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Abstract

This dissertation describes the physics of granular particles in two different flow configuration:

Poiseuille and Taylor-Couette. In the first part, smooth inelastic disks are allowed to flow

under the effect of gravity in a two-dimensional channel. The particles are modeled as inelastic

hard particles which interact through binary collisions using event-driven molecular dynamics

simulations. In the second part, the particles are allowed to rotate in a cylindrical geometry

confined in the annular region between two cylinders, dubbed Taylor-Couette (TC) flow, with

inner cylinder rotating with different rotation rates in the absence of gravity.

Granular Poiseuille flow

The numerical simulation of gravity-driven flow of smooth inelastic hard-disks through a channel,

dubbed ’granular’ Poiseuille flow, is conducted using event-driven techniques. We find that the

variation of the mass-flow rate (Q) with Knudsen number (Kn) can be non-monotonic in the

elastic limit (i.e. the restitution coefficient en → 1) in channels with very smooth walls. The

Knudsen-minimum effect (i.e. the minimum flow rate occurring at Kn ∼ O(1) for the Poiseuille

flow of a molecular gas) is found to be absent in a granular gas with en < 0.99, irrespective of the

value of the wall roughness. Another rarefaction phenomenon, the bimodality of the temperature

profile, with a local minimum (Tmin) at the channel centerline and two symmetric maxima (Tmax)

away from the centerline, is also studied. We show that the inelastic dissipation is responsible for

the onset of temperature bimodality [i.e. the ‘excess’ temperature, △T = (Tmax/Tmin − 1) 6= 0]

near the continuum limit (Kn ∼ 0), but the rarefaction being its origin (as in the molecular

gas) holds beyond Kn ∼ O(0.1). The competition between dissipation and rarefaction seems

to be responsible for the observed dependence of both the mass-flow rate and the temperature

bimodality on Kn and en in this flow. The validity of the Navier-Stokes-order hydrodynamics

for granular Poiseuille flow is discussed with reference to the prediction of bimodal temperature

profiles and related surrogates.

Granular Taylor-Couette flow

In the second part of the thesis, event-driven simulations of smooth hard spheres in Taylor-

Couette setup are carried out in the absence of gravity. Mean field properties like velocity

(U), granular temperature (T ), volume fraction (ν) and angular momentum (l), as functions of

normal restitution coefficient (en), gap width (dw) and rotation rate (ωi), are studied in both

two and three-dimensions. For dissipative systems (en < 1), the particles accumulate, thereby,

forming a particle-rich cluster and exhibiting various patterns and structures in two-dimensions.

Effects of different axial wall boundary conditions are characterised. The strength of the Taylor-

like vortices is found to a reduce in granular system, and a new type of vorticity-banding (axial

bands of particle-rich and particle-depleted regions) is uncovered.

vii
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Chapter 1

Introduction

Granular matter has intrigued many researchers for a long time (Faraday 1831; Raman 1923),

but a thorough understanding was made after the seminal work by Bagnold (Bagnold 1954) and

his book on granular matter (Bagnold 1941) is still an important reference to this day. The

first recorded evidence of scientific importance was made by Lucretius, the Latin philosopher

100 years after Archimedes (circa 200 B.C.) calculated the number of grains of sand that would

fill the universe. He was one of the few pioneers to ponder on the flowing grains, and was quoted

”One can scoop up poppy seeds with a ladle as easily as if they were water and, when dipping

the ladle the seeds flow in a continuous stream” (Duran 2012).

Granular particles can be found in different sizes and shapes, and due to this anistropy in

structure, it shows many interesting features. They are a large conglomeration of discrete solid

macroscopic particles, characterized by a loss in energy of the particles on interacting with each

other. The thermal energy of granular materials is much lower compared to that in its molecular

counterpart as the size of the constituent particles is larger than a gas molecule. The size of the

particles can vary from 1 µm, below this size Brownian motion of the particle becomes dominant,

found in sand to kilometres found in asteroid belts of the solar system with individual grains

being asteroids. In general, the collective motion of granular particles can exist in solid, liquid,

and gaseous phases depending on the density and the energy of the individual particle.

Many food processing and pharmaceutical industries rely on the effective transportation,

processing and storage of granular materials which are in the form of seeds, grains and food

products along with products like medical tablets. Estimates show that we waste 60 % (Duran

2012) of the capacity of many of our industrial plants due to problems related to the transport

of these materials from part of the factory floor to another. Hence even a small improvement in

our understanding of how granular media behave should have a profound impact for industry.

Statistics indicate that ”the processing of granular media and aggregates consumes roughly 10%

of all energy produced on this planet. As it turns out, this class of materials ranks second,

immediately behind water, on the scale of priorities of human activity. As such, any advance

in understanding the physics of granulars is bound to have a major economic impact.” (Duran

2012).

Real granular flows (Campbell 1990; Goldhirsch 2003; Forterre & Pouliquen 2008) can be

subject to a plethora of complicating forces. These include adhesion, cohesion, van der Waals

forces, magnetic forces and capillary forces from the interstitial fluid. Indeed, even without

any of these effects, the description of a dry, cohesionless granular material still represents

a challenge and the question of which equations should be used in a given situation is still

controversial. A number of effects complicate the use of traditional continuum thermo- and

hydro-dynamical principles. A lack of separation of scales among typical flow lengths and the size

of the constitutive particles means that continuum models often cannot capture many important

1
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features of granular materials. Also, the inherent dissipation of energy present in the form of

inelasticity due to collision of particles forces the system to be unsteady locally and pushes

it away from equilibrium. Since inelasticity renders any thermal motion unimportant when

compared to the dynamical forces acting on the grains, the system can be considered athermal.

(a) (b) (c)

Figure 1.1: Existence of granular matter in three phases:(a) Solid, (b) Liquid and (c) Gas.

In fact, it is an open question in the study of granular physics if a single set of constitutive

relations will ever capture the wide spectrum of granular behaviours. As a result, granular

physicists do not have the same framework as fluid dynamicists, who can exploit the well-tested

Navier-Stokes equations. Depending on the mode of deformation, granular material can behave

as a gas, liquid or solid; indeed, all three phases can co-exist in granular chute flow and the

distinction between the three is not well-defined. Figure 1.1 serves to introduce three main phases

of granular materials. What needs to be highlighted is that despite their apparent simplicity,

granular materials behave differently from solids, liquids and gases and should therefore be

considered an additional state of matter (Jaeger et al. 1996). With a wide variety of different

behaviour possible, it seems unlikely that a single continuum model will be capable of capturing

the entire spectrum of granular phenomenology. However, a good description of gas-like granular

flows already exists in modified forms of kinetic theory, such as those described by Brilliantov &

Pöschel (2004) taking inspiration from the kinetic theory of gases (Chapman & Cowling 1970;

Jenkins & Savage 1983; Jenkins & Richman 1985).

At higher densities, the flow is very slow and the dynamics is governed by enduring contacts

and force chains, caused primarily by the inter-particle friction. As such a granular material

deforming in this way behaves much like a plastic solid; although for static assemblies of granular

materials under very low shear, the assembly responds as an elastic solid (Brown & Richards

1970). This is in contrast to the dominant transfer mechanism of binary collisions in the kinetic

regime. The ”quasi-static” flow of granular materials has been studied in depth by the soil

mechanics community and is well described by critical-state and plasticity theories (Nedderman

2005; Rao & Nott 2008). In addition to gas, solid and liquid phases, grains can also exhibit a

slow creeping flow, analogous to a glass (Jaeger et al. 1989).

In the region between the kinetic and quasi-static regimes the granular materials flow like a

liquid (Fig. 1.1(b)). In this case, the interactions between particles are governed by collisions,

frictional interactions and geometric entanglement of the particles. Persistent contacts and force

chains can also play a role, as the volume fraction is only slightly less than that of the solid
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phase. In a broad sense, such dense granular flows can be placed in the visco-plastic family of

materials, as it has a yield stress and a shear-rate dependent rheology, with the latter being

responsible for its viscous-like behaviour.

1.1 Chapter organization

In the present study we consider flow of dry granular matter. A simple problem of the flow of

granular particles in a channel under the influence of gravity (Poiseuille flow) is simulated in

two-dimensions (2D) in Chapter 2. The development and validation of 2D and 3D codes for

granular flows in an annular geometry (Taylor-Couette flow) are discussed in Chapter 3. The

2D and 3D Taylor-Couette flow results are dealt in Chapters 4 and 5, respectively.

Chapter 2

In this chapter, two important rarefaction effects, Knudsen minimum and temperature bimodal-

ity, are explained (Alam et al. 2015). The hard sphere collision dynamics of two granular particles

is explained with schematic diagrams. The equations used to obtain the mean properties like

velocity, volume fraction and density are listed.

Chapter 3

This chapter mainly deals with a brief intorduction on Taylor-Couette flow along with details

about the development of molecular dynamics (MD) code and its validation with the existing

literature. A general introduction on the Taylor-Couette flow is given with a focus on present

problems. The extension of 2D code used in Chapter 2 to 3D is explained in detail with wall

boundary conditions used. The 2D and 3D results are validated with the existing literature and

a good qualitative agreement is observed.

Chapter 4

In this chapter, we deal with smooth inelastic granular disks in an annular region with the inner

disk rotating at ωi. Simulations are carried out for both low and high densities to capture the

effects of rarefaction and dissipation. It is observed that the flow at low Knudsen number (Kn)

is greatly dominated by dissipation in the system and by rarefaction at high Kn. Hydrodynamic

properties are examined at varying normal restitution coefficient (en), gap width (dw) and ro-

tation rate (ωi). Various other results are discussed in this chapter.

Chapter 5

Here, we extend the analysis from two-dimensional annular geometry to three-dimensional cylin-

drical setup with the emphasis on assessing the roles of end-walls and restitution coefficient on

vortex formation. All simulations in this chapter are done for moderately dense flows (νav = 0.2).

The first part deals with the effect of using different axial wall boundary conditions for an elastic

system. In the second part, the focus shifts to addressing the role of dissipation on the vortex

dynamics in a Taylor-Couette setup followed by summary and conclusions in Chapter 6.





Chapter 2

Dilute Granular Poiseuille Flow†

2.1 Introduction

The compressible Navier-Stokes-Fourier (NSF) equations are routinely used to analyse gas flows

when the Knudsen number (Kn, the ratio between the mean free path and the macroscopic

length of the system), is close to zero. For flows with large Knudsen numbers, the traditional low-

order hydrodynamic equations are unable to predict many flow features including the velocity-

slip and temperature-jump at the walls, both being signatures of rarefaction effects. In molecular

gases the flows are empirically classified based on Knudsen number (Kogan 1969; Bird 1994):

(i) continuum regime (Kn ≤ 10−2), (ii) slip flow (10−2 < Kn < 0.1), (iii) transition flow

(0.1 < Kn < 10) and (iv) free-molecular flow (Kn ≥ O(10)). The slip and transition regimes

fall under the category of ‘rarefied’ flows. The Boltzmann equation with appropriate boundary

conditions can describe all flow regimes, unfortunately, however, it is not possible to solve

Boltzmann equation, even semi-analytically, for all Kn. The NSF equations augmented by

slip boundary conditions can describe slip-flow regime reasonably well, but they fail when the

Knudsen number is larger. One approach to model rarefied flows is to solve Boltzmann equation

via the direct simulation Monte Carlo (DSMC) method which is, however, computationally

expensive (Bird 1994); an alternative to DSMC is to use coarse-grained equations for extended

sets of hydrodynamic fields. Such higher-order hydrodynamic equations, like the Burnett or

super-Burnett equations (Burnett 1935) or the Grad’s moment equations (Grad 1949) or the

regularized moment equations (Torrilhon & Struchtrup 2004), seem to work well in the rarefied

regimes of slip and transition flows up-to a Knudsen number of O(1).

Rarefaction effects lead to non-Newtonian and non-Fourier transport coefficients, like the

normal stress differences and ‘anisotropic’ thermal conductivity tensor, respectively, in molec-

ular gases (Burnett 1935; Grad 1949; Kogan 1969) as well as in dilute granular gases (Saha &

Alam 2014, 2016). At the level of hydrodynamic fields, one prototypical signature of rarefaction

is the well-known ‘Knudsen-minimum’ effect (Knudsen 1909) in Poiseuille flow: the mass-flow

rate of a molecular gas decreases with increasing Knudsen number (Kn), reaches a minimum at

Kn ∼ O(1) and increases again with further increase in Kn; this is also referred as ‘Knudsen-

paradox’. The Knudsen-minimum/Knudsen-paradox has been predicted by analysing the steady

Boltzmann equation with a BGK (Bhatnagar-Gross-Krook) collision term (Cercignani & Daneri

1963) – the flow rate is inversely proportional to Kn for small Kn, but increases logarithmically

(∼ logKn) for large Kn. Another rarefaction-induced phenomenon in Poiseuille flow is the ‘bi-

modality’ of the temperature profile, i.e. the temperature is minimum at the channel centerline,

†This chapter is an extended version of the paper (Journal of Fluid Mechanics): Alam, M., Mahajan, A., &
Shivanna, D. (2015) ”On Knudsen-minimum effect and temperature bimodality in a dilute granular Poiseuille
flow”, vol. 782, pg. 99-126
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with its maxima being located a few mean-free paths away from the center – this was originally

predicted by Tij & Santos (1994) and was confirmed later via DSMC (direct simulation Monte

Carlo) simulations (Mansour et al. 1997). The origin of the temperature bimodality has been

attributed to the second-order correction terms in Kn and hence this phenomenon belongs to

the non-NSF regime (Aoki et al. 2002).

Most granular flows of practical interest have Knudsen numbers larger than 0.01 (Goldhirsch

2003; Galvin et al. 2007; Gayen & Alam 2008; Khain et al. 2008; Forterre & Pouliquen 2008;

Rao & Nott 2008; Rongali & Alam 2014; Saha & Alam 2014) and therefore it is of interest

to know whether the well-known signatures of rarefaction effects in molecular gases hold in

granular gases. The latter is characterized by inelastic dissipation which is known to lead to

some unexpected behaviour (Pöschel & Luding 2001). Understanding the role of dissipation

on rarefaction phenomena would help to formulate/test hydrodynamic-like theories and related

boundary conditions for rarefied granular flows. Driven by this motivation, we focus on a

simple flow configuration: the gravity-driven Poiseuille flow of a granular gas for which there

is no study on the Knudsen-minimum effect, but the temperature bimodality has been studied

theoretically (Tij & Santos 2004). We shall show, via simulation, that (i) the effect of dissipation

on above two rarefied phenomena is non-trivial, (ii) the wall roughness has a crucial role on the

Knudsen-minimum effect and (iii) the characteristic features of temperature bimodality are at

variance with the theoretical analysis of Tij & Santos (2004).

The simulation method for the gravity-driven flow of smooth inelastic hard-disks in a channel

is described in section 2.2 focussing on ‘dilute’ flows (the mean area fraction of particles being less

than or equal to 0.01) for a range of Knudsen number (O(0.001) ≤ Kn ≤ O(1)). Section 2.3.1

describes the statistical steady state of simulation and section 2.3.2 gives the hydrodynamic

fields of granular Poiseuille flow. The results on the mass-flow rate and the temperature profile

are discussed in section 2.4 and section 2.5, respectively, as functions of the normal restitution

coefficient (en), the wall roughness (βw) and the Knudsen number (Kn). The conclusions are

given in 2.6.1. The present results shed some light on the range of validity of the granular

hydrodynamic equations as discussed briefly in 2.6.2.

2.2 Simulation Model for Granular Poiseuille Flow

The flow configuration consists of a collection of circular-disks flowing through a two-dimensional

channel of width W and length L under the action of gravitational acceleration g which is acting

along the positive x-direction, see Fig. 1(a). The channel is bounded by two rigid parallel walls

at y = ±W/2, and the flow is assumed to be periodic along the x-direction; the latter condition

implies that a particle leaving the periodic boundary at x = L is reentered through the opposite-

end at x = 0 and vice versa (Mansour et al. 1997; Alam & Chikkadi 2010). As in the case of

rapid granular flows (Goldhirsch 2003), the particles move around randomly and are modeled as

inelastic smooth hard-disks (of diameter d and mass m) which interact via instantaneous binary

collisions.

For smooth particles, the tangential velocity during a collision remains unchanged but the

energy loss is manifested as a change in the normal component of the relative velocity via the



2.2 Simulation Model for Granular Poiseuille Flow 7

following collision rule:

c′12k = −en(c12k), (2.1)

where k is the contact vector, c1 and c2 are the instantaneous velocities of disks 1 and 2,

respectively, and c12 = c2 − c1 is the relative velocity. The restitution coefficient en, the ratio

between the post- and pre-collisional relative velocity between the colliding pair, is assumed to

be a constant throughout the simulation.

c

c

c

`

c
`

W

L

y

x

g

(a) (b) (c)

Figure 2.1: Schematics of (a) granular Poiseuille flow and (b-c) the rules for wall-particle col-
lisions: (b) reflected/specular (smooth walls, βw = −1) and (c) bounce-back collisions (rough
walls, βw = 1).

2.2.1 Algorithm

A general procedure of molecular dynamics involves step by step process of moving the system by

an interval of δt along with accounting for the collisions which might occur in the time interval.

All input parameters (eg. en, βw) are assumed to be independent of time. In such cases of

event-driven molecular dynamics, the system moves from one state to another with respect to

events. The main assumption in event-based molecular dynamics is that at any instant only one

collision occurs in an infinitesimal small interval of time. The framework of this event-based

simulation constitutes the following steps [Allen & Tildesley (1989)]:

1. Setting up particle positions in the system [rix,riy,riz]

2. Initialization of particle velocities [uix, uiy, uiz]

3. Calculation of collision time of all particle pairs (t12, t13...t1n...t(n−1)n)

4. Find the minimum of collision between particle pairs tij

5. Move the system to time t = t0 + tij by calculating the new positions and velocities of the

system
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6. Go to step 3

In such a procedure there are two types of events - particle-particle collision and wall-particle

collision.

2.2.2 Domain modification

In a scenario as described above one needs to calculate the collision time between all the pairs

of particles 12, 13, 14 ..., 23 ,24 ...., (n-1)n. The computational time required is of the order of

the O(N) per event processed. Such algorithms are efficient only for small number of particles.

To ease the load, the domain is divided into cells/regions and the collision partners of i is

searched in cells neighboring the cell containing particle i (Allen & Tildesley 1989). For example,

in 2D case, particles in 8 neighboring cells and the cell in which the particle is present is to be

looked into as shown in Fig. 2.2.

Figure 2.2: Schematic of cell division in 2D system

This reduces the computational load to O(logN) per one processed event (Lubachevsky

(1991)) for a system with all peroidic boundaries. Using such schemes, the following are consid-

ered as events while simulating Poiseuille flow - (i) particle-particle collision, (ii) cell-crossing and

(iii) wall-particle collision. In order to implement this scheme efficiently a separate array-list is

required, which contains information regarding the particles, the cell to which they belong, and

their neighbors. Though this is computationally burdensome, it is better than the conventional

method where one moves the whole system event by event.
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2.2.3 Collision time calculation

Consider two particles of same diameter d at distances r1 and r2. At any time t, for the collision

to occur the minimum distance between the particles must be equal to the particle diameter.

~r1(t)− ~r2(t) = d. (2.2)

~r2 can be written in terms of ~r1

~r2(t) = ~r1(t0) + ~c12t12. (2.3)

Substituting Eq. (2.3) in (2.2) and squaring both sides, we get

[~r12 + (t12~c12)]
2 = d2. (2.4)

The above equation is quadratic in t12 whose roots are given by:

c
1

c
2

c
1

c
12

r
12

r
1

r
2

O

Figure 2.3: Vector construction showing condition for the particles to collide

t12 = t0 +
(−~c12.~r12)±

√

(~c12.~r12)2 − ~c212(~r
2
12 − d2)

~c212
. (2.5)

These roots can be real or complex; if real, it can be positive or negative. In order to eliminate the

complex and negative roots and zero down to the minimum time of collision certain conditions

are imposed. The particles can be moving parallel to each other, away from each other or

towards each other. The collisions occur when particles move towards each other. To find out

the the condition for such a situation a vector construction is shown in FIg. 2.3. The red line

represent c12 and the green line represents r12 which are the resultants of the individual velocity

and position vectors of particle 1 and 2. It can be seen that for the particles to be moving

towards each other, the dot product ~c12.~r12 < 0. Further to eliminate complex root, Eq.(2.5)

must satisfy the rule of discriminant. When all the above conditions are fulfilled two real roots

are obtained. The larger root is neglected as the particles are impenetrable while the smaller
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root is chosen.

2.2.4 Particle-level boundary condition

In addition to particle-particle collisions, the particles collide with two rigid walls, see Figs. 2.1(b,c),

and hence their post-collisional velocities are likely to be affected depending on the bulk ‘rough-

ness’ of the walls. Assuming that the walls are rigid and massive (compared to the mass of a

particle), the model for particle-wall collisions is taken as (Liss et al. 2002; Alam & Chikkadi

2010):

c′x = −βwcx and c′y = −ewcy, (2.6)

where ci is the velocity component of the colliding particle along i = x, y direction. For all

simulations reported in this paper, we set ew = 1 in 2.6, i.e. the magnitude of the normal

component of the velocity of a disk remains unchanged upon collision with a wall. The blue

and red arrows emanating from the centers of the colliding particles in Figs. 2.1(b,c) represent

typical pre- and post-collisional velocities, respectively, for two limiting cases of particle-wall

collisions as described below.

The change in the tangential velocity component (cx) in (2.6) is parameterized by the ‘wall-

tangential’ restitution coefficient βw, which characterizes the bulk roughness of the wall (Rao

& Nott 2008). The walls, which reflect all particles (βw = −1) forward as in Fig. 2.1(b), do

not incur any loss in the tangential momentum of incident particles and are called ‘smooth’

walls. On the other hand, the walls, which bounce back (βw = 1) particles in the direction of

their incidence as in Fig. 2.1(c), reverse the tangential momentum of incident particles, and are

called ‘perfectly rough’ walls. While the perfectly rough walls (βw = 1) represent the ‘zero-

slip’ condition at walls, the perfectly smooth walls (βw = −1) represent the ‘free-slip’ condition

at walls (Chikkadi & Alam 2009). The intermediate case of βw = 0, a linear combination of

reflected (βw = −1) and bounce-back (βw = 1) conditions, corresponds to the maximum energy

loss for particle-wall collisions (which is proportional to ∼ (1− β2
w) for ew = 1). Other values of

βw 6= ±1 represent a ‘mixed’ boundary condition which may be thought of as an analog of the

Maxwell’s accommodation model (a fraction of wall-particle collisions is of specular-type and

the rest being of bounce-back type) which is routinely used to model gas-surface interactions in

kinetic theory(Cercignani 2000).

In summary, the walls are modelled as rough-frictional surfaces with the particle-wall collision

rule being given by a two-parameter model (2.6). The limits of zero-slip and free-slip conditions

are achieved in this model by varying the wall tangential-restitution coefficient (i.e. the ‘bulk’

roughness of the walls) from βw → −1 to βw → 1, respectively, see Figs. 2.6(a) and 2.6(b) in

section 2.3.2.

2.2.5 Simulation method and averaging

A previously developed (Alam & Chikkadi 2010) event-driven molecular dynamics code based

on Lubachevsky’s (Lubachevsky 1991) algorithm has been modified to simulate the granular

Poiseuille flow in the dilute regime as detailed in §2.2.1 - 2.2.4. In order to prevent the inelastic

collapse which is likely to occur at small values of the restitution coefficient, we implemented



2.2 Simulation Model for Granular Poiseuille Flow 11

the TC-rule (Luding & McNamara 1998): if the collision time between particles is less than a

critical time (tc ≤ 10−9) then en is set to 1. The simulations are run for about 50000 collisions

per particle and the data is collected after the system has reached a statistical steady state which

is ascertained by monitoring the constancy of the average kinetic energy, E(t) =
∑N

i=1(c
2
xi +

c2yi)/2N , per particle, see Fig. 2.4.

Since we are investigating rarefaction effects, the Knudsen number, the ratio between the

mean-free path and a characteristic length-scale of the system, must be calculated. In Poiseuille-

type flows, the mean free path (λ) varies across the channel width (see Fig. 2.5), and hence an

average Knudsen number is defined via

Kn ≡ 〈Kn(y)〉y =
〈λ(y)〉y

W
, (2.7)

where 〈·〉y represents a spatial-averaging over the channel width. To analyse rarefaction effects,

a large range of (2.7) needs to be probed which can be achieved in two ways: (i) vary the channel

width W/d and the number of particles N for specified values of the channel length L/d and

the mean density,

νav =
πN

4(L/d)(W/d)
, (2.8)

or, (ii) for specified W/d and N , increase the channel length L/d such that νav is decreased which

increases the mean-free path λ (and hence Kn increases) since λ is inversely proportional to

density. In both cases, the mean density is kept small enough (νav ≤ 0.01) since we are focussing

on a dilute granular gas. For all simulations reported here, we employed the first protocol to

probe a range of Kn ∼ O(0.001) − O(1), see table 2.1; the same procedure was followed by

Mansour et al. (1997) in the case of a molecular gas. The second protocol is computationally

expensive especially at large Kn since the channel width must be kept at W/d ∼ O(103) or

larger, but it was verified from a few case studies that the results reported here are robust

irrespective of the protocol employed to vary the Knudsen number.

To extract hydrodynamic fields from simulations, we divide the channel into an array of

vertical bins, each of width w (w > d, see table 2.1) and then carry out ‘binwise’ averaging

by collecting data in each bin after reaching a statistical steady state. The volume fraction

ν, stream-wise velocity U and granular temperature T in the ith bin (located at y = yi) are

calculated from:

ν(y) =
πd2

4wL

〈

N
∑

i=1

δ(y − yi)
〉

, (2.9)

U(y) =

〈

∑N
i=1 cxi(t)δ(y − yi)

〉

〈

∑N
i=1 δ(y − yi)

〉 , (2.10)

T (y) =

〈

∑N
i=1 Ci(t)Ci(t)δ(y − yi)

〉

2
〈

∑N
i=1 δ(y − yi)

〉 , (2.11)

where Ci(t) = ci(t) − U(y)x̂ is the peculiar velocity of particles, with x̂ being the unit vector

along x-direction, and 〈·〉 represents the time-averaging over a large number of snapshots of the
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system. For non-dimensionalization, the reference length, time and velocity scales are taken to

be:

LR = W, (2.12)

tR =

√

W

g
, (2.13)

UR =
√

gW, (2.14)

respectively, and the granular temperature (3.22) is scaled by gW .

2.3 Steady State and Hydrodynamic Fields

Given the mean density (area fraction) of disks νav, the widthW and the length L of the channel,

a collection of N identical smooth and rigid inelastic disks of mass m = 1 and diameter d = 1 are

positioned randomly within the channel, and the disks are assigned random velocities (chosen

from a normal distribution). With this initial configuration and wall-conditions, the material is

allowed to flow under the action of gravity, and an event-driven algorithm (Lubachevsky 1991)

is used to simulate the temporal dynamics of this system.

2.3.1 Steady state and Knudsen number

Figures 2.4(a-b) display the temporal variations of the total kinetic energy,

E(t) =
1

2N

N
∑

i=1

c2xi + c2yi, (2.15)

per particle. The data in panels (a) and (b) correspond to smooth- (βw = −0.95) and rough-

walled (βw = 0.95) channels respectively; other parameters are the same as in Fig. 2.7 and listed

in table 2.1.

W/d N No of Bins Bin width Kn Kn Kn Kn
nbin w = W/nbin (βw = −0.95) (βw = 0.95) (βw = 0) (βw = 0)

(en = 0.99)

5497.78 35000 1374 4d 0.001 0.00075 – –

1413.71 9000 353 4d 0.012 0.006 0.0085 0.0127

942.48 6000 325 4d 0.027 0.012 0.016 0.0245

392.70 2500 98 4d 0.15 0.043 0.055 0.056

157.08 1000 39 4d 0.526 0.14 0.185 0.192

62.83 400 15 4d 2.19 0.33 0.45 0.46

23.56 150 19 1.2d 5.25 0.62 1.048 1.06

15.71 100 13 1.2d 6.99 0.75 1.47 1.47

Table 2.1: Parameters used in simulations to vary the mean Knudsen number (2.7) for the mean
density νav = 0.01, channel length L/d = 500 and restitution coefficient en = 0.9999. Refer to
Figs. 2.7 and 2.14(a, b).

It is seen that E(t) fluctuates around some statistical mean value after a transient period,
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irrespective of the values of βw and the mean Knudsen number Kn (2.7). In each panel, the

initial period of transients continues till a few hundreds collisions per particle, beyond which the

data is collected to calculate hydrodynamic fields and related coarse-grained quantities. For most

simulations, we used a mean density (2.8) of νav = 0.01 or less, and the Knudsen number was

changed by varying the width of the channel (W/d) and the number of particles N by keeping

the channel length (L/d) fixed (Protocol 1, see section 2.2.5). Since the hydrodynamic fields

vary across the wall-normal direction y (see below), the channel is partitioned into a number of

bins (nbin) parallel to the flow-direction x, each of width w = W/nbin.
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Figure 2.4: Evolution of kinetic energy, (2.15), versus time for (a) βw = −0.95 (smooth wall) and
(b) βw = 0.95 (rough wall). The system reaches a statistical steady state when E(t) fluctuates
around some mean value; the vertical line in each panel marks an approximate time at which
data is collected for averaging. The mean density is νav = 0.01 and the restitution coefficient is
en = 0.9999, and the parameter combinations of (W/d,N) for different Kn are listed in table 2.1.

Table 2.1 provide details on the system parameters used to vary the average Knudsen number

(2.7) as well as the number of bins used for averaging. The ‘bin-wise’ averaging procedure has

been described in section 2.2.5. Two values of Kn marked in each panel of Fig. 2.4 correspond

to different combinations of (W/d,N) which are given in table 2.1.
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Figure 2.5: (a,b) Variations of local Knudsen number Kn(y) across the channel width for (a)
smooth (βw = −0.95) and (b) rough (βw = 0.95) walls, with parameter values as listed in
table 2.1. (c) Variation of Kn(y) for parameter values as in Fig. 2.10(b).

The cross-stream variations of the local Knudsen number Kn(y) are shown in Figs. 2.5(a-c).

In panels (a) and (b), three profiles of Kn(y) are plotted for different combinations of (W/d,N),
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resulting in different values of the mean Knudsen number; other parameter values are as in

Figs. 2.4(a-b). Clearly, the local Kn varies along the wall-normal direction, albeit modestly, for

both smooth- (panel a) and rough-walled (panel b) channels. The modulations of Kn(y) become

stronger when the restitution coefficient (en) is decreased, see panel (c) for which the parameter

combinations of (W/d,N) were chosen such that Kn = 〈Kn(y)〉 ≈ 0.1 as in Fig. 2.10(b).

2.3.2 Hydrodynamic profiles in granular Poiseuille flow

For the present system the statistical steady state corresponds to a “non-equilibrium” steady

state for which the stream-wise velocity (U), volume fraction (ν) and granular temperature, T ,

remain invariant in time, having spatial variations along the wall-normal direction (y). Typical

velocity and density profiles are shown in Fig. 2.6 for flows in smooth- (βw = −0.95, first column)

and rough-walled (βw = 0.95, second column) channels, with parameter values as in Fig. 2.7.

As expected, the velocity profiles remain symmetric about the channel centerline y = 0. It

is clear from Fig. 2.6(a) that there is a large slip velocity when the channel walls are smooth

(βw = −0.95), and the magnitude of the slip velocity increases with increasing Kn and so does

the centerline velocity.
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Figure 2.6: Profiles of (a,b) the streamwise velocity and (c,d) the density for flows in smooth-
walled (βw = −0.95, left column) and rough-walled (βw = 0.95, right column) channels. Other
parameter values are listed in table 2.1.

In contrast, the slip velocity remains finite but small when the walls are rough (βw = 0.95,
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Fig. 2.6b) compared to that for smooth-walled channels; although there is no discernible change

in the slip velocity with increasing Kn, the centerline velocity (and hence the average velocity

as well as the flow rate) decreases markedly with increasing Kn. Collectively, panels (a,b)

confirm that the slip velocity can be changed from nearly zero to some large value by changing

the wall-roughness parameter βw from 1 to −1. The density profiles in Figs. 2.6(c,d) suggest

that the wall-normal variations of density in the ‘bulk’ (around the centerline y = 0) of the

channel remain relatively small (but finite) for both smooth and rough walls for elastic collisions

(en = 1.0). On the other hand, for a given wall-roughness βw, increasing the Knudsen number

from the continuum limit (Kn ∼ 0) to the rarefied regime (Kn ∼ O(1)) makes the density

variation relatively lesser (i.e. more homogeneous) in the bulk of the channel. For a specified Kn,

increasing the inelastic dissipation (i.e. decreasing en) ensures discernible density modulations

across the channel width as discussed in section 2.4 (see Fig. 2.10b in the main text) – this is

dubbed ‘dissipation-induced’ clustering.

2.4 Results on Knudsen Paradox: Rarefaction (Kn 6= 0) Versus

Dissipation (en 6= 1)

The effect of inelastic dissipation on the microscopic (i.e. velocity distribution functions and

two-point density and velocity correlations) and macroscopic fields (hydrodynamic profiles, slip

velocity, rheology and density waves) of gravity-driven granular Poiseuille flow have been inves-

tigated in previous works (Chikkadi & Alam 2007, 2009; Alam et al. 2009; Alam & Chikkadi

2010) for a range of densities. It must be noted that the above simulation works were carried

out in a channel of width W/d < 100, and the Knudsen number was of order one [Kn ∼ O(1)]

in the dilute regime and hence the rarefaction effects were not studied. On other hand, the

focus of the present work is to understand the role of inelastic dissipation on two well-known

rarefaction effects in the gravity-driven Poiseuille flow of a dilute gas: (i) the Knudsen-minimum

phenomenon (section 2.4) and (ii) the bimodal shape of the temperature profile (section 2.5).

The dimensionless mass-flow rate is calculated from:

Q =
1

νavW
√
gW

∫ 1/2

−1/2
ν(y)U(y)dy, (2.16)

where U(y) and ν(y) are the streamwise velocity and density respectively.Equation (2.16) rep-

resents the mass flow rate per unit width of the channel, since the length scale used is the width

of the channel (W ) and the velocity scale is
√
gW . In the dilute limit (ν → 0), the mass flow

rate Q is likely to depend on (i) the Knudsen number Kn, (ii) wall-roughness βw and (iii) the

restitution coefficient en which we discuss separately in the following subsections.

2.4.1 Effect of wall-roughness in the elastic limit: Q(Kn, βw, en ≈
1)

The variation of the flow rate Q with Knudsen number Kn is shown in Fig. 2.7 for a range of

wall roughness [βw ∈ (−0.95, 0.95)] in the elastic limit (en = 0.9999), with a mean density of
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νav = 0.01; the results for the case of perfectly elastic collisions (en = 1) are almost identical

with those of en = 0.9999, see the open circles in Fig. 2.7 for βw = −0.9. As discussed in

section 2.2.5, the range of Kn (2.7) in this Fig. has been achieved by varying the channel

width W/d and the number of particles N which are listed in table 2.1. Focussing on the near-

continuum limit (Kn → 0) of all curves in Fig. 2.7, we find that, irrespective of the value of the

wall-roughness βw, the flow rate decreases with increasing Kn (for Kn < 0.01) which follows

from Navier-Stokes hydrodynamics (Cercignani 2000; Cercignani & Daneri 1963). On the other

hand, for any specified value of Kn, Fig. 2.7 also indicates that the mass-flow rate decreases with

increasing wall-roughness (βw > −1). This is because the smoother walls (βw → −1) ensure a

larger slip velocity (see below), leading to a higher flow-rate compared to that in rough-walled

channels (βw → 1).
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Figure 2.7: (a) Effect of wall-roughness (βw) on the variation of mass-flow rate (Q) with average
Knudsen number (Kn) for a restitution coefficient of en = 0.9999. The mean density is νav =
0.01 and the channel length is L/d = 500; the open black circles represent the data for perfectly
elastic collisions (en = 1) with a wall-roughness of βw = −0.9 and a channel-length of L/d = 500,
while the star-symbols represent the data for en = 1 in a longer channel of length L/d = 1000.
(b) Variations of the slip-velocity (main panel) and the centerline velocity (inset) with Kn for
flows through a smooth-walled (βw = −0.95) channel. The range of Kn is obtained by varying
the channel width W/d and the number of particles N as listed in table 2.1.

Returning to the dependence of Q on Kn, we note from Fig. 2.7 that the flow-rate decreases

monotonically with increasing Kn for channels with a wall-roughness of βw > −0.6. In contrast,

for flows in relatively smooth-walled channels (see the top three curves in Fig. 2.7), the flow-rate

varies ‘non-monotonically’ with Kn. More specifically, for the case of βw = −0.95 (black curve),

we find that the flow rate decreases with increasing Kn, reaches a minimum at Kn ≈ 0.01,

then increases by reaching a maximum at Kn ≈ 2.5 and finally decreases again with further

increase in Kn. The flow-rate curves for βw = −0.9 and −0.8 remain qualitatively similar to

that for βw = −0.95, but the locations of Qmin and Qmax(Kn 6= 0) shift to larger and smaller

values of Kn respectively. For all data in Fig. 2.7 the channel length is set to L/d = 500, except

for the star-symbols which represent additional data for en = 1 with a larger channel length of

L/d = 1000; this confirms that the overall shape of Q-curves does not depend on the length
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of the channel. The degree of non-monotonicity of the Q-curves is quantified in terms of the

difference between the local maximum and minimum of Q,

△Q = Qmax(Kn 6= 0)−Qmin, (2.17)

To understand the origin of non-monotonic Q-curves in Fig. 2.7, we probe the slip-velocity

Uslip
def
=

1

2
(U(bin = 1) + U(bin = last)) , (2.18)

which is defined as the average of the streamwise velocities in two bins adjacent to stationary

walls (see the velocity profiles in Figs. 2.6(a) and 2.6(b)). The variation of Uslip (2.18) with Kn

is displayed in Fig. 2.7(b) for a wall-roughness of βw = −0.95. It is seen that Uslip increases

with increasing Kn, reaches a maximum at Kn ∼ 2 and then starts decreasing with further

increasing Kn. This maximum slip velocity seems to be responsible for the local maximum in

the flow rate at Kn ∼ 2 for the case of βw = −0.95 (see the topmost black curve in Fig. 2.7).

Interestingly the centerline velocity U0, displayed in the inset of Fig. 2.7(b), follows the same

non-monotonic trend with Kn as that of the flow rate Q. This is due to the fact that U0 is

a measure of the average velocity through the channel since the density variations across the

channel (see Figs. 2.6c and 2.6d) at any Kn remains small for en → 1.

2.4.2 Effects of inelastic dissipation (en < 1) and rarefaction

(Kn > 0): the phase diagram

10
-3

10
-2

10
-1

10
0

10
1

Kn

0

10

20

30

40

Q e
n
 = 0.80

e
n
 = 0.99

e
n
 = 1.0

Figure 2.8: Effect of restitution coefficient en on Q for a wall-roughness of βw = −0.9, with
en = 1 (red circles), 0.99 (black squares) and 0.8 (blue triangles). Other parameter values are
as in Fig. 2.7 as listed in table 2.1.

The effect of inelastic dissipation on the mass-flow rate Q can be ascertained from Fig. 2.8

which compares three Q-curves for en = 1.0 (red circles) , 0.99 (black squares) and 0.8 (blue
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triangles). For all cases, the wall-roughness is set to βw = −0.9 such that Q(Kn) is non-

monotonic in the elastic limit (en = 1.0) as indicated by the red-circled curve. In contrast, the

black-squared curve for en = 0.99 indicates that Q(Kn) decreases sharply up-to Kn ≈ 0.2, and

there is a plateau at around Kn = O(1), beyond which Q(Kn) decreases again with increasing

Kn. Decreasing the restitution coefficient to en = 0.8 (blue-triangles curve) makes Q(Kn) a

monotonically decreasing function of Kn. The decrease of Q(Kn) with increasing Kn becomes

sharper with further decrease of en (not shown). The regions on the left and right of the broken

line (marked with diamonds) in Fig. 2.9 represent the regimes of ‘non-monotonic’ (△Q > 0) and

‘monotonic’ (△Q = 0) mass-flow rates respectively. We conclude from this phase-diagram that

the Knudsen-minimum effect is absent in granular Poiseuille flow (i) for en < 0.989, irrespective

of the value of the wall-roughness, and (ii) for relatively rougher walls with βw > −0.6 at any

en.
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Figure 2.9: Phase-diagram in the (βw, 1 − en)-plane, delineating the regions of non-monotonic
(△Q > 0) and monotonic (△Q = 0) mass-flow rates; the inset shows the definition of △Q,
eqn. (2.17), with representative data for en = 0.9999 and βw = −0.95. Other parameter values
are as in Fig. 2.7 as listed in table 2.1.

2.4.3 Role of Knudsen number and the anomalous variation of

slip velocity

To understand the dependence of Q(Kn, en) on Kn for specified en, we show the variations of

the slip velocity Uslip and the centerline velocity U0 with Kn, respectively, in the main panel

and the inset of Fig. 2.10(a) for en = 0.8 and 1.0. For this parameter combination, Uslip

increases with increasing Kn for elastic (en = 1) particles, however, it follows a completely

opposite trend when the restitution coefficient is reduced to en = 0.8. The latter finding is

dubbed anomalous since Uslip is known to increase with increasing Kn in a molecular gas. In
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any case, the decrease of Uslip with increasing Kn is responsible for the continual decrease of Q

with increasing Kn for moderately dissipative (en = 0.8) particles in smooth-walled channels.

Figure 2.10(a) further indicates that increasing dissipation results in larger values for both the

slip velocity Uslip (main panel) and the centerline velocity U0 (inset), and hence the flow rate

would increase with decreasing en at any Kn as we found in Fig. 2.8. It is noteworthy that

the latter effect becomes more prominent as Kn decreases progressively towards zero which

can be explained as follows. The density profiles in Fig. 2.10(b) confirm a significant density-

variation across the channel-width for en = 0.8 (blue-solid line) in comparison to nearly flat

density profiles for en = 0.99 (black dot-dashed line) and 1.0 (red-dashed line); the Knudsen

number is set to Kn ≈ 0.1 for three data sets. Overall, the particles tend to migrate towards

the channel centerline where the shear rate is low (and vice versa) with increasing dissipation,

leading to the formation of particle-rich and particle-depleted regions near the centerline and

the walls respectively. The relatively particle-depleted regions near the walls for en = 0.8 imply

a more rarefied regime, resulting in an increased slip velocity with decreasing en for specified

Kn. This finding of ‘transverse-clustering’ of particles (see Fig. 2.10(b)) with decreasing en,

in conjunction with enhanced bulk velocities (Fig. 2.11(a)), would result in enhanced flow rate

(2.16) in the same limit. (A related effect with decreasing en is the ‘finite/measurable’ normal

stress differences that may also aid in enhancing the mass-flow rate, see the discussion in section

§2.4.5) It must be noted, however, that the above argument of clustering-enhanced flow rate is

strictly valid in the continuum limit (Kn → 0) where the rarefaction effects can be neglected.
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Figure 2.10: (a) Variations of slip velocity (main panel) and centerline velocity (inset) with Kn
for en = 0.8 (blue triangles) and en = 1.0 (red circles). (b) Effect of en on density at Kn ≈ 0.1,
the blue-solid, black dot-dashed and red-dashed lines refer to en = 0.8, 0.99 and 1 respectively,
in a channel of width W/d = 549.77 with N = 3500 particles. In all panels, the wall-roughness
is βw = −0.9 with other parameter values as in Fig. 2.7.

Returning to the effects of Knudsen number on the spatial distribution particles, we compare

the density profiles for Kn = 1.14 (dashed line) and 0.14 (solid line) in Fig. 2.11(b). It is clear

that, with other parameters being fixed, increasing Kn leads to a more homogeneous distribu-

tion of particles across the channel width, dubbed ‘declustering’. The relatively homogeneous

distribution of particles at larger Kn results in more collisions with the walls (compared to the
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case for Kn = 0.14) and hence a larger energy loss near the walls, leading to a lower slip velocity

with increased Kn at en = 0.8. Therefore, the competing effects of (i) the dissipation-induced

clustering and (ii) the rarefaction-induced declustering along the wall-normal direction are re-

sponsible for the ‘anomalous’ decrease of Uslip with increasing Kn at lower values of en (the

blue curve in Fig. 2.10a).
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Figure 2.11: (a) Effect of en on velocity profiles atKn ≈ 0.1; the blue-solid, black dot-dashed and
red-dashed lines refer to en = 0.8, 0.99 and 1 respectively, in a channel of width W/d = 549.77
with N = 3500 particles. (b) Comparison of the density profiles for Kn = 0.14 (solid line,
W/d = 549.77 and N = 3500) and Kn = 1.14 (dashed line, W/d = 196.35 and N = 1250)
at en = 0.8. In all panels, the wall-roughness is βw = −0.9 with other parameter values as in
Fig. 2.7.

2.4.4 Dissipation versus rarefaction: effects on density profile

The above issue of dissipation-induced ‘clustering’ (i.e. the density-inhomogeneity along the

transverse/wall-normal direction) is also evident from a comparison of density profiles in Figs. 2.12(a)

and 2.12(b). The corresponding temperature profiles are shown in Fig. 2.14, see the related

discussion on temperature bimodality in section 2.5. It is clear from Figs. 2.12(a) and 2.12(b)

that, for any specified en, increasing the Knudsen number makes the density profiles relatively

homogeneous in the ‘bulk’ of the channel – this is dubbed ‘rarefaction-induced’ declustering.

with the Knudsen number Kn for two values of the restitution coefficient; here, ν(0) is the

density at the channel centerline and νav is the mean density. The curves for both en = 1 (black

circles) and 0.99 (red squares) coincide with each other for Kn ≥ 0.2, implying that dissipation

plays no role on the bulk dynamics of density profiles for Kn ≥ 0.2.
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Figure 2.12: Profiles of density for (a) en = 1.0 and (b) en = 0.99, with parameter values as in
Fig. 2.14. (c) Variation of the excess density, ∆ν = (ν(0)/νav − 1), with Knudsen number.

It is clear that, for en = 1, there is a critical Knudsen number ofKn ≈ 0.2 above/below which

there is a net accumulation/depletion of particles at y = 0. Interestingly, even a small amount

of dissipation (en = 0.99) leads to an overall accumulation of particles (∆ν > 0) around the

channel centerline at any Kn < 0.2, and the degree of particle accumulation (∝ ∆ν) increases

with decreasing Kn for a given en 6= 1. Further decreasing the restitution coefficient (not shown)

increases the value of the excess density ∆ν at Kn < 0.2.

Figure 2.12(c) displays the variations of the ‘excess’ density at y = 0 (with respect to

mean/average density),

∆ν =
ν(0)

νav
− 1, (2.19)

Based on these results, we conclude that the inelastic dissipation has a primary influence on

the hydrodynamic density profiles at lower values of Kn. The vertical dashed line in Fig. 2.12(c)

approximately demarcates the regions of ‘dissipation-dominated’ and ‘rarefaction-dominated’

flows.
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2.4.5 Possible role of normal stress difference on flow rate

It is well-known in rarefied gas-dynamics (Kogan 1969) that the finite values of Knudsen number

(Kn) give rise to non-zero normal stress difference which remains of infinitesimal magnitude

in a molecular gas. In contrast, however, the inelastic dissipation makes the normal stress

differences (Sela & Goldhirsch 1998; Saha & Alam 2014) finite and ‘measurable’. This additional

effect of inelasticity may have some impact on the macroscopic behaviour of Poiseuille flow (e.g.

the mass-flow rate) as we discuss below. In Fig. 2.13, we compare the profiles of the ‘scaled’

first normal stress difference (Chikkadi & Alam 2009; Alam & Luding 2003, 2005a,b)

N1 =
pxx − pyy

p
=

2(pxx − pyy)

(pxx + pyy)
∼ (Tx − Ty), (2.20)
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Figure 2.13: Effect of en on the first normal stress difference, N1 = (pxx − pyy)/p, at Kn ≈ 0.1.
Other parameters are as in Fig. 2.10(b).

where pij = 〈νCiCj〉 and Ci is the peculiar velocity, see Eqn. (3.22); the Knudsen number is

set to Kn ≈ 0.1 as in the main panel of Fig. 2.10(b); It is clear that inelastic dissipation enhances

the first normal stress difference across the channel width. Since (2.20) is also a measure of the

temperature anisotropy (Tx 6= Ty), this implies that the fluctuation velocity levels along the

flow direction are higher than that along the wall-normal direction as dissipation increases. The

latter finding may partially be responsible for the enhanced flow-rate with increasing dissipation

as found in Fig. 2.8.

2.5 Results on Bimodal Temperature Profile: Rarefaction or

Dissipation Driven?

Here we characterize the temperature profiles in a dilute granular Poiseuille flow, and attempt to

make a connection with the well-known ‘bimodal’ shape (Tij & Santos 1994), with a temperature

minimum at the center of the channel and two local maxima positioned symmetrically away
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from y = 0, in its molecular gas counterpart. The primary goal is to unveil the origin of the

temperature bimodality in the granular Poiseuille flow. All results in this section are presented

for βw = 0, which corresponds to a mixed boundary condition with equal contributions from

bounce-back (βw = 1) and specular/reflected (βw = −1) particle-wall collisions, but we have

verified that the following observations hold for any −1 < βw < 1. Figures 2.14(a) and 2.14(b)

display the temperature profiles for the case of perfectly elastic (en = 1) and inelastic (en = 0.99)

collisions respectively. The temperature has been normalized by its centerline value [T0 = T (y =

0)] which is plotted against y/λ0, where λ0 is the centerline mean-free path. The corresponding

density profiles are shown in Figs. 2.12(a,b).

Two curves in each panel represent data for channels of different widths that can be mapped

to different values of average Knudsen number (Kn ∼ 0.01 and 0.1, viz. Eq. 2.7; see table 1). For

the case of perfectly elastic collisions (en = 1) in Fig. 2.14(a), it is seen that the temperature

profile has a maximum at y = 0 for Kn = 0.012, but the one at Kn = 0.11 has a local

minimum at y = 0, with two maxima being located symmetrically away from y = 0. Overall

the temperature profile for en = 1.0 is unimodal at lower values of Kn and becomes bimodal at

larger Kn. In contrast, for a granular gas (en = 0.99), the bimodal shape of the temperature

profile persists even at lower values of Kn ∼ 0.01 as confirmed in Fig. 2.14(b).
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Figure 2.14: Temperature profiles at different Kn for (a) perfectly elastic (en = 1) and (b)
inelastic (en = 0.99) particles; the parameter values are set to νav = 0.01, L/d = 500 and
βw = 0 in both panels. While in panel (a) the Knudsen numbers of Kn = 0.012 and 0.11
are achieved with parameters of (W/d,N) = (1178.09, 7500) and (W/d,N) = (235.61, 1500)
respectively, in panel (b) Kn = 0.011 and 0.12 correspond to (W/d,N) = (1570.79, 10000) and
(W/d,N) = (235.61, 1500) respectively.

More importantly, the degree of bimodality [∼ (Tmax − T0), eqn. (2.21)] has increased

markedly with decreasing Kn for en = 0.99. This seemingly opposite behaviour between en = 1

and en = 0.99 can be resolved if we know the origin of the temperature bimodality in granu-

lar/athermal Poiseuille flow.
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2.5.1 Origin of temperature bimodality

The primary characteristic feature of the bimodal shape of the temperature profile, such as those

in Fig. 2.14, is the ‘excess’ temperature ratio, △T , which is defined as

△T =
(Tmax − T0)

T0
, (2.21)

where T0 is the temperature at the channel centerline (y = 0) and Tmax is the maximum tem-

perature. Clearly, △T = 0 and > 0 for unimodal and bimodal temperature profiles respectively.

The larger the value of △T , the larger is the deviation from an unimodal profile, and hence △T

is also a measure of the degree of temperature bimodality. To find out whether there is indeed

a local minimum of the temperature profile at y = 0, we need to evaluate its second derivative

T ′′(y = 0): the temperature has a local maxima or minima at y = 0 depending on whether

T ′′(0) ≡ d2T

dy2
(y = 0) ≤ 0, or, T ′′(0) > 0, (2.22)

respectively.

Figures 2.15(a) and 2.15(b) display the variations of △T and T ′′(y = 0), respectively,

with Knudsen number Kn. In each panel, the curves represent data for different restitution

coefficients. The black-circled curves for en = 1 in panels a and b confirm that the temperature

profile for elastically-colliding particles undergoes a transition from an unimodal (△T ≈ 0 and

T ′′(y = 0) ≈ 0) to a bimodal (△T > 0 and T ′′(y = 0) > 0) shape at some small but finite value

of Kn = Knc ≈ 0.01. Therefore, the origin of temperature bimodality in the Poiseuille flow of

a molecular gas is tied to the rarefaction effect (Tij & Santos 1994; Mansour et al. 1997) since

it occurs at finite values of Knudsen number.
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Figure 2.15: Variations of (a) excess temperature, △T , and (b) d2T/dy2(y = 0) with average
Knudsen number Kn = 〈Kn(y)〉 for different restitution coefficients of en = 1 (black-circles),
en = 0.9995 (red-squares), en = 0.9997 (green-stars) and 0.99 (blue-triangles). The parameter
values are set to νav = 0.01 and βw = 0, with channel dimensions (for different Kn) being listed
in table 2.1.

The red-squared lines in Figs. 2.15(a) and 2.15(b) indicate that both △T and T ′′(0) are
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positive for all Kn > 0 at en = 0.9995 (since the △T -curve develops a plateau and does not seem

to decrease as Kn → 0 and T ′′(0) increases in the same limit), implying that the corresponding

temperature profile is bimodal. Further decreasing the restitution coefficient (en = 0.99, see

the blue lines in both panels) enhances the values of both △T and T ′′(0) markedly at lower

values of Kn < 0.1. In contrast, we find from panels a and b that the effect of dissipation on

both △T and T ′′(0) diminishes with increasing Kn, and the respective curves for different en

coincide at Kn ∼ O(1) and beyond. Collectively, therefore, Figs. 2.15(a) and 2.15(b) confirm

that the inelastic dissipation is the driving factor for the genesis of temperature bimodality in

the continuum limit of Kn → 0, and the rarefaction effect prevails at large enough Kn.

2.5.2 The phase diagram: rarefaction versus dissipation

It is clear from Fig. 2.15(a) that the temperature profile remains bimodal (△T > 0) for en ≤
0.9995 at any Kn. On the other hand, extrapolating the green-line (for en = 0.9997), marked by

the star-symbols in Fig. 2.15(a), for small Kn yields △T = 0 at Knc ≈ 0.007, below which the

temperature profile becomes unimodal. Therefore, the “unimodal-to-bimodal” transition would

occur for a very small range of restitution coefficient en ∈ (0.9997, 1) in the limit Kn → 0.

The above findings are summarized in Fig. 2.16 as a phase-digram in the (Kn, 1 − en)-plane.

The red-line through circles represents a phase-boundary, to the left and right of which the

temperature profile is unimodal and bimodal respectively.

Note that the region of unimodal temperature in the (Kn, 1−en)-plane is very small. In the

bimodal region of the phase-diagram in Fig. 2.16, two distinct mechanisms compete with each

other: (i) the temperature bimodality near the continuum limit (Kn ∼ 0) is driven solely by

inelastic dissipation, but (ii) the rarefaction-driven bimodality remains active beyond a critical

Knudsen numberKn > Knc(e) > 0 as in a molecular gas. The latter mechanism would take over

from the dissipation-driven mechanism at large enough Kn (for a given en) since the particle-

wall collisions dominate over particle-particle collisions at large Kn and therefore the collisional

dissipation is likely to have a minor role on the ‘bulk’ dynamics of the flow at sufficiently large

Kn. These arguments suggest that there must be another phase-boundary in the (Kn, 1− en)-

plane that would demarcate (i) the dissipation-driven bimodality from (ii) the rarefaction-driven

bimodality. This is marked by the blue-dashed line in Fig. 2.16, to the left and right of which the

mechanisms (i) and (ii), respectively, are operative. The square symbols on this phase-boundary

have been obtained from Fig. 2.15(b) as follows: each curve of T ′′(0) is fitted via a polynomial

in Kn and then we determine the value of Kn at which its slope, d/dKn(T ′′(0)), saturates

approximately to zero (within 5%).
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Figure 2.16: Phase diagram in the (Kn, 1 − en)-plane, delineating the regions of unimodal
(△T = 0) and bimodal (△T > 0 and d2T/dy2(y = 0) > 0) temperature profiles. The blue-
dashed line approximately splits the bimodal-regime into two parts: (i) rarefaction-induced and
(ii) dissipation-induced bimodality. The parameter values are as in Fig. 2.14.

2.5.3 Excess temperature and its variation with en

Fig. 2.17(a) shows the temperature profiles at much lower values of en; these simulations have

been carried out for νav = 0.01 (panel a; W/d = 400, L/d = 294.5 and N = 1500). A

clear distinction can be seen between theory (Fig. 2.17(b, c)) and simulations (Fig. 2.17(a)).

The simulations show the extent of bimodality increases with increase in the dissipation of the

system (see inset of Fig. 2.17(a)) whereas the theory predicts a complete opposite trend till

en = 0.5 [Fig. 2.17(c)].



2.5 Results on Bimodal Temperature Profile: Rarefaction or Dissipation Driven? 27

-12 -8 -4 0 4 8 12
y/λ

0

0

5

10

15

20

25

30

T
/T

0

0 0.2 0.4 0.6 0.8 1
e

n

0

10

20

30

∆T

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

T
0

e
n
 = 0.40

0.60

0.80

0.90 0.99

(a)

(b)

(c)

Figure 2.17: (a) Simulations showing the effect of restitution coefficient on temperature; the inset
shows the variations of the excess temperature△T equation (2.21), denoted by black circles) and
the centerline temperature T0 (denoted by red squares) with en (b) Effect of restitution coefficient
en on granular temperature profiles and (c) shows the variations of the excess temperature
△T and distance at which Tmax occurs with en (Tij & Santos (2004)). Parameter values are
νav = 0.01 (W/d = 400 and L/d = 294.5)

The inset of Fig. 2.17(a) indicates that the centerline temperature T0 (marked by the red

line) decreases with increasing dissipation (∼ (1− e2n)). The variation of the excess temperature

ratio, △T , (2.21), is also shown (marked by the black-circled line) as a function of en in the inset.

It is clear that △T increases monotonically with decreasing en which implies that the degree

of temperature bimodality becomes more pronounced with increasing dissipation/inelasticity.

This finding is in contradiction with Tij & Santos (2004) who predicted that △T decreases with

decreasing en from the elastic limit up-to a value of en ∼ 0.4 and increases subsequently for

en < 0.4 (see Fig. 2.17(c)).
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2.5.4 Comparison of excess temperature with theory
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Figure 2.18: (a) Comparison between theory (dashed line - Tij & Santos (2004)) and simulation
(symbols) for the normalized excess temperature △T/Fr20 . Upper inset shows the variation of
the centerline Froude number [Fr0, Eqn. (2.25)] with en. (b) Variation of the centerline Knudsen
number Kn0 = λ0/W with restitution coefficient. Symbols refer to simulation data: squares
(νav = 0.01, W/d = 400), triangles (νav = 0.005, W/d = 400) and diamonds (νav = 0.005,
W/d = 800).

Let us make a quantitative comparison of our simulation with the analysis of Tij & Santos (2004)

who solved the inelastic Boltzmann equation (with a BGK-type collision model) subjected to a

constant gravitational force and a stochastic (white noise) thermostat. The role of the stochastic

thermostat was to heat the granular gas such that it compensates the loss of energy due to

collisional cooling, yielding a ‘uniform’ state about which a Chapman-Enskog-type expansion

was carried out by treating the body-force as a small parameter (which is proportional to the

centerline Knudsen number Kn0). Under these assumptions, they confirmed that while the

Navier-Stokes equations (for a dilute granular gas) yield a temperature maximum,

(

∂2T

∂y2

)

y=0

= 0 and

(

∂4T

∂y4

)

y=0

< 0, (2.23)

at the channel centerline (y = 0), the incorporation of O(Kn2)-corrections results in

(

∂2T

∂y2

)

y=0

> 0, (2.24)

implying a local minimum at y = 0.

The major prediction of this theory (Tij & Santos 2004) is that the ratio between the excess

temperature ratio △T , (2.21), and the centerline Froude number,

Fr0 =
g̃λ̃0

ṽ20
=

Kn0

2T0
, (2.25)
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depends only on the restitution coefficient:

△T

Fr20
=

A2
2(en)

4A4(en)
+O

(

Fr20
)

. (2.26)

The quantity (2.26) is called ’normalized’ excess temperature which is compared with simu-

lation data in Fig. 2.18(a) as a function of en. The corresponding variation of Froude number

(2.25) is displayed in the upper inset. The data set, denoted by squares, refer to simulations for

νav = 0.01 (with W/d = 400). These simulation data shows a disagreement with theory with

△T decreasing with decrease in the dissipation.

The variation of the centerline Knudsen number Kn0 (= λ0/W ) with en is shown in

Fig. 2.18(b). Note that Kn0 is of O(0.1) or less for the data set (squares) and approaches

to 0.05 at en → 1, again increases to a maximum of Kn0 ≈ 0.12 at en = 0.7 and decreases

monotonically with further decrease of en. Recall that an inbuilt assumption of the theory is

Kn0 << 1 and Fr0 << 1 which is not satisfied for any of the data sets shown in Fig. 2.18(a).

2.5.5 Possible role of axial inhomogeneities

For the data set, denoted by squares, in Fig. 2.18(b), the centerline Knudsen number Kn0

increases initially as en is decreased, reaches a maximum and decreases thereafter. This implies

that the granular gas becomes more rarefied around the channel centerline with decreasing en

up-to en ≈ 0.7, before entering into a lesser rarefied regime for en < 0.7. The critical en at which

the above flow transition occurs is in fact tied to clustering of particles along the axial direction

as we shall demonstrate below. For parameter values as in Fig. 2.17(a), the snapshots of the

system for en = 0.9 and 0.2 are displayed in Figs. 2.19(a) and 2.19(b) respectively. The particle

distribution appears homogeneous at en = 0.9, but there are considerable variations along both

streamwise and lateral directions at en = 0.2. To better characterize the spatial organization of

particles, the system is divided into nx×ny cells and the density (the area fraction of particles) is

calculated in each cell and is stored as a matrix of size nx×ny from which the power spectrum is

calculated using the fast Fourier transform (Liss et al. 2002; Alam et al. 2009). The coefficients

[a(kx, ky)] of the Fourier series for the coarse-grained density field.

a(kx, ky) exp[i2π(kxx/L+ kyy/W )], (2.27)

are found and stored in a matrix X. The power spectrum (P) of the density field is then

calculated from

P(kx, ky) =
2X · conj(X)

(nxny)2
, (2.28)

which is normalized by the size of the matrix to remove its dependence on the chosen mesh.
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Figure 2.19: Snapshots of instantaneous particle positions for (a) en = 0.9 and (b) en = 0.2,
with other parameters as in Fig. 2.17). Power spectrum of the coarse-grained density field of
panels a and b are shown in bottom panels (c) and (d) respectively.

Figures 2.19(c) and 2.19(d) show the power spectra for en = 0.9 and 0.2 respectively. There

is a dominant peak at (kx, ky) = (0, 1) in Fig. 2.19(c) which is a signature of the inhomogeneous

distribution of particles along the wall-normal (y) direction – this is dubbed ‘plug-type’ flow as

expected in the Poiseuille flow. On the other hand, at en = 0.2, Fig. 2.19(d) contains an addi-

tional dominant peak at (kx, ky) = (0, 2), along with sub-dominant peaks at (kx, ky) = (1, 0) and

(1, 1). Collectively, the peaks at (kx, ky) = (0, 1) and (1, 0) imply that the particles are inho-

mogeneously distributed along both the streamwise and wall-normal directions, and is dubbed

‘slug/clump’ (Liss et al. 2002; Alam et al. 2009). Therefore, with reference to Figs. 2.17(a),

the flow transcends from a plug to a slug/clump as the dissipation is increased. These axial

inhomogeneities increase the centerline mean-free path λ0, leading to a decrease of both Kn0

and Fr0 for en < 0.6, and are, in turn, responsible for the sharp increase of (△T/Fr20) in the

same limit as illustrated in Fig. 2.18(a).
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2.6 Conclusion and Discussion

2.6.1 Conclusion: competition between rarefaction and inelastic

dissipation

The roles of inelastic dissipation and wall-roughness on two well-known rarefaction phenomena,

the ‘Knudsen-minimum’ effect and the ‘bimodality’ of the temperature profile, were elucidated

for a dilute granular/athermal Poiseuille flow via event-driven simulations of smooth inelastic

hard-disks under gravity. The wall-roughness has a crucial role in the elastic limit (en → 1):

in channels with smooth walls (βw ∼ −1, i.e. reflected-type collisions), we uncovered a local

minimum in the flow rate (resembling the well-known Knudsen minimum) that occurred at a

Knudsen number of Kn ∼ O(0.01) but the maximum flow rate occurred at a finite Knudsen

number of Kn ∼ O(1), beyond which the flow-rate decreases. On the other hand, the Knudsen

minimum was found to be absent (i) even for quasi-elastic collisions (en < 0.99), irrespective

of the wall-roughness, as well as (ii) for relatively rougher walls (βw > −0.6) at any en as

summarized in the phase diagram in Fig. 2.9. An anomalous effect, the decreased slip velocity

with increasing Kn, was uncovered in smooth-walled channels for dissipative particles, which

is responsible for the continual decrease of the flow rate with increasing Kn for en < 0.99.

The origin of this anomalous variation of the slip velocity seems to be tied to the competing

effects of (i) the dissipation-induced ‘clustering’ (i.e. the inhomogeneity of the density field along

the transverse/wall-normal direction) and (ii) the rarefaction-induced ‘declustering’ of particles

along the wall-normal direction.

The granular temperature profile is found to be of ‘bimodal’ shape, with a minimum at the

channel centerline and two symmetric maxima away from center, at any Kn > 0 for en ≤ 0.9997.

In contrast, the temperature bimodality is known to occur in the Poiseuille flow of a molecular

gas (en = 1) beyond a critical value of Kn > Knc ∼ 0.01 (Tij & Santos 1994). We found that the

origin of temperature bimodality is inelastic dissipation in the continuum limit (i.e. at Kn ∼ 0),

but the rarefaction effects take over beyond Kn > O(0.1) as in its molecular counterpart.

Therefore, the observed temperature bimodality in granular Poiseuille flow is a consequence

of the competition between dissipation and rarefaction as discussed in a phase diagram in the

(Kn, 1− en)-plane in Fig. 2.16. Increasing inelastic dissipation increases the excess temperature

ratio △T [eqn. (2.21)] and hence the degree of temperature bimodality is enhanced. The above

finding is at odds with the predictions (△T decreases with decreasing en from the elastic limit

and then increases again) of a kinetic model (Tij & Santos 2004).

2.6.2 Discussion: implications for hydrodynamic equations

Here we remark on the validity of Navier-Stokes (NS) order hydrodynamic description for gran-

ular gases. With reference to Fig. 2.16, the NS equations will hold in the “unimodal” regime of

the phase diagram (to the left of the circled solid-line). On the other hand, we know that the

rarefaction-driven bimodality (to the right of the dashed line in Fig. 2.16 for Kn > 0.01) cannot

be predicted by NS-equations and requires at least Burnett-order equations. In the region lying

between the solid and dashed lines in Fig. 2.16, the temperature profile remains bimodal which
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is, however, driven by inelastic dissipation as discussed in section 2.5.2. In this regime, the

NS-equations may hold as long as (i) the Knudsen number Kn and (ii) the inelastic dissipation

(1− en) are small. This is because the normal stress difference, which requires a Burnett-order

description (Sela & Goldhirsch 1998; Saha & Alam 2014), becomes finite and measurable with

increasing dissipation. The is evident from a comparison between Figs. 2.20(a) and 2.20(b)

which display the profiles of scaled first normal stress difference N1, as defined in (2.20), for

en = 1 and 0.99 respectively. Each panel further illustrates that N1 increases (in the bulk) with

increasing Kn for specified values of en.
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Figure 2.20: Profiles of (a,b) the first normal stress difference N1, (A.2), and (c,d) the normalized
pressure, P = p(y)/p(0), for en = 1 (left column) and en = 0.99 (right column). The parameter
values are as in Fig. 2.14.

For a theoretical understanding, let us now consider the transverse momentum equation for

the steady, unidirectional flow of a granular fluid:

dpyy
dy

= 0 ≡ dp

dy
− 1

2

dN ∗

1

dy
(2.29)

where N ∗

1 = (pxx−pyy) and p = (pxx+pyy)/2. For NS-equations, N ∗

1 = 0 and hence p(y) should

be uniform across the channel width. Figure 2.20(c) confirms that the pressure is nearly uniform
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in the bulk of the channel (except near boundaries) for Kn = 0.012 and en = 1, but visible

non-uniformity prevails at higher values of Kn = 0.11. Recall from Fig. 2.16 that the onset of

bimodality occurs at Kn = Knc ≈ 0.01 for en = 1, and NS-equations are expected to hold below

Knc for this case. On the other hand, Fig. 2.20(d) indicates that the pressure is non-uniform

for both Kn = 0.011 and 0.12 when the particles are slightly dissipative (en = 0.99). The origin

of non-uniform pressure at Kn = 0.011 for en = 0.99 can be tied to the ‘non-negligible’ second

term in (2.29) as confirmed from Fig. 2.20(b). Therefore, we conclude that, in a phase-diagram

such as in Fig. 2.16, the region of validity of NS-hydrodynamics is indeed small (at least for

granular Poiseuille flow).





Chapter 3

Taylor-Couette Flow and MD

Simulation

3.1 Introduction

The flow between two concentric rotating cylinders, dubbed Taylor-Couette (TC) flow, has

been a subject of importance since the initial studies by Newton in 1687, but it was not till

Couette and Mallock (Mallock 1888; Couette 1888) did independent experiments in 1888 to

measure the viscosity of water, the subject gained much attention. Rayleigh (1917) formulated

a stability criterion which was based on the inviscid perturbation equations. He predicted that

irrespective of the speed of the inner cylinder, the flow should be unstable for a stationary outer

cylinder. Since viscosity damps the perturbations for low rotational speeds, preventing the

vortices from forming, Rayleigh’s stability criterion could not describe the underlying physics

of the instability. Taylor’s seminal paper in 1923 showed how visous forces stabilise flow at

low rotational speed and contained an examination of linear stability theory for general cases

of viscous flows with both cylinders rotating in the same as well as opposite directions. His

paper also contained an account of his experimental apparatus, which used ink visualization,

and presented the photographs and patterns of flow in the unstable regime (Taylor 1923). The

TC geometry has two advantages over a normal pipe: in the small gap limit, i.e. if dw/Ri ≪ 1

(where dw = Ro−Ri is the gap-width, and Ri and Ro are the radii of inner and outer cylinders),

the shear rate and thus the Reynolds number are constant across the gap and the streamlines

are curved. Taylor showed, both theoretically and experimentally, that the viscometric base

Couette flow was linearly unstable beyond a critical rotational speed of the inner cylinder.

For a given fluid of kinematic viscosity ν and a given geometry within the small gap limit

(setting dw and Ri), Taylor obtained the stability boundary for any co- or counter-rotation

of the cylinders. Experimentally, Taylor’s apparatus had the advantage of allowing for flow

visualization, which was absent in previous studies. Taylor showed that above the instability

threshold the cellular patterns are formed in which the fluid travels in helical paths around

the cylinders in layers of counter-rotating vortices, now known as ”Taylor vortices”. Since then,

numerous theoretical, experimental, and numerical studies (Andereck et al. 1986; Chandrasekhar

1960; Clever & Busse 1997; Cole 1965; Wereley & Lueptow 1998) have been conducted regarding

different aspects of Taylor-Couette flow. The recent decades have seen a burst in interest that

the Taylor-Couette flow is called the ”Hydrogen atom of fluid dynamics” (Tagg 1994) and has

recently been compared to the Drosophila of biology (van Gils et al. 2012).

Originally the physics of flow instabilities was focused on simple pipe flow considering New-

tonian fluids like water. The Reynolds number (Re = dUρ
µ ) , where d being a characteristic

length along the velocity gradient direction, U being a characteristic velocity and µ being the

35
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shear viscosity of the fluid, is considered as a parameter to quantify the relative importance of

two types of forces: destabilizing inertial and stabilizing viscous forces for given flow conditions.

However, the TC flow is based on both inner (Rei) and outer Reynolds number (Reo) measured

in terms of inner and outer rotations respectively. But, it is more appropriate to represent the

flow in terms of Taylor number

Ta =
ωRi(Ro −Ri)

3ρ2

µ2
(3.1)

where ω = (ωi or ωo) is a characteristic angular velocity, Ro and Ri are the outer and inner radius

respectively and rotation ratio (ωo

ωi
) (−ve for counter-rotating cylinder and +ve for co-rotating

cylinders). The flow is stable for outer cylinder rotating with the inner cylinder being stationary,

or, the latter rotating at a lower rate. The instabilites occur only if the Taylor number exceeds

a critical value (Tac).

The motion of a fluid confined between two concentric cylinders with the inner one rotating

at angular velocity ωi undergoes a series of transitions with increasing Reynolds number (Rei).

The initial transition is from azimuthal laminar flow to Taylor vortex flow (TV F ), which is

followed by a transition to wavy vortex flow (WV F ). At a fixed Rei in this wavy vortex flow

regime, several steady states are possible, each characterized by different number of waves around

the annulus. The transition to wavy vortex flow occurs at a radius ratio of 0.8, but for a low

radius ratio of 0.5 it occurs at a higher Reynolds number. The experiments of Cole (Cole 1965)

indicate that the critical Reynolds number for the onset of waves is strongly affected by end-wall

effects.

It is well known that Taylor vortices appear due to the pitchfork bifurcation with a critical

value of Taylor number which is dependent on the aspect and radius ratios. But Benjamin and

Mullin (Benjamin & Mullin 1981) discovered that the pitchfork bifurcation is modified by the

presence of stationary end-walls. They observed anomalous modes due to the confined geometry

in the axial direction which was earlier observed experimentally (Benjamin 1978). Typically,

the end-wall effects can be avoided in simulations by considering periodic boundary conditions,

experimentally by considering long cylinders compared to the gap-width, and theoretically by

assuming infintely long cylinders. In this way, the centrifugal instability is considered without

the interference of the confining end-walls. However, the end-walls have an important influence

on the flow throughout the Taylor-Couette cell. Figure 3.1 taken from the experimental studies of

Andereck et al. (1986) shows the non-trivial effects of the end-walls. In the bulk, away from the

end-walls the stable flow is geostropic; in other words, the centrifugal force due to the azimuthal

velocity is balanced by the pressure gradient force. However, the no-slip boundary condition

results in an azimuthal velocity near the end-wall which is different from that far from the

end-wall. The imbalance between the pressure gradient force and the centrifugal force near the

end-wall drives the fluid in two different forms depending on the nature of the end-wall boundary

condition. The boundary-driven flow at the end-walls can be considered either a Bodewadt

flow (Bödewadt 1940), where the end-wall is fixed and the fluid is rotating, or an Ekman flow,

where the end-wall and fluid are rotating at different angular velocities. With no-slip boundary

condition at the stationary end-walls, azimuthal velocity reduces near the end-walls compared

to the flow in the bulk, generating a boundary layer at bottom and top (Czarny et al. 2003).

This makes the flow radially inwards and recirculation occurs in the bulk of the system. Ekman
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Figure 3.1: End-wall effects (Andereck et al. 1986)

vortices can be of the same size as Taylor-vortices for stationary outer cylinder; recent studies

on independently rotating cylinders have revealed that a large-scale circulation consisting of two

cells can emerge at the boundary layer near the ends (Hollerbach & Fournier 2005). Many

authors have reported the importance of end-wall effects (Ahlers & Cannell 1983) analysed

the vortex front propagation from an end-wall; Cliffe & Mullin ((985) presented numerical

calculations of anomalous modes which was compared with their experimental observations.

Andereck et al. (1986) gave a detailed study of different structures being formed on varying

the inner Reynolds number. It served as a guide to new experimental and theoretical studies of

bifurcations and bifurcation sequences in the circular Couette system. Observed states included

Taylor vortices, wavy vortices, modulated wavy vortices, vortices with wavy outflow boundaries,

vortices with wavy inflow boundaries, vortices with flat boundaries and internal waves (twists),

laminar spirals, interpenetrating spirals, waves on interpenetrating spirals, spiral turbulence,

a flow with intermittent turbulent spots, turbulent Taylor vortices, a turbulent flow with no

large-scale features, and various combinations of these flows as shown in Fig. 3.2. With initial

emphasis on experiments and analytical studies, numerical simulations also gained momentum

with the advancement in computer simulation techniques, to solve Navier-Stokes numerically.

Since Marcus’s work (Marcus 1984), after the preliminary works of Moser et al. (1983) and

Jones (1981), where he solved the viscous Navier-Stokes equations as an intial value problem

to study the non-axisymmetric time-dependent behavior of Taylor vortices, and compared his

results with experiments, the numerical-based techniques have become important to understand

the flow behavior in a TC setup. At higher Reynolds numbers, the axisymmetric Taylor vortices

can become unstable via a Hopf bifurcation towards time-dependent flows which have the form

of a rotating wave.
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Figure 3.2: (a) Phase diagram in the (Reo, Rei)-plane in the small gap limit (b) Different flow
states: modulated waves MWV , spiral, interpenetrating spirals, intermittent turbulent on top
of spirals, and featureless turbulence (Andereck et al. 1986)

Molecular dynamics (MD) methods have, over the past decade, been used in the study of flow

instability at microscopic scales. Work has been confined to two-dimensional flows: both vortex

shedding in obstructed flow (Rapaport & Clementi 1986; Rapaport 1987) and convective roll

formation in the Rayleigh-Benard problem (Mareschal & Kestemont 1987; Puhl et al. 1989) have

been modeled. The surprising outcome of these simulations is not only that familiar macroscopic

phenomena are reproduced in such minuscule systems (the typical size is no more than a few

hundred angstroms), but the quantitative aspects of the flow behavior also agree with continuum

results. MD has been able to reproduce many important phenomena in excellent quantitative

agreement with theory and experiment (Hirshfeld & Rapaport 1998) in Taylor-Couette setup.

3.2 MD Simulation of Taylor-Couette Flow : Code Develop-

ment

The code development is based on the tranformation of Cartesian co-ordinate system to polar

co-ordinate when particle-wall collisions occur. The first part includes the development of two

concentric cylinders, with inner cylinder rotating at ωi as discussed in §3.2.1. To incorporate

finite slip at the boundaries and to attain a steady state for elastic collision case, thermal

boundary conditions (Maxwell 1867; Tehver et al. 1998) are employed at both the inner and

outer boundaries (See §3.2.2). Each particle colliding with the wall has all the memory of
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its previous velocity erased, and is reflected back into the system with a velocity taken from

Maxwellian distribution; for the wall corresponding to the rotating cylinder the local (tangential)

velocity is added to this random velocity vector. This mechanism is sufficient to drive the fluid

rotation and dissipate the energy generated by the shear flow. Given the mean volume fraction

of spheres in 3D

νav =
Nd3p

6(R2
o −R2

i )L
, (3.2)

and mean area fraction of particles in 2D

νav =
Nd2p

4(R2
o −R2

i )
, (3.3)

the gap-width (dw = (Ro−Ri)) and the rotation ωi of the inner cylinder, a collection of N smooth

and rigid inelastic particles of masss m = 1 and diameter dp = 1 are positioned randomly, and

are assigned random initial velocities (chosen from a Maxwellian distribution).

3.2.1 Circular boundary

The circular boundary can be created by setting the inner and outer radius usually determined

by a parameter, gap-width dw = Ro − Ri, where Ro = outer radius and Ri = Inner radius. An

event-driven algorithm is used to simulate the temporal dynamics of this system (Lubachevsky

1991). The particles are assigned the positions based on Cartesian co-ordinate system (x, y) but

can be mapped to polar co-ordinates by using the following conversion:

r =
√

x2 + y2 (3.4)

θ = tan−1

(

y

x

)

(3.5)

where (x, y) are Cartesian co-ordinates and (r, θ) are polar co-ordinates. The velocities are

converted using:
(

Vr

Vθ

)

=

(

Vx

Vy

)(

cos θ sin θ

− sin θ cos θ

)

(3.6)

where Vr and Vθ are radial and azimuthal velocity respectively. The particles are removed from

the system which fall outside the outer cylinder such that
√

x2 + y2 > (Ro − dp/2) and this

process is repeated till νav is achieved. The same procedure is followed for particles whose

positions are such that
√

x2 + y2 < (Ri + dp/2). The neighbour list algorithm (Chapter 2) can

be modified in a similar way. Only those particles are checked for collision in the neighbouring

cells for which
√

x2 + y2 < (Ro−dp/2) and
√

x2 + y2 > (Ri+dp/2). In order to make sure that

the particles outside the system do not interact with the system, they are assigned a minuscule

magnitude of velocity ∼ O(10−12). Various simulations for different values of mean volume

fraction (νav) were run to check that the particle number does not exceed N by interacting with

the particles outside.

Similarly, the neighbour list algorithm need to be modified for the annular geometry. The

algorithm to check for the nearest neighbour is similar to the Cartesian code used in Chapter 2,
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the only difference being in the method of calculating the nearest cell. For the cells near the outer

boundary, a check is made everytime the code searches for its nearest neighbour, to eliminate

the event of collision where a particle is out of bounds. The same procedure was implemented

for the inner circle. A detailed discussion on the boundary conditions is given in the following

section.

Figure 3.3: Intersection points of a circle and a line.

3.2.2 Boundary conditions

The boundary is modelled as thermal walls to supply energy into a dissipative system like a

granular gas. Whenever a particle hits the wall, its velocity is chosen fom a Maxwell distribution

according to a certain wall temperature Tw. There is, however, a complication which is frequently

disregarded in the literature. If at wall collisions both components of the particle velocity are

chosen from a Gaussian distribution, after a short time the temperature of the gas approaches an

incorrect final temperature T ′ < Tw, although the gas is supposed to be in thermal equilibrium

with the wall of temperature Tw. This is mainly due to over prediction of fast moving particles

hitting the wall with more frquency compared to slow moving particles which lead to a distortion

of the velocity distribution (Pöschel & Schwager 2005) and cool the system, since the number

of fast moving particles after wall-contact is too small.

To overcome this problem, the particles close to the wall are given random normal velocities

such that the statistical properties are conserved, .i.e. ∝ cnN(cn) particles must be assigned the

normal velocity cn. Consequently, at wall collisions the normal velocities have to be determined
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according to the probability distribution (Pöschel & Schwager 2005):

p(cn) =
m

Tw
cnexp

[

− m(cn)2

2Tw

]

, (3.7)

where the prefactor comes from the normalization condition
∫

∞

0 p(cn) dp = 1.

The above arguments do not apply to the tangential velocities since the rate of wall collisions

depends only on the normal velocity component, but is independent of the tangential component.

Hence, the tangential velocities have to be chosen from a Maxwell distribution.

p(ct) =

√

m

2πTw
exp

[

− m(ct)2

2Tw

]

(3.8)

which is normalized as
∫

∞

−∞
p(ct) dp = 1.

The above procedure is used in the present simulation to produce a finite slip at the wall and

to stabilise the energy to a steady state value for elastic systems. For the wall corresponding

to the rotating inner cylinder the local (tangential) velocity is added to this vector, and the

post-collisional velocities in both normal and tangential directions are given by,

~cr
′ =

√

2kBTw

m
vBG, (3.9)

~cθ
′ =

√

kBTw

m
vG +Ri × ωi, (3.10)

respectively, where c′r is the post-collisional radial velocity and c′θ is its azimuthal component.

Note that vBG and vG are given by (3.7) and (3.8) respectively.

The system in an event-driven simulation moves from one state to another with respect to an

event, the event being the collisions. The main assumption in event-based molecular dynamics

is that at any instant only one collision occurs in an infinitesimal small interval of time, the

details of which were given in Chapter 2. The wall-particle collision, particle-particle collision

and neighbouring cell boundary crossing are three different events with respect to which the

system moves, where the minimum of the three sets the time for the system to evolve. The

algorithm calculates the time taken for all three events for the particle under consideration and

then moves the system based on tmin. The algorithm to obtain the minimum for particle-particle

and wall-particle collision in the code requires indepth discussion for the reader to understand,

whereas the neighbouring cell-crossing is trivial to implement.
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Figure 3.4: Schematic of possible collisions of a particle with circular boundaries.

The wall-particle collision is modeled as the intersection of a straight line (along the particle

velocity vector) with circles. The equation of a circle and a line can be obtained from the

parameters of the system namely, the gap-width and outer cylinder radius, whereas the equation

of the straight line is obtained from the particle velocity vector. The equation is a quadratic

equation and is solved to get the roots as shown in Fig. 3.3. There are four roots for two circles

and the minimum is calculated depending on the velocity vector of the particles. The equation

of outer circle

x2 + y2 = (Ro − dp/2)
2 (3.11)

and the inner circle

x2 + y2 = (Ri + dp/2)
2 (3.12)

is solved using the equation of the line

y =
cy
cx

x+ k → k = y − cy
cx

x (3.13)

Both equations (3.11) and (3.12) are solved independently using the same equation of line

(3.13). The dot product of the relative position vector and the velocity vector of the particles

determines the direction of the particle motion and is used to calculate the minimum time.

~x · ~c > 0, if x ∈ (x1, y1) or (x4, y4) (3.14)

The above condition is satisfied if the particle collides with the outer wall , and

~x · ~c < 0, if x ∈ (x2, y2) or (x3, y3) (3.15)
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if it collides with the inner wall as shown in Fig. 3.4.

The minimum time is calculated and the particle is moved to a new position, if the particle

collides with the wall, then it takes up velocity according to (3.9) and (3.10).

3.2.3 Axial length

In three dimensions, the addition of a length in the axial direction (z) is trivial and the neighbour-

list algorithm needs to be modified for 3D accordingly. Another parameter which comes up is

the aspect ratio L/dw, where L is the length of the cylinder. In this study, two types of axial

boundary conditions are used : periodic and reflecting. For reflecting boundary conditions, when

a particle hits the axial boundary, its velocity in the z-direction reverses keeping the other two

components fixed. This amounts to reflect incident particles elastically from end-walls; the use

of slip boundary condition at the ends avoids creating a second source of sheared flow that would

distort the vortices (an effect that is unavoidable in experiments) (Hirshfeld & Rapaport 1998).

The reflecting boundary conditions are given by:

~cx
′ = ~cx (3.16)

~cy
′ = ~cy (3.17)

~cz
′ = −~cz (3.18)

On the other hand, the periodic boundary conditions are used to mimic large systems as well

as to avoid end boundary effects. This helps to understand the global dynamics of the vortex

formation. If a particle moves out of the box in the z-direction, a periodic image of the same

particle is created in the opposite direction at same x and y positions with same components of

velocity. The algorithm and its implementation was discussed in detail in Chapter 3.

3.3 Hydrodynamic Properties

To extract hydrodynamic fields from simulations, we divide the circular annulus into an array of

bins in the radial and azimuthal directions, each of width wr = (Ro−Ri)/nbinr and wθ = 2π/nbinθ

(wr, wθ > dp), respectively, as shown in Fig. 3.5 and then carry out ‘binwise’ averaging by

collecting data in each bin after reaching a statistical steady state.
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Figure 3.5: Bin wise averaging in Taylor-Couette 2D.

The volume fraction ν, radial velocity (Ur), tangential velocity (Uθ) and granular temperature

T in the ith bin (located at r = ri and θ = θi) are calculated from:

ν(r, θ) =
d2p × nbinr × nbinθ

4(R2
o −R2

i )

〈

N
∑

i=1

δ(r − ri)δ(θ − θi)
〉

, (3.19)

Ur(r, θ) =

〈

∑N
i=1 cri(t)δ(r − ri)δ(θ − θi)

〉

〈

∑N
i=1 δ(r − ri)δ(θ − θi)

〉 , (3.20)

Uθ(r, θ) =

〈

∑N
i=1 cθi(t)δ(r − ri)δ(θ − θi)

〉

〈

∑N
i=1 δ(r − ri)δ(θ − θi)

〉 , (3.21)

T (r, θ) =

〈

∑N
i=1Ci(t)Ci(t)δ(r − ri)δ(θ − θi)

〉

2
〈

∑N
i=1 δ(r − ri)δ(θ − θi)

〉 , (3.22)

where Ci(t) = ci(t) − U(r, θ) is the peculiar velocity of particles and 〈·〉 represents the time-

averaging over a large number of snapshots of the system. For non-dimensionalization, the

reference length, time and velocity scales are taken to be:

Lr = dw, (3.23)

tr = 1/ω, (3.24)

Ur = dwω, (3.25)

Tr = (dwω)
2. (3.26)

For 3D, an extra dimensional length in the z-direction adds another variable with L being
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the length of the cylinder. The averaging in the azimuthal and radial directions remains the

same, whereas the cylinder length is divided into an array of bins of width wz = L/nbinz. The

volume fraction ν, radial velocity (Ur), tangential velocity (Uθ), axial velocity (Uz) and granular

temperature T in the ith bin (located at r = ri, z = zi and θ = θi) are calculated from:

ν(r, θ, z) =
d3p × nbinr × nbinθ × nbinz

6(R2
o −R2

i )L

〈

N
∑

i=1

δ(r − ri)δ(z − zi)δ(θ − θi)
〉

, (3.27)

Ur(r, θ, z) =

〈

∑N
i=1 cri(t)δ(r − ri)δ(z − zi)δ(θ − θi)

〉

〈

∑N
i=1 δ(r − ri)δ(z − zi)δ(θ − θi)

〉 , (3.28)

Uθ(r, θ, z) =

〈

∑N
i=1 cθi(t)δ(r − ri)δ(z − zi)δ(θ − θi)

〉

〈

∑N
i=1 δ(r − ri)δ(z − zi)δ(θ − θi)

〉 , (3.29)

Uθ(r, θ, z) =

〈

∑N
i=1 czi(t)δ(r − ri)δ(z − zi)δ(θ − θi)

〉

〈

∑N
i=1 δ(r − ri)δ(z − zi)δ(θ − θi)

〉 , (3.30)

T (r, θ, z) =

〈

∑N
i=1Ci(t)Ci(t)δ(r − ri)δ(z − zi)δ(θ − θi)

〉

3
〈

∑N
i=1 δ(r − ri)δ(z − zi)δ(θ − θi)

〉 , (3.31)

where Ci(t) = ci(t) − U(r, θ, z) is the peculiar velocity of particles and 〈·〉 represents the

time-averaging over a large number of snapshots of the system.

Simulations were run for different values of mean volume fraction to study the spatio-

temporal features of the structures; new forms of unstable patterns and clusters were identified

which are systematically dealt with in the subsequent chapters. The code is validated to the

existing literature in Secs. 3.4 and 3.5

3.4 Code Validation in Two-dimensions

The code for 2D Taylor-Couette flow was validated to ensure that the algorithm used to create

the circular boundary can be used for granular TC simulations. Minguito & Meerson (2007)

observed that at a fixed radius ratio Ω = Ro/Ri of the annulus, the granular gas has negative

compressibility in the azimuthal direction, having a ”spinodal interval” of particle area fractions.

The radial variation of local density field averaged in the azimuthal direction agree qualitatively

with different values of radius ratio, one such case is shown in Fig. 3.6.
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Figure 3.6: Code validation for the annular geometry. The simulations were carried out with
N = 1250 particles, en = 0.92, Ri = 22.0, Ω = 2 and nc = 2/

√
3d2 is the hexagonal close packing

density.

Note that the outer and inner cylinders remain stationary in simulations of Minguito &

Meerson (2007), but the ”driving” interior wall is modeled as a thermal wall kept at temper-

ature T0, whereas particle collisions with the exterior wall are considered elastic. The energy

transferred from the thermal wall to the granulate dissipates in the particle inelastic collisions,

and the system reaches a ”non equilibrium” steady state with a zero mean flow.

Figure 3.7: Typical snapshots for (a) N = 1250 and Ω = 6, (b) N = 5267 and Ω = 3, (c)
N = 6320 and Ω = 6, (c) broken-symmetry state, all simulations for en = 0.92 (Minguito &
Meerson 2007).

As shown in Fig. 3.7(a) (taken from Minguito & Meerson (2007)), for low values of N, a ho-

mogeneous state is observed, and as N is increased, the clusters form near the outer wall (panel

b). As N is increased further, an annular state appears as in Fig. 3.7c. This time, however, the
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annular state is denser, while its local structure varies from a solidlike state with imperfections

such as voids and line defects to a liquid-like state. The present simulation results with param-

eters as in Fig. 3.7 are shown in Figs. 3.8(a,b,c). Overall, there is a good qualitative agreement

between present simulations and those of Minguito & Meerson (2007). Figure 3.9(a, b, c) displays

density profiles with parameter values as in Fig. 3.8.

(a) (b) (c)

Figure 3.8: Typical snapshots for (a) N = 1250 and Ω = 6, (b) N = 5267 and Ω = 3, (c)
N = 6320 and Ω = 6 (present simulations).
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Figure 3.9: Radial variation of density (a) νav = 0.018, (b), νav = 0.34 and (c) νav = 0.094 for
parameter values as in Fig. 3.8.

3.4.1 Particle overlap and tolerance

An important issue that needs to be highlighted in this section is the possibility of overlap

of particles in event-driven simulations. This occurs due to very small collision time difference

between different particle collisions (events). This can cause overlapping which has been observed

in the present study especially in a dense dissipative system where particles tend to cluster. This

happens when the code enter into the collision time calculation which involve two step checks:

(i) ~c12.~r12 < 0 and (ii) (d − ~r12)/d ≤ 0 as given in chapter 2 (Fig. 2.3). The check (ii) is a

crude implementation for a highly clustered system and even a small overlap of particles on the
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order of (d − ~r12)/d ∼ 10−8 can make the particles to miss a potential collision. To avoid this

situation, a small value of tolerance is added to the above check (ii) such that

(d− ~r12)/d ≤ drtol (3.32)

Figure 3.10 shows the variation of collision time with number of collisions. The collision time

can attain a value as low as O(10−13) as seen in Fig. 3.10 for paramter values as in Fig. 3.8(c).

Note that the collision time is a function of mean volume fraction and the dissipation of the

system. Figure 3.11 shows the probability distribution of the collision times. The distribution

has been calculated using a variable grid size. The distribution gives an idea of the probable

collision time which in turn can be used to fix a tolerance value, Eq. (3.32). In order to draw a

histogram, the collision time is normalised with standard deviation

σtcol =

√

∑Ncol

i=1 (tcolm − tcoli)
2

Ncol
(3.33)

where tcolm is the mean of the collision times and the y-axis (P (tcol/σtcol)) is normalised by the

area under the curve.
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Figure 3.10: Variation of collision time with number of coliisions for paramters as in Fig. 3.8(c).

Time is scaled with dw/
√

kBT
m where dw is the gap-width and

√

kBT
m is thermal velocity corre-

sponding to wall temperature.

The value of spatial tolerance is set to drtol = 10−8 in the code and the temporal tolerance

is calculated using

dttol = drtol/

√

kBT

m
(3.34)

where
√

kBT
m is the thermal velocity corresponding to wall temperature. In order to ensure

that the value of drtol used in the code does not affect calculated collision times, we analyse

the probability distribution of collision times in Fig. 3.11. The calculated value of temporal

tolerance should satisfy dttol << tcolmp, where tcolmp is the most probable collision time which

falls in the range of 10−3 − 20 in the present analysis after normalising it with σtcol. The values

of standard deviation can be found in table 3.1. Therefore, the true range of tcolmp will be

10−5−0.1. The value of temporal tolerance (dttol) obtained from Eq.(3.34) is 10−8 which is very

small compared to lower bounds of tcolmp (see Fig. 3.10 and Fig. 3.11(c)).
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Figure 3.11: Probability distribution of collision time for parameters as in Fig. 3.8(a, b, c) in the
same order using variable grid size.

Table 3.1 shows the tolerance used for different cases with the corresponding parameter

values. The particle overlapping is significant when drtol = 0 and hence cannot be neglected.

The time is scaled with the available scales in the problem : thermal velocity
√

kBT
m and the

gap-width dw. No overlapping of the particles was observed when drtol = 10−8, see table 3.1.

νav N en σtol
Particles overlapped (No)
without tolerance (drtol = 0)

dttol = drtol/
√

kBT
m = 10−8

0.0188 1276 0.92 2.27 10−2 0 No = 0
0.34 5280 0.92 3.02 10−2 285 No = 0

0.094 6392 0.92 2.41 10−2 41 No = 0

Table 3.1: Table showing effects of using tolerance. Parameters are same as in Fig. 3.8.

As can be seen from table 3.1, the number of overlapped particles (with drtol = 0) are

comparatively smaller (Fig. 3.8(a, c)) when the average volume fraction of the system is small as
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compared to Fig.3.8(b) for which νav = 0.34. To sum up the above discussion, Fig. 3.12 shows

the effect of particle everlapping on the density profiles of the system. A clear difference between

the two suggests that this problem can not be avoided and must be handled carefully. The above

tables and figures will be also be shown for the case of rotationg cylinder (Taylor-Couette flow)

in the next chapter wherever necessary.
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Figure 3.12: Typical snapshots for parameter values as in Fig. 3.8(c) for (a) without overlap
(drtol = 10−8) and (b) overlap system (drtol = 0). (c) Effect of particle overlapping on the
density profiles with different values of tolerance.

3.5 Code Validation in Three-dimensions

The 3D code is validated from the first paper on TC flow using MD simulations (Hirshfeld

& Rapaport 1998). Hirshfeld & Rapaport (1998) was successful to study the flow instability

using particle-based simulations. The formation of toroidal vortices was qualtitatively examined
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over a range of supercritical Taylor numbers. Despite of the microscopic system size, an excel-

lent agreement was observed for Fourier amplitudes of the fundamental mode with theory and

experiments.
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Figure 3.13: Axial variation of radial velocity (a) (Hirshfeld & Rapaport 1998) (b) present
simulations.

In present simulations, the annular width dw = 25, with Ri = 50 and Ro = 75, is the

minimum gap-width for which well developed vortices were observed. The cylinder length (L)

is set to 100 with particles colliding elastically, though the particle-particle collision model used

by Rapaport was a soft sphere model. We show below that the observations are qualitatively

similar even with a hard sphere model with the coefficient of restituion being en = 1. The

mean volume fracion is νav = 0.26 (3.2) with the particle number of N = 125000. In order to

reduce the number of particles required for the simulation, only one quadrant of the annular cell

is modeled. Special periodic boundaries were used to account for the effect of particles in the

absent quadrants as in Hirshfeld & Rapaport (1998). A particle leaving the quadrant returns via

the perpendicular boundary with its position and velocity components interchanged accordingly

with signs adjusted. These boundary conditions are valid only if the secondary flows remain

axisymmetric. Measurements are made only after the system attains a steady state where the

energy attains a constant value.
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(a) (b)

Figure 3.14: Snapshot of final stage of vortices for ω = 0.1 (a) Hirshfeld & Rapaport (1998)) (b)
present simulatons.

The axial variation of radial velocity is shown in Fig. 3.13, and the final picture of the vortex

patterns is shown in Figs. 3.14. Even number of vortices are formed, which increases with an

increase in the aspect ratio. The magnitude of the radial velocity is different (Fig. 3.13) from

the predicted values of Rapaport, possibly because of the soft sphere model and different radial

wall boundary conditions (see Hirshfeld & Rapaport (1998)). Note that the vortices obtained in

the present simulations are the result of averaging the velocity vectors over the entire simulation

period whereas Hirshfeld & Rapaport (1998) uses a window averaging method where each image

at a particular time instant (see Fig. 3.14(a)) represents the average over 5000 steps. They stated

that the final stage persists for the rest of the run, and hence it can be assumed to be the final

stage of the vortices. The qualtitative agreement is considered sufficient to proceed for further

study. In the subsequent chapters, the dynamics of 2D and 3D granular Taylor-Couette flows

are addressed and discussed in detail.



Chapter 4

Taylor-Couette Flow in

Two-dimensions

Rapidly rotating shear flows are ubiquitous in geophysical and astrophysical settings such as

planetary atmospheres, stellar interiors, and accretion disk. Recent studies on rarefied gas flows

in Taylor-Couette system has garnered a lot of attention in the scientific community with the

advent of microfluidic systems. The higher Knudsen number (Kn) flows are particularly an

important class of flows because the wall effects play a pivotal role in the dynamics of the

system and hence cannot be ingnored. The study by Stefanov & Cercignani (1993) using direct

simulation Monte Carlo (DSMC) method found that the critical Taylor number at which the

instability occurs is higher than its classical value for incompressible Taylor-Couette flow. They

considered the problem of a hard sphere gas in axisymmetric Taylor-Couette flow and found

that, contrary to the claims of Kao & Chow (1992), increasing Mach number (Ma) had a

stabilising effect for a radius ratio of Ro/Ri = 2. Stefanov & Cercignani (1993) related this

disagreement to the effects of rarefaction which were not considered by the former authors

who used compressible Navier-Stokes equations for stability analysis. Only a few studies have

concentrated on the compressible Taylor-Couette problem so far, but none for a granular system.

At high Knudsen number, the Knudsen layer develops and covers the entire system, where the

Naviers-Stokes equations with no-slip boundary conditions become invalid. The system becomes

more complex at intermediate Kn where all the effects (dissipation, rarefaction and inertial) are

difficult to separate out. The first experimental investigation of the effects of transonic Mach

numbers (Ma ≈ 1) on the TC instability of dry air was done by Kuhlthau (1960). The onset

of instability was identified with sharp increase in the torque measured on the outer cylinder.

Knudsen number was varied by varying the density keeping the inner rotation speed fixed. The

experiments were carried out for 0.7 ≤ Ma ≤ 1.5 showing an increase in the critical Knudsen

number (Knc) with increasing Ma. The axisymmetric problem has principally been studied

by means of the direct simulation Monte Carlo (DSMC) method (Bird 1994). The numerical

simulations follow the evolution of the system through its terminal state which, in turn, serves

to classify the system response as stable or unstable. Riechelmann & Nanbu (1993) studied this

problem for a Maxwell gas. Aoki et al. (1999) and Yoshida & Aoki (2006) applied the DSMC

method to study the influence of varying both temperature and velocity ratios on the neutral

curve. All of the above-mentioned studies demonstrate that TC instability is a small O(10−2)

Knudsen phenomenon.

The couette flow between two concentric rotating cylinders has interesting features such as

”velocity inversion” (Einzel et al. 1990) which implies that the azimuthal velocity of the flow

increases with distance from a rotating cylinder to a stationary cylinder compared to decrease for

the case of an incompressible fluid. The velocity inversion phenomenon has been studied by using

53
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analytical and numerical tools. Einzel et al. (1990) first predicted, by suggesting a generalized

slip boundary condition for incompressible flow over curved or rough surfaces, that the velocity

profile would become inverted in the case of large velocity slip at the wall surfaces. Tibbs et al.

(1997) did the formulation for the rarefied gases. This was achieved by defining the slip length

ζ0 = α(2/σ − 1)λ, where λ is the mean-free path of the gas molecules, α ≈ 1.15 and σ is the

tangential momentum accommodation coefficient which can vary from zero for specular reflection

and up to unity for diffuse reflection.

The cylindrical Couette flow has also been studied by Aoki et al. (2003) using several al-

ternative approaches: a systematic asymptotic analytical solution at small Knudsen numbers,

a direct simulation Monte Carlo method, and a direct numerical solution of the Boltzmann

equation using a finite difference method based on the Bhatnagar-Gross-Krook (BGK) approx-

imation. Their results again confirmed the existence of an inverted velocity profile for small

values of accommodation coefficient, and also showed that the occurrence of velocity inversion

could be related to a critical accommodation coefficient.

The two-dimensional (2D) granular shear experiments in an annular cell were carried out

by Jasti & Higgs III (2008) to extract solid fraction, velocity, and granular temperature data

as a function of the wall roughness factor and wheel rotation rate. In general, the steady-state

results show two distinct regions: a high-velocity and dilute-gas-like kinetic region near the

moving wall and a high-solid-fraction liquid-like frictional flow regime away from the moving

wall. Parametric studies were also conducted to show that the normalized slip near the moving

wall decreases with increasing wall roughness and decreasing wall rotation rate.

Instead of implementing Maxwell’s boundary conditions based on accomodation coefficients,

the current analysis uses the ”thermal-wall” boundary conditions as discussed in Chapter 3. In

this chapter, 2D simulations of smooth hard disks are carried out in an annular geometry with

a rotating inner disk. This type of flow is common in extra-terrestrial flows mainly asteroids

and space dust. Effects of inner rotation are considered over a range of densities. This chapter

also probes the effects of varying Kn for different ranges of mean densities (νav) and rotation

speeds (ωi). A similar analysis as done in chapter 3(§3.4.1) on the overlapping of particles is

discussed in §4.2 for the case of maximum volume fraction (νav) simulated in a dissipative system

(en = 0.6).
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4.1 Inner Cylinder Rotation: Finite ωi and Zero ωo

The system is a circular annulus with inner and outer cylinders. The important parameters in

the study are the gap-width dw, rotation rate (ωi), inner radius (Ri), coefficient of restitution

en and mean density νav. Different parameters are varied to study their corresponding effects

on the system. The domain under consideration is divided into an array of bins as shown in

Fig. 3.5. The macroscopic properties are calculated based on Eqns.(3.19, 3.20, 3.21, 3.22). Later,

an effort will be made to explain the phenomenon of cluster formation for a large gap-width.

All simulations are carried out for a range of Knudsen number (Kn) and mean density (νav),

and the macroscopic properties are calculated when the system attains a statistical steady state

for which the energy fluctuates around a mean value. Here we will consider the effect of varying

the rotational speed (ωi) of the inner cylinder with a fixed outer cylinder. Cluster dynamics is

one important aspect covered in this section along with steady state hydrodynamic profiles, and

their dependence on different parameter values.
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Figure 4.1: Evolution of kinetic energy versus time for (a) en = 0.6 and (b) en = 1.0. The system
reaches a statistical steady state when E(t) fluctuates around a mean value; the parameters are
Ro = 100, dw = 75 and νav = 0.40.

Figure 4.1 shows the temporal variation of kinetic energy, E(t) =
∑N

i=1(c
2
xi + c2yi)/2N , per

particle for (a) en = 0.6 and (b) en = 1. In each panel, the initial period of transients continues

till a few hundreds of collisions per particle, beyond which the data are collected to calculate

the hydrodynamic fields and related coarse-grained quantities. For en = 1, the thermal-wall

boundary conditon plays a crucial role in balancing the increasing energy of the system by

maintaining a local equilibrium near the wall, as thermal walls can act as a source or sink

depending on the temperature of the system.

4.1.1 Hydrodynamic profiles (νav = 0.05)

In this section, an average density of νav = 0.05 is simulated with inner cylinder rotating at

different speeds ωi = 0.05 − 1. The rest of the parameters has been fixed (see table 4.1). The

number of particles (N) simulated varies from 1888 for the largest gap-width (dw = 75) to 396
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for the smallest gap-width (dw = 10) considered in this study.

dw = 75, N = 1888 dw = 10, N = 396

en ωi Kn Kn

0.6

0.05 0.00016 0.58
0.1 0.00082 0.611
0.5 0.0045 0.59
1 0.0073 0.59

0.99

0.05 0.065 0.56
0.1 0.0658 0.60
0.5 0.057 0.67
1 0.051 0.72

1

0.05 0.0656 0.56
0.1 0.066 0.61
0.5 0.057 0.678
1 0.052 0.724

Table 4.1: Parameters used in simulations to vary the average Knudsen number for mean density
νav = 0.05, Ro = 100 (dw = Ro − Ri) and ωo = 0. The average Knudsen number is defined as
Kn = λav/dw.

Density

The variation of density in Fig. 4.2(a) can be explained by the clustering mechanism that occurs

in a granular system. The decrease in pressure in high dense regions lead to a movement of

particles from high pressure (low density) region to a low pressure (high density) region. This

effect due to in-built inelasticity in the system gives rise to numerous patterns and structures.

Figure 4.2 (a − f) shows the radial variation of local density averaged over multiple snapshots

for different values of normal restitution coefficient (rows) and gap-width (columns). However,

due to asymmetry in both radial and azimuthal direction, the temporal study becomes essential

to study the formation of localised structures. Different parameter values have been simulated

to observe the effects of ωi, d and en on the local hydrodynamic fields. The density in Fig. 4.2(a)

shows a peak near the centre which start to drift towards the outer radial direction with increase

in the value of ωi for the largest gap-width considered in the simulations. This shift in the density

peaks is due to the increase in the centrifugal force on each particle with increase in ωi and is

also observed for en = 0.99, 1. For the maximum value of ωi = 1 simulated in the present study,

the particles accumulate at the outer boundary, showing a maxima at the outer disk as shown

in Fig. 4.2(c, e).
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Figure 4.2: Radial density profiles for parameter values of outer radiusRo = 100, r̃ = (r−Ri)/dw,
gap-width (a, c, e) dw = 75, (b, d, f) dw = 10, mean density νav = 0.05 and (a, b) en = 0.6, (c, d)
en = 0.99 and (e, f) en = 1.0.

For elastic collisions as shown in Fig. 4.2(e, f), the density is uniform throughout both

radially and axially, till the inertial force exceeds a critical value where all the particles will be

pushed out towards the outer boundary giving a maxima at the outer boundary. A non-trivial

phenomenon is observed in Fig. 4.2(b, d, f) for the small gap-width case (dw = 10). All the

profiles for (en = 0.6, en = 0.99 and en = 1) show similar behaviour, independent of dissipation

in the system. The dissipative mechanism no longer controls the dynamics of the system in

the small gap limit, and only centrifugal forces are dominant. These effects are the result of
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large Knudsen number as can be seen from table. 4.1. No clustering is observed for this case

as wall-particle collisions are more dominant than the particle-particle collision. The Knudsen

number for the small gap limit is high ∼ O(1), where the boundary effects cannot be avoided.

For higher densities (νav = 0.1 & νav = 0.4), a subtle difference can be seen for the two gap

limits which is discussed in the next section.

(a) t = 943.76 (b) t = 1095.31

(c) t = 1584.10 (d) t = 2508.74

Figure 4.3: Snapshots showing different stages of cluster - stretching(b, c), compression(d) and
breaking (a). Parameter values are νav = 0.05, en = 0.6, dw = 75 and ωi = 0.1.

Figure 4.3 shows the temporal variation of structures for en = 0.6 with same parameter

values as in Fig. 4.2. The cluster goes through different stages - compression, breaking and

stretching, which occurs consistently over the time period of the simulation. The formation of

localised structures starts due to the dissipation in the system, followed by compression and

stretching. A tail of dilute granular gas is always present behind the cluster at every instant.

The stretching is observed to occur only when the structure is compressed to a critical/maximum

extent where it can no longer sustain the maximum number density, and leads to an outburst

of particles. This causes a sudden increase in the velocity, which stabilises instantaneously due

to dissipation in the system.
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(a) t = 15631.16 (b) t = 40870.477

Figure 4.4: Snapshots showing temporal evolution of the system. Parameter values are as in
Fig. 4.3 except en = 0.99.

Figures 4.4 and 4.5 show the temporal evolution of the system with mild (en = 0.99) and

no dissipation (en = 1.0) respectively. The homogeneous distribution at en = 0.99 reflects that

the inelasticity does not play significant role in the system due to the absence of clustering

in Fig. 4.4(a, b). The larger velocity slip values at the walls (see Fig. 4.6) demonstrates that

the rarefaction effects are more dominant at this density regime which are discussed in the

next section. Also, the homogeneity is much more prominent in elastic system as given in

Fig. 4.5(a, b).

(a) t = 14591.63 (b) t = 38146.07

Figure 4.5: Snapshots showing temporal evolution of the system. Parameter values are as in
Fig. 4.3 except en = 1.0.
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Velocity and angular momentum
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Figure 4.6: Radial variation of azimuthal velocity for parameter values as in fig. 4.2.

Velocity, on the other hand, Fig. 4.6(a, c, e) shows a behavior similar to an irrotational vortex in

the large gap limit. The trend is similar to an irrotational vortex flow (Vθ ∼ 1
r ), for an unbounded

liquid with inner cylinder rotating. The dip in the profile in Fig. 4.6(a) increases and becomes flat

with the increase in the inner rotation. The velocity profile decreases slowly over a certain range,

where the cluster formation has taken place. This is due to the instant transfer of momentum

due to higher particle-particle collision in the high density clustered region, the velocity drops

after that and approaches the value of slip velocity at the outer wall. An important observation
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is that when the collisions are elastic (Fig. 4.6(e)), the slip velocity tends to zero for all values of

ωi which is completely opposite to a system where the collisions are inelastic (Fig. 4.6(a)). The

finite slip velocity for dissipative system can be explained by clustering mechanism explained

above, making the region near the walls particle deficient. The rarefied region leads to a higher

slip at the outer wall. The homogenous density distribution (ωi = 0.05) and high density near

the wall (ωi = 1) for non-dissipative system, leads to negligible slip velocity at the wall as shown

in Fig. 4.6(e). Similar inference can be drawn for small gap-width cases shown in Fig. 4.6(b), (d)

and (f). The velocity profiles for the small gap-width are similar for elastic and inelastic case,

implying that dissipation does not play a role when Knudsen number is higher. In the narrow

gap limit, the velocity profiles vary linearly radially approaching plane Couette flow (Taylor

1923). The high density cases are discussed in the subsequent sections.

Further, we focus on angular momentum and angular velocity of the system at low density

(νav = 0.05). The angular momentum (l(r, θ)) and angular velocity (ω(r, θ)) are calculated as:

ω(r) =
〈

ω(r, θ)
〉

θ
=

〈

Vθ(r̃, θ)
〉

θ
/r, (4.1)

l(r) =
〈

l(r, θ)
〉

θ
=

〈

ν(r, θ)Vθ(r, θ)
〉

θ
r, (4.2)

where Vθ(r, θ) is the azimuthal velocity, ν(r, θ) is the local density and r is the radial distance

from the centre. Figure 4.7 (a−f) shows the radial variations of θ-averaged angular momentum

(main panel) and angular velocity (inset). As shown in Fig. 4.7(b, d, f), both angular momentum

and velocity show similar variation for the small gap-width (dw = 10) but it changes completely

for large gap-width (dw = 75) as shown in Fig. 4.7(a, c, e). Angular velocity shown in the insets

of Fig. 4.7 decreases with increase in r̃ which is expected as the angular velocity will be higher

near the inner wall (rotating) and lower at the outer wall (stationary), whereas angular mo-

mentum depends on both coefficient of restitution and the rotation rate. Angular momentum is

nearly independent of en for small gap-widths as there are few particle-particle collisions com-

pared to particle-wall collisions. Coming back to large gap-width, angular momentum decreases

with increasing r̃ for low ωi, as shown in Fig. 4.7(c, e), due to rapid decrease of velocity (see

Fig. 4.6(c, e)) compared to r̃. The constant density for low rotation rates throughout r̃ shown

in Fig. 4.2(c, e) does not not affect l(r̃). Similarly for higher dissipation (en = 0.6), the increase

in density and r̃ is much higher compared to decrease in Vθ which results in a profile as shown

in Fig. 4.7(a) similar to density.
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Figure 4.7: Radial variation of angular momentum and angular velocity (inset) for parameter
values same as in Fig. 4.2.

Granular temperature

Figure 4.8(a− f) shows the radial variation of granular temperature. The temperature is lower

for dissipative systems as seen in Fig. 4.8(a) due to the continuous loss of energy on collisions,

which is not prominent in small gap limit [.i.e. at Kn ∼ O(1)] as shown in Fig. 4.8(b). Also,
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a small addition of inelasticity into the system (en = 0.99) does not not affect the temperature

due to relatively less particle-particle collisions as evident from the Fig. 4.8(c) when compared

to the elastic case in Fig. 4.8(e).
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Figure 4.8: Radial variation of granular temperature for parameter values as in fig. 4.2.

The granular temperature appears to be constant for lower values of rotation rates (ωi =

0.05, 0.1) for non-dissipative and moderately dissipative system due to the homogeneous dis-

tribution of particles as shown in Fig. 4.2(c, e), but on observing individual profiles for high
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rotation rates at low dissipation as in Fig. 4.8(c) and (e), the temperature decreases with in-

creasing r̃ which is due to large number of particle-particle collisions. The density in Fig. 4.3(c)

and (e) increases with radius. This increase in number of particles locally causes a decrease

in temperature. The rarefied regime will have a higher temperature which can be seen near

the inner cylinder. Similar inferences can be drawn for highly dissipative systems as shown in

Fig. 4.8(a)

4.1.2 Hydrodynamic profiles (νav = 0.1)

dw = 75, N = 3788 dw = 10, N = 780

en ωi Kn Kn

0.6

0.05 0.0000154 0.07
0.1 0.000053 0.067
0.5 0.000079 0.053
1 0.000121 0.53

0.99

0.01 0.031 0.297
0.1 0.031 0.33
0.5 0.0254 0.375
1 0.022 0.395

1

0.01 0.031 0.296
0.1 0.031 0.332
0.5 0.0256 0.376
1 0.0226 0.396

Table 4.2: Parameters used in simulations to vary the mean Knudsen number for mean density
νav = 0.1, Ro = 100 (dw = Ro −Ri) and ωo = 0

In this section, an average density of νav = 0.1 is simulated with inner cylinder rotating at

different speeds ωi = 0.05 − 1. The rest of the parameters has been fixed (see table 4.2). The

number of partticles (N) simulated varies from 3788 for the largest gap-width (dw = 75) to 780

for the smallest gap-width (dw = 10) considered in this study.

Density

High density system will have a different mechanism as dissipation will become more dominant.

This is visible from F Fig. 4.9(b), where a small bump in density near the centre is present for

a small gap-width system, which was absent for low mean density (νav = 0.05) in the previous

section. This maxima is due to dissipation induced clustering which usually occurs due to

frequent interaction of particles with each other. The rarefaction effects were more prominent

in the lower density case, whereas, dissipation effects starts to dominate at high and moderate

densities. Fig. 4.9(b) shows that the density variation becomes more significant with further

increase in mean density. In general, the steady-state results show the two distinct regions as

expected: a high-velocity and dilute-gas-like kinetic region near the moving wall and a high-

solid-fraction liquid-like frictional flow regime away from the moving wall as shown in snapshots

in Fig. 4.10.
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Figure 4.9: Radial variation of density for parameter values outer radius Ro = 100, gap-width
(a, c, e) dw = 75, (b, d, f) dw = 10, mean density νav = 0.1 and (a, b) en = 0.6, (c, d) en = 0.99
and (e, f) en = 1.

Figure 4.10 shows different phases of cluster in 2D annular flow with inner cylinder rotating

and fixed outer cylinder. The snapshots are for νav = 0.1, ωi = 0.1 and en = 0.6, moving in

an anti-clockwise direction. The initial phase is the formation stage, where all the particles

agglomerate to form a single cluster (multiple small clusters → single large cluster)as shown in

Fig 4.10(a). The second stage is where they move as a single cluster. At certain instant, the

cluster become extremely compact to move as a single structure and no longer able to sustain
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the momentum and energy. The stretching up of the cluster takes place at this stage as seen in

Fig. 4.10(c) which is followed by breaking again as shown in Fig. 4.10(d). The cluster velocity

is observed to decrease with increase in the particle number. With high density, the cluster

gets more bulky and less agile and high particle-particle interaction makes it slower compared

to νav = 0.05.

(a) t = 38.38 (b) t = 584.68

(c) t = 778.79 (d) t = 863.59

Figure 4.10: Snapshots showing different stages of cluster for an inelastic system - stretching(b, c),
compression(d) and breaking(a). Parameter values are same as in Fig. 4.9 for ωi = 0.1 and
en = 0.6.

Typical snapshots for elastic case is also shown in Fig. 4.11. The homogeneity in particle

distribution is trivial and can be seen from Fig. 4.9(e, f). The maxima at the outer boundary at

higher ωi is again due to the increase in centrifugal force acting on each particle which diffuses

due to paticle-particle collision.
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(a) t = 18.43 (b) t = 34150.73

Figure 4.11: Snapshots showing particle positions at different time for an elastic system. Pa-
rameter values are same as in Fig. 4.9 for ωi = 0.1 and en = 1.0.
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Figure 4.12: Radial variation of azimuthal velocity. Parameter values are same as in Fig. 4.9.

The velocity profile is similar to irrotational vortex flow (Vθ ∼ 1
r ), for an unbounded liquid with

inner cylinder rotating. In the narrow gap limit, the profiles falls linearly radially approaching

plane Couette flow and is evident from the Fig. 4.12(e, f). The velocity profile in Fig. 4.12(a)

for higher ωi becomes almost constant within a certain range, where the clustering is taking

place. The radial range of constant velocity is larger compared to the low density case in the

previous section. The velocity drops after r̃ ∼ 0.9 and approaches the value of slip velocity at

the wall. Another important observation is the coinciding of velocity profiles for small gap limit

as can be seen in Fig. 4.11(b, d). The velocities are linear for small gap-widths, showing that the

rarefaction effects are not prominent at this Knudsen number. The Kn for all these cases are

lower compared to low density simulated in the previous section.
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Figure 4.13: Radial variation of angular momentum and angular velocity (inset) for parameter
values same as in Fig. 4.9.

Figure 4.13 shows the radial variation of angular momentum and angular velocity for νav =

0.1. The qualitative behavior of the both momentum and velocity are similar for small gap-width

except for en = 0.6 as shown in Fig. 4.13(b) where the dissipation effects are considerable. The

lower momentum near the outer wall is due to lower velocity and low density region near the

outer wall for ωi = 0.05 &0.1. Even though the density near the outer wall for ωi = 0.5 &1 is

higher than the bulk, the velocities are small that the system ends up having a lower angular

momentum near the outer wall. Also, the angular momentum in (a − f) for lower rotation

rates ωi = 0.05 &0.1 is higher near the inner wall compared to high rotation rates, due to the

combined effect of both high density region (see Fig. 4.9) and high angular velocity (see inset

Fig. 4.13) near the inner wall which results in a higher angular momentum near the inner wall

for ωi = 0.05 & 0.1.

Granular temperature

Figure 4.14(a−f) shows the radial variation of granular temperature. The temperature is lower

for dissipative systems as in Fig. 4.6(a) due to continuous loss of energy on collisions, which is

not prominent in small gap-width as in Fig. 4.14(b). Also, even a small addition of inelasticity

into the system (en = 0.99) does not affect the temperature of the system due to relatively less

particle-particle collisions as evident from Fig. 4.14(d, f).
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Figure 4.14: Radial variation of granular temperature. Parameter values are same as in Fig. 4.9.

Concentrating on the temperature for large gap-width and high ωi for moderately dissipative

system (en = 0.99), the inertial force pushes the particles to move towards the outer boundary.

This causes a build-up of particles and the resulting increased dissipation leads to lower temper-

ature as shown in Fig 4.15(d). The temperature shows linear decrease with radius except closer

to the inner boundary where rarefaction effects are dominant. At lower ωi, the particles accu-

mulate near the centre and cause an increase in the local density and a simultaneous decrease

in temperature as shown in Fig. 4.15(b).
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Figure 4.15: Radial variation of density for (en = 0.99) and parameter values same as in Fig. 4.9,
(a) ωi = 0.05 and (c) ωi = 1.0. Radial temperature profiles for en = 0.99 and parameter values
same as in Fig. 4.9 for (b) ωi = 0.05 and (d) ωi = 1.0.

4.1.3 Hydrodynamic profiles (νav = 0.4)

In this section, an average density of νav = 0.4 is simulated with inner cylinder rotating at

different speed ωi = 0.05 − 1. The rest of the parameters has been fixed (see table 4.3). The

number of partticles (N) simulated varies from 15072 for the largest gap-width (dw = 75) to

3036 for the smallest gap-width (dw = 10) considered in this study.

Density

The clustering effect becomes more prominent for the highest density case shown here. Even for

the small gap-width at low rotation rate, a maxima in density can be observed in Fig. 4.16(b),

which wasn’t significant in the previous two cases (νav = 0.05 and νav = 0.1). The dissipation

effects are driving the system for the small gap-width, even though wall-particle collisions are

non-negligible (about 5-8%). At higher ωi, centrifugal forces overcome the dissipative forces and

result in a density maxima near the outer cylinder. For large gap-width, the density maxima for

the low rotation rate occurs near the centre because the inertial force is not sufficient enough to

move the particles towards the outer cylinder, which can be shown in Fig. 4.16(c) for ωi = 0.05.

Even a small amount of dissipation into the system as shown in Fig. 4.16(c) lead to a clustering

of particles, thereby showing a density maxima near the centre. For small gap-widths as in
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dw = 75, N = 15072 dw = 10, N = 3036

en ωi Kn Kn

0.6

0.05 8.21× 10−7 0.0694
0.1 1.01× 10−6 0.067
0.5 1.91× 10−6 0.058
1 2.85× 10−6 0.054

0.99

0.05 0.0035 0.049
0.1 0.00375 0.061
0.5 0.0031 0.071
1.0 0.0023 0.075

1

0.05 0.0041 0.048
0.1 0.0042 0.059
0.5 0.0035 0.071
1 0.0030 0.074

Table 4.3: Parameters used in simulations to vary the mean Knudsen number for mean density
νav = 0.4, Ro = 100(dw = Ro −Ri) and ωo = 0.

Fig. 4.16(d) and (f), the density peak occurs at the outer wall. Another important feature

is the shift of the density maximum towards the inner wall on increasing dissipation. This is

possibly due to the lower momentum of the gaseous region near the inner wall (see Fig. 4.25).

The momentum transferred from the inner wall to the cluster through the gaseous region is the

only source of energy for the cluster which is lower compared to the case where en = 0.99. This

is also seen from the granular temperature plots in Fig. 4.27 where the temperature near the

wall and the clustered region for en = 0.6 (see Fig. 4.27(a)) is much lower than the temperature

in Fig. 4.27(c).
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Figure 4.16: Radial variation of density for parameter values outer radius Ro = 100, gap-width
(a, c, e) dw = 75, (b, d, f) dw = 10, mean density νav = 0.4 and (a, b) en = 0.6, (c, d) en = 0.99
and (e, f) en = 1.

An interesting feature observed at high density (νav = 0.4) is the slow movement of the

cluster and the co-existence of a solid and a gas regime. A single cluster revolving slowly around

the innner cylinder is observed to behave like a solid as seen in snapshots of particle position in

Fig. 4.18 at different time for ωi = 0.1. This behaviour is also evident from the velocity profiles

which shows the tangential velocity approaching zero at r̃ = 0.2 in Fig. 4.25(a). This peculiar

property of driven granular particles to undergo transition from a liquid to a solid-like state has

also been observed recently by Peters et al. (2016) in a Taylor-Couette setup.

The centre-of-mass of all particles is defined as:

xcm =

∑N
i=1mixi
∑N

i=1mi

, ycm =

∑N
i=1miyi
∑N

i=1mi

. (4.3)

Figures 4.17(a) and (b) show the radial and azimuthal movement of the centre-of-mass over a

period of N × 40000 collisions respectively. The cartesian components in Eq. 4.3 are converted

to polar components by the following expressions.

rcm =
√

x2cm + y2cm, θcm = tan−1

(

ycm
xcm

)

(4.4)
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where rcm is non-dimensionalised by the diameter of the particle (dp). The continual increase

of rcm with time in Fig. 4.17(a) suggests that the particle distribution is not symmetric around

the azimuthal direction as it is evident from snapshots in Fig. 4.18.
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Figure 4.17: Temporal evolution of the centre-of-mass of the system in the (a) radial (rcm), (b)
azimuthal (θcm) direction for ωi = 0.1. Parameter values are same as in Fig. 4.16 with en = 0.6.

Figure 4.18 shows the temporal evolution of the system at νav = 0.4 with ωi = 0.1 and

en = 0.6. No intermediate stages are observed as seen in the previous section for νav = 0.05 and

0.1. One single large cluster at different time intervals moves slowly due to the centrifugal force

imparted by the inner cylinder. Two regions of granular gas are observed near the outer and

inner walls, which may be responsible to impart the momentum gained from the rotation to the

giant inner cluster.

(a) t = 4.28 (b) t = 20.59
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(c) t = 40.13 (d) t = 62.86

Figure 4.18: Snapshots showing different stages of cluster co-existence of gas + solid at different
times marked in Fig. 4.17(a) (red points). Parameters are same as in Fig. 4.16 for ωi = 0.1,
dw = 75 and en = 0.6.

A further slowing down has been observed for higher rotation rate (ωi = 1) in Fig. 4.19(a).

While Fig. 4.17(a) indicates a continual movement of the cluster towards the outer wall, Fig. 4.19(a)

at ωi = 1.0 indicates that the centre-of-mass of the cluster seems to have reached a quasi-steady

state (in terms of its radial position) after t = 150. The slow inner and outer movement of the

cluster is expected as the centrifugal force is smaller in Fig. 4.17(a) compared to Fig. 4.19(a).

The four snapshots in Fig. 4.20, for times marked by red points in Fig. 4.19(a), depict the motion

of the cluster towards the outer disk due to high centrifugal force followed by motion towards

the inner disk. The collective inner motion is due to the gain of thermal energy from the outer

wall (thermal walls) after losing all the momentum from collisions near the outer boundary.

This gain of energy allows the cluster to move inwards followed by a solid-like behaviour near

the inner wall.
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Figure 4.19: Temporal evolution of the centre-of-mass of the system in the (a) radial (rcm), (b)
azimuthal (θcm) direction for ωi = 1. Parameter values are same as in Fig. 4.16 with en = 0.6.



76 Chapter 4. Taylor-Couette Flow in Two-dimensions

(a) t = 11.63 (b) t = 100.24

(c) t = 200.48 (d) t = 300.15

Figure 4.20: Snapshots showing different stages of cluster at different times marked in
Fig. 4.19(a) (red points). Parameters are same as in Fig. 4.19.

A similar analysis for en = 0.99 shows that the cluster has reached a steady state and

the centre-of-mass fluctuates around a mean value as shown in Fig. 4.21(a) and Fig. 4.23(a)

Figure 4.22 shows typical snapshots of particles for en = 0.99 and low centrifugal force (ωi = 0.1).

A clear dense region near the centre of the annulus can be seen throughout the simulation which

can also be seen in the density profiles in Fig. 4.16(c) for ωi = 0.1.
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Figure 4.21: Temporal evolution of the centre-of-mass of the system in the (a) radial (rcm), (b)
azimuthal (θcm) direction for ωi = 0.1. Parameter values are same as in Fig. 4.16 with en = 0.99
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(a) t = 9.18 (b) t = 4623.23

(c) t = 6935.66 (d) t = 9212.44

Figure 4.22: Snapshots showing different stages of cluster at different times. Parameters are
same as in Fig. 4.16 for ωi = 0.1 and en = 0.99.

For higher rotation rate (ωi = 1), the cluster stays near the outer wall. Typical snapshots

at different times are shown in Fig. 4.24. Clearly a dense clustered region is seen near the outer

wall which is due to the combined effect of both dissipation and higher centrifugal force.
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Figure 4.23: Temporal evolution of the centre-of-mass of the system in the (a) radial (rcm), (b)
azimuthal (θcm) direction for ωi = 1. Parameter values are same as in Fig. 4.16 with en = 0.99
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(a) t = 4.39 (b) t = 8440.60

(c) t = 12656.15 (d) t = 16882.43

Figure 4.24: Snapshots showing different stages of cluster at different times. Parameters are
same as in Fig. 4.16 for ωi = 1.0 and en = 0.99.
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Figure 4.25: Radial variation of azimuthal velocity for parameter values same as in Fig. 4.16.

The azimuthal velocity profiles flattens out and approach zero towards the outer cylinder for

the high density case as shown in Fig. 4.25(a). All the profiles start to coincide with each other

with the increase in en at small gap-widths. The centrifugal force become less dominant at

higher densities for dw = 10, which is due to low inertial force required to move the particles

towards the outer wall. The profiles also fall on top of each other for large gap-width, but it

is more prominent for small gap-widths. The apparent negative slip velocity in Fig. 4.25(a) for

low rotation rate (ωi = 0.05) is due to the small number of particles near the outer walls and is

because of the inability to average out fluctuations near the walls. This can also be seen from

the snapshots taken at different times in Fig. 4.18.

Figure 4.26 shows the radial variation of angular momentum and angular velocity for high

density system (νav = 0.4). The linear variation of angular momentum for small gap-width

as shown in Fig. 4.7(b) and Fig. 4.13(b) is replaced by non-monotonic variation in angular

momentum shown in Fig. 4.26(b) due to higher contribution of dissipation even at low gap-width.

The prominence of dissipation can be seen in FIg. 4.26(c) where the profiles are completely

different from Fig 4.26(e) which was not seen in the earlier cases for νav = 0.05 and 0.1.
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Figure 4.26: Radial variation of angular momentum and angular velocity (inset) for parameter
values same as in Fig. 4.16.

Granular temperature

Figure 4.27(a − f) shows the radial variation of granular temperature. We will concentrate on

the case of low dissipative system (en = 0.99). The temperature profiles show a bimodal nature

in the case of mild dissipation in the system as shown in Fig. 4.27(c) which is due to the density
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maxima near the centre and minima at the walls as shown in Fig. 4.16(c).
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Figure 4.27: Radial variation of granular temperature for parameter values same as in Fig. 4.16.

The central region of the Couette-gap consists of a particle-rich zone (see Fig. 4.22) which

leads to more collisions and hence a lower temperature, whereas the region near the walls is

particle-depleted and this leads to a higher temperature near the walls as shown by green and

blue lines in Fig. 4.27(c). The opposite is true for higher rotation rates where the near-wall

(outer cylinder, see Fig. 4.24) region has higher number of particles and more collisions lead to
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a lower temperature as shown by red and cyan lines in Fig. 4.27(c). The same trend can also

be seen in Fig. 4.27(a) but the fluctuations are higher for highly dissipative systems. It is alse

noted that this effect is seen only for the high density system (νav = 0.4).

A better understanding of the effect of inelasticity on the system can be gained from this

case(νav = 0.4). The density profile for en = 0.99 shows a peak near the centre of the Couette

gap for low centrifugal force (ωi = 0.05) as shown in Fig 4.28(a). This density peak along with

loss in energy lead to a lower temperature near the centre of the Couette gap which is reflected

as a temperature minimum in Fig. 4.28(b). Increasing the rotational speed to ωi = 1.0 pushes

the density-peak towards the outer-wall, see Fig. 4.28(c), with a corresponding temperature-

minimum as seen in Fig. 4.28(d).
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Figure 4.28: Radial variation of density for (en = 0.99) and parameter values same as in Fig. 4.16,
(a) ωi = 0.05 and (c) ωi = 1.0. Radial granular temperature profiles for en = 0.99 and parameter
values same as in Fig. 4.16 for (b) ωi = 0.05 and (d) ωi = 1.0.

4.2 Particle Overlap and Tolerance

An important aspect that needs to be discussed is the overlap of particles and appropriate

selection of the tolerance value (drtol = (d−~r12)/d) to detect particle collisions. This analysis is

similar to the what has already been done in Chapter 3(§3.4.1). The parameter values considered

are same as in Fig. 4.16 for ωi = 0.1 and en = 0.6. Figure 4.29(a) shows the variation of collision

time with collision number and Fig. 4.29(b) shows the probability distribution of collision time.
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The value of spatial tolerance has been chosen as drtol = 10−12 to avoid overlapping of particles.

The value of temporal tolerance (dttol = drtol/dwωi) calculated is 10−14. This choice of the

temporal tolerance is appropriate as it falls below the most probable collision time (tcolmp)

shown in Fig. 4.29(a). The range of tcolmp is 10−8 − 200 and note that the collision time

is normalized by the standard deviation σcol which has a value of 2.3 × 10−3 in order to get

the normalised distribution. Therefore, the true range of the most probable collision time is

10−11 − 0.1. This also confirms that the value of dttol is well below the lower bound of the most

probable collision time (10−11).
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Figure 4.29: (a) Variation of collision time with number of coliisions and (b) Probability distri-
bution of collision times for parameters as in Fig. 4.16 using variable grid size. Time is scaled
with 1/(ωi).

Figure 4.30(a) shows the effect of overlapping of particles on density profiles for different

values of tolerance. A clear distinction can be seen between the density profiles with and

without tolerance. The snapshots for two cases are shown in Fig. 4.30(b, c).
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(b) t = 972.53 (c) t = 62.86

Figure 4.30: (a) Effect of overlapping of particles on the density profiles. Typical snapshots for
parameter values as in Fig. 4.16 for ωi = 0.1, νav = 0.4, dw = 75 and en = 0.6, (b) with overlap
and (c) without overlap.

4.3 Summary and Discussion

In this chapter, the effects of varying different parameters for 2D granular Taylor-Couette flow

was discussed with the roles of rarefaction, inertia and dissipation being the driving forces.

The inner cylinder rotation leads to the formation of structures which show different behaviour

with varying νav and ωi. Rarefaction was observed to domainate the dynamics for low density

systems (νav = 0.05, 0.1) in the large gap limit. This is mainly due to large Knudsen effects,

whereas at high densities (νav = 0.4) dissipation appears to take control of the dynamics. Both

effects play their respective roles till the centrifugal force starts to push the particles towards the

outer wall and the density maximum (of azimuthal-averaged density) starts to move towards the

outer wall with an increase in ωi. Another important observation was the occurence of solid-gas

co-existence for a highly dissipative (en = 0.6) system. The gaseous region is mainly confined

near the walls surrounding a massive dense structure around the centre of the annulus.

For an incompressible fluid, the Rayleigh criterion for stable flow (Chandrasekhar 1960;

Dubrulle et al. 2005)
d

dr
(l(r̃)) > 0, (4.5)

suggest that the specific angular momentum (l(r̃)) must increase radially. For the case with

radial granular temperature gradient, the Rayleigh criterion for stability is modified into (Chen

& Kuo 1990):

ωi

r̃

d

dr̃
(l(r̃))− βr̃ω2

i

dT

dr̃
> 0 (4.6)

where β is the thermal expansion coefficient. It must be noted that both Eqns.(4.5) & (4.6) are

valid for an incompressible fluid in the inviscid limit. For the present case of compressible TCF

with (i) rarefaction (Kn > 0), (ii) temperature gradient and (iii) density gradient, the original

Rayleigh criterion is likely to be further modified. Moreover, it is known that rarefaction (Kn ∼
O(1)) inhibits well-known fluid instabilities. The Rayleigh criterion is shown in a graphical

representation in Fig. 4.31. The linear line (dashed line) ωi

ωo
=
(

Ro

Ri

)2
represents Rayleigh criterion
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for inviscid and incompressible fluid and the non-monotonic variation (solid line) represents the

neutral stability curve for viscous incompressible fluid given by Taylor (1923).

Unstable

stable

Rayleigh criterion

inviscid and incompressible

viscous and incompressible

Figure 4.31: Pictorial representation of Rayleigh stability criterion taken from Taylor (1923).

The angular momentum profiles for granular TCF (Fig. 4.7, 4.13 & 4.26) does not follow

Rayleigh criterion and additional theoretical anaylsis is necessary to accomodate compressibility,

density and temperature effects into the hydrodynamic equations to make any comment on the

stability of the granular TCF based on the profiles of angular momentum.

In the next chapter, the formation of vortices in a 3D Taylor-Couette system is analysed

with the main focus being the effects of end-walls and different boundary conditions on the

transient dynamics uof such vortical patterns over a range of normal restitution coefficient and

mean density. The effect of inelastic dissipation on the formation of Taylor vortices will be the

highlight of the next chapter.





Chapter 5

Taylor-Couette Flow in

Three-dimensions

Ample work has been done so far experimentally, analytically and numerically to study various

aspects of Taylor-Couette flow for fluids and the existing literature have already been highlighted

in Chapter 3. There have been very few experimental studies for granular flows in Taylor-Couette

setup (Conway et al. 2004; Mehandia et al. 2012; Peters et al. 2016; Tardos et al. 1998), but has

showed a lot of potential to challenge the existing theories on both particle and fluid flows. The

experimental works on granular Taylor-Couette flows has gathered attention after the work by

Conway et al. (2004) in a fluidised bed. Evolution of axisymmetric structures and patterns were

observed with increase in shear rate. The system evolves from a single band to four bands, and

finally to seven bands over a period of time and several other features common to Taylor vortex

instability were found. A rheometric anomaly of dense granular TC-system was discovered by

Mehandia et al. (2012) where they found that the stress profile varies differently from that of

fluids. They argued that the anomalous stress profile is due to an anisotropic fabric caused by

the combined action of gravity and shear. More recently, Krishnaraj & Nott (2016) seem to have

resolved the above stress anomaly via soft-particle simulations. Murdoch et al. (2013) discusses

the effect of gravity and secondary flows which occurs in the form of radial flow towards the

inner cylinder; this radial flow was absent for zero gravity system. The absence of radial flow is

important in the present study since only the effect of centrifugal forces can be studied in the

absence of gravity. It has been shown [Murdoch et al. (2013)] that friction plays a deciding role

in whether secondary flows occur in TC flow geometry. They concluded that the gravity acts as

an amplifier for frictional effects.

Cheng et al. (2006) investigated the evolution of granular shear flow as a function of height

in a split-bottom Couette cell (van Hecke & van de Meent 2004). They observed that radial

and axial shear profiles are qualitatively different. While the radial extent is wide and increases

with height, the axial width remains narrow and fixed like a traditional shear band. Tardos

et al. (1998) concluded that the normal force compressing the powder is not constant but varies

significantly with layer depth. Specifically, for a variety of fine powders with different physical

properties such as bulk density and internal friction angle, normal and shear stress increase

linearly with depth in a shearing column. It was also found that for the fine powders used in

their experiment, the torque varied linearly with the upward flowing gas velocity to the point of

minimum fluidization where the torque becomes negligibly small and torques were practically

independent on the rotation rate, i.e., shear rate. Bocquet et al. (2001) analyzed the main

features of granular shear flow through experimental measurements in a Couette geometry and

a comparison to a locally Newtonian, continuum model of granular flow. The model was based

on earlier hydrodynamic models, adjusted to take into account the experimentally observed

87
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coupling between fluctuations in particle motion and mean-flow properties. Experimentally, the

local velocity fluctuations are found to decrease more slowly with distance from the shear surface

than the velocity. The flow was confined to a small shear band, fluctuations decay approximately

exponentially away from the sheared wall, and the shear stress was approximately independent

of the shear velocity.

L

Figure 5.1: Simulation geometry (TC) with granular particles in the annular region

Figure 5.1 shows the Taylor-Couette setup in three dimensions with granular particles in

between the annular region. The absence of gravity inhibits the formation of secondary structures

in this flow, such as those found by Tardos et al. (1998), Cheng et al. (2006), Mehandia et al.

(2012) and Murdoch et al. (2013). Hence the effects of walls and other parameters in the study

will help to elucidate the onset of pattern formation and other complicated structures observed

in this TC-geometry. In contrast to previous chapter, this chapter deals with the consequences

of adding an additional direction (z) to the flow. Two types of boundary conditions along the

axial (z) direction are used: (i) reflecting and (ii) periodic boundary conditions at end-walls.

The presence of stationary end-walls with reflecting boundary conditions in the axial direction

avoids creating a secondary source of shear that would distort the vortices, which is usually

unavoidable in experiments [Hirshfeld & Rapaport (1998)]. The periodic boundary condition

is an essential tool to avoid any interaction of the flow with the end walls; the setup can be

assumed to be infinitely long in the z-direction to suppress any end-wall effect. Both types of

boundary conditions have been used to understand the dynamics of Taylor vortices in a recent

paper which focuses on the development of wavy-vortices using molecular dynamics simulations

[Trevelyan & Zaki (2016)].

This is the first study to understand pattern formation in Taylor-Couette setup using hard

spherical particles, and its dependence on the end walls. The difficulty to simulate high density

system using hard sphere simulations has affected the present study, but an attempt has been

made to explain many critical phenomena observed. The end walls appear to have a significant

effect for low L/dw where L is the length of the cylinder and dw is the gap-width (Ro − Ri),

in the nucleation of primary and secondary structures. The effect of restituion coefficient on

Taylor-vortices is discussed in the later part of this chapter.
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5.1 Taylor-Couette Flow of Elastic Particles: Onset of Taylor

Vortices

A system of smooth hard spheres is simulated in an annular geometry with the inner wall rotating

at a certain rotation rate, a necesarry condition for the flow to be unstable, is considered Taylor

(1923). The transfer of momentum takes place due to streaming and collision in the absence of

gravity. The system attains a statistical steady state when the average kinetic energy reaches a

constant value or fluctuates about a mean value, see Fig. 5.2. The gain in energy due to inertial

centrifugal force and loss due to the presence of thermal- walls (which act as a source or a sink)

reaches a balance after some time and the system attains a statistical steady state. Figure 5.2

shows the temporal variation of the energy, E(t) =
∑N

i=1(c
2
xi + c2yi + c2zi)/2N , per particle for

en = 1.
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Figure 5.2: Evolution of total kinetic energy versus time when the system reaches a statistical
steady state for reflecting-type boundary condition. Parameter values are dw = 25, N = 47295
(one quadrant considered), nbinr = 15, nbinz = 80, Ro = 75, L/dw = 4, r̃ = (r − Ri)/dw,
νav = 0.2, en = 1.0 and ωi = 0.1

The system remains homogeneous in the azimuthal direction but becomes inhomogeneous in

both axial and radial direction (Hirshfeld & Rapaport 1998) due to the formation of vortices.

This is true if Taylor number is less than the critical Taylor number for the onset of wavy

vortices. The homogeneity along the azimuthal direction helps in reducing the computational

time by concentrating only in one quadrant of the geometry since the number of particles required

for the simulations reduces to 1/4 of the actual number. Special periodic boundaries are used to

account for the effect of particles in the absent quadrants as discussed by Hirshfeld & Rapaport

(1998). Whenever a particle exits out of the slice/quadrant, it is returned via the perpendicular

boundary with its position and velocity components suitably interchanged and sign-adjusted. All

the characteristic quantites have been averaged over a large number of snapshots in θ direction.

5.1.1 Periodic axial boundary conditions

The implementation of periodic boundary conditions is trivial and has been explained in many

classical texts on MD simulations and other numerical techniques. If a particle moves out of the
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system, an image of the same particle enters into the system from the opposite end at the same

value of (r, θ). The new z position will be

zi = (zi + 2L)%L,

where % represents the mathematical notation for modulo or the remainder, as shown in Fig. 5.3.

A particle with axial velocity cz1 leaves the system at z = 0 and re-enters into the system at

z = L with same axial velocity; its radial and azimuthal velocities remain same too. The same

procedure is applied to all particles like the particle with axial velocity cz2 leaving at z = L and

coming back at z = 0.

Figure 5.3: Periodic boundary conditions, replica or image particle is represented by dotted green
and actual particle by solid green

Figure 5.4 shows the temporal evolution of Taylor vortices with parameters dw = 25, Ro = 50,

L/dw = 2, νav = 0.2, en = 1.0 and ωi = 0.1. The averaging of the hydrodynamic profiles are

carried out over N × 5000 collisions after the system attains a steady state at around N × 3000

collisions and snapshots are taken after every N×20 collisions starting from N×3000 collisions.

The vortices shown in Fig. 5.4 is obtained by averaging the velocity snapshots temporally over

N × 7500 collisions with snapshot taken after every N × 20 collisisons to get the velocity vector

plot of vortices. The code ends at N × 8000 collisions. Note that the time at which the first

snapshot (denoted by tsample) is taken to calculate velocity vectors is N × 500 whereas time for

other hydrodynamic properties(density, granular temperature, velocities) is N × 3000, though

for both cases the system has reached a steady state.
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For calculating velocity vectors the reference time has been shifted to a different scale and is

represented in terms of τ = t− tsample where tsample represents the time at which the code starts

calculating the averages (after N ×500 collisions). The velocity vectors at a particular time τ

is calculated by averaging velocities over all the snapshots from 0 - τ in the modified time scale

which is represented by:

u(r̃, z, τ) =
1

2πτ

∫ 2π

0

∫ τ

0
u(r̃, θ, z, t)dtdθ, (5.1)

where t denotes the actual time of the simulation, τ = t − tsample represents the modified

time scale and u(r̃, z, τ) represents the azimuthally averaged velocity. Note that this definition

does not give the instantaneous picture of the vortices but the time taken to have a fully

developed vortex as given in Fig. 5.4. The entire setup is divided into an array of bins of size

wr = (Ro − Ri)/nbinr in the radial direction and wz = L/nbinz in the axial direction, where

wr and wz are widths of the bins in the radial and axial direction, respectively; nbinr and nbinz

are number of bins in the radial and axial direction respectively. The details of bin size will be

mentioned from here after for averaging details. Note that only one quadrant is considered for

all the results with elastic collisions in order to reduce the computation cost.
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Figure 5.4: Snapshots showing different stages of vortex formation averaged using Eq. 5.1 for
periodic boundary conditions in the axial direction (two vortices). Parameter values are dw =
25, N = 47295 (one quadrant considered), nbinr = 15, nbinz = 35, Ro = 75, L/dw = 2,
r̃ = (r −Ri)/dw, νav = 0.2, en = 1.0 and ωi = 0.1

Figure 5.5 shows the final fully developed vortices for different aspect ratio ( L
dw

= 2, 4, 5) at

the end of each simulation averaged over multiple number of snapshots. Even number of vortices

are formed for all the cases simulated in this study, with the number of vortex pairs increasing

with increase in length of the system.
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Figure 5.5: Fully developed vortices for periodic boundary conditions in the axial direction for
(a) L/dw = 2 (two vortices), (b) L/dw = 4 (four vortices) and (c) L/dw = 5 (six vortices).
Parameter values are dw = 25, Ro = 75, r̃ = (r − Ri)/dw, νav = 0.2, en = 1.0, ωi = 0.1,
nbinr = 15 for (a) nbinz = 35, (b) nbinz = 80 and (c) nbinz = 100

5.1.2 Reflecting axial boundary conditions

The reflecting-type boundary conditions are implemented such that when the particles hit the

end walls, they are reflected back into the system with no loss in energy and with the same

magnitude of velocity. The velocity components after a collision changes as given by eqns. (5.2,

5.3, 5.4), where the components with prime represents velocity after collision.

~cx
′ = ~cx (5.2)

~cy
′ = ~cy (5.3)

~cz
′ = −~cz (5.4)

Figure 5.6 shows a schematic representation of the reflecting boundary at the end walls with

particles being pushed back into the system. As mentioned before, this boundary condition is
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more realistic compared to periodic boundaries, and can be realized in experiments.

Figure 5.6: Reflecting boundary conditions, replica or image particle dotted green and actual
particle solid green

Figure 5.7 shows fully developed vortices formed with the inner cylinder rotating at ωi = 0.1.

Equal number of vortices is formed for both types of boundary conditions with the same set of

parameter values as given in Fig. 5.5. The increase in the length of the cylinder to 125 adds

another pair of vortex to the flow as shown in Fig. 5.7(c), with negligible change in the dynamics

of their formation. This is the longest cylinder considered in the present study and the effect of

the inelasticity present in the system is discussed with L/dw = 4 in section 5.2 and the rest of

the parameters are kept same.
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Figure 5.7: Fully developed vortices for reflecting-type boundary conditions in the axial direction
for (a) L/dw = 2 (two vortices), (b) L/dw = 4 (four vortices) and (c) L/dw = 5 (six vortices).
Parameter values are dw = 25, Ro = 75, r̃ = (r − Ri)/dw, νav = 0.2, en = 1.0, ωi = 0.1,
nbinr = 15 for (a) nbinz = 35, (b) nbinz = 80 and (c) nbinz = 100

Figure 5.8 shows the hydrodynamic profiles for the set of parameters of Fig. 5.7(a). The

density variation being linear in radial and non-monotonic in axial, as shown in Fig. 5.8(a) and

(b) respectively. With density varying in both radial and axial direction, compressibilty effects

are important and therefore, cannot be neglected. The positive peak of radial velocity at the

centre can also be seen from Fig. 5.7(a) where all the velocity vectors are pointing towards the

outer direction. The axial velocity in Fig. 5.8(c) also shows a periodic variation, approaching zero

slip velocity at the walls. The azimuthal velocity in Fig. 5.8(e) decreases with r̃ and approaches

the slip velocity at the outer wall. The radial velocity in Fig. 5.8(h) is symmetric about the

cylinder’s centreline and shows a maxima at the centre. Temperature follows a completely

opposite behavior to that of density as shown in Fig. 5.8(c, d) whereas axial velocity undergoes

a transition from particles being moving in the downward direction to moving in the upward

direction at r̃ = 0.5 as shown in Fig. 5.8(i).
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Figure 5.8: Hydrodynamic profiles along the radial (a, c, e, g, i) and axial direction (b, d, f, h, j).
Parameter values are same as in Fig. 5.7(a)

Figure 5.9 shows the mean profiles for the same set of paramters as in Fig. 5.7(b). The

negative radial velocity at the centre in Fig. 5.9(h) can be seen from fig 5.7(b) with the flow

being in the inward direction. The radial density profile does not show any change in trend with

the change in the length of the cylinders, compared to that in Fig. 5.8(a). Also the temperature

profile in Fig. 5.9(d) is opposite in trend to the density profile, though both are periodic in

nature. The radial velocity profile in the radial direction in Fig. 5.9(g) is mainly dominated

by the particles moving towards the outer wall with a region of particles near the innner wall

flowing inwards. The opposite is observed for axial velocity in Fig. 5.9(i) where the majority

of the particles along the radial direction are flowing in the downward direction. There is not

much difference in the hydrodynamic profiles with increase in length qualitatively. The periodic

nature exists in the axial direction whereas the radial profiles remain the same.
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Figure 5.9: Hydrodynamic profiles along the radial (a, c, e, g, i) and axial direction (b, d, f, h, j).
Parameter values are same as in Fig. 5.7(b)

The contour plots of density and granular temperature in Fig. 5.10 will give a better picture

of the localised bands formed in the flow. The plots shows the final fully developed profile

averaged over N × 5000 collisions and the snapshots are taken after every N × 20 collisions.

The density appears to be higher near the outer cylinder and vary sinusoidally in z near the

radial centre. The behaviour of density profile follows a different trend near the outer and inner

wall with minimal variation near the former and two round shaped peaks near the latter. A

completely opposite behaviour is observed for temperature with particles having more energy

near the inner cylinder and lesser energy near the outer wall.
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Figure 5.10: Contour plots of (a) density (b) granular temperature in z and r̃ direction. Param-
eter values are same as in Fig. 5.7(b)

Figure 5.11 shows the radial and axial variations of angular momentum for elastic particles

which are calculated using the following equations,

ω(r) = ω(r, θ, z)
〉

θ,z
=

〈

Vθ(r, θ, z)
〉

θ,z
/r, (5.5)

ω(z) = ω(r, θ, z)
〉

θ,r
=

〈

Vθ(r, θ, z)
〉

θ,r
/r, (5.6)

l(r) =
〈

l(r, θ, z)
〉

θ,z
=

〈

ν(r, θ, z)Vθ(r, θ, z)
〉

θ,z
r, (5.7)

l(z) =
〈

l(r, θ, z)
〉

θ,r
=

〈

ν(r, θ, z)Vθ(r, θ, z)
〉

θ,r
r (5.8)

where Vθ(r, θ, z) is the final temporally averaged azimuthal velocity, ν(r, θ, z) is the local density

and r is the radial distance from the centre. The angular momentum and angular velocity are

non-dimensionalised by (d2wωi) and ωi respectively. The angular momentum in Fig. 5.11(a) de-

creases linearly with radius, as the particles near the inner wall have a higher angular momentum

compared to the particles near the outer cylinder. The variations of both angular momentum

and angular velocity in Fig. 5.11(b) follows a similar trend as of azimuthal velocity.
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Figure 5.11: Profiles of (a) radial (b) axial angular momentum along with inset showing the
angular velocity. Parameter values are same as in Fig. 5.7(b)
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5.2 Taylor-Couette Flow of Inelastic Particles

As the flow is not expected to be homogeneous, due to inelastic nature of the particles, the

procedure of using only one quadrant is not valid and hence the entire system involving all the

four quadrants is to be simulated. A mean volume fraction of νav = 0.2 involves simulating about

360000 particles. Figure 5.12 shows the temporal variation of the energy, E(t) =
∑N

i=1(c
2
xi +

c2yi + c2zi)/2N , per particle for en = 0.99 (a) and en = 0.9 (b).
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Figure 5.12: Evolution of total kinetic energy versus time when the system reaches a statistical
steady state for (a) en = 0.99 and (b) en = 0.9 with reflecting axial boundary conditions.
Parameter values are dw = 25, N = 365748, nbinr = 15, nbinz = 80, Ro = 75, L/dw = 4,
r̃ = (r −Ri)/dw, νav = 0.2 and ωi = 0.1

The inelasticity in the system is defined by the coefficient of restitution (en), which is a

measure of average kinetic energy loss (∝ (1− e2n)) during a collision for smooth particles. The

normal velocity of a particle changes after a collision, whereas its tangential component remains

constant. A qualitative comparison will be made between the two cases for L/dw = 4 and a set

of values for the coefficient of restitution en ∈ (0.9, 0.99). Note that the number of particles is

four times higher in this section compared to the previous section §5.1 even though the mean

volume fraction is same. The present simulations have captured the effects of inelasticity on the

development of Taylor-vortices and hydrodynamic profiles. The velocity vectors are averaged in

the same way as given by Eq. 5.1. Note that the snapshots are taken after every N×20 collisions

and are averaged over a period of N × 2000 collisions. The averaging starts at N × 4000 and

ends at N × 6000 collisions. The time at which the first snapshot is taken for averaging is same

for both velocity vectors and other hydrodynamic profiles.

5.2.1 Periodic boundary conditions

Figure 5.13 shows the final picture of fully developed vortices with same parameters used in

Fig. 5.12 for en = 0.99 and en = 0.9. No discernible change can be seen for en = 0.99 when

compared to its counterpart in Fig. 5.7 (see panel b). Only the magnitude of velocity vectors

appear to be reduced in Fig. 5.13 which is more visible for en = 0.9 in Fig. 5.13(b).
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Figure 5.13: Fully developed vortices for reflecting boundary conditions in the axial direction
for (a) en = 0.99 and (b) en = 0.9. Parameter values are same as in Fig. 5.12 except for periodic
boundary conditions.

The pair of vortices in Fig. 5.13(b) appears to be tilted in the direction of the velocity vectors.

This tilt was absent for the elastic case considered in section 5.1.

5.2.2 Reflecting boundary conditions

Figure 5.14 shows fully developed vortices for dissipative system with reflecting-type boundary

conditions. No discernible difference is observed for en = 0.99 (see Fig. 5.14(a)), with different

types of axial wall-boundary conditions as can be seen by comparing Fig. 5.13 with Fig. 5.14.

Two pair of vortices, mirror images about the z-centreline, are formed for both cases.
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Figure 5.14: Fully developed vortices for reflecting boundary conditions in the axial direction
for (a) en = 0.99 and (b) en = 0.9. Parameter values are same as in Fig. 5.12.

An interesting feature observed in Fig. 5.14(b) is the formation of two pair of weaker vor-

tices indicating the effect of inelasticity in the system due to large number of particle-particle

collisions.

Figure 5.15 shows the contour plots of density and granular temperature for different values

of en. Clearly the temperature for en = 0.9 is lower near the outer wall as can also be seen from

the Fig. 5.15(e). The temperature is lower at the centre for en = 0.99 and en = 0.9 due to large

number of particle-particle collisions resulting in a loss of energy which is manifested in the form

of lower temperature. The higher temperature near the inner wall is due to small number of

particle-particle collisions in the rarefied region and gain in the energy from the inner wall.
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Figure 5.15: Contour plots of (a, c, e) density (b, d, f) granular temperature in z and r̃ direction
for(a, b) en = 1.0, (c, d) en = 0.99 and (e, f) en = 0.9. Parameter values are same as in Fig. 5.14

Figures(5.16-5.25) show the effects of inelasticity on hydrodynamic profiles. For the elastic

system in Fig. 5.16(a), the homogeneous distribution of the particles leads to a very low values of

Vr with a net inward flow near the vicinity of the inner wall. An addition of small inelasticity in

the system, Fig. 5.16(b), makes the system inhomogeneous. A comparatively larger magnitude

of Vr suggests that the flow is completely in the outward direction (+ve Vr) even in the vicinity

of the walls for both en = 0.99 and en = 0.9.
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Figure 5.16: Radial variation of radial velocity (averaged in the axial and azimuthal direction):
(a) en = 1.0, (b) en = 0.99 and (c)en = 0.9. Other parameter values are same as in Fig. 5.14.
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Figure 5.17: Density variation in radial direction (averaged in the azimuthal direction) at dif-
ferent z: (a) en = 1.0, (b) en = 0.99 and (c) en = 0.9. Other parameter values are same as in
Fig. 5.14.

Figure 5.17 shows the radial density variation at different z. The clustering in the radial

direction can be seen for en = 0.9; and the density profile is almost homogeneous for en = 0.99.

Linear variation is observed for non-dissipative system due to the inertial effect of centrifugal

force.
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Figure 5.18: Radial variation of granular temperature (averaged in the azimuthal direction) at
different z: (a) en = 1.0, (b) en = 0.99 and (c) en = 0.9. Other parameter values are same as in
Fig. 5.14.
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Figure 5.18 shows the radial variation of granular temperature at different z. The lower

temperature at the centre in Fig. 5.18(b, c) is due to energy loss caused by the dissipation

present in the system, whereas a maxima in temperature can be seen near the centre for en = 1

in Fig. 5.18(a).
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Figure 5.19: Density variation in the axial direction (averaged in the azimuthal and radial
direction): (a) en = 1.0, (b) en = 0.99, (c) en = 0.9 and (d) shows the variation of ∆ν

νav
(extent of

shear banding) with coefficient of restitution. Other parameter values are same as in Fig. 5.14.

Figure 5.19 shows the axial variation of density averaged over r̃ and θ for different values

of coefficient of restituion. The variation in density magnifies with increase in dissipation of

the system which is mainly due to clustering. This increase in density is also observed in

Fig. 5.17(b) and (c). The quantity excess density (∆ν
νav

), where ∆ν = νmax − νmin, is a measure

of extent of axial-clustering in the system and gives an idea on the effect of en on the formation

of shear bands along th axial direction: these are also called ”vorticity-bands” (Goddard 2003;

Shukla & Alam 2013). Shifting our focus to axial variation of temperature in Fig. 5.20, the

clustering seems to affect the temperature profile by increasing the excess temperature (∆T
Tav

),

where ∆T = Tmax − Tmin, with increase in dissipation as shown in Fig. 5.20(d). This can be

explained by the loss in energy due to large number of particle-particle collisions for en = 0.9.

The particle-depleted region will have a higher granular temperature. Therefore, with inclusion

of dissipation in the system, the excess density and temperature increases, and the vorticity-

bands become stronger with decreasing en. Both the quantities are non-dimnesionalised by their
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corresponding averages given by νav and Tav , where Tav is the average of temperature values

shown in Fig. 5.20(c) and νav is the average volume fraction (νav = 0.2).
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Figure 5.20: Temperature variation in the axial direction (averaged in the azimuthal and radial
direction): (a) en = 1.0, (b) en = 0.99, (c) en = 0.9 and (d) shows the variation of ∆T

Tav
(extent of

shear banding) with coefficient of restitution. Other parameter values are same as in Fig. 5.14.

Figure 5.21 shows the radial variation of azimuthal velocity (Vθ) averaged over θ at different

z. The effects of axial length on the tangential velocity can be observed at z = 20 and z = 76.25

in panels (b) and (c). The velocities at all other z follows a similar trend and are in agreement

with the typical velocity profiles observed in TC flows (Vθ ∼ 1/r).
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Figure 5.21: Radial variation of azimuthal velocity (averaged in the azimuthal direction) at
different z: (a) en = 1.0, (b) en = 0.99 and (c) en = 0.9. Other parameter values are same as in
Fig. 5.14.

Figure 5.22 shows the radial variation of radial velocity averaged over θ for different values

of en and z. The bulk of the particles are moving in the outer radial direction with a higher

magnitude. Only the particles moving towards the centre (−ve Vr) seems to be affected by

dissipation with velocities getting flatter with decrease in en.
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Figure 5.22: Radial variation of radial velocity (averaged in the azimuthal direction) at different
z: (a) en = 1.0, (b) en = 0.99 and (c) en = 0.9. Other parameter values are same as in Fig. 5.14.

The effect of inelastic dissipation can also be seen from axial velocity profiles with the

velocities getting flatter with decrease in en as shown in Fig. 5.23(b, c)
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Figure 5.23: Radial variation of axial velocity (averaged in the azimuthal direction) at different
z: (a) en = 1.0, (b) en = 0.99 and (c) en = 0.9. Other parameter values are same as in Fig. 5.14.

Figure 5.24 shows the radial variation of angular momentum and angular velocity (inset) for

different values of en. A clear distinction can be seen in the profiles when dissipation is introduced

into the system. The degree of non-monotonicity increases with increase in dissipation.
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Figure 5.24: Radial variation of angular momentum (averaged in the azimuthal and axial direc-
tion): (a) en = 1.0, (b) en = 0.99 and (c) en = 0.9. Inset shows the radial variation of angular
velocity. Other parameter values are same as in Fig. 5.14.

Figure 5.25 shows the axial variation of radial velocity (Vr) averaged over (θ, r) for different

values of restitution coefficient. The radial distance between peaks of velocity maxima decreases

with increase in dissipation. Again the low values of Vr for en = 0.9 in Fig. 5.25(c) shows that

the dissipation slows down the fluid due to the energy loss. Also, with variation in en, ∆Vr

undergoes a tranistion from maximum at en = 0.99 to minima at en = 1 and 0.9 as shown in

Fig. 5.25(d).
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Figure 5.25: Axial variation of radial velocity (averaged in the azimuthal and radial direction):
(a) en = 1.0, (b) en = 0.99, (c) en = 0.9 and (d) shows the variation of ∆Vr with coefficient of
restitution. Other parameter values are same as in Fig. 5.14.

5.3 Summary and Outlook

The simulation results in this chapter has mainly dealt with the preliminary studies of the

effect of inelasticity on the TC system along with different axial wall-boundary conditions. The

vortex patterns and average hydrodynamic properties show completely different behaviour on

varying the coefficient of restitution. On increasing the dissipation, weaker vortices were formed

which lose energy due to dissipation present in the system. The quantities, excess density and

excess temperature, increases on increasing the inelastic dissipation. This dependence of excess

temperature on en has also been observed in a recent study by Alam et al. (2015). Also, the

”vorticity-bands” formed in the axial direction become stronger with decrease in en.



5.3 Summary and Outlook 113

Critical     for formation of Taylor-vortices

(Rapaport(1993))

well developed vortices

weaker vortices

Critical     for      = 0.99, 0.9 and 0.8?         Future work

?

?
? Taylor vortices

No vortices

(a)

Figure 5.26: Phase diagram showing approximate demarcation of the region with and without
Taylor-like vortices and future prospects in granular Taylor-Couette flow.

Figure 5.26 shows the effect of inelasticity on the formation of Taylor-like vortices. As the

strength of vortices decreases with increase in dissipation, it can be expected that the critical

ωi for the formation of vortices might increase with increase in dissipation, thus resulting in a

region of phase space as shown in Fig. 5.26 (dotted zig-zag line). Additional runs will involve

simulating for different values of en and ωi to find out the exact nature of the phase space.

The aim is to get the critical line (dotted zig-zag line) demarcating the region where Taylor-like

vortices are observed for a granular TC system. Further work will also involve on sweeping the

entire phase space (ωo, ωi, en) with additional effects of inelasticity.





Chapter 6

Summary and Conclusions

Throughout this thesis, we have tried to explain the effects of rarefaction and dissipation in a

system of driven granular particles starting with a simple geometry (2D Poiseuille flow) and

extending it to a more intricate configuration (2D/3D Taylor-Couette flow). The driving force

is gravity in Poiseuille flow and is replaced by centrifugal force in the Taylor-Couette setup.

Additional effects of rotation rates ωi) and dissipation were anaylsed in the latter where inertial

force was observed to play a dominant role at high ωi. Towards the end of Chapter 5, our

aim were (i) to assess the role of dissipation on the formation of Taylor vortices and (ii) to

elucidate the role of axial end-walls on the transient dynamics of the vortex formation. In this

final chapter, we collate our findings and suggest further extension of the work in the future.

6.1 Granular Poiseuille Flow

Two important rarefaction effects, Knudsen minimum and temperature bimodality, were studied

and the influence of wall-roughness and inelastic dissipation on these effects were elucidated for

a dilute granular Poiseuille flow. Smooth inelastic hard-disks flowing under the effect of gravity

were simulated using event-driven molecular dynamics simulations. The walls were observed to

play a crucial role in influencing the occurence of a minimum in flow rate. The flow rate goes

through a local minima resembling the well-known Knudsen minimum effect (Knudsen 1909)

that occurred at a Knudsen number of Kn ∼ O(0.01) but the maximum flow rate occurred at a

finite Knudsen number of Kn ∼ O(1), beyond which the flow-rate decreases. On the other hand,

the Knudsen minimum was found to be absent (i) even for quasi-elastic collisions (en ∼ 0.99),

irrespective of the wall-roughness, as well as (ii) for relatively rougher walls (βw > −0.6) at any

en. Another important finding was the anomalous decrease in the slip velocity with increasing

Kn which is completely opposite to what has been observed in many microfluidic studies on

rarefied gases. The origin of this anomalous variation of the slip velocity seems to be tied to the

competing effects of (i) the dissipation-induced ‘clustering’ (i.e. the inhomogeneity of the density

field along the transverse/wall-normal direction) and (ii) the rarefaction-induced ‘declustering’

of particles along the wall-normal direction.

The second part of the work dealt with the bimodality in granular temperature profile which

was first theoretically predicted for the case of a molecular gas (Tij & Santos 1994), follwed by

studies on granular gases by Tij & Santos (2004). The origin of temperature bimodality was

linked to rarefaction for a molecular gas till we found that for granular gases inelastic dissi-

pation dictates the bimodal nature of the temperature at low Knudsen number Kn > O(0.1)

beyond which rarefaction effects drive it as observed in its molecular counterpart. Therefore,

the observed temperature bimodality in granular Poiseuille flow is a consequence of the compe-

tition between dissipation and rarefaction. Increasing inelastic dissipation increases the excess
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temperature ratio △T and hence the degree of temperature bimodality is enhanced. Finally

we have compared our reusults with the existing theories which uses a kinetic model without

incorporating the effect of the walls. The extent of bimodality increases with the increase in

dissipation which is completely opposite to what has been predicted by the theory of Tij &

Santos (2004).

6.2 Granular Taylor-Couette Flow

After the initial study on channel flow, the next aim was to extend the analysis to a more complex

geometry and assess the above-mentioned effects by replacing the gravity with centrifugal force.

An extra paramter in the form of rotation of the inner disk (2D) or cylinder (3D) played a

crucial in understanding the role of inertial forces on the system which was not seen in the

earlier problem. Initial simulations on 2D annular disk revealed that rarefaction and dissipation

play the same role as was observed in Poiseuille flow till centrifugal forces take control of the

dynamics of the system. At low densities, the rarefaction effects were dominant, but dissipation

starts to kick in at high density. The formation of cluster is another common feature of granular

flows, and with an increase in density, the cluster transits from a liquid-like behaviour to a

solid-like. The temporal evolution of the centre of mass of the system reflects that the cluster

reaches a steady state with increase in ωi more swiftly compared to lower rotation rate.

For 3D, two different axial boundary conditions: periodic and reflecting were used. The

code was tested with existing simulation data and the number of vortices was found to increase

with increase in the length of system for elastic collisions (en = 1). On moving to a dissipative

system, the vortices appear to have similar structural features for mild dissipation (en = 0.99)

whereas the strength of vortices decreases with further increase in dissipation (en = 0.9) for

reflecting-type boundary conditions. The formation of weak-vortices is due to higher energy

loss at the bulk compared to the ends. The reflecting-type boundary condition is found to be

responsible for the nucleation of vortices near the end-walls which move towards the centre for

an elastic system but due to the inelasticity present in the system (en = 0.9), the energy gets

dissipated and a pair of weak vortices can be seen. The end-walls can therefore be used to

modulate the Taylor-like vortices in granular Taylor-Couette flow.

6.3 Extension

The next immediate step in TC flow is to implement the wall boundary conditions with a

roughness parameter (βw) (see Chapter 2) instead of using thermal walls. These boundaries

are more realistic for an athermal system like granular flows as the particles will never be in a

thermal equilibrium with the walls. Furthermore, an extended analysis to map the entire phase

space (ωo, ωi, en) is essential to validate the presence of various patterns (spiral turbulence,

modulated waves etc.) which were observed in earlier studies on incompressible Taylor-Couette

flow. It will be interesting to see whether all these patterns can be captured using event molecular

dynamics simulations due to its inability to simulate large system with current computing power.

Although the extensions mentioned above may all be considered to be viable next steps in the

development of our understanding of granular materials, they barely scratch the surface of the
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myriad possible developments that could be made based on above discussions. In this thesis, we

have made progress in the creation of a robust numerical code for simulating granular flows in

a three-dimensional curvilinear geometry. Given the wealth of fascinating experiments reported

across the literature, such a wall model and numerical code is likely to be useful to study granular

flows in curvilinear geometry.
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Mechanics 757, 251–296.

Saha, S. & Alam, M. 2016 Normal stress differences, their origin and constitutive relations

for a sheared granular fluid. Journal of Fluid Mechanics 795, 549–580.

Sela, N. & Goldhirsch, I. 1998 Hydrodynamic equations for rapid flows of smooth inelastic

spheres, to burnett order. Journal of Fluid Mechanics 361, 41–74.

Shukla, P. & Alam, M. 2013 Nonlinear vorticity-banding instability in granular plane cou-

ette flow: higher-order landau coefficients, bistability and the bifurcation scenario. Journal of

Fluid Mechanics 718, 131–180.

Stefanov, S. & Cercignani, C. 1993 Monte carlo simulation of the taylor–couette flow of

a rarefied gas. Journal of Fluid Mechanics 256, 199–213.

Tagg, R. 1994 The couette-taylor problem. Nonlinear Science Today 4 (3), 1–25.

Tardos, G. I., Khan, M. I. & Schaeffer, D. G. 1998 Forces on a slowly rotating, rough

cylinder in a couette device containing a dry, frictional powder. Physics of Fluids (1994-present)

10 (2), 335–341.



References 125

Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders.

Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a

Mathematical or Physical Character pp. 289–343.

Tehver, R., Toigo, F., Koplik, J. & Banavar, J. R. 1998 Thermal walls in computer

simulations. Physical Review E 57 (1), R17.

Tibbs, K. W., Baras, F. & Garcia, A. L. 1997 Anomalous flow profile due to the curvature

effect on slip length. Physical Review E 56 (2), 2282.

Tij, M. & Santos, A. 1994 Perturbation analysis of a stationary nonequilibrium flow gener-

ated by an external force. Journal of statistical physics 76 (5-6), 1399–1414.

Tij, M. & Santos, A. 2004 Poiseuille flow in a heated granular gas. Journal of statistical

physics 117 (5-6), 901–928.

Torrilhon, M. & Struchtrup, H. 2004 Regularized 13-moment equations: shock structure

calculations and comparison to burnett models. Journal of Fluid Mechanics 513, 171–198.

Trevelyan, D. J. & Zaki, T. A. 2016 Wavy taylor vortices in molecular dynamics simulation

of cylindrical couette flow. Physical Review E 93 (4), 043107.

Wereley, S. T. & Lueptow, R. M. 1998 Spatio-temporal character of non-wavy and wavy

taylor–couette flow. Journal of Fluid Mechanics 364, 59–80.

Yoshida, H. & Aoki, K. 2006 Linear stability of the cylindrical couette flow of a rarefied

gas. Physical Review E 73 (2), 021201.




	Abstract
	List of Figures
	List of Tables
	Introduction
	Chapter organization

	Dilute Granular Poiseuille flow
	Introduction
	Simulation Model for Granular Poiseuille Flow
	Algorithm
	Domain modification
	Collision time calculation
	Particle-level boundary condition
	Simulation method and averaging

	Steady State and Hydrodynamic Fields
	Steady state and Knudsen number
	Hydrodynamic profiles in granular Poiseuille flow

	Results on Knudsen Paradox: Rarefaction (Kn=0) Versus Dissipation (en=1)
	Effect of wall-roughness in the elastic limit: Q(Kn,w,en1)
	Effects of inelastic dissipation (en< 1) and rarefaction (Kn>0): the phase diagram
	Role of Knudsen number and the anomalous variation of slip velocity
	Dissipation versus rarefaction: effects on density profile
	Possible role of normal stress difference on flow rate

	Results on Bimodal Temperature Profile: Rarefaction or Dissipation Driven?
	Origin of temperature bimodality
	The phase diagram: rarefaction versus dissipation
	Excess temperature and its variation with en
	Comparison of excess temperature with theory
	Possible role of axial inhomogeneities

	Conclusion and Discussion
	Conclusion: competition between rarefaction and inelastic dissipation
	Discussion: implications for hydrodynamic equations


	Taylor-Couette Flow and MD Simulation
	Introduction
	MD Simulation of Taylor-Couette Flow : Code Development
	Circular boundary
	Boundary conditions
	Axial length

	Hydrodynamic Properties
	Code Validation in Two-dimensions
	Particle overlap and tolerance

	Code Validation in Three-dimensions

	Taylor-Couette Flow in Two-dimensions
	Inner Cylinder Rotation: Finite i and Zero o
	Hydrodynamic profiles (av = 0.05)
	Hydrodynamic profiles (av = 0.1)
	Hydrodynamic profiles (av = 0.4)

	Particle Overlap and Tolerance
	Summary and Discussion

	Taylor-Couette Flow in Three-dimensions
	Taylor-Couette Flow of Elastic Particles: Onset of Taylor Vortices
	Periodic axial boundary conditions
	Reflecting axial boundary conditions

	Taylor-Couette Flow of Inelastic Particles
	Periodic boundary conditions
	Reflecting boundary conditions

	Summary and Outlook

	Summary and Conclusions
	Granular Poiseuille Flow
	Granular Taylor-Couette Flow
	Extension

	References

