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Abstract

Fluids have fascinated many generations of scientists and engineers. Although a consider-

able amount of research has been devoted to the study of fluids of low molecular weight (well

described by the Navier-Stokes equations), many challenging problems in both theory and ap-

plications still remain. But, even more challenging are non-Newtonian fluids, whose motions

cannot be described by the Navier-Stokes equations. The present work would be of fundamental

importance to the dynamics of fast flows of a class of such fluids (dilute polymeric solutions).

Here, we consider a well-known theoretical model (Oldroyd-B fluid) in order to represent, in the

simplest possible manner, the polymer-solvent coupling in a dilute polymer solution, and study

how the resulting non-Newtonian rheology affects the known structure of the continuous spec-

trum in the inviscid limit. In general, the equation governing the evolution of small-amplitude

perturbations to inviscid shearing flows, the Rayleigh equation, is singular, and the continuous

spectra associated with the Rayleigh equation owe their origin to such singular points. Addi-

tional continuous spectra exist with the introduction of elasticity, and it has already been shown,

in the inertialess limit, that the nature of the continuous spectrum is sensitive to the base-state

velocity profile and the particular constitutive model used (UCM v/s Oldroyd-B; Wilson et al.

(1999)). The viscoelastic continuous spectra owe their origin to the ‘simple fluid’ assumption un-

derlying almost all constitutive equations used in polymer rheology. The fact that the polymeric

stress only depends on the evolution of the polymer conformation along a particular stream-

line, and is not influenced by the polymer molecules convected by streamlines in the immediate

vicinity, supports the existence of continuous spectra in elastic liquids, and this is independent

of the Reynolds number. In this thesis, we study the nature of the elastic continuous spectrum

at large Reynolds number which serves as a complement to the aforementioned study of Wilson

et al. (1999) in the absence of inertia.

The initial part of the thesis is mainly concerned with the study of the nature of the con-

tinuous spectrum of the so-called elastic Rayleigh equation (ERE), one that governs the small

amplitude perturbations in the limit of the Reynolds (Re) and the Deborah (De) numbers ap-
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proaching infinity, with E, the elastic number, defined as (1−β)De/Re, where ’β’ is the ratio of

the solvent viscosity to total viscosity)) being finite. We analyze the problem within the frame-

work of linear stability theory, for two canonical flows: Couette flow and the Rankine vortex,

for which the purely inviscid spectra have been completely characterized. These serve as useful

starting points for the general analysis of the dynamics of two-dimensional perturbations in an

arbitrary plane parallel shearing flow. It is shown that in addition to the continuous spectrum of

the familiar inviscid Rayleigh equation, one that spans the base-state range of velocities (Case

(1960); Drazin & Reid (1981)), the elastic Rayleigh equation exhibits a pair of continuous spec-

tra that may be associated with neutrally stable slow and fast elastic shear waves (travelling

waves) propagating with (non-dimensional) speeds proportional to ±
√

2E relative to the local

flow (the neglect of the relaxation terms in the limit (De→∞) implies that the polymer solution

supports undamped elastic shear waves). The existence of these shear waves leads to multiple

(three) continuous spectra associated with the elastic Rayleigh equation in contrast to just one

for the original Rayleigh equation. The final part of the thesis discusses the additional effects of

relaxation terms (De being finite but large). In this case only the continuous spectrum associ-

ated with the critical-level survives, and the ones associated with the aforementioned travelling

waves are no longer preserved.
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Chapter 1

Introduction

1.1 Introduction

The flows of non-Newtonian/complex fluids, which are ubiquitous in our everyday life, fascinate

not only fluid dynamicists with their complexity, but also playful kids with their peculiarity.

The complex behavior of non-Newtonian fluids originates from the strong interaction between

the external flow and the internal micro-structure of the fluid. For example, if we consider water

(a Newtonian fluid), the motion of water molecules is largely unaffected by the external flow on

account of the immensely disparate time scales involved, while in flows of viscoelastic liquids, the

slowly relaxing micro-structure gets significantly stretched and deformed, where the relaxation

time depends on the solvent viscosity and polymer molecular weight. Since these interactions are

partly reversible and depend on the deformation history, the fluid acquires memory and becomes

elastic. The presence of elasticity has several striking consequences including rod climbing, die

swell and the tubeless siphon effect etc (Bird et al. (1987); Macosko (1994)). Understanding

polymer fluid dynamics is important in connection with plastics manufacture, performance of

lubricants, application of paints, processing of foodstuffs, and movement of biological fluids. The

study of polymeric flows has already attracted great attention towards the end of the last century

owing to the discovery of purely elastic instabilities that owe their origin solely due to elasticity,

and can, in sharp contrast to Newtonian fluids, arise even in the absence of inertia. As a result,

these flows can transition to disorderly flows even at very small Reynolds numbers, a state

referred to as elastic turbulence (Larson et al. (1990); Groisman & V.Steinberg (2000)). The

aforementioned complexity of the observed dynamical phenomena is reflected in the governing

equations for complex fluids, where the equations of motion are supplemented by a non-trivial

constitutive equation in a differential or integral form.

While the aforementioned elastic turbulence is primarily of relevance to slow flows of complex

fluids, the present study would be of fundamental importance to the dynamics of fast flows of

1



2 Chapter 1. Introduction

these non-Newtonian liquids (polymer solutions in particular). For simplicity we restrict our

present study to the stability of dilute polymeric solutions. The stability investigations for

viscoelastic flows started with the pioneering work of Gorodtsov & Leonov (1967) in the context

of plain Couette flow, followed by various studies neglecting inertia (Renardy (1992); Kupferman

(2005); Wilson et al. (1999)) for other plane-parallel flows. The combined effects of inertia and

viscoelasticity on flow instabilities have been studied extensively only for a few classes of simple

parallel flows, specifically plane Couette and Poiseuille flows (Porteous & M.M.Denn (1972)),

the hyperbolic-tangent shear layer (Azaiez & Homsy (1994); Kaffel & Renardy (2010)) and the

submerged elastic jet (Rallison & Hinch (1995)). The results show that although the elasticity

in general has a stabilizing effect on the purely inviscid instabilities (Kaffel & Renardy (2010)),

this is not always the case, and there are examples where a small amount of elasticity actually

destabilizes the flow (Rallison & Hinch (1995)). While inertialess stability investigatiomns have

focussed on the nature of the viscoelastic continuous spectra, those that include inertia (at high

Reynolds numbers) have focussed solely on the discrete modes. The thesis helps partially fill this

void by examining the nature of the elastic continuous spectra at high Reynolds numbers. In light

of the known analogy between the governing equations for a polymer solution in the relaxationless

limit (Ogilvie & Proctor (2003); Roy (2012)), and those that result for magnetohydrodynamic

(MHD) flows at high magnetic Reynolds numbers, the contents of this thesis may also be relevant

to the MHD context.

We commence this introductory chapter with a discussion on the importance of the con-

tinuous spectrum modes in section (1.2). Section (1.3) comments on the peculiar behavior of

non-Newtonian fluids in comparison to those of Newtonian fluids, and briefly overviews some

commonly used constitutive models. Section (1.4) provides an outline for the remainder of the

thesis.

1.2 Importance of the Continuous spectrum

“The question of determining if a general solution can be expressed as an infinite sum of such

solutions is the completeness problem, which is in general difficult.” -Saffman [1992] .

In the context of linear stability (modal) analysis, the eigenspectrum of the equation govern-

ing infinitesimal perturbations consists of a discrete part containing separated eigenvalues (the

eigenfunctions being referred to as the discrete modes) and one or more continuous intervals
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(a)
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Figure 1.1: Non-Newtonian fluid properties



4 Chapter 1. Introduction

(corresponding to the continuous spectrum modes). In the classical regular Sturm- Liouville

framework, the spectrum is entirely discrete, and consists of a denumerable infinity of eigen-

functions that form a complete basis. However, in eigenvalue problems typically associated with

inviscid shearing flows, the discrete part of the spectrum may only contain a finite number of

eigenvalues or no eigenvalues at all (as is the case with inviscid Couette flow; (Case (1960);

Drazin & Reid (1981)), and thereby, is evidently incomplete. For instance, the spectrum of

the governing Rayleigh equation is purely continuous for any non-inflectional base-state velocity

profile (inviscid Couette flow above being a special case). In general, if we assume the normal

modes to form a complete basis, we should be able to express an arbitrary disturbance as a sum-

mation over the discrete spectrum eigenfunctions together with an integral over the continuous

spectrum eigenfunctions, both contributions being weighted by appropriate complex-valued am-

plitudes. The continuous spectrum can arise as a result of solving the problem on an infinite

domain (Friedman (1962)). Of more relevance to inviscid stability problems is the case where

the continuous spectrum arises due to the governing differential equation containing coefficients

that become singular at points within the domain (Drazin & Reid (1981)). An important fea-

ture of the eigenfunctions that compose the resulting continuous spectrum is that they are not

regular functions; typically, they are characterized by irregular shapes, and require a generalized

function interpretation (Engevik (1971); Balmforth & Morrison (1995a)). The present work

comes under the framework of hydrodynamic stability and aims to study as to how the inviscid

continuous spectrum would be modified with the addition of elasticity.

1.3 Theory of Non-Newtonian fluids

“While it is true that the classical definition of liquid as opposed to solid provides a basis for

deciding whether a substance is a solid or a liquid, the classical definition is inadequate not only

for many everyday purposes , but for engineering ones as well.” -Ronald G. Larson

In this section we comment on some important properties of these fluids - the ones that

make them different from the commonly observed Newtonian fluids - with day-to-day examples;

see figure (1.1). Numerous experiments illustrate the four most important phenomena in their

rheology (Macosko (1994)).
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1.3.1 Constitutive equations

1.3.1.1 The upper convected derivative

The fluids we study (polymer solutions) have a viscoelastic character. Thus, besides the usual

viscous response (already present for Newtonian fluids), one needs the notion of an elastic strain

which depends on the history of rotation and stretching in the flow. The constitutive equations

used possess this information. This is accomplished by the upper convected derivative of a tensor

‘X’ denoted by ‘
5
X’ and defined as:

5
X ≡ DX

Dt
− (∇v)†.X−X.(∇v). (1.1)

where D/Dt is the usual material derivative. This derivative contains not only the advection

associated with the material derivative, but also accounts for rotation and stretching with the

flow like a material element through the terms involving ∇v and ∇v†; that is, the derivative is

co-deformational in character (Bird et al. (1987)). It can also be interpreted as a frame-invariant

derivative which describes the frozen state of a second order tensor field (X) in a velocity field

v.

1.3.1.2 Oldroyd-B fluid

One of the simplest constitutive equations, that serves as a theoretical model for so-called

Boger fluids (see below), and that uses the upper convected derivative above, is the Oldroyd-

B model. From a microscopic point of view, the Oldroyd-B constitutive relation results from

modeling dilute polymer solution as a non-interacting suspension of infinitely extensible Hookean

dumbbells (Larson (1988)). The Oldroyd-B constitutive relation is given by:

σd + λ1
5
σd = 2µ(E + λ2

5
E), (1.2)

where σd is the deviatoric stress, µ is the total viscosity, λ1 the relaxation time and λ2 the

retardation time. Here, λ2 → λ1 denotes the Newtonian limit, while λ2 = 0 corresponds to

the upper-convected Maxwell (UCM) fluid, a simple model for a polymer melt. ‘5’ in (1.2)

denotes the upper-convected derivative defined above in section (1.3.1). On writing the total

stress as the sum of a solvent and a polymer contribution of the form σd = 2µ∗E +GA with A

being the non-dimensional conformation tensor (A ∝ RR), µ∗ = µλ2/λ1 (the solvent viscosity),

µp = µ− µ∗ (the polymer viscosity) and G = µp/λ1 (the shear modulus), we have the following
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set of governing equations for the motion of an Oldroyd-B fluid (Roy (2012)):

ρ
Dv

Dt
= −∇p∗ + µ∗∇2v +G∇.A, (1.3)

5
A = −1

τ
(A− I), (1.4)

∇.v = 0, (1.5)

where τ = λ1 and p∗ = p+ 2(1− λ2/λ1)µ/λ1.

1.3.1.3 The Boger fluid

An Oldroyd-B fluid is an example of an ideal elastic fluid which exhibits a constant viscosity

and constant normal stress coefficients in simple shear flow. Boger (1977) developed a class of

fluids whose experimental measurements shown to have effectively constant viscosity and normal

stress coefficients over a range of shear rates.

1.4 Organization of the thesis

In the present work, we analyze within the framework of linear stability theory, for two canonical

inviscid flows of a dilute polymer solution - Couette flow and the Rankine vortex. These serve

as useful starting points for the general analysis of the dynamics of two-dimensional perturba-

tions in an elastic shearing flow. In chapter [2], we study the effects of elasticity, on the known

structure of the continuous spectrum eigenfunctions, in the inviscid limit (Re→∞) for Couette

flow. Here, we look at the regime characterized by high values of De and Re with the ratio

De/Re being finite; to be precise, we examine finite values of the ratio (1-β)De/Re, defined as

the elasticity number, where β is the ratio of the solvent viscosity to total viscosity. The limit

De →∞ implies the effects of relaxation terms. We carryout a similar analysis for the Rankine

vortex in chapter [3], again identifying the elastic continuous spectrum. In chapter [4], we retain

the relaxation terms taking De to be large but finite and study the effects of relaxation terms

on the continuous spectrum eigenfunctions. Finally in chapter [5], we conclude and provide a

perspective on the future scope of the work.

——————————————————————————————————————————

—————————————-

sri ramakrishna
Placed Image



Chapter 2

Elastic Coeutte flow

2.1 Introduction

An indication of the existence of a continuous spectrum governing the dynamics of small-

amplitude perturbations in a shearing fluid in the inviscid limit was first given by Rayleigh

(Rayleigh (1945)). An explicit spectral investigation in this regard was first carried out by

Fjortoft and Hoiland (Fjortoft (1950)) for the special case of incompressible Couette flow. The

explicit form of the continuous spectrum modes in the context of plasmas, where the linearized

dynamics is governed by the Vlasov equation, was proposed by Van Kampen (Van Kampen

(1955)), and extended to the hydrodynamic context by Case (Case (1960)) first for plane Cou-

ette flow. There have been several investigations since then of the continuous spectrum (CS)

eigenfunctions in various scenarios, including non-linear base-state profiles, and the structure

of the continuous spectrum eigenfunctions (CS-modes), in the inviscid limit (Re → ∞), is now

known in some detail for the case of parallel shear flows (Balmforth & Morrison (1995b); Sazonov

(1989)), and swirling flows (Roy (2012)). The complete three-dimensional inviscid spectrum

for an arbitrary plane parallel shearing flow has recently been obtained (Roy & Subramanian

(2014b))

The linear stability of plane Couette flow in a viscoelastic fluid is a classical problem whose

study originated with the seminal work of Gorodtsov and Leonov (GL) back in the 1960s

(Gorodtsov & Leonov (1967)). Thereafter, several investigations on the underlying spectra of

various flow profiles have been carried out under differing conditions(Miller (2005); Wilson et al.

(1999); Kupferman (2005)). At zero Reynolds number (Re), the detailed spectrum is known for

the upper-Convected Maxwell (UCM) (Gorodtsov & Leonov (1967); Wilson et al. (1999)) and

the Oldroyd-B fluids (Kupferman (2005); Miller (2005)). For plane Couette flow of the UCM

fluid, for any given streamwise wave number, in addition to a continuous spectrum, there exist

two discrete eigenvalues. For plane Couette flow of the Oldroyd-B fluid, there are two continuous

7



8 Chapter 2. Elastic Coeutte flow

spectra, the one which is already there in the UCM case, the so-called Gorodtsov-Leonov (GL)

spectrum, and a new viscous continuous spectrum which moves out to infinity as the retarda-

tion time tends to zero. Thus, the continuous spectrum is sensitive to the particular choice of

constitutive model used, although its existence is insensitive to the particular base-state profile

(Wilson et al. (1999)). However, it has also been shown that the nature of the discrete spectrum

does depend on the base-state velocity profile.

In general, the detailed examination of the characteristics of the continuous spectrum has

only been carried out in the inertialess limit. In the present study, we are interested in studying

the nature of the continuous spectrum in the complementary (inertial) limit. Thus, the present

investigation is focused on the regime Re→∞, De→∞ with the ratio (1− β)De/Re, known

as the elasticity number E, being finite, where β is the ratio of the solvent viscosity to total

viscosity; β = 0 denotes the UCM fluid and β = 1 denotes the Newtonian limit. Here, De is the

ratio of the polymer relaxation time to time-scale of the flow, while Re is the ratio of the viscous

to the flow time scale. We have De = Uτ/L and Re = ρUL/µ, where τ is the microstructural

relaxation time, U and L are the velocity and length scales characterizing the base-state profile,

and ρ and µ are the density and total (solvent + polymer) viscosity, respectively.

The first investigation in the aforementioned limit (De → ∞, E finite) was carried out by

Azaiez & Homsy (1994) for the Oldroyd-B fluid, and there have been later investigations by

Rallison and Hinch (Rallison & Hinch (1995)) and by Renardy and co-workers (Renardy (2008);

Kaffel & Renardy (2010)) for the both the UCM and Oldroyd-B fluids. Note that the UCM and

Oldroyd-B do not differ qualitatively with regard to their spectra in this limit since the solvent

parameter β appears as a part of E; this is in sharp contrast to the inertialess limit where a

new continuous spectrum (the viscous continuous spectrum) appears for any non-zero β. The

governing equation for linearized perturbations in this limit is the so-called elastic Rayleigh

equation. This equation has been examined earlier (Azaiez & Homsy (1994); Rallison & Hinch

(1995); Renardy (2008)) with the emphasis being solely on the discrete modes. These discrete

modes are either inertially unstable modes, associated with inflectional base-state profiles or

free surfaces modified by elasticity (for the most part), or instabilities driven solely by elasticity

and associated with a shear-driven resonance of elastic shear waves (Rallison & Hinch (1995);

Reddy et al. (2015)). In contrast, we have made an attempt here to study the elastically

modified continuous spectrum (CS-modes) in the inviscid limit. This being a first attempt, we

focus on two canonical flow base-state profiles viz., plane Couette flow (this chapter) and the
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Rankine vortex (the next chapter). Further, the effects of elasticity have been modelled based

on the Oldroyd-B model (discussed in chapter[1]) in order to represent, in the simplest possible

manner, the polymer-solvent coupling in a dilute polymer solution. For simple shear flow, the

Oldroyd-B model predicts a constant shear viscosity and (positive) first normal stress difference,

and a zero second normal stress difference, properties that are characteristic of Boger fluids.

Before going into the details of the elastic analysis (non-zero E), we give a brief description of

the inviscid analysis for each of Couette flow and the Rankine vortex at the beginning of the

relevant chapters.

2.2 Problem formulation

Before proceeding to the asymptotic regime of interest (De → ∞, E finite), we formulate the

governing equations for arbitrary Re and De for plane Couette flow with the base-state velocity

profile defined as ux = γ̇y, γ̇ being the shear rate (the scale for the velocity gradient). These

equations will be needed in chapter [4] where we examine the effects of a weak relaxation on the

elastically modified continuous spectrum. If we define F = ∇ · σ, with σ being the polymeric

stress field, as the elastic force acting on the fluid, then the equations governing the evolution

of small amplitude perturbations in plane Couette flow can be written in the following non-

dimensional form, in terms of the axial vorticity field (ωz) and the (two) in-plane components of

the elastic forces, as:

( ∂
∂t

+ y
∂

∂x

)
ωz =

1

Re
∇2ωz +

1

Ma2
e

(∇∧ F)z (2.1)( ∂
∂t

+ y
∂

∂x
+

1

De

)
Fx = Fy + (1 + 2De2)

∂2ux
∂x2

+ 2De
∂2ux
∂x∂y

+
∂2ux
∂y2

(2.2)( ∂
∂t

+ y
∂

∂x
+

1

De

)
Fy = (1 + 2De2)

∂2uy
∂x2

+ 2De
∂2uy
∂x∂y

+
∂2uy
∂y2

(2.3)

where ωz = (
∂uy
∂x −

∂ux
∂y ) with Fx = (∂σxx∂x +

∂σxy
∂y ) and Fy = (

∂σxy
∂x +

∂σyy
∂y ). The system of equations

above is non-dimensionalized using the channel width b as the length scale, the inverse shear

rate γ̇−1 as the time scale; thus, while the lower boundary is stationary, the upper boundary

is moving with a speed γ̇b. The non-dimensional numbers that appear in (2.4)-(2.7) are the

Deborah number De = γ̇τ (the ratio of the elastic relaxation to the flow time scale), the

Reynolds number Re = γ̇b2/νs (the ratio of the viscous to the inertial time scale with ν being

defined in terms of the total viscosity µ = µp + µs = (Gτ + µs), and the elastic Mach number
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Mae = γ̇b/celas with celas =
√
G/ρ being the elastic shear wave speed in a quiescent elastic

medium. Similar to its counterpart in compressible flows, Mae may be interpreted as the ratio

of a characteristic flow velocity scale to the speed of propagation of infinitesimal amplitude shear

stress (or vorticity) fluctuations in a quiescent incompressible elastic medium. Note that the

elastic Rayleigh limit we examine below corresponds to the highly supersonic limit in the sense

that Mae � 1.

Assuming a normal mode form, f = f̂(y)ei(kx−ωt), with ω = kc, c being the phase speed of the

mode, for the various perturbation quantities, we have:

(y − c)(D2 − k2)ûy =
1

ikRe
(D2 − k2)2ûy +

1

Ma2
e

(ikF̂y −DF̂x), (2.4)

Σ2F̂x = F̂y − ik(1 + 2De2)Dûy − 2DeD2ûy +
i

k
D3ûy, (2.5)

Σ2F̂y = −k2(1 + 2De2)ûy + 2ikDeDûy +D2ûy, (2.6)

Σ2 = −iω + iky +
1

De
. (2.7)

On substituting equations for the elastic force terms in (2.4), we have a single fourth-order

differential equation governing the perturbation normal velocity field (ûy), given by:

1

Ma2
e

(
ik(Σ2

2 + 2)Aûy −
{ i
k

Σ2
2D

2 + 2Σ2D
}
Aûy

)
= (y − c)(D2 − k2)ûy −

1

ikRe
(D2 − k2)2ûy,(2.8)

where A = D2 + 2ikDeD− k2(1 + 2De2). This is the viscoelastic analog of the Orr-Sommerfeld

equation that governs the stability of Newtonian fluids; the above equation has been examined

earlier for Re = 0, in the context of plane parallel shearing flows, by Renardy & Renardy (1986)

and Wilson et al. (1999). Following the footsteps of Gorodtsov & Leonov (1967), who used the

above split-form of the original fourth order operator on the LHS to obtain analytical solutions

in the inertialess limit, the above equation may be re-written in the form:

⇒
[
y2
∗D

2 − 2Dy∗ + 2− k2y2
∗

][
D2 + 2ikDeD − k2(1 + 2De2)

]
ûy =

−k2Ma2
ey

3
∗

[
(y − c)(D2 − k2)− (ikRe)−1(D2 − k2)2

]
ûy (2.9)

where y∗ = Σ2
ik = y − c− i

kDe and D=d/dy. The elastic Mach number may be written in terms

of Re and De as Ma2
e =

(
1

1−β

)
Re.De. For a fixed β, the evolution of the perturbations, as
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governed by (2.4)-(2.7), depends therefore on Re and De, and (2.9) may be written in the form:

[
y2
∗D

2 − 2Dy∗ + 2− k2y2
∗

][
D2 + 2ikDeD − k2(1 + 2De2)

]
ûy(y) =

−ikDe
( β

1− β

)
y3
∗(D

2 − k2)2ûy − k2(Re.De)
( β

1− β

)
y3
∗(y − c)(D2 − k2)ûy(y). (2.10)

2.2.1 The continuous spectrum for finite Re and De

Apart from discrete modes, for any finite De and Re, (2.10), supports a pair of continuous

spectra. In general, since the continuous spectra are associated with the regular singularities

of the governing ODE, the relevant solutions near these points may involve logarithms and/or

fractional powers (making them multi-valued in the complex plane). For, this reason, continuous

spectra usually appear as branch cuts of the dispersion relation that governs the eigenvalues.

In the present case, the pair of continuous spectra is given by yεyc with the yc intervals being

defined by:

Σ2(yc) = 0 (2.11)

Σ(yc) +
i

βDe
= 0 (2.12)

where Σ2(y) and Σ(y). For Re = ∞, there also arises the well-known inviscid continuous

spectrum (CS), given by Σ(yc) = 0, and spanning the base-state range of velocities. However,

with Re finite and for a bounded domain, the continuous spectra arise solely due to the additional

viscoelastic terms in (2.10).

The relation (2.12) defines the so-called Gorodtsov-Leonov (GL) continuous spectrum (Gorodtsov

& Leonov (1967)) named after the authors who first examined viscoelastic plane Couette flow

of a UCM fluid for finite De. Although usually studied in the aforementioned specific context

owing to its analytical tractability (Graham (1998)), the GL spectrum continues to exist for

finite Re, and for both parallel shear flows and azimuthal shearing flows (see next chapter on

the elastic Rankine vortex). The singular GL-eigenfunctions, in addition to being convected

with the flow velocity at y = yc, decay at a rate De−1 due to relaxation, asymptoting to neutral

stability for De→∞. For the case of plane parallel flows, the GL spectrum is characterized by

the integer Frobenius exponents 0, 1, 3 and 4 (Wilson et al. (1999); Kupferman (2005)).

An additional continuous spectrum, given by (2.12) arises due to a finite solvent viscosity

(Wilson et al. (1999)), being is pushed off to infinity in the UCM limit (β → 0). Th CS-
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eigenfunctions in this case have Frobenius exponents 0, 1, 2 and 3−2/β. As noted by Kupferman

(2005), the final Frobenius exponent is in general fractional, and indicates the existence of an

algebraic branch point and an associated branch cut. The CS-eigenfunctions in this case require

therefore a principal-finite-part interpretation (Engevik (1971); Roy & Subramanian (2014a);

Reddy et al. (2015)).

2.3 Elastic Rayleigh equation (Re→∞ and De→∞)

We now proceed to the regime of interest, De → ∞, Re → ∞ with E = De2

Ma2
fixed, in which

case the neglect of the O(De−1) terms denoting microstructural relaxation, yields the following

equation governing ûy:

(y − c)4
[
D2 − k2

]
ûy(y) = 2E

[
(y − c)2(D2 − k2)− 2(y − c)D + 2

]
ûy(y) (2.13)

One has to note that (2.13), is equivalent to (18) in Azaiez & Homsy (1994). Thus, the original

fourth order ODE equation resulting from (2.4)-(2.7), reduces to a second-order ODE in the

limit De→∞, E, β fixed, implying that the neglect of relaxation is a singular limit. From what

is known for the eigenfunctions of the Rayleigh and Orr-Sommerfeld equations (see section 5 in

Roy & Subramanian (2014b)), one expects a non-trivial relationship between the spectrum of

the elastic Rayleigh equation, and that for large but finite De. As noted earlier, the viscosity

ratio β no longer plays a fundamental role (for finite De, a non-zero β led to an additional

continuous spectrum), since, in the above limit, one may interpret a change in β in terms of a

re-scaled E.

For an arbitrary flow, the elastic Rayleigh equation (ERE) takes the following form (Rallison

& Hinch (1995)):

d

dy

[
(ρ(U − c)2 −GA11)

d

dy

φ

U − c

]
= (ρ(U − c)2 −GA11)

α2φ

U − c
, (2.14)

The variable φ in the above equation represents the perturbation stream with φ(y) = i
k ûy(y).

On expanding (2.14) we have:

(U − c)4

{
(D2 − k2)− U ′′

U − c

}
φ =

G

ρ

[
A11

{
(U − c)2(D2 − k2)− (U − c)U ′′ − 2U ′(U − c)D + U ′

2
}

+A′11

{
(U − c)2D − U ′(U − c)

}]
φ (2.15)
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For the plane Couette case, with U(y) = y, E = GA11
ρ , A11 = 1 + 2τ2 and c = yc, and the above

equation reduces to (2.13). One may note that (2.14), is in the self-adjoint form in terms of

the normal displacement ψ, defined as ψ = φ
U−c . Hence, one can easily construct the following

modified version of Howard semi-circle theorem (Rallison & Hinch (1995); Miller (2005); Kaffel

& Renardy (2010)) for parallel flows:

{
cr −

(umax + umin
2

)}2
+ c2

i ≤
(umax + umin

2

)2
− 2E(u′)2

min (2.16)

As seen from (2.16), the role of elasticity is to shrink the inviscid semi-circle of instability,

implying a relative stabilization. The mechanism of instability associated with the original

Rayleigh equation requires an inflection point, and may be interpreted in terms of the resonant

interaction of vorticity waves (M.E.McIntyre & Weissman (1978)). An additional mechanism

of instability, associated with the elastic Rayleigh equation, is that resulting from the resonant

interaction of a pair of elastic shear waves (the balance between inertia and elasticity supports

the propagation of such waves). The shear waves propagate more rapidly (relative to the flow)

with increasing E, and the onset of absolute stability coincides with the inability of the base-

state shear, beyond a threshold E, to bring a pair of such waves into resonance by causing them

to propagate at the same speed (Renardy (2008)).

Further analysis shows that (2.13) has two regular singularities at the locations y = yc ±
√

2E which correspond to the locations of the two travelling shear wave singularities; y = yc

corresponds to the critical level singularity. Since all singular points are regular, a local expansion

of solutions can be found using Frobenius theory. At the travelling wave singularities (yc±
√

2E),

both Frobenius indices are 0; as a result, one of the solutions approaches a constant and the

other diverges logarithmically. At the critical level (y = yc), the Frobenius indices are integers

(1 and 2).

It is worth noting that, for arbitrary E, the elastic Rayleigh equation belongs to the confluent

Heun class (Slavyanov & Lay (2000); Renardy (2008)) making any sort of analysis difficult. We

therefore examine analytically the effects of elasticity on the continuous spectrum in the limit

of small but finite E. Even for small E, elasticity plays an important role in the vicinity of the

critical level, and the analysis that follows is therefore based on a matched asymptotic expansions

approach. The inertial terms become vanishingly small close to the critical level (y = yc) due to

the vanishing Doppler frequency (Σ = ik(y− yc) = 0). The elastic terms, however, remain finite
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since the base-state shear (which controls the polymeric stresses) at the critical level remains

finite. As a result, with the addition of elasticity, there exists a region with a thickness of O(
√
E)

about the critical level, where elasticity and inertia are comparable. Thus, the flow domain may

be divided into two regions in the general case an interior boundary layer (inner) region where

inertia and elasticity are of the same order and outer regions which are dominated by inertia

(see Figure(2.1)).

2.4 Boundary layer analysis of the (elastic Rayleigh equation)

for small but finite E

2.4.1 The outer solutions

We now describe the analysis in the individual regions mentioned above, and the undetermined

constants are then determined through a matching procedure. Towards this end, we shall take

a step back to study the inviscid CS-modes which comes handy for the elastic analysis. The

structure of the inviscid continuous spectrum modes for plane Couette flow was originally derived

by Case (Case (1960)), and the plane Couette profile being a degenerate instance of a non-

inflectional profile with U(y) = y, the spectrum is purely continuous. We consider plane Couette

flow between boundaries at y = 0 and y = 1, with the plate at y = 1 moving parallel to itself

with unit velocity; as before, x and y refer to the streamwise and gradient directions. Assuming

a normal mode form, g = ĝ(y)ei(kx−ωt), one arrives at the Rayleigh equation governing the

linearized evolution the normal velocity eigenfunction ûy(y) originally considered by Case (Case

(1960)):

(y − yc)[D2 − k2]ûy(y) = 0, (2.17)

corresponding to setting E = 0 in (2.13). The above equation has kinked solutions of the form

(see Figure(2.1)):

ûy1(y; yc) = −sinh [k(1− yc)] sinh [ky]

k sinh k
= A(−) sinh [ky] for 0 < y < yc, (2.18)

ûy2(y; yc) = −sinh [kyc] sinh [k(1− y)]

k sinh k
= A(+) sinh [k(1− y)] for yc < y < 1. (2.19)
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where A(−) = sinh [k(1−yc)]
k sinh k , A(+) = sinh [kyc]

k sinh k and D = d/dy, and which satisfy the condition of

zero normal velocity at the boundaries. The location where y = yc, corresponding to the kink,

is termed the ’critical level’, the kink being a jump in the slope across the critical level; it is

the location in the flow domain where the phase speed of the perturbation equals the base-state

velocity. The vorticity eigenfunction corresponding to the above CS-mode turns out to be a

vortex sheet, being given by a Dirac-delta-function singularity at the critical level. Hence, the

inviscid eigenfunctions are vortex sheets convected by the base-state flow and amplitude of the

vortex-sheet remaining non-zero over the entire range of wave speeds.

For non-zero E, (2.17) constitutes the leading-order approximation for the eigenfunction

away from the critical level. The elastic terms become comparable close to the critical level. As

a result, the original critical level, loosely speaking, spreads out into an O(E
1
2 ) elastic boundary

layer localized around y = yc where the velocity and stress fields are governed by a balance

of inertia and elasticity. To analyze the problem in the framework of matched asymptotic

expansion, we now introduce a boundary layer (BL) variable ξ, defined as

ξ =
y − yc√

2E
(2.20)

On substituting in (2.13), with the transformation of variable from ‘y’ to ξ, we have:

[
ξ2(ξ2 − 1)

d2

dξ2
+ 2ξ

d

dξ
− 1− E[kξ2(ξ2 − 1])

]
ũy(ξ) = 0 (2.21)

within an O(E
1
2 ) boundary layer around the critical level.

Now, considering the inner expansion ũy(ξ) = ũ
(0)
y (ξ) +

√
Eũ

(1)
y (ξ) + · · · , one obtains from

(2.21) the following governing equation at leading order:

[
ξ2(ξ2 − 1)D2 + 2ξD − 2

]
ũ(0)
y = 0, (2.22)

the solution of which is given by:

ũ(0)
y (ξ) = B1ξ +B2ξ ln

∣∣∣∣ξ − 1

ξ + 1

∣∣∣∣ , (2.23)

The values ξ = ±1 denote the locations of the travelling wave singularities (the travelling waves

referred to in earlier sections), where the normal velocity is logarithmically divergent (contrast



16 Chapter 2. Elastic Coeutte flow

Figure 2.1: Distribution of different regions in Couette flow

this with the purely inviscid case where the normal velocity remains finite at the critical level),

and they divide the elastic boundary layer into three distinct regions. The solution forms in the

individual regions may be written explicitly as:

ũ
(0)
y−(ξ) = ξ

[
B−1 +B2 ln

∣∣∣∣ξ − 1

ξ + 1

∣∣∣∣] ξ < −1 (2.24)

ũ(0)
y (ξ) = ξ

[
B1 +B2 ln

1− ξ
1 + ξ

]
− 1 < ξ < 1 (2.25)

ũ
(0)
y+(ξ) = ξ

[
B+

1 +B2 ln
ξ − 1

ξ + 1

]
ξ > 1 (2.26)

Note that we have chosen the same constant for the singular logarithmic solution in all three

parts of the boundary layer with the logarithm being real valued in each region. This choice

is consistent with the purely inviscid case (E = 0) where, for a general non-linear shear flow,

the constant multiplying the logarithmically singular Tollmein solution is the same across the

critical level, and it is the jump in the constant multiplying the regular solution that generates the

inviscid CS-spectrum of the Rayleigh equation (Balmforth & Morrison (1995b)). It will be seen

below that the constants in the two peripheral regions (B±1 , B2) are constrained by matching,

and an appropriate choice can accommodate the differing slopes of the outer solutions on either

side. The regular constant in the central part of the boundary layer, at leading (B1) and higher

orders, can be chosen independently, however, and this additional degree of freedom is crucial

to the existence of additional continuous spectra for any finite E.
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Figure 2.2: Matching in Couette flow

2.4.2 Matching the inner (boundary layer) and the outer solu-

tions

We now match the inner boundary layer (BL) solutions to the outer inviscid solutions, following

the matching requirement given by:

ũ
(i)
y−(ξ)|ξ→−∞ ⇔ û

(i)
y1(y)|y→y−c (2.27)

ũ
(i)
y+(ξ)|ξ→∞ ⇔ û

(i)
y2(y)|y→y+c (2.28)

The far-field forms of the inner solutions are given by:

ũ
(0)
y+(ξ)|ξ→∞ = B+

1 ξ − 2B2,

ũ
(0)
y−(ξ)|ξ→−∞ = B−1 ξ − 2B2. (2.29)
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The near-Field forms of the outer solutions are given by:

û
(0)
y1 (y; yc)|y→yc = A

(−)
0

[
sinh [kyc] +

√
2E(kξ) cosh [kyc]

]
+ · · · (2.30)

û
(0)
y2 (y; yc)|y→yc = A(+)

[
sinh [k(1− yc)]−

√
2E(kξ) cosh [k(1− yc)]

]
+ · · · (2.31)

On matching the limiting forms of the inner and outer solutions above, we have the following

relations:

B−1 = A(−)(k
√

2E) cosh [kyc] (2.32)

B+
1 = −A(+)(k

√
2E) cosh [k(1− yc)] (2.33)

B2 = −A
(+) sinh [k(1− yc)]

2
or − A(−) sinh [kyc]

2
(2.34)

The form of the normal velocity eigenfunction within the elastic boundary layer may be

written in following way:

ũ−y (ξ) = ξA(−)
[
k(2E)1/2 cosh [kyc]−

sinh [kyc]

2
Pf. ln

∣∣∣∣ξ − 1

ξ + 1

∣∣∣∣] ξ < −1, (2.35)

ũy(ξ) = ξ
[
B1 −

A(−) sinh [kyc]

2
Pf. ln(

1− ξ
1 + ξ

)
]
− 1 < ξ < 1, (2.36)

ũ+
y (ξ) = −ξA(+)

[
k(2E)1/2 cosh [k(1− yc)] +

sinh [k(1− yc)]
2

Pf. ln(
ξ − 1

ξ + 1
)
]

ξ > 1,(2.37)

where B1 is still arbitrary, and the prefix Pf. in (2.35)-(2.37) denotes a principal-finite-part

interpretation which, as will be seen below, is required in interpreting the vorticity field within

elastic boundary layer. With the complete solution forms for the normal velocity eigenfunction

over the entire domain at hand, we now study the structure of the perturbation vorticity field

in the next section.

2.4.3 Perturbation vorticity field

For the inviscid case (E = 0), as discussed earlier the vorticity field is a delta function at y = yc

with the vortex sheet strength being an O(1) quantity. For small but finite E, the vorticity

field is still localized in the elastic boundary layer which may be regarded as a vortex sheet on

the scale of the outer region. The perturbation vorticity eigenfunction in terms of the normal
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velocity, ûy(y; yc), is given by:

ω̂z(y) = −∇2ψ, (2.38)

= − i
k

[∇2(ũy)], (2.39)

⇒ ω̂z(y) =
i

k

[
−∂

2ũy
∂y2

+ k2ũy

]
(2.40)

where ψ is the stream function and ∇2 denotes the Laplacian. The total vorticity associated

with the above eigenfunction is:

ωz(y) =

∫ yc+O(1)

yc−O(1)
ω̂z(y)dy. (2.41)

On considering ξ = y−yc√
2E

, and transforming the variable, we have:

ωz(ξ) =

∫ +∞

−∞
ω̂z(ξ)(2E)1/2dξ (2.42)

where

ω̃z(ξ) = 2Eω̂z(ξ) and ω̃z(ξ) =

[
− i
k

(∂2ũy
∂ξ2

)
+ E(2ik)ũy

]
. (2.43)

Substituting in (2.43) for the scaled vorticity eigenfunction, we have the following expression

for leading order vorticity field:

ω̃(0)
z (ξ) = − i

k

[∂2ũ
(0)
y

∂ξ2

]
, (2.44)

=
i

k

[
−Pf.

4B2

(ξ2 − 1)2
+B1[δ(ξ + 1)− δ(ξ − 1) + δ′(ξ + 1) + δ′(ξ − 1)]

]
(2.45)

The integrated boundary-layer vorticity, for small E, is therefore given by:

ωz(ξ) =
√
E
(∫ +∞

−∞
ω̃(0)
z (ξ)

√
2dξ
)

+O(E) (2.46)

= − 4iB2

k(2E)1/2
Pf.

∫ +∞

−∞

dξ

(ξ2 − 1)2
+ (B+

1 −B
−
1 ), (2.47)

= B+
1 −B

−
1 , (2.48)

since the principal-finite-part integral is identically zero. Thus, the boundary layer vorticity

continues to be O(1) in the limit E � 1, and therefore consistent with the purely inviscid limit.
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2.4.4 Uniformly valid analysis

In equations (2.35)-(2.37), there are two arbitrary parameters, the amplitude parameter A in the

outer solution (recall that both A(−) and A(+) in (2.35)-(2.37) are proportional to A), already

present in the purely inviscid limit, and the parameter B1 in the central part of the elastic

boundary layer (that remained undetermined in the above analysis). This implies that the

expressions (2.35)-(2.37) actually combine two one-parameter continuous spectrum families. It

is convenient to characterize each of these families separately by appropriate choices for the

constant B1, so that the expressions (2.35)-(2.37), for an arbitrary B1, correspond to a linear

superposition of the two families each of which is parameterized by A alone. The two choices

for B1 are evident from (2.35)-(2.37). The first family may be taken as corresponding to B1 =

A(−)k(2E)
1
2 cosh[kyc] while the second corresponds to B1 = −A(+)k(2E)

1
2 cosh[k(1−yc)]. These

choices help resolve the kink in the regular boundary layer solution across ξ = −1 and ξ = 1,

respectively, and the boundary layer eigenfunctions in the two finite-E continuous spectrum

families may therefore be written as:

ũy−(ξ) =B̂2Pf.ξln
ξ−1

ξ+1
+(2E)

1
2 ξB̂1− ξ < −1, (2.49)

ũy+(ξ) =B̂2Pf.ξln|ξ−1

ξ+1
|+(2E)

1
2 ξB̂1+ ξ > −1, (2.50)

and,

ũy−(ξ) =B̂2Pf.ξln|ξ−1

ξ+1
|+(2E)

1
2 ξB̂1− ξ < 1, (2.51)

ũy+(ξ) =B̂2Pf.ξln
ξ − 1

ξ + 1
+(2E)

1
2 ξB̂1+ ξ > 1, (2.52)

respectively. The first pair of expressions have a kink at ξ = −1 alone, corresponding to the

shear wave travelling at a speed (2E)
1
2 faster than the base-state velocity at y = yc. Terming this

as the ‘slow shear wave’, the expressions (2.49)-(2.50), together with those in the outer region,

may be said to correspond to the slow-shear-wave continuous spectrum, henceforth abbreviated

as the SSWS. By the same reasoning, the second pair of expressions (2.51)-(2.52) correspond to

the fast shear wave, and may be termed the fast-shear-wave spectrum abbreviated as the SSWS.

Note that it is the kink in the regular solution across either of the travelling wave locations that

allows for the satisfaction of the boundary conditions for an arbitrary yc within a given interval,

leading to a continuous spectrum. Thus, the continuous spectrum intervals corresponding to the
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FSWS and the SSWS may be obtained from requiring that the location of the kink be in the

physical domain (that is, between y = 0 and y = 1). The kink at ξ = −1 will lie in the domain

provided yc lies in the interval [(2E)
1
2 , 1 + (2E)

1
2 ] which yields the SSWS spectrum; a similar

requirement for the kink at ξ = 1 leads to the FSWS interval being given by [−(2E)
1
2 , 1−(2E)

1
2 ].

Clearly, for finite E, the continuous spectrum intervals extend outside the base-state inter-

val of velocities, in apparent violation of the finite-E generalization of the Howard semi-circle

theorem. In the matched asymptotic expansions approach above, it has implicitly been assumed

that the elastic boundary layer is in the interior of the domain, or in other words, the ‘edges’

of the boundary layer are at distances from the two boundaries that are much greater than

O(E
1
2 ). In such a case, the impenetrability conditions at the boundaries may be imposed on the

outer solutions, which are then given by (2.18) and (2.19). However, once the elastic boundary

layer is within a distance of O(E
1
2 ) from either boundary, the wall boundary conditions need

to applied to a uniformly valid solution constructed from both the inner (boundary layer) and

outer solutions; rather than the outer solution alone. Such a uniformly valid solution is a com-

posite structure that reduces to different (inner and outer) forms in the respective limits, and

is needed when resolving the continuous spectrum eigenfunctions within a distance of O(E
1
2 )

from the ends of the FSWS and SSWS intervals (those eigenfunctions that exist in violation

of the Howard semi-circle theorem). Note that one only need to account for one boundary at a

time when constructing the uniformly valid solution since the elastic boundary layer remains an

O(1) distance away from the other.

Uniform solution near the lower boundary (y = 0):

We use ‘additive composition’ given in Dyke (1975) to construct the composite or uniformly

valid solution. In this method, we take the sum of the inner and outer expansions and subtract

the part they have in common to prevent double counting. We start from a different form for the

inviscid outer solution (ûy(y; yc)) governed by (2.17), of the form (eky + b′e−ky). On matching

the asymptotic form of the above defined outer inviscid solution to the one in (2.29), we have

following relation for the inner constants:

B−1 = k(2E)1/2(ekyc − b′e−kyc)

B−2 = −e
kyc + b′e−kyc

2
(2.53)

The overlapping component of the inner and outer solutions is given by, −2B−2 + ξB−1 . Hence,
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we have the following expression for the uniform solution near inner wall (y=0):

u(−)
y (y) = eky + b′e−ky +

(y − yc√
2E

)[
B−1 +B−2 log

∣∣∣∣∣y − yc +
√

2E

y − yc −
√

2E

∣∣∣∣∣]+ 2B−2 −
(y − yc√

2E

)
B−1 (2.54)

One can see that in the limit (y − yc) → O(
√
E), the above solution takes the form of the

outer inviscid solution and for the case (y − yc)→ O(1), it reduces to the inner boundary layer

solution. Now, applying the boundary condition, u−y (0) = 0 to the above expression, and using

(2.53), we have:

b′ = −

(
1− ekyc + ycekyc

2
√

2E
log
∣∣∣yc−√2E

yc+
√

2E

∣∣∣)(
1− e−kyc + yce−kyc

2
√

2E
log
∣∣∣yc−√2E

yc+
√

2E

∣∣∣) (2.55)

One can easily verify that the above expression in the limit (y − yc) ≈ O(1), reduces to −1

which led to the simplified expression (2.18). The complete expression for the uniformly valid

solution in the region (0, yc −
√

2E) is given by,

u(−)
y (y) =

{
eky − ekyc − (y − yc)ekyc

2
√

2E
log

∣∣∣∣∣y − yc +
√

2E

y − yc −
√

2E

∣∣∣∣∣} (2.56)

+b′
{
e−ky − e−kyc − (y − yc)e−kyc

2
√

2E
log

∣∣∣∣∣y − yc +
√

2E

y − yc −
√

2E

∣∣∣∣∣} (2.57)

where b′ is given by (2.55).

Uniform solution near the upper boundary (y = 1):

From matching the outer solutions to the relevant inner solutions, we have:

B+
1 = k(2E)1/2(ekyc − b′e−kyc)

B+
2 = −e

kyc + b′e−kyc

2
(2.58)

Therefore, the expression for the uniformly solution valid in the region (yc +
√

2E, 1), is given

by:

u(+)
y (y) = eky + b′e−ky +

(y − yc√
2E

)[
B+

1 +B+
2 log

(
y − yc −

√
2E

y − yc +
√

2E

)]
+ 2B+

2 −
(y − yc√

2E

)
B+

1(2.59)
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For the above solution to satisfy the boundary condition u
(+)
y (1) = 0, one requires:

⇒ b′ = −

(
ek − ekyc − (1−yc)ekyc

2
√

2E
log
(

1−yc−
√

2E

1−yc+
√

2E

))
(
e−k − e−kyc − (1−yc)e−kyc

2
√

2E
log
(

1−yc−
√

2E

1−yc+
√

2E

)) (2.60)

For (y − yc) → O(
√
E), the above expression takes the value −e2k, which led to the simpler

expression (2.19). Hence the complete expression for the uniform solution in the region (yc +
√

2E, 1) is given by,

u+
y (y) =

{
eky − ekyc − (y − yc)ekyc

2
√

2E
log

(
y − yc −

√
2E

y − yc +
√

2E

)}
(2.61)

+b′
{
e−ky − e−kyc − (y − yc)e−kyc

2
√

2E
log

(
y − yc −

√
2E

y − yc +
√

2E

)}
(2.62)

with b′ given by (2.60).

2.5 Numerical results

In this section we study numerically the spectrum of the elastic Rayleigh equation with Couette

flow as the base-state velocity profile. For this purpose, we adopt a standard spectral method

based on a Chebyshev collocation given in Trefethen (2000). There are difficulties with this

method arising from the presence of continuous spectra. Since the continuous spectrum modes

are not C∞, there is in general a ballooning of the numerical spectrum for any finite number

(N) of collocation points, resulting in the numerically determined eigenvalues having spurious

imaginary parts (both positive and negative values arise owing to the time reversibility of the

Rayleigh equation). Note that this ballooning is a strong function of how singular a given

eigenfunction is; thus, the purely inviscid (E = 0) normal velocity eigenfunctions, where the

singularity is only a jump in slope, do not lead to ballooning. The ballooned finite-E spectrum

does collapse onto the real axis, albeit at a slow rate, with increasing N . This is seen from

the plots shown in figure (2.3), where the numerical balloon clearly shrinks with increasing N

(despite the increase in the number of spurious modes), the decrease scaling roughly as 1/N .

We nevertheless use the spectral results to verify the predicted theoretical bounds for the

travelling-wave spectra identified in the earlier section. The spatial extent of the numerical spec-

trum, projected onto the real axis, remains independent of N and the aforementioned ballooning

tendency. Thus, verification of the changing continuous spectrum interval, with varying E, does
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(a) (b)

(c) (d)

Figure 2.3: Elastic Couette flow spectrum with ‘E(=0.01)’ fixed .(a) N=300 (b) N=450 (c)
N=600 (d) N=1200

not pose a problem and is shown in figure (2.4) where the spectral interval is seen to run from

−(2E)
1
2 to 1 + (2E)

1
2 . Three continuous spectra make up this interval. Although not analyzed

in the earlier sections, the third continuous spectrum is one associated with the critical level, the

original Doppler spectrum modified by elasticity, and corresponding to the base-state interval

of velocities: yc ε (0, 1).

The ballooning in the plots in figure (2.4) is affected by the overlap of the multiple (three)

continuous spectra which leads to more singular eigenfunctions (simultaneous presence of both

travelling-wave singularities and the critical-level singularity). For E < 0.1, there is a central

interval where all three spectra (FSWS, SSWS and Doppler) overlap and a pair of peripheral

regions where two (FSWS+ Doppler; SSWS+ Doppler) overlap; this leads to a roughly three-

fold structure for the spectral balloon, the ballooning being distinctly greater in the central

portion. In the range 0.1 < E < 0.5, the spectral balloon has a two-fold structure corresponding
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(a) (b)

(c) (d)

Figure 2.4: Elastic Couette flow spectrum with ‘N (=600)’ fixed. (a) E=0.01 (b) E=0.1 (c)
E=0.5 (d) E=0.7
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(a) (b)

(c)

(d) (e)

Figure 2.5: Eigenfunctions over complete spectrum.(a) An FSWS eigenfunction (b) A superpo-
sition of the FSWS and the Doppler eigenfunctions (c) A superposition of the FSWS, Doppler,
and the SSWS eigenfunctions (d) A superposition of the SSWS and the Doppler eigenfunctions
(e) An SSWS eigenfunction
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to distinct regions where two spectra overlap. Based on the theoretical estimates, mutual over-

laps first disappear for E = 0.5, in which case the three spectra are end-to-end contiguous (the

FSWS spectrum from −1 to 0; the Doppler spectrum from 0 to 1; the SSWS spectrum from

1 to 2). The travelling-wave singularities lie just at the edges of the domain, and accordingly,

there is no ballooning. For greater values of E, the two travelling-wave spectra move farther

away, and completely out of the physical domain (0 1); the Doppler spectrum alone remains in

the physical domain, the associated singularity being too weak to lead to ballooning.

A quantitative comparison of the numerical eigenfunctions with the analytical ones, for in-

stance those given by (2.49)-(2.50) and (2.51)-(2.52), is not possible. This is because, unlike the

eigenvalue limits derived earlier, a comparison between the eigenfunctions would only be valid

for sufficiently small E ((2E)
1
2 � 1, to be precise) when the matched asymptotic expansions ap-

proach is justified. For small E, however, the SSWS and FSWS intervals have a strong overlap

(yc ε [(2E)
1
2 , 1 − (2E)

1
2 ]), and the spectral method is only expected to give some superposition

of the multiple (three) travelling-wave CS-modes corresponding to any yc in this interval. Any

comparison would therefore require the inclusion of a pair of superposition parameters combin-

ing the Doppler, FSWS and SSWS eigenfunctions - a tedious exercise. An examination of the

numerical eigenfunctions below, for finite E, is qualitative, being restricted to the identification

of the travelling wave singularities; these appear as sharp peaks at the locations y = yc± (2E)
1
2

in the numerical plots. Figure (2.5) shows the different forms taken by the inviscid elastic eigen-

functions for E = 0.01 and N = 300. For the travelling-wave eigenfunctions in the peripheral

parts of the spectrum, only one of the singularities (y=c±
√

2E) lies in the physical domain.





Chapter 3

Elastic Rankine Vortex

3.1 Introduction

Having studied explicitly the elastic continuous spectra of plane Couette flow in the last chapter,

we now turn our attention to its cylindrical flow analogue: the Rankine vortex column. The

Rankine vortex is the simplest of the available canonical models for vortices, and serves as a

useful starting point for more realistic vorticity profiles. It consists of a cylindrical core of rigidly

rotating fluid, of a fixed radius, surrounded by an irrotational exterior. An important advantage

of this configuration is that it is inertially stable. As shown recently, the Rankine vortex only

supports neutrally stable discrete and continuous spectrum modes, a combination of which may

at best lead to algebraic growth for short times (Roy & Subramanian (2014a)). Note that the

presence of discrete modes for the Rankine vortex (the so-called Kelvin modes) is in contrast

to Couette flow (and other non-inflectional shearing flows in general) which supports a purely

continuous spectrum.

The present chapter is organized as follows. In section (3.2), starting from the equations of

motion and the Oldroyd-B constitutive relation, we derive the governing linearized equations for

small-amplitude perturbations at finite De and Re. As a prelude to the material in section (3.4),

we discuss the continuous spectra of this system of equations in 3.2.1. Next, in section (3.3)

we derive the elastic Rayleigh equation in plane-polar coordinates that governs the stability of

a base-state vortical flow to infinitesimal wave-like perturbations with a zero axial wavenumber

in the limit Re,De → ∞ with E finite. In sections 3.4.1 and 3.4.2, we examine the spectral

characteristics of the elastic Rayleigh equation equation in more detail by constructing the CS-

spectrum eigenfunctions using a matched asymptotic expansions approach. In section 3.4.3 we

construct the perturbation vorticity, to O(
√
E), showing that the vorticity field, similar to the

elastic Couette flow case, must be interpreted in the sense of a generalized function (a principle-

finite-part interpretation). We conclude our analysis with the construction of a composite or

29
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uniformly valid solution in section 3.4.4. Finally, in section (3.5), we summarize the main results

with a discussion of future lines of research.

3.2 Problem formulation

The general system of equations governing the motion of an Oldroyd-B fluid was given by (1.3)-

(1.5) in chapter 1. In this chapter, we are interested in studying two-dimensional disturbances

(with zero axial wavenumber) to the base-state azimuthal flow of an Oldroyd-B fluid. Let

us consider v = u + u,A = A + a, where the overbar quantities represent the unperturbed

axisymmetric base state. For an axisymmetric swirling flow, we have, u = (0,Ωr, 0), with

Ω ≡ Ω(r), and the base-state stresses being given as:

A(r) =

 1 rΩ′τ

rΩ′τ 1 + 2(rΩ′τ)2

 (3.1)

in a cylindrical coordinate system where ′ denotes a derivative w.r.t r. Note that the base-state

hoop stress component(Aθθ), on account of the quadratic scaling with the shear rate, becomes

dominant for large shear rates (rΩ′τ �1) except when Ω′ = 0 which corresponds to the trivial

case of solid-body rotation. For the present analysis, we consider the Rankine vortex profile for

which Ω(r) = Ω0 for r < a (the rigidly rotating core) and Ω(r) = Ω0(a/r)2 for r � a. The

governing equation for the perturbation velocity field is (Reddy et al. (2015)):

∂u

∂t
+ Ω

∂u

∂θ
+ u.∇u = −∇

(
p

ρ

)
+ ν∇2u +

G

ρ
∇.a. (3.2)

For the two-dimensional perturbations under consideration, u ≡ (ur, uθ), the equations govern-

ing the perturbations to the elastic stresses are given by:

(
∂

∂t
+ Ω

∂

∂θ
+

1

τ

)
arr − 2

{
Arr

∂ur
∂r

+
Arθ
r

∂ur
∂θ

}
= 0, (3.3)(

∂

∂t
+ Ω

∂

∂θ
+

1

τ

)
arθ +

{
A
′
rθur −Arθ

(
∂ur
∂r

+
ur
r

)
− Aθθ

r

∂ur
∂θ

}
+{

Arr

(
uθ
r
− ∂uθ

∂r

)
− Arθ

r

∂uθ
∂θ

}
− rΩ′arr = 0, (3.4)(

∂

∂t
+ Ω

∂

∂θ
+

1

τ

)
aθθ − 2

{
Arθ

(
∂uθ
∂r
− uθ

r

)
+
Aθθ
r

∂uθ
∂θ

}
+(

A
′
θθ −

2Aθθ
r

)
ur − 2rΩ′arθ = 0. (3.5)
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On scaling lengths with the vortex core radius a, time with the turnover time based on the core

angular frequency Ω−1
0 , and assuming a normal mode form, f = f̂(r)ei(mθ−ωt), for the various

perturbation fields, we have the following equations governing the r-dependent perturbation

amplitudes:

ΣrL (rûr) +mrDZûr =
i

Re
rL 2(rûr)−

im

Ma2
e

[
mD∗N̂1 + iDD∗(rârθ) +

im2

r
ârθ

]
,(3.6)

Σ2ârr = 2i

{
ArrD +

imArθ
r

}
ûr, (3.7)

Σ2ârθ = −rArr
m

DD∗ûr −
{m
r
Aθθ + iA

′
rθ

}
ûr + iârrrΩ

′, (3.8)

Σ2âθθ = −2rArθ
m

DD∗ûr − i
{
A
′
θθ + 2AθθD

}
ûr + 2iârθrΩ

′, (3.9)

where D ≡ d

dr
, D∗ ≡ d

dr
+

1

r
, Σ = ω − mΩ and Σ2 = ω − mΩ +

i

De
, and A denotes the

non-dimensional polymeric base-state stresses given by (3.1) above. Here, DZ = rΩ′′ + 3Ω′ is

the the base-state vorticity gradient and N̂1 = âθθ − ârr is the perturbation to the first normal

stress difference. For the Rankine vortex, the base-state vorticity (Z) and vorticity gradient

(DZ) are Z(r) = 2Ω0H(a− r) and DZ(r) = −2Ω0δ(r − a), H(z) and δ(z) being the Heaviside

and Dirac delta functions, respectively. Here, we have used the relation ŵz = (i/m)L (rûr)

between the axial vorticity and radial vorticity perturbations for zero axial wave number with

L = DD∗− (m2− 1)/r2 (Roy & Subramanian (2014a)). The non-dimensional parameters that

appear in (3.6)-(3.9) are the Deborah number De = Ω0τ which is the ratio of the relaxation

to the flow time scale, the Reynolds number Re = Ω0a
2/νt which is the ratio of the viscous to

the inertial time scale, and the elastic ‘Mach’ number Mae = Ω0a/celas which is the ratio of the

flow velocity scale to celas =
√
G/ρ, the shear wave speed in a quiescent elastic medium. Note

that in the limit β → 1, Mae → ∞, so that only the first term on the RHS in (3.6) survives,

giving the Orr-Sommerfeld equation in cylindrical coordinates. Here onwards, we will drop (̂.)

to denote perturbation quantities.

3.2.1 The Continuous spectrum for finite Re and De

The above system of equations (3.6)-(3.9) may be combined into a single fourth-order differen-

tial equation governing ûr, the cylindrical analog of the viscoelastic Orr-Sommerfeld equation

obtained in chapter 2. Apart from discrete modes, for any finite De and Re, the system (3.6)-

(3.9), similar to the case of plane parallel shear flows, possesses a pair of continuous spectra (see
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chapter[2]). The latter are given by r ε rc with rc defined by:

Σ2(rc) = 0, (3.10)

Σ2(rc) + iRe/Ma2
e = 0, (3.11)

where Σ2(r) is as defined above (Renardy & Renardy (1986); Wilson et al. (1999); Kupferman

(2005)). As discussed in chapter 2, the GL spectrum, defined by (3.10), continues to exist for

finite Re even for the azimuthal shearing flow considered here. This is due to the assumed local

nature of the polymeric stress field in almost all constitutive equations in polymer rheology (Bird

et al. (1987)). This in turn arises from the neglect of the centre-of-mass diffusion of polymer

molecules, so the resulting polymeric fluid is a simple fluid in the continuum mechanics parlance

(Coleman & Noll (1961)). As a result, not withstanding the coupling due to the perturbation

flow driven by the stress gradient (via the equations of motion), the polymeric stress along a

given streamline develops in a manner independent of the neighboring ones. This local evolution

is exemplified by the existence of singular divergence-free eigenfunctions for the stress field first

derived by Kupferman (2005). The evolution of the polymeric stress field in the absence of

center-of-mass diffusion is, in fact, similar to that of the vorticity field in the inviscid limit, and

both cases, in principle, allow for arbitrarily large gradients across streamlines (Roy (2012); Roy

& Subramanian (2014b)). Based on this analogy, one expects CS-modes with singularities in

the polymeric stress fields. Similar to the parallel flow case, the singular GL-eigenfunctions,

in addition to being convected with the flow velocity at r = rc, decay at a rate De−1 due to

relaxation, asymptoting to neutral stability for De→∞. Further, similar to the plane parallel

case, the GL spectrum in cylindrical coordinates is characterized by the Frobenius exponents 0, 1,

3 and 4, the streamline curvature being negligible on the length scales defining the validity of the

local Frobenius analysis. A finite solvent viscosity gives rise to the viscous continuous spectrum

(Wilson et al. (1999)). The Frobenius exponents characterizing this spectrum in genreal involve

fractional parts - 0,1, 2 and 3 -2/β, and hence similar to the case of plane Couette flow in chapter

2, the CS-eigenfunctions requires the principal-finite-part-interpretation. Having derived the

general linear equation governing small-amplitude perturbations, in the next section we look at

the regime of interest Re→∞ and De→∞ which involves neglecting all terms corresponding to

microstructural relaxation. In this limit, there will be a reduction in the order of the governing

equation from four to two.
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3.3 Elastic Rayleigh Equation (Re→∞ and De→∞)

The stability investigations in the above mentioned limit (Re→∞, De→∞) have been carried

out by Azaiez & Homsy (1994), and more recently by Renardy (2008) and Kaffel & Renardy

(2010). Azaiez & Homsy (1994) studied the role of elasticity on the linear stability of an iner-

tially unstable mixing layer and the spectrum showed that fluid elasticity has stabilizing effects.

Rallison & Hinch (1995) analyzed the stability of a submerged jet (both planar and axisym-

metric), another flow configuration susceptible to inertial instabilities. Once again, elasticity for

the most part acts to stabilize the unstable inertial modes, but the authors also discovered a

novel instability caused by elasticity. This instability arises from a resonant interaction of elastic

shear waves, and the waves in turn arise from a balance of inertia and elasticity. If one defines

an elasticity parameter, E = De2/Ma2
e = De/Re = µpτ/(ρa

2), then the non-dimensional speed

of propagation of a shear wave relative to the local flow is O(
√

E). The ambient shear associ-

ated with the jet profile allows for a forward traveling shear wave, close to the jet boundary, to

resonate with a backward travelling shear wave located at an O(
√

E) distance in the interior,

and this resonance leads to the instability. Unlike these earlier efforts, whose focus was solely

on the discrete modes, the present effort is focussed on the elastic continuous spectrum which

also includes singular eigenfunctions representative of the shear waves above.

Before examining the elastic continuous spectra, we first consider the elastic Rayleigh equa-

tion in more detail. The single equation for ur governing the perturbations, in the limit

Re,De→∞, reduces to:

Σ
(
r2D2ur + 3rDur − (m2 − 1)ur

)
+mrDZur =

2m2E

[
2D∗

{
rΩ′

Σ

(
mrΩ′2

Σ
+ rΩ′D∗ + rΩ′′

)
ur

}
−
(
rD2 + 3D +

m2

r

)(
rΩ′2

Σ

)
ur

]
(3.12)

or equivalently,

Σ3
[
Σr
(
r2D2ur + 3rDur − (m2 − 1)ur

)
+mrDZur

]
= 2m2EΩ′

[
Σ2
{
r2Ω′D2ur + r(rΩ′′ +DZ)Dur

−(m2 − 1)Ω′ur

}
+mrΩ′Σ

{
2rΩ′Dur + 3(DZ − 2Ω′)ur

}
+ 2m2r2Ω′3ur

]
. (3.13)

The above equation is the elastic equivalent of the Rayleigh equation for swirling flows (refer to

section 15.3 in Drazin & Reid (1981)). The terms proportional to E in (3.12) and (3.13) denote

the contributions due to elasticity. Thus, the original fourth order ODE equation resulting from
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(3.6)-(3.9) reduces to a second-order ODE in the limit De → ∞, E fixed, implying that the

neglect of relaxation is a singular limit.

It is worth noting here that for typical inertio-viscoelastic flows, E is the parameter governing

competing effects of inertia and viscoelasticity only for small but finite De when relaxation effects

are dominant and the fluid rheology is describable in terms of a retarded motion expansion (see,

for instance, Dabade & Subramanian (2015)). For large De, relaxation is unimportant with the

dynamics in the polymeric fluid at finite Re being governed by elastic shear waves damped due

to the solvent viscosity alone (Gorodtsov & Leonov (1967)). In this limit, Mae becomes the

governing parameter (Joseph (2007)). It is thus a little surprising that in the limit of large De

considered here, E rather than Mae turns out to be relevant for (3.14), suggesting the continued

importance of relaxation (τ). However, E in (3.14) is more appropriately interpreted in terms

of a viscoelastic Mach number where the sonic speed corresponds to shear waves propagating in

a pre-stressed elastic medium. The base-state stress level is Āθθ ∼ O(De2) as given earlier, and

the shear wave speed relevant to the perturbation dynamics is given by
√
GĀθθ/ρ ∼ De

√
G/ρ.

The relevant Mach number is O(De).O(
√
G/ρ/Ω0a) ∼ (De/Re)1/2 ∼ E1/2. Thus, the rather

paradoxical dependence on E, and thence on the relaxation time, occurs via the shear wave

speed being dependent on the base-state hoop stress which directly depends on τ . This is much

like the classical viscous stability analyses of Newtonian fluids, where viscosity plays a crucial

role in setting up the base-state velocity profile, while playing a (relatively) sub-dominant role

in the dynamics of perturbations at large Re.

The elastic Rayleigh equation may be written in a more compact form in terms of the radial

displacement, ξ ≡ iur/Σ, first identified by Rallison & Hinch (1995) in the context of plane

parallel shearing flows, and given by:

D
[
r3PDξ

]
= r(m2 − 1)Pξ (3.14)

where, P = Σ2 − 2m2EΩ′2, Σ = ω −mΩ and ξ =
iur
Σ

(the radial displacement)

From (3.14), one may easily construct the following modified version of Howard semi-circle

theorem (Howard & Gupta (1962)) for swirling flows:

(
ωr −

m(Ωmax + Ωmin)

2

)2
+ ω2

i ≤ m2
(Ωmax − Ωmin

2

)2
− 2m2EΩ′2min. (3.15)

One can see that the role of elasticity is to shrink the inviscid semi-circle of instability, implying
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a relative stabilization. The analog of (3.14) has been used by Rallison & Hinch (1995) in

their study of elastic instabilities in jets. Absolute stability results when the semi-circle radius

decreases to zero, and this happens at a finite E provided Ω
′
min is non-zero.

From (3.14), it is seen that the elastic Rayleigh equation has a pair of singular points given

by P (rc) = 0. In terms of ω, the singularities correspond to ω = mΩ ±mΩ′
√

2E. Physically,

these singularities correspond to fore- and aft- traveling elastic shear waves (relative to the local

flow at r). Thus, for the elastic Rayleigh equation, there exist a pair of continuous spectra

associated with fore- and aft-travelling elastic shear waves in the azimuthal direction that owe

their origin entirely to elasticity. Unlike the finite De continuous spectra discussed above, these

inviscid travelling-wave spectra arise due to a balance of the inertial and elastic terms, and must

disappear for any finite De. Thus, in the presence of any amount of relaxation, the travelling-

wave CS-modes are no longer true eigenfunctions, and must instead be expressible in terms

of a superposition of finite De discrete modes. Aside from the obvious reduction in the order

of the equation, this again highlights the singular relation between the spectrum of the elastic

Rayleigh equation discussed below and the finite De spectrum. The effects of a weak relaxation

are analyzed in chapter 4. The elastic Rayleigh operator also supports a third continuous

spectrum ranging over the base-state interval of angular velocities, which is the original inviscid

continuous spectrum (Case (1960); Roy & Subramanian (2014a)) modified by elasticity. This

spectrum arises despite the critical level (r = rc) being an ordinary point of (3.14); the exponents

for the radial displacement field being 0 and 1 (those for the radial velocity are 1 and 2). This

arises from considering the special case of the Rankine vortex (or plane Couette flow), and is

also the case for the original inviscid Rayleigh equation. In this case, the point r = rc for the

Rankine case must be regarded as the limiting case of a general vorticity profile where one of

the solutions at the critical level is indeed logarithmically singular, and leads to a continuous

spectrum. In what follows, we analyze in detail the pair of continuous spectra associated with

the travelling wave singularities.

3.4 Boundary layer analysis of the elastic Rayleigh equation

In this section, we solve for the CS-spectrum eigenfunction via a matched asymptotics expansions

approach for small E. As noted in chapter 2, the elastic Rayleigh equation, being a member

of the confluent Heun class, is not amenable to any analysis for arbitrary E. An analysis at
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small E yields significant insight owing to the singular effect of elasticity. The original inviscid

eigenfunctions of the Rankine vortex are non-trivially altered in an O(E
1
2 ) elastic boundary

layer around r = rc.

3.4.1 The outer solutions

To begin with, we summarize briefly the inviscid 2D CS-spectrum of the Rankine vortex for

E = 0 as found by Roy & Subramanian (2014a), and referred to as the Λ1-family therein. For

an azimuthal wavenumber m, the 2D CS-modes span the angular frequency range (0, mΩ0), and

have a twin-vortex-sheet structure. The vortex sheets are cylindrical, being threaded by axial

lines, with one sheet located at the edge of the core and the other at the critical radius in the

irrotational exterior. A given CS-mode rotates with the base-angular velocity corresponding to

the critical radius. Therefore, the radial velocity and vorticity eigenfunctions are of the form[
ur(r; rc), ωz(r; rc)

]
=
[
ûr(r; rc); ω̂z(r; rc)

]
ei(mθ−ωt) with ω = mΩ(rc), rc = (m/ω)1/2 and

ûr(r; rc) = drm−1 r < 1, (3.16)

= arm−1 + b
1

rm+1
1 < r < rc, (3.17)

=
1

rc

1

rm+1
r > rc, (3.18)

ω̂z(r; rc) =
[ 2id

ω −m
δ(r − 1)−A(rc)δ(r − rc)

]
, (3.19)

where

d =
1

rc
+
iA(rc)

2

[
rm+1 − 1

rm−1

]
, (3.20)

a = − iA(rc)

2

1

rm−1
, (3.21)

b =
1

rc
+
iA(rc)

2
rm+1, (3.22)

A(rc) =
(2i/rc)

[
(m− 1)− ω

]
(1/rm−1

c ) +
[
(m− 1)− ω

]
rm+1
c

, (3.23)

The radial velocity eigenfunction itself is continuous at r = rc, but the discontinuity in

slope at both r = 1 and r = rc corresponds to delta-function (vortex-sheet) contributions

in the perturbation axial vorticity field. The first delta function is an artifact of the kink in

the base-state (Rankine) profile, and consideration of a smooth velocity leads to a continous

eigenfunction. It is thus the amplitude of the second vortex sheet, A(rc), that is of interest and
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that characterizes the 2D CS-spectrum. Note that A(rc) equals zero when ω = (m− 1), which

corresponds to the regular Kelvin mode with a critical radius given by rck = ( m
m−1)1/2. There is

a direct analogy between the 2D CS-spectra of plane Couette flow as found by Case (1960) and

that of the Rankine vortex summarized above. In both cases, the vorticity eigenfunctions are

vortex-sheets convected with the base-state flow - a single plane vortex sheet for Couette flow

and a pair of cylindrical sheets for the Rankine vortex. The crucial difference is the additional

presence of the Kelvin mode above in the latter case. While the inviscid spectrum for plane

Couette flow (and other non-inflectional profiles) is purely continuous with the amplitude of

the vortex-sheet remaining non-zero over the entire range of wave speeds, there exists a unique

angular frequency, for a given m, for which the vortex-sheet amplitude is zero for the case of the

Rankine vortex. The Kelvin mode, together with the 2D CS-modes provide a complete basis

for an arbitrary axial vorticity field in two dimensions (Roy & Subramanian (2014a)).

For small but finite E, we examine the solutions of (3.14) separately in the outer region

where r − rc ∼ O(1), and in the inner region where r − rc ∼ O(
√
E), before matching them to

determine the unknown coefficients in the respective domains. We assume the critical radius, rc,

to be such that the elastic boundary layer lies an O(1) distance away from the edge of the core

(r = 1). The solutions in the outer regions, at leading order, are thus identical to those given

in (3.16)-(3.18) except that (3.17) and (3.18) are not valid right until rc. Likewise, apart from

the core contribution (the term proportional to δ(r− 1) in (3.19), the vorticity field is localized

in the elastic boundary layer around rc, although no longer a delta function at this location.

Thus, (3.17) is now valid in the range r > 1, (rc − r) � O(E1/2) while (3.18) is now valid in

the range (r − rc)� O(E1/2). Note that since P = Σ2 − 2m2EΩ′2 in (3.14), the direct effect of

elasticity enters the outer regions only at O(E). At O(E
1
2 ), the outer solutions still satisfy the

inviscid Rayleigh equation, and the effects of elasticity only enter via matching to the far-field

forms of the elastic boundary layer solution. For purposes of matching below, it is convenient

to normalize the perturbation in the core region, so that ûr(r; rc) = rm−1 for r < 1, instead of

(3.16) (this being valid to all orders in E). As a result, instead of (3.17) and (3.18), we have:

ûr1(r; rc) = a−0 r
m−1 +

(1− a−0 )

rm+1
+ E1/2a−1 (rm−1 − 1

rm+1
) +O(E) r > 1, rc − r � O(E1/2)(3.24)

ûr2(r; rc) =
b+0 + E1/2b+1

rm+1
+O(E) r − rc � O(E1/2), (3.25)
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for the irrotational radial velocity perturbation outside the core and outside the elastic boundary

layer. Here, we used superscripts ± with constants representing the regions (r− rc)� O(E1/2)

and (rc − r) � O(E1/2) respectively. The choice of constants in (3.24) and (3.25) reflects

consistency with the normalized core perturbation at r = 1. Since one is looking for elastic

generalizations of the Λ1 CS-modes, we also impose continuity of the radial velocity for r → rc,

as seen from the outer region. This implies a−0 r
m−1
c +

(1−a−0 )

rm+1 =
(b−1 )

rm+1
c

= ûr(r; rc), which also

leads to the relation between the two constants involved: b+0 = a+
0 (r2m

c − 1).

It may be shown that a balance between the inertial and elastic terms occurs at leading

order when (r − rc) ∼ O(E1/2), and one therefore defines the elastic boundary layer variable

(see Figure(3.1)):

η =
r − rc√

2E
(3.26)

We use the expansion,

Σ(rc) = 0⇒ Σ ≈ −mΩ−1
c (r − rc)−mΩ

′′
c

(r − rc)2

2
· · · , (3.27)

≈ −mΩ′c
√

2E
{
η +

Ω′′c
Ω′c

√
E

2
η2
}
· · · (3.28)

By definition the relation between the radial velocity and displacement is give by:

ur(r) = ũr(η) and ξ(r) =
ξ̃(η)√

2E
, then (3.29)

On using (3.27), the above relation takes the form in the boundary layer, to O(E):

ur(r) = iΣξ(r) (3.30)

ũr(η) = iΣ
ξ̃(η)√

2E
≈ −imΩ′cη

{
1 +

Ω′′c
Ω′c

√
E

2
η
}
ξ̃(η)

Now consider the expansion,

ξ̃(η) = ξ̃(0)(η) +
√
Eξ̃(1)(η) + · · · (3.31)

ũr(η) = ũ(0)
r (η) +

√
Eũ(0)

r (η) · · · (3.32)
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on substituting in the above relation, we have,

ũ(0)
r (η) = −imΩ′cηξ̃

(0)(η) (3.33)

ũ(1)
r (η) = −imΩ′cη

[
ξ̃(1)(η) +

η√
2

Ω′′c
Ω′c
ξ̃(0)(η)

]
(3.34)

On rewriting the elastic Rayleigh equation (ERE) in terms of newly defined boundary layer

co-ordinates, we have,

1

2E

d

dη

[{
rc +

√
2Eη

}3
P
dξ̃

dη

]
=
{
rc +

√
2Eη

}
(m2 − 1)P ξ̃ (3.35)

where

P = Σ2 − 2m2EΩ′2 (3.36)

≈ m2Ω′22Eη2
{

1 +
Ω′′c
Ω′c

√
2Eη

}
− 2m2EΩ′2

≈ 2m2EΩ′2
[
η2 − 1 +

Ω′′c
Ω′c

√
2Eη3

]
(3.37)

on substituting for P, we get

d

dη

[
(1 +

3
√

2Eη

rc
)
(
η2 − 1 +

Ω′′c
Ω′c

√
2Eη3

) d
dη

{
ξ̃(0) + ξ̃(1)

}
= 2E

(m2 − 1)

r2
c

(
1 +

√
2Eη

rc

)(
η2 − 1 +

Ω′′c
Ω′c

√
2Eη3

){
ξ̃(0) + ξ̃(1)

}
(3.38)

On considering terms of the same order, one obtains the following governing equations at O(1)

and O(E
1
2 ), respectively:

d

dη

[
(η2 − 1)

dξ̃(0)

dη

]
= 0, (3.39)

d

dη

[
(η2 − 1)

dξ̃(1)

dη
+

{
3
√

2

rc
η(η2 − 1) +

Ω′′c
Ω′c

√
2η3 − Ω′′c

Ω′c
2
√

2η

}
dξ̃(0)

dη

]
= 0, (3.40)

It is worth noting that the structure of the leading order equation (3.39), is identical to (2.22)

in the elastic Couette flow case (see chapter 2), and hence we expect solutions to take identical

form. The solution of (3.39) is given by:

ξ̃(0)(η) = A1η +A2η ln

∣∣∣∣η − 1

η + 1

∣∣∣∣ , (3.41)



40 Chapter 3. Elastic Rankine Vortex

Figure 3.1: Distribution of different regions in elastic vortex

implying a radial velocity in the boundary layer of the form:

ũ(0)
r (η) = −imΩ′cη

[
A1 +A2 ln

∣∣∣∣η − 1

η + 1

∣∣∣∣], (3.42)

at leading order. Even in the present case the values η = ±1 denote the locations of the travelling

wave singularities where the radial velocity is logarithmically divergent. It is these singularities

that divide the elastic boundary layer (EBL) into three distinct regions.

The solution forms in the individual regions may be written explicitly as:

ũ
(0)
r−(η) = η

[
C−1 + C2 ln

∣∣∣∣η − 1

η + 1

∣∣∣∣] η < −1 (3.43)

ũ(0)
r (η) = η

[
C1 + C2 ln

1− η
1 + η

]
− 1 < η < 1 (3.44)

ũ
(0)
r+(η) = η

[
C+

1 + C2 ln
η − 1

η + 1

]
η > 1 (3.45)

where Ci = −imΩ′cAi. Note that similar to the case of elastic Couette flow (see chapter 2), here

we have chosen the same constant for the singular logarithmic solution in all three parts of the

boundary layer. The constant C1 in the present case is the vortex analog of the constant B1 for

plane Couette flow, and can be chosen idependently. It is this added degree of freedom which is

crucial to the existence of multiple continuous spectra for finite E. Using (3.41) in (3.40), and
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solving, gives:

ξ̃1 = A3 +A4 ln

∣∣∣∣η − 1

η + 1

∣∣∣∣+
iur(rc)√

2mΩ′c

[{ 3

rc
+

Ω′′c
Ω′c

}
ln(η2 − 1)− Ω′′c

Ω′c

( 1

η2 − 1

)]
(3.46)

at the next order. Here, on using Ω′′(rc)
Ω′(rc) = − 3

rc
for a Rankine vortex, we have:

ũr1 = η
[
C3 +

{
C4 +

3C2√
2rc

η

}
ln

∣∣∣∣η − 1

η + 1

∣∣∣∣− 3
√

2C2

rc

( 1

η2 − 1

)]
(3.47)

for the radial velocity at O(E
1
2 ), where Ci = −imΩ′cAi; here, as at leading order, the con-

stant C3 must take different values in the three parts of the elastic boundary layer. Unlike the

plane Couette flow case, here one needs to go beyond the leading-order solutions in order to

discriminate between the discrete and continuous spectrum modes in the original inviscid spec-

trum (recall that the spectrum for non-inflectional plane parallel shearing flow profiles, including

plane Couette flow, is purely continuous).

3.4.2 Matching the inner (boundary layer) and outer solutions:

To determine the unknown constants C1, [C2, C
±
2 ], [C3, C

±
3 ] and C4, we now match the inner

boundary layer (BL) solutions to the outer inviscid solutions. The matching requirement between

the outer regions and those in the elastic boundary layer, is given by the following matching

rule:

ũ
(i)
r+(η)|η→∞ ⇔ û

(i)
r2 (r; rc)|r→r+c (3.48)

ũ
(i)
r−(η)|η→−∞ ⇔ û

(i)
r1 (r; rc)|r→r−c (3.49)

O(1) Matching:

The far-field forms of the inner solutions are given by:

ũ
(0)
r−(η)|η→−∞ = C−1 η − 2C−2 (3.50)

ũ
(0)
r+(η)|η→∞ = C+

1 η − 2C+
2 (3.51)
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Figure 3.2: Matching inner and outer regions

The near-Field forms of the outer solutions are given by:

û
(0)
r1 (r; rc) = a−0 r

(m−1) + b−0 r
−(m+1) (3.52)

û
(0)
r2 (r; rc) =

b+0
r(m+1)

(3.53)

The above solutions satisfy the boundary conditions û
(0)
r1 (1; rc) = 1 (velocity field at the edge

of the vortex core is assumed to be unity) and the far-field boundary condition, û
(0)
r2 (∞; rc)→ 0

(see Figure 3.2).

⇒ û
(0)
r1 (r; rc)|r→rc = a−0 (rc

(m−1)) + (1− a−0 )rc
−(m+1), (3.54)

û
(0)
r2 (r; rc)|r→rc =

b+0
rc(m+1)

(3.55)

On matching, one obtains the following values for the constants involved:

b+0 = ûr(rc; rc)r
(m+1)
c , C±1 = 0 (3.56)

a−0 = 1− b−0 = −
[ 2C−2 + r

−(m+1)
c

r
(m+1)
c − r−(m+1)

c

]
with C2 = − ûr(rc; rc)

2
(3.57)

Hence, all the constants at O(1), except C1, are determined. As pointed out earlier, the only
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difference between the 2D inviscid spectra of plane Couette flow and the Rankine vortex is the

existence of a lone discrete mode - the Kelvin mode - in the latter case. In order to discriminate

between the generalizations of the inviscid CS-modes and the Kelvin mode for non-zero E, one

needs to carry out the matching to O(E
1
2 ). At O(1), the matching process above ensures the

continuity of the radial velocity across the elastic boundary layer, and it is only at O(E
1
2 ) that

the two ends of the elastic boundary layer (η → ±∞) sense the difference in the slopes of the

outer eigenfunctions, ûr1(r; rc) and ûr2(r; rc), for r approaching rc. It is precisely this jump in

slope that differentiates the CS-modes from the Kelvin mode.

O(
√
E) Matching:

The outer solutions at O(
√
E) are given by:

û
(1)
r1 (r; rc) = a−1 r

(m−1) + b−1 r
−(m+1) (3.58)

û
(1)
r2 (r; rc) =

b+1
r(m+1)

(3.59)

The above solutions satisfy the conditions û
(1)
r1 (1; rc) = 0, which gives a−1 = −b−1 . The resulting

near field-forms of the outer solution at O(E
1
2 ) are given by:

û
(1)
r1 (r; rc)|r→rc = a−1

[
(rc

(m−1)) + rc
−(m+1)

]
+ a−0 (m− 1)

√
2η(rc

(m−2))

−(1− a−0 )(m+ 1)
√

2ηrc
−(m+2) (3.60)

û
(1)
r2 (r; rc)|r→rc =

b+1
rc(m+1)

−
√

2b+0 (m+ 1)η

rc(m+2)
(3.61)

The O(E
1
2 ) inner solutions are given by (3.47), and on matching far-field forms of (3.47) in

different regions to the near-field forms of outer solutions discussed above, we have following

relations for the constants:

b+1 = b−1 = C+
4 = C−4 = 0, (3.62)

C−3 =
√

2a−0

[
(m− 1)rc

(m−2) + (m+ 1)rc
−(m+2)

]
−
√

2(m+ 1)rc
−(m+2) − 3

√
2C2

rc

= − 3√
2rc

ûr(rc; rc) +
√

2
[(m− 1)r2m

c + (m+ 1)

rm+2
c

rm+1
c ûr(rc; rc)− 1

r2m
c − 1

− m+ 1

rm+2
c

]
(3.63)
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C+
3 = −(m+ 1)

√
2

r
(m+2)
c

b+0 +
3
√

2

rc
C2

= −(2m+ 5)√
2rc

ûr(r; rc), (3.64)

Having determined the constants above, the forms of the eigenfunction in the outer regions,

to O(E
1
2 ), are given by:

ûr1(r; rc) = a−0 r
m−1 +

(1− a−0 )

rm+1
, (3.65)

ûr2(r; rc) =
b+0
rm+1

, (3.66)

where a−0 and b+0 have been defined in terms of ûr(rc; rc) above. The eigenfunction within the

elastic boundary layer, again to O(E
1
2 ), may be written down in the following piecewise form:

u−r (η) = C2Pf.η ln
η − 1

η + 1
+ E

1
2 η
[
C−3 +

3√
2rc

C2Pf.

(
η ln

η − 1

η + 1
− 2

η2 − 1

)]
η < −1, (3.67)

ur(η) = η
[
C1 +C2Pf.η ln

1− η
1 + η

]
+E

1
2 η
[
C3 +

3√
2rc

C2Pf.

(
η ln

1− η
1 + η

− 2

η2 − 1

)]
− 1 < η < 1,

(3.68)

u+
r (η) = C2Pf.η ln

η − 1

η + 1
+ E

1
2 η
[
C+

3 +
3√
2rc

C2Pf.

(
η ln

η − 1

η + 1
− 2

η2 − 1

)]
η > 1. (3.69)

Note that the terms linear in η, at leading order and at O(E
1
2 ), have been combined into a

single term, C1η, in (3.68). While C2 = − ûr(rc;rc)
2 , and C±3 in the above expressions are given

by (3.63) and (3.64), respectively, C1 in (3.68) remains arbitrary. The prefix Pf. in (3.67)-(3.69)

denotes a principal-finite-part interpretation which, as will be seen below (and as already seen

when analyzing the perturbation vorticity in elastic Couette flow in chapter 2), is required in

interpreting the axial vorticity field within the elastic boundary layer. The expressions (3.67)-

(3.69), taken together with the expressions for the constants involved, show that the CS-modes

for small but finite E involve two parameters. These may be taken as [ûr(rc; rc)− r−(m+1)
c ] and

C1, where 1/r
(m+1)
c is the normalized radial velocity associated with the Kelvin mode at r = rc.

The first parameter, of course, already exists for E = 0, and is proportional to the amplitude of

the second vortex sheet, A(rc), used earlier for the description of the CS-modes for E = 0 (see

(3.16)-(3.19). The second parameter arises only for non-zero E and affects the detailed structure

of the (elastic) boundary layer vorticity field.

The finite-E generalization of the regular Kelvin mode may be obtained by taking rc =

rck, a
−
0 = 0, b−0 = 1. This implies C2 = −1/(2r

(m+1)
ck ), C−3 = C+

3 = −(2m+ 5)/(
√

2r
(m+2)
ck ). The
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O(
√
E) elastic boundary layer constants, C+

3 and C−3 , play a crucial role in sensing the different

modes associated with the Rankine vortex, and their equality ensures an identical slope of the

radial velocity field on either side of the elastic boundary layer. In the outer region, one now has

ûr1(r; rc) = ûr2(r; rc) = 1/r(m+1), and within the boundary layer, (3.16)-(3.19) take the form:

u−rk(η) = − 1

2r
(m+1)
ck

Pf.η ln
η − 1

η + 1
+

E
1
2 η

√
2r

(m+1)
ck

[
(2m+ 5) +

3

2
Pf.

(
η ln

η − 1

η + 1
− 2

η2 − 1

)]
η < −1,

(3.70)

urk(η) = η
[
C1 −

1

2r
(m+1)
ck

Pf. ln
1− η
1 + η

]
+

3E
1
2 η

2
√

2r
(m+1)
ck

Pf.

(
η ln

1− η
1 + η

− 2

η2 − 1

)
− 1 < η < 1,

(3.71)

u+
rk(η) = − 1

2r
(m+1)
ck

Pf.η ln
η − 1

η + 1
− E

1
2 η

√
2r

(m+1)
ck

[
(2m+ 5) +

3

2
Pf.

(
η ln

η − 1

η + 1
− 2

η2 − 1

)]
η > 1,

(3.72)

The above expressions suggest that the finite-E generalization of the regular Kelvin mode is a

one-parameter family of singular eigenfunctions, C1 being the parameter, with singularities at

r = rc ±
√

2E(η = ±1) for small E.

3.4.3 Perturbation vorticity field

The interpretation of the Kelvin mode for finite E in the previous section also becomes clear

on consideration of the axial vorticity field associated with (3.67)-(3.69) (recall that the velocity

field in the outer regions is irrotational to O(E
1
2 ). For E = 0, the axial vorticity field is, of

course, a delta function at r = rc. For small but finite E, the vorticity field is still localized

within the elastic boundary layer which may therefore be regarded as a vortex sheet on the scale

of the outer region. One may therefore discriminate between the 2D CS-modes and Kelvin mode

based on the strength of this equivalent vortex sheet, defined as the total vorticity contained

within the O(E
1
2 ) boundary layer over a single wavelength in the azimuthal direction. We have

the following expression for the perturbation axial vorticity eigenfunction in terms of the radial

velocity ũr(r):

ω̂z(r) = −∇2
rψ =

i

m
[∇2

r(rũr)], (3.73)

where ψ is the stream function, ∇2
r representing the Laplacian in radial co-ordinates both given

by relations:

ψ = − i(rũr)
m

and ∇2
r =

∂2

∂r2
+

1

r

∂

∂r
− m2

r2
(3.74)
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One obtains:

ω̂z(r) =
i

m

[
r
∂2ũr
∂r2

+ 3
∂ũr
∂r
− (m2 − 1)ũr

r

]
, (3.75)

or, in terms of the boundary layer variable (η):

ω̃z(η) ≈ i

m

{
rc
∂2ũr
∂η2

+
√
E
{√

2η
∂2ũr
∂r2

+ 3
√

2
∂ũr
∂η

}}
(3.76)

where ω̃z(η) = (2E)ω̂z(r). Now, consider the expansion, ũr = u
(0)
r +

√
Eu

(1)
r + · · · and ω̃z =

ω̃
(0)
z +

√
Eω̃

(1)
z + · · · On substituting in the above expression for the vorticity eigenfunction, we

have following expression for the vorticity field:

ω̃(0)
z (η) =

i

m

[
rc
∂2ũ

(0)
r

∂η2

]
, (3.77)

=
i

m

[
−Pf.

4C2

(η2 − 1)2
+ C1[δ(η + 1)− δ(η − 1) + δ′(η + 1) + δ′(η − 1)]

]
, (3.78)

at leading order, with Pf. denoting a principal-finite-part interpretation, and:

ω̃(1)
z (η) =

i

m

[
η
√

2
∂2ur0
∂η2

+ 3
√

2
∂ur0
∂η︸ ︷︷ ︸

O(1)velocity contribution

+rc
∂2ur1
∂η2

]
,

= P
iC2

m

[√
2
(2η(3η2 − 5)

(η2 − 1)2
+ 3 ln

∣∣∣∣η − 1

η + 1

∣∣∣∣)+ 2rc

(
ln

∣∣∣∣η − 1

η + 1

∣∣∣∣+
2η(η4 − 4η2 − 1

(η2 − 1)3

)]
+
irc
m

[
C−1

{
δ′(η + 1)− δ(η + 1)

}
+ C+

1

{
δ′(η − 1) + δ′(η + 1)

]
, (3.79)

at O(E
1
2 ). Here, ‘P ’ denotes a Cauchy-principal-value interpretation. This ensures that the

contributions that are odd in η, corresponding to jet-like structures either localized at the trav-

elling wave singularities (proportional to δ
′
(η±1)), or non-local but within the elastic boundary

layer, are negligibly small for E � 1.

The total boundary layer vorticity over half a wavelength in the azimuthal direction may be

given by integrating the vorticity eigenfunction with respect to the radial coordinate. Thus, we

have for the boundary layer vorticity:

∫ rc+O(1)

rc−O(1)
ω̂z(r)rdr, = 2π

∫ rc+O(1)

rc−O(1)
ω̂z(r)rdr, (3.80)
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and on transforming the variable, we have

ωz(η) = 2π

∫ +∞

−∞
ω̂z(η)[rc + η

√
2E]
√

2Edη where η =
r − rc√

2E
(3.81)

The integrated boundary-layer vorticity, for small E, may be written as:

ωz(η) = E
1
2

{
2
√

2πrc

∫ +∞

−∞
ω̃z0dη

}
+ E

{
4π

∫ +∞

−∞
ω̃z0ηdη + 2

√
2πrc

∫ +∞

−∞
ω̃z1dη

}
,(3.82)

= −8iπr2
cC2

m(2E)
1
2

Pf.

∫ +∞

−∞

dη

(η2 − 1)2
+
irc
m

(C+
3 − C

−
3 ) +O(E

1
2 ) (3.83)

=
irc
m

(C+
3 − C

−
3 ) +O(E

1
2 ) (3.84)

The principal-finite-part integral in (3.83) is identically zero, and thus the boundary layer vor-

ticity is proportional to C+
3 − C

−
3 . This difference between the two boundary layer constants

denotes the strength of the elastic boundary layer, when interpreted as an equivalent vortex

sheet on the outer length scale scale. This vortex-sheet contribution evidently is present only

for the CS-modes, and vanishes for the Kelvin mode in which case C+
3 = C−3 . The equivalent

circumstance, that given by B+
1 = B−1 , never occurs for plane Couette flow owing to the purely

continuous nature of the original inviscid spectrum.

Having established in detail a connection between the solutions of the elastic Rayleigh equa-

tion for small but finite E, and the original inviscid spectrum of the Rankine vortex (including

the Kelvin mode), we proceed towards an alternate intepretation of the CS-eigenfunctions for

non-zero E. As will be seen, this interpretation is more general in that it is not reliant on

E being small. The presence of two parameters, [ûr(r; rc) − 1/rm+1
c ] and C3 in (3.65)-(3.69),

implies the existence of a pair of continuous spectra for finite E, in contrast to the single one

for E = 0. It is convenient to regard each of these as corresponding to a particular choice of

C3 in (3.68), and therefore, as being parameterized by [ûr(r; rc) − 1/rm+1
c ] alone. The natural

choices are C3 = E
1
2C+

3 and C3 = E
1
2C−3 which ensure the smooth connection of the regular

solution across η = 1 and −1, respectively. For either choice, the absence of a kink ensures

the absence of delta-function-like contributions to the tangential velocity and vorticity fields at

the relevant travelling wave singularity. Of course, the finite-E eigenfunction is still singular

owing to the logarithmic terms in (3.67)-(3.69). From here onwards, the singularities at η = 1

and −1 will be associated with the fast (or forward) and slow (or backward) shear wave, re-

spectively, for obvious reasons. The choice C3 = C+
3 implies that one only has a kink at the
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slow shear wave. Since it is this kink that allows for singular eigenfunctions even as rc spans

a continuous interval, the interval of existence for this slow-shear-wave-spectrum (SSWS) may

be obtained by the requirement that the kink (the location of the slow shear wave singular-

ity) lie in the physical domain. The slow shear wave propagates with an angular frequency

of ω = m[Ω(r) + Ω′(r)(2E)
1
2 ] = m[1/r2 − 2(2E)

1
2 /r3], which must then lie in the base-state

range of angular frequencies (0, m). The shear wave frequency evidently approaches zero for

r → ∞, while it equals m for r = rcs with [1/r2
rs − 2(2E)

1
2 /r3

rs] = 1. For small E this gives

rcs = 1−(2E)
1
2 , corresponding to an angular frequency of (1+2(2E)

1
2 ). So, the SSWS frequency

interval is [0,m(1 + 2(2E)
1
2 )]. Analogous arguments for the fast shear wave yield the frequency

interval for the fast-shear-wave-spectrum (FSWS) as [0,m(1− 2(2E)
1
2 )] for small E. The SSWS

and FSWS eigenfunctions differ in structure only within the O(E
1
2 ) boundary layer, where they

are given by:

u−r (η) = C2Pf.η ln
η − 1

η + 1
+ E

1
2 η
[
C−3 +

3√
2rc

C2Pf.

(
η ln

∣∣∣∣η − 1

η + 1

∣∣∣∣− 2

η2 − 1

)]
η < −1, (3.85)

u+
r (η) = C2Pf.η ln

∣∣∣∣η − 1

η + 1

∣∣∣∣+ E
1
2 η
[
C+

3 +
3√
2rc

C2Pf.

(
η ln

η − 1

η + 1
− 2

η2 − 1

)]
η > −1, (3.86)

and

u−r (η) = C2Pf.η ln

∣∣∣∣η − 1

η + 1

∣∣∣∣+ E
1
2 η
[
C−3 +

3√
2rc

C2Pf.

(
η ln

∣∣∣∣η − 1

η + 1

∣∣∣∣− 2

η2 − 1

)]
η < 1, (3.87)

u+
r (η) = C2Pf.η ln

η − 1

η + 1
+ E

1
2 η
[
C+

3 +
3√
2rc

C2Pf.

(
η ln

η − 1

η + 1
− 2

η2 − 1

)]
η > 1, (3.88)

respectively, to O(E
1
2 ). The SSWS interval above extends outside the base-state interval of

angular frequencies, clearly implying that the modified semi-circle theorem stated earlier does

not apply to the CS-modes. The purely inviscid case, in having the CS-interval equal to the

semi-circle radius, is, in fact, a little misleading in this regard! It is worth noting that the

expressions (3.87)-(3.88) are valid only when the elastic boundary layer is an O(1) distance

away from the core.

The point that needs emphasis, with regard to the alternate interpretation above, is its

validity for arbitrary E. Although closed form expressions for the eigenfunctions, belonging to

the two continuous spectra, can no longer be obtained when E is not small, the pair of travelling
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wave singularities still exist and satisfy ω = m[Ω(r)± 2Ω′(r)(2E)
1
2 ]. The elastic boundary layer

solution given in (3.41) must now be interpreted as a Frobenius expansion in the vicinity of the

relevant singular point. The FSWS spectrum corresponds to the interval [0,m(1− 2(2E)
1
2 )] for

E < 1/8, and to [m(1− 2(2E)
1
2 ), 0] for E > 1/8. The SSWS spectrum continues to be given by

[0,m(1 + 2(2E)
1
2 )] for finite E, although there arises a degeneracy for E > 1/18 due to shear

waves at a pair of radial locations propagating with the same frequency.

The CS-modes arising from the multiple continuous spectra above, together with a finite

number of discrete modes, must form a complete basis for the independent fields required to

completely characterize an initial state in the limit Re,De → ∞. For the Rankine vortex,

as governed by the elastic Rayleigh equation, these may be taken as the radial velocity field

and the two components of the polymeric force field (∇.a); since the radial component of the

normal stress (arr) does not enter in the elastic Rayleigh limit, one may equivalently consider the

radial velocity field and the stress components arθ and aθθ. One therefore needs (at least) three

continuous spectra in order to represent an arbitrary initial condition. The analysis detailed

above, in choosing a continuous solution across r = rc(η = 0), does not account for the third

spectrum needed. As discussed briefly earlier, this is the Doppler spectrum corresponding to

ω = Ω(rc). Although r = rc is an ordinary point for the elastic Couette flow, in a manner

similar to inviscid plane Couette flow (Case (1960)), one nevertheless requires CS-modes with

a singularity at r = rc to generate a complete basis. In the limit under consideration, that of

finite E, with De → ∞, the Doppler-spectrum eigenfunctions may be generated by different

choices of one of the two regular solutions,(the one corresponding to a Frobenius exponent of 0)

on either side of r = rc.

3.4.4 Uniformly valid analysis

In the last section, we have solved the problem in the framework of matched asymptotic ex-

pansions approach in the case where the elastic boundary layer lies an O(1) distance away from

the edge of the core. In the present section, we briefly discuss the uniformly valid solution

that becomes necessary when the critical radius (rc) is within an O(E
1
2 ) distance from the core.

This approach becomes necessary when obtaining the eigenfunctions close to the edge of the

continuous spectrum (defined as eigenfunctions with angular frequencies that are within O(E
1
2 )

of the core angular frequency). In this case, one only has an outer inviscid region and the core

boundary condition has to directly be imposed on the elastic boundary layer solution. Thus,
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we start with the outer inviscid solution and the inner boundary layer and implement both the

matching and core conditions. The expressions (3.51) and (3.65) give the required asymptotic

forms of the inner and outer solutions, respectively. Considering a0 = 1 and b′0 = b0/a0, on

matching the two solutions in the respective limits, we have:

C−1 = (m− 1)r(m−2)
c

√
2E − b′(m+ 1)r−(m+2)

√
2E

C−2 = −
(r(m−1)

c + b′r
−(m+1)
c

2

)
(3.89)

With inner and outer leading order solutions at hand, we adopt the method of constructing the

composite solution from Dyke (1975). The common part of the inner and outer solutions can be

found from matching, and is give by, −2C−2 + ηC−1 . Hence, the final expression for the uniform

solution reduces to:

ur(r) = r(m−1) + b′0r
−(m+1) +

(r − rc√
2E

)[
C−1 + C−2 ln

∣∣∣∣∣r − rc +
√

2E

r − rc −
√

2E

∣∣∣∣∣]+ 2C−2 −
(r − rc√

2E

)
C−1(3.90)

With C−1 and C−2 given by (3.89). One can easily see that in the limit (r − rc) ∼ O(E
1
2 ), the

above solution reduces to the outer inviscid solution and for the case where (r − rc) → O(1),

it reduces to the inner boundary layer solution. The above solution satisfies the core boundary

condition,(ur(1) = 1), provided.

⇒ b′0 =
[ r

(m−1)
c

{
1 + (1−rc)

2
√

2E
ln
∣∣∣1−rc+

√
2E

1−rc−
√

2E

∣∣∣}
1− r−(m+1)

c

{
1 + (1−rc)

2
√

2E
ln
∣∣∣1−rc+

√
2E

1−rc−
√

2E

∣∣∣}
]

(3.91)

For (r − rc)→ O(1) (the inviscid regime), b′0 reduces to 0, satisfying wall condition. Hence the

uniformly valid solution associated with left-travelling wave singularity have the form given by

(3.90) with b′0 given by (3.91).

3.5 Conclusion

In this chapter, we examined in some detail the spectral characteristics of elastic Rayleigh

equation which governs the evolution of small-amplitude two-dimensional perturbations, to a

base-state swirling flow, in the limit Re and De → ∞. The effects of elasticity were examined

analytically via a matched asymptotic expansions approach in the limit of small but finite E.

It was thereby shown that, in addition to the elastically modified version of the Doppler spec-



3.5 Conclusion 51

trum associated with the original inviscid Rayleigh equation, that spans the base-state range of

velocities, the elastic Rayleigh equation exhibits an additional pair of continuous spectra that

may be associated with singular neutrally stable slow and fast elastic shear waves propagating

with speeds proportional to ±
√

2E relative to the local flow. The singular eigenfunctions asso-

ciated with these travelling-wave spectra exhibit an elastic boundary layer with a thickness of

O(E
1
2 ) about the original critical-level, where elasticity and inertia are comparable. In contrast

to the original inviscid eigenfunctions that exhibit only a kink in the radial velocity field, the

radial velocity field exhibits a logarithmic divergence at a pair of locations within this elastic

boundary layer. The axial vorticity field is more singular, and requires a principle-finite-part-

interpretation. The analysis for small E also showed that the original inviscid Kelvin mode was

replaced by a one-parameter family of singular elastic modes.





Chapter 4

Finite De analysis

4.1 Introduction

Having studied how the presence of elasticity modifies the inviscid continuous spectrum, in

previous chapters, for both the plane Couette (Chapter 2) and the Rankine vortex (Chapter 3)

profiles, in the limit De→∞ with the effects of microstructural relaxation being neglected, we

now intend to look at the additional effects caused by the inclusion of weak relaxation effects.

For this purpose we study plane Couette flow alone, but based on the extended equation (see

2.10 in Chapter 2), in the limit of De being large but finite. This equation may again be written

as:

[
y2
∗D

2 − 2Dy∗ + 2− k2y2
∗

][
D2 + 2ikDeD − k2(1 + 2De2)

]
ûy(y) =

−ikDe
( β

1− β

)
y3
∗(D

2 − k2)2ûy − k2(Re.De)
( β

1− β

)
y3
∗(y − c)(D2 − k2)ûy(y), (2.10)

where y∗ = Σ2
ik = y − c − i

kDe and D = d/dy. Here, β = 0 corresponds to a UCM fluid while

β = 1 corresponds to a Newtonian fluid. Recall that (2.10) is the viscoelastic analog of the

Orr-Sommerfeld equation for plane parallel shearing flows of a Newtonian fluid, and for a fixed

β, the evolution of perturbations, as governed by (2.10), depends therefore on both Re and

De. Equation (2.10), in the above form, has been obtained earlier; see, for instance, Kumar

& Shankar (2005). As discussed earlier in chapter 2, (2.10), for finite De, supports a pair of

continuous spectra (Wilson et al. (1999); Kupferman (2005)) in addition to the discrete modes.

For β = 0 (the UCM limit), and Re → 0, the spectrum of (2.10) in plane Couette flow was

first characterized by Gorodtsov and Leonov (Gorodtsov & Leonov (1967)). It consists of two

discrete eigenvalues, and a continuous spectrum given by c = y + i
k De with y ε [0, 1]. For β 6= 0,

corresponding to an Oldroyd-B fluid, there arises an additional viscous continuous spectrum

given by c = y + i
kβ De , y ε [0, 1], together with a finite number of discrete eigenvalues; the

53
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number of discrete viscous eigenvalues tends to infinity in the UCM limit β → 0 (Wilson et al.

(1999)).

From what is known about the eigenfunctions of the Rayleigh and Orr-Sommerfeld equations

(see section 5 in Roy & Subramanian (2014b)), one expects a non-trivial relationship between

the spectrum of the elastic Rayleigh equation (equation (.) in chapter[2]), and that for large

but finite De (equation (2.10) above). The phrase ‘non-trivial’ is used here in the sense that

there may not be a one-to-one correspondence between the De =∞ eigenfunctions and those for

De � 1. For instance, each inviscid elastic eigenfunction of the elastic Rayleigh equation may

arise as an infinite superposition of eigenfunctions of (2.10) even as De→∞. To examine this

relation, we now consider (2.10) which governs the evolution of elastic perturbations in Couette

flow.

For purposes of simplicity, we restrict ourselves to the case β = 0, neglecting the direct ef-

fects of solvent viscosity, and thereby avoid additional complications associated with the viscous

continuous spectrum. In the foregoing chapters, we have characterized the three continuous

spectra associated with the elastic Rayleigh equation for a pair of canonical base-state velocity

profiles - one associated with the critical level, and the two associated with the pair of trav-

elling wave singularities. The objective now is to see how each of these spectra is affected by

weak relaxation effects. It is found below that the critical-level singularity and the associated

continuous spectrum survives at large but finite De, since the elastic part of (2.10) continues to

support a continuous spectrum (the GL spectrum) for any finite De with β = 0. When De is

large, the second order derivatives in this elastic part begin to dominate the fourth-order ones

except in an asymptotically thin relaxation boundary layer around the critical level. It is thus

found that outside an O(De−1) inner boundary layer around the critical point, within which

the fourth-order terms are still important, the second-order terms dominate with (apparent)

Frobenius exponents of 1 and 2. These exponents were identified in chapter 3, and are deter-

mined only by the elastic part of the Rayleigh operator. In contrast, (2.10) is not singular at

the travelling wave locations, and therefore, the travelling-wave spectra identified in the elastic

Rayleigh limit cannot persist at finite De however large. We explore the possibility below of

the singular travelling-wave eigenfunctions being regularized locally, within an inner relaxation

boundary layer, with the original singularity being resolved into a small-scale oscillation in the

relaxation region. The analysis in section 4.1.2 shows that this does not happen, and that the

effects of relaxation must therefore be global in nature (much like a weak viscosity leads to the
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existence of the viscous solutions of the Orr-Sommerfeld equation [Drazin & Reid (1981)]).

4.1.1 Boundary layer analysis at the critical level

With a little analysis it may be shown that there exists an inner relaxation boundary layer of

thickness O(1/De), around the critical-level (with De−1 � E
1
2 , or equivalently, Re � De3)

where relaxation terms become important. Within this O(De−1) layer, the elastic terms in the

original elastic Rayleigh operator balance the relaxation terms at leading order; next, within a

larger boundary layer with thickness of O(E
1
2 ), there is the balance between elastic and inertial

terms already seen in earlier chapters, and finally, the inviscid inertial solution is dominant

in the domain outside the boundary layer. This makes up the layered asymptotic structure

characterizing an eigenfunction with a singularity at the critical-level in the limit De,Re � 1

and with Re� De3.

The factor responsible for the GL spectrum in (2.10) is y∗ = y− c− i
kDe . With c = cr + ici,

and ci = ĉi/De, ĉi ∼ O(1), we have y − c − i
kDe = y − cr − i[ĉi + (1/k)]/De. With ĉi = −1/k,

and Ŷ = De(y − cr) being the new boundary layer variable, we have the following fourth-order

equation valid around the critical-level at leading order:

[
Ŷ 2D2 − 2Ŷ D + 2

][
D2 + 2ikD − 2k2

]
uy(ŷ) = 0 (4.1)

where D ≡ d
dŶ

. The above equation represents the local form of the original equation considered

by Gorodtsov and Leonov (Gorodtsov & Leonov (1967)) and Wilson (Wilson et al. (1999)) for

inertialess plane Couette flow. The solution to the above equation takes the form:

uy(ŷ) = B3

{
exp(−kŶ (1 + i))

}
+B4

{
exp(kŶ (1− i))

}
−B5

{ i+ kŶ

2k3

}
+B6

{1− 2ikŶ − k2Ŷ 2

2k4

}
.(4.2)

Here, the four independent solutions are the local representations, for y → yc, of the solutions

derived by Graham in the appendix of Graham (1998) (also see Miller (2005)). To eliminate

exponential growth for large |Ŷ |, one sets B3 = 0 for Ŷ > 0 and B4 = 0 for Y < 0. The

two algebraically growing solutions on either side of Ŷ = 0, for |Ŷ | → ∞, match up to the

solutions of the elastic Rayleigh equation for ξ → 0 (ξ being the variable in the O(E
1
2 ) elastic

boundary layer analyzed in Chapter 2); the third exponentially decaying solution does not

enter the matching procedure. It may be shown that the constants multiplying these algebraic
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solutions on either side of the critical level, B±5 and B±6 , may thereby be determined. Owing to

the differing constants on either side of the critical level, the large-but-finite De eigenfunction

remains singular in the vicinity of the critical level, and the nature of the singularity, within

the inner O(De−1) relaxation layer, is identical to that identified earlier for the viscoelastic

continuous spectrum in inertialess flows.

4.1.2 Boundary layer analysis at travelling waves locations

Unlike the finite-De critical level spectrum analyzed above, the travelling-wave spectra arise due

to a balance of inertial and elastic terms. With the inclusion of relaxation terms, y = c±
√

2E no

longer correspond to singular locations, and the travelling-wave spectra must therefore disappear

for any finite De. Instead, there exists a boundary layer with thickness of O( E
1/4

De1/2
) around each

of these singular locations in which the inertial, elastic and relaxation terms balance at leading

order,(the requirement that these boundary layers be small compared to the O(E
1
2 ) inviscid

elastic boundary layer encountered earlier leads to the same condition, Re � De3, as for the

relaxation layer around the critical-level singularity). Considering the boundary layer around

the slow-shear-wave singularity at y = c−
√

2E, we introduce a boundary layer variable ζ defined

as:

ζ =
[
y − (c−

√
2E)

]De1/2

E1/4
(4.3)

On substituting, (2.10) can then be written in the following reduced form at leading order

(O(E5/4De1/2)):

[
D3 + ik

√
2ζD2 + i

√
2kD

]
uy(ζ) = 0, (4.4)

where D ≡ d
dζ , and the solution to the above equation is given by:

uy(ζ) = B4L +B5L

{√
π/k(−2)(−3/4)Erfi

[
−(−1/2)(1/4)

√
kζ
]}

+B6L

{
(
ζ2

2
)2F2

[
(1, 1), (

3

2
, 2),− ikζ

2

√
2

]}
(4.5)

Here, 2F2[.] is the generalized Hypergeometric function, and Erfi[.] denotes the imaginary Error

function (see Frank W. J. Olver (2010)).

In an analogous manner, for the fast-shear-wave at y = c +
√

2E, we introduce the boundary
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Figure 4.1: Finite De scheme
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layer variable ν, defined as:

ν =
[
y − (c+

√
2E)

]De1/2

E1/4
(4.6)

On substituting, (2.10) can then be written in the following reduced form at leading order:

[
D3 − ik

√
2νD2 − i

√
2kD

]
uy(ν) = 0 (4.7)

where D ≡ d
dν . The above equation has a solution of the form:

uy(ν) = B4R +B5R

{√
π/k(−2)(−3/4)Erfi

[
(−1/2)(1/4)

√
kν
]}

+B6R

{
(
ν2

2
)2F2

[
(1, 1), (

3

2
, 2),

ikν2

√
2

]}
(4.8)

4.1.3 Matching at the travelling-wave singularities

For purposes of matching, we now write down the expressions for the constants, B±1 and B2,

from chapter 2, that appeared in the boundary layer solution of the elastic Rayleigh equation:

B−1 = A(−)(k
√

2E) cosh [kyc]

B+
1 = −A(+)(k

√
2E) cosh [k(1− yc)]

B2 = −A
(+) sinh [k(1− yc)]

2
or − A(−) sinh [kyc]

2
(4.9)

The far-field forms of the relaxation layer solutions, in the vicinity of the slow-shear-wave

singularity, given by (4.5), are:

uy(ζ)|ζ→∞ = B4L +B5L

{√
π/k(−2)(−3/4)

[(1− i)(−i)1/2

√
2

+O(
1

ζ2
)
]

+ exp (
ikζ2

√
2

)
[ i(−2)1/4

ζ
√
πk

+O(
1

ζ3
)
]}

+B6L

{[
− i(1 + 3 log 2 + 2 log(ik)− 4 log(1/ζ))

4
√

2k
+O(

1

ζ2
)
]

+ exp− ikζ
2

2

[√
− −iπ√

2k3

1

ζ
+O(

1

ζ3
)
]}

(4.10)

uy(ζ)|ζ→−∞ = B4L +B5L

{√
π/k(−2)(−3/4)

[(i− 1)(−i)1/2

√
2

+O(
1

ζ2
)
]

+ exp (
ikζ2

√
2

)
[ i(−2)1/4

ζ
√
πk

+O(
1

ζ3
)
]}

+B6L

{[
− i(1 + 3 log 2 + 2 log(ik)− 4 log(1/ζ))

4
√

2k
+O(

1

ζ2
)
]

+ exp− ikζ
2

√
2

[√ −iπ√
2k3

1

ζ
+O(

1

ζ3
)
]}

(4.11)

The far-field forms of the relaxation layer solutions, in the vicinity of the slow-shear-wave



4.1 Introduction 59

singularity, given by (4.8), are:

uy(ν)|ν→∞ = B4R +B5R

{
−
√
π/k(−2)(−3/4)

[(i− 1)(−i)1/2

√
2

+O(
1

ν2
)
]

+ exp (
ikν2

√
2

)
[ (1− i)

ν
√

(
√

2πk)

]}

+B6R

{[ i(1 + 3 log 2 + 2 log(−ik)− 4 log(1/ν))

4
√

2k
+O(

1

ν2
)
]

+ exp
ikν2

√
2

[
−

√
iπ√
2k3

1

ν
+O(

1

ν3
)
]}

(4.12)

uy(ν)|ν→−∞ = B4R +B5R

{
−
√
π/k(−2)(−3/4)

[(i− 1)(−i)1/2

√
2

+O(
1

ν2
)+
]

+ exp (
ikν2

√
2

)
[ (1− i)

ν
√

(
√

2πk)

]}

+B6R

{[ i(1 + 3 log 2 + 2 log(−ik)− 4 log(1/ν))

4
√

2k
+O(

1

ν2
)+
]

+ exp
ikν2

√
2

[√ iπ√
2k3

1

ν
+O(

1

ν3
)+
]}

(4.13)

Before going into the details of finite-De matching associated with the travelling waves, one

has to note that the equation governing the O( E
1/4

De1/2
) boundary layer at each of the travelling

waves is of third-order and hence involve three finite-De constants, unlike the elastic Rayleigh

case where we have two constants. The finite De matching is a two step procedure, where we

first match the elastic Rayleigh solutions to the outer inviscid solutions, and then the inner

finite-De solutions to the relevant elastic solutions. Here we have the following set of matching

requirements (see Fig(4.1)), for matching finite De solutions to elastic solutions:

uy(ν)|ν→∞ ⇔ ũy+(ξ)|ξ→1 (RT-wave (outer layer)) (4.14)

uy(ν)|ν→−∞ ⇔ ũy(ξ)|ξ→1 (RT-wave (inner layer)) (4.15)

uy(ζ)|ζ→∞ ⇔ ũy(ξ)|ξ→−1 (LT-wave (inner layer)) (4.16)

uy(ζ)|ζ→−∞ ⇔ ũy−(ξ)|ξ→−1 (LT-wave (outer layer)) (4.17)

Matching the slow shear wave solution with the elastic Rayleigh one on the ‘+′ side gives:

B6R = −i
√

2kB2 (4.18)

B4R +B5R

{−√π/k(−2)(−3/4)(i− 1)(−i)1/2

√
2

}
+B6R

{ i(1 + 3 log 2 + 2 log(−ik))

4
√

2k

}
= B+

1 +B2[(iπ)− log 2 + log (
E−1/4

De1/2
)] (4.19)
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Matching with the elastic Rayleigh solutions in the central part of the boundary layer gives:

B6R = −i
√

2kB2 (4.20)

B4R +B5R

{√π/k(−2)(−3/4)(i− 1)(−i)1/2

√
2

}
+B6R

{ i(1 + 3 log 2 + 2 log(−ik))

4
√

2k

}
= B1 +B2[(iπ)− log 2 + log (

E−1/4

De1/2
)] (4.21)

The above equations give the relation:

B1 = A+k
√

2E cosh [k(1− yc)] +A+ sinh [k(1− yc)]
{
iπ + log (

E−1/4

De1/2
)

− log 2− (1 + 3 log 2 + 2 log(−ik))

4
+ 2B4R (4.22)

Matching the fast shear wave solution with the elastic Rayleigh solution in the central part

of the boundary layer gives:

B6L = i
√

2kB2 (4.23)

B4L +B5L

{−√π/k(−2)(−3/4)(i− 1)(−i)1/2

√
2

}
+B6L

{
− i(1 + 3 log 2 + 2 log(ik))

4
√

2k

}
= −B1 −B2[log 2− log (

E−1/4

De1/2
)] (4.24)

Matching with the elastic Rayleigh solution on the ‘−′ side gives:

B6L = i
√

2kB2 (4.25)

B4L +B5L

{√π/k(−2)(−3/4)(i− 1)(−i)1/2

√
2

}
+B6L

{−i(1 + 3 log 2 + 2 log(ik))

4
√

2k

}
= −B−1 −B2[log 2− log (

E−1/4

De1/2
)] (4.26)

From the above expressions, one can see that the number of unknown constants are more

than the number of equations, and hence all the constants cannot be determined via direct

matching. We therefore neglect the constant terms B4L and B4R, and the resulting consistent



4.1 Introduction 61

system leads to the following dispersion relation:

[
coth [k(1− yc)] + coth [kyc]

]
=

1

k
√

2E

[
1 + 7 log 2− iπ + 2 log (ik)− 4 log (

1

E1/4De1/2
)
]
(4.27)

One can easily see that the above relation does not lead to sensible values of yc in the elastic

limit. Hence, in the limit De being finite but large, the two travelling-wave continuous spectra

will no longer be preserved, and it will not be possible to find the resulting discrete spectra

via a mere perturbation of the Case eigenfunctions (Case (1960)) in relaxation boundary layers

around the travelling wave singularities. This is because the inner relaxation boundary layers,

as seen above, do not support non-trivial solutions with the constraints that are imposed by the

outer elastic boundary layer solutions on either side (for ξ → ±∞).

The above statement reflects the fact that the functional forms of discrete eigenfunctions

do not look anything like the Case eigenfunctions (Case (1960)). We might then to recognize

the fact that the length scale of the discrete spectrum eigenfunction would adjust itself to being

so small that relaxation terms become important at leading order everywhere in the domain.

This would be via the viscous term because accounting for a weak relaxation immediately leads

to a small viscosity (∝ 1/De). The above is much like the Orr-sommerfeld - Rayleigh relation

where we do have the ‘viscous solutions’ of the Orr-sommerfeld equation that have a scale of

O(Re−1/2), leading to viscosity being important at leading order througout the domain, that

have no Rayleigh analogs. It appears that to capture the oscillatory behaviour of the solution

away from the critical level, we may need to adopt a WKB approach, where the small parameter

needed would be the inverse square root of the Mach number (Mae ∝ De.Re). Such an approach

is actually adopted, for large Re, for a general non-linear flow, and this is illustrated in Drazin

& Reid (1981). In this sense, the situation for elastic Couette flow is more akin to that of a

non-linear flow in the absence of elasticity.





Chapter 5

Conclusions and Future Work

In this thesis, we studied the spectral characteristics of the elastic Rayleigh equation, the one

that governs the evolution of small-amplitude perturbations in the limit Re,De→∞ with their

ratio (E) being finite. Our focus was on the continuous spectra of this equation; in particular, as

to how elasticity modifies the original inviscid continuous spectrum. For purposes of simplicity

we restricted our study to two-dimensional peturtations for a pair of canonical shearing flows:

plane Couette flow and the Rankine vortex. In the purely inviscid limit, both the Rankine vortex

and plane Couette flow cases have virtually identical continuous spectra (notwithstanding the

existence of a discrete mode in the vortex case). The continuous spectrum eigenfunctions for

the radial and normal velocity fields, respectively, exhibit a kink corresponding to the presence

of a vortex sheet at the critical level. With the addition of elasticity, we therefore expect the

structure of the continuous spectrum modes to be modified in an analogous manner in both

cases.

The detailed spectral analysis for elastic Couette flow was carried out in chapter [2]. Here, we

examined analytically the effects of elasticity in the limit of small but finite E. Even for small E,

elasticity plays an important role in the vicinity of the critical-level. The inertial terms become

vanishingly small here due to the vanishing Doppler frequency; the elastic terms, however, remain

finite since the base-state shear at the critical level remains finite. The neglect of the relaxation

terms in the limit De→∞ implies that the polymer solution supports undamped elastic shear

waves propagating relative to the base-state flow. As a result, the addition of elasticity leads to

multiple (three) continuous spectra associated with the elastic Rayleigh equation. One of the

spectra is associated with the critical-level that extends over the base-state range of velocities,

the next being the fast shear-wave-spectrum (FSWS) that extends from −
√

2E to 1 −
√

2E,

and finally, the slow-shear-wave-spectrum (SSWS) that extends from
√

2E to 1 +
√

2E. The

underlying physics for the multiple continuous spectra, with the addition of elasticity, may

thought of as being related to existence of three sub-patterns all of which can travel at the same

velocity (the critical level velocity) - the first is a pattern that is convected by the flow at the
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critical level; the second and third are patterns that propagate, relative to the flow at locations

separated from the critical level by
√

2E, at speeds of ±
√

2E. In chapter [3], a similar analysis

was carried out for the case of Rankine vortex, and the appropriate elastic generalization of the

inviscid Kelvin mode is obtained. In both chapters [2] and [3], we investigate the problem in

the framework of a matched asymptotic expansions approach, showing that the structure of the

original inviscid eigenfunctions is modified in a boundary layer of thickness O(
√
E) around the

critical level.

After studying the effects of elasticity in the limit Re → ∞, De → ∞, which is equivalent

to neglecting the relaxation terms, in chapter [4], we retained the leading order relaxation

contributions, by considering the limit where De is large but finite. An analytical approach

involving a multiple-boundary layer analysis, with an inner relaxation layer, was carried out for

each of the three singular points of the original elastic Rayleigh equation. Only the continuous

spectrum associated with the critical level is found to survive for finite De; the pair of travelling-

wave spectra is not preserved at finite De.

It was found in chapter [4] that the effect of relaxation on the singular travelling-wave

eigenfunctions of the elastic Rayleigh equation will not be restricted to an asymptotically thin

relaxation layer around the original critical point. This suggests future work along the lines

of a WKB approach, for large but finite De, for the plane Couette flow studied in chapter [4].

It might be possible to extend this same analysis to the Rankine vortex. Effects of elasticity

on inviscid dynamics (on the algebraic transient growth that occurs in the inviscid limit, for

instance) can be studied by posing an elastic initial-value problem (IVP), and this may allow

one to see the manner in which the singular elastic continuous spectrum modes superpose to

reproduce an evolving initial condition. Also, since the limit considered above (Re, De → ∞)

allows one to draw an analogy of viscoelastic flows with magnetohydrodynamic flows in the

limit of Rem →∞ (Ogilvie & Proctor (2003)), Rem being the magnetic Reynolds number, our

findings may be of use in the astrophysical analog of the problem.
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