convection-diffusion equation, keeping in mind that γ is large. In

the (ym, C, τ) coordinate system, after the simplification due to Eq. 4.36, we have:
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For γ ∼ O(1), the term (3) was the dominant one on the LHS and this relation gave us the result

that the leading order temperature field is independent of τ for large Pe. However for γ ≫ 1

(relevant to the region γ ≫ 1), we see that the scaling of the terms imposes further constraints.

Near the flow-vorticity plane, the scalings of the different terms are:

RePe︸ ︷︷ ︸
1

RePe︸ ︷︷ ︸
2

Pe

γ︸︷︷︸
3

RePe︸ ︷︷ ︸
4

γ4︸︷︷︸
5

Near flow-vorticity plane. (4.103)

Now, for γ ≫ 1, the balance between the terms is no longer obvious and depends on the relative

magnitudes of γ, Re and Pe. Thus for γ ≪ Pe1/5 and γ ≪ Re−1, we have the dominance of

term (3) and, in this region, we have the leading order temperature field being independent of τ .

For larger values of γ, this assumption is no longer valid and there are temperature variations
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Figure 4.12: The (α, λ) plane showing the open and closed streamline regimes separated by the
critical viscosity ratio curve.

even along a Stokes streamline. Away from the flow-vorticity plane, the scaling for the different

terms in Eq. 4.102 are given by:

RePe︸ ︷︷ ︸
1

RePe︸ ︷︷ ︸
2

Pe︸︷︷︸
3

RePe︸ ︷︷ ︸
4

γ10︸︷︷︸
5

Away from flow-vorticity plane. (4.104)

This region places a stricter constraint on the values of γ for which our analysis is valid. For term

(3) to be dominant, we have the relation γ ≪ Pe1/10 and Re ≪ 1. We note that in this region,

the constraint related to Re is not strict since as we have shown, inertia is mainly dominant in

a thin region near the flow-vorticity plane.

A second assumption implicit in our heat transfer calculation is that the thermal boundary

layer due to inertial convection is the dominant resistance to the heat transfer. In other words,

most of the temperature drop is assumed to occur across the thermal boundary layer. However,

in the intermediate regime, we have seen that the radial extent of the closed streamline region

is asymptotically small (scaling as O(1/γ5) for most of the drop). Thus, the restriction that the

thermal boundary layer be much thinner than the already thin closed (or spiralling) streamline

region becomes increasingly restrictive. For the extent of the thermal boundary layer to be

much smaller than the extent of closed streamlines over most of the drop, we must therefore

have Re−1/2Pe−1/2 ≪ 1/γ5 ≪ 1/γ2. Rewriting, this gives the condition that γ ≪ (RePe)1/10.

Therefore for our analysis to be valid in the closed streamline region, we have the constraint

γ ≪ (RePe)1/10, which also ensures γ ≪ Pe1/10 and for small Re, γ ≪ Re−1.

Having described the region of validity of analysis in the closed streamline region, we now

consider the nature of the connection between the open and closed streamline regimes across

the critical viscosity curve (λc).
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4.6.3 Connecting the Nu-surface across the open and closed stream-

line regimes

We saw in Fig. 4.8, that the Nu-surface, obtained from the leading order analysis, exhibits a

discontinuity along the critical viscosity curve. This is because of the divergence of Nu as O(γ)

for λ → λc from the closed streamline side. The open streamline analysis is also expected to

develop a similar divergence if O(Re) correction terms are included in the analysis. However,

physically, there must exist a smooth connection between these two regimes. In this section, we

attempt, via a scaling analysis, to connect the Nu surfaces in the open and closed streamline

regimes across the λ = λc curve.

Consider a path AA′ on the (α, λ) plane which starts from the open streamline side of the

critical viscosity ratio curve, crosses this curve and ends inside the closed streamline regime (see

Fig. 4.12). Starting from the open-streamline side, the parameter γ̂ increases, as we approach

λc, as γ̂ ∼ (λc − λ)−1/2, becoming infinite at λc. Once we cross λc, the parameter in the closed

streamline region is γ, which decreases from infinity at λc as γ ∼ (λ−λc)−1/2. We now consider

various asymptotic regimes of the parameters γ̂ and γ in the open and closed streamline regimes,

respectively, to better understand the transition of the Nu-surface.

• γ̂ ∼ O(1) (γ̂ ≪ 1/Re): The original open streamline analysis (chapter 3) is valid.

• γ̂ ≫ 1 and ∞ ≫ γ ≫ Pe1/4: We are in a thin region near the λ = λc curve, where

inertial effects are expected to play a role even in the open streamline regime. As in

the closed streamline case, inertia is dominant near the flow-vorticity plane and causes

a given streamline to drift by a sizeable amount before moving across the drop surface

towards the wake. However, most of the temperature drop still occurs across a thermal

boundary layer whose thickness scales as Pe−1/2, leading to the Nusselt number scaling as

Pe1/2; although the prefactor is no longer given by the analysis in chapter 3, since inertia

modifies the open streamline geometry. Continuing across the λ = λc curve, very close to

λc on the closed streamline side, the radial extent of the closed(spiralling, with inertia)

streamlines is very small everywhere on the drop and is also smaller than the thermal

boundary layer. This corresponds to the scaling 1/γ2 ≪ Pe−1/2, which gives γ ≫ Pe1/4,

where 1/γ2 is the maximum radial extent of the separatrix envelope (see section 4.6.1

and the scaling estimates therein). Note that, with this condition, we automatically have

that the closed(spiralling) streamline extent in the region away from the flow-vorticity

plane, which scales as 1/γ5, is also asymptotically thinner compared to the boundary

layer. Diffusion is dominant on the length scale of the spiralling streamline envelope,

which is therefore at practically the same temperature as the drop surface. The outer

extent of the spiralling streamline region can be thought of as a new isothermal surface

whose temperature is very close to T0. This surface, which envelopes the drop surface

very closely, is accessed by open streamlines, so that the controlling resistance is still in

the open streamline thermal boundary layer, and we expect a Nusselt number scaling as

Pec1/2, again with the inertia-modified prefactor mentioned above.

• γ ≪ Pe1/4 and γ ≫ Pe1/10: Diffusion is dominant for most of the drop surface except for

a thin region near the flow-vorticity plane. The transport in this region involves a balance
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of Stokes convection and diffusion thus making the temperature distribution and the heat

transfer analysis complicated in this region. Due to the small extent of this region, which

is only φ ∼ O(1/γ), the controlling resistance to the heat transfer is still in the O(Pe−1/2)

boundary layer for most of the drop and therefore Nu is expected to scale as Pe1/2 in this

regime as well.

• γ ≪ Pe1/10 and γ ≫ (RePe)1/10: In this regime, the spiralling streamline envelope every-

where on the drop is asymptotically larger than the O(Pe−1/2) boundary layer thickness.

Indeed, the concept of an O(Pe−1/2) boundary layer here ceases to have relevance since it

has receded within the spiralling streamline envelope. The condition that γ ≫ (RePe)1/10

means that this diffusion time scale is much smaller than the time scale for inertial convec-

tion. Thus, this is a geometrically limited regime where the resistance to the heat transfer

is due to diffusion across a closed (spiralling) streamline envelope in the presence (absence)

of inertia; as first analyzed by Acrivos and co-workers. The precise geometrical limited

Nu value requires a calculation along the lines of Yu-Fang & Acrivos (1968), who carried

out the analysis for a cylinder freely rotating in a shear flow in the absence of inertia. A

scaling estimate for large γ can be obtained as follows. The value of ym corresponding to

the separatrix surface can be calculated by using the maximum extent of the separatrix

surface which occurs at the flow-vorticity plane, and noting that y = ym here (see Fig.

4.10). This gives from Eq. 4.94:

ym =
(1− α)

5αγ2
, (4.105)

so that the equation of the separatrix surface is (using Eq. 4.28):

ysep =
(1− α)

5αγ2
M(C, τ)−1. (4.106)

The Nusselt number can therefore be approximated by:

Nu ≈ 1

4π

∫

S

hk sinα1

ysep
dCdτ, (4.107)

where S denotes the surface area of the drop. This expression implicitly assumes that the

temperature varies linearly through the closed streamline envelope from T0 on the drop

to T∞ at the separatrix. Only when such a functional form for the temperature difference

is specified can the Nu be related to the inverse thickness in the manner shown above.

The linearity above ensures that the temperature gradient everywhere within the closed

streamline region is the same, and in particular, equal to its surface value.Physically, the

above integral is the surface average of the inverse thickness of the closed streamline region

over the unit sphere. Writing in terms of the C and τ limits and substituting for ysep and

the metric factors, we have:

Nu ≈ 5αγ3

2π(1− α)

∫ ∞

0
dCC(1 + C2γ2)3/2

∫ 2π

0
dτ

1

[1 + C2(cos2 τ + γ2 sin2 τ)]3
. (4.108)
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Carrying out the integration one finds (using Eq. 4.95) that:

Nu ≈ 5αγ5

4(1− α)
. (4.109)

Thus, we see that it is the O(1/γ5) scaling of the spiralling streamline envelope which

provides the leading order scaling for the Nusselt number. This is expected since for large

γ, the separatrix surface over most of the drop surface has ysep scaling as O(γ5) ,while an

O(1/γ) regions has ysep scaling as O(1/γ2) (see section 4.6.1) implying that the former

region contributes to the heat transfer at leading order.

• γ ≪ (RePe)1/10 and γ ≪ Re−1: All the assumptions implicit in our inertial heat transfer

analysis, given earlier in this chapter, are satisfied. The thermal boundary layer due to

inertial convection is much thinner than the extent of spiralling streamlines and is the

dominant resistance to the heat transfer. While this seems rather restrictive, we note the

scaling analysis above is in the limit of large γ.

In light of the small exponents (1/10) obtained via the above scaling arguments, the above

regimes will appear in a well separated manner only if Pe is unrealistically large. So, the

scenario we have painted will hold only in theory, and in practice, many of these regimes will

no longer be well separated.





Chapter 5

Conclusions and Future Work

In this part of the thesis we have studied the rate of convective heat or mass transfer from

neutrally buoyant drops in shearing flows. We have solved the heat transfer problem and derived

the dimensionless heat transfer rate (Nusselt number) for a drop in a fairly general set of ambient

linear flows. We have also elucidated the significant role played by weak inertia towards the

transport in one region of the parameter space (corresponding to the closed-streamline regime),

and have obtained a solution to the heat transfer problem for this case. To do this we have

made use of a novel non-orthogonal coordinate system, leading to major simplifications and an

elegant method of solution.

As we have shown, in chapter 2, the flow field for drops has several distinguishing features

when compared to the case of solid particles. We first considered drops freely suspended in

a one-parameter family of planar linear flows defined by the parameter α. For this case solid

particles are surrounded by a region of closed streamlines for any finite amount of vorticity in

the ambient flow. However, for drops we showed that closed streamlines exist only when the

ratio of drop to ambient fluid viscosity (λ) exceeds a critical value λc = 2α/(1−α). There exists
a second critical viscosity ratio given by λ′c = 5α + 1/(2(1 − α)), which affects the topology of

the interior streamlines and therefore does not affect the external heat transfer. In chapter 2, we

studied the flow field interior and exterior to a drop in a planar linear flow in detail and derived

the equations for the streamlines. For the surface streamlines, we have the interesting result that

these are Jeffery orbits. This latter terminology was originally used to describe the trajectories

of an axisymmetric rigid particle in a linear flow and the shape of the orbits is defined by an

effective aspect ratio related to the actual aspect ratio. In the case of a drop in a planar linear

flow, the surface streamlines are Jeffery orbits defined by an aspect ratio (γ) which is a function

of the parameters α and λ. Rather intuitively, we find that this aspect ratio is purely imaginary

in the open streamline regime since the trajectories on the drop surface are not true orbits. For

the closed streamline regime, the surface trajectories are true orbits, and as expected, γ is real.

This insight into the nature of the surface streamlines allowed us to define a non-orthogonal

(C, τ) coordinate system, where C is the orbit constant and τ is the phase along each orbit;

this coordinate system is used for the subsequent heat transfer analysis. With the addition

of weak inertia, the flow field for the closed streamline regime shows a fundamental change

with closed Stokesian streamlines transformed into finite-Re spiralling ones. These streamlines

spiral towards a neutral curve (constant-C curve) lying on the drop surface at which point fluid

elements move radially away from the drop. From a heat transfer perspective, this neutral curve

corresponds to the location of the thermal wake on the drop surface. While the wake brackets

the plane of symmetry over most of the (α, λ), we also find a novel bifurcation, where this wake

is lifted off the plane of symmetry for a certain region on the (α, λ) plane.

For planar linear flows, the open and closed streamline regimes identified in chapter 2 lead to
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fundamentally different transport characteristics. At large Pe, the transport is diffusion limited

in the closed streamline regime in the absence of inertia, while being convectively enhanced in the

open streamline regime. In chapter 3 we considered the open streamline heat transfer problem.

Recasting the problem in the (C, τ) coordinate system, which is complex-valued in this case,

leads to major simplifications in the analysis and allowed us to derive a closed-form solution.

We find that the Nusselt number for this case was given by Nu = F(α, λ)Pe1/2, where F(α, λ)

is given in closed form. We have also extended our method to solve the heat transfer problem for

a drop in a three-dimensional extensional flow which again involves open streamlines adjacent

to the drop. The (C, τ) coordinate system may be defined for an arbitrary linear flow, and

for the three-dimensional extensional flow, use of such a coordinate system leads to a Nusselt

number of the form Nu = G(ǫ)Pe1/2/(1 + λ)1/2, where ǫ = E2/E1, and E1 and E2 define the

principal rates of strain for the extensional flow. This allowed us to validate our results against

earlier work for axisymmetric and planar extensional flow which are specific cases of our general

analysis. Though we do not include it as part of this thesis, we mention here that our approach

is readily extendable to the case of a solid particle, and yields the same results as those obtained

by Batchelor (1979) using an orthogonal coordinate system.

In the closed streamline heat transfer problem considered in chapter 4, the addition of

inertia opens up new convective channels via the spiralling streamlines. We have developed

a methodology to analyse convection, due to spiralling streamlines, in a modified version of

the (C, τ) coordinate system developed for the open streamline analysis, one with a real-valued

aspect ratio. The method relies on the separation between the time scales characterizing the

rapid motion (nearly) along a Jeffery orbit, and the slow drift across Jeffery orbits (caused

by the spiralling), and allows for the boundary layer analysis to be formulated in terms of a

Jeffery-orbit-averaged convection. Further, we show that using a physically intuitive coordinate

system, where the analogue of the radial coordinate corresponds to non-circular isothermal

streamlines, leads to a crucial simplification of the analysis allowing us to proceed towards a

closed-form solution. The three-dimensional, non-axisymmetric problem was simplified to a

one-dimensional one using our method. In the limit where the inertial convection dominates

diffusion (RePe ≫ 1), we find the Nusselt number to have the form Nu = H(α, λ)Re1/2Pe1/2,

where H(α, λ) is given in closed form. Finally, we examined, via scaling arguments, the so-

called intermediate regime for λ near λc, for which there are regions on the drop surface near

the flow-vorticity plane where the inertial and Stokes velocities are comparable. The analysis of

the intermediate region mainly lets us define the regions of validity of our asymptotic solutions

presented above.

The theoretical results from this thesis provide a good starting point for estimating heat

transfer in suspensions of drops, due to convective effects, which was lacking until now. Our

results for the heat transfer in the limits of either the open-streamline or closed (or spiralling)

streamline regions contributing dominantly to the external resistance provides the tools to un-

derstand general heat transfer problems which may involve the boundary-layer-resistance spread

across regions of both open and closed streamlines. This thesis has opened up several avenues

for further work a few of which we list below

1. Experiments and numerical simulations which test the validity of the above theory would
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be invaluable in providing a firm foundation for estimating heat transfer from drops in

more complex real world applications.

2. While this thesis has considered the case where the resistance to heat transfer is in the

region exterior to the drop, the resistance may also lie mainly in the interior region, or

may be distributed across both the interior and exterior regions. The insights into the

interior streamline topology from this thesis may serve as starting point for analysing heat

transfer when the majority of the resistance is in the drop interior.





Part II

Simulation of Collective Motion in

Micro-scale Swimmers
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Chapter 6

Introduction

The study of swimming microorgansims has, for a long time, been a fascinating field of research

in fluid mechanics and transport phenomena. The early research in this field was largely fo-

cussed on the detailed mechanism of swimming of such organisms, given the constraints imposed

by a low Reynolds number ambient (Gray & Hancock (1955), Gray (1958) Brennen & Winet

(1977)). Single swimmer kinematics continues to be an area of interest (Lauga & Powers (2009)).

More recently, a great deal of interest has been generated in this field due to observations in

experiments of ‘collective behaviour’, especially in dense suspensions of swimming bacteria 1.

Experiments with suspensions of E. Coli and Bacillus Subtilis, for example, have revealed large

scale fluid motions in the form of vortices and jets (see Fig. 6.1); the relevant scales being much

larger than the size of individual organisms (Mendelson et al. (1999), Sokolov et al. (2007), Dom-

browski et al. (2004), Cisneros et al. (2011), Dunkel et al. (2013)). Other phenomena include

swimming speeds much greater than that of an isolated swimmer (Sokolov et al. (2007)), en-

hanced swimmer and tracer diffusivities (Wu et al. (2006), Wu & Libchaber (2000)) and efficient

fluid mixing. These observations have generated a great deal of interest in these so-called ‘active

suspensions’, and have led to a number of theoretical and computational investigations. The

interested reader is referred to review articles by Koch & Subramanian (2011), Subramanian &

Nott (2012) which provide a summary of these works in the specific context of microorgansim

suspensions. Note that there are articles which offer a more general viewpoint wherein bacterial

suspensions are only one realization of active matter (Ramaswamy (2010)). In this chapter,

we briefly survey earlier experimental, theoretical and computational efforts relevant to suspen-

sions of micro-scale swimmers (such as bacteria and algae) in the specific context of the above

mentioned collective behaviour. We then move on to motivations for the current work and the

questions we seek to address in this thesis.

6.1 Experimental Work

The earliest experiments relevant to collective behaviour were by Mendelson et al. (1999) who

studied a thin liquid film of the bacterium Bacillus Subtilis on an agar surface. They observed

correlated cell motions as well as vortices and jets in the fluid indicating collective motion of

the swimmers on larger length scales. The correlation was seen to extend over length scales

of 10 − 100µm which is much larger than the length scale of an individual bacterium (length

≈ 4µm). While the experiments by Mendelson et al. (1999) involved swimming near a boundary,

Wu & Libchaber (2000) were first to report collective motion in the absence of a nearby solid

boundary. These experiments were performed with bacterial suspensions of E. Coli in a thin

1Coherent motion in swimmer suspensions also arises on length scales much larger than those relevant to this
work, for instance, due to the effects of gravity; this is referred to as ‘bio-convection’ (Hill & Pedley (2005)).
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(a)

(b)

Figure 6.1: Experiemntal observations of collective bahviour. (a) Collective motion onin a sessile
drop containing a suspension of Bacillus subtilis. (b) Instantaneous flow pattern in a plane of
the drop. Reproduced from Dombrowski et al. (2004).
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soap film with colloidal beads used to study the transport properties. It was found that the

long-time diffusivities of these beads immersed in the bacterial bath, was much larger than their

Brownian diffusivities (0.1µm2s−1). The bead diffusivity was also found to increase linearly

with the bacterial concentration reaching a peak value of 100µm2s−1 at an nL3 ≈ 90, where

n and L are the number density and length of the bacterium respectively. Another set of

experiments performed with B. Subtilis in a soap film was that of Sokolov et al. (2007), in which

they studied velocities and orientations of the bacteria. They find that the root-mean-square

velocity of the bacteria increased smoothly with the number of bacteria per unit area. Also, the

fluid velocity correlation length was found to sharply increase from 5µm to around 20µm at a

density of ρ ≈ 0.3. The authors emphasized the role of hydrodynamic interactions in the origin

of collective behaviour.

A second set of experiments have observed collective motion in three-dimensional fluid do-

mains. These studies have looked at bacteria swimming in both sessile and pendant drops

(Dombrowski et al. (2004), Tuval et al. (2005)), and in cylindrical microfluidic wells (Leptos

et al. (2009), Wu et al. (2006), Dunkel et al. (2013)). It is important to note that the size of

these domains which range from 150 − 1500µm are small enough to exclude buoyancy effects

(important in the phenomenon of bio-convection discussed above) but still large enough to leave

individual bacterial motions unconfined. Wu et al. (2006), in particular, measure the diffusivity

of E. Coli as a function of the bacterial concentration. They find that the diffusivity increases in

the dilute limit from 50µm2s−1 to 100µm2s−1 at nL3 = 0.18, this increase was attributed to the

emergence of collective motion in the swimmer suspension. Interestingly, they also find that this

increase is far greater in a mutant strain of bacteria which does not tumble but only undergoes

a gradual change in orientation (a smooth swimmer). As we shall see below, this is in agreement

with predictions by Subramanian & Koch (2009) that orientation relaxation mechanisms limit

the build up of active stress due to bacteria, and thereby, weaken the collective behaviour.

A common feature of the above experiments is that they all involve rear-actuated swimmers

or pushers. Leptos et al. (2009) have studied the diffusivities of colloidal tracer particles in a

suspension of the algae Chlamydomonas reinhardtii which is a front-actuated swimmer or puller.

Leptos et al. (2009) observe only a small increase in the diffusivity of the tracer particles when

compared to studies of pushers such as Wu & Libchaber (2000). This is consistent with predic-

tions (Subramanian & Koch (2009), Underhill et al. (2008), Saintillan & Shelley (2007)) that

isotropic suspensions of pushers are linearly unstable to velocity and orientation perturbations

whereas suspensions of pullers are stable.

A class of experiments have also dealt with the non-trivial rheology of active suspensions.

Sokolov & Aranson (2009) study the viscosity of a thin film of B. Subtilis, by measuring the

rate of decay of an electromagnetically imposed vortical motion. The suspension viscosity was

found to decrease steeply with an increase in bacterial concentration, reaching a minimum which

is less than 20 % of the pure solvent viscosity at nL3 ≈ 18. Further increase in the bacterial

concentration causes an increase in the viscosity. This initial decrease in viscosity is consistent

with the shear-induced orientation anisotropy for pushers (such as B. Subtilis). The anisotropic

active stresses due to the bacterium swimming manifest as a negative viscosity due to preferential

alignment of the swimmers along the extensional axis of the local velocity field (Subramanian &
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Koch (2009)). Others have studied the dependence of the viscosity on both the shear-rate and

bacteria concentration. Gachelin et al. (2013) have performed viscosity measurements in E. Coli

suspensions using a Y-shaped microfluidic channel which allows measurements at very low shear

rates. In this case, the viscosity is inferred by recording the location of the interface between two

fluid flowing side-by-side in the microchannel: one fluid is the pure solvent, and the other fluid

contains solvent plus bacteria. They find that at low shear rates (1s−1) the viscosity is lower than

that of the pure solvent; however, on increasing the shear-rate, the viscosity eventually becomes

greater than the solvent viscosity at higher shear rates (shear-thickening). At even higher shear

rates, the behaviour is again shear-thinning. This is consistent with the mechanism for the

instability for pushers proposed by Subramanian & Koch (2009) and mentioned above. At higher

shear rates the bacteria are forced to align with the flow instead of the local extensional axis and

the negative viscosity mechanism becomes less effective leading to an increase in viscosity. At

the highest shear rates, the behaviour might be akin to a shear thinning suspension of passive

rods in the high Pe regime. With increasing volume fraction, the viscosity was in general seen

to have an increasing trend at high shear rates. At low shear rates, as the concentration is

increased the viscosity showed an initial decrease followed by a much sharper increase.

A related set of experiments have been carried out by Karmakar et al. (2014). While all the

above experiments above adopt indirect methods of probing the swimmer suspension rheology,

the experiments of Karmakar et al. (2014) use a conventional rheometer and are hence limited

to shear rates higher than those accessed by Gachelin et al. (2013). Rather interestingly, it was

observed in experiments by Karmakar et al. (2014) that the viscosity as a function of volume

fraction showed a peak which is in striking contrast to the behaviour of passive particles in

which case, the viscosity increases monotonically with increasing volume fraction. Suspensions

of pullers such as the algae Chlamydomonas, on the other hand, have been shown to have

much higher viscosities than the pure solvent in experiements by Rafäıet al. (2010). This is

consistent with the fact that pullers have an intrinsic dipole which is contractile in nature,

therefore amplifying the Newtonian response of the solvent. While the above experiments pertain

to suspensions under shear, our focus in this thesis will be the study of quiescent suspensions.

However, the above discussion of finite shear experiments motivates current work in our group

where we seek to capture the non-trivial rheology using particle-based simulations.

6.2 Theory and Continuum Models

There have been several efforts to try and explain the non-intuitive phenomena observed in

experiments and described in the previous section. Theoretical and computational models of

such suspensions must respect various features of the hydrodynamics which may have a bearing

on the collective behaviour. Swimmers at low Reynolds numbers are force-free and cause a

velocity disturbance field that decays as 1/r2, for sufficiently large r, where r is the distance

from the swimmer, a behaviour characteristic of a force-dipole. This results in a long-ranged field

which is expected to be important in determining the characteristics of the collective behaviour

that occurs on length scales larger than the single swimmer dimension. Another important

aspect is that swimmers in nature rarely swim in straight lines even in isolation (Berg (1993),

Berg (2004)). For example, an isolated bacterium such as an E. Coli executes a run-and-tumble
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motion where it swims in a directed sense for an amount of time (a run) followed by a sharp

change in orientation which is termed a tumble. Furthermore, during a run, the bacterium

deviates from a straight path due to imperfections in the flagellar bundle, which resemble a

rotary diffusion process (Berg (1993)). This remains true for other micro-scale swimmers such

as Bacillus Subtilis and Chlamydomonas Reinhardtii. Apart from these intrinsic orientation

decorrelation mechanisms, the swimmers also change their orientations due to hydrodynamic

interactions with other swimmers. Swimmers which lack any intrinsic orientation relaxation

mechanisms, and only change their orientation due to hydrodynamic interactions with other

swimmers, are termed smooth swimmers.

The importance of long-ranged hydrodynamic interactions and their impact on collective

behaviour in swimmer suspensions was first recognized by Simha & Ramaswamy (2002), who

proposed a continuum model for orientationally ordered swimmer suspensions. Through a linear

stability analysis, they showed that an initial state with either polar or nematic order is unstable

to sufficiently long wavelength orientation perturbations. The stability of an isotropic base

state, which is more relevant to bacterial suspensions at lower volume fractions was analyzed

by Saintillan & Shelley (2008a) and Saintillan & Shelley (2008b), who found that this base

state was unstable only for a suspension of pushers. Thus, the underlying cause for collective

behaviour was found to be a hydrodynamic instability present only for pushers. This has been

confirmed in simulations by Underhill et al. (2008). None of the above theoretical efforts,

however, consider the effects of tumbling and rotary diffusion, leading to the prediction that an

unbounded suspension of pushers is unstable at any non-zero concentration. Experiments with

bacterial suspensions, however, report the onset of collective motion only at a finite concentration

threshold (Wu et al. (2006), Sokolov et al. (2007)).

Subramanian & Koch (2009) were the first to analyze a suspension of tumblers and rotary

diffusers via a long-wavelength linear stability analysis. They derive a critical value for the

concentration for instability which depends on only the intrinsic suspension parameters (the

swimmer length L and the swimming speed in isolation U) and does not depend on the box size

(as would be the case for simulations of smooth swimmers). The critical volume fraction for a

suspension of tumblers is given by:

nL3|crit =
5L

CUτ
, (6.1)

and for rotary diffusers:

nL3|crit =
30DrL

CU
, (6.2)

where the constant C depends on the details of the swimming mechanism. This also tells us

that, in the dilute limit, the non-dimensional parameter characterizing the instability is given

by nUL2τ for tumblers and nUL2/Dr for rotary diffusers. These results are a valuable guide for

experiments and simulations which can sweep through a sequence of volume fractions or mean-

run-times (τ) to detect the onset of collective behaviour. Experiementally realizing different

values of the mean-run-time has been shown to be possible by tailoring different mutant strains

of E. Coli to have different run times (Karmakar et al. (2014)).

This long-wavelength analysis by Subramanian & Koch (2009) has been extended to an
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analysis of the complete spectrum by Saintillan & Shelley (2008b) and also by Subramanian

et al. (2011a) who consider swimmers which tumble. The main results of these studies is that

there exists a maximum wavenumber below which there are two stationary unstable modes, only

one of which continues to have a finite growth rate as k → 0. This wavenumber is given by:

km = 0.027CnL2. (6.3)

Beyond this wavenumber there are a pair of oscillatory unstable modes until a second critical

wavenumber given by:

k′m = 0.09CnL2. (6.4)

This wavenumber marks the stability boundary and beyond this wavenumber, there are no

unstable discrete modes. For a slightly more detailed description of this stability picture, see

section 8.2 in chapter 8 and 9.2.1 in chapter 9.

6.3 Simulations

A common feature of the above theoretical efforts is the assumption of diluteness so that pair-

correlations (and higher order correlations) between swimmers may be neglected. Each swimmer,

therefore, only sees the effects of others as an imposed ambient field (a mean-field approxima-

tion). This limits the validity of these studies to the dilute regime defined by nL3 ≪ 1. Particle-

level simulations are therefore necessary to study these suspensions at higher concentrations, and

also to test the validity of the continuum theories. Additionally, simulations also allow us easier

control of certain parameters than experiments especially since the experimental preparation of

swimmer suspensions, with swimming parameters in a narrow range, remains a delicate task.

Our discussion will centre around simulation efforts that faithfully model the hydrodynamic in-

teractions between the suspended microscopic swimmers. Simulation efforts till date have dealt

with a range of swimmer geometries and models for the actuation, but a common feature among

them is that they consider neutrally buoyant and force-free swimmers.

Hernandez-Ortiz et al. (2005) and Hernández-Ortiz et al. (2007) proposed a simple model

for force-free swimmers in the form of a dumbbell. Their model consists of two point forces

connected by a rod which enforces inextensibility, with actuation applied to one of the beads of

the dumbbell. Thus, at large length scales, swimmers interact via a dipolar velocity fields with

excluded volume interactions at small separations. Underhill et al. (2008) performed simulations

using the above model (a regularized point dipole) in a cubic domain which is spatially periodic.

Here, they observed that for pushers the diffusivity of non-Brownian tracer particles increased

with the simulation domain size. Also, the tracer diffusivities were seen to be much smaller

for pullers. The large magnitudes and the box size dependence of tracer diffusivities in pusher

suspensions is in agreement with the predictions of linear stability theory (Subramanian & Koch

(2009), Saintillan & Shelley (2008b)). Related to the above are the simulations by Hernandez-

Ortiz et al. (2009), which consider swimmers in a confined geometry between two walls. One

drawback of the above model is that the formulation involves point force-dipoles which need

to be regularized in order to eliminate the near-field singularities. As a result, many of the
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predictions end up depending on the (unphysical) length scale of regularization, an unattractive

feature eliminated by considering large-aspect-ratio swimmers with interactions governed by

viscous slender body theory.

Slender swimmer models were considered by Saintillan & Shelley (2007), who simulated a

suspension of self-propelled rods with a specified tangential stress which causes the rod to swim

in either a pusher or puller configuration. Motivated by the predictions of Simha & Ramaswamy

(2002), they considered an initial orientational field with either polar or nematic order and found

it to be unstable to orientation and velocity fluctuations. Further, they found that the saturated

state for pushers and pullers shows very different local order, with close pairs of pushers pre-

ferring parallel alignment while pullers prefer anti-parallel alignment. They also found that the

orientation decorrelation of the swimmers could be interpreted as a hydrodynamically induced

rotary diffusivity which scales as nUL2. This is the expected scaling in the case of orientation

decorrelation via pair interactions, however, the coefficient observed is far greater than esti-

mates of this pair interaction effect by Subramanian & Koch (2009). Interestingly, even for

pushers the translational diffusivity was seen to be well approximated by U2/(6Dr), implying

that even in the presence of bulk fluid motion, the transport of swimmers is mainly governed by

the swimming motion along with orientation decorrelations.

The swimmer models discussed till now have been in the form of dumbbells and rods which

seek to model large aspect ratio swimmers such as E. Coli, B. Subtilis and Chlamydomonas.

Pedley and co-workers, in a series of efforts (Ishikawa et al. (2008), Ishikawa & Pedley (2008))

have studied the dynamics and rheology of suspensions of spherical squirmers. These squirmers

swim due to a specified tangential velocity at the surface of the particle and may be accurate

models for swimmers such as Paramecium Caudatum and Volvox which swim by waving hair-

like projections known as cilia (outward facing flagella in case of Volvox ) on their surface. These

simulations use a modified version of the original Stokesian dynamics methodology (Brady &

Bossis (1988), Durlofsky et al. (1987)) to model hydrodynamic interactions between swimmers.

We note that their spherical shape makes the behaviour of squirmers very different from the

slender swimmers discussed above since, in the case of squirmers, there is no obvious means of

inducing an orientational anisotropy. Expectedly, in contrast to the previous studies, squirmers

show interesting behaviour for the case of pullers where there is a local ordering with close pairs

swimming parallel to one another (Ishikawa et al. (2008)). This is opposite to what was seen for

rod-like pullers in the simuations by Saintillan & Shelley (2007), who observed an anti-parallel

orientation of nearby pairs. This indicates that the local properties of these swimmer suspensions

are strongly dependent on the swimmer geometry and swimming mechanism. Another work

dealing with spherical particles is by Mehandia & Nott (2008), which again uses Stokesian

dynamics to model a monolayer of hydrodynamically interacting spherical squirmers. A more

recent work related to spherical swimmers is that by Evans et al. (2011) who found a polar

ordered phase of spherical squirmers driven solely by hydrodynamic interactions.

All the simulation efforts described above lack intrinsic orientation decorrelation mechanisms

for the swimmers. The swimmer orientations only decorrelate due to hydrodynamic interactions

with other swimmers. Swimmers in nature, however, never swim in straight lines even in iso-

lation. Further, in connection with the study of collective behaviour, the inclusion of intrinsic
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decorrelation mechanisms becomes especially important since it allows an estimation of a thresh-

old which is a function of the suspension and swimmer parameters and is independent of the

simulation box size. Such an estimate of the threshold from simulations could be used to test the

validity of the continuum theories (Subramanian & Koch (2009),Saintillan & Shelley (2008a).

An estimate of the threshold will also serve as a valuable guide for experiments on bacterial

suspensions in which intrinsic orientation decorrelation of the swimmers is always present.

6.4 Our Work

In this part of the thesis, we develop the first particle-based simulation model for a suspension

of rod-like swimmers with intrinsic decorrelation mechanisms in the form of tumbling and rotary

diffusion. Our aim is to study the effects of these decorrelation mechanisms on the swimmer

suspension dynamics and estimate (numerically) a threshold for the onset of instability which

is a function of the intrinsic suspension parameters and independent of the simulation box

size. Further, we seek to compare our results with an existing prediction of the threshold by

Subramanian & Koch (2009). The rest of this thesis is organized as follows:

In chapter 7, we present a detailed account of the simulation model used. Starting from

our model for the swimmers, which are slender rods, we move on to describing our approach for

calculating the hydrodynamic interactions between them. In order to simulate a bulk suspension,

we consider a spatially periodic domain in all three dimensions. To compute the interactions

between swimmers efficiently in such a periodic setting, we implement an Ewald summation

methodology (Ewald (1921)); the swimmer motions are calculated in accordance with viscous

slender body theory (Batchelor (1970)). Importantly, in our model we only consider the force

distribution on the swimmer which arises due to swimming, and can therefore be specified

apriori. This intrinsic stress leads to the swimmers being classified into two types based on their

swimming mechanism. Rear-actuated swimmers or pushers, for which the intrinsic stress behaves

as an extensile dipole at large scales. Front-actuated swimmers or pullers, for which the intrinsic

stress behaves as a contractile dipole at large scales. The extensile nature of the swimmer force-

dipole is responsible for the collective behaviour in pusher suspensions (Subramanian & Koch

(2009)). The induced stress due to inextensibility of the swimmer only acts to stabilize the

suspension (enhancing the aforementioned threshold above its ‘intrinsic’ value). This simplifying

assumption leads to a kinematic version of a particle-level simulation with substantial savings in

computational effort, and allows us to explore large simulation box sizes. Our largest simulations

involve 25600 swimmers in a simulation box which is 40 times the swimmer length, corresponding

to a volume fraction of N(L/2)3/L3
box = 0.05, where N is the number of swimmers, L the

swimmer length and Lbox is the simulation box size. We also describe the modelling approaches

used for tumbling and rotary diffusion and validate these models by comparison with theory.

In chapter 8, we validate our kinematic simulation methodology by performing simulations

of smooth slender swimmers, devoid of intrinsic relaxation mechanisms, which have been carried

out previously by Saintillan & Shelley (2007) and Saintillan & Shelley (2012). We make a

comprehensive study of statistical measures related to the swimmers, the suspending fluid and

passive tracer particle transport to gain an understanding of the dynamics of the swimmer

suspension, and to also characterize the onset of the instability. For characterizing the onset of
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the instability, we use our puller simulations (which are predicted to be stable) as a baseline for

contrasting our pusher results. We compare our results with those of earlier simulations, and

also experiments, and find good qualitative agreement. Our estimate for the stability threshold

obeys the scaling laws with box size as implied by the theory of Subramanian & Koch (2009).

Further, we find that the tracer diffusivity is the most sensitive indicator of the onset of the

collective behaviour, as predicted earlier by Saintillan & Shelley (2012). The tracer diffusivity

curves for pushers and pullers exhibit a bifurcation beyond a critical concentration, and this

bifurcation point is interpreted as the point for the onset of instability and collective motion.

Having validated our simulation methodology, we use it to study suspensions of swimmers

which tumble and rotary diffuse in addition to interacting hydrodynamically with other swim-

mers, in chapter 9. As expected, the immediate effect of the inclusion of intrinsic decorrelation

mechanisms is to stabilize suspensions of pushers. Interestingly, however, even in swimmer

suspensions where the swimmers tumble or rotary diffuse, we find that there are systematic

differences between pushers and pullers beyond a critical volume fraction. This indicates that

a suspension of pushers which tumble continues to remain unstable beyond a critical volume

fraction. Motivated by this observation for our volume fraction varying simulations, and the

fact that the theoretical threshold involves the product of a volume fraction and a scaled mean-

free-path, we examine a complementary approach to observing the instability. We perform

simulations where the volume fraction is fixed to a value in the dilute regime and the mean-

run-time is varied. As a basis for comparison with these simulations, we extend the theory by

Kasyap et al. (2014) and derive the tracer diffusivity in a swimmer suspension in a periodic

domain which is directly relevant to simulations. This theory reveals a non-trivial effect of the

periodic box on the tracer diffusivity. While the theory for an unbounded suspension predicts

the tracer diffusivity to be a monotonically increasing function of the mean-run-time, we find

that periodicity leads to a non-monotonic variation, with the diffusivity, rather surprisingly,

going to zero for very large mean-run-times. With this theory in hand, we perform simulations

with interactions between swimmers switched off (precluding instability) and find a very good

match between simulation results for the tracer diffusivity with the theory for the periodic box.

An important result from these simulations is that the tracer diffusivities are almost identical

for pushers and pullers for the fore-aft symmetric swimmers considered in our simulations. On

switching on interactions between swimmers, we again observe a bifurcation between pushers

and pullers beyond a critical value of the mean-run-time similar to the aforementioned bifurca-

tion in the volume-fraction-varying simulations, with the pushers showing larger values of tracer

diffusivities than pullers. Pusher and puller tracer diffusivities remain practically coincident

in the stable regime, even with interactions on, since the volume fraction chosen (ν = 0.05)

is small enough to minimize the effects of pair-correlations which are different for pushers and

pullers. Using the estimates of the critical volume fraction and mean-run-time from the two

kinds of simulations (τ fixed variable n, and n fixed variable τ), we find that both of them

lead to the same critical value for the dimensionless quantity nUL2τ , which characterizes the

threshold (Subramanian & Koch (2009)). This is one of the central results of this thesis and

implies that suspensions of pushers indeed become unstable when the quantity nUL2τ exceeds a

certain fixed threshold which only depends on the microscopic details of the swimming motion.
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Interestingly, we find that our simulations predict an instability threshold which is much smaller

in magnitude compared to that predicted by the theory. We have independently confirmed that

the same is true even for swimmers which rotary diffuse instead of tumble. In either case, the

ratio of the theoretical threshold to that observed in our simulations, remains about the same.

This points to a seemingly sub-critical nature of the instability in a swimmer suspension, a novel

result worthy of further attention.

In chapter 10, we conclude and give directions for future work.



Chapter 7

Simulation Model and Theory

7.1 Introduction

In this chapter, we outline the particle-based model which we use to simulate collective motion in

a bulk suspension of micro-scale swimmers. We begin by describing our model for the swimmers

before going on to the methods used to model the hydrodynamic interactions between them. We

consider rod-like swimmers which operate at low Reynolds numbers, and hence, are force-free

at all times. The passive portions of such a swimmer drag the fluid along as it swims while the

propulsive parts push fluid in the direction opposite to that of the swimming. Therefore, the

disturbance velocity due to a swimmer is dipole-like at long distances, and decays as 1/r2, where

r is the distance from the swimmer. Since the collective behaviour we are interested in studying

is mainly attributed to the intrinsic stresses felt in the fluid due to swimming, we neglect the

induced stresses due to the no-slip condition at the swimmer body and the inextensibility of the

swimmer. The intrinsic stress can be specified, based on only the swimming parameters and

as a result the swimmer disturbance fields are known a priori. One only has to now convect

and rotate each slender swimmer in a known ambient, and in a manner consistent with viscous

slender body theory (Batchelor (1970)). This makes our simulations kinematic in nature since

the translational and angular velocities of the swimmers can be calculated explicitly without

the need for an iterative procedure. The results from such an approach which solely considers

the effects of the intrinsic stresses can be readily compared with theory since the intrinsic and

induced stresses can be conveniently separated even in the theory; in other words, there is a

known prediction for the stability threshold of a swimmer suspension solely due to the effects of

the intrinsic stresses (Subramanian & Koch (2009)). This simplification serves to greatly reduce

the computational cost of our simulations compared to earlier efforts (Hernandez-Ortiz et al.

(2005),Underhill et al. (2008), Saintillan & Shelley (2007), Saintillan & Shelley (2012)). Even

with this simplification, modelling long-ranged interactions in an infinite periodic suspension

requires a specialized method so as to make the simulation computationally efficient. We shall

use the well known Ewald summation method (Ewald (1921), Hasimoto (1959), Beenakker

(1986), Saintillan et al. (2005)) to write the disturbance velocity field due to an infinite periodic

array of swimmers as the sum of contributions calculated in real space and Fourier space. Once

this ambient disturbance velocity at each swimmer is calculated, we use viscous slender body

theory (Cox (1970), Batchelor (1970)) to update their positions and orientations in the next time

step. Our interest in studying the collective motion in swimmer suspensions motivates us to

study two types of swimmers based on their swimming mechanism, namely, pushers and pullers.

The details of the two swimming mechanisms are given in the next section. Experiments have

observed (Mendelson et al. (1999), Sokolov et al. (2007), Dombrowski et al. (2004), Cisneros

et al. (2011)), and theories (Underhill et al. (2008), Saintillan & Shelley (2007), Subramanian

117
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& Koch (2009)) have predicted collective motion in the case of pushers. Pullers, on the other

hand, are not predicted by theory to show collective motion. The pullers in our simulation,

therefore, serve as a base case which we use as a contrast to study the interesting behaviour

seen for pushers.

A novel aspect of this work is the inclusion of intrinsic decorrelation mechanisms found in

biological swimmers (bacteria such as E. Coli) such as tumbling, and also small and continuous

random changes in the swimming direction, which are well modelled as a rotary diffusion process.

In the sections that follow, we also describe the methodology used to model these stochastic

processes and validate our results against theoretical predictions. We conclude the chapter by

giving an overview of the simulation algorithm which includes all the above components.

(a) Escheria Coli (b) Chlamydomonas reinhardtii

Figure 7.1: Electron micrographs of (a) E. Coli and (b) Chlamydomonas reinhardtii, two micro-
scale swimmers which display pusher and puller-type swimming mechanisms,respectively. As
model organisms, they motivate our study of suspensions of general pushers and pullers.

7.2 Single Swimmer Model

We seek to study micro-scale swimmers such as E. Coli and Chlamydomonas shown in Fig.

7.1. Both these are examples of swimmers which use flagellae, whip-like attachments to the cell

body, in order to swim in a viscous ambient fluid. These two organisms differ in their swimming

mechanism and we classify them as pushers and pullers, respectively. Pushers have a propulsive

part (the posterior flagellum in a bacterium like E. Coli) which pushes the head of the organism

through the fluid, leading to an extensile character for the intrinsic dipole (see Fig. 7.2 (a) and

(c)). Pullers, on the other hand, are the opposite with the propulsive portion (a pair of anterior

flagella) pulling the head through the fluid with the aid of a breast-stroke-like motion, leading

to a contractile character 1 for the dipole (see Fig. 7.3 (a) and (c)). The typical disturbance

1It is important to clarify the nomenclature of an extensile and contractile dipole used in literature (and this thesis)
to describe the intrinsic dipole for a pusher and puller, respectively. While this is visually a clear description of
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Figure 7.2: Schematic of a pusher-type swimmer. (a) The Stokeslet distribution used to model
a pusher is shown along with the variation of the force density with the coordinate along the
swimmer axis in (b). (c) Shows the disturbance velocity due to a pusher at large length scales
which is that due to an extensile dipole

Figure 7.3: Schematic of a puller-type swimmer. (a) The Stokeslet distribution used to model
a puller is shown along with the variation of the force density with the coordinate along the
swimmer axis in (b). (c) Shows the disturbance velocity due to a puller at large length scales
which is that due to a contractile dipole
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velocity fields for pushers and pullers are shown in Figs. 7.2(c) and 7.3(c). We model these

swimmers as (infinitely) slender rods, which, given the large aspect ratios of these swimmers

(∼ 6 for E. Coli and Chlamydomonas), is a fairly good approximation. The intrinsic stress due

to swimming is then modelled as a line distribution of Stokeslets (the Stokeslet denotes a point-

force, and may be regarded as a Green’s function for the Stokes equations; Leal (2007)) aligned

with the orientation vector of the swimmer. The magnitude and functional form of this intrinsic

force distribution depends on the details of the swimmer such as its swimming speed, geometry

of the head and swimming mechanism. The Stokeslets are parallel and anti-parallel to the

swimming direction on the passive and propulsive parts of the swimmer, respectively. We define

the parameter α1 = LH/L, where LH is the length of the (passive) head portion of the swimmer

and L is the total length. We assume a Heaviside function for the intrinsic force distribution

on the swimmer, where the (linear) force density is piece-wise constant over the propulsive and

passive sections. We have also considered a sinusoidal variation of the force density but find

no qualitative differences in our results as compared to the Heaviside distribution. Therefore,

in this thesis, we only discuss results for the Heaviside distribution. The force density can

be written as f = f(s)p̂, where f(s) is the magnitude of the force density, p̂ is the orientation

vector of the swimmer, and s is the coordinate along the swimmer axis. This orientation vector is

aligned along the isolated swimming direction of the swimmer. We have verified that the velocity

field near the bacterium calculated using such a distribution shows good agreement with the

experimentally measured velocity field near a swimming E. Coli (Drescher et al. (2011)). The

functional form of the force distribution for pushers is given by:

f(s) =





−FD

(1− α1)L
for − L/2 < s < L(1/2 − α1),

FD

α1L
for L(1/2 − α1) < s < L/2,

(7.1)

where FD is the drag force on the head which is equal in magnitude and opposite in sign to the

thrust force generated by the flagella. Note that distances along the swimmer axis are measured

in a coordinate system located at the geometric centre (mid-point) of the swimmer (see Fig.

7.2 (b)) so that the ends of the swimmer correspond to s = ±L/2. For E. Coli, whose head

is spheroidal in shape with the longer axis along the swimmer axis, the drag force is given by

FD = CsµULH , where Cs is the drag coefficient for a spheroid translating along its longer axis,

U is the swimming speed and µ is the fluid viscosity. We assume for the sake of simplicity

that the pullers too have heads which may be described as spheroids 2. We note here that

our intention in modelling pullers is not to describe specific organisms such as Chlamydomonas,

whose near- field velocity may be complicated by unsteady stroke kinematics and presence of

closed streamlines (Guasto et al. (2010)), but to study the effect of the contractile nature of

the dipole on collective motion. Thus our puller model is the same as that of pushers, but with

signs of the force distribution reversed. The main role for the puller simulations are to serve as

the nature of the dipole, it is slightly misleading from a fluid mechanical perspective. This is because a suspension
of aligned pushers actually result in a compression (rather than tension) along the direction of alignment of the
dipoles. Aligned pullers on the other hand lead to tension in the direction of alignment.

2We note that we use the approximation that the head and tail of the swimmer do not interact with each other.
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a base-line or contrast for the pusher simulations. The force distribution for pullers is given by:

f(s) =





FD

α1L
for − L/2 < s < L(α1 − 1/2),

−FD

(1− α1)L
for L(α1 − 1/2) < s < L/2.

(7.2)

Figs. 7.2 (b) and 7.3 (b) show the coordinate system used on the swimmer along with the force

densities used in the simulations for pushers and pullers. Note that the force density profiles

for the puller is such that the head is the posterior part of the swimmer while the propulsive

portion is the anterior part (see Fig. 7.3 (a)). The results we present here are mainly for fore-aft

symmetric swimmers (α1 = 1/2), with a Heaviside force density distribution. However, we find

that changes in the parameter α1 do not qualitatively alter our results, and this is therefore

not an important factor with regard to the questions related to collective motion which we are

interested in.

7.3 Hydrodynamic Interactions in a Swimmer Suspension

The swimmers, as they swim along, ‘stir’ the suspending fluid, and thereby, affect the motion

of other swimmers. In the low Reynolds regime, relevant to most micro-scale swimmers (For

E. Coli, the typical values of the swimmer parameters are L = 12µm, LH = 2 − 3µm and the

transverse dimension of the head is around 1µm. Thus the head is a spheroid of aspect ratio

around 2. The swimming speed is typically around 10µm/s, so that the Reynolds number defined

as Re = ρUL/η is very small and for the case of swimming in water is ∼ 10−4)3, the governing

equations are the Stokes equations with an additional forcing term due to the swimmers, and

the continuity equation for an incompressible fluid. This set of equations can be written as:

−∇p+∇2u = B, (7.3)

∇ · u = 0, (7.4)

where p and u are the pressure and velocity fields in the fluid, and

B = −
∞∑

m=1

∫ L/2

−L/2
δ(x− xm − p̂ms)f(s)p̂mds (7.5)

is the forcing term due to the suspended swimmers. Here, xm and p̂m are the position and

orientation of the mth swimmer. We use the following scales to non-dimensionalize our problem;

the length scale is half the swimmer length lc = L/2; the time scale is tc = L/(2U), which is the

time for the swimmer to swim half its own length; forces are scaled by Fc = µUL/2. Henceforth,

we will be using the dimensionless version of all the variables with the same notation as the

dimensional variables. In the dimensionless variables the swimmer length is 2 and its isolated

swimming speed is unity.

3We note that even the vortices that constitutes collective motion (see Tuval et al. (2005)) only have a Reynolds
number of O(10−2) based on their length scale, thereby validating the use of the Stokes equations to describe
even large-scale motion associated with ‘collective dynamics’.
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(a) Periodic swimmer suspension with arrows depicting
the periodic images in all three-dimensions

(b) Coordinate system

Figure 7.4: (a)The simulation box with its nearest neighbours in the same plane. The swimmers
are represented as arrows along their orientation vectors. Each swimmer has an infinite number
of images repeated at the sites of a simple cubic lattice. The periodicity applies into and out of
the page as well since we have implemented a periodic boundary condition in three dimensions.
(b) The coordinate system used in the simulations where the geometric centre of each swimmer
is used to track its position relative to a lab-fixed reference frame. The coordinate system on the
swimmer measures the location of points along the swimmer axis with respect to this geometric
centre.
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Using our particle model we are interested in studying the stability and thence the collective

motion in a bulk (infinite) swimmer suspension. However, in a numerical simulation, one can

only deal with a finite number of degrees of freedom, and thus to simulate an infinite suspension

we need to implement periodic boundary conditions. Therefore, we have the simulation domain

which is a cubic unit-cell of side length Lbox in all three dimensions. Let a1,a2,a3 denote the

lattice vectors constituting the unit cell. For a cubic unit cell of side Lbox, the lattice vectors

are given by

ai = Lboxx̂i, i = 1, 2, 3 , (7.6)

where the x̂i for i = 1, 2, 3 constitute the right-handed triplet of Cartesian unit vectors.

In this unit cell we have N swimmers with geometric centres (mid-point along the swimmer’s

length) at x1x2 · · ·xN and orientations p̂1, p̂2 · · · p̂N (henceforth, the position of the swimmer

will mean the position of the geometric centre of the swimmer). The positions of the swimmers

are specified with respect to an origin located at the vertex of the simulation box such that

the edges of the box form the aforementioned right-handed triplet (see Fig. 7.4b). The peri-

odic boundary conditions imply that there are an infinite number of periodic images of these

swimmers whose positions are given by an integral number of translations along the lattice vec-

tors. Therefore, the position of the images of the ith swimmer are xi + l, where l is the vector

l = l1a1 + l2a2 + l3a3 and l1, l2, l3 are integers. We note that l1 = l2 = l3 = 0 corresponds to

the simulation unit cell. Fig. 7.4a shows a schematic representation with the simulation box at

the centre surrounded by the neighbouring unit cells. With this arrangement, the summation

term, involving the original infinite number of swimmers, can be written as:

B = −
∑

l

N∑

i=1

∫ 1

−1
δ(x − xi − p̂is− l)f(s)p̂ids, (7.7)

where the inner summation denotes summation over the simulation box (index i and l = 0)

and the outer summation denotes sum over the infinite periodic images of the simulation box

(sum over l). Further, in simulations, the force distribution along the swimmer axis is specified

using point forces at discrete points along the swimmer axis and the integrals involving the

force distribution are computed numerically using Gaussian quadrature. Assuming that each

swimmer is discretized using M quadrature points, the swimmer forcing term in Eq. 7.7 can be

written as:

B = −
∑

l

N∑

i=1

M∑

j=1

δ(x− xi − p̂isj − l)f(sj)wj p̂i, (7.8)

where f(sj)p̂i is the j
th Stokeslet (point force) on the ith swimmer in the simulation box, and the

wj’s are the quadrature weights. For simplicity of notation, absorbing the quadrature weights

into the force density and simplifying the above expression, we have:

B = −
∑

l

N∑

i=1

p̂i

M∑

j=1

δ(x− xi − p̂isj − l)f(sj). (7.9)
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The momentum balance equation, upon substituting for B from Eq. 7.9, is given by:

−∇p+∇
2u = −

∑

l

N∑

i=1

p̂i

M∑

j=1

δ(x− xi − p̂isj − l)f(sj). (7.10)

We are therefore interested in a periodic solution to the above Stokes equations. Although we

have a periodic array of swimmers (constituted of point forces) in the above equation, one has

to, in effect, solve the Stokes equations for NM interlacing simple cubic arrays of point forces

(M point forces on N swimmers). Such a solution was first derived for a single periodic array

of point forces by Hasimoto (1959) for cases where the array corresponds to the vertices of a

simple, Body-Centred-Cubic (BCC) and Face-Centred-Cubic (FCC) lattices, we will only need

the solution for the first case. Hasimoto’s approach may be readily extended to the case of

interlacing arrays (Mackaplow & Shaqfeh (1998), Butler & Shaqfeh (2002)). Using a different

approach, interlacing cubic arrays of spheres (not point forces) corresponding to a random array

of spheres in the original unit cell were analysed by Beenakker (1986). This alternate approach

has been adopted by Brady and co-workers in their Stokesian dynamics approach (Brady &

Bossis (1988), Brady et al. (1988)). These two approaches are exactly equivalent, a fact we

show in appendix D. Our derivation below closely follows that of Hasimoto (1959), but for

an array resulting from a discretized version of a line distribution of point forces. Since the

swimmer positions are arbitrary (and not regularly spaced), the positions of the line distributions

are random within a unit cell, while the unit cell itself is repeated to achieve periodicity thus

leading to the individual point forces constituting each swimmer to be part of interleaving cubic

arrays. Since the velocity and pressure fields are periodic we can expand them in a Fourier series

as:

u =
∑

k

Û(k) exp(−2πik · x), (7.11)

∇p =
∑

k

P̂ (k) exp(−2πik · x), (7.12)

where

k = n1b1 + n2b2 + n3b3 n1, n2, n3 = 0,±1,±2, · · · , (7.13)

defines vectors in the reciprocal lattice such that:

k · aj = nj (j = 1, 2, 3). (7.14)

The unit vectors in the reciprocal lattice are given by:

b1 =
a2 × a3

V
, b2 =

a3 × a1

V
, b3 =

a1 × a2

V
, (7.15)

where the volume of the unit cell in real space is:

V = a1 · [a2 × a3]. (7.16)

For the case under consideration, a simple cubic lattice, both [a1,a2,a3] and [b1, b2, b3] are
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right-handed Cartesian triplets.

Transforming the Eqs. 7.4 and 7.10, into Fourier space by multiplying with exp(2πik ·x)/V

and integrating over a unit cell in physical space, we get:

k · Û(k) = 0, (7.17)

−4π2k2Û(k) = −P̂ (k)− 1

V
F̂ (k), (7.18)

where

F̂ (k) =

N∑

i=1

pi

M∑

j=1

f(sj) exp(2πk · (xi + pisj)). (7.19)

The Fourier transform of the pressure gradient satisfies:

P̂ (k)× k = 0, (7.20)

which can be seen by taking the curl of Eq. 7.12. Considering the k = 0 terms in Eq. 7.18, we

have:

P̂ (0) = − F̂ (0)

V
= − 1

V

N∑

i=1

pi

M∑

j=1

f(sj), (7.21)

which implies that the total force per unit volume due to the swimmers in a box, is balanced by a

mean pressure gradient in the fluid. Thus, even though the velocity field is spatially periodic, the

pressure field is not. This remedies the seeming divergence resulting from summing an infinite

array of 1/r decaying Stokeslets over three dimensions. Physically, this means that when the

average force on the fluid in the unit cell is not zero, there is a resulting backflow and it is the

velocity relative to the backflow which is of interest (Hasimoto (1959), Brady & Bossis (1988),

Brady et al. (1988)). We note here that our swimmers being force-free, and the above mean

force and pressure gradient are identically zero. Although P̂ (0) is identically zero in principle,

from the numerical point of view, one still needs to exclude the terms corresponding to k = 0

even for a suspension of force-free swimmers. For k 6= 0 taking the scalar product of Eq. 7.18

with k, we get:

k · P̂ (k) = −k · F̂ (k)

V
. (7.22)

Making use of Eq. 7.20, we can write:

k × P̂ (k)× k = k2P̂ (k)− (k · P̂ (k))k = 0. (7.23)

Using Eq. 7.22 in the above equation, we get:

P̂ (k) = −(k · F̂ (k))k

V k2
. (7.24)

Using this in Eq. 7.18, we get the final expression for the Fourier-transformed velocity field as:

Û (k) = − 1

4π2k2V

[
(k · F̂ (k))k

k2
− F̂ (k)

]
. (7.25)
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Converting to real space, we get the final expression for the disturbance velocity, at a general

point x, in an infinite periodic swimmer suspension as:

u(x) =
1

4π

[
S(1) −∇(∇ · S(2))

]
, (7.26)

where

S(1) =
1

πV

∑

k 6=0

exp(−2πk · x)

k2
F̂ (k), (7.27)

S(2) =
−1

4π3V

∑

k 6=0

exp(−2πk · x)

k4
F̂ (k). (7.28)

7.3.1 Ewald Summation Method

Eq. 7.26 constitutes an exact periodic solution to the Stokes equations. This along with Eqs.

7.27 and 7.28, give convergent expressions for the disturbance velocity field. In the previous

section, we eliminated the convergence problems at large x, which appears as a singularity at

k = 0. There is still, however, a problem with the expressions in Eqs. 7.27 and 7.28 since

they are only conditionally convergent. This conditional convergence at large k is related to

the singular behaviour of the velocity field at small x due to the singularities (point forces) in

physical space. Thus, we need a way of specifying the sequence of the summation so as to obtain

a converged result. Further, for practical implementation in simulations, the slow convergence in

1/k2 and 1/k4 makes a naive summation inefficient, requiring many terms for convergence. Both

of the above problems, namely specifying the sequence of the summation as well as accelerating

the convergence rate are alleviated by using the Ewald summation technique, first used by Ewald

(1921) for electrostatic interactions. This method was extended to the case of hydrodynamic

interactions by Hasimoto (1959), and independently, by Beenakker (1986), and will be the one

used here to accelerate the convergence. The method involves finding an integral representation

for 1/k2n for n = 1, 2 and introducing a cut-off parameter to split the sum into two parts, one

in real space and the other in Fourier space. This splitting parameter or Ewald coefficient is

then tuned such that the total cost of the computation is minimized. The derivation of the

disturbance velocity field in terms of the real and Fourier sums can be found in a number of

places (Hasimoto (1959), Beenakker (1986)), and is re-derived for our case in Appendix C. The

final result for the disturbance velocity in terms of the real and Fourier sums is given by:

u(x) =
1

4π



∑

l

N∑

i=1

M∑

j=1

A(α,x− xi − pisj − l) · f(sj)pi +
∑

k 6=0

B(α,k) · F̂ (k) exp(−2πk · x)


 ,

(7.29)

where the the two tensors A and B are given by:

A(α,x) = πα−3/2φ1/2(πr
2/α)

(
Ir2 + xx

)
− 2α−1/2 exp(−πr2/α)I, (7.30)

B(α,k) =
πα2φ1(παk

2)

V

[
Ik2 − kk

]
, (7.31)
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where I is the second order identity tensor. The function φν in Eqs. 7.30 and 7.31 is the

incomplete Gamma function (Abramowitz & Stegun (1972)) and:

φ1/2(x) =
exp(−x)

x
+

√
π

2x3/2
erfc(

√
x), (7.32)

φ1(x) =
exp(−x)

x2
(1 + x). (7.33)

While Eq. 7.29 gives the velocity at a general point in the fluid due to a periodic suspension of

swimmers, care must be taken while evaluating the same at a swimmer location. In implementing

swimmer interactions according to viscous slender body theory, we will require the ‘ambient’

velocity field at points along the swimmer in order to update the positions and orientations of

the swimmers. In order to calculate the ambient velocity at points on a given swimmer, we

note that the swimmer does not see its own velocity disturbance field, but sees that due to the

other swimmers in the simulation unit cell as well as that due to all periodic images including

its own. Thus, a self-term must be subtracted from Eq. 7.29 to give the disturbance velocity at

a swimmer. This self-term is divided among the real and reciprocal space sums. The removal of

the self-term from the real sum is straightforward and is achieved by neglecting the contribution

from the index i = m when l = 0, where m is the swimmer at which we are calculating the

velocity field. The self-term for the Fourier sum is more involved and is most easily calculated

by transforming back into real space. The details of this calculation are not presented here, and

we just write down the final result for the self-term for swimmer m as:

uself (xm + pms) =

∫ 1

−1

erf
[√

π
α(s

′ − s)
]

4π(s′ − s)
f(s′)p̂mds

′. (7.34)

We can write the above continuous integral in terms of a discrete one which will be used in the

simulations. Thus the self term for swimmer m at a location xm + pmsn along its axis is given

by:

uself (xm + pmsn) =

M∑

j=1

erf
[√

π
α(sj − sn)

]

4π(sj − sn)
f(sj)p̂m, (7.35)

where we note that the quadrature weights are again a part of the force density function f(s).

Thus, the disturbance velocity at a swimmer denoted by index m, at a point xm + pmsn along

its length, is given by the expression:

u(xm + pmsn) =
1

4π



∑

l

N∑

i=1,(l,i)6=(0,m)

M∑

j=1

A(α,xm + pmsn − xi − pisj − l) · f(sj)pi

+
∑

k 6=0

B(α,k) · F̂ (k) exp(−2πk · x)−
M∑

j=1

erf
[√

π
α (sj − sn)

]

(sj − sn)
f(sj)p̂m


 . (7.36)

7.3.2 Ewald Summation Implementation

We note that Eq. 7.36 has an infinite number of terms in both the real and Fourier sums. In

practice, these sums are truncated after a certain number of terms such that the error in both

the real and Fourier sums is below a certain tolerance level ǫ. In the real sum, the components of



128 Chapter 7. Simulation Model and Theory

the tensor A(α,x) decay as we increase r = |x|, and are also a function of the Ewald coefficient

α. Therefore, specifying a value for ǫ and α implies that we can omit terms in the sum which

are outside a cut-off radius rc. Similarly, in the Fourier sum, specifying ǫ and α is the same as

specifying the number of reciprocal lattice vectors included in the summation, which we denote

by K. In our simulations, the value of ǫ is first specified. We found that ǫ ∼ 10−6 was a suitably

low tolerance level. Once ǫ is specified, the values of α, rc and K are chosen so as to minimize the

cost of both real and Fourier sums. From Eqs. 7.30 to 7.33, we see that the Ewald coefficient α

controls the relative contributions of the real and Fourier sums to the total velocity disturbance.

A small value of α implies that the Fourier sum has a greater contribution, so that we need a

larger number of wave vectors (K) to achieve a given error tolerance ǫ. This also means that

the cut-off radius can be kept small for the real sum. A larger value of α means the real sum

has a greater contribution so that rc needs to be increased to achieve the same error tolerance.

The number of wave vectors needed in the Fourier sum is now reduced. In summary, for a given

value of the error tolerance ǫ, the cut-off radius rc scales directly with the Ewald coefficient α,

while the total number of wave vectors K scales inversely.

7.4 Swimmer Kinematics

Once we have calculated the disturbance velocity along each swimmer’s length, we can now

calculate the translational and angular velocities of the swimmers so as to update their positions

and orientations. Since the swimmers are considered as slender rods, the coupling between the

disturbance velocity and the swimmer kinematics is achieved through viscous slender body

theory (Batchelor (1970), Leal (2007)). The force balance on the swimmer involves the zeroth

moment of the disturbance velocity field, and can be written as:

∫ 1

−1
[CLp̂p̂+ CN (I− p̂p̂)] · (u− ẋGC)ds + FT p̂ = 0. (7.37)

Here, CL and CN are the drag coefficients for motion parallel and perpendicular to the swimmer’s

axis and ẋGC is the velocity of the geometric centre of the swimmer. For the sake of simplicity,

we assume that the longitudnal drag coefficient CL is the same for both the head and tail portions

of the swimmer. FT is the magnitude of the total non-dimensional thrust force generated by the

tail portion of the swimmer. However, since the tail portion of the swimmer also experiences a

drag force, the net thrust driving the swimmer (and balancing the drag FD on the head portion),

is the difference between the total thrust FT and the drag on the tail. We note that the drag

on the tail is given from the portion of the first integral in Eq. 7.37 over the tail portion of the

swimmer. In the above expression, u is the ‘ambient’ velocity field at a given swimmer due to

all other swimmers which was derived in an earlier section. The net force on the swimmer is

zero, in keeping with the force-free requirement in the Stokes regime.

In our simulations, the drag due to the head (or body) of the swimmer which is assumed

to be a spheroid of aspect ratio re = 2, and length equal to half the swimmer length with the

longer axis aligned with the swimmer axis. This shape is found in swimmers such as E. Coli,

but will be used here for both pushers and pullers. The drag on such a spheroid is given by

FD = CsµULH , where Cs is the drag coefficient for the spheroid translating along its longer
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axis and is given in Subramanian & Koch (2009). In non-dimensional terms the net thrust/drag

force is give as FD = FD/Fc = 2Cs, since in our case LH = L/2. Taking the scalar product of

Eq, 7.37 with p̂, we get a relation for the force balance along the swimmer axis which is given

by:

CL

∫ 1

−1
p̂ · (u− ẋGC)ds+ FT = 0. (7.38)

Solving for the magnitude of the component of ẋGC along the swimmer axis, we get:

ẋGC · p̂ = 1 +
1

2

(∫ 1

−1
u · p̂ds

)
, (7.39)

where the constant velocity of unity is just the non-dimensional swimming velocity of the swim-

mer. Similarly equating the components of the force normal to the swimming axis in Eq. 7.37,

we get:

2CN [ẋGC − (ẋGC · p̂)p̂] = CN (I− p̂p̂) ·

∫ 1

−1
u(s)ds, (7.40)

which can be simplified to:

ẋGC − (ẋGC · p̂)p̂ =
1

2
(I− p̂p̂) ·

∫ 1

−1
u(s)ds. (7.41)

Adding Eq. 7.39 (times the orientation vector p̂) with 7.41 we get the total translational velocity

of the swimmer as:

ẋGC = 1p̂+
1

2

(∫ 1

−1
uds

)
. (7.42)

Writing in terms of a discrete integral to be used in simulations, we get:

ẋGC = 1p̂ +
1

2




M∑

j=1

u(sj)


 , (7.43)

where the quadrature weights are already included in u(sj). The torque balance on the swimmer

involves the first moment of the disturbance velocity and can be written as:

∫ 1

−1
{sp̂× CN [(Ω× p̂)s − u(s)]} ds = 0, (7.44)

where Ω is the angular velocity of the swimmer. We note that the swimmers being slender, the

angular velocity component along their axis is assumed to be zero i.e Ω · p̂ = 0. Solving, we get

Ω as:

Ω =
3

2
p̂×

∫ 1

−1
su(s)ds. (7.45)

Which in terms of a discrete integral is given by:

Ω =
3

2
p̂×

M∑

j=1

wjsju(sj). (7.46)

Eqs. 7.43 and 7.46 give the instantaneous translational and angular velocities of the swimmer



130 Chapter 7. Simulation Model and Theory

and are used to update the position and orientation of the swimmer at the next time step.

The periodic boundary conditions implies that the swimmers leaving the simulation box need

to be placed back using some rule. The rule followed in our simulations is as follows

If xi ≥ Lbox then,xi = xi − Lbox i = 1, 2, 3, (7.47)

If xi ≤ 0 then,xi = xi + Lbox i = 1, 2, 3, (7.48)

where xi for i = 1, 2, 3, are the Cartesian components of the swimmer’s position measured

relative to a coordinate system whose origin is at vertex of the simulation unit cell.

7.5 Tumbling and Rotary Diffusion Models

7.5.1 Tumbling

Micro-scale swimmers in nature rarely swim in a straight line, even in isolated conditions.

Intrinsic orientation decorrelations are a common feature of their motion, where here intrinsic

refers to the fact that these occur independently from the orientation de-correlations due to

interactions with other swimmers. A novel aspect of this work is that we study the effects of

two such intrinsic orientation decorrelation mechanisms, namely, tumbling and rotary diffusion,

a combination of which is observed in the motion (‘run-and-tumble’ dynamics) of bacteria. The

term ‘tumbling’ refers to the case where the bacterium runs in a directed sense for a certain

amount of time before changing its orientation abruptly, and by a large amount. This change in

orientation is termed a tumble event and usually lasts for a small duration when compared to

the run. For E. Coli, the mean-run-time (mean time elapsed between two tumbles) τ ∼ O(1s).

The tumbles themselves are of much shorter duration lasting about 0.1s and can therefore be

regarded as practically instantaneous (see Fig. 7.5). Having changed its orientation during the

tumble, the bacterium once again runs in the new direction which may be correlated to the old

one. Such a run-and-tumble motion, on large length scales leads to a random walk in three

dimensions that may be characterized by a diffusivity given, for perfectly random tumbles, by

U2τ/3, where U is the swimming speed and τ is the mean-run-time. E. Coli use such a run-and-

tumble motion, with biased runs, to perform chemotaxis, which is a net motion up a favourable

chemical gradient in the fluid. Fig. 7.5 shows the dynamics of this run-and-tumble motion for E.

Coli. In our simulations, we characterize this random walk using a single parameter which is the

mean time between two tumble events, or the mean-run-time, denoted by τ . In a homogeneous

medium free from chemical gradients, the run-and-tumble statistics are well approximated by

a Poisson process (Berg (1993)). The probability of occurrence of exactly n tumbles in a time

interval t is:

P (n) =
exp(−t/τ)(t/τ)n

n!
. (7.49)

The time between two tumbles is therefore exponentially distributed with a mean τ . Another

parameter characterizing the run-and-tumble events is the correlation, if any, between the pre

and post tumble orientations, denoted respectively by p̂ and p̂′ . Perfectly random tumbles,

where there is no correlation, lead to a mean angle between pre and post-tumble orientations



131

of 90 degrees (i.e 〈p̂ · p̂′〉 = 0). In the case of E. Coli, the tumbles are known to have a weak

forward correlation with the mean re-orientation being around 68 degrees (Berg (1993)). In our

simulations we assume that the tumbles are perfectly random with no correlations between pre

and post-tumble orientations as the presence or absence of such a correlation is expected to have

no qualitative effect on the phenomenon of interest-collective dynamics. Indeed, it was shown

by Subramanian & Koch (2009) that the threshold concentration for the onset of collective

behaviour changed by a negligible amount for the case of a forward correlation of 68 degrees

when compared to uncorrelated tumbles.

Figure 7.5: A schematic of the run-and-tumble motion executed by peritrichously flagellated
swimmers such as E. Coli. Reproduced in part from Subramanian & Nott (2012)

Implementation of the Tumbling Model

The implementation of the Poissonian run-and-tumble statistics on a computer makes use of the

fact that the probability per unit time that a given run ends is constant. This is because the

duration of a given run does not depend on the durations of runs that precede it. We define the

mean tumble frequency as λ = 1/τ . The Poissonian statistics imply that the probability of a

tumble occurring in a given interval ∆t is given by λ∆t. We note that this expression is strictly

valid only when ∆t is a differential quantity; and that the time step used in our simulations is

small enough for this relation to hold. Thus, to decide whether a swimmer tumbles during a

given time step, a random number is generated which is uniformly distributed between 0 and

1. If this number is less than or equal to λ∆t, then the swimmer is said to tumble and we

choose a new orientation for it. if the random number is greater than λ∆t, then the swimmer

does not tumble and continues its run. The new orientation, for a swimmer which tumbles, is

chosen by generating new random numbers which ensure a uniform distribution of the orientation

vector on the unit sphere; this implements a single random tumble event. The details are as
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follows. For swimmers that tumble, two additional random numbers are generated, the first

uniformly distributed in the interval [0, 1] and the second uniformly distributed in the interval

[−1, 1]. Let us denote the two random numbers by R1 and R2, respectively. Consider a spherical

coordinate system, with θ and φ as the polar and azimuthal angles, respectively, with its polar

axis aligned with the pre-tumble orientation vector of the swimmer. The φ coordinate of the

post-tumble orientation is then uniformly distributed in the interval [0, 2π], and is therefore

given by φ = 2πR1. For a uniform distribution over the unit sphere, the probability distribution

in θ must be such that the probability of the angular deviation lying in the interval (θ, θ + dθ)

must be proportional to the area of the sector between θ and θ + dθ divided by the area of the

unit sphere 4π. Mathematically, this is:

P (θ)dθ =
2π sin θdθ

4π
, (7.50)

which automatically gives:

P (θ) = sin θ/2. (7.51)

This distribution can be generated using the uniformly distributed random variable R2 by using

the transformations:

cos θ = R2, (7.52)

sin θ = (1−R2
2)

1/2. (7.53)

Thus, we have found the (θ, φ) for the post-tumble orientation such that it is uniformly dis-

tributed on the unit sphere.

7.5.2 Rotary Diffusion

While tumbling causes large changes in orientation of the swimmer, there are small fluctuations

in the swimmer orientation even during a run (see Fig. 7.5). This can be seen in tracks of E.

Coli, whose trajectories are not straight even during a run and show a mean deviation of around

27 degrees (Berg (1993)). The cause for these small orientation changes have been attributed

to imperfections in the flagellar bundle in the case of E. Coli (Subramanian & Nott (2012)),

but more generally these may arise due to imperfections in the swimming mechanism employed

particularly when the swimmer is too large to be subject to thermal (Brownian) torques. These

small changes in the orientation during a run can be modelled as a rotary diffusion process.

Thus, a cell moving in a given direction executes a two-dimensional random walk in the tangent

plane orthogonal to its orientation vector corresponding to (θ, φ), where θ and φ are from a

spherical polar coordinate system with polar axis aligned with the given swimming direction

(see Fig. 7.6). The mean angular deviation is therefore given by:

〈∆θ2〉 = 4Dr∆t, (7.54)

where Dr is the rotational diffusivity of the swimmer. We note that the above identity is only

valid for motion in the tangent plane and therefore only accurate for small ∆θ and ∆t.
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Implementation of Rotary Diffusion Model

In simulations the rotary diffusion is modelled as a two-dimensional random walk on the unit

sphere (see Fig. 7.6). To do this we simulate a two-dimensional random walk on a plane

and enforce that the displacements are small. With this assumption, the effects of curvature

are negligible, and the plane may be mapped to the unit sphere surface which appears locally

planar for small displacements. This places an upper limit on the time-step which can be used

in the simulations. The angular displacement due to rotary diffusion in a given time step ∆t is

added as a random displacement of amplitude A, such that:

∆θ = ARn, (7.55)

whereRn is a random variable uniformly distributed in the interval [−1/2, 1/2]. For the swimmer

to undergo a two-dimensional random walk, we must have:

〈θ2〉 = 4Drt, (7.56)

which for a given time step becomes 〈∆θ2〉 = 4Dr∆t. Substituting for ∆θ from Eq. 7.55, we

have:

〈∆θ2〉 = A〈R2
n〉 =

A

12
= 4Dr∆t, (7.57)

which gives us an expression for the amplitude as A = (48Dr∆t)
1/2. Thus we have:

∆θ = (48Dr∆t)
1/2Rn. (7.58)

This gives us the angular displacement of the swimmer’s orientation vector. However, this only

specifies a cone of half-angle ∆θ about the swimmer’s initial orientation (see Fig. 7.6). The φ

angle is again uniformly distributed in the interval [0, 2π] and is generated in exactly the same

way as in the tumbling case by generating a random variable R uniformly distributed in [0, 1]

and specifying φ = 2πR.

Figure 7.6: A schematic of the rotary diffusion model used. We see a section of a unit sphere
on which the tip of the swimmer’s orientation vector executes a two-dimensional random walk.
The step size is denoted by ∆θ and can occur with equal probability in any φ direction.
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7.5.3 Validation of Tumbling and Rotary Diffusion Models

In order to validate our tumbling model, we do test simulations of 10000 swimmers which do

not hydrodynamically interact but tumble with a mean-run-time of τ . Thus, the orientation

de-correlation of the swimmers is due to tumbling alone. We compare the simulated variation

of orientation decorrelation measures 〈p̂(t) · p̂(0)〉, 〈(p̂(t) · p̂(0))2〉 and swimmer mean-square-

displacement, with time, and compare them to theoretical predictions of the same. It can be

shown(Navaneeth K. Marath (2013)) that the mean-square-displacement of a swimmer which

tumbles is given by:

〈r2(t)〉 = 2U2τ2
[
t

τ
− 1 + exp(−t/τ)

]
(7.59)

or

〈r2(t)〉
6t

=
U2τ

3

[
1− t

τ
(−1 + exp(−t/τ))

]
. (7.60)

The swimmer diffusivity can be derived from Eq. 7.60 by taking the limit t→ ∞, and is seen to

be given by Dswimmer = U2τ/3 as mentioned earlier. The aforementioned orientation moments

are given by:

〈p̂(t) · p̂(0)〉 = exp(−t/τ), (7.61)

〈(p̂(t) · p̂(0))2〉 = 1

3
(2 exp(−t/τ) + 1) . (7.62)

Figs. 7.7a and 7.7b show comparisons between theory and simulations for the three measures in

Eqs. 7.60, 7.61 and 7.62 for two values of the mean run time of τ = 1 and τ = 10 respectively.

The time steps used are ∆t = 0.05 and ∆t = 0.2, respectively. The computer simulation of

Poissonian statistics requires that the number of tumble events occurring during a time step

must be small, thereby placing a restriction on the time step used relative to the mean-run-time

(∆t/τ ≪ 1). In practice we see that a ∆t/τ ≈ 0.2 is sufficient to ensure faithful reproduction

of the theoretical curves by the simulations. It can be seen in Figs. 7.7a and 7.7b that there is

very good agreement between the simulations and theoretical predictions both with respect to

the swimmer mean-square-displacement as well as the orientation decorrelation measures.

We now present a similar validation of the rotary diffusion model. As for the tumbling

case, we consider 10000 non-interacting swimmers whose orientations decorrelate solely due to

rotary diffusion. The theoretical predictions for the swimmer mean-square-displacement and

orientation decorrelation are given by (Dhont (1996)):

〈r2(t)〉 = U2

2D2
r

[2Drt− 1 + exp(−2Drt)] , (7.63)

or

〈r2(t)〉
6t

=
U2

6Dr

[
1− 1

2Drt
(−1 + exp(−2Drt))

]
. (7.64)
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(a) τ = 1 and ∆t = 0.05

(b) τ = 10 and ∆t = 0.2

Figure 7.7: Comparison of simulations with theory of three time-dependent statistical quantities
for swimmers which tumble. (i) The ratio of mean-square-displacement to time, 〈r2(t)/6t〉,
plotted with respect to time; (ii) orientation de-correlation measure 〈p̂(t) · p̂(0)〉 and (iii) 〈(p̂(t) ·
p̂(0))2〉 for (a) τ = 1 and ∆t = 0.05 and (b)τ = 10 and ∆t = 0.2.

and

〈p̂(t) · p̂(0)〉 = exp(−2Drt). (7.65)

Note that the expressions are the same as those for tumbling with τ replaced by 1/(2Dr). The

swimmer diffusivity can again be derived by taking the limit t → ∞ in Eq. 7.64, and is given

by Dswimmer = U2/6Dr.

Figs. 7.8a and 7.8b show comparisons between theory and simulations for the measures

in Eqs. 7.64 and 7.65 for two values of the rotary diffusivity of Dr = 0.5 and Dr = 0.02,

respectively. The time steps used are ∆t = 0.01 and ∆t = 0.02, respectively. In this case

the restriction on the time step occurs because our rotational diffusion model approximates the

unit sphere’s surface as locally planar, therefore limiting the orientation displacement in a given

time step. We find that Dr∆t ≈ 0.02 is sufficient to reproduce the theoretical curves. We can

see from Figs. 7.8a and 7.8b that, with a suitably chosen time step, there is indeed very good

agreement between the simulation and theoretical predictions.
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(a) Dr = 0.02 and ∆t = 0.05
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Figure 7.8: Comparison of simulations with theory of two time-dependent statistical quantities
for rotary diffusing swimmers. (i) The ratio of mean-square-displacement to time, 〈r2(t)/6t〉,
plotted with respect to time and (ii) orientation de-correlation measure 〈p̂(t) · p̂(0)〉 for (a)
Dr = 0.02 and ∆t = 0.05 and (b)Dr = 0.5 and ∆t = 0.01.
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7.6 Simulation Algorithm

In the preceding sections we have described the various components of the simulation. In this

section we describe how they all come together. The initial condition for the simulation is

specified by initializing the positions and orientations of the N swimmers in the simulation

box. Defining X = {x1,x2 · · ·xN} and P = {p̂1, p̂2 · · · p̂N}, we now initialize the simulation

by setting X = X0 and P = P 0. In our simulations the swimmers positions were uniformly

distributed in the simulation box and their orientations were chosen to be uniformly distributed

on the unit sphere. Note that the swimmers are assumed to be infinitely slender, and excluded

volume considerations do not come into play (in swimmer-swimmer interactions). Thus, there is

no restriction in the swimmers’ (phase-space) coordinates. With the positions and orientations

of all the swimmers known, we can compute the velocity disturbance at the quadrature points

along the length of each swimmer using the Ewald summation formulation (Eq. 7.36). Since

we neglect the induced forces on the swimmers, this step is an explicit operation and does not

require any iterations for convergence, thereby leading to substantial savings in computational

cost. Consideration of the induced forces would necessitate the solution of a system of linear

equations at each step with the forces on the swimmers being the unknowns (as in Mackaplow

& Shaqfeh (1998), Saintillan et al. (2005)). Once the velocity disturbance is known along the

length of all the swimmers, we can use Eqs. 7.43 and 7.46 to calculate the translational and

angular velocities of all the swimmers. Since the disturbance velocity at each swimmer is a

function of the positions and orientations of all swimmers in the simulation box, we can write

the instantaneous translational and angular velocities of the swimmers in a simple way (this is,

of course due to the underlying instantaneity of the Stokes equations):

Ẋ = F(X ,P ), (7.66)

Ṗ = G(X ,P ), (7.67)

where F and G are functions which compute the velocity disturbance along the swimmer’s lengths

and therefore their translational and angular velocities. The explicit nature of the computation

is apparent from the above expressions.

With this information we can now update the positions and orientations of all the swimmers

using a suitable time-stepping scheme. In our simulations we find that a second-order Runge-

Kutta scheme (Wheatley (1994)), with a suitable time step was sufficient to ensure converged

results. In case of tumblers, the swimmers which tumble during the current time step are

updated with a new orientation according to the tumbling model described in section 7.5.1. In

case of rotary diffusers, a small noise is added to the orientation vector of all the swimmers

according to the model in section 7.5.2. These new updated positions and orientations are used

in the next time step and so on. Fig. 7.9 gives a flow chart describing the algorithm used in the

simulations. Fig. 7.10 gives the details of the Runge-Kutta time stepping method.

The above simulation method was implemented usingMATLAB, making use of its vectorized

operations in order efficiently perform calculations on vectors whose size is O(N). A local

parallelization on up to 12 cores was used to speed up the simulations.



138 Chapter 7. Simulation Model and Theory

Figure 7.9: Simulation flow chart
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Figure 7.10: Runge-Kutta second order time stepping scheme





Chapter 8

Results and Discussion: Smooth

Swimmers

8.1 Introduction

In this chapter we discuss the results of our simulations for the case of smooth swimmers.

These swimmers do not possess any intrinsic orientation relaxation mechanisms, and therefore,

their orientations decorrelate solely due to hydrodynamic interactions with other swimmers.

Earlier simulations efforts have focussed on such smooth swimmers modelled either as slender

rods (Saintillan & Shelley (2007), Saintillan & Shelley (2012)) or as regularized point dipoles

(Underhill et al. (2008), Hernandez-Ortiz et al. (2009)). One of our motivations for studying

them is to validate our simulation model, specifically, our assumption that the intrinsic stress

due to swimming is sufficient for capturing the salient aspects of the collective behaviour. We

will present results for both pusher and puller-type swimmers, with the pullers serving as a

baseline for contrast, since they are predicted not to give rise to collective behaviour (Saintil-

lan & Shelley (2008a)). We consider various statistical measures involving the swimmers, the

intervening fluid and passive tracer particles to develop an understanding of the behaviour of

swimmer suspensions. We are particularly interested in characterizing the predicted theoretical

threshold, for the hydrodynamic instability (Saintillan & Shelley (2008a), Saintillan & Shelley

(2008b),Subramanian & Koch (2009)) which leads to an onset of collective behaviour for the

case of pushers, via our simulations. For the smooth swimmers examined in this chapter, we

particularly study the effect of the simulation box size on the results. This is important since

linear stability theory predicts a long wavelength instability, and therefore, that an unbounded

suspension of pushers, that are smooth swimmers, is unstable for any non-zero volume fraction.

However, this also means that a finite size simulation box stabilizes the suspension (by exclud-

ing the unstable range of wavelengths), and it is therefore of interest to study the effects of

varying box size. We then compare the predicted box-size-dependent threshold for pushers, ob-

tained from our simulations, with linear stability theory for an unbounded swimmer suspension

(Subramanian & Koch (2009), Subramanian et al. (2011a)).

Unless otherwise mentioned all results are presented in dimensionless form with the following

scaling parameters used for non-dimensionalization: the length scale is half the swimmer length

lc = L/2; the time scale is tc = L/2U which is the time for the swimmer to swim half its own

length; the forces are scaled by Fc = µUL/2. Using these scales the parameters used in the

simulations are as follows. The non-dimensional swimmer length L is 2 and velocity U is 1. We

consider cubic simulation boxes ranging from Lbox = 5L to Lbox = 15L in order to study the

effects of the box size. The volume fraction of the suspension is defined as ν = N(L/2)3/L3
box

1,

1We note that, the volume fraction as defined above is not the true volume fraction, but is the hydrodynamic

141
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and is varied between the dilute and semi-dilute regimes (ν = 0.05−1.0), N being the number of

swimmers in the box. In this chapter we consider only smooth swimmers, and this corresponds

to a mean-run-time of τ → ∞.

8.2 Theory for Smooth Swimmers

In this section we briefly go over earlier theoretical works which have considered the stability

of a suspension of smooth swimmers. The linear stability of a suspension of rod-like swimmers

like those considered here was carried out by Subramanian & Koch (2009), Subramanian et al.

(2011a), and independently, by Saintillan & Shelley (2008b). A simple scaling analysis allows

us to appreciate the salient aspects of the instability. Consider an initially quiescent swimmer

suspension with an isotropic distribution of swimmer orientations. A velocity perturbation

with amplitude u′ and wavenumber k, which has a velocity gradient O(ku′), acts to reorient

a swimming bacterium during the time it traverses a single wavelength. This time scale is

O(1/kU), where U is the swimming speed. The accumulated orientation anisotropy during this

time is O(u′/U). The bacterial stress is given as a density of force dipoles and is O(nFL),

where n is the swimmer number density, F the magnitude of the force characterizing the force

dipole and L is the swimmer length scale. In an isotropic suspension, this stress is isotropic,

and therefore does not modify the viscosity. But it can do so when there is an orientational

anisotropy. Thus, the bacterial stress contributing to the viscosity is O(u′/U)O(nFL). We

can take F ∼ µULH , where LH is the length of the swimmer head. Thus the bacterial stress is

O(µu′nLLH). The stabilizing Newtonian response to the velocity perturbation is O(µku′). For a

suspension of pushers, due to the extensile nature of the dipole, the bacterium stress opposes the

Newtonian response and we have an instability when µu′nLLH > µku′, which gives k < nLHL.

Since LH = α1L, where α1 is the fraction of head length to total swimmer length, we have the

final condition for the instability as k < O(nL2), or in terms of the perturbation wavelength,

λ > O(nL2)−1. Thus, a suspension of pushers is always unstable to sufficiently long-wavelength

perturbations. This result also implies that, for an unbounded suspension where the largest

allowed wavelengths are infinite, the critical volume fraction for the instability is zero.

Therefore, the main results of the linear stability analysis are that pushers are unstable in

the limit of long-wavelength velocity perturbations. Fig. 8.1 shows the modal diagram for a

suspension of smooth swimming pushers that emerges from a detailed linear stability analysis

(Subramanian et al. (2011a), Subramanian & Nott (2012)). We see that, in the limit k → 0,

there are a pair of unstable modes. Of these, it is ‘mode 1’ that controls the stability of the

suspension to long wavelength perturbations. The growth rate of this mode remains finite and

positive, even at k → 0, indicating a long wavelength instability. This means that an unbounded

suspension of smooth swimming pushers is unstable for any non-zero volume fraction, and there

is a spectrum of modes with wavelengths of O(nL2)−1 or greater, that all grow at about the

same rate of O(nUL2), the fastest of these being the k = 0 modes (see Fig. 8.1). Unlike

pushers, pullers are characterized by a negative value of C and therefore have only decaying

modes leading to a stable suspension.

volume fraction; however, this is the relevant parameter in our study, since Stokesian hydrodynamics is dictated
by the longest length scales of the suspended swimmers.
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While the results of Subramanian et al. (2011a) give a minimum critical wavenumber (or

maximum critical wavelength) below which the suspension is unstable (the stability boundary

in Fig. 8.1), there is also a second critical wavenumber km separating the stationary unstable

modes from oscillatory solutions (see Fig. 8.1). We consider the boundary between oscillatory

and stable modes as the actual stability boundary. This stability boundary is given by the

critical wavenumber:

k′m = 0.09CnL2, (8.1)

where n is the number density and L is the swimmer length as before. The constant C is defined

as:

C =

∫ 1

−1
f(s)sds, (8.2)

where f(s) is the intrinsic force density along the swimmer axis defined in chapter 7 in section 7.2.

We note that as long as we interpret the stability threshold using the same C that characterizes

the intrinsic force density, any choice of C remains consistent. In our case, the swimmers are E.

Coli -like swimmers with a spheroidal head of aspect ratio 2 and the length of the head is such

that α1 = 1/2. For such fore-aft symmetric swimmers, we get C = M−1/4, where CL = M−1

and CL is the drag coefficient for a spheroid translating along its axis (Happel & Brenner (1983))

and M−1 is the inverse of the mobility.

While the theory above predicts that any non-zero volume fraction leads to an instability for

an unbounded suspension, the same is not true for the bounded periodic suspension examined in

our simulations. The size of the simulation box imposes a restriction on the maximum wavelength

(or minimum wavenumber) perturbation which can exist within the box. Thus, for small enough

box sizes, the minimum unstable wavenumber can be greater than the critical wavenumber k′m,

implying that the suspension will be stabilized by the imposed periodicity. The simulation

box therefore imposes an artificial stabilization for a suspension of pushers. An estimate of

the critical concentration above which a periodic suspension is unstable may be calculated by

equating the critical wavenumber k′m with the inverse of the simulation box length:

k′m = 0.09(CncritL
2) =

1

Lbox
, (8.3)

which, on rearranging gives:

ncrit

(
L

2

)3

= νcrit =
L

0.72(CLbox)
. (8.4)

Note that we recover the unbounded suspension results of νcrit = 0 when L/Lbox → 0. The

critical volume fraction for smooth swimmers given by Eq. 8.4 is plotted as a function of L/Lbox

in Fig. 8.2 and the L/Lbox ratios for which we present simulation results are highlighted.

Physical Mechanism for the Hydrodynamic Instability: We briefly mention the mech-

anism proposed by Subramanian & Koch (2009) for the instability in a suspension of pushers.

The random velocity disturbances experienced by a swimmer in a suspension due to other swim-

mers can be studied in the form of a imposed velocity wave (Fourier mode). Consider such a

long wavelength velocity perturbation, as shown in Fig. 8.3, imposed on a suspension of three
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Figure 8.1: Modal digram for a suspension for smooth swimming pushers. Reproduced from
Subramanian et al. (2011a)
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Figure 8.3: Schematic depiction of the response of three types of slender particles to a velocity
wave perturbation (Fourier mode) (a) passive rods, (b) puller-type swimmers and (c) pusher-type
swimmers.

different types of microscopic slender particles (a) passive rods (b) puller-type swimmers and

(c) pusher-type swimmers. When the particle length is small compared to the wavelength of

the perturbation, the velocity gradient over the length scale of a particle is constant at leading

order. This is typically the case when the length scale of confinement of the suspension is much

larger than the length scale of the suspension constituents which is the case with our simulations

too, since it is the longest wavelength perturbation, with wavelength of order the box size, that

becomes unstable at the threshold. The velocity perturbation can therefore be imagined as a

simple shear flow (a constant velocity gradient) at the particle/swimmer location. The vortical

component of the simple shear flow causes the slender particles to rotate at a constant angu-

lar velocity without affecting the orientation distribution of the suspension. The extensional

flow, however, makes the particles align along the local extensional axis, thereby leading to an

anisotropy in the orientation distribution. In the case of a passive rod the inextensibility con-

straint of the rod leads to a passive (induced) stress distribution on the rod which opposes the

aligning extensional flow (see Fig. 8.3 (a)). The response of a puller is similar, except that the

opposing flow is due to the anisotropic distribution of intrinsic (rather than induced) contractile

swimming dipole (see Fig. 8.3 (b)). Both these are Newtonian-type responses which act to

damp out the velocity disturbance acting on the particles. In a suspension of pushers, however,

the instrinsic extensile dipole enhances the imposed disturbance which in turn exacerbates the

original orientational anisotropy, thus leading to an instability (see Fig. 8.3 (c)).
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8.3 Simulation Results and Discussion

8.3.1 Fluid Velocity Statistics

We first contrast the disturbance velocity field in the suspending fluid between pusher and puller

suspensions. Fig. 8.4 shows the typical disturbance velocity fields for a suspension of pushers

and pullers at volume fractions of 0.05 and 0.5 at a single time instant in the statistical steady

state. At the lower volume fractions, the fluctuations are only those due to individual uncorre-

lated swimmers which die off rapidly as we move away from the swimmer, leaving most of the

fluid quiescent (Fig. 8.4a). In the suspension of pushers, as one moves to larger volume fractions,

one begins to see coherent jets and vortices in the fluid on length scales larger than the particle

size (see Fig. 8.4b(i)). These flows are qualitatively similar to the flows observed in experiments

(Mendelson et al. (1999), Sokolov et al. (2007), Dombrowski et al. (2004)) of swimming bacteria

such as E. Coli and B. subtilis, which are pusher-type swimmers. It is also in qualitative agree-

ment with previous simulation results (Saintillan & Shelley (2007), Saintillan & Shelley (2012)).

Pullers, on the other hand, continue to show an uncorrelated velocity field even at larger volume

fractions where the fluctuations are small-scale and random, corresponding to disturbances due

to individual swimmers (Fig. 8.4b (ii)). Indeed, for the case of pullers, as we will see later, the

fluid velocity correlation lengths actually decreases with an increase in volume fraction. To gain

a quantitative picture of the flow field, we next look at the probability distribution function of

the fluid velocity (individual components) and velocity magnitude (speed) which are plotted in

Figs. 8.5a and 8.5b, respectively. The fluid velocity distribution functions in Fig. 8.5a are seen

to be very similar for both pushers and pullers at low volume fractions. The fluctuations are

small and the distribution function is quite narrow and sharply peaked around zero. As the

volume fraction is increased, both the pusher and puller curves begin to broaden, this increase

in variance reflecting larger fluctuations. However, these are much greater in magnitude for

pushers, and this leads to a pronounced flattening of the probability distribution compared to

that of pullers. The pusher curve for larger volume fractions (ν > 0.5) begins to show a clear

Gaussian behaviour as seen in Fig. 8.5a. Further insight may be gained by plotting the dis-

tribution function of the fluid velocity magnitude. Again, a clear distinction can be observed

between pushers and pullers. At lower volume fractions, both pusher and puller curves have a

sharp peak near zero, implying that the fluid velocity disturbance is due to individual swimmers

and the rest state remains the most probable state. At higher volume fractions (for ν > 0.5 in

Fig. 8.5b) the pusher curves begin to show a clear peak at a non-zero value of the fluid velocity

magnitude, implying that coordinated bulk motion is present. The peak is very pronounced

at a fluid velocity magnitude of around unity, for the case ν = 1.0, for pushers. In the case

of pullers, it is striking that the peak of the probability density remains near zero for all the

volume fractions simulated which points to an absence of coordinated fluid flows even at higher

volume fractions; the rest state remains the most probable. Finally, we plot the mean fluid

kinetic energy versus volume fraction for pushers and pullers in Fig. 8.5c for three different

sizes of the simulation boxes (5, 10 and 15 swimmer lengths). The mean fluid kinetic energy

for pullers shows an increase with volume fraction which is, however, much weaker than that

for pushers. While the two are comparable in magnitude for low volume fractions (ν = 0.05),
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Figure 8.4: Projections on the x1x2 plane of fluid velocity vectors lying on a plane at half the
height (in x3 direction) of the simulation box for (a) ν = 0.05 and (b) ν = 0.5 for pushers and
pullers. The simulation box size is 10 swimmer lengths (Lbox = 10L).
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at higher volume fractions the pushers show much larger values (around an order of magnitude

larger) arising from collective motion. The effect of box size is also clearly seen for the case of

pushers with larger boxes leading to larger values of the fluid kinetic energy and also a steeper

rate of increase with ν. This is consistent with linear stability theory in that the larger box sizes

allow a greater range of unstable wavelengths, and thence, a more intense fluid motion.

The probability distribution function for the fluid velocities above showed us that the velocity

fluctuations are much more pronounced for pushers as compared to pullers at high volume

fractions. To gain an understanding of the time dependent dynamics of the flow field, we next

look at the fluid velocity autocorrelation function. We consider the Eulerian autocorrelation

function which measures the time scale for which the fluid velocity vector at a fixed point in

space remains aligned in a given direction. This is formally defined as:

F (t) = 〈u(x, t) · u(x, t0)〉, (8.5)

where the angular brackets 〈〉 denote an average over the number of grid points where the fluid

velocity is calculated and also over the initial conditions t0, all of which lie in the statistical

steady state. The plot of F (t) is shown in Fig. 8.6a for pushers and pullers at different volume

fractions. A trend is clearly visible for the pushers where the correlation time shows an initial

increase with volume fraction reaching a maximum around ν = 0.5. At these volume fractions,

the correlated fluid motions for pushers are persistent over time scales much larger than the

single swimmer time scale of L/2U (7 times larger at ν = 0.5). A bit surprisingly, further

increasing the volume fraction leads to a decrease in the correlation times. The reasons for this

decrease are not entirely apparent, but it may be attributed to a given point in space sampling

an increased number of swimmers thereby leading to a randomization of the velocity field when

compared to the correlated motions in space and time observed for smaller volume fractions

(ν ≈ 0.5). The trend for pullers is clearly different from pushers in that they show a monotonic

decrease in the correlation times with volume fraction as seen in Figs. 8.6a and 8.6b. This

lends support to the fact that the absence of any hydrodynamic instability for the pullers means

that the fluid velocities are controlled by individual uncorrelated swimmers. Thus, an increased

puller volume fraction leads to an increased frequency of interactions of a fixed point in space

with different swimmers, leading to a decrease in the Eulerian correlation times. Fig. 8.6b shows

the correlation times, extracted from Fig. 8.6a, plotted as a function of the volume fraction.

The correlation times were extracted by assuming a decay of the form e−t/τcorr and −1/τcorr is

calculated by fitting a straight line to ln(F (t)) and extracting the slope of the line. The effect of

box size can be clearly seen in Fig. 8.6b with larger simulation boxes leading to larger correlation

times. It is noteworthy that for the larger simulation boxes (10 and 15 swimmer lengths), the

fluid correlation times are as high as 7 times the single swimmer time scale L/2U . While the

pushers show a non-monotonic trend, we see that the pullers show a weak decrease with ν, and

further, do not have any noticeable dependence on the simulation box size.

To get a better idea of the length scales of the flow structures in the fluid that might point

to collective motion in the unstable regime (for pusher suspensions), we consider the power
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Figure 8.5: Fluid velocity statistics. (a) The probability distribution function of the fluid distur-
bance velocity plotted for (i)pushers and (ii)pullers for four volume fractions. (b) The probability
distribution function of the fluid disturbance velocity magnitude for (i) pushers and (ii) pullers.
(c) Mean fluid kinetic energy plotted with respect to ν for pushers and pullers for three box
sizes (5, 10 and 15 swimmer lengths)
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Figure 8.6: Fluid velocity correlations (a) Fluid velocity autocorrelation function F (t) defined
in Eq. 8.5 plotted for pushers and pullers at different volume fractions. (b) The correlation
times for pushers and pullers plotted with respect to ν for three different simulation box sizes
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spectrum of the fluid velocity defined as:

E(k̂) =
1

2

∫

S
Û(k̂) · Û

∗
(k̂)dS, (8.6)

where S is a spherical surface of radius k̂. Expressed in spherical polar coordinates this is:

=
1

2

∫ π

0

∫ 2π

0
Û(k̂) · Û

∗
(k̂)k̂2 sin θdθdφ, (8.7)

where Û (k̂) is the Fourier transform of the fluid velocity field, defined as:

Û(k̂) =

∫

V
dx u(x) exp (2πik̂ · x). (8.8)

Here, the integral over V denotes an integral over the simulation box and the ∗ denotes the

complex conjugate. k̂ is the non-dimensional wavenumber defined as k̂ = Lboxk. In simulations,

the same is calculated by summing contributions lying in a bin of size ∆k̂. In order to have a

baseline for comparison, we derive the theoretical power spectrum for both an unbounded and

periodic suspension of swimmers. These are derived for the case where the swimmer positions

and orientations are uncorrelated. For the sake of brevity, we only write down the final ex-

pressions for the theoretical power spectrum. The power spectrum for an unbounded swimmer

suspension is given by:

E(k̃) = − U2NL4

2π5M2k̃4

∫ 1

0

sin4
(
πk̃t
2

)
(1− t2)

t2
dt, (8.9)

where k̃ = Lk. However, for comparison with the periodic theory and simulations we will

use Lbox to rescale the wavenumbers even for the unbounded theory. The theoretical power

spectrum for a periodic swimmer suspension is just the discrete wavenumber analogue of the

above expression. Therefore, the integral over the spherical annulus is wavenumber space is

replaced by a summation, and is given by:

E(k̂) = −U
2NL3

box

8π6M2

∑

k∈(k,k+∆k)

1

k̂6

∫ 1

0

sin4
(

πk̂Lt
2Lbox

)
(1− t2)

t2
dt. (8.10)

Note that here, the wavenumber is scaled by Lbox and ∆k is the thickness of the annulus over

which the discrete sum is carried out. Therefore, using the same number of wavevectors in

calculating the above expression as those used in the simulations will allow a direct comparison

between the two. Also, we note that the above theoretical predictions are the same for pusher and

puller suspensions, implying that at least for the fore-aft symmetric case (as in our simulations),

the spectrum does not depend on the swimming mechanism. We note some important points

about the aforementioned power spectra for unbounded and periodic suspensions. In principle,

we can derive a power spectrum for a periodic box using the continuous albeit periodic velocity

field of the swimmer suspension. In this case, we expect an agreement between the unbounded
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and periodic cases at large k̂, but a deviation as soon as k̂ becomes O(1) due to the effects of

periodicity. A second effect is introduced due to the discrete sampling of the velocity field (as

must be the case in simulations), due to which one does not have information at length scales

smaller than the grid spacing used. This absence of information leads to disagreement between

the unbounded and periodic (discrete) power spectra at large k̂.

The power spectrum for pusher and puller suspensions for two different volume fractions are

shown in Fig. 8.7. We note that, we use a finite number of wavenumbers (the same number

used in calculating the simulated spectrum), to calculate the periodic theory, which explains the

drooping of the theoretical curve for large k̂. By choosing to use a finite number of wavevectors

to calculate the theoretical power spectrum for a periodic box, we are deliberately choosing to

neglect information available at higher k̂, in order to compare with simulations. At the lower

volume fraction (ν = 0.05), the pusher and puller spectra are very close over the entire range of

wavenumbers. Also, for this case, both pusher and puller spectra are in good agreement with

the periodic theory. This is because, at low volume fractions, both pushers and pullers are not

correlated with respect to their positions and orientations; thus their power spectrum agrees well

with the theory (which corresponds to uncorrelated swimmers). However at the higher volume

fraction (ν = 0.5), the pusher curve shows a marked increase in the low wavenumber regime.

This implies that, as the collective motion sets in for pushers, a larger fraction of the fluid

kinetic energy resides in flow structures whose length scale is O(Lbox) (which, as per our scaling,

corresponds to k̂ ∼ O(1)). This is in agreement with the fact the hydrodynamic instability

for pushers is a long wavelength (small wavenumber) one. As seen in Fig. 8.7, the point of

departure of the pusher spectrum from that of the puller for ν = 0.5 is also in good agreement

for the theoretically predicted maximum unstable wavenumber (box-size-dependent) for smooth

swimmers (see Eq. 8.1). It is to be noted that the maximum of the spectrum occurs at the

lowest simulated wavenumber implying that the box size controls the size of the flow structures

formed in the fluid. The pullers, in contrast show an opposite trend with the spectrum at lower

wavenumbers showing a decrease with an increase in volume fraction.

The above results for the disturbance velocity in the fluid show clear evidence of collective

motion for the case of pusher suspensions. We see that, for the case of pushers, beyond a

critical, box-size-dependent volume fraction, the fluid velocity fields are characterized by large

fluctuations and correlated bulk motions with length scales of O(Lbox). The pullers show a

fluid velocity field which remains uncorrelated and random even at higher volume fractions, and

consists of contributions from individual uncorrelated swimmers. These results are in qualitative

agreement with experiments involving pusher-type swimmers (Mendelson et al. (1999), Sokolov

et al. (2007), Dombrowski et al. (2004)) and also earlier simulation efforts of hydrodynamically

interacting slender swimmers (Saintillan & Shelley (2007), Saintillan & Shelley (2012)).

8.3.2 Swimmer Statistics

In this section we discuss various statistical measures involving the swimmers themselves. These

swimmers, in isolation, swim with a unit speed along their orientation vector. However, the

swimmer velocity in a suspension is expected to be different owing to hydrodynamic interactions

with other swimmers. Fig. 8.8a shows the probability distribution function for the swimmer
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Figure 8.7: Power spectrum of the fluid velocity field, as defined in Eq. 8.6, plotted with respect
to the non-dimensional wavenumber k̂ = Lboxk (simulation box size: 10 swimmer lengths)

velocity for four different volume fractions for pushers and pullers. At low volume fractions, the

pushers and pullers exhibit similar behaviour with the distribution function resembling a top hat

profile. This is the expected profile for a dilute suspension where hydrodynamic interactions are

weak and each swimmer basically swims in a straight line at its isolated swimming speed, and

along its initial (randomly chosen) orientation. Indeed, it can be shown that a dilute suspension

of swimmers, with each swimming at the isolated swimming speed (U = 1), with uniformly

distributed orientations on the unit sphere, leads to a distribution function given by:

P (uxi) =

{
1/2 for |uxi | < 1,

0 otherwise.
(8.11)

We note that the above result is crucially dependent on the dimensionality of the underlying

space. For instance, Mehandia & Nott (2008), have a two-dimensional scenario, and their

distribution function, at lower volume fractions, has a different form. As expected, the simulation

results, in the dilute limit match this profile. With an increase in the volume fraction, one sees

a bifurcation in the behaviour of pushers and pullers. The pusher curve flattens with the tails

growing fatter indicating the greater likelihood of swimmers swimming at speeds greater than

their isolated swimming speed. For pullers on the other hand, the distribution function remains

similar to the dilute limit case even for ν = 1.0, indicating no qualitative change in the swimmer’s

velocity. This can be seen clearly in 8.8b, where the peak of the probability density for pushers

shifts to larger values with increasing ν. The swimming speed distribution for pullers decays

sharply beyond |U | = 1 for ν = 1.0, indicating that pullers do not swim significantly faster

than in isolation. It is also noteworthy that the pusher velocity distribution function for higher

volume fractions is well approximated by a Gaussian curve with the same mean and standard
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deviation as the simulation data (in sharp contrast to the puller top-hat profiles).

The variation of the mean swimming speed with volume fraction for pushers and pullers

is shown in Fig.8.8c for three different box sizes. A bifurcation is clearly seen where, beyond

ν ≈ 0.2, the pusher curve breaks away from the puller curve. The pullers, on the other hand,

show only a weak increase with volume fraction when compared to pushers. The effect of box

size is also noticeable in Fig. 8.8c where, for larger box sizes, the swimming speed for pushers is

greater and also increases more steeply with volume fraction (as was the case for the Eulerian

correlation times earlier).

Next, we investigate the pair orientation correlations between swimmers for the case of both

pushers and pullers. The polar pair correlation function is defined as (Saintillan & Shelley

(2007)):

C(r) =
〈
∑

i 6=j p̂i · p̂jδ(|xi − xj| − r)〉
〈∑i 6=j δ(|xi − xj| − r)〉 (8.12)

where δ(x) is the three-dimensional Dirac-delta function and xi denotes the ith swimmer’s

position. We note that, in calculating the polar correlation function, we distinguish between

the head and tail of the swimmer (this in contrast with a ‘nematic’ order where this distinction

is not made). The polar pair correlation function is defined such that it will have a value of

1 when neighboring swimmers are aligned exactly parallel to one another (swimming in the

same direction), and −1 when neighboring swimmers swim in exactly opposite directions. In

a swimmer suspension, a positive or negative value of the function indicates a tendency for

swimmers to align in a parallel or anti-parallel sense, respectively.

We see from Fig. 8.9 that pushers and pullers, at low volume fractions (Fig. 8.9a), show a

strong positive and negative correlation, respectively. At higher volume fractions (Figs. 8.9b and

8.9c), both pushers and pullers show a weaker positive and negative correlation, respectively.

This implies that nearby pushers have a tendency to align with one another and swim in the same

direction. Neighboring pullers, on the other hand, tend to align in an anti-parallel manner to

one another. Note also that this tendency likely arises from pair-interactions, and higher volume

fractions appear to disrupt the effects of pair-hydrodynamic interactions in both cases. Another

trend observed from Figs. 8.9a, 8.9b and 8.9c is that pushers show larger correlations lengths

compared to pullers for the entire range of volume fractions considered here. The correlation

length is defined here as the distance at which the correlation function first becomes zero. With

increasing volume fraction, we see that the degree of correlation decreases for both pushers and

pullers as seen by the magnitude of the correlation function at small r decreasing (see Fig. 8.9d).

Also, the trend with increasing volume fraction is a weak increase in the correlation length for

pushers and a decrease of the same for the case of pullers (see Fig. 8.9d).

To further understand the role played by these orientation correlations in the collective

behaviour of swimmers, we probe the relation between local orientational order and swimming

speed. To do this we consider the pair correlation function averaged over all swimmers within

a swimmer length (L) of a given swimmer, and plot this as a function of the swimmer’s speed.

Such a plot is shown in Fig. 8.10a for two volume fractions (ν = 0.5 and 1.0). For the case

of pushers it is clear that there is a positive correlation between local alignment and swimming

speeds. Relating this to our orientation correlation results, we see that pushers which are near
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Figure 8.8: Swimmer statistics. (a) The probability distribution function for the swimmer
velocity plotted for (i)pushers and (ii) pullers for four volume fractions. The top-hat profile
corresponding to uncorrelated swimmers swimming at a speed of unity is also shown. (b) The
probability distribution function for the swimmer speed for (i) pushers and (ii) pullers. (c) Mean
swimming speed plotted with respect to ν for pushers pullers for three box sizes (5, 10 and 15
swimmer lengths)
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one another tend to be aligned and also swim faster. In the case of pullers we see that slowest

swimming pullers show the most anti-parallel alignment. In the same vein, we also calculate the

correlation between the local volume fraction of the swimmers and their swimming speed. In

order to do this the number of swimmers within a sphere of radius L centred at a given swimmer

is used to compute the local volume fraction, and the same is plotted against the swimmer’s

speed (see Fig. 8.10b). In the case of pushers, we see that faster swimming is correlated with a

slightly higher local density of swimmers. Such a clear correlation does not appear for pullers.

These results are in qualitative agreement with those of Saintillan & Shelley (2012), who also

consider the above measures for swimmers. However, we note that local density correlations

are much smaller in magnitude than the orientation correlations seen above, which is in keeping

with leading logarithmic order slender body theory (Subramanian & Koch (2009)).

Another statistical measure of interest is the degree of alignment of a given swimmer along

the local extensional axis of the ‘ambient’ rate-of-strain tensor, that is, the rate-of-strain resulting

from the cumulative effect of the velocity disturbances due to all other swimmers. Slender rods

in the limit of small velocity gradients, as is the case in our simulations, tend to align along

the extensional axis of the disturbance flow. In the case of pushers, this alignment leads to an

orientational anisotropy which reinforces the velocity disturbance causing the anisotropy, thence

leading to the hydrodynamic instability (see section 8.2). We plot the mean of E : p̂p̂ over all

the swimmers with respect to time in Fig. 8.11 (it is worth noting that, in calculating the rate-

of-strain at a given swimmer, its own contribution must be subtracted from the total disturbance

velocity field at that point). We see that both pushers and pullers show a weak parallel alignment

at lower volume fraction. At the higher volume fraction, the degree of alignment increases for

both pushers and pullers, but the alignment is consistently greater for pushers which appears

consistent with the underlying mechanism for the instability (Subramanian & Koch (2009),

Subramanian & Nott (2012)) which involving mutual reinforcement of velocity and orientation

fluctuations.

Our analysis of the swimmer velocity distributions, mean swimming speeds, orientation

correlations, local order and density, and the degree of alignment allows us to build a picture for

the collective motion observed in pusher suspensions. Above a certain critical volume fraction,

pushers show orientation correlations over a few swimmer lengths, where nearby swimmers tend

to align and swim faster than in isolation. The orientation correlation lengths for pushers are

found to be greater than that for pullers, consistent with bulk fluid motion on longer scales. Both

pushers and pullers show a local alignment with the extensional axis of the disturbance velocity

field. In pushers, unlike pullers, this alignment leads to an amplification of this disturbance

velocity causing more swimmers in the vicinity to align. This instability also manifests in the

form of correlated fluid motions in the form of whorls and jets with significant correlation times

studied in section 8.3.1.

To study the global transport of the swimmers, we now look at the mean-square displace-

ments of the swimmers as a function of time and extract the long-time translational diffusivities.

As seen in Fig. 8.12a, the mean-square-displacement curves show a short-time ballistic regime

with a quadratic growth in time followed by long-time diffusive behaviour with a linear growth

in time. In contrast to the other measures considered here, the swimmer transport surprisingly
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Figure 8.9: Plot of pair correlation function as a function of distance from the swimmer for three
volume fractions (a) ν = 0.1 (b) ν = 0.5 (c) ν = 1.0 and (d) a combined plot with all three
volume fraction. The distance from the swimmer is expressed in non-dimensional form in units
of half the swimmer length L/2. The results are for simulation box of size 10 swimmer lengths.
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Figure 8.10: Two local measures, (a) the local volume fraction and (b) local order parameter
plotted as a function of the swimmer speed (simulation box size:10 swimmer lengths).
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shows little or no evidence of collective motion as seen by comparing pusher and puller suspen-

sions in Fig. 8.12a. We can extract the diffusivities of the swimmers from the long-time values

of mean-square displacement as:

Dswimmer = lim
t→∞

〈(x(t)− x(0))2〉
6t

, (8.13)

where x(t) is the position of the swimmer at time t. The swimmer diffusivities are plotted in

Fig. 8.12b as a function of the volume fraction. In the dilute limit, the swimmer diffusivity is

seen to obey an inverse scaling with the volume fraction as evidenced by the slope of −1 in the

log-log plot. This is attributed to the swimmer orientations decorrelating via pair interactions

(see scaling arguments below). The orientation decorrelation function, 〈p̂(t) · p̂(0)〉 is plotted as

a function of time in Fig. 8.13. By assuming an exponential decay of the form e−t/τcorr , we can

calculate the correlation time τcorr for the swimmer orientations. Note that this correlation time

can be equivalently interpreted in terms of a hydrodynamic rotary diffusivity Drh = 1/2τcorr

(Dhont (1996)) when the mechanism of decorrelation is a rotary diffusion process. From Fig.

8.13 we see that as one increases the volume fraction, both pusher and puller orientations

decorrelate more rapidly. This suggests that the orientation decorrelations are governed by

pair swimmer interactions which occur at an increased frequency at higher volume fractions.

Note that the pusher orientations decorrelate faster than pullers as we increase the volume

fraction. The swimmer diffusivity scales as Dswimmer ∼ U ′2τcorr, where U ′ is the swimmer

speed in the suspension and equals U (the isolated swimming speed) in the dilute limit. When

the orientations decorrelate via pair interactions, the correlation time is just the inverse of the

collision frequency between swimmers τcorr ∼ 1/(nUL2), where n is the number density. Written

in terms of the volume fraction, this is just τcorr ∼ 8L/(Uν), thus giving a swimmer diffusivity
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which scales as Dswimmer ∼ UL/ν. Our results for the swimmer diffusivity are in agreement

with this inverse scaling with ν as seen in Fig. 8.12b. The faster decorrelation of orientations

for pushers (see Fig. 8.13 (i)) may be responsible for the pusher diffusivities being smaller than

the pullers at higher volume fractions. Unlike other measures we have considered previously, the

long-time swimmer diffusivity shows surprisingly little dependence on the simulation box size.

This may be attributed to the opposing effects of increased swimming speeds and increased rate

of orientation decorrelation with the box size. As seen from the above scaling for the swimmer

diffusivity, this would indeed lead to weaker dependence on the box size.

The translational swimmer diffusivity may also be calculated from the orientation decorre-

lation using a generalized Taylor’s dispersion theory (Brenner (1979)), which gives the swimmer

diffusivity as:

Dswimmer =
U2

6Drh
, (8.14)

where Drh is the hydrodynamic rotary diffusivity defined above. A third method to calculate

the swimmer diffusivity is from the auto-correlation function of the particle velocities, and is

given by:

Dswimmer =
1

3

∫ ∞

0
〈ẋGC(t) · ẋGC(0)〉dt, (8.15)

where ẋGC , is the velocity of the geometric centre of the swimmers. Fig. 8.14, shows a compar-

ison of the diffusivities calculated through the three methods given by Eqs. 8.13, 8.14 and 8.15.

Of these three, Eqs. 8.13 and 8.15 give the exact translational diffusivity of the swimmers while

Eq. 8.14 is an approximation. This approximation arises since there are two mechanisms by

which the swimmer can translationally diffuse, and the Taylor dispersion formula neglects the

contribution arising from the convection of the centre-of-mass by the disturbance velocity field.

We note that the pusher diffusivity predicted by from the mean-square-displacement and the

velocity autocorrelation function are higher than those predicted from Eq. 8.14 since we have

used the isolated swimming velocity in calculating the swimmer diffusivity and also because,

as mentioned above, Eq. 8.14 only approximates the diffusivity. Our results for the swimmer

diffusivity are in agreement with earlier simulation efforts by Saintillan & Shelley (2007).

8.3.3 Tracer Transport

In this section we study the transport of passive tracer particles which are convected by the

swimmers’ disturbance fields. We are motivated by the fact that one of the earliest experiments

on bacterial suspensions by Wu & Libchaber (2000) involved the measurement of tracer diffu-

sivities, although the measurements were likely restricted to the unstable regime. Fig. 8.16a

shows the time evolution of the tracer mean-square displacements. An initial ballistic regime is

clearly seen followed by long-time diffusive behaviour. The mean-square displacements of tracers

in pusher and puller suspensions are comparable at low volume fractions (ν = 0.1); however,

there is a remarkable increase for the case of pushers at higher volume fractions (two orders of

magnitude higher at ν = 0.6). This can be appreciated visually from Fig. 8.15. We see from

the tracer particle trajectories in the right side column that for the case of pullers, the tracer

particles seem to execute a random trajectory which does not lead to a significant displacement
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(a) Swimmer mean-square-displacement (simulation box size: 10 swimmer lengths)

(b) Long-time diffusivities of the swimmers plotted as a function of volume fraction

Figure 8.12: Swimmer transport. (a) Mean-square-displacement with respect to time for (i)
pushers and (ii) pullers. (b) Translational diffusivities of the swimmers plotted with respect to
ν for pushers pullers for three box sizes (5, 10 and 15 swimmer lengths).
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Figure 8.13: Evolution of the orientation decorrelation function 〈p̂(t) · p̂(0)〉 with time. The
results are for a simulation box of size 10 swimmer lengths.

Figure 8.14: The swimmer diffusivity calculated using three methods (i) long-time mean-square-
displacement (ii) swimmer orientation decorrelation using a generalized Taylor dispersion theory
(iii) swimmer velocity auto-correlation (simulation box size: 10 swimmer lengths).
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even at long times (see Figs. 8.15a and 8.15b). In striking contrast, the tracer particle trajec-

tories in pusher suspensions show significant correlated motions leading to trajectories which

undergo significant displacement. This leads to the trajectories filling up the entire field of view

as seen in Fig. 8.15d. The tracer diffusivity can be extracted from the long-time value of the

mean-square displacement as:

Dtracer = lim
t→∞

〈(xtracer(t)− xtracer(0))
2〉

6t
(8.16)

where xtracer(t) is the position of the tracer particle at time t. The average in the above equations

is over the number of tracer particles Ntracer in the suspension (a value of Ntracer = 5000 was

found to be sufficient to obtain good statistics). Fig. 8.16b shows a plot of the tracer diffusivities,

as a function of the swimmer volume fraction, for pushers and pullers. The pusher curves show

a clear bifurcation beyond a critical volume fraction with diffusivities that are much larger than

those for pullers. The tracer diffusivities in puller suspensions show only a weak increase with

the volume fraction. Importantly, the simulation box size has a marked effect and we see that

the bifurcation point shifts to lower volume fractions as the box size is increased. This is because,

for pushers, the tracer diffusivities at a given volume fraction (beyond the bifurcation point)

increase with the box size. It important to note that the puller curves seem fairly independent

of the box size, pointing to the absence of any instability and collective motion. The bifurcation

point for the simulations is in excellent agreement with those predicted by the linear theory (see

Eq. 8.4 and Fig. 8.2). Physically, as argued earlier, the trend with box size is due to the long-

wavelength nature of the instability for pushers which means that as the box size increased there

is a greater range of unstable wavelengths which can be captured by the simulation box. Among

all the statistical measures considered here, we see that the tracer diffusivity is the most sensitive

measure of the onset of collective motion. This can be seen by comparing Fig. 8.16b with earlier

plots of the mean fluid kinetic energy (Fig. 8.5c) and fluid velocity correlation times (Fig. 8.6b).

This was earlier reported in simulations by Saintillan & Shelley (2012). The reason for this can

be seen through a simple scaling argument. The tracer diffusivity scales as Dtracer ∼ 〈u2〉τcorr,
where 〈u2〉 is the mean fluid kinetic energy and τcorr is the fluid velocity correlation time. For

pushers we saw that both the fluid velocity magnitude and correlation time showed an increasing

trend with volume fraction after the onset of collective motion (the correlation time shows a

decrease for higher volume fractions but still remains much higher than the puller values). The

combined effect therefore is to cause an even larger increase in the trace diffusivity for the case

of pushers. The tracer diffusivity is therefore a very sensitive indicator of the onset of collective

motion and will be used henceforth to identify the bifurcation point between pushers and pullers

which is the threshold for the onset of collective motion. In particular, we will use it to identify

the box-size-independent threshold for instability in a suspension of pushers that undergo a

run-and-tumble motion. As will be seen in the next chapter, the pusher-puller bifurcation in

this case is much more subtle, and the choice of a sensitive statistical measure is crucial.
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(a) Puller suspension: simulation snapshot at t = 0.2

(b) Puller suspension: simulation snapshot at long times t ≈ 100

Figure 8.15
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(c) Pusher suspension: simulation snapshot at t = 0.2

(d) Pusher suspension: simulation snapshot at long times t ≈ 100

Figure 8.15: Simulation snapshots showing the swimmers’ positions and the fluid disturbance
velocity vectors on the left side column and trajectories of tracer particles on the right column.
The simulation box size is 10 swimmer lengths and the volume fraction is ν = 0.5, which
for pushers lies in the unstable regime. The blue circles represent the geometric centres of the
swimmers and the red arrows correspond to the swimmers’ orientation vectors. The black arrows
depict the fluid velocity vectors. In the right column, the red circles represent the positions of the
tracer particles. (a) Puller suspension near the start of the simulation and (b) puller suspension
at long times. (c) Pusher suspension near the start of the simulation, (b) pusher suspension
at long times. We only display swimmers and tracers which lie in a slab of size 20203 in the
x1, x2 and x3 directions, respectively, centred at the midpoint of the simulation box in the x3
direction. The fluid velocity vectors lie on the plane at the midpoint of the simulation box in
the x3 direction.
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(a) Tracer mean-square-displacement (simulation box size: 10 swimmer lengths)

(b) Long-time diffusivities of the swimmers plotted as a function of volume fraction

Figure 8.16: Tracer transport. (a) Mean-square displacements for the tracer particles plotted
with respect to time for (i) pushers and (ii) pullers. (b) Diffusivities of the tracer particles plotted
with respect to ν for pushers pullers for three box sizes (5, 10 and 15 swimmer lengths). The
vertical lines indicate the box-size-dependent theoretical prediction for the instability threshold
given by Eq. 8.4.



Chapter 9

Results and Discussion: Tumblers

and Rotary Diffusers

9.1 Introduction

From last chapter’s discussion on smooth swimmer suspensions, we now move on to swimmers

with intrinsic orientation relaxation mechanisms such as tumbling and rotary diffusion. Such

intrinsic orientation relaxation mechanisms are a widely observed and important feature of the

motion of bacteria (Berg (1993), Berg (2004)), Algae (Polin et al. (2009)) and artificial micro-

swimmers (Walther & Müller (2008), Ebbens & Howse (2010)). Therefore, modelling such

swimmers brings us that much closer to studying collective motion in real swimmer suspensions,

and also in achieving a sensible comparison between theory, simulations and experiments. In

this chapter our main focus will be to study the impact of intrinsic orientation relaxation mech-

anisms on the onset of collective motion in pusher suspensions. Pullers, with the same intrinsic

decorrelation mechanisms included will once again serve as a basis for contrast. We seek to

identify the instability threshold for suspensions of both tumblers and rotary diffusers based on

our simulations, and compare the same with the box-size-independent threshold predicted by

Subramanian & Koch (2009). Note that this box-size-independence is in sharp contrast to the

case of smooth swimmers where, as seen in the previous chapter, the threshold is an artefact of

the finite box size used in the simulations. Such a threshold would be a valuable result since

it would enable comparisons with, and serve as a useful guide for experiments involving bulk

suspensions of these swimmers.

9.2 Theory

9.2.1 Stability Theory: Swimmers with Intrinsic Orientation

Decorrelation Mechanisms

In this section we give an overview of the theory developed by Subramanian & Koch (2009) for

swimmer suspensions with intrinsic orientation decorrelation mechanisms. From the last chapter

on smooth swimmers, we recall that the instability for pushers was due to a mutual reinforcement

of perturbations in the orientation and velocity fields (the suspension at linear order remains

spatially homogeneous). We saw that a suspension of pushers is always unstable to sufficiently

long-wavelength perturbations. In addition, we saw that for an unbounded suspension, where

the largest allowed perturbation wavelengths are infinite, the critical volume fraction for the

instability is zero.

The above picture is modified when orientation relaxation mechanisms are added. Now the

167
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accumulation of orientation anisotropy is controlled by the smaller of two time scales. The first

is the time scale for the bacterium to swim a distance of order the wavelength of the disturbance

which is O(λ/U) with λ = Lbox being the largest possible wavelength in simulations. The

other is the time scale for intrinsic orientation decorrelation, which for tumbling is the mean-

run-time τ and for rotary diffusion is O(1/Dr) (for details about these orientation relaxation

mechanisms in the context of bacteria such as E. Coli refer to chapter 7). If the time scale

for orientation decorrelation is much larger than λ/U , then one expects to recover the smooth

swimmer behaviour. On the other hand when τ < λ/U , the orientation bias only accumulates for

a time τ and is therefore O(u′τ/λ) or O(u′τk). The bacterial stress, as in the smooth swimmer

case is given by O(u′τk)O(nFL). We can take F ∼ µULH , where LH = α1L is the length of

the swimmer head. This, for pushers, overcomes the stabilizing Newtonian response (O(µku′))

when τ > O(nUL2)−1 which yields a threshold in terms of the critical value of nUL2τ . Thus

in a similar fashion to smooth swimmers we have an instability when (λ,Uτ) > O(nL2)−1.

The range of unstable wavelengths for both smooth swimmers and tumblers is in the interval

O(nL2)−1 < λ < ∞. In terms of a wavenumber the unstable interval is 0 < k < O(nL2). The

above scaling arguments can be extended to the case of rotary diffusers by replacing τ by 1/Dr,

so that for rotary diffusers the threshold is given in terms of a critical value of nUL2/Dr.

The modal diagram for a suspension of tumblers is shown in Fig. 9.1. We can confine our

attentions to the ‘mode 1’ branch which results in a finite positive value for the growth rate even

at k = 0. As shown by Subramanian & Koch (2009), the growth rate of the unstable modes for

tumblers follows the relationship αtumblers = αsmooth − 1/τ , where αsmooth is the growth rate

for smooth swimmers presented in chapter 8. Thus, the modal diagram for tumblers can be

obtained by shifting the growth rate curves for smooth swimmers (see Fig. 8.1) by an amount

1/τ in the negative growth rate direction. At a certain value of the mean-run-time, the modal

diagram shifts completely into the stable side. This corresponds to equating the growth rate of

the fastest growing k = 0 modes to zero, which from Fig. 9.1 gives us the neutral curve for the

instability as:

0.2(CnUL2) =
1

τ
, (9.1)

which gives:

nUL2τ |critical =
5

C
, (9.2)

consistent with scaling arguments above. The complete modal picture (for arbitrary wave-

lengths) for rotary diffusers is not amenable to analysis, and appears more complicated from

available numerical evidence (Hohenegger & Shelley (2010), Saintillan (2010)). But, the thresh-

old condition must involve a critical value of nUL2/Dr, as mentioned above, and the precise

value is mentioned below.

Subramanian & Koch (2009) present a solution for the neutral curve for both wild type
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tumblers and also rotary diffusers. For a suspension of wild-type tumblers this is given by:

nL3|crit =
5

CF(r)

(
L
Uτ

)
(
1− 5G(r)

2CF(r)

(
L
Uτ

)) , (9.3)

and, for a suspension of rotary diffusers, the threshold is given by:

nL3|crit =
30

CF(r)

(
DrL
U

)
(
1− 15G(r)

CF(r)

(
DrL
U

)) . (9.4)

In the above equations C is a constant characterizing the swimming dipole, defined in chapter

8, F(γ) is a dimensionless function of the aspect ratio γ defined as F(γ) = (γ2 − 1)/(γ2 + 1)

for a bacterial head of a spheroidal geometry. For our case, F(γ) = 1, since we consider the

swimmers to be slender rods for which γ → ∞. The function G(γ) is related to the induced

dipole and is zero in our simulations since we neglect the effects of the induced dipole. With

these simplifications, the thresholds relevant to our simulations for the case of tumblers is given

by:

nL3|crit =
5

C

(
L

Uτ

)
, (9.5)

and, for rotary diffusers, we have:

nL3|crit =
30

C

(
LDr

U

)
. (9.6)

We note that Eq. 9.5 is exactly same as Eq. 9.2. These are very important results with respect

to simulations and experiments, since they tell us that there are two possible ways of crossing

the threshold for instability. In the first the volume fraction is varied with the mean-run-time or

Dr held fixed. In the second, we keep the volume fraction fixed while varying the mean-run-time

or Dr. As we see later, the second method is specially useful since it allows us to study relatively

dilute suspensions for which pair-correlations and higher order correlations may be neglected,

in which case puller suspensions serve as a true contrast. This allows us to compare our results

to linear stability theory (Subramanian & Koch (2009)), which is also valid in the dilute limit.

Recent experiments by Karmakar et al. (2014) with modified strains of E. coli which display a

range of mean-run-times also motivate our study of τ variation.

In simulations, the relevant growth rate is not that corresponding to the k = 0 mode but

that due to the smallest wavenumber in the simulations which is O(1/Lbox). This introduces a

correction to the k = 0 threshold in Eq. 9.2 of O(L/Lbox)
2. For the sake of briefness we only

write down the final result for this correction:

nUL2τ |critical =
5

C

[
1 +

0.289

ν2

(
L

Lbox

)2
]

(9.7)

Fig. 9.2, shows a plot of the critical value of nUL2τ as a function of L/Lbox for the case of

ν = 0.05, which will be relevant to the results presented later in this chapter. The simulation

boxes for which we present results are marked in the abscissa of Fig. 9.2.
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Figure 9.1: Modal digram for a suspension of pushers with tumbling as the intrinsic orientation
relaxation mechanism. Reproduced from Subramanian et al. (2011a).

The rest of this chapter is organized as follows. We first present the existing theory for

tracer transport in an unbounded suspension of tumblers in the stable regime in section 9.2.2.

We then go on to modify this theory to account for the tracer diffusion in an infinite periodic

suspension in section 9.2.2. The latter theory comes in useful while discussing our simulation

results for tracer diffusion in tumbler suspensions. Moving on to the results, in section 9.3.1 we

first consider a suspension of tumblers with a fixed value of τ but for varying volume fractions

and contrast them to the smooth swimmers considered earlier. We then look at the effects of

varying the mean-run-time keeping the volume fraction fixed in section 9.3.2. In both cases

we contrast the tracer diffusion curves in pusher and puller suspensions in order to estimate

the threshold for onset of collective behaviour. We conclude the chapter by presenting similar

results for swimmers where rotary diffusion is the means of orientation decorrelation in section

9.4.

9.2.2 Theory: Tracer Transport in Swimmer Suspensions

In this section we summarize some results for tracer transport in an unbounded suspension of

pushers and pullers, in the stable regime, by Kasyap et al. (2014), and then, extend the theory

for a periodic box. The periodic box results are relevant to the simulation results presented later

in this chapter, and serve as a valuable base for validation of the simulations.

Tracer Transport in an Unbounded Domain

We begin by giving an overview of results for an unbounded suspension by Kasyap et al. (2014).

They consider a dilute suspension of swimmers (nL3 ≪ 1), such that swimmer-swimmer and

many swimmer-tracer pair-correlations can be neglected. Each tracer particle is therefore con-

vected by the velocity field due to a single bacterium. The main result is an expression for the

hydrodynamic tracer diffusivity i.e the tracer diffusivity due to the bacterial disturbance velocity
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Figure 9.2: Plot of the critical value of nUL2τ for a periodic swimmer array as a function of
L/Lbox for ν = 0.05. The red dashed line represents the result for an unbounded suspension
(L/Lbox → ∞). The simulation box sizes for which we present results: 10, 15, 25 and 40
swimmer lengths, are marked on the abscissa.

field. This diffusivity is given by:

Dh = nL3ULD̃h, (9.8)

where D̃h is the dimensionless tracer diffusivity. This is given in terms of the Fourier transformed

disturbance velocity field as (see Eq. (21) in Kasyap et al. (2014)):

Dh =
n

12π

∫
dp

∫
dk

Û(k) · Û(−k)

(2πk)2D + 2πik · pU + 1
τ

, (9.9)

where Û (k), is the Fourier transform of the velocity field given by:

Û(k) =

∫

x

dx u′(x)e−2πik·x. (9.10)

In the above equation, u′(x) is the disturbance velocity at x due to an unbounded suspension

of swimmers, where the position is measured relative to a coordinate system on the swimmer.

Using the expressions for Û(k) as given in Kasyap et al. (2014), scaling the wavenumber by the

factor (2πL)−1, and rescaling the terms in the denominator, we get:

D̃h =
1

96π4M2

∫
dp

∫
dk

[k2 − (k · p)2]F (k · p)F (−k · p)

k6
(

1
τ∗ + ik · p+ k2

Pe

) . (9.11)

Here, Pe = UL/D and measures the relative strength of convection due to the swimmers and

the thermal diffusion of the tracer and τ∗ = Uτ/L, which is the average distance the bacterium

swims before tumbling relative to its own length. Note that since we use L/(2U) as the time

scale, the non-dimensional mean-run-time for our case is 2Uτ/L = 2τ∗. We will use our scaling

for τ from hereon (this merely involves replacing 1/τ∗ with 2/τ in Eq. 9.11 since we will continue

using τ to represent the dimensionless mean-run-time). The term F (k · p) in Eq. 9.11 involves
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the Fourier transform of the bacterial force density, and is defined as:

F (k · p) = − 1

ik · p

{
e−iα1k·p/2 − 1

1− α1
eiα1k·p/2 +

α1

1− α1
ei[1−α1/2]k·p

}
. (9.12)

For the case of fore-aft symmetric swimmers (α1 = 1/2), as is the case in our simulations, we

can simplify the above expression and we have:

F (k · p)F (−k · p) =
16 sin4(k · p/4)

(k · p)2
. (9.13)

Since F (k · p) is proportional to the intrinsic force-dipole, the quadratic combination of F (k ·

p)F (−k · p) implies the expression Eq. 9.13 remains the same for pullers (when α1 = 1/2, as is

the case in our simulations). Therefore, the analysis from hereon is equally applicable to both

pushers and pullers, the tracer diffusivity in the dilute regime considered being independent of

the swimming mechanism. Substituting in Eq. 9.11, we get:

D̃h =
1

6π4M2

∫
dp

∫
dk

[k2 − (k · p)2] sin4(k · p/4)

(k · p)2k6
(
2
τ + ik · p+ k2

Pe

) . (9.14)

Proceeding as in Kasyap et al. (2014), one defines a cylindrical coordinate system with its axis

along p, such that dk = 2πk⊥dk⊥dk‖ where k‖ = k · p and k⊥ = |k − (k · p)p|. Transforming

Eq. 9.14 to the cylindrical coordinate system, and considering the limit where tracers are only

convected by the swimmer velocity field (Pe→ ∞), we have:

D̃h =
1

6π4M2

∫
dp

∫ ∞

−∞
dk‖

∫ ∞

0
2πk⊥dk⊥

k2⊥ sin4(k‖/4)

k2‖(k
2
‖ + k2⊥)

3
(
2
τ + ik‖

) , (9.15)

D̃h =
1

3π3M2

∫
dp

∫ ∞

−∞
dk‖

sin4(k‖/4)

k2‖
(
2
τ + ik‖

)
∫ ∞

0
dk⊥

k3⊥
(k2‖ + k2⊥)

3
. (9.16)

We can perform the integral with respect to k⊥ and p analytically which gives:

D̃h =
1

3π2M2

∫ ∞

−∞

sin4(k‖/4)

k4‖
(
2
τ + ik‖

)dk‖. (9.17)

We can evaluate the remaining integral over k‖ numerically via adaptive Gaussian quadrature

in MATLAB. It is straightforward to derive the small-τ asymptote of the tracer diffusivity by

expanding the denominator of the integrand in Eq. 9.17. The leading order term is then given

by:

D̃h =
τ

576πM2
(9.18)

The evaluation of the large τ asymptote requires a little more care and has been done by Kasyap

et al. (2014). Considering Eq. 9.17 in the limit of τ → ∞, we see from the denominator of the

integrand that the domination contribution comes from a region in k‖ which O(1/τ∗) or smaller.
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Expanding the integrand for small k‖, we get:

D̃h = lim
τ→∞

1

768π2M2

∫ ∞

−∞

1(
2
τ + ik‖

)dk‖ (9.19)

The neglect of the term 1/(2τ) from the denominator of Eq. 9.19 leads to a divergent integral

which must be interpreted in the sense of a Cauchy principal value. On evaluating the integral,

with such an interpretation, one gets:

D̃h =
1

768πM2
(9.20)

The results for the non-dimensional tracer diffusivity, as a function of the mean-run-time τ , is

plotted in Fig. 9.3. It is interesting to note that the tracer diffusivity for smooth swimmers

does not go to zero as predicted in earlier works (Morozov & Marenduzzo (2014)). The above

analysis tells us, rather surprisingly, that, for smooth swimmers, the contribution to the tracer

diffusivity comes from length scales much larger than the swimmer length, or equivalently, from

the small wavenumber contribution in the tracer diffusion integral where tumbling continues to

be important. This peculiarity implies that the result above could not have been arrived at

from the purely deterministic limit where the symmetric nature of the deterministic swimmer

trajectories would lead to a zero diffusivity. This raises an interesting question regarding the

tracer diffusivity in a periodic box which is relevant to simulations where such a cancellation will

not occur once the length of the trajectory exceeds the box dimensions. Since the simulation

box is finite in size, the wavenumber space is discrete and the smallest wavenumber is inversely

proportional to the size of the simulation box. We therefore expect a non-trivial effect of using

a finite simulation box, since for large enough τ (τ > Lbox/(2U)), the dominant contribution

will be from wavenumbers less that O(1/Lbox) in the simulations; unlike the unbounded theory,

where the dominant contribution continues to come from a wavenumber interval of O(1/L).

The understanding of this singular effect of periodicity motivates our derivation of the tracer

diffusivity in a periodic box.

Tracer Transport in Periodic Domains

To evaluate the tracer diffusivity in a periodic box, our approach follows that of Kasyap et al.

(2014). We consider a cubic simulation box of size Lbox with periodic boundary conditions in all

three dimensions. We again start from Eq. (21) in Kasyap et al. (2014) which gives the tracer

diffusivity as a function of the Fourier transformed disturbance velocity field. For the periodic

box case, the integral over wavenumber space is replaced by a summation over discrete wave

vectors normalized by the volume of the simulation box, and is given by:

Dh =
n

12πL3
box

∫
dp
∑

k 6=0

Û (k) · Û(−k)

(2πk)2D + 2πik · pU + 1
τ

, (9.21)

where Û (k), is the Fourier transform of the velocity field given by:

Û(k) =

∫

x

dx u′(x)e−2πik·x. (9.22)
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In the above equation, u′(x) is the periodic disturbance velocity at x due to an infinite cu-

bic array of swimmers, where the position is measured relative to a coordinate system on the

swimmer. We note that for k = 0, the above is just the average of the disturbance velocity

over the periodic box, which is zero for a suspension of force-free swimmers. We can therefore

neglect k = 0 terms. As discussed in Brady et al. (1988), even for the case where each particle

exerts a force, this term is related to average back-flow in the suspension, and must therefore be

excluded from the summation. Recall that the above expression in slightly different form has

been derived earlier in the context of the Ewald summation method in chapter 7 in section 7.3.

The expression for Û(k) can be shown to be given by:

Û(k) =
UL3

box

Mk2

[
p− (k · p)k

k2

]
F (k · p), (9.23)

where F (k · p) is given by:

F (k · p) = − 1

ik · p

{
e
−

iα1k·p

2
L

Lbox − 1

1− α1
e

iα1k·p
2

L
Lbox +

α1

1− α1
e
i[1−α1

2 ]k·p
L

Lbox

}
. (9.24)

In the Eqs. 9.23 and 9.24, the wavenumber is scaled by the factor (2πLbox)
−1. Substituting Eqs.

9.23 and 9.24 in Eq. 9.21, and rescaling the terms in the denominator, we get:

Dh =
n

12πL3
box

∫
dp
∑

k 6=0

(
UL3

box
Mk2

)2 (
p− (k·p)k

k2

)
·

(
p− (k·p)k

k2

)
F (k · p)F (−k · p)

k2D
L2
box

+ ik·pU
Lbox

+ 2U
Lτ

, (9.25)

where we have rescaled τ by L/(2U), such that τ = τ/(L/(2U)), and we retain the same notation

for simplicity. Using this rescaling, we get:

Dh =
nU2L3

box

12πM2

∫
dp
∑

k 6=0

[
k2 − (k · p)2

]
F (k · p)F (−k · p)

k6
[
k2D
L2
box

+ ik·pU
Lbox

+ 2
τ

] . (9.26)

Simplifying, we get:

Dh =
nUL3

boxL

12πM2

∫
dp
∑

k 6=0

[
k2 − (k · p)2

]
F (k · p)F (−k · p)

k6
[
k2 D

LU
L2

L2
box

+ ik · p L
Lbox

+ 2
τ

] , (9.27)

Dh = nL3UL

(
Lbox

L

)3 1

12πM2

∫
dp
∑

k 6=0

[
k2 − (k · p)2

]
F (k · p)F (−k · p)

k6
[
k2Pe L2

L2
box

+ ik · p L
Lbox

+ 2
τ

] , (9.28)

where we have used, as before, Pe = UL/D. For the specific case relevant to our simulations,

we use α1 = 1/2, which gives:

F (k · p)F (−k · p) =
16 sin4

(
k·p
4

L
Lbox

)

(k · p)2
. (9.29)



175

Substituting the above expression in Eq. 9.28, and considering the Pe → ∞ limit (a non-

Brownian tracer, as is the case in the simulations), we get:

D̃h =
4

3πM2

(
1

L∗

)3 ∫
dp
∑

k 6=0

[
k2 − (k · p)2

]
sin4

(
L∗k·p

4

)

(k · p)2k6
[
ik · pL∗ + 2

τ

] , (9.30)

where we have denoted the ratio L/Lbox = L∗. Interchanging the integral and summation,

and using a polar coordinate system aligned in the k direction, we have k · p = k cos θ and

dp = sin θdθdφ. Using these, the integral over the unit sphere can be written as:

D̃h =
4

3πM2

(
1

L∗

)3∑

k 6=0

1

k8

∫ 2π

0
dφ

∫ π

0
dθ sin θ

[
k2 − k2 cos2 θ

]
sin4

(
kL∗ cos θ

4

)

cos2 θ
[
ik cos θL∗ + 2

τ

] . (9.31)

Simplifying, we get:

D̃h =
8

3M2

(
1

L∗

)3∑

k 6=0

1

k6

∫ π

0
dθ sin θ

(
1− cos2 θ

cos2 θ

)
sin4

(
kL∗ cos θ

4

)
[
ik cos θL∗ + 2

τ

] . (9.32)

Making the transformation, m = cos θ, we get:

D̃h =
8

3M2

(
1

L∗

)3∑

k 6=0

1

k6

∫ 1

−1
dm

(
1−m2

m2

)
sin4

(
kL∗m

4

)
[
ikmL∗ + 2

τ

] . (9.33)

Eq. 9.33 is the final expression for the non-dimensional tracer diffusivity in a periodic box. The

integral over m can be performed numerically using the adaptive Gaussian quadrature imple-

mented in MATLAB. The sum over k excluding k = 0 is performed numerically by specifying a

tolerance of 10−8 for convergence.

The two asymptotic limits of τ → 0 and τ → ∞ follow immediately from Eq. 9.33. Consid-

ering first the τ → 0 limit, we can rewrite Eq. 9.33 as:

D̃h =
4

3M2

(
1

L∗

)3

τ
∑

k 6=0

1

k6

∫ 1

−1
dm

(
1−m2

m2

)
sin4

(
kL∗m

4

)
[
ikmL∗ τ

2 + 1
] . (9.34)

Expanding the denominator (ikmL∗τ/2 + 1) in a geometric series and considering the leading

order term, we have:

D̃h =
8

3M2

(
1

L∗

)3

τ
∑

k 6=0

1

k6

∫ 1

0
dm

(
1−m2

m2

)
sin4

(
kL∗m

4

)
, (9.35)

where we have used the fact that the integrand is an even function of m. From Eq. 9.35 we see

that, for small values of τ , the non-dimensional tracer diffusivity is linear in τ reaching a value of

zero at τ = 0, which physically corresponds to swimmers which tumble constantly. As a result,

the tracer sees a velocity field that decorrelates almost instantaneously, leading to a vanishingly

small diffusivity. This expression is analogous to the small τ asymptote obtained for the case of

an unbounded domain (see Eq. 9.18), implying that periodicity is a regular effect for τ → 0.
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To derive the τ → ∞ limit, we rewrite Eq. 9.33 as:

D̃h =
8

3M2

(
1

L∗

)3∑

k 6=0

1

k6

∫ 1

−1
dm

(
1−m2

m2

)
sin4

(
kL∗m

4

)

ikmL∗
[
1 + 2

ikmL∗τ

] . (9.36)

Expanding the denominator [1 + 2/(ikmL∗τ)] in a geometric series, we get:

D̃h =
8

3M2

(
1

L∗

)3∑

k 6=0

1

k6

∫ 1

−1
dm

(
1−m2

m2

)
sin4

(
kL∗m

4

)

ikmL∗

[
1− 2

ikmL∗τ

]
. (9.37)

The first term is odd in m and hence is zero. The second term, therefore, gives the leading-order

contribution to the diffusivity, as:

D̃h =
32

3M2

(
1

L∗

)5 1

τ

∑

k 6=0

1

k8

∫ 1

0
dm

(
1−m2

m4

)
sin4

(
kL∗m

4

)
. (9.38)

Note the inverse scaling with τ in Eq. 9.38. This leads to the surprising conclusion that the

tracer diffusivity in a periodic box in the limit of τ → ∞ (smooth swimmer) goes to zero.

We recall that this was not the case for an unbounded suspension which involved a finite value

emerging from a principal-value integral, and is therefore a non-trivial effect of the finite box size.

This is an important result due to its relevance in our simulations. The reason for this singular

role of periodicity can deduced from Eq. 9.17, where we saw that, in the limit of large τ , the

dominant contribution to the integral came from wavenumbers of O(1/τ) or smaller. However,

in a periodic box, we see from the denominator of Eq. 9.33 that the smallest wavenumber is

O(L∗) or in dimensionless form O(1/Lbox). Thus, for 1/τ ≪ L∗, the dominant contribution

in the unbounded case is not captured by the discrete sum over k, leading to the long-time

tracer diffusivity going to zero. The dimensionless (non-Brownian) tracer diffusivity is plotted

in Fig. 9.3 for a number of box sizes along with the result for an unbounded suspension. The

tracer diffusivity in an unbounded suspension increases monotonically with τ , with the large

τ asymptote given by Eq. 9.20 that is O(nUL4) (see Kasyap et al. (2014)), and therefore,

independent of τ . However, we see that the periodic-box diffusivity is non-monotonic with a

maximum at a finite value of τ , as expected from the above scalings. The small and large τ

asymptotes in this case are given by Eqs. 9.35 and 9.38 and are also shown in Fig. 9.3. One

can clearly see the periodic box results systematically approaching the unbounded one as one

increases the size of the simulation box. This non-monotonic trend in simulations of tracer

transport in a periodic box was erroneously attributed to the closed-loop nature of the tracer

particles by Morozov & Marenduzzo (2014). Later in this chapter, we compare our simulation

results with the theoretical results derived above, which serve as a valuable standard of reference.

The tracer diffusivity is not strongly affected by box size only when Uτ ≪ Lbox, where the

parameters are now in dimensional form. Physically this implies the run length of the swimmer

is small when compared to the simulation box size. Therefore, as along as we stay in the

regime Uτ ≪ Lbox, the finite box size does not affect the tracer diffusion results and we can

predict a box-size-independent threshold by monitoring the tracer diffusivities in pusher and

puller suspensions. In contrast, for smooth swimmers, the rate of orientation decorrelation due
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Figure 9.3: Theoretical predictions for the tracer diffusivity in an unbounded suspension, and in
an infinite periodic swimmer array. Note that in an unbounded suspension (solid black curve)
the diffusivity monotonically increases with a well defined large τ asymptote. The periodic box
results show a non-monotonic trend, with large τ asymptote which is ∼ O(1/τ). The small τ
asymptotes of the periodic swimmer array are also shown.

to hydrodynamic interactions is, by definition, comparable to the periodicity time scale at the

stability threshold.

9.3 Results and Discussions: Tumblers

9.3.1 Comparison between Tumblers and Smooth Swimmers:

Volume Fraction Variation

In this section, we present results for suspensions of pushers and pullers which tumble at a

certain fixed rate (τ = 1) for two different box sizes (10 and 15 swimmer lengths). Using

statistical measures for the swimmers, the intervening fluid and tracer transport, we now study

the dynamics of a suspension of tumblers and contrast it with our earlier results for smooth

swimmers.

Fluid Velocity Statistics

We first consider the probability distribution for the fluid velocity plotted in Fig. 9.4a. In

contrast to the smooth swimmer case (see Fig. 8.5a in chapter 8), here we see that, even

at higher volume fractions, pushers and pullers display similar behaviour. The fluctuations do



178 Chapter 9. Results and Discussion: Tumblers and Rotary Diffusers

increase in magnitude with increasing volume fraction for pushers, however this increase is much

smaller compared to that seen earlier for smooth swimming pushers. The qualitative behaviour

for pullers which tumble is not very different from the smooth swimming case. For tumblers,

as seen in Fig. 9.4b, there is no clear evidence of bulk motion in the plots of the probability

distribution for the fluid velocity magnitude. This is in contrast to smooth swimming pushers

which show clear evidence of bulk motion in the fluid (see Fig. 8.5b). To detect the signature

of weak bulk motion (if any) for pushers, we will use other measures such as the fluid velocity

power spectrum and the tracer diffusivity, specially the latter given it is sensitive to the onset of

collective motion, as shown in the previous chapter. However, on plotting the mean fluid kinetic

energy as a function of volume fraction (Fig. 9.4c), we see that a small yet systematic difference

still exists between pushers and pullers. These grow with volume fraction, with pushers showing

marginally (6%) greater fluid kinetic energy than pullers at ν = 0.05 and around 45% greater at

ν = 0.5. Thus, we see that pushers which tumble are characterized by larger velocity fluctuations

than pullers. We also note that these differences do not show a strong trend with box size, with

results for a 15 swimmer lengths box staying very close to those for a 10 swimmer lengths box

(see Fig. 9.4c).

Fig. 9.5 shows the fluid velocity spectrum for a suspension of tumblers at two different

volume fractions (ν = 0.05 and ν = 0.5). In this case, it is seen that at higher volume fractions,

the pusher spectrum shows an increase for small wavenumbers which correspond to length scales

of O(Lbox), although, the increase is smaller in magnitude compared to that in smooth swimmers

(see Fig. 8.7 in chapter 8), indicating the stabilization of the suspension due to tumbling. This

implies the presence of spatially correlated motions in the fluid (bulk motion), though these hold

a smaller fraction of the fluid kinetic energy when compared to the case of smooth swimmers.

The maximum of the spectrum still occurs at the lowest wavenumber which seems to suggest

that the size of the structures formed in the fluid are still controlled by the size of the simulation

box.

Another measure of the fluid velocity field is the Eulerian correlation time for the velocity

vector at a fixed point in space. This function is plotted for a suspension of pushers and pullers

which tumble with τ = 1, at two different volume fractions of 0.05 and 0.5, in Fig. 9.6. We see

that correlation times for pullers show a decrease with an increase in volume fraction. This is

due to the interactions between swimmers becoming more frequent leading to faster orientation

decorrelation of the swimmers and hence of the fluid velocity. This trend is similar to that seen

for smooth swimming pullers (see Fig. 8.6). For pushers, in contrast, we see a small increase in

the correlation time which seems to be related to the onset of the instability. This same increase

was seen for smooth swimming pushers (see Fig. 8.6), but for tumblers it is smaller in extent

pointing to the stabilization due to tumbling.

Swimmer Statistics

Fig. 9.7a shows a plot of the probability distribution function for the swimmer velocity. Again,

tumbling stabilizes the suspension with the pushers and puller distribution function not showing

much qualitative differences even at higher volume fractions. The tails of the distribution func-

tion for pushers at higher volume fractions are slightly larger when compared to pullers implying

larger fluctuations. The swimmer-speed distribution function for pushers shows a flattening, and
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(a) Probability distribution function for the fluid disturbance velocity (τ = 1). Simulation
box size: 10 swimmer lengths.
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(b) Probability distribution function for the fluid disturbance velocity magnitude (τ = 1).
Simulation box size: 10 swimmer lengths.

(c) Mean fluid kinetic energy for the case of pushers and
pullers plotted versus ν(τ = 1).

Figure 9.4: Fluid velocity statistics for a suspension of tumblers with τ = 1. (a) The probability
distribution function for the fluid disturbance velocity plotted for (i) pushers and (ii) pullers
for three volume fractions. (b) The probability distribution for the fluid disturbance velocity
magnitude plotted for (i) pushers and (ii) pullers for three volume fractions. (c) Mean fluid
kinetic energy plotted with respect to ν for pushers and pullers. The simulation box sizes are
10 and 15 swimmer lengths.
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Figure 9.5: Fluid velocity power spectrum, normalized by the number of swimmers, for a sus-
pension of tumblers where the mean-run-time is fixed at τ = 1; and for two different volume
fractions: ν = 0.05 and 0.5. Simulation box size: 10 swimmer lengths.
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Figure 9.6: Fluid velocity correlation function (Eulerian) for a suspension of tumblers where
the mean-run-time is fixed at τ = 1 and for two different volume fractions of 0.05 and 0.5.
Simulation box size: 10 swimmer lengths.
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also a small increase in the mean swimming speed as compared to pullers at a volume fraction

of ν = 0.5 (see Fig. 9.7b). The mean swimming speed, plotted with volume fraction in Fig. 9.7c

confirms this trend with the pushers showing marginally larger values of the swimming speed

compared to pullers, the difference growing with volume fraction. We see that the increase in

swimming speed is much smaller than what was seen for the mean fluid kinetic energy in the

previous section (around 5% relative increase for pushers at ν = 0.5), but nevertheless significant

and certainly beyond the typical fluctuations at the relevant volume fractions.

Tracer Transport

As for the smooth swimmer case, it is instructive to study the tracer transport in a suspension

of tumblers. As expected, we see in Fig. 9.8 that the tracer diffusivities for pushers which

tumble are much smaller when compared to their smooth swimming counterparts. The tracer

diffusivities for tumblers are more than an order of magnitude smaller than those for smooth

swimmers at ν = 0.6. On the other hand, no such difference can be seen for pullers whose

behaviour is not qualitatively different from the smooth swimmer case. Fig. 9.9a shows a

comparison between the pusher and puller tracer diffusivities for the case where both tumble

with a mean-run-time of τ = 1. We note from this figure the important result that a suspension

of pushers which tumble is unstable beyond a critical volume fraction (ν ≈ 0.2 in Fig. 9.9a)

although the pusher-puller bifurcation is much more subtle than in the case of smooth swimmers.

The above increase in tracer diffusivity for pusher suspensions relative to pullers, both of

which tumble, is consistent with the velocity measures we presented in section 9.3.1. We expect

the tracer diffusivity to scale as u2τcorr, where u is the magnitude of disturbance velocity in the

fluid and τcorr is a correlation time for the fluid velocity. We saw in section 9.3.1 that both the

mean fluid velocity and correlation time was greater for pushers as compared to pullers. The

combined effect translates to much larger tracer diffusivities for pushers as we saw above. As

mentioned in the chapter on smooth swimmers (chapter 8), this is the underlying reason for the

sensitivity of the tracer diffusivity to the instability and our choice of this measure to detect the

onset of collective behaviour.

The above result, that pushers that tumble are unstable beyond a critical volume fraction,

indicates that tumbling alone is not sufficient to stabilize a suspension and we expect both the

volume fraction and tumble rate to play a role in deciding the stability threshold. We recall

that the linear stability theory predicts the threshold for tumblers to be in the form of a critical

value of the parameter nUL2τ . To study this, we look at simulations at a fixed volume fraction

(ν = 0.05) and varying τ . Fig. 9.9b shows the tracer diffusivity for the case of pusher and puller

suspensions as a function of τ , and once again we see a clear pusher-puller bifurcation, this time

at a critical value of τ . This critical value of τ is seen to be given by τcrit ≈ 2. The other

simulation parameters for this case are n = N/L3
box = 0.05 and L = 2. This gives the critical

value of nUL2τ as:

nUL2τ |crit ≈ 0.4. (9.39)

In our scaling L = 2 such that N/L3
box = N(L/2)3/L3

box, which implies ν = n. Our earlier

volume fraction variation simulations allows us another independent method of calculating this
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(a) Probability distribution function for the swimmer velocity (τ = 1). Simulation box size: 10
swimmer lengths.
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(b) Probability distribution function for the swimmer velocity magnitude (τ = 1). Simulation box
size: 10 swimmer lengths.

(c) Mean swimming speed for the case of pushers and
pullers plotted versus ν (τ = 1)

Figure 9.7: Swimmer statistics for a suspension of tumblers with τ = 1. (a) The probability
distribution function for the swimmer velocity plotted for (i) pushers and (ii) pullers for three
volume fractions. (b) The probability distribution function for the swimmer velocity magnitude
plotted for (i) pushers and (ii) pullers for three volume fractions. (c) Mean swimming speed
plotted with respect to ν for pushers pullers. The simulation box sizes are 10 and 15 swimmer
lengths
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Figure 9.8: Tracer diffsuivities plotted as a function of volume fraction. Plots are shown for both
smooth swimmers and tumblers with mean-run-time τ = 1. Simulation box size: 10 swimmer
lengths.

threshold. We saw in that case that νcrit = ncrit = 0.1 (see Fig. 9.9a), L = 2 and τ = 1 giving:

nUL2τ |crit ≈ 0.4. (9.40)

Thus, the two independent methods of calculating the dimensionless instability threshold (shown

in Figs. 9.9a and 9.9b) for pushers give the same result which is in agreement with the stability

theory prediction that nUL2τ |crit is a constant. This validation of the instability criterion is

crucial since it allows us to study, in the next section, the tracer diffusivity at a fixed volume

fraction (ν = 0.05) at different values of τ . As mentioned earlier, the choice of a small volume

fraction helps us compare our simulations to theory which exists for dilute suspensions (section

9.2.2). We will also focus on systematically studying the effects of the box size on the tracer

diffusivities by considering simulations in different (larger) box sizes.

9.3.2 Identifying the Stability Threshold Based on Varying Tum-

ble Rate

In this section, we present results for suspensions of pushers and pullers at a fixed volume fraction

of ν = 0.05 for varying τ and different box sizes. Since the tracer diffusivity is seen to be the

most sensitive measure of the instability, we confine ourselves to this measure from here onward.

To compare our simulations with theory developed in section 9.2.2, we first carry out simulations

where the hydrodynamic interactions between swimmers are switched off. In such simulations,

swimmers swim in straight lines and their orientation relaxation is due to tumbling alone. The
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(a) Tracer diffusivity as a function of ν for a fixed mean-run-time τ = 1 (simu-
lation box size: 10 and 15 swimmer lengths)

(b) Tracer diffusivity as a function of τ for a fixed volume fraction ν = 0.05
(simulation box size: 10 swimmer lengths)

Figure 9.9: Two independent methods of predicting the stability threshold for a suspension of
tumblers. (a) Tracer diffusivity as a function of volume fraction for a fixed mean-run-time τ = 1
for two different box sizes (10 and 15 swimmer lengths). (b) Tracer diffusivity as a function of
τ for a fixed volume fraction and a box size of 10 swimmer lengths. Symbols represent a mean
over simulations run with different initial conditions and the error bars represent the standard
deviation.



185

tracers, however, are affected by the disturbance velocity field of the swimmers. Switching off the

swimmer interactions implies that the swimmer orientation distribution is unaffected by other

swimmers, immediately implying stability. Note that, excluding inter-swimmer interactions

will eliminate pair-correlations between swimmers which might exist even in the stable regime.

This kind of simulation therefore mimics the conditions of the theory for the tracer diffusivity

calculation, where the suspension is dilute and stable, and the interactions between swimmers

are neglected. We then compare these results to simulations where the interactions between

swimmers are switched on, and there is therefore a possibility of an instability beyond a critical

τ . This lets us isolate the effects of the instability on the tracer diffusivity.

The results for the dimensionless tracer diffusivity (scaled by the factor nUL4, where n is

the number density of swimmers), as a function of τ , are plotted in Fig. 9.10 for four different

sizes of the simulation box (10, 15, 25 and 40 swimmer lengths). The left column in Fig. 9.10

contains the interactions-off result while the column to the right contains results with swimmer

interactions switched on. Successive rows correspond to an increasing box size. Looking first

at the interactions-off results, we see that there is good agreement between simulations and the

theory for a periodic suspension (left column of Fig. 9.10). Importantly, we see that for the

whole range of τ and box sizes considered here, the pusher and puller diffusivities are practically

identical. This is in agreement with the theory and provides evidence that, in the absence of

interactions or correlations, the tracer diffusivity does not depend on whether the swimming

mechanism is a pusher or puller type. A small deviation from theory can be observed at smaller

values of τ (eg. τ < 5), where the simulation value is lower than that predicted by theory. This

is mainly attributed to the excluded volume between swimmer and tracer which is implemented

in the simulations and not in the theory. The excluded volume leads to a decrease in the tracer

diffusivity since the tracer particle cannot access the stronger velocity fields near a bacterium.

In simulating the swimmer tracer interactions, it was found necessary to include an excluded

volume around the swimmer, because, in the absence of an excluded volume, it was found there

were a significant proportion of events where the tracer particles were dragged along with the

swimmers for distances of order the box size. An excluded volume helps prevent such spurious

events from affecting the tracer transport.

One can now contrast these interactions-off results with those on the right column of Fig.

9.10, for which the interactions between swimmers are switched on. A bifurcation between

pushers and pullers beyond a critical value of τ ≈ 2 can be clearly seen. In general, for all the box

sizes, we see that pusher curve rises above the theoretical curve for a periodic suspension, while

the puller curve dips below. The behaviour of the puller curve is attributed to the hydrodynamic

orientation decorrelation which occurs over and above that due to tumbling. At the smaller

values of τ , the orientation decorrelation rate is dominated by the tumbling events and we see

that the puller tracer diffusivities, with interactions switched off and on, lie very close to each

other. At larger τ ’s, the hydrodynamic decorrelation rate starts to become comparable to that

due to tumbling and the combined effective decorrelation rate is perceptively larger, leading to a

decrease in the diffusivity when compared to interactions-off simulations and theory (see puller

curves in Fig. 9.10). It is interesting to see where the smooth swimmer results, presented earlier,

figure in these plots. The smooth swimmer results for pullers at a volume fraction of ν = 0.05
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are shown in Figs. 9.10b and 9.10d, and they are much lower than the diffusivity of tumbling

pullers at τ = 25. This can be explained by calculating an effective time scale for orientation

decorrelation due to hydrodynamic interactions (see Fig. 8.13 in chapter 8). We find that, for a

volume fraction of 0.05, τhydrodynamic ≈ 85, which is much greater than the largest τ we consider

(τ = 25). This larger decorrelation time, as expected from our theoretical analysis, leads to a

diffusivity which is small due to the finite size of the simulation box. Comparing the smooth

swimmer results from Fig. 9.10b and 9.10d with the large τ asymptote in Fig. 9.3, we see that

the simulation results for smooth swimmers are almost an order of magnitude smaller than that

predicted by theory for an unbounded suspension. This supports our earlier observation that the

smooth swimmer tracer diffusivity is very strongly affected by the finiteness of the simulation

box at least in the range of box sizes used. This box size dependence would begin to go away

only beyond Lbox ≈ Uτhydrodynamic (a box size much larger than the largest box sizes used in

our simulations).

The pusher curves in the right hand column of Fig. 9.10 rise above the puller curves, and also

the periodic box theoretical prediction beyond a critical value of τ . Another important trend

is that the tracer diffusivity for pushers show an increasing trend with the simulation box size.

This can be seen clearly by looking at the pusher curves for larger values of τ (τ > 2) in Figs.

9.10b, 9.10d, 9.10f and 9.10h. As the box size is increased the diffusivities for large τ move closer

to and eventually beyond the theory for an unbounded suspension. This bifurcation between

pushers and pullers at a critical value of τ , together with the sensitivity of the pusher curves to

box size, leads us to the conclude that what we are seeing is indeed the pusher instability. The

role of differing pair-interactions in the stable regime in causing a difference between pushers

and pullers, may be safely ruled out since this cannot account for the increase in the pusher

diffusivity with box size at a fixed volume fraction. The pair-interactions between two swimmers

are local in nature and must extend over a distance of order the swimmer length. Therefore,

they cannot lead to a dependence on the size of the simulation box.

Once again, we can link the above increase in tracer diffsuivity for pushers to other measures

for the fluid disturbance velocity. In Fig. 9.11 we plot the power spectrum for suspensions of

pushers and pullers at a given volume fraction (ν = 0.05) at two different values of τ , one in the

stable regime (τ = 0.5) and the other in the unstable regime (τ = 5). We see that spectrum in

all cases is in good agreement with the periodic theory. However, there is only a small increase in

the pusher spectrum compared to pullers at small k̂. This seems to indicate that the structures

in the flow field are not very different in the stable and unstable regimes when τ is varied. This

is unlike the case of the volume fraction variation results, where the power spectrum, normalized

by number of swimmers shows a clear increase in the small k̂ limit for pushers (see Fig. 9.5).

We next look at the fluid velocity correlation functions for pushers and pullers in the stable and

unstable regimes which are plotted in Fig. 9.12. Here, we see that pushers and pullers have

practically identical correlation times in the stable regime (τ = 0.5). In the unstable regime,

however, a clear increase is seen for the pusher case. This indicates that the increase in tracer

diffusivity due to τ variation is mainly due to the increase in the fluid velocity correlation time.

As expected, the difference between the pusher and puller tracer diffusivities is smaller than

that seen for the results where the volume fractions are varied at a fixed τ . To quantify the
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differences between pusher and puller tracer diffusivities, we compare them in the unstable

regime. In the volume fraction varying simulations, at ν = 0.5 (10 swimmer lengths box size,

see Fig. 9.9a), which is well into the unstable regime, the tracer diffusivity for pushers is around

three times that of the corresponding puller value, to be precise, a relative increase of around

172%. For the simulations where τ is varied, at τ = 5 (10 swimmer lengths, see Fig. 9.10b) which

is in the unstable regime but not significantly affected by periodicity, the tracer diffusivity for

pushers is around 1.3 times that for pullers, to be precise, a relative increase of around 36%. It

is important to keep in mind that, in contrast, the relative difference between pusher and puller

tracer diffusivities in the stable regime is around 6% (volume fraction variation at ν = 0.05 and

τ = 1, see Fig. 9.9a). Therefore, the increase in the tracer diffusivity for pushers relative to

pullers for the τ variation case, though smaller than that due to volume fraction increases, is

still well beyond the typical variance in the stable regime.

9.3.3 Estimating the Instability Threshold for Tumblers

The above results allow us to calculate the instability threshold based on a critical value of

τ . From Figs. 9.10b, 9.10d, 9.10f and 9.10h, we see that the critical value of τ at which the

bifurcation between pushers and pullers occurs is given by τcrit ≈ 2. We see that this critical

value is a weak function of the box size for the Lbox > 25L and moves to smaller values of τ for

larger box sizes as shown in Fig. 9.2. The instability theory by Subramanian & Koch (2009)

tells us that the critical parameter for a suspension of tumblers is given by nUL2τ . The value

for our case with τcrit ≈ 2, n = N/L3
box = 0.05 and L = 2 is:

nUL2τ |crit ≈ 0.4. (9.41)

The predicted value of this constant by Subramanian & Koch (2009) is nUL2τ |crit = 5/C, where

C =M−1α1/2 which for our case gives C ≈ 1.42. Thus the theoretical prediction gives:

nUL2τ |crit,theory ≈ 3.5. (9.42)

The critical value of the threshold predicted by simulations is therefore much smaller than that

of linear stability theory. The reason for this seemingly sub-critical nature of the instability is

currently being investigated.

9.4 Results and Discussion: Rotary Diffusers

Our approach to studying the effects of rotary diffusion closely parallels that used for tumbling

above. We again use the tracer diffusivity as the primary measure to estimate the instability

threshold. First, we consider simulations of pushers and pullers where the rotary diffusivity of

the swimmers is kept constant (here, Dr = 0.5), while the volume fraction of the suspension is

varied. This value of the rotary diffusivity is chosen since it is close to what is typically observed

in bacteria. Note that the rotary diffusion of bacteria has an athermal origin, and occurs due to

imperfections in their swimming mechanism (the value for E. Coli is around Dr = 0.12, where

Dr is scaled by L/(2U) (Berg (1993)). Plotting the tracer diffusivity for pushers and pullers
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(a) (b)

(c) (d)

(e) (f)

Figure 9.10
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(g) (h)

Figure 9.10: Non-dimensional tracer diffusivity for a suspension of tumblers, at a volume fraction
of ν = 0.05, for different values of τ . (a), (c), (e) and (g) show the results of interactions-off
simulations for box sizes of 10, 15, 25 and 40 swimmer lengths, respectively. (b), (d), (f) and (h)
show the results of interactions-on simulations for box sizes of 10, 15, 25 and 40 swimmer lengths,
respectively. Symbols represent a mean over simulations run with different initial conditions and
the error bars represent the standard deviation.

Figure 9.11: Fluid velocity power spectrum, normalized by number of swimmers, for a suspension
of tumblers with fixed volume fraction of ν = 0.05 and two different values of τ(τ = 0.5 and
τ = 5). Simulation box size: 25 swimmer lengths.
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Figure 9.12: Fluid velocity correlation function for a suspension of tumblers with fixed volume
fraction of ν = 0.05 and two different values of τ(τ = 0.5 and τ = 5). Simulation box size: 25
swimmer lengths.

as a function of volume fraction in Fig. 9.13, one sees a clear bifurcation at ν ≈ 0.3, beyond

which pushers show larger values than pullers. Thus, just as in the tumbling case, a suspension

of pushers that rotary diffuse becomes unstable beyond a critical volume fraction.

Next, we consider simulations where the volume fraction is constant (ν = 0.05) and the rotary

diffusivity of the swimmers is varied. Here, we contrast the tracer diffusivity in suspensions of

pushers and pullers in two sets of simulations, the first with interactions between swimmers

switched off and the second set with interactions switched on. The results for both these sets

are presented in Fig. 9.14 for three different box sizes (10 ,15 and 30 swimmer lengths), with

each row corresponding to a given box size and the left and right columns corresponding to

interactions being switched off and on, respectively. Focussing first on the interactions-off results

(left column in Fig. 9.14), we see a trend very similar to that seen in the case of tumblers. As

the value of Dr decreases, the swimmer orientation remains correlated for longer times, thereby

leading to an increase in the tracer diffusivity. However, as we approach the smooth swimming

limit (1/Dr → ∞), the effects of the periodic box begin to show themselves and the tracer

diffusivity shows a decrease. Also, as for the tumbler case, we find that in the absence of

interactions, the pusher and puller tracer diffusivities are practically equal, over most of the

Dr range considered here, revealing the independence of tracer transport on the swimming

mechanism employed. However, at large values of Dr (small values of 1/Dr), there seems to be

differences between the pusher and puller tracer diffusivities. Though the reasons for this are not

entirely clear, a possible cause is the excluded volume around a swimmer leading to short-range

steric interactions which modify the tracer transport differently for pushers and pullers.

When interactions are switched on, a clear bifurcation can be seen between pushers and

pullers (right column in Fig. 9.14) . Beyond a critical value of 1/Dr, pushers show higher values
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of tracer diffusivity when compared to pullers. Significantly, the pusher tracer diffusivity, at a

fixed volume fraction, shows a clear increase with increasing box size, once again pointing to the

hydrodynamic instability as a possible cause (and ruling out differences in correlations in the

stable regime). We can extract the critical value of 1/Dr from Figs. 9.14b, 9.14d and 9.14f to

be 1/Dr|crit ≈ 10. The linear stability theory tells us that the threshold for rotary diffusers is

in the form of a critical value of nUL2/Dr. Calculating this quantity based on our simulation

results with n = 0.05 gives:
nUL2

Dr

∣∣∣∣
crit

≈ 2. (9.43)

Using our earlier results of the volume fraction varying simulations (Fig. 9.13), where νcrit ≈ 0.3

and Dr = 0.5, we find that:
nUL2

Dr

∣∣∣∣
crit

≈ 2.4. (9.44)

The values of nUL2/Dr, for the two methods are therefore reasonably close to one another which

is in agreement with the prediction of the linear stability analysis that the threshold corresponds

to a fixed value of nUL2/Dr|crit. However, the critical value, according to the theory, is given

by (Subramanian & Koch (2009)):

nUL2

Dr

∣∣∣∣
crit,theory

=
30

C
≈ 21. (9.45)

However, as in the tumbling case, we see that the predicted value of the threshold from simula-

tions is well below that given by the theory (by almost the same factor). Once again this points

to a possible sub-critical nature of the swimmer instability and is being currently investigated

by us.
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Figure 9.13: Tracer diffusivity as a function of volume fraction for a suspension of rotary diffusers
with Dr = 0.5 (simulation box size: 10 swimmer lengths)
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(a) (b)

(c) (d)

(e) (f)

Figure 9.14: Non-dimensional tracer diffusivity for a suspension of rotary diffusers at a volume
fraction of ν = 0.05 for different values of 1/Dr. (a), (c) and (e) show the results for interactions-
off simulations for box sizes of 10, 15 and 30 swimmer lengths respectively. (b), (d) and(f)
show the results for interactions-on simulations for box sizes of 10, 15 and 30 swimmer lengths
respectively. Symbols represent a mean over simulations run with different initial conditions
and the error bars represent the standard deviation.





Chapter 10

Conclusions and Future Work

In this part of the thesis, we have studied collective behaviour in a suspension of swimmers, with

intrinsic orientation relaxation mechanisms via numerical simulations. We give here an overview

of the salient results from this work.

To study collective behaviour, we have developed a particle-based simulation methodology,

to study hydrodynamically interacting rod-like swimmers in a three-dimensional spatially peri-

odic domain. We make the important simplifying assumption that the intrinsic stresses on the

swimmers, which arise due to swimming, are sufficient to capture the features of the collective

behaviour. This makes our simulations kinematic in nature, leading to substantial savings in

computational effort. We use an Ewald summation method to calculate hydrodynamic inter-

actions in a periodic domain along with viscous slender body theory to update the swimmer

positions and orientations at each time step. In chapter 8, we validated our model by first using

it to study smooth swimmers which lack intrinsic decorrelation mechanisms. Our model clearly

shows a transition to collective behaviour for pushers beyond a critical volume fraction, while

pullers do not show any such behaviour. Specifically, a suspension of pushers displays large

velocity fluctuations and clear evidence of bulk, correlated motion in the form of vortices and

jets. The length scale of these fluid structures is of the order of the simulation box size. For

pullers, we see no such correlated motion, with fluid velocity fluctuations, of a much smaller

scale, caused mainly due to individual weakly correlated swimmers. In the unstable regime,

pushers are also seen to swim much faster than in isolation, with groups of pushers swimming

in locally aligned groups which are slightly denser than the ambient suspension. Pullers swim

no faster than in isolation and also tend to prefer local anti-parallel alignment. Passive non-

Brownian tracer particles in a suspension of pushers show much larger diffusivities (an order of

magnitude higher) than those in a puller suspension. This tracer diffusivity is seen to be the

most sensitive measure of the instability threshold and we use it to extract the critical value

of the concentration from our simulations. This critical concentration, for smooth swimmers,

scales inversely with the simulation box size and our predictions are in good agreement with

theory. Surprisingly, the translational diffusivity of the swimmers themselves did not show any

sign of the transition to collective behaviour. All our observations for smooth swimmers are

consistent with earlier theoretical predictions and simulation results.

With our model thus validated, we explored swimmers with intrinsic orientation relaxation

mechanisms in chapter 9. We find that a suspension of pushers which tumble or rotary diffuse

continues to remain unstable beyond a critical concentration. This points to the fact that the

concentration, as well as the time scale for orientation decorrelation, determine the onset of

collective behaviour. To test this rigorously we perform extensive simulations with the volume

fraction held constant and varying mean-run-time (τ) or rotary diffusivity (Dr). For the case

of varying τ , we derive an analytical expression for the tracer diffusivity in a periodic swimmer

195
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suspension in the dilute limit. Our theory reveals that there is a non-trivial effect of the peri-

odicity with the tracer diffusivity having a non-monotonic variation with τ and going to zero

in the limit of very large τ , which corresponds to the smooth swimmer limit. In contrast, the

tracer diffusivity in an unbounded suspension is predicted to increase monotonically with τ . To

compare with the periodic suspension theory, we perform simulations with the hydrodynamic

interactions between swimmers switched off, but with tracer particles still interacting with the

swimmers. We see excellent agreement between our simulation results and theory, with the

simulations predicting the expected non-monotonic trend with τ . When we switch-on interac-

tions between swimmers, we see a clear bifuraction at a critical value of τ beyond which the

tracer diffusivity is larger for pushers in relation to pullers. Further, we see that the difference

between pushers and pullers grows systematically with the size of the simulation box, while the

critical τ is only a weak function of box size. This clearly points to an instability in the pusher

suspension. The above simulations allow two independent ways of estimating the critical value

of the quantity nUL2τ . Indeed, we find that both methods lead to about the same critical value

of nUL2τ with a very weak dependence on box size for large enough boxes. We independently

study suspensions of rotary diffusers, and just as in the tumbling case, find a critical value for

nUL2/Dr. This is in agreement with the theory that the critical value of nUL2τ (nUL2/Dr) for

tumblers (rotary diffusers) is a constant which only depends on the intrinsic parameters of the

swimmers. In a final twist, we note that simulation predictions for these thresholds are much

smaller than the corresponding predictions by theory, with both tumblers and rotary diffusers

smaller by almost the same factor of approximately 9. This points to a possible sub-critical

nature of the instability for pushers.

We list here some of the avenues for future work that have been opened up by this thesis

1. It would be interesting to study the rheology of active suspensions under finite shear

with inclusion of orientation relaxation mechanisms using the particle-based simulation

methodology outlined here. There are several unanswered questions related to the viscos-

ity behaviour as a function of the volume fraction in both the low (Gachelin et al. (2013)

and high (Karmakar et al. (2014)) shear rate regimes. This, along with the effects of the

mean-run-time, leads to a rich parameter space which can be systematically investigated

via simulations. It would be straightforward to extend our current particle-based simu-

lation model to include finite shear via methods already implemented in the context of

homogeneous sheared turbulence (Rogallo (1981)).

2. The sub-critical nature of the pusher instability which was discovered in this work needs to

be investigated further. In particular, it would be interesting to see if the system exhibits

hysteresis when a certain parameter is slowly varied about its critical value. This would

also shed light on the role of the initial conditions, and on what is the statistically stable

state that the system chooses at long times.
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Appendix A

O(Re) Velocity and Pressure Field

Constants for a Drop

The O(Re) exterior velocity and pressure fields for a spherical drop in a linear flow was derived

by Raja et al. (2010) and are reproduced below:
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where Γ† denotes the transpose of Γ and the constants c1 to c18 are given below:
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426426λ4 + 1728441λ3 + 1942512λ2 + 735778λ + 90412

144144(2λ + 5)(λ + 1)2
,

c10 =
3λ2 + 3λ+ 1

9(λ+ 1)
,

c11 =
234234λ4 + 959673λ3 + 1077648λ2 + 383426λ + 26348

144144(2λ + 5)(λ+ 1)2
,

c12 =
282282λ4 + 1134705λ3 + 1268124λ2 + 480828λ + 63504

288288(2λ + 5)(λ+ 1)2
,

c13 =
138138λ4 + 582153λ3 + 675532λ2 + 248596λ + 15456

288288(2λ + 5)(λ + 1)2
,

c14 =
λ2

4(λ+ 1)
,

c15 =
3λ2 + 3λ+ 4

18(λ+ 1)
,

c17 =
1075074λ4 + 4448301λ3 + 5107388λ2 + 1947684λ + 205408

1441440(2λ + 5)(λ+ 1)2
,

c18 =
1027026λ4 + 4135989λ3 + 4610892λ2 + 1699436λ + 189392

1441440(2λ + 5)(λ+ 1)2
.



Appendix B

O(Re) Neutral Curve (wake) Location

on Drop Surface

The neutral curve Cneutral which satisfies udrift(C) = 0 (see Eq. 2.66 in chapter 2) is found to

be given by:

C∗ =
(
2
√
7
√ (−1852717440α − 1852717440α2 + 1852717440α3 + 1852717440α4

+ 926358720λ − 13263273856αλ − 15115991296α2λ+ 13263273856α3λ+ 14189632576α4λ

+ 6631636928λ2 − 37342174952αλ2 − 50605448808α2λ2 + 37342174952α3λ2 + 43973811880α4λ2

+ 18671087476λ3 − 53953567920αλ3 − 91295742872α2λ3 + 53953567920α3λ3 + 72624655396α4λ3

+ 26976783960λ4 − 43110819466αλ4 − 97064387386α2λ4 + 43110819466α3λ4 + 70087603426α4λ4

+ 21555409733λ5 − 18855575882αλ5 − 61966395348α2λ5 + 18855575882α3λ5 + 40410985615α4λ5

+ 9427787941λ6 − 4097979600αλ6 − 22953555482α2λ6 + 4097979600α3λ6 + 13525767541α4λ6

+ 2048989800λ7 − 331273800αλ7 − 4429253400α2λ7 + 331273800α3λ7 + 2380263600α4λ7

+165636900λ8 − 331273800α2λ8 + 165636900α4λ8
))
/ (

√
(7274042944 + 24938726400α

+ 35329366912α2 + 24938726400α3 + 7274042944α4 + 12278826336λ + 195191646720αλ

+ 365825640768α2λ+ 195191646720α3λ+ 12278826336α4λ− 86362141836λ2 + 573975978304αλ2

+ 1320676240280α2λ2 + 573975978304α3λ2 − 86362141836α4λ2 − 363709811676λ3

+ 800320554176αλ3 + 2328060731704α2λ3 + 800320554176α3λ3 − 363709811676α4λ3

− 588400542515λ4 + 560598088336αλ4 + 2297997261702α2λ4 + 560598088336α3λ4

− 488697797302λ5 + 187810159680αλ5 + 1353015913964α2λ5 + 187810159680α3λ5

− 488697797302α4λ5 − 588400542515α4λ4 − 215692744839λ6 + 23851713600αλ6

+ 479088916878α2λ6 + 23851713600α3λ6 − 215692744839α4λ6 − 46799172420λ7

+93598344840α2λ7 − 46799172420α4λ7 − 3736032300λ8 + 7472064600α2λ8 − 3736032300α4λ8
))

(B.1)
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Appendix C

Ewald summation method

In this appendix we re-derive the Ewald summation technique (Hasimoto (1959)) used to split

the slowly converging sums in Eqs. 7.27 and 7.27 in chapter 7 to two quickly converging ones

in real space and Fourier space. We note that in our case the unit cell consists of N randomly

positioned and oriented rods while in Hasimoto’s analysis Hasimoto (1959), the unit cell has a

single point force. Our starting point is Eqs. 7.26-7.28 in chapter 7. These involve sums of the

form:

σm =
∑

k 6=0

e−2πik·x

k2m
F̂ (k). (C.1)

Starting from an integral representation for 1/k2m:

1

k2m
=

πm

Γ(m)

∫ ∞

0
e−πk2ββm−1dβ. (C.2)

Multiplying the above equation by e−2πik·x and summing with respect to k for k = 0, we get:

σm =
πm

Γ(m)

∑

k 6=0

F̂ (k)

∫ ∞

0
e−πk2β−2πik·xβm−1dβ, (C.3)

=
πm

Γ(m)

∫ ∞

0
βm−1

[
∑

k

e−πk2β−2πik·xF̂ (k)− F̂ (0)

]
dβ. (C.4)

We note that in our case, the swimmers being force-free, F̂ (0) = 0. We now split the integral

into two parts, the first from 0 to α and the second from α to ∞, and apply Ewald’s theta

transformation formula to the first part. This transformation for our case (Sierou & Brady

(2001), Nijboer & De Wette (1957)) has the form:

∑

k

F̂ (k)e−πk2β−2πik·x =
V

β3/2

∑

l

N∑

i=1

M∑

j=1

e
−π(x−xi−p̂isj−l)2

β f(sj)p̂i. (C.5)

Using the result C.5 in the first integral in C.4, we get:

σm =
πmαm

Γ(m)


V α−3/2

∑

l

N∑

i=1

M∑

j=1

φ−m+1/2

(
π(x− xi − p̂isj − l)2

α

)
f(sj)p̂i

+
∑

k 6=0

e−2πik·xφm−1(παk
2)F̂ (k)


 , (C.6)
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204 Appendix C. Ewald summation method

where we have used β = α/ξ in the first integral and β = αξ in the second. The function φν is

the incomplete Γ- function:

φν(x) =

∫ ∞

1
ξνe−xξdξ. (C.7)

Using the above expression for σm in the expressions for S(1) and S(2) (Eqs. 7.26-7.28 in chapter

7), we get the Ewald summation expression for the disturbance velocity field as:

u(x) =
1

4π



∑

l

N∑

i=1

M∑

j=1

A(α,x − xi − pisj − l) · f(sj)pi +
∑

k 6=0

B(α,k) · F̂ (k) exp(−2πik · x)


 ,

(C.8)

where the the two tensors A and B are given by:

A(α,x) = πα−3/2φ1/2(πr
2/α)

(
Ir2 + xx

)
− 2α−1/2 exp(−πr2/α)I, (C.9)

B(α,k) =
πα2φ1(παk

2)

V

[
Ik2 − kk

]
, (C.10)

where we have used β = α/ξ in the first integral and β = αξ in the second. The function φν is

the incomplete Γ- function:

φν(x) =

∫ ∞

1
ξνe−xξdξ. (C.11)



Appendix D

Equivalence of the formulations by

Hasimoto and Beennakker

In this appendix we explicitly demonstrate the equivalence between two alternate approaches to

formulating periodic solutions to the Stokes equations. The first of these is Hasimoto’s approach

(Hasimoto (1959)) in which periodic solutions are found for flow past a periodic array of spheres.

The approach utilises the periodicity of the solution by writing the velocity disturbance due to

the periodic array of spheres in terms of a Fourier sum. This sum is however, only slowly

converging and the Ewald summation technique is applied to split the it into two parts, the first

in real space and a second in Fourier space. Each of these is rapidly converging and can be used

in simulations. Though Hasimoto’s original analysis is for a single sphere, it is straightforward

to extend it to the general case where there are N spheres in the unit cell. The extension to our

simulations where there areM point forces along each swimmer’s length is again straightforward.

Hasimoto’s expression for the disturbance velocity due to N point forces in a periodic unit cell

array can be derived by using Eqs. 7.29 through 7.33 in chapter 7 and is given by:

u(x) =
∑

l

N∑

i=1

[(
erfc(ξr)

8πr
− ξe−ξ2r2

4π3/2

)
I+

(
erfc(ξr)

8πr
+
ξe−ξ2r2

4π3/2

)
(x− xi − l)(x− xi − l)

r2

]
· F i

+
1

4π2V

∑

k 6=0

e−πk2/ξ2

k2

(
1 +

π2k2

ξ2

)(
I− kk

k2

)
· F̂ (k)e−2πik·x, (D.1)

where F i is the force due to sphere i on the fluid which is equal and opposite to the force on the

sphere and ξ =
√
π/α. In the above expression r = |x− xi|; l = l1a1 + l2a2 + l3a3 and l1, l2, l3

are integers and ai, i = 1, 2, 3 are the unit cell vectors. The first part of the above expression

constitutes the real sum and the second part the Fourier sum. The term F̂ (k) is defined as:

F̂ (k) =

N∑

i=1

F ie
2πk·xi , (D.2)

where xi is the position of the ith sphere.

Beenakker’s approach (Beenakker (1986)), in a sense, is complimentary to that of Hasimoto’s.

Beenakker considers a three-dimesnional periodic lattice in which each unit cell (labelled by index

l) contains N spherical particles (labelled by index i) of radius a. Also in Beenakker’s analysis

an assumption is made that that total force on the particles in a unit cell sums to zero:

N∑

i=1

F i = 0, (D.3)
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206 Appendix D. Equivalence of the formulations by Hasimoto and Beennakker

where F i is the force acting on particle i. We show that this assumption is not an essential one,

however it does remain true for our case since the swimmers are force-free. Beenakker uses the

Rotne-Prager mobility tensor to calculate a lattice sum which is nothing but the disturbance

velocity at a given sphere’s location due to the motion of all other spheres due to a force F i

which is acting on them. The connection to Hasimoto’s analysis can easily be made merely by

considering a coordinate system moving with any one of the spheres. In order to simplify the

analysis and make the connection with our case, we only consider the point-force contribution

to the force which is O(a), while neglecting the finite size contribution which scales as O(a3).

Beenakker’s method is to write down the lattice sum for the disturbance velocity in real space

and then use a suitable function to split the real sum into two rapidly converging ones in real

and Fourier space. With these considerations, Eq. 4 in Beenakker (1986) expressed in terms of

a velocity disturbance in non-dimensional form is given by:

u(x) =
∑

l

N∑

i=1

[(
erfc(ξr)

8πr
− 3ξe−ξ2r2

4π3/2
+
ξ3r2e−ξ2r2

2π3/2

)
I+

(
erfc(ξr)

8πr
+
ξe−ξ2r2

4π3/2
− ξ3r2e−ξ2r2

2π3/2

)
.

(x− xi − l)(x− xi − l)

r2

]
· F i +

1

4π2V

∑

k 6=0

e−πk2/ξ2

k2

(
1 +

π2k2

ξ2
+

2π4k4

ξ4

)(
I− kk

k2

)
· F̂ (k)e−2πik·x(D.4)

(D.5)

In the rest of this appendix we show that Eqs. D.1 and D.5 are exactly equivelent. One way

to do this is to inverse transform the third term in the Fourier sum in Eq. D.5 into real space

and add it as a contribution to the real space sum. In this way we see already that the Fourier

sums in Eq. D.1 and Eq. D.5 are exactly the same. Writing down the third term in the Fourier

sum:

=
1

4π2V

∑

k 6=0

e−πk2/ξ2

k2
2π4k4

ξ4

(
I− kk

k2

)
· F̂ (k)e−2πik·x

=
π2

2ξ4V

∑

k 6=0

e−πk2/ξ2k2
(
I− kk

k2

)
· F̂ (k)e−2πik·x (D.6)

Since for force-free swimmers F̂ (0) = 0, we can write the above expression with the k = 0

included in the summation

=
π2

2ξ4V

∑

k

e−πk2/ξ2k2
(
I− kk

k2

)
· F̂ (k)e−2πik·x (D.7)

Considering first the term

π2

2ξ4V

∑

k

e−πk2/ξ2k2I · F̂ (k)e−2πik·x (D.8)
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and substituting for F̂ (k) from Eq. D.2, we get

π2

2ξ4V

∑

k

e−πk2/ξ2k2I ·

N∑

i=1

F ie
2πk·xie−2πik·x (D.9)

We can rearrange the order of summation to give

π2

2ξ4V

N∑

i=1

F i

∑

k

e−πk2/ξ2k2I · e−2πik·(x−xi) (D.10)

We introduce the variable kc to denote the continuous wave vector variable and write the

summation over the discrete wave vectors as an integral over a sum of dirac-delta functions at

the discrete wave vectors

π2

2ξ4V

N∑

i=1

I · F i

∫

kc

∑

k

δ(kc − k)e−πk2c/ξ
2
k2ce

−2πikc·(x−xi)dkc (D.11)

The above integral is of the form

∫
F̂ (k)Ĝ(k)e−2πik·x′

dk (D.12)

which is nothing but the inverse transform of the convolution integral with x′ = x−xi. Therefore

we have

∫
F̂ (k)Ĝ(k)e−2πik·x′

dk =

∫

x̄

f(x′ − x̄)g(x̄)dx̄ (D.13)

where f and g are the three-dimensional inverse Fourier transforms of F̂ and Ĝ respectively. We

can apply this formula to Eq. D.11 with F̂ (kc) =
∑

k δ(kc − k) and Ĝ(kc) = e−πk2c/ξ
2
k2c . It is

straightforward to evaluate the inverse transforms of F̂ (Nijboer & De Wette (1957)) which is

given by ∫

kc

∑

k

δ(kc − k)e−2πikc·xdkc = V
∑

l

δ(x− l) (D.14)

The inverse transform of Ĝ is found to be

∫

kc

e−πk2c/ξ
2
k2ce

−2πikc·xdkc = −e−ξ2r2ξ5
(
2ξ2r2 − 3

2π7/2

)
(D.15)

Using Eqs. D.13-D.15 in Eq. D.11, we get

π2

2ξ4V

N∑

i=1

F i · I

∫

x̄

V
∑

l

δ(x′ − x̄− l)g(x̄)dx̄ (D.16)

=
π2

2ξ4

∑

l

N∑

i=1

F i · Ig(x
′ − l) (D.17)
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Substituting for g from Eq. D.15, we get

∑

l

N∑

i=1

F i · I

(
− ξ3r2

2π3/2
e−ξ2r2 +

3ξe−ξ2r2

4π3/2

)
(D.18)

We can proceed in a similar manner to transform the second term in Eq. D.7 into real space.

The second term reduces to

− π2

2ξ4V

N∑

i=1

F i

∫

kc

∑

k

δ(kc − k)e−πk2c/ξ
2
kckc · Ie

−2πikc·(x−xi)dkc (D.19)

Now this is in the same form as Eq. D.12 with F̂ (kc) =
∑

k δ(kc−k) and Ĝ(kc) = e−πk2c/ξ
2
kckc.

The inverse transform of Ĝ can be shown to be given by

∫

kc

e−πk2c/ξ
2
kckce

−2πikc·xdkc = − ξ3

4π7/2
∇∇(e−ξ2r2) (D.20)

=
ξ5

2π7/2

(
e−ξ2r2I− 2ξ2e−ξ2r2xx

)
(D.21)

where r = |x|. The inverse transform of F̂ is given by Eq. D.14. Substituting for inverse

transform of F̂ and Ĝ in Eq. D.19, we get the final expression in real space as

∑

l

N∑

i=1

F i ·

[
−ξe

−ξ2r2

4π3/2
I+

ξ3e−ξ2r2

2π3/2
(x− xi − l)(x− xi − l)

]
(D.22)

Adding Eqs . D.18 and D.22 to Eq. D.5 and simplifying we get

u(x) =
∑

l

N∑

i=1

[(
erfc(ξr)

8πr
− ξe−ξ2r2

4π3/2

)
I+

(
erfc(ξr)

8πr
+
ξe−ξ2r2

4π3/2

)
(x− xi)(x− xi)

r2

]
· F i

+
1

4π2V

∑

k 6=0

e−πk2/ξ2

k2

(
1 +

π2k2

ξ2

)(
I− kk

k2

)
· F̂ (k)e−2πik·x(D.23)

(D.24)

which is exactly the same as Eq. D.1. Thus we have shown the equivalence between the two

approaches by Hasimoto and Beenakker.
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