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Abstract

In this thesis, pattern formation in axisymmetric, compressible Taylor-Couette flow (TCF) is
studied via direct numerical simulation. Taylor-Couette flow is the annular flow between two
concentric, differentially rotating cylinders. It is known for its rich complexity of patterns
and makes a good test-case for validating theory and numerics as it is experimentally feasible.
Throughout this study, the outer cylinder is kept stationary while the inner cylinder is rotated at
different angular velocities. In chapter 1, a brief history of the incompressible Taylor-Couette
problem is presented. Rayleigh’s inviscid instability criterion is derived using an energy
argument. An overview of the literature on compressible TCF is given.

In chapter 2, a numerical code is developed using finite differences to solve governing
equations in a cylindrical geometry. Governing equations are compressible Navier-Stokes
equations coupled with the energy equation and an equation of state for an ideal gas. Equations
are written in the rest frame of reference in cylindrical co-ordinates with axisymmetry imposed.
Boundary conditions are no-slip at walls, periodic in the axial direction (z) for infinite cylinders
and no-slip (Dirichlet) in z−direction in case of finite cylinders. Non-dimensionalization
is done based on the viscous time-scale and the average density of the gas. This choice of
characteristic scales is motivated by experiments. The dimensionless equations are coded using
finite difference method. Numerical method and its implementation are described. Bench-
marking is done by comparing the results with the published literature on thermally- and
mechanically-driven flows. Physical explanations for the flow profiles are given.

In chapter 3, another verification of the code is presented by matching the analytically
known base state of the compressible TCF to the one obtained via long-time marching of time
dependent compressible Navier-Stokes equations. Observations and interpretations are given
based on the base-state profiles. Effects of variable viscosity on the onset of Taylor vortex flow
(TVF) are investigated. It is found that when viscosity is described by well-known Sutherland’s
law of shear viscosity, the critical inner Reynolds number (Re1) for the onset of instability
increases compared to that for a constant viscosity. Hence, we conclude that variable viscosity
stabilizes the Taylor-Couette flow.

At higher Re1, it is found that when axisymmetry is imposed, TVF bifurcates to a traveling
wave propagating in the negative axial direction (i.e., negative z−direction). Dominant frequen-
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cies of the time series are extracted from the kinetic energy versus time graphs via fast Fourier
transform (FFT). First and second dominant frequencies are plotted against Re1. In order to
understand how dominant and sub-dominant frequencies vary with the rotation rate of the inner
cylinder, dimensionless frequencies are also plotted on the inertial time-scale.

Chapter 4 is dedicated for studying finite-size effects in the Taylor-Couette system. The
so-called ‘anomalous modes’ of Benjamin [4], especially single-cell modes (or, asymmetric
two-cell modes) are obtained in the compressible TCF for small aspect ratios (Γ = h/d ∼ 1,
where h is the height of cylinders and d = R2−R1 is the gap width). Bifurcation from mid-plane
symmetric Taylor vortex flow (TVF) to asymmetric single-cell modes is characterized and the
bifurcation diagrams are plotted for different values of Γ. Some speculations and guesses are
presented concerning the bifurcation scenario and a qualitative phase diagram is plotted in the
(Re1,Γ) plane, delineating the regions of normal and anomalous modes. These two regions
seem to be connected via a line of limit points for the present case of compressible TCF at a
Mach number of unity.

When Γ is increased from 3.1 to 6.1 and then decreased back again to 3.1, keeping the
Re1 constant, interesting behavior is observed. At Re1 = 100 and 125, while increasing Γ, a
2 → 4 → 6-roll transitions are observed and while coming back 6 → 4 → 2-roll transitions
are seen. However, at higher Re1 = 150 and 200, while increasing Γ, a direct 2 → 6-roll
jump is seen but while coming back, 6 → 4 → 2-roll jumps are observed. These observations
indicate that the bifurcation diagrams in (Γ,Re1) plane are more complicated than a simple
cusp catastrophe. It appears that pattern formation in the (Γ,Re1) plane of compressible TCF
has more than one cusp entangled with each other.

In chapter 5, a discussion and summary of the work is presented with possible directions
for future work.
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Chapter 1

Introduction

“It seems doubtful whether we can expect to understand fully the instability of fluid flow without
obtaining a mathematical representation of the motion of a fluid in some particular case in
which instability can actually be observed, so that a detailed comparison can be made between
the results of analysis and those of experiment.” - G.I. Taylor

1.1 A Brief History of Taylor-Couette Flow

Fig. 1.1 Geometry of Taylor-Couette setup, Taylor [39]



2 Introduction

Taylor-Couette flow is the annular flow between two concentric, differentially rotating cylinders.
Figure 1.1 shows the geometry of the setup and is taken from Taylor [39]. Due to its geometric
simplicity, this flow has been a topic of scientific investigation for centuries - for example,
Newton [30] used the setup to describe the flow of rotating fluids in his Principia in 1687. In
1880, Stokes [36] made an attempt of investigation of the flow and realized the difficulty lied in
the treatment of boundary conditions.

The advent of Navier-Stokes equations led to a debate on how one can determine the
viscosity of a fluid. Both Mallock [25] and Couette [10] independently came up with the idea
of resolving this question by studying the flow of a fluid using differentially rotating concentric
cylinders. Couette only rotated the outer cylinder, keeping the inner cylinder fixed. In addition
to the experiments on the same lines as Couette, Mallock also rotated the inner cylinder, keeping
the outer cylinder fixed.

The main theoretical stride began in 1916, when Rayleigh [33] gave a physical explanation
and demonstrated the existence of an instability in an inviscid, rotating fluid. One can give an
energy based argument to show Rayleigh’s inviscid instability criterion. Consider a swirling
flow where the angular velocity Ω(r) is an arbitrary function of the radial dependence r. The
axisymmetric, inviscid governing equations can be written in the polar co-ordinates r, φ and z
as follows:
Continuity:

∂ur

∂ r
+

ur

r
+

∂uz

∂ z
= 0 (1.1)

Momentum:
Dur

Dt
−

u2
φ

r
=− 1

ρ

∂ p
∂ r

(1.2a)

Duφ

Dt
+

uruφ

r
= 0 (1.2b)

Duz

Dt
=− 1

ρ

∂ p
∂ z

(1.2c)

where the material derivative is

D
Dt

=
∂

∂ t
+ur

∂

∂ r
+uz

∂

∂ z
. (1.3)

Consider the initial flow to be purely azimuthal, i.e.,

u = uφ (r)φ̂ , (1.4)
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where φ̂ is a unit vector in the φ -direction and uφ is an arbitrary function of r given by

uφ = rΩ(r). (1.5)

One can recast the azimuthal momentum balance in φ direction as follows:

D(ruφ )

Dt
= 0. (1.6)

Equation (1.6) implies that the quantity H = ruφ is conserved for a material volume. H is
nothing but the angular momentum of a material blob of fluid. As this is an inviscid analysis,
there is no viscous dissipation and the conservation of angular momentum makes intuitive
sense. Now one can define the kinetic energy per unit volume associated with the azimuthal
motion in terms of H as follows:

1
2

ρu2
φ =

1
2

ρH2

r2 . (1.7)

Let us consider two material volumes of equal volume dV at different radial locations, one
at r = r1 and the other at r = r2. We assume r2 > r1 without loss of generality. Their total
kinetic energy per unit volume will be:

KEinitial =
1
2

ρ

(
H2

1
r2

1
+

H2
2

r2
2

)
. (1.8)

Imagine that these two material elements swap positions. Because of Eqn.(1.6), each
material element retains its angular momentum. After the swap, the new kinetic energy per unit
volume will be:

KEnew =
1
2

ρ

(
H2

1
r2

2
+

H2
2

r2
1

)
, (1.9)

and hence

KEnew −KEinitial =
1
2

ρ(H2
2 −H2

1 )

(
1
r2

1
− 1

r2
2

)
. (1.10)

As r2 > r1,
(

1
r2
1
− 1

r2
2

)
> 0. If the swap releases energy, i.e., if KEnew −KEinitial < 0, or,

H2
2 −H2

1 < 0, the base flow will be unstable. That is, if H2 decreases with r the flow is unstable.
Hence the criterion for instability is given by

d(H2)

dr
< 0. (1.11)

The above criterion (1.11) is known as Rayleigh’s inviscid instability criterion.
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In the (Ω2, Ω1) plane, the Rayleigh line is given by Ω1r2
1 = Ω2r2

2 in case of the Taylor-
Couette flow, where R1 and R2 are the radii of the inner and outer cylinders, respectively. This
is depicted by the red line in Fig. 1.2

Rayleigh lin
e

2

1

Rayleigh-unstable regime

Rayleigh-stable regime

Fig. 1.2 Rayleigh line in the phase plane.

In his seminal paper of 1923, Taylor [39] performed the linear stability analysis for viscous
fluids based on the Navier-Stokes equations and no-slip boundary conditions at the wall. He
also performed experiments and matched them with his theoretical results. The results were
accurate and historically important because they established the validity of the no-slip boundary
conditions and gave the first experimental evidence for the validity of the Navier-Stokes
equations. The blue line in Fig. 1.3 represents a schematic of Taylor’s neutral stability curve in
(Ω2, Ω1) - plane.

Rayleigh lin
e

2

1

viscous unstable

Fig. 1.3 Taylor’s viscous stability criterion - blue line.

After Taylor’s ground-breaking work, there has been much research in the Taylor-Couette
flow (TCF). The system is known to show an incredibly complex set of patterns depending on
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the rotation rates of the inner and outer cylinders, for example, see the experimental studies
by Coles [9] and Andereck et al. [1] and a recent review by Grossmann et al. [15]. With the
increase in the computational power and popularization of spectral methods by Orszag [31],
many Direct Numerical Simulation (DNS) studies were carried out on the incompressible TCF.
Marcus [27] conducted one of the first DNS studies of TCF based on spectral methods. More
recently, Shi et al. [35] have studied the problem with a highly efficient, parallel solver. Figure
1.4, taken from Andereck et al. [1], shows different regimes of flow patterns.

Fig. 1.4 Phase plane of the Newtonian, incompressible Taylor-Couette setup. Taken from
Andereck et al. [1]. Here Rei = ΩiRid/ν and Reo = ΩoRod/ν represent Reynolds number
based on inner and outer cylinder velocities ΩiRi and ΩoRo, respectively. Ωi and Ωo are angular
velocities of inner and outer cylinders, respectively. d is the gap width Ro −Ri and ν is the
kinematic viscosity of the fluid.

1.2 Why Study Taylor-Couette flow?

Perhaps the most important reason to study Taylor-Couette flow is its geometric simplicity,
making it practical for experimental investigations. The setup has been used as a test to check
validity of theoretical descriptions in the past and it still remains popular. Also, it has proven
useful to study accretion disks in astrophysical flows, see Grossmann et al. [15]. It is interesting
to see if the origin turbulence in accretion disks has purely hydrodynamic origins or does it
require some other mechanism such as the magnetorotational instability (MRI), first seen by
Velikhov [40] and later generalized by Chandrasekhar [5] and Balbus and Hawley [2]. In this
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thesis, we study the pattern formation in the Taylor-Couette setup for a compressible gas, a
relatively unexplored area.

1.3 Previous Work on the Compressible TCF

A lot of work has been done in the area of incompressible Taylor-Couette flow, for example,
see Chandrasekhar [6], DiPrima and Swinney [12] and Grossmann et al. [15]. However, not
much work, be it theoretical, experimental or numerical, has been done on its compressible
counterpart.

Kuhlthau [21] conducted an experimental study on the compressible Taylor-Couette prob-
lem with dry air as the compressible fluid. In these experiments, the peripheral Mach number
(Ma = ΩiRi/(γRTi)

1/2, where Ωi is the angular velocity and Ri is the radius of the inner cylin-
der, Ti is the temperature maintained at the inner cylinder wall, γ = cp/cv is the ratio of heat
capacities and R is the universal gas constant) was kept constant while the average density was
increased, thereby decreasing the Knudsen number (Kn ∝

Ma
Re and Re ∝ average density ⇒

Kn ∝ (1/average density)). Experiments were done for the values of peripheral Ma such that
0.7≲Ma≲ 15. The critical Kn was found to increase with increasing Ma. However, the critical
Reynolds number (Re1c ∼ Ma/Kn) was found to be almost the same as its incompressible
counterpart.

Kao and Chow [20] assumed axisymmetric disturbances and carried out a linear stability
analysis for the compressible Taylor-Couette flow with radius ratio η = R1

R2
= 0.5. Their results

apparently implied that increasing Mach number (Ma) destabilized the flow. In other words, the
critical inner Reynolds number (Re1) decreased in comparison to the incompressible case when
Ma was increased. Hatay et al. [18] considered the linear stability problem for a wide range of
parameters and found out that increasing Ma stabilizes the flow for narrow gaps (η > 0.8) and
destabilizes for wide gaps. Hence, their results agreed with Kao and Chow [20]. Both Kao and
Chow [20] and Hatay et al. [18] defined the Reynolds number based on the local density. As
Manela and Frankel [26] correctly pointed out, the local density cannot be a priori prescribed
in numerics or experiments. Also, because of large supersonic speeds, variation between local
and average densities can be quite large. Hence, using the critical Re1 based on the local density
is not a good measure when comparing with its incompressible counterpart. For this reason,
the stabilizing or destabilizing effect of increasing Ma might not be unequivocal.

Manela and Frankel [26] focused on narrow-gaps, conducted a linear stability analysis
and concluded that increasing Ma stabilizes the flow. Following Manela and Frankel [26],
Welsh et al. [41] carried out the linear stability analysis for the Taylor-Couette flow for a
wide-gap case, with radiaus ratio η = R1

R2
= 0.5. At high Prandtl numbers (Pr), they found new
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instability modes that become unstable to oscillatory axisymmetric modes at the onset. They
also found that the onset of instability can occur even when the angular momentum increases
outwards. Hence the notable finding is that the classical Rayleigh criterion can be violated in
the compressible Taylor-Couette case.

1.4 Outline of the thesis

Chapter 2 focuses on the mathematical formulation of the problem, development of a numerical
code to solve axisymmetric, compressible Navier-Stokes equations in cylindrical geometry as
well as code validation.

Chapter 3 begins with writing dimensionless equations and boundary conditions for the
Taylor-Couette flow. Characteristic scales for non-dimentionalization are so chosen that
numerical results can be compared with experiments (see Welsh et al. [41]). Another verification
of the code is presented by matching the analytically known base state of the compressible TCF
with the one obtained from long-time marching of the compressible Navier-Stokes equations.
The effect of variable viscosity on the onset of Taylor vortex flow (TVF) is investigated. At
higher Re1, an interesting behavior is uncovered. When axisymmetry is imposed, Taylor vortex
flow is seen to bifurcate to an axisymmetric wave traveling in the negative z direction. Average
kinetic energies based on radial and axial velocities are plotted which show oscillations in
time. A fast Fourier transform (FFT) is done to extract the dominant frequencies and the same
procedure is repeated over a range of Re1. Extracted dominant frequencies are plotted against
Re1 to see the effect of increasing Reynolds number.

Chapter 4 is devoted to studying the finite-size effects and anomalous modes in the
compressible Taylor-Couette flow. The effect of variation in the aspect ratio at a constant Re1

is also studied. Evidence for hysteresis is presented by plotting kinetic energy versus time.
The implications of this work and possible future directions are discussed briefly in the final
chapter.





Chapter 2

Numerical Implementation and Code
Validation

“A computation is a temptation that should be resisted as long as possible.” - J.P. Boyd

2.1 Introduction and Governing Equations

Fig. 2.1 Domain.

In this chapter, a numerical code is developed to solve the compressible Navier-Stokes equations
in cylindrical geometry. To validate the code, we compare our results with Harada [17]. A
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Taylor-Couette-type setup as shown in Fig. 2.1 is used where both the cylinders are rotating at
the same angular velocity Ω. The initial condition is that of a solid body rotation for the annular
gas as in the work of Harada [17]. We wish to investigate two problems to validate the code:

• “Thermally driven flow”: a vertical temperature gradient is imposed suddenly, see Fig.
2.2a

• “Mechanically driven flow”: the inner and bottom plates are stopped suddenly, see Fig.
2.2b

Accordingly, the boundary conditions are marked as shown in Fig. 2.2.

T
0

T0+ T

r

z

T0- T

T
0
+
(2
z
-1
)
T

(a)

0

r

z

0

(b)

Fig. 2.2 Boundary conditions: (a) Thermally driven flow and (b) Mechanically driven flow.

2.1.1 Governing Equations and Boundary Conditions

The governing equations are written in the rotating frame of reference, rotating with Ω with
respect to the rest frame. The characteristic quantities are defined in table 2.1.

Dimensional Quantity Characteristic Quantity

t∗R Ω−1

L∗
R R0

U∗
R ΩR0

ρ∗
R ρ0

T ∗
R T0

p∗R (cp − cv)ρ0T0

Table 2.1 Characteristic quantities



2.1 Introduction and Governing Equations 11

Here R0 is the radius of the outer boundary, Ω is the initial angular velocity of the system, ρ0

and T0 are initial density and temperature at the outer wall. The velocities in the r, φ and z
directions are denoted by u, v, and w, respectively. The dimensionless governing equations can
be written as follows.

Dρ

Dt
= 0, (2.1)

D(ρu)
Dt

−ρr−ρv
(

2+
v
r

)
=− 1

γM2
∂ p
∂ r

+E
(

L u+
1
3

∂Q
∂ r

)
(2.2)

D(ρv)
Dt

+ρu
(

2+
v
r

)
= EL v (2.3)

D(ρw)
Dt

=− 1
γM2

∂ p
∂ z

+E
(

∇
2w+

1
3

∂Q
∂ z

)
(2.4)

D(ρT )
Dt

+(γ −1)ρT Q =−γE
Pr

∇
2T +(γ −1)γM2EΦ (2.5)

p = ρT (2.6)

where
D

Dt
=

∂

∂ t
+∇.[()q],

q = (u,v,w),

∇
2 =

∂ 2

∂ r2 +
1
r

∂

∂ r
+

∂ 2

∂ z2 ,

L = ∇
2 − 1

r2 ,

Q =
1
r

∂ (ru)
∂ r

+
∂w
∂ z

,

Φ =2
[(

∂u
∂ r

)2

+

(
u
r

)2

+

(
∂w
∂ z

)2]
+

(
∂v
∂ r

− v
r

)2

+

(
∂v
∂ z

)2

+

(
∂w
∂ r

+
∂u
∂ z

)2

− 2
3

Q2.

The Ekman Number is defined via
E ≡ (µ/ρ0)

ΩR2
0

,

the peripheral Mach number is

M ≡ ΩR0

(γRT )
1
2
,

and the Prandtl number is
Pr ≡ µCp/κ.
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Here µ is the shear viscosity, κ is the thermal conductivity, Cp and Cv are specific heats at
constant pressure and volume, respectively. Ω is the angular velocity with which both the
cylinders are rotating initially. The initial condition in both thermally and mechanically driven
flows is that of a solid body rotation. In non-dimensional parameters, the initial conditions are
given as follows:

u = v = w = 0, (2.7)

T = 1, (2.8)

ρe = exp[(1/2)γM2(r2 −1)]. (2.9)

Finally, the boundary conditions in non-dimensional form read as:

1. Thermally Driven Flow

• u = v = w = 0 at all boundaries

• T = 1− ε at z = 0

• T = 1+ ε at z = Λ = h/Ro

• T = 1+ ε(2z/Λ−1) at r = Ro

• T = 1 at r = Ri

2. Mechanically Driven Flow

• u = w = 0 at all boundaries

• T = 1 at all boundaries

• v = 0 at r = Ro and z = Λ = h/Ro

• v =−r at z = 0

• v =−ra at r = Ri

where ε = ∆T/T0, Ri = 0.3, Ro = 1.0, Λ = h/Ro = 1.0

2.2 Numerical Method and its Implementation

A variant of the numerical method used in Harada[17, 16] and Hyun and Park [19] is developed.
The details of the numerical implementation are described below.

A finite difference method is developed based on the conservation laws. Primitive variables
are used to write down the governing equations and appropriate boundary conditions. For
numerical simplicity, the equations are written for a torus of volume (2π)rdrdz. Writing
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equations this way amounts to multiplying the governing equations by r throughout. As the
numerical method is developed in the upcoming sections, the usefulness of this move will
become evident later. Essentially, if we define a new variable ρ̄ = ρr and write the governing
equations is terms of ρ̄ instead of ρ , the convective derivatives in the cylindrical coordinates
look as if they were written in a Cartesian coordinate system.

As we are developing a scheme for the axisymmetric solutions, we use a two-dimensional
(2d), uniform, staggered grid. The choice of staggered grid is motivated by the physics of the
problem. We do not, in general, have boundary conditions for density and pressure. So to avoid
creating artificial boundary conditions in order to make the problem well-posed, we push the
calculation of density and pressure fields inside the domain. Hence, no artificial density or
pressure boundary conditions are required. This choice also ensures local mass conservation in
a given cell, Harada[17, 16] and Hyun and Park [19].

To approximate first-order derivatives in space, we employ the familiar central difference
method. For convective derivatives, we use the upwind scheme or the donor-cell method. Fi-
nally, for diffusion terms and time stepping, we use a leapfrog type DuFort-Frankel method.

2.3 Developing Finite Difference Approximation

2.3.1 The Finite Difference Approximation

We multiply the governing equations (2.1)-(2.6) by r throughout and write them in terms of a
new variable

ρ̄ = ρr. (2.10)

D ρ̄

Dt
= 0, (2.11)

D(ρ̄u)
Dt

− ρ̄r− ρ̄v
(

2+
v
r

)
=−r

1
γM2

∂ p
∂ r

+Er
(

L u+
1
3

∂Q
∂ r

)
(2.12)

D(ρ̄v)
Dt

+ ρ̄u
(

2+
v
r

)
= ErL v (2.13)

D(ρ̄w)
Dt

=−r
1

γM2
∂ p
∂ z

+Er
(

∇
2w+

1
3

∂Q
∂ z

)
(2.14)

D(ρ̄T )
Dt

+(γ −1)ρ̄T Q =−γEr
Pr

∇
2T + r(γ −1)γM2EΦ (2.15)

p = ρ̄T/r (2.16)
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The finite difference approximation can be written down easily. As mentioned in the
introduction, we use central difference method for first derivatives in space. For convective
derivatives, we use upwind scheme or donor-cell method. Finally, for diffusion terms and
time stepping, we use a leapfrog type DuFort-Frankel method. The discretized version of
Eqs. (2.11)-(2.16) can be written as follows:

(ρ̄n+1 − ρ̄
n−1)/2∆t =−[δr(ρ̄u)n+1 +δz(ρ̄w)n+1], (2.17)

((ρ̄u)n+1 − (ρ̄u)n−1)/2∆t =−[δr(uρ̄u)n +δz(wρ̄u)n]+

[
ρ̄

(
r+ v

(
2+

v
r

))]n

− 1
γM2 rδr pn

+Er
[

4
3

(
δrδrun +δr

(
u
r

))
+δzδzun +

1
3

δrδzwn
]
,

(2.18)

((ρ̄v)n+1 − (ρ̄v)n−1)/2∆t =−[δr(uρ̄v)n +δz(wρ̄v)n]+

[
ρ̄u

(
2+

v
r

)]n

+Er
[(

δrδrvn +δr

(
v
r

))
+δzδzvn

]
,

(2.19)

((ρ̄w)n+1 − (ρ̄w)n−1)/2∆t =−[δr(uρ̄w)n +δz(wρ̄w)n]− 1
γM2 rδz pn

+Er
[

δrδrwn +
1
r

δrwn +
4
3

δzδzwn +
1
3

δzδrun +
1
3

δz

(
un

r

)]
,

(2.20)

((ρ̄T )n+1 − (ρ̄T )n−1)/2∆t =−[δr(ρ̄u)n+1T n +δz(ρ̄w)n+1T n]− (γ −1)(ρ̄T )n+1Qn+

γE
Pr

r
[

δrδrT n +
1
r

δrT n +δzδzT n
]
+(γ −1)γM2ErΦ

n,

(2.21)

pn+1 = (ρ̄T )n+1/r, (2.22)



2.3 Developing Finite Difference Approximation 15

where

Φ
n = µ(ρ,T )

[
2ei jei j −

2
3
(∇ ·u)2

]
= µ

{[
2(δrun)2 +

2
r2 (u

n)2 +2(δzwn)2 +(δrvn − vn/r)2 +(δzun +δrwn)2 +(δzvn)2
]
− 2

3
(Qn)2

}
,

(2.23a)

Qn = (∇.u)n = (1/r)(δr(run))+δzwn. (2.23b)

In equations (2.17)-(2.22), we used the following notation

δxφi = φ(i+ 1
2 )
−φ(i− 1

2 )
/∆xi. (2.24)

We use Dufort-Frankel method to approximate the second derivatives, i.e.,

δxδxφi = [(φ(i+1)− φ̄i)/∆xi+ 1
2
− (φ̄i −φ(i−1))/∆xi− 1

2
]n/∆xi, (2.25)

where
φ̄i

n
=

1
2
(φ n+1

i −φ
n
i ),

∆xi+ 1
2
= (∆xi +∆xi+1)/2,

and
∆xi = (∆xi+ 1

2
+∆xi− 1

2
)/2.

Since we are going to use uniform grid, we have

∆xi+ 1
2
= ∆xi− 1

2
= ∆xi

From Eqns.(2.17)-(2.25) although it appears as if we are using an implicit method, since φ
n+1
i

is on the right hand side, the truth is far from it. We can easily rearrange the terms and take this
term from future to left hand side to make the scheme explicit. Therefore, while coding, we
only calculate a part of any second derivative.

2.3.2 Donor Cell or Upwind Scheme for Convective Derivatives

We now describe the “donor cell” or “upwind scheme” used to approximate the convective
derivative terms. We take a one dimensional example for this purpose. Let φ be any scalar
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quantity, being advected by the velocity u. Then the convective derivative ∂ (uφ)
∂x at a particular

node , say at i can be calculated according to the velocity u at the cell boundaries which are at
i+ 1

2 and i− 1
2 . Depending on the signs of the neighboring velocities, there are four possible

cases. Figure 2.3 highlights these cases.

Fig. 2.3 Four possible cases for upwind scheme.

1. If u(i− 1
2 )
⩾ 0,u(i+ 1

2 )
⩾ 0,

∂ (uφ)

∂x
=

u(i+ 1
2 )

φi −u(i− 1
2 )

φi−1

∆x
. (2.26)

2. If u(i− 1
2 )
⩽ 0,u(i+ 1

2 )
⩽ 0,

∂ (uφ)

∂x
=

u(i+ 1
2 )

φi+1 −u(i− 1
2 )

φi

∆x
. (2.27)

3. If u(i− 1
2 )
⩾ 0,u(i+ 1

2 )
⩽ 0,

∂ (uφ)

∂x
=

u(i+ 1
2 )

φi+1 −u(i− 1
2 )

φi−1

∆x
. (2.28)

4. If u(i− 1
2 )
⩽ 0,u(i+ 1

2 )
⩾ 0,

∂ (uφ)

∂x
=

u(i+ 1
2 )

φi −u(i− 1
2 )

φi

∆x
(2.29)
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This method is applied to calculate the following derivatives: δr(uρ̄u),δr(uρ̄v),δr(uρ̄w),δz(wρ̄u),δz(wρ̄v)
and δz(wρ̄w). One of the important reasons to choose this method is that it respects local mass
conservation, Harada[17, 16] and Hyun and Park [19].

2.3.3 Caveats While Using the DuFort-Frankel Leapfrog Type Scheme

To calculate the second derivatives (diffusion terms), we use a DuFort-Frankel leapfrog type
scheme. The scheme is as follows: To approximate diffusion terms, we use (2.24). As for the
time derivative, we use the following second order scheme

du
dt

=
un+1 −un−1

2δ t
(2.30)

We can see that there is a slight problem. We need two initial conditions. If we somehow get
u0 and u1, we can update for u2. However, we only know the physical initial condition u0. In
literature, the second initial condition is referred to as the computational initial condition.
Now the pertinent question is, how to get u1? Let us take a concrete example of the oscillation
equation and see how and why computational mode can cause problems.

Leapfrog Scheme for the Oscillation Equation

Let us consider the following equation:

du
dt

= iωu (2.31)

where i is the square root of −1 and ω is a real number. Let us define A, the amplification
factor, as follows:

un+1 = Aun (2.32)

Now if we write a leapfrog scheme for the oscillation equation above, we will have

un+1 −un−1 = 2∆tiωu (2.33)

Let us first consider a simpler sub-case of ω = 0

Case 1

Here, the leapfrog scheme takes the following form.

un+1 −un−1 = 0 (2.34)
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Which is, of course, the exact solution. It is worthy of notice here, that all the values of u
at even time steps will be governed by the physical initial condition. While all the odd ones,
will be governed by u(n = 1). If we make the choice u(n = 1) ̸= u(n = 0), we will have
oscillations(u0,u1,u0,u1..., these are clearly not physical, for we have set ω = 0). On the
other hand, if we choose u1 = u0, we get the exact solution without oscillations. This example
illustrates how important the choice of the computational initial condition is.

Case 2

Here, let ω be some positive real number. Eqn.(2.33) can be rearranged as

un+1 −2∆tiωun −un−1 = 0 (2.35)

Putting (2.32) in (2.35), we have

A2 −2∆tiωA−1 = 0 (2.36)

We can now see that this quadratic equation has two possible roots for A: A± = iω∆t ±√
1− (ω∆t)2 Therefore, we see that there are two ‘modes’.

un+1
± = A±un (2.37)

Since we had a first order differential equation in time, we must only have one solution. So
one of these solutions has nothing to do with the physics of the problem. It is just an artifact of
the scheme that we have been using. Consider the limit ω → 0, for which it is easy to see that
A+ →+1 while A− →−1 There are a few things to notice here.

• the origin of the computational mode has nothing to do with the physics of the problem.
It is an artifact of the leapfrog scheme.

• as ∆t → 0, un+1
− ↛ un

−,i.e., making the time step smaller won’t make the computational
mode go away.

• after n steps, the general solution will be a combination of both the modes, i.e. un =

aun
++bun

− or ⇒ un = An
+au0 +An

−bu0

2.3.4 The Remedy: Filtering

Now the pertinent question is, how to get rid of the computational mode? In simple problems,
like the oscillation equation above, we can choose the initial condition in such a way that the
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coefficient of the computational mode goes to zero. But in general cases, like compressible
Navier-Stokes equations, we cannot do so. If we cannot get rid of the computational mode,
what should we do? One of the possible remedies is, restarting the code after every few steps.
Another possible approach is to smooth out the solution after every few time steps. This is
known as time filtering. We ‘filter’ out the computational mode by some mechanism. In the
present numerical calculation, we simply put u1 = u0. After every certain number of time steps,
(20 or 30), we filter the solution in order to suppress the computational mode. The filtering is
done by the following simple formula, see Harada[17, 16] and Hyun and Park [19].

φ
n± 1

2 =
1
2
(φ n +φ

n±1) (2.38)

2.4 Putting It All Together

Once we have discretized the governing equations according to the last section, the numerical
implementation involves solving them in the following manner.

1. In the present numerical calculation, we simply put φ 1 = φ 0, where φ can be u,v,w, ρ̄,T, p.

2. Solve for (ρ̄u)n+1, (ρ̄v)n+1, (ρ̄w)n+1 from momentum equations (2.18)-(2.20).

3. Get ρ̄n+1 by plugging in the updated velocity fields obtained from the previous step into
the continuity equation (2.17).

4. Get (ρ̄T )n+1 from the energy equation (2.21).

5. Update pressure pn+1 from the equation of state (2.22).

6. Obtain un+1, vn+1, wn+1, T n+1 by dividing (ρ̄u)n+1, (ρ̄v)n+1, (ρ̄w)n+1, (ρ̄T )n+1 by
ρ̄n+1.

7. To avoid computational splitting caused by leapfrogging, filter after every m time steps
according to Eq. (2.38).

8. Keep going until the steady state is reached. We monitor whether the kinetic energy
curves have saturated to check if the steady state has been reached. Figure 2.4 shows KEu

and KEw (as defined in Harada [17] and Section 3.6.1) versus time plots. The saturation
of kinetic energies is evident from Fig. 2.4.
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Fig. 2.4 Time series for kinetic energies, case 2 from Table - 2.2: (a) KEu, (b) KEw.

2.5 Physical Interpretation of Results

“Never make a calculation until you know the answer. Make an estimate before every calculation,
try a simple physical argument...” - John Wheeler.

In this section, we present some physical arguments on how the flow ought to look like,
in the cases of thermally and mechanically driven flows. The initial condition is the solid
body rotation, where in the interior, pressure gradient in the radial direction is balanced by the
centrifugal force. The development of the flow starts by different mechanisms in the thermally
and mechanically driven flows. Let us try to understand how the flow would start to develop in
each of these cases. Table -2.2 summarizes the details of each of the cases studied.

Case Mach number (M) Details

1 3.0 Thermally driven flow
2 4.0 Thermally driven flow
3 4.0 Mechanically driven flow, with viscous dissipation
4 4.0 Mechanically driven flow, without viscous dissipation

Table 2.2 Cases from Harada [17].

Other parameters are as follows. E = 1.03×10−3 (Ekman number), Pr = 0.97 (Prandtl
number), M = 4.0 (Peripheral Mach number) and ε = 3.125×10−2 = ∆T/T0 (Thermal Rossby
number).
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2.5.1 Thermally Driven Flow

The gas is rotating in a solid body rotation in the annulus. We have the balance of radial forces
in non-dimensional terms given by:

| 1
γM2

δ p
δ r

|= |ρr|,

as shown in the upper part of Fig. 2.5. Suddenly, we lower the temperature of the bottom plate
from 1 to 1− ε and raise the temperature of the upper plate from 1 to 1+ ε . This way, we
introduce a temperature gradient in the system. We also assume that the outer wall is thermally
conducting and it immediately establishes a linear temperature profile where temperature varies
from 1− ε to 1+ ε with the vertical height z. Now in the lower-right corner, we will have
the heaviest fluid while in the upper-left corner (because most of it will have been pushed
outwards by the centrifugal force), we have the lightest fluid blob (because density is a function
of temperature). Therefore, in non-dimensional terms,

| 1
γM2

δ p
δ r

|< |ρNewr|.

where ρNew is the new local density in the lower-right corner, which will be greater than ρ the
original density because the temperature near the wall has been lowered. The balance of forces
is no more valid, for in the lower-right corner in the r− z plane, the centrifugal force on the
blob of the gas will be higher than the radial pressure gradient, (because the density will be
more), as shown in Fig. 2.5.

pressure

gradient

centrifugal

force

lower right corner

Fig. 2.5 Thermally driven flow.

In other words, the radial pressure gradient will not be able to balance the centrifugal force
and the blob will have a tendency to go radially outwards. As it is physically impossible because
of the presence of the outer side wall, the blob has nowhere to go but upwards. Similarly, near
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the upper-left corner, centrifugal force won’t be enough to balance the pressure gradient and
the lighter blob will have a tendency to go inwards. But because of a solid wall, it will have
no choice but to go downwards, which is where it will go. The inner core flow will be set up
due to the continuity of the gas. As soon as the gas starts to move, the Coriolis force will try to
push it outside the r− z plane. Now by symmetry, the flow at the mid-height z = Λ/2 will be
purely axial and the Coriolis force will be zero there. Thus we will get symmetric azimuthal
velocities. This way, we can explain how the flow starts and its qualitative behavior, which is in
agreement with the numerical results. The velocity plot for the thermally driven flow, case 2 of
Harada [17], is shown in Fig. 2.6.
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Fig. 2.6 Velocity vector plot for thermally driven flow, case 2 (Table - 2.2).
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2.5.2 Mechanically Driven Flow

pressure

gradient

centrifugal

force

near the bottom

Fig. 2.7 Mechanically driven flow.

As we stop the inner and the bottom plate from the state of solid body rotation, we will have
a case similar to the classical case of spin-down. For example, see Greenspan and Howard
[14] for a study of the classical linear spin-down of a rapidly rotating fluid in an axisymmetric
container with rigid boundaries, followed by an instantaneous small change in the angular
velocity of the boundary at small Ekman number. The gas near the bottom wall will slow down,
owing to viscosity or in other words, the no-slip boundary condition. The negative pressure
gradient, which was balancing the centrifugal force in the solid body rotation, will now take
over, as shown in Fig. 2.7. This will happen because the centrifugal force will no longer be
able to balance the pressure gradient. The gas will start flowing radially inwards, towards the
axis of rotation. From then on, the Coriolis force will try to push it out of the plane. The flow
will be set-up this way and mass conservation will drive the flow. The velocity plots for cases 3
and 4 from Harada [17])(table - 2.2 ) are given in Fig. 2.8:
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Fig. 2.8 Mechanically driven flow: velocity vector plots for (a) case 3 and (b) case 4 (Table -
2.2).

2.6 Thermally Driven Flow - Code Validation

In this subsection, we consider Case 2 from Harada [17] to validate the present code, (Table
- 2.2). The parameters are taken as E = 1.03× 10−3 (Ekman number), Pr = 0.97 (Prandtl
number), M = 4.0 (Peripheral Mach number) and ε = 3.125×10−2 = ∆T/T0 (Thermal Rossby
number).
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Fig. 2.9 Profiles in black are from Harada [17], colored ones are from the present code (a) u vs
z at different r, (b) v vs z at different r, (c) w vs r at z = 0.5.

Figure 2.9 shows axial and radial profiles of different velocity components for thermally driven
flow. In Fig. 2.9a, the extracted values of Harada [17] are multiplied by 10; it is probably a
printing mistake in the paper. Overall, there is a good agreement.

Temperature and azimuthal velocity contours are also plotted in Fig. 2.10 and 2.11, with
good agreement of present solution with those of Harada [17].
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Fig. 2.10 Temperature contours, case 2, (Table - 2.2) (a) present code and (b) Harada [17].
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Fig. 2.11 Azimuthal velocity contours, case 2, (Table - 2.2) (a) present code and (b) Harada
[17].

2.7 Mechanically Driven Flow - Code Validation

In this section, we compare present results for cases 3 and 4 from Harada [17], (Table - 2.2),
see Figs. 2.12, 2.13, 2.14 and 2.15. We observe a good quantitative match between the velocity
and angular velocity profiles, but for case 3, we could not find even a qualitative match with
the published result of Harada [17], see, for example, Fig. 2.13. However, when the viscous
dissipation was switched off, we again observe a good quantitative match between the published
results and the ones produced with the present code.
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Fig. 2.12 Profiles in black are from Harada [17], colored ones are from the present code. (a)
angular velocity v+r

r vs r at different z, case 3, (b) angular velocity v+r
r vs z at different r, case

3, (c) u vs z at different r, case 3, (d) w vs r at different z, case 3, (e) angular velocity v+r
r vs z

at different r, case 4, (f) w vs r at different z, case 4.
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The reasons for small departures of the present results from the published results may lie
in the discretization. The code was run at 51×51 grid-size, while the published results were
calculated at 19×21 grid-size. For details, see Harada [17]. Also, several printing mistakes
were found in the manuscript, for example, in the Eqn. (15) of Harada [17], the Coriolis and the
centrifugal terms are missing a factor of v, the azimuthal velocity. Furthermore, although the
temperature contours differ qualitatively for case 3, they do seem to be following the no-flux
or Neumann boundary condition, instead of Dirichlet boundary condition at the bottom wall.
Finally, the correct temperature contours obtained from the present code for case 3 and 4 are
plotted in Fig. 2.13 and Fig. 2.14:
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Fig. 2.13 Temperature contours, case 3, (Table - 2.2) (a) present code and (b) Harada [17].
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Fig. 2.14 Temperature contours, case 4, (Table - 2.2) (a) present code and (b) Harada [17].
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The azimuthal velocity contours are found to match. We plot the azimuthal velocity contours
for case 3 in Fig. 2.15
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Fig. 2.15 Azimuthal velocity contours contours, case 3, (Table - 2.2) (a) present code and (b)
Harada [17].

2.8 Summary and Conclusion

A variant of the numerical method used in Harada[17, 16] and Hyun and Park [19] has been
developed. Results from the code developed using this method are compared with published
literature Harada [17] for bench-marking. Physical interpretation is given in order to explain
numerical results for both thermally and mechanically driven flows. Some mistakes in the work
of Harada [17] have been identified and corrected. [see Fig. 2.13].





Chapter 3

Compressible Taylor-Couette Flow

“The worthwhile problems are the ones you can really solve or help solve, the ones you can
really contribute something to. ...No problem is too small or too trivial if we can really do
something about it. ” - Richard Feynman in a letter to a student.

3.1 Introduction

Fig. 3.1 Taylor-Couette flow (TCF) with periodic boundaries in z-direction.
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Figure 3.1 shows a sketch of the Taylor-Couette geometry with periodic boundary conditions in
axial direction. As usual, the inner and outer cylinders can rotate at different angular velocities.
No top or bottom lids are assumed and this is achieved by applying periodic boundary conditions
in the z-direction. The annulus is filled with an ideal gas.

3.2 Dimensional Governing Equations

The governing equations for a compressible gas are:
Continuity:

∂ρ∗

∂ t∗
+∇

∗ · (ρu∗) = 0. (3.1)

Momentum:

ρ
∗
(

∂u∗

∂ t∗
+u∗ ·∇∗u∗

)
=−∇

∗p∗+∇
∗ · (2µ̂∗(ρ∗,T ∗)e∗)+∇

∗(λ ∗(ρ∗,T ∗)∇∗ ·u∗). (3.2)

Energy:

ρ
∗cv

(
∂T ∗

∂ t∗
+u∗ ·∇∗T ∗

)
=−p∗∇

∗ ·u∗+∇
∗ · (κ̂∗(ρ∗,T ∗)∇∗T ∗)+Φ

∗, (3.3)

where

Φ
∗ = µ̂∗(ρ∗,T ∗)

(
2e∗i je

∗
i j

)
+λ

∗(∇∗ ·u∗)2 (3.4)

Throughout this thesis, we have assumed Stokes’ assumption of zero bulk viscosity (ξ ∗ =

λ ∗+ 2µ∗

3 = 0, see Eqn. (3.5)). Mathematically,

(λ ∗+
2µ∗

3
) = ξ

∗.

⇒ λ
∗ =−2µ∗

3
.

(3.5)

Although the developed code is robust and can handle non-zero bulk viscosity as well, we only
include results for zero bulk viscosity in this work. Also,

e∗i j =
1
2

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
.

Finally, the equation of state for an ideal gas is:

p∗ = (c∗p − c∗v)ρ
∗T ∗ (3.6)
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where (.)∗ are dimensional quantities.

In literature, predominantly, there are two kinds of non-dimensionalizations leading to
different non-dimensionalized equations. The terms remain the same, but the coefficients
change depending on the choice of reference scales. Accordingly, the boundary conditions also
change. We start with dimensional equations and then go on to derive general non-dimensional
equations with characteristic length scale ‘LR’, characteristic velocity scale ‘UR’ and so on. We
then plug in the different characteristic variables as described in the literature to derive different
forms of dimensionless equations.

3.3 General Dimensionless Equations

Let us choose U∗
R, L∗

R, ρ∗
R, T ∗

R , p∗R, µ∗
R, k∗R as the characteristic velocity, length, density, tem-

perature, pressure, viscosity and thermal conductivity scales, respectively. It follows that the
characteristic time scale will be t∗R = L∗

R/U∗
R . Let us substitute u∗ =U∗

Ru, ∇∗ = 1
LR

∇, ρ∗ = ρ∗
Rρ ,

T ∗ = T ∗
R T , p∗ = p∗R p, µ∗ = µ∗

Rµ and κ∗ = κ∗
Rk in equations (3.1)− (3.6). Here, non-starred

quantities are dimensionless.
Continuity:

ρ∗
R

t∗R

∂ρ

∂ t
+

ρ∗
RU∗

R
L∗

0
∇
∗ · (ρu) = 0 (3.7a)

⇒
∂ρ

∂ t
+∇ · (ρu) = 0. (3.7b)

Momentum:(
ρ∗

R(U
∗
R)

2

L∗
R

)
ρ

(
∂u
∂ t

+u ·∇u
)
=

(
p∗R
L∗

R

)
(−∇p)+

(
µ∗

RUR

(L∗
R)

2

)[
∇·(2µ̂(ρ,T )e)+∇(λ (ρ,T )∇·u)

]
,

(3.8a)
⇒

ρ

(
∂u
∂ t

+u ·∇u
)
=

(
p∗R

ρ∗
R(U

∗
R)

2

)
(−∇p)+

(
µ∗

R
ρ∗

RU∗
RL∗

R

)[
∇ · (2µ̂(ρ,T )e)+∇(λ (ρ,T )∇ ·u)

]
.

(3.8b)
Energy:(

ρ∗
RT ∗

R U∗
R

L∗
R

)[
ρ

(
∂T
∂ t

+u·∇T
)]

=
p∗RU∗

R
cvL∗

R
(−p∇·u)+

(
κ∗

RT ∗
R

cv(L∗
R)

2

)
(∇·(κ̂(ρ,T )∇T ))+

(
(U∗

R)
2

cv(L∗
R)

2

)
Φ,

(3.9a)
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⇒

ρ

(
∂T
∂ t

+u ·∇T
)
=

p∗R
cvρ∗

RT ∗
R
(−p∇ ·u)+

(
κ∗

R
ρ∗

RU∗
RL∗

Rcv

)
(∇ · (κ̂(ρ,T )∇T ))+

(
UR

ρ∗
RU∗

RL∗
Rcv

)
Φ.

(3.9b)

λ =−2µ

3
. (3.10)

Equation of state for an ideal gas:

p∗R p = (cp − cv)ρ
∗
RT ∗

R (ρT ). (3.11)

Let us choose p∗R = (cp − cv)ρ
∗
RT ∗

R so that the non-dimensional equation of state becomes

p = ρT. (3.12)

From here, we will consider two different forms of non-dimensional equations. Table - 3.1
summarizes the characteristic quantities used in two methods of obtaining the dimensionless
form. Method 1 uses inertial time scale

tR =
d

Ω1R1
, (3.13)

while method 2 uses viscous time scale as reference time scale.

tR =
ρ∗

Rd2

µ∗
R

(3.14)

Another important difference between the two methods is that method 1 uses local density
while method 2 uses average density as the characteristic density.
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Quantity Method 1 Method 2

t∗R
d

Ω1R1

ρ∗
Rd2

µ∗
R

(Viscous time scale)

L∗
R d = R2 −R1 d = R2 −R1

U∗
R Ω1R1

µ∗
R

ρ∗
Rd

ρ∗
R ρ∗|R1 or ρ∗|R2

Mt
π(R2

2−R2
1)

µ∗
R µ∗|R1 µ∗|R1

κ∗
R κ∗|R1 κ∗|R1

T ∗
R T ∗|R1 T ∗|R1

p∗R (cp − cv)ρ
∗
RT ∗

R (cp − cv)ρ
∗
RT ∗

R
Table 3.1 Reference Scales.

NOTE:

• d is the gap width ⇒ d = R2 −R1

• Mt is the mass per unit length of the fluid in the cylindrical annulus. The reason for
choosing this to non-dimensionalize ρ∗

R is motivated by experiments. Only Mt can be
prescribed in experiments and not the local density [Welsh et al. [41].]

• T ∗|R1 ⇒ temperature at the inner cylinder and so on.

3.3.1 Method 1

In this method, we consider a non-dimensionalization similar to Harada [17], Hyun and Park
[19], Malik et al. [23] and Malik et al. [24]. The reference scales can be found in table -3.1.
The dimensionless governing equations are:

∂ρ

∂ t
+∇ · (ρu) = 0, (3.15)

ρ
Dui

Dt
=− 1

γMa2 ∇p+
1

Re1

[
µ(ρ,T )∇2u+

∂

∂xi
(λ∇ ·u)+µ

∂

∂xi
(∇ ·u)+(∇µ)·(∇ui)+

∂u
∂xi

·(∇µ)

]
,

(3.16)

ρ
DT
Dt

=−(γ −1)p∇ ·u+ γ

Re1
∇ · (κ̂∇T )+

(γ −1)γMa2

Re1
Φ, (3.17)

p = ρT, (3.18)
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where the inner Reynolds number based on the angular velocity of the inner cylinder is defined
by

Re1 =
ρ∗

RU∗
RL∗

R
µ∗

R
=

ρ∗
RΩ1R1d

µ∗
R

. (3.19a)

Prandtl number is defined by
Pr = µ

∗cp/κ̂
∗. (3.19b)

The dimensionless thermal diffusivity is

κ̂ =
µ

Pr
, (3.19c)

the peripheral Mach number is

Ma =
U∗

R√
γRT ∗

R
. (3.19d)

where R is the universal gas constant and γ = cp/cv is the ratio of specific heat capacities.
We employ Stokes’ assumption of zero bulk viscosity (ξ = 0) and write

λ =−2µ

3
. (3.19e)

In this way of non-dimensionalizing the governing equations, the boundary conditions will take
the following form:

• u = w = 0 on r = η

1−η
,r = 1

1−η
,

• v = Re1 on r = η

1−η
,

• v = Re2 on r = 1
1−η

,

• T = 1 on r = η

1−η
,

• T = χ = T2
T1

on r = 1
1−η

,

• Periodic boundary conditions in z- and φ -direction.

• η = R1
R2

= 0.5

• χ = T2
T1

is the temperature ratio.

3.3.2 Method 2

If we consider the viscous time scale as the characteristic time scale and non-dimensionalize
ρ∗ based on the mass per unit length of the fluid in the annulus Mt ; we get the following
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non-dimensional form which is in line with Welsh et al. [41].

∂ρ

∂ t
+∇ · (ρu) = 0, (3.20)

ρ
Dui

Dt

=−
Re2

1
Ma2 ∇p+

[
µ(ρ,T )∇2u+

∂

∂xi
(λ∇ ·u)+µ

∂

∂xi
(∇ ·u)+(∇µ) · (∇ui)+

∂u
∂xi

· (∇µ)

]
=−

Re2
1

Ma2 ∇p+
[

µ(ρ,T )∇2u+
µ(ρ,T )

3
∂

∂xi
(∇ ·u)− 2

3
(∇ ·u)∂ µ(ρ,T )

∂xi
+(∇µ) · (∇ui)+

∂u
∂xi

· (∇µ)

]
,

(3.21)

ρ
DT
Dt

=−(γ −1)p∇ ·u+ γ∇ · (κ̂∇T )+
(γ −1)Ma2

Re2
1

Φ, (3.22)

p = ρT, (3.23)

where

• η = R1
R2

= 0.5 throughout this chapter.

• Isothermal speed of sound c2
s = (cp − cv)(ρ

∗
R)

2T ∗
R d2/(µ∗

R)
2.

• Peripheral Mach number is defined as Ma = Re1/cs.

• Reynolds numbers based on inner and outer angular velocities are Rei =
ΩiRiρ

∗
Rd

µ∗
R

, i = 1,2.

• Prandtl number (Pr), dimensionless thermal diffusivity (κ̂) and γ are the same as defined
in Eqns. (3.19).

• Stokes’ assumption of zero bulk viscosity is also taken to hold and can be written as Eqn.
(3.19e).

The boundary conditions become:

• u = w = 0 on r = η

1−η
,r = 1

1−η
,

• v = Re1 on r = η

1−η
,

• v = Re2 on r = 1
1−η

,

• T = 1 on r = η

1−η
,
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• T = χ = T2
T1

on r = 1
1−η

,

• Periodic boundary conditions in z- and φ -direction.

3.4 Dimensionless Governing Equations and Boundary Con-
ditions in Cylindrical Coordinates

“Formulas hamper the understanding.” - S. Smale.

In this work, we use the second method of non-dimensionalization as defined in Section
3.3.2. The reason for adapting method 2 is because it is better to use average density as the
characteristic quantity than the local one, as described in the work of Manela and Frankel [26]
and Welsh et al. [41]. There are two advantages to this approach:

1. The effect of increasing Ma on the critical Re1 can be established unequivocally.

2. Comparison with experiments can be made. As mentioned in Chapter 1, it is difficult to
prescribe local density a priori, whereas average density can be prescribed in physical
experiments.

We choose the cylindrical coordinate system with the z axis coinciding with the axis of
rotation of the cylinders as shown in Fig. 3.1. We write (3.7)-(3.11) in cylindrical coordinates
in the rest frame of reference.
Continuity:

∂ρ

∂ t
+

1
r

∂

∂ r
(rρu)+

1
r

∂

∂φ
(ρv)+

∂

∂ z
(ρw) = 0. (3.24)

r-Momentum:

∂ (ρu)
∂ t

+
1
r

∂

∂ r
[ru(ρu)]+

1
r

∂

∂φ
[v(ρu)]+

∂

∂ z
[w(ρu)]− ρv2

r

=−
Re2

1
Ma2

(
∂ p
∂ r

)
+

[
µ

(
∂ 2u
∂ r2 +

1
r2

∂ 2u
∂φ 2 +

∂ 2u
∂ z2 +

∂

∂ r

(
u
r

)
− 2

r2
∂v
∂φ

)
+(µ +λ )

∂

∂ r

(
1
r

∂

∂ r
(ru)+

1
r

∂

∂φ
(v)+

∂

∂ z
(w)

)
+

(
1
r

∂

∂ r
(ru)+

1
r

∂

∂φ
(v)+

∂

∂ z
(w)

)(
∂λ

∂ r

)
+

(
∂ µ

∂ r
∂u
∂ r

+
1
r2

∂ µ

∂φ

∂u
∂φ

+
∂ µ

∂ z
∂u
∂ z

)
+

(
∂ µ

∂ r
∂u
∂ r

+
1
r

∂ µ

∂φ

∂v
∂ r

+
∂ µ

∂ z
∂w
∂ r

)]
.

(3.25)
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φ -Momentum:

∂ (ρv)
∂ t

+
1
r

∂

∂ r
[ru(ρv)]+

1
r

∂

∂φ
[v(ρv)]+

∂

∂ z
[w(ρv)]+

ρuv
r

=−
Re2

1
Ma2

(
1
r

∂ p
∂φ

)
+

[
µ

(
∂ 2v
∂ r2 +

1
r2

∂ 2v
∂φ 2 +

∂ 2v
∂ z2 +

∂

∂ r

(
v
r

)
+

2
r2

∂u
∂φ

)
+(µ +λ )

1
r

∂

∂φ

(
1
r

∂

∂ r
(ru)+

1
r

∂

∂φ
(v)+

∂

∂ z
(w)

)
+

1
r

(
1
r

∂

∂ r
(ru)+

1
r

∂

∂φ
(v)+

∂

∂ z
(w)

)
∂λ

∂φ

+

(
∂ µ

∂ r
∂v
∂ r

+
1
r2

∂ µ

∂φ

∂v
∂φ

+
∂ µ

∂ z
∂v
∂ z

)
+

(
1
r

∂ µ

∂ r

(
∂u
∂φ

− v
)
+

1
r2

∂ µ

∂φ

(
∂v
∂φ

+u
)
+

1
r

∂ µ

∂ z
∂w
∂φ

)]
.

(3.26)

z-Momentum:

∂ (ρw)
∂ t

+
1
r

∂

∂ r
[ru(ρw)]+

1
r

∂

∂φ
[v(ρw)]+

∂

∂ z
[w(ρw)]

=−
Re2

1
Ma2

(
∂ p
∂ z

)
+

[
µ

(
∂ 2w
∂ r2 +

1
r2

∂ 2w
∂φ 2 +

∂ 2w
∂ z2 +

1
r

∂w
∂ r

)
+(µ +λ )

∂

∂ z

(
1
r

∂

∂ r
(ru)+

1
r

∂

∂φ
(v)+

∂

∂ z
(w)

)
+

(
1
r

∂

∂ r
(ru)+

1
r

∂

∂φ
(v)+

∂

∂ z
(w)

)
∂λ

∂ z

+

(
∂ µ

∂ r
∂w
∂ r

+
1
r2

∂ µ

∂φ

∂w
∂φ

+
∂ µ

∂ z
∂w
∂ z

)
+

(
∂ µ

∂ r
∂u
∂ z

+
1
r

∂ µ

∂φ

∂v
∂ z

+
∂ µ

∂ z
∂w
∂ z

)]
.

(3.27)

Energy:

∂ (ρT )
∂ t

+
1
r

∂

∂ r
[ru(ρT )]+

1
r

∂

∂φ
[v(ρT )]+

∂

∂ z
[w(ρT )]

=−(γ −1)(p)
(

1
r

∂

∂ r
(ru)+

1
r

∂

∂φ
(v)+

∂

∂ z
(w)

)
+ γ

[
κ̂

(
1
r

∂

∂ r

(
r

∂T
∂ r

)
+

1
r2

∂ 2T
∂φ 2 +

∂ 2T
∂ z2

)
+

(
∂T
∂ r

∂ κ̂

∂ r
+

1
r2

∂T
∂φ

∂ κ̂

∂φ
+

∂T
∂ z

∂ κ̂

∂ z

)]
+(γ −1)

Ma2

Re2
1

Φ,

(3.28a)
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where

Φ = µ(ρ,T )(2ei jei j)+λ (ρ,T )(∇ ·u)2

= µ(ρ,T )

{[
2
(

∂u
∂ r

)2

+
2
r2

(
∂v
∂φ

+u
)2

+2
(

∂w
∂ z

)2

+

(
1
r

(
∂u
∂φ

− v
)
+

∂v
∂ r

)2

+

(
∂u
∂ z

+
∂w
∂ r

)2

+

(
1
r

∂w
∂φ

+
∂v
∂ z

)2]
+

λ (ρ,T )
µ(ρ,T )

[
1
r2

(
∂ (ru)

∂ r

)2

+
1
r2

(
∂v
∂φ

)2

+

(
∂w
∂ z

)2

+
2
r2

∂ (ru)
∂ r

∂v
∂φ

+
2
r

∂ (ru)
∂ r

∂w
∂ z

+
2
r

∂w
∂ z

∂v
∂φ

]}
.

(3.28b)

For completeness, we write the boundary conditions again:

• u = w = 0 on r = η

1−η
,r = 1

1−η
,

• v = Re1 on r = η

1−η
,

• v = Re2 on r = 1
1−η

,

• T = 1 on r = η

1−η
,

• T = χ = T2
T1

on r = 1
1−η

,

• Periodic boundary conditions in z- and φ -direction.

where

• η = R1
R2

= 0.5 throughout this chapter.

• Isothermal speed of sound c2
s = (cp − cv)(ρ

∗
R)

2T ∗
R d2/(µ∗

R)
2.

• Peripheral Mach number is defined as Ma = Re1/cs.

• Reynolds numbers based on inner and outer angular velocities are Rei =
ΩiRiρ

∗
Rd

µ∗
R

, i = 1,2.

• Prandtl number (Pr), dimensionless thermal diffusivity (κ̂) and γ are the same as defined
in Eqns. (3.19).

• Stokes’ assumption of zero bulk viscosity is also taken to be true and can be written as
Eqn. (3.19e).
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3.4.1 Governing Equations for an Axisymmetric Flow

While writing the governing equations for an axisymmetric flow, we switch off the φ -derivatives,
thereby imposing axisymmetry. Continuity:

∂ρ

∂ t
+

1
r

∂

∂ r
(rρu)+

∂

∂ z
(ρw) = 0. (3.29)

r-Momentum:

∂ (ρu)
∂ t

+
1
r

∂

∂ r
[ru(ρu)]+

∂

∂ z
[w(ρu)]− ρv2

r

=−
Re2

1
Ma2

(
∂ p
∂ r

)
+

[
µ

(
∂ 2u
∂ r2 +

∂ 2u
∂ z2 +

∂

∂ r

(
u
r

))
+(µ +λ )

∂

∂ r

(
1
r

∂

∂ r
(ru)+

∂

∂ z
(w)

)
+

(
1
r

∂

∂ r
(ru)+

∂

∂ z
(w)

)(
∂λ

∂ r

)
+

(
∂ µ

∂ r
∂u
∂ r

+
∂ µ

∂ z
∂u
∂ z

)
+

(
∂ µ

∂ r
∂u
∂ r

+
∂ µ

∂ z
∂w
∂ r

)]
.

(3.30)

φ -Momentum:

∂ (ρv)
∂ t

+
1
r

∂

∂ r
[ru(ρv)]+

∂

∂ z
[w(ρv)]+

ρuv
r

=

[
µ

(
∂ 2v
∂ r2 +

∂ 2v
∂ z2 +

∂

∂ r

(
v
r

))
+

(
∂ µ

∂ r
∂v
∂ r

+
∂ µ

∂ z
∂v
∂ z

)
+

1
r

∂ µ

∂ r

(
− v

)]
.

(3.31)

z-Momentum:

∂ (ρw)
∂ t

+
1
r

∂

∂ r
[ru(ρw)]+

∂

∂ z
[w(ρw)]

=−
Re2

1
Ma2

(
∂ p
∂ z

)
+

[
µ

(
∂ 2w
∂ r2 +

∂ 2w
∂ z2 +

1
r

∂w
∂ r

)
+(µ +λ )

∂

∂ z
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Energy:
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where
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3.4.2 Writing Governing Equations in Terms of ρ̄

Consider mass conservation, Eq. (3.27). Multiplying Eq. (3.27) throughout by r gives

∂ (ρr)
∂ t

+
∂

∂ r
(rρu)+

∂

∂ z
(rρw) = 0. (3.34)

Defining
ρ̄ = ρr, (3.35)

The continuity equation reduces to

∂ ρ̄

∂ t
+

∂

∂ r
(ρ̄u)+

∂

∂ z
(ρ̄w) = 0. (3.36)

Notice how the convective derivatives look as if they were written in Cartesian coordinates.
Doing the same thing for momentum and energy equations, we convert the equations in terms
of the new variable ρ̄ . This converts the convective derivatives into ones that look like Cartesian
convective derivatives. The momentum and energy equations then take the following form:
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r-Momentum:
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φ -Momentum:
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z-Momentum:
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Energy:
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where
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(3.40b)

Also, Stokes’ assumption of zero bulk viscosity (ξ = 0) is used according to Eqn. (3.19e).

3.4.3 Numerical Method

Numerical method as described in Section 2.3 of Chapter 2 was used. Central differences were
used to approximate first and mixed spatial derivatives. For second derivatives, DuFort-Frankel
or leapfrog type scheme was used as described in Subsection 2.3.3. To approximate convective
derivatives, upwind scheme was used as explained in Subsection 2.3.2. Overall accuracy of
the scheme was hence second order in space owing to central difference, DuFort-Frankel
and upwind schemes and second order in time, due to two-level time stepping employed in
the DuFort-Frankel method. To avoid computational splitting inherent to the DuFort-Frankel
method, filtering was done after every 20 dimensionless time-steps as discussed in Subsection
2.3.4. The algorithm was as enumerated in Section 2.4, motivated by Harada[17, 16] and Hyun
and Park [19].

3.5 Verifying the Base State for Compressible Taylor-Couette
Flow

Another check for verification of the code is to find the base state for the compressible TCF. In
the dimensionless form, the base state can be solved for analytically, except for the density field
[see Welsh et al. [41]]. To find the base state from Eqns. (3.24)-(3.28), subjected to appropriate
boundary conditions, we seek a solution with u0 = w0 = 0. We follow Chandrasekhar [5] and
write

v0(r) = Ar+
B
r
, (3.41)

where

A = Re1
µ ′−η2

η(1+η)
(3.42a)
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and

B = Re1
η(1−µ ′)

(1−η)(1−η2)
, (3.42b)

where the radius ratio is given by η = R1/R2 and the rotation ratio is µ ′ = Ω2/Ω1. To get the
steady state temperature, we need to solve the following equation.
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d
dr

(
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= 0. (3.43)

Analytical solution for Eqn. (3.43) is known, given in Welsh et al. [41],

T0(r) = χ +
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γ
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with

C =
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η2 lnη
(3.45a)

and

D = (1−η
2)

[
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η2
ln(1−η)

lnη

]
. (3.45b)

Unlike velocity and temperature fields, the density field in the steady base state cannot be
determined analytically. We derive the equation for the steady state mass density and solve it
using numerical methods. From there, we derive the steady state density field.

The non-dimensionalization adapted here is based on the mass per unit length of the fluid
in the annular region (denoted in non-dimensional terms by M). In the non-dimensional terms,
the base-state density is

ρ0(r) =
1

2πr
dM
dr

. (3.46)

Also, in the base state, the r−momentum equation can be written as

−
ρ0v2

0
r

=−
Re2

1
Ma2

[
T0

dρ0

dr
+ρ0

dT0

dr

]
⇒ Ma2

Re2
1

v2
0

rT0
=

1
ρ0

dρ0

dr
+

1
T0

dT0

dr
.

(3.47)

From Eqn.(3.46),
dρ0

dr
=

1
2π

[
1
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d2M
dr2 − 1
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dM
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]
, (3.48)
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using Eqn.(3.46) in Eqn.(3.48) ⇒

d2M
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(
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− Ma2
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1

v2
0

rT0
− 1

r

)
dM
dr

= 0. (3.49)

We need two boundary conditions to solve for M(r). From the definition of M(r),

M = 2π

∫ r

η

1−η

ρ0(s)sds. (3.50)

we obtain the required boundary conditions. The boundary condition at r = η

1−η
follows from

the above integral Eqn.(3.48):

M
(

r =
η

1−η

)
= 0. (3.51)

To get the second boundary condition, recall from table -3.1 that M was non-dimensionalized
by Mt , total mass per unit length of fluid in the annulus, whereas the density was non-
dimensionalized using the average density. When r = 1

1−η
, the whole of mass in the annular

region is covered. So, we can directly write,

M
(

r =
1

1−η

)
= π

[(
η
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)2

−
(

1
1−η

)2]
⇒ M

(
r =

1
1−η

)
= π

(1+η)

(1−η)
.

(3.52)

To get the base state density, we first solve Eqn. (3.49) subject to Eqn. (3.51) and Eqn.
(3.52). The method used to solve this differential equation is higher order compact finite
difference method as described in Lele [22] and Zhang et al. [43]. From M, we can easily find
the steady state density field by Eqn. (3.46).

We now compare the results of these solutions obtained analytically and with higher order
compact finite difference methods to the base state obtained by time marching. The length of
the computational domain was kept to be π/2 with periodic boundaries in the axial direction.
This particular length was chosen in order to ensure that we get the base state consistent with
our assumptions that u0 = w0 = 0. The base states for different Mach (Ma) numbers at Prandtl
(Pr)= 1 and different Prandtl (Pr) numbers at Mach (Ma) = 1 are compared for various inner
Reynolds numbers (Re1) in Fig. - (3.2) and (3.3).
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Fig. 3.2 Base state for Pr = 1, Re2 = 0, Re1 = close to critical, varying Ma: (a)v0 versus r,
(b)T0 vs r, (c) ρ0 vs r.
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Fig. 3.3 Base state for Ma = 1, Re2 = 0, Re1 = close to critical, varying Pr: (a)v0 versus r,
(b)T0 vs r, (c) ρ0 vs r.

3.5.1 Observations and Interpretation

At higher Ma, the variations in the density profile can be quite large at moderate Pr, see Fig.
3.2c and Fig. 3.3c. This again justifies the choice of the average density over density at the
inner wall as a characteristic quantity to non-dimensionalize density. Also, in the low Ma limit,
the constant temperature and density profiles are recovered (Fig.3.2c), corresponding to the
incompressible case. With increasing Ma, the contribution of the viscous dissipation term in the
energy equation becomes more and more significant, reflected in the hump of the temperature
profile, see Fig. 3.2b.

It is evident from the Fig 3.3b, the gradients in temperature increase with increasing Pr for a
given Ma number. This can be understood from the energy equation (Eqn. (3.24)). The thermal
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diffusivity κ̂ is inversely proportional to Pr. Increasing Pr causes increase in ∇T . Because of
high temperature gradients, the material expands locally and causes a depletion in the local
density which is also evident from the density plots in Fig. 3.3c. With increasing Pr, the density
gradients also increase and there is a minima in the density profile for higher Pr. Because of
the centrifugal force, the effective gravity points in the radially outward direction. For higher
Pr, near the inner wall there is an unstable density gradient, while near the outer wall, a stable
stratification corresponding to a positive density gradient exists. This stable stratification can
support gravity waves.

3.6 Effect of Variable Transport Coefficients

The first bifurcation from the circular Couette flow (CCF) when the inner cylinder is rotating
and the outer one is stationary is known to be axisymmetric Taylor vortex flow (TVF). The aim
of this section is to quantify the bifurcation from the CCF to TVF and examine the effects of
variable transport coefficients on the onset of the well-known Taylor vortex flow (TVF).

We use the Sutherland’s law to describe the temperature dependence of viscosity (see Eqn.
(3.55)). Thermal conductivity is related to viscosity via the Prandtl number. We find that
inclusion of variable viscosity and thermal conductivity increases the critical Reynolds number
beyond which axisymmetric Taylor rolls set in. For quantitative comparison we plot some
relevant quantity such as circulation versus the inner Reynolds number and get the canonical
pitchfork bifurcation.

3.6.1 Average Kinetic Energies

To check grid independence, average total kinetic energy versus time are plotted, see Fig. 3.4.
To define averages, we follow Harada [17] again.

As discussed in Harada [17], we can define averages as given in Eq. (3.53).

⟨φ⟩= 2π

∫ 1
1−η

η

1−η

∫ Lz

0
φrdrdz (3.53)

Eu = ⟨1
2

ρu2⟩, (3.54a)

Ev = ⟨1
2

ρv2⟩, (3.54b)

Ew = ⟨1
2

ρw2⟩, (3.54c)
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and
KE = Eu +Ev +Ew. (3.54d)
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Fig. 3.4 Checking grid independence: Re1 = 75, k = 4, Ma = 1, Pr = 1: (a) KEu versus t and
(b) KEw versus t.

There are three important conclusions that we shall draw from figure (3.4):

1. Euler and DuFort-Frankel leapfrog type schemes relax to the same steady state energy
for a given grid size.

2. Euler time integration relaxes to the steady state earlier than DuFort-Frankel leapfrog
type scheme. But the trade-off here is in terms of the time step. We can afford a slightly
higher time step for the DuFort-Frankel leapfrog type scheme, but it takes longer time to
approach to the steady state. On the other hand, Euler time integration approaches the
steady state earlier but we have to go in smaller time steps.

3. As the grid size is increased, the difference between the steady state kinetic energies
decreases.

In present calculations, we use a grid-size of 101×101. For results at higher Re1 in Section
3.7, we use a coarser grid of 41×41 in order to gain speed in terms of computational time, as
well as to avoid numerical instabilities.

3.6.2 Sutherland’s Law of Shear Viscosity

According to Sutherland’s law the variation of viscosity with temperature is described by the
following relation, see Sutherland [38].

µ(T ) =
T

3
2 (1+C)

(T +C)
, (3.55)
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where C = 0.5 throughout this thesis.

3.6.3 Circulation of a Two-roll Structure - Comparison
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Fig. 3.5 Velocity vector plots in the (r,z) plane for CCF and TVF: k = 2π/h = 4, Ma = 1 and
Pr = 1: (a) Re1 = 71(< Rec) and (b) Re1 = 75(> Rec).

Figure 3.5 shows typical velocity vector plots in the (r,z) plane before and after bifurcation. Fig-
ure 3.5a corresponds to the base state circular Couette flow (CCF) while Fig. 3.5b corresponds
to the Taylor-vortex flow (TVF).

We choose our computational domain to be of appropriate length in order to accommodate
two rolls having opposite sense of circulation. So, while calculating circulation, we assume
only two rolls are present that are symmetric about the mid-plane. This assumption is rather
restrictive, for if we double the length of the computational domain with the same periodic
boundaries in the axial direction, we will get four rolls at the same Reynolds number and not
two. The remedy for this restriction is presented at the end of this section. For now, it suffices
to assume that there are only two rolls that are symmetric about the mid-plane.
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In order to calculate the circulation of a single Taylor roll in a domain of length l, we first
need the center of the roll. Because we have assumed that there are only two rolls present,we
fix the centers of the rolls are at z = l/4 and z = 3l/4. The coordinates of the centers of the
rolls on the computational grid can now be easily found.

For the purpose of plotting the bifurcation diagram, we will calculate the circulation about
the upper roll. Because of symmetry, the circulation of the lower roll will be negative of that of
the upper roll.

The procedure is as follows:

1. Isolate the center of the upper roll.

2. Define several rectangular loops around the center.

3. For each loop, calculate the quantity

Γc =
∮

u ·dl (3.56)

4. If N is the number of loops, the average circulation (henceforth called just circulation for
brevity)

C =
Σ(Γc)

N
(3.57)

5. Plot circulation (C) versus Re1 for the constant and variable viscosity cases, see Fig. 3.6.
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Fig. 3.6 Average circulation versus Re1 with Ma = 1 and Pr = 1 for constant and variable
viscosity for different heights (= 2π/k) of the computational domain: (a) k = 3.1729 and (b)
k = 4.
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3.6.4 Radial Average of Radial Velocity versus z - Comparison

Another metric to quantify bifurcation can be the maximum of the r-averaged radial velocity.
We take the average with respect to r at a given z and get a number. We plot these r-averaged
values of the radial velocity versus z. In the base state, when the circular Couette flow is present,
u0 = 0. Hence the radial average of the base-state radial velocity is zero. However, when the
flow bifurcates to TVF, radial velocity is obviously non-zero, due to presence of Taylor rolls.
The axial variation of the radial a average of u is shown in Fig. 3.7. For lower Re1, in the
circular Couette regime, Fig. 3.7 shows no variation in axial direction, giving a constant line at
< u >r= 0.
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Fig. 3.7 r-averaged values of the radial velocity versus z: (a) k = 3.1729, constant µ , (b)
k = 3.1729, variable µ ,(c) k = 4, constant µ , (d) k = 4, variable µ .
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However, at higher Re1, TVF appears. A schematic of how < u >r varies with axial height
is given in Fig. 3.8. The black colored arrows denote the flow while the red lines indicate
different axial locations. Initially, < u >r increases from a negative to a positive value with
increasing z and then decreases to a negative value with increasing z as shown in Fig. 3.8. The
zero-crossings of the axial profile of < u >r correspond to the centers of the Taylor rolls. The
actual axial profiles of < u >r are plotted in Fig. 3.7, with different values of k and Re1 for
both constant and variable viscosity cases.

z

r
<u>  r < 0

<u>  r < 0

<u>  r > 0

<u>  r = 0

<u>  r = 0

Fig. 3.8 Schematic of the axial profile of < u >r

We define ∆u to be the maximum value for each curve (Fig. 3.7) and plot ∆u vs Re1 to get
the bifurcation diagram shown in Fig. 3.9. It is clear that the onset of bifurcation in Fig. 3.9 is
almost same as that predicted via circulation in Fig. 3.6.
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Fig. 3.9 r-averaged u vs Re1 comparison for constant and variable viscosity for different heights
(= 2π/k) of the computational domain with Ma = 1, Pr = 1, (a) k = 3.1729 and (b) k = 4.
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3.6.5 Specific Angular Momentum

Consider a blob of fluid of volume dV , at radius r; its moment of inertia is

I ∼ (dm)r2.

Its angular momentum is L ∼ (ρ(r)dV )r2(v
r

)
, where v is the azimuthal velocity, i.e.,

L ∼ (ρ(r)dV )rv,

Therefore the specific angular momentum Ls is

Ls ∼ ρ(r)vr. (3.58)

We will plot contours of Ls, to get insight into how angular momentum changes. It also tells
us whether we are above or below the Rayleigh line, respecting the inviscid instability criterion
due to Rayleigh [33].

3.6.6 Local Mach Number

We define the local speed of sound as follows:

cslocal =

√
γR
Mg

Tlocal (3.59)

where

• R is the universal gas constant = 8.314 J/mol-K,

• Mg is the molecular weight of the gas, taken here to be air ≈ 28.8 g/mol ≈ 28.8×10−3

kg/mol,

• Tlocal is the dimensional temperature at a point, in K.

To get the dimensional temperature, we simply multiply the non-dimensional temperature by
the temperature at the inner wall T |R1 , assumed to be the room temperature, 300K.

T ∗ = (T )T |R1 (3.60)
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where T is the dimensionless temperature at the concerned point.
The local Mach number Malocal is defined as:

Malocal =
v

cslocal
(3.61)

where v is the azimuthal velocity in dimensional form. The units of velocity are µ∗
R/(ρ

∗
Rd). To

extract the velocity scale, we do the following calculation. The non-dimensional isothermal
speed of sound is

c2
s = (cp − cv)(ρ

∗
R)

2T ∗
R d2/(µ∗

R)
2 (3.62a)

and
cs = Re1/Ma, (3.62b)

where Re1 is as defined as Re1 =
Ω1R1ρ∗

Rd
µ∗

R
. For a given Re1 and Ma, Eqn. (3.62b) determines the

dimensionless isothermal speed of sound. T ∗, the dimensional temperature can be calculated
using Eqn. (3.60) and cp − cv is known for a given compressible gas. Hence, inverting Eqn.
(3.62a) gives us the velocity scale.

µ
∗
R/(ρ

∗
Rd)

=
√

(cp − cv)T ∗/cs

= (
√

(cp − cv)T ∗)Ma/Re1

(3.63)

Here, we take cp = 1005J/kg−K ⇒ cv = cp/γ = 603J/kg−K
⇒ (cp − cv) = 402J/kg−K.
Therefore,

µ
∗
R/(ρ

∗
Rd)

= (
√

(cp − cv)T ∗)Ma/Re1

= (
√

402×300)Ma/Re1

= (347.275)Ma/Re1

(3.64)

We multiply the nondimensional azimuthal velocity by the above expression to get the dimen-
sional azimuthal velocity and substitute in Eqn. (3.61) to obtain the local Mach number.
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3.6.7 Procedure to Analyze Bifurcation

The cartoon in Fig. 3.10 summarizes the procedure to analyze the bifurcation from the
featureless circular Couette flow (CCF) to the Taylor-vortex-flow (TVF). The linear stability
analysis yields the neutral stability curve which qualitatively looks as the black curve in Fig.
3.10, see Welsh et al. [41] for details. In Fig. 3.10, k = 2π

λ
where λ is the wavelength of the

fastest growing mode. To observe the bifurcation as we increase the Re1, we keep the height of
the computational domain constant at some λ , making k constant. We then vary Re1 and plot
different fields such as the velocity plot, temperature, density and specific angular momentum
contours. Next, we keep Re1 constant and vary k in the direction of the red arrow as shown.
We again plot different quantities to see the transition from the TVF to CCF with increasing k.
The red arrows in Fig. 3.10 mark the two paths described above.

Re
Taylor Vortex Flow

(TVF)

Circular Couette 

Flow (CCF)

1

Fig. 3.10 Cartoon of the procedure.
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3.6.8 Typical Fields Before and After Bifurcation - Varying Re1 at k = 4

Here, we follow the vertical red-line in Fig. 3.10 to analyze bifurcation structure. We plot
contours of ρ , T and specific angular momentum Ls at different Re1, with k being set equal to
4 (i.e., Γ = h/d = π/2 and the Mach number Ma = 1. The results for the (i) constant viscosity
and (ii) variable viscosity models are shown in Fig. 3.11 and Fig. 3.12, respectively. The top
panels in each figure represent CCF whereas the bottom panels display TVF.
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Fig. 3.11 Constant viscosity: First panel: Re1 = 71, Second panel: Re1 = 75, Third panel:
Re1 = 78. (a) velocity plot, (b) ρ , (c) T , (d) Ls, (e) azimuthal velocity (v).
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Fig. 3.12 Variable viscosity: First panel: Re1 = 78, Second panel: Re1 = 83. (a) velocity plot,
(b) ρ contours, (c) T contours, (d) Ls contours, (e) azimuthal velocity (v) contours.

3.6.9 Varying Height of the Computational Domain, at Re1 = 100

Here, we follow the horizontal red-line in Fig. 3.10 to analyze bifurcation scheme. We plot
velocity plot, ρ , T , Ls , v and local Ma contours respectively for the varying height of the
computational domain. The results for the (i)constant viscosity and (ii)variable viscosity models
are shown in Fig. 3.13 and Fig. 3.14, respectively. Recall that the aspect-ratio Γ is given by
Γ = 2π/k.
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Fig. 3.13 Re1 = 100,Re2 = 0, constant viscosity, (i) k = 2, (ii) k = 3, (iii) k = 4, (iv) k = 5,
(v) k = 6, (vi) k = 7, (a) velocity plot, (b) ρ contours, (c) T contours, (d) Ls contours, (e)
azimuthal velocity v contours (f) local Ma contours.
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Fig. 3.14 Re1 = 100,Re2 = 0, variable viscosity, (i) k = 2, (ii) k = 3, (iii) k = 4, (iv) k = 5,
(v) k = 6, (vi) k = 7. (a) velocity plot, (b) ρ contours, (c) T contours, (d) Ls contours, (e)
azimuthal velocity v contours (f) local Ma contours.

Comparing Fig. 3.13 and Fig. 3.14, we find that the critical k for transition from the TVF
to CCF decreases for the variable viscosity case. The flow patterns, however, look similar for
both cases.

3.7 Results at Higher Reynolds Numbers

As the Re1 is increased in the numerical experiments, it was observed that the Taylor vortex
flow bifurcates to a traveling wave. In the standard Taylor-Couette experiments, it is well
known that the Taylor vortex flow bifurcates to wavy vortex flow. In the wavy vortex flow,
waves develop on the Taylor vortices in the φ direction and the whole structure starts rotating
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in the φ direction at some speed. However, because the current code imposes axisymmetry,
the flow is seen to bifurcate to an axisymmetric wave traveling in the negative z-direction. The
oscillations are evident from the KEu and KEw versus t graphs. In this section, we show various
fields as a function of time as well as corresponding kinetic energy graphs over a range of
Reynolds numbers. To extract the dominant frequencies and amplitudes of the traveling waves,
we take the fast Fourier transform (FFT). Once the dominant dimensionless frequencies are
extracted, we plot them against Re1 to see the effect of increasing Re1.
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3.7.1 Re1 = 190
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Fig. 3.15 Re1 = 190,Re2 = 0, k = 4, traveling wave: (a) velocity plot, (b) ρ contours, (c) T
contours, (d) Ls contours, (e) azimuthal velocity v contours (f) local Ma contours.

Some snapshots for traveling-wave at different times are displayed in Fig. 3.15. The oscillations
in time are also evident from the kinetic energy versus time plots in Fig. 3.16.
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Fig. 3.16 Time series for kinetic energies, Re1 = 190, traveling wave: (a) KEu and (b) KEw.
Fig. 3.15 shows snapshots of the flow at the marked points.

In order to extract dominant dimensionless frequencies, fast Fourier transform (FFT) was
performed. Mean kinetic energies were subtracted and one-sided amplitudes were plotted in
the frequency domain. A clear peak can be seen in Fig. 3.17. A curious observation is that the
sub-dominant frequency also has a significant amplitude in comparison with the dominant one.
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Fig. 3.17 Re1 = 190, traveling wave, single-sided amplitude spectrum for: (a) KEu and (b)
KEw.
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3.7.2 Re1 = 210
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Fig. 3.18 Re1 = 210,Re2 = 0, k = 4, traveling wave: (a) velocity plot, (b) ρ contours, (c) T
contours, (d) Ls contours, (e) azimuthal velocity v contours (f) local Ma contours.

Fig. 3.18 shows a time-sequence of snapshots of traveling wave at Re1 = 210. The oscillations
in time are also evident from the kinetic energy versus time plots in Fig. 3.19.
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Fig. 3.19 Time series for kinetic energies, Re1 = 210, traveling wave: (a) KEu and (b) KEw.
Fig. 3.18 shows snapshots of the flow at the marked points.

In order to extract dominant dimensionless frequencies, fast Fourier transform (FFT) was
performed. Mean kinetic energies were subtracted and one-sided amplitudes were plotted in the
frequency domain. A clear peak can be seen in Fig. 3.20. Here, the second dominant frequency
has comparable amplitude with the dominant one.
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Fig. 3.20 Re1 = 210, traveling wave, single-sided amplitude spectrum for: (a) KEu and (b)
KEw.
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3.7.3 Re1 = 230
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Fig. 3.21 Re1 = 230,Re2 = 0, k = 4, traveling wave: (a) velocity plot, (b) ρ contours, (c) T
contours, (d) Ls contours, (e) azimuthal velocity v contours (f) local Ma contours.

Fig. 3.21 shows a time-sequence of snapshots at Re1 = 230. The oscillations in time are also
evident from the kinetic energy versus time plots in Fig. 3.22.
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Fig. 3.22 Time series for kinetic energies, Re1 = 230, traveling wave: (a) KEu and (b) KEw.
Fig. 3.21 shows snapshots of the flow at the marked points.

In order to extract dominant dimensionless frequencies, fast Fourier transform (FFT) was
performed. Mean kinetic energies were subtracted and one-sided amplitudes were plotted in
the frequency domain.
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Fig. 3.23 Re1 = 230, traveling wave, single-sided amplitude spectrum for: (a) KEu and (b)
KEw.

Two distinct peaks can be seen in Fig. 3.23.
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3.7.4 Re1 = 250
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Fig. 3.24 Re1 = 250,Re2 = 0, k = 4, traveling wave: (a) velocity plot, (b) ρ contours, (c) T
contours, (d) Ls contours, (e) azimuthal velocity v contours (f) local Ma contours.

Figure 3.24 shows a time-sequence of snapshots at Re1 = 250. The oscillations in time are also
evident from the kinetic energy versus time plots in Fig. 3.25.
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Fig. 3.25 Time series for kinetic energies, Re1 = 250, traveling wave: (a) KEu and (b) KEw.
Fig. 3.24 shows snapshots of the flow at the marked points.

In order to extract dominant dimensionless frequencies, fast Fourier transform (FFT) was
performed. Mean kinetic energies were subtracted and one-sided amplitudes were plotted in
the frequency domain. A clear peak can be seen in Fig. 3.26.
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Fig. 3.26 Re1 = 250, traveling wave, single-sided amplitude spectrum for: (a) KEu and (b)
KEw.
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3.7.5 Re1 = 270
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Fig. 3.27 Re1 = 270,Re2 = 0, k = 4, traveling wave: (a) velocity plot, (b) ρ contours, (c) T
contours, (d) Ls contours, (e) azimuthal velocity v contours (f) local Ma contours.

A time-sequence of snapshots of the traveling wave is shown in Fig. 3.27. The oscillations in
time are also evident from the kinetic energy versus time plots in Fig. 3.28.
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Fig. 3.28 Time series for kinetic energies, Re1 = 270, traveling wave: (a) KEu and (b) KEw.
Fig. 3.27 shows snapshots of the flow at the marked points.

In order to extract dominant dimensionless frequencies, fast Fourier transform (FFT) was
performed. Mean kinetic energies were subtracted and one-sided amplitudes were plotted in
the frequency domain. A clear peak can be seen in Fig. 3.29. The amplitudes of the second
dominant frequency are almost insignificant than the dominant one.
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Fig. 3.29 Re1 = 270, traveling wave, single-sided amplitude spectrum for: (a) KEu and (b)
KEw.
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3.7.6 Plotting Dominant Frequencies and Amplitudes against Re1

In this section, we plot the dominant as well as second-dominant frequencies and amplitudes
obtained from the power spectrum data. We also convert the dimensionless frequencies from
viscous time-scale to the inertial time scale in order to gain insight about their variation with
the velocity of the inner cylinder. Results of this section are given in table - (3.2) and (3.3) and
plotted in Fig. 3.30 and Fig. 3.31.

Re1 fmax (P1( f ))max for KEu (P1( f ))max for KEw

190 2 1067.8 587.8004
210 3 1052.7 563.3510
230 4.5 1680.1 895.5590
250 6.5 1723.7 879.7941
270 7.5 2701.3 1374.8

Table 3.2 Higeher Re1: dominant frequencies and amplitudes
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Fig. 3.30 Dominant Amplitudes (a,b) and Frequencies (c) for KEu and KEw versus Re1: (a)
Dominant amplitude versus Re1 for Keu, (b) Dominant amplitude versus Re1 for Kew, (c)
Dominant frequency versus Re1.

We also summarize the second dominant frequencies and corresponding amplitudes for
KEu and KEw

Re1 f2max (P1( f ))2max for KEu (P1( f ))2max for KEw

190 4 501.2369 294.8943
210 6.5 806.4684 467.9420
230 9.5 557.7179 308.3439
250 12.5 778.1974 443.4739
270 16 564.8850 400.1247

Table 3.3 Higeher Re1: second dominant frequencies and amplitudes
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Fig. 3.31 Second dominant Amplitudes (a,b) and Frequencies (c) for KEu and KEw versus Re1:
(a) Second dominant amplitude versus Re1 for Keu, (b) Second dominant amplitude versus Re1
for Kew, (c) Second dominant frequency versus Re1.

In Fig. 3.30 and Fig. 3.31, the frequencies are on the viscous time-scale, owing to our
choice of characteristic time-scale for non-dimensional time. In order to convert the frequencies
on the inertial time-scale, based on the rotation of the inner cylinder, we do a simple calculation.
In what follows, let fviscous be dimensionless frequency on the viscous time-scale, finertial be
the dimensionless frequency on the inertial time-scale and f ∗ be the dimensional frequency.

f ∗ = f
µ∗

ρ∗d
(3.65)
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finertial = f ∗/Ω1

= f
µ∗

ρ∗dΩ1

=
f

Re1

(
1−η

η

) (3.66)

We plot the first and second dominant frequencies versus Re1 in Fig. 3.32 in order to
understand how frequencies vary with the rotation rate of the inner cylinder.
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Fig. 3.32 (a) First dominant frequency versus Re1, (b) second-dominant frequency versus Re1
and (c) ratio of f1max and f2max versus Re1 on inertial time-scale.
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From Fig. 3.32c, the ratio of the first and second dominant frequencies appears to be 0.5
with some tolerance.

3.8 Summary and Conclusion

The chapter began with writing dimensionless equations and boundary conditions for the
Taylor-Couette flow. Characteristic quantities for nondimentionalization are so chosen that
numerical results can be compared with experiments [Welsh et al. [41]]. Another verification
of the code is presented by matching the analytically known base state with the one obtained
from long-time marching.

The effect of variable viscosity on the onset of Taylor vortex flow is examined. The variation
of viscosity as a function of temperature is described by the well known Sutherland’s law of
shear viscosity. To quantify the bifurcation from the Couette flow to the Taylor vortex flow,
average circulation of the upper roll is plotted against the Reynolds number. The procedure
to calculate the average circulation is also described. Another bifurcating quantity is the
maximum radially averaged radial velocity when plotted against axial distance, denoted by ∆u.
∆u versus Re1 is plotted to quantify the onset of bifurcation, where Re1 is the Reynolds number
based on the rotation of the inner cylinder. It is observed that the critical Re1 increases in the
case of variable viscosity, which implies variable viscosity stabilizes the flow. Typical fields
such as velocity plot and contours of density, temperature, specific angular momentum and
azimuthal velocity are plotted as Re1 is varied. It is seen that before bifurcation, there are no
axial gradients in the contours of the above quantities, whereas after the flow bifurcates to the
Taylor vortex flow, axial gradients start to develop. The same exercise is repeated keeping Re1

fixed and changing the height of the computational domain.
At higher Reynolds numbers, a new interesting behavior is revealed. An axisymmetric wave

traveling in the negative z direction is observed. Numerical experiments were done for a range
of Re1. The average kinetic energies based on radial and axial velocities are plotted which show
oscillations in time. In order to extract the dominant frequencies, a fast Fourier transform (FFT)
is done. The dominant frequencies and amplitudes were extracted and plotted against Re1 to
see the effect of increasing Re1. It was found that although the dominant frequency increases
with increasing Re1, it is not a linear function of Re1.





Chapter 4

Finite-Size Effects and Anomalous Modes

“In my case, most things of lasting value came from doing things that I was not supposed to do.”
- Predrag Cvitanović.

4.1 Introduction
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Fig. 4.1 (a) Finite-cylinders geometry and (b)dimensionless boundary conditions for TCF with
rigid lids at top and bottom.

Figure 4.1 shows the geometry and the dimensionless boundary conditions for a finite-cylinder
case for TCF. In a finite sized container, because of no-slip boundary conditions, the velocity
near the top and bottom walls drops to zero. The centrifugal force is weak in comparison
with that at the mid-height. Hence, the flow near the top and bottom is expected to be radially
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inwards while at the mid-plane, the flow is expected to be radially outwards. This is indeed
what is observed in experiments and numerics. Figure 4.2 shows a schematic of the mid-plane
symmetric Taylor-vortex mode that is normally observed in TCF.

Fig. 4.2 Mid-plane symmetric Taylor-vortex mode.

However, many experimental and numerical investigations have shown the existence of so
called “anomalous modes”[Benjamin [4]]. Anomalous modes is a general term. It includes
modes which are symmetric about the mid-plane but have the opposite sense of rotation, i.e.,
the flow is radially outwards near the top and bottom walls. Also, there is a possibility of
odd numbered rolls, which break the mid-plane symmetry. In the small aspect ratio limit
(Γ = h/d ∼ 1, h being the length of the cylinder and d being the gap width d = R2 −R1), a
single-cell mode has been observed. For the incompressible TCF, a lot of work has been done
on finite size effects.

Benjamin [4] first coined the term “anomalous modes” when he studied the finite-size TCF
experimentally and theoretically. Mullin [28], Benjamin [4] and Benjamin and Mullin [3]
investigated anomalous modes for a range of parameters. Schaeffer [34] proposed a reduced
order model to explain the hysteresis phenomena observed in Benjamin’s experiments. He
used a homotopy parameter τ which connected the boundary conditions of the periodic domain
modeling infinite cylinders (τ = 0) used by theoreticians and the finite domain with stationary
top and bottom lids (τ = 1) that mimics experiments. Cliffe [7] and Cliffe and Mullin [8]
used finite element method in combination with numerical bifurcation techniques to track
the bifurcation diagrams and confirmed the experimental as well as theoretical predictions by
previous papers. These calculations also revealed that the term ‘single-cell modes’ is actually a
misnomer. For the case of so called ‘single-cell modes’, there actually exist two rolls which are
not mid-plane symmetric, one of the rolls is bigger and is located near the top or the bottom
wall and there exists another roll of the opposite circulation, but it is weaker in comparison to
the bigger roll. This has been confirmed by Cliffe and Mullin [8] in numerics. However, in
experiments, because the smaller roll is weaker, it is generally not observed. An experimentalist
finds only the bigger roll - hence the term ‘single-cell mode’. Similarly for anomalous modes
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that are mirror symmetric about the mid-plane, there exist two weaker rolls near the top and
bottom walls which are difficult to observe in experiments.

Figure 4.3 shows a schematic of the flow-directions in the anomalous modes. Bolder arrows
represent stronger rolls, while weaker rolls can be seen near the top and/or bottom walls.

Fig. 4.3 A schematic of anomalous modes.

Later experiments by Mullin [29] observed mutations in the finite Taylor-Couette problem
where he observed the cusp catastrophe in the Γ−Re1 plane. A few words about catastrophe
theory, in particular the cusp catastrophe are in order.

Catastrophe theory is a branch of mathematics which deals with bifurcation theory’s ap-
plications in the study of dynamical systems. Its origin can be traced back to the French
mathematician René Thom in the 1960’s. British mathematician Christopher Zeeman popu-
larized catastrophe theory in the 1970’s and also made several fundamental contributions. It
is well-known from the bifurcation theory that near the critical points of a given nonlinear
dynamical system, small changes in the control parameter can cause huge ‘qualitative’ changes
in the behavior of the system. For example, equilibria can appear or disappear or they can
change their nature from an attractor to a repeller. These sudden changes in behavior are
ubiquitous in scientific problems. Catastrophe theory uncovers the underlying ‘geometry’ of
these sudden events in a larger parameter space.

In his article, Zeeman [42] writes, “...the underlying forces in nature can be described
by smooth surfaces of equilibrium; it is when the equilibrium breaks down that catastrophes
occur. The problem for catastrophe theory is therefore to describe the shapes of all possible
equilibrium surfaces. Thom has solved this problem in terms of a few archetypal forms, which
he calls the elementary catastrophes.”

One of these so called ‘elementary catastrophes’ is the cusp catastrophe that is of relevance
to this chapter. The cusp catastrophe is common in many scientific investigations and occurs
when the equilibrium surface folds back on itself when two control parameters are varied. A
schematic of the cusp catastrophe is reproduced in Fig. 4.4 from Benjamin [4]’s theoretical
paper on anomalous modes in the TCF.
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Fig. 4.4 A schematic of the cusp catastrophe taken from Benjamin [4].

In Fig. 4.4, f is the concerned equilibrium quantity while R and γ are two control parameters.
As is quintessential of the cusp catastrophe, equilibrium surface of f is seen to fold back on
itself. The labels 1 and −1 denote the stability of the equilibrium, 1 being stable and −1 being
unstable. When the surface is projected onto the (R,γ) plane, two distinct lines separate the
plane. It is also clear that these two lines meet at a ‘cusp’, giving the catastrophe its name.
The cusp point is marked by the critical values of R and γ , denoted in Fig. 4.4 by Rc and γc,
respectively. Outside the cusp region, there exists only one equilibrium solution while as one
crosses the border and enters into the cusp region, three equilibrium solutions suddenly appear.
Two of the three solutions are stable while one is unstable. Therefore, inside the cusp region,
multiple stable equilibria can exist. Also, one can observe the typical hysteresis associated with
such situations.

In the present problem R is equivalent to the inner Reynolds number Re1 while γ is
equivalent to the aspect ratio Γ, which act as control parameters. The equilibrium surface f can
be a metric that quantifies the bifurcation from the mid-plane symmetric Taylor-vortex mode to
the asymmetric single-cell mode.

Coming back to the work of Mullin [29], he examined the hysteresis in four different
cases: 4 → 6, 6 → 8, 8 → 10 and 10 → 12, where 4 → 6 denotes a hysteresis between 4 and
6-rolled structures and so on. Pfister et al. [32] performed a numerical and experimental study
of the finite size Taylor-Couette problem for a range of Γ from 0.3 to 1.4. They also found a
satisfactorily good agreement between numerics and experiments.
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4.2 Breaking Mid-plane Symmetry: Single-Cell Modes

In this work, we have uncovered single-cell modes at small Γ for the finite-size compressible
Taylor-Couette problem. However, realizing these modes numerically is not trivial. The
numerical studies mentioned above have considered only steady state solutions via continuation.
To realize anomalous modes experimentally or numerically, one has to resort to some trickery.
Here, for the first time to the best of our knowledge, we have numerically realized single-cell
modes for a compressible gas undergoing TCF.

To access the single-cell mode branches, we have used a forcing in the temperature boundary
conditions. Initially, to break the mid-plane symmetry of the flow, we change the boundary
conditions forcefully by demanding temperature to be 1+ ε at the top wall and 1− ε at the
bottom wall; ε is chosen to be 10−1. This yields the single-cell mode, depending on the sign of
ε . Once the single-cell mode is realized, the forcing is switched off. For some values of Re1,
this solution survives, while for others, it snaps back to the mid-plane symmetric, two-rolled
structure.

4.2.1 Numerical Method

Numerical method was as described in Section 2.3 of Chapter 2 with no-slip boundary condi-
tions at the cylinder walls, top and bottom lids. Dirichlet boundary condition for temperature
was used at all walls. Because this chapter deals with low aspect ratios, the grid-size was fixed
at 21×21. Time stepping was done with a dimensionless time-step of ∆t = 10−5.

4.2.2 Temperature Boundary Condition Trick

The temperature boundary condition trick is described below.

• A small temperature gradient is switched on.

• T = 1+ ε and T = 1− ε at the top and bottom walls respectively.

• The outer wall has a linear temperature profile.

• The magnitude of ε was chosen to be 10−1.

• This realizes the single-cell mode, depending on the sign of ε .

• After the steady state was achieved, the temperature gradient was switched off by putting
ε = 0.0.
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• It was observed that the anomalous single cell survives for some Re1 and for others, the
flow goes back to the Taylor vortex flow.

Figure 4.5 shows evidence of single-cell modes (or, asymmetric two-roll mode) in com-
pressible TCF. Two solutions shown in Fig. 4.5a and 4.5b can be obtained from each other via
reflection about the mid-plane (z = 1/2).

(a) (b)

Fig. 4.5 Single-cell modes, Re1 = 180, Ma = 1, Pr = 1, Γ = 1: (a) ε = 0.1, (b) ε =−0.1.

Figures 4.9 and 4.7 show time snapshots of the velocity field showing the transient process
of manifesting single-cell modes using the temperature-boundary-condition trick for positive
and negative ε , respectively.
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Fig. 4.6 Temperature Boundary condition trick, ε = 0.1: Re1 = 180, Ma = 1, Pr = 1, Γ = 1
(a) t = 0: temperature gradient switched on, (b) t = 8: single-cell mode settles, (c) t = 16:
temperature gradient switched off, (d) t = 24: single-cell mode survives.
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Fig. 4.7 Temperature Boundary condition trick, ε =−0.1: Re1 = 180 (a) t = 0: temperature
gradient switched on, (b) t = 8: single-cell mode settles, (c) t = 16: temperature gradient
switched off, (d) t = 24: single-cell mode survives.

4.2.3 Other ways of Manifesting Single-cell Modes

Apart from forcefully breaking the mid-plane symmetry by giving an artificial temperature
gradient and then switching it off, single-cell modes can be realized in multiple ways as
described below.

1. • One of the ways to generate the single-cell mode numerically is to use abrupt
changes in the aspect ratio (Γ = h/d). For example, at Γ = 1, to generate the mode
corresponding to the upper branch of the bifurcation diagram, start with Γ = 1
impulsively at a given Re1, say Re1 = 200. After the mid-plane symmetric two-cell
structure appears, make an abrupt change in the aspect ratio from 1 to 0.9. This
will make the single-cell mode appear at Γ = 0.9, Re1 = 200. After the steady
state for the single-cell mode at Γ = 0.9 is reached, switch back to Γ = 1.0 without
changing the Reynolds number. It is observed in the numerical experiments that this
procedure gives rise to a single-cell structure corresponding to the upper branch.

• To generate the single-cell structure corresponding to the lower branch, begin
with Γ = 1.1 and Re1 = 200 impulsively. After the mid-plane symmetric two-cell
structure appears, make an abrupt change in the aspect ratio from 1.1 to 1. This
will make the single-cell mode corresponding to the lower branch of the bifurcation
diagram appear at Γ = 1 and Re1 = 200.

2. Another way of manifesting the single-cell mode is to use the Schaeffer’s homotopy
parameter τ , see Schaeffer [34]. The boundary conditions can be written as given in Eqn.
(4.1). Radial velocity:

(1− τ)
∂u
∂ z

± τu = 0, (4.1a)
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axial velocity:

(1− τ)
∂w
∂ z

± τw = 0 (4.1b)

at z = 0 and z = h, R1 ≤ r ≤ R2.

When τ = 0, we have periodic boundary conditions and when τ = 1 we have the Dirichlet
boundary conditions corresponding to top and bottom lids. To generate a single-cell
mode at Γ = 1.0 and Re1 = 200, begin with Γ = 1 and Re1 = 80 (i.e. well before the
bifurcation) and periodic boundary conditions, i.e. τ = 0. Once the Taylor vortex flow
(TVF) is established, abruptly change to Re1 = 200 and τ = 0. One can also do an abrupt
change in Re1 and smoothly vary τ from 1 to 0 over time. This results in one of the
single-cell modes. In the numerical experiments so far, only the mode corresponding to
the lower branch of the bifurcation diagram has been observed.

4.3 Quantification of Bifurcation from a Two-roll to a Single-
roll Structure

Single-cell modes (or, more precisely, ‘asymmetric’ 2-cell modes) are manifested using the
temperature boundary condition trick described in Section 4.2.2. Once a single-cell mode is
generated, we let the mode become steady before reducing Re1. Re1 was reduced by 0.5 after
every 8 dimensionless time units.

As can be seen from Fig. 4.5, the single-cell mode breaks the mid-plane symmetry. In
order to quantify the bifurcation from the two-roll to the single-roll structure, we use the axial
velocity at the mid-plane and mid-height as the bifurcation parameter. If the mode is mid-plane
symmetric, i.e., if the symmetric two-roll structure is present, the axial velocity at the mid-plane
and mid-height will be zero, owing to symmetry. On the other hand, if it is not mid-pane
symmetric the axial velocity at the mid-plane and mid-height will be evidently non-zero. Hence
this single parameter alone is enough to quantify the bifurcation we are interested in. This
choice is motivated by the one made by Pfister et al. [32].

Some bifurcation diagrams for various values of Γ are shown in Fig. 4.8. The bifurcation
diagrams were generated using the temperature boundary condition trick described in Section
4.2.2. All results presented here are for Ma = 1 and Pr = 1.
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Fig. 4.8 Bifurcation diagrams: w at mid-plane, mid-height versus Re1 for different Γ; Ma = 1,
Pr = 1.
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In order to visualize the solutions, we plot three sample figures from the upper branch for
Γ = 1 at Re1 = 158, Re1 = 170 and Re1 = 175.
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Fig. 4.9 Transition from symmetric 2-roll (Panel (b)) to 1-roll (asymmetric 2-roll) solutions
(Panel (c) and (d)): (a) Upper branch of the bifurcation diagram of Fig. 4.8d. Velocity plots at
points marked in Fig. 4.9a: (b) Re1 = 158, (c) Re1 = 170, (d) Re1 = 175 at ε = 0.1, Ma = 1,
Pr = 1, Γ = 1.

From Fig. 4.9, we see that the single-roll for a higher Re1 is bigger. On the other hand, at
Re1 = 158, the single-cell mode does not survive and we get a mid-plane symmetric Taylor-
vortex mode.
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4.3.1 Comparison Between Single-cell Modes Obtained from Different
Procedures at Γ = 1

The bifurcation diagram can again be generated by reducing Re1 once a single-cell mode has
been achieved. The bifurcation diagram generated by method 1 described in Section 4.2.3
superimposed on top of the one generated by the temperature gradient trick is shown in Fig.
4.10. A good match can be seen as shown in Fig. 4.10.

150 160 170 180 190 200
−5

0

5
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w

2-rolls

one-roll

one-roll

Fig. 4.10 Comparison between bifurcation diagrams generated by different methods with Γ = 1,
Ma = 1, Pr = 1: (i) blue circles- using the temperature gradient trick and (ii) black circles-
abrupt change in Γ.

4.3.2 Uncovering the Bifurcation Scenario in the (Re1,Γ) Plane

As can be observed in the above Fig. 4.8a - Fig. 4.8c, the critical Re1 first decreases with
increasing aspect ratio (Γ). After Γ = 1, the branch connecting single-cell mode branches to
the symmetric Taylor-roll branch consists of transient points. The flow represented by these
points is in fact not steady. To exemplify, let us take a look at Fig. 4.8e. If one stops reducing
the Re1 in the transient code at Re1 = 167, the transient flow will settle down to the symmetric
Taylor-vortex mode. In the language of bifurcation theory, the bifurcation becomes ‘subcritical’.
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This method is not able to find the critical Re1 for the subcritical bifurcation, as one cannot
manifest an unstable branch in a time marching code. Therefore, for a subcritical bifurcation,
one has to guess the critical point. However, the trend is evident that after Γ = 1, the critical
Re1 increases with increasing Γ. Fig. 4.11 shows the qualitative behavior in the (Re1,Γ) plane.
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Fig. 4.11 Qualitative phase diagram in the (Re1,Γ) plane.

4.3.3 Discussion on Single-cell Modes

“There is one feature I notice that is generally missing in cargo cult science. . . . It’s a kind of
scientific integrity, a principle of scientific thought that corresponds to a kind of utter honesty
— a kind of leaning over backwards. For example, if you’re doing an experiment, you should
report everything that you think might make it invalid — not only what you think is right about
it; other causes that could possibly explain your results; and things you thought of that you’ve
eliminated by some other experiment, and how they worked — to make sure the other fellow
can tell they have been eliminated.” - Richard Feynman.

There are several points that need to be addressed. With current results, we can only make
a qualitative discussion, speculations and/or educated conjectures. As suggested by studies of
Benjamin and Mullin [3] and Pfister et al. [32], the qualitative nature of the bifurcation diagram
should change from supercritical to subcritical. From Fig. 4.8, it looks like at lower values
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of Γ (Γ ≤ 1), the bifurcation is supercritical and after that, the bifurcation starts becoming
subcritical. However, this does not seem to be true about current results. The reasons for our
doubts are as follows:

1. If one does not use any trick and simply continues increasing Re1 at a given Γ, it has been
observed that one remains on the central TVF branch even when at values of Re1 where
single-cell modes survive. For example, at Γ = 1, let us say that one begins at Re1 = 158,
waits for the TVF to set in and then increment Re1 to 158.5, waits again for the solution
to stabilize and keeps moving on the Re1 axis. As would appear from the 4.8d, as one
goes to Re1 > 160, the solution would have gone to one of the upper- or lower-branch
single-cell modes. However, in our simulations, we observed the the solution stays on
the main symmetric Taylor-vortex branch.

2. If it were a supercritical pitchfork bifurcation, at Γ = 1 and Re1 > 162, the Taylor-vortex
branch should have become linearly unstable. Hence, even for small perturbations in
terms of magnitude of ε should have ‘pushed’ the mid-plane symmetric solution to one of
the single-cell solutions depending on the sign of ε . However, we observed that in order to
realize a single-cell mode the magnitude of ε has to be > 10−6. We performed numerical
experiments for various values of |ε|, namely, |ε|= 10−1,10−2,10−3,10−4,10−5,10−6

and 10−8 for Γ = 1. It was observed that for |ε|= 10−8, the solution stayed on the main
mid-plane symmetric branch. Also, for |ε|= 10−1,10−2,10−3,10−4,10−5 and 10−6, we
observed the same steady single-cell mode. This observation suggests that single-cell
modes obtained in current results are in fact ‘finite-amplitude’ solutions and at least for
the range of Re1 considered here, the single-cell mode branches are disconnected from
the mid-plane symmetric branch.

For the reasons mentioned above, in this case we do not think that for lower values of Γ the
bifurcation is supercritical pitchfork. A pertinent question immediately arises concerning the
nature of the bifurcation. We speculate that the bifurcation is actually subcritical with two
connected or disconnected branches. Figure 4.12 shows a schematic of subcritical bifurcations,
with connected and disconnected branches, respectively.
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(a) (b)

Fig. 4.12 (a) Subcritical bifurcation and (b) subcritical bifurcation from infinity.

In Fig. 4.12, solid lines represent stable branches while dashed lines represent unstable
branches. As shown in Fig. 4.12a, the red nodes correspond to saddle-node bifurcations where
stable and unstable branches meet. The blue circle in Fig. 4.12a represents the critical point
where two unstable branches bifurcate from a stable branch in a subcritical pitchfork bifurcation.
If the blue circle is pushed to infinity, we get a case shown in Fig. 4.12b. In literature, this is
referred to as ‘bifurcation from infinity’. At higher values of Γ, for example, Γ = 1.24, our
conjecture is that the single-cell mode branches have completely disconnected from the main
Taylor-vortex branch. At lower Γ, however, the scenario can be as shown in 4.12a or 4.12b, with
the red nodes arbitrarily close to the main mid-plane symmetric mode branch. As we increase
Γ the red nodes might go away from the main branch resulting in completely disconnected
single-cell mode branches.

To definitively answer what is happening in our current results, a good continuation routine
is needed. With a continuation code, one can track stable as well as unstable branches and that
would make the bifurcation scenario clearer.

Another check would be to continue our results which are at Ma = 1 to Ma ∼ 0 to check
their connection to single-cell modes in the incompressible TCF. The qualitative phase diagram
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shown in Fig. 4.11 is a locus of limit-points. In the incompressible case, there are supercritical,
subcritical zones along with the locus of limit points, for example see Cliffe [7] and Pfister
et al. [32]. We guess that these branches in the (Re1, Γ) plane can be recovered by continuing
current results to Ma ∼ 0.

4.4 Changing Γ at a Given Re1

When we keep Re1 constant and vary Γ, we observe catastrophic transitions regarding number
of rolls. To read more about the catastrophe theory, see Strogatz [37] and Golubitsky et al. [13].
The catastrophic jumps are evident if one plots the average kinetic energy based on the radial
velocity vs. time. We define average kinetic energies as discussed in Harada [17] and Section
3.6.1. The following procedure was used:

• At every value of Γ, the flow was allowed to settle before going to a new aspect ratio.

• The aspect ratio was changed by 0.1 after every 3×105 time steps, i.e., 6 dimensionless
time units.

• The aspect ratio was increased from 3.1 to 6.1 from t = 0 to t = 200 and was decreased
back to 3.1 from t = 200 to t = 400.

We now keep the Re1 fixed and vary Γ from Γ = 3.1 to Γ = 6.1 and then come back to
Γ = 3.1. We do this numerical experiment for four different values of Re1.

4.4.1 Changing Γ at Re1 = 100

The velocity field is plotted in Fig. 4.13 for the increasing Γ phase and Fig. 4.14 for the
decreasing Γ phase:
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Fig. 4.13 Velocity vector plots in (r,z) plane at Re1 = 100, Re2 = 0, Ma = 1, Pr = 1, increasing
Γ from 3.1 to 6.1.
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Fig. 4.14 Velocity vector plots in (r,z) plane at Re1 = 100, Re2 = 0, Ma = 1, Pr = 1, decreasing
Γ from 6.1 to 3.1.
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From Fig. 4.13, it is clear that the two-cell flow jumps to the four-cell configuration at
around Γ = 4.5. As the aspect ratio is increased (Fig. 4.13), the four-cell flow jumps to
the six-cell flow at around Γ = 6.1. While reducing the aspect ratio(Fig. 4.14), the six-cell
configuration collapses to a four-cell configuration around Γ = 5 which then later jumps back
to the original two-cell flow around Γ = 3.6.

Hence, the hysteresis between states with 2, 4 and 6 rolls is seen in when Γ is varied. Hence
for a given Re1, a schematic of the bifurcation diagram with varying Γ could be of the form
shown in Fig. 4.15.

f

2

4

6

3.6 4.5 5 6.1

Fig. 4.15 A schematic of hysteresis seen in the bifurcation diagram at Re1 = 100.

In Fig. 4.15, f can be a metric to quantify the hysteresis, for example, if f is the number of
rolls, the curves will become straight horizontal lines and instead of a snaking structure, we
will observe step changes. Solid lines represent stable solutions while dashed lines represent
unstable solutions in Fig. 4.15.

In Fig. 4.16, KEu versus t and KEw versus t show distinct jumps when the flow configuration
changes. This figure is in qualitative agreement with the postulated schematic in Fig. 4.15.
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Fig. 4.16 Re1 = 100, Re2 = 0, Ma = 1, Pr = 1, vary Γ, time series for (a) KEu and (b) KEw.

4.4.2 Changing Γ at Re1 = 125

The velocity field looks according to figures (4.17) while increasing Γ and (4.18) while
decreasing Γ:
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Fig. 4.17 Velocity vector plots in (r,z) plane at Re1 = 125, Re2 = 0, Ma = 1, Pr = 1, increasing
Γ from 3.1 to 6.1.
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Fig. 4.18 Velocity vector plots in (r,z) plane at Re1 = 125, Re2 = 0, Ma = 1, Pr = 1, decreasing
Γ from 6.1 to 3.1.
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At Re1 = 125, the qualitative behavior remains similar to that at Re1 = 100. As we increase
Γ from 3.1 to 6.1 (Fig. 4.17), we see a 2 → 4 → 6-roll transition, while coming back from 6.1
to 3 (Fig. 4.18), we observe the flow collapsing from 6 → 4 → 2 rolled structure.

In Fig. 4.19, KEu versus t and KEw versus t show distinct jumps when the flow configuration
changes.
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Fig. 4.19 Re1 = 125, Re2 = 0, Ma = 1, Pr = 1, vary Γ, time series for (a) KEu and (b) KEw.

A schematic of the hysteresis along with the transition values of Γ is shown in Fig. 4.20.
Notice in Fig. 4.20 that the transition points have moved from their previous values at Re1 = 100
(Fig. 4.15).
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Fig. 4.20 A schematic of hysteresis seen in the bifurcation diagram at Re1 = 125.

4.4.3 Changing Γ at Re1 = 150

The velocity vector plots are as shown in figures (4.21) while increasing Γ and (4.22) while
decreasing Γ:
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Fig. 4.21 Velocity vector plots in (r,z) plane at Re1 = 150, Re2 = 0, Ma = 1, Pr = 1, increasing
Γ from 3.1 to 6.1.
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Fig. 4.22 Velocity vector plots in (r,z) plane at Re1 = 150, Re2 = 0, Ma = 1, Pr = 1, increasing
Γ from 6.1 to 3.1.
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At Re1 = 150, the qualitative behavior changes from that at Re1 = 100. From Fig. 4.21 and
Fig. 4.22, it is clear that the 2-cell flow jumps to the 6-cell configuration at around Γ = 5.5.
On the other hand, while reducing the Γ (Fig. 4.22), the 6-cell first collapses to a 4-cell
configuration at Γ ∼ 4.6 which then later jumps back to the original 2-cell flow.

In Fig. 4.23, KEu versus t and KEw versus t show distinct jumps when the flow configuration
changes.
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Fig. 4.23 Re1 = 150, Re2 = 0, Ma = 1, Pr = 1, vary Γ, time series for (a) KEu and (b) KEw.

A corresponding schematic of the hysteresis along with the transition values of Γ is shown
in Fig. 4.24. Notice in Fig. 4.24, the 2 → 6-roll transition point is at a higher Γ than the
4 → 6-roll transition point. Hence only 2 → 6 is observed.
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Fig. 4.24 A schematic of hysteresis seen in the bifurcation diagram at Re1 = 150.

4.4.4 Changing Γ at Re1 = 200

The velocity field looks as per Fig. 4.25 while increasing Γ and Fig. 4.26 while decreasing Γ.
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Fig. 4.25 Velocity vector plots in (r,z) plane at Re1 = 200, Re2 = 0, Ma = 1, Pr = 1, increasing
Γ from 3.1 to 6.1.
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Fig. 4.26 Velocity vector plots in (r,z) plane at Re1 = 200, Re2 = 0, Ma = 1, Pr = 1, decreasing
Γ from 6.1 to 3.1.
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At Re1 = 200 the behavior remains qualitatively similar to the one at Re1 = 150. As we
increase Γ from 3.1 to 6.1 (Fig. 4.25), we see a 2 → 6-roll transition at Γ ∼ 6.1, while coming
back from 6.1 to 3 (Fig. 4.26), we see the flow collapse from 6 → 4 → 2 rolled structure.
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Fig. 4.27 Re1 = 200, Re2 = 0, Ma = 1, Pr = 1, vary Γ, time series for (a) KEu and (b) KEw.

Steps in the kinetic energy vs. time graphs in Fig. 4.27 imply the change in the aspect
ratio. Initially KEu decreases as the two-rolled structure becomes elongated. The first jump in
the average kinetic energy based on the radial velocity implies the transition from two rolls to
six rolls. This increase is also intuitive because when the structure changes from two to six
rolls, more part of the flow has radial velocity. The second jump marks the transition while
coming back from Γ = 6.1 from six-rolls to four-rolls. Finally, the third jump corresponds to
the transition from the four-rolled structure to the two-rolled structure. Again, the decrease in
the kinetic energy can also be intuitively explained by the same reasoning.

A schematic of the hysteresis along with the transition values of Γ is shown in Fig. 4.28. f
can be a metric quantifying the transitions. Solid lines represent stable solutions while dashed
lines represent unstable solutions. Notice in Fig. 4.28, the 2 → 6-roll transition point is at a
higher Γ than the 4 → 6-roll transition point. Hence only 2 → 6 is observed while increasing Γ.
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Fig. 4.28 A schematic of hysteresis seen in the bifurcation diagram at Re1 = 200.

4.5 Summary and Conclusion

This chapter began with describing the finite-size counterpart of the compressible TCF. The
geometry and dimensionless boundary conditions were as shown in Fig. 4.1. A brief review
of work done on anomalous modes in the incompressible finite-size TCF was presented. The
cusp catastrophe was introduced in Section 4.1. Some methods of obtaining single-cell modes
in low-aspect-ratio (Γ = h/d ∼ 1) cases are described in Section 4.2. Bifurcation diagrams
obtained from two different methods are compared in Fig. 4.10 and were found to be in
agreement.

To the best of our knowledge, single-cell modes were obtained in the compressible TCF for
the first time. The mid-plane, mid-height axial velocity was chosen as the bifurcation parameter
to quantify the bifurcation from the mid-plane symmetric Taylor-Vortex flow to asymmetric
single-cell modes. The bifurcation diagram of the mid-plane, mid-height axial velocity vs. Re1

is plotted for different Γ ∼ 1 in Fig. 4.8. Discussion and some conjectures about the bifurcation
scenario were presented. A qualitative picture in the (Re1,Γ) plane is given in Fig. 4.11.

For a constant Re1, Γ is increased from 3.1 to 6.1 and then decreased from 6.1 to 3.1 for
four different Re1, namely, Re1 = 100,125,150,200. Clear hysteresis is seen in all four cases
and is evident from the jumps in the kinetic energy versus time plots. However, the qualitative
nature of the hysteresis is seen to be different. For Re1 = 100 and 125, while increasing Γ a
2 → 4 → 6-roll transition is seen and while decreasing Γ, 6 → 4 → 2-roll jumps are observed.
On the other hand, for Re1 = 150 and 200, although the 2 → 6-roll transition is seen while
increasing Γ, jumps from 6 → 4 → 2 rolls are observed while decreasing Γ. This suggests a
complicated nature of the catastrophe in the (Re1,Γ) plane.

Schematics of the hysteresis for four different values of Re1 (Re1 = 100,125,150,200) are
summarized in Fig. 4.29.
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Fig. 4.29 Schematics of hysteresis for (a) Re1 = 100, (b) Re1 = 125, (c) Re1 = 150, (d)
Re1 = 200.



Chapter 5

Summary and Outlook

“This work contains many things which are new and interesting. Unfortunately, everything that
is new is not interesting, and everything which is interesting, is not new.” - Lev Landau.

Fig. 5.1 Geometry of the Taylor-Couette setup, Taylor [39].

Taylor-Couette flow is the annular flow between two concentric, differentially rotating
cylinders. Figure 5.1 shows the geometry of the setup and is taken from Taylor [39]. Chapter1
began with a brief history of the Taylor-Couette problem. Rayleigh’s inviscid instability
criterion was derived by giving an energy argument. A short review of work done so far in the
compressible Taylor-Couette problem was presented at the end of Chapter 1.

In chapter 2, a finite difference code is developed to solve axisymmetric Navier-Stokes
equations in cylindrical geometry. In order to validate the code, results are obtained for
particular cases of thermally and mechanically driven flows and compared with Harada [17].
Axial and radial profiles of different velocities were found to be in agreement with Harada [17].
Temperature and azimuthal velocity contours were also found to be in good agreement, except
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for one case (Case - 3, Table 2.2). This inconsistency is probably because of a printing mistake.
Physical interpretation was given in order to explain numerical results for both thermally and
mechanically driven flows.

5.1 Pattern Formation in Compressible TCF with Periodic
Boundary Conditions

Chapter 3 began with writing dimensionless equations and boundary conditions for the com-
pressible Taylor-Couette flow. Characteristic quantities for non-dimentionalization are so
chosen that numerical results can be compared with experiments [Welsh et al. [41]]. Another
verification of the code was presented by matching the analytically known base state of com-
pressible TCF with the one obtained from long-time marching of compressible Navier-Stokes
equations.

The effect of variable viscosity on the onset of Taylor vortex flow was then investigated.
The variation of viscosity as a function of temperature was described by the well-known
Sutherland’s law of shear viscosity. To quantify the bifurcation from the circular Couette
flow (CCF) to the Taylor vortex flow (TVF), average circulation of the upper roll was plotted
against the Reynolds number as shown in Fig. 5.2. The procedure to calculate the average
circulation was also described. It was observed that the critical Re1 increases in the case of
variable viscosity, which implies variable viscosity stabilizes the compressible TCF.
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Fig. 5.2 Average circulation versus Re1 with Ma = 1 and Pr = 1 for constant and variable
viscosity for different heights (= 2π/k) of the computational domain: (a) k = 3.1729 and (b)
k = 4.



5.1 Pattern Formation in Compressible TCF with Periodic Boundary Conditions 111

Typical fields such as the velocity vector and contours of density, temperature, specific
angular momentum and azimuthal velocity in the (r,z) plane were plotted as Re1 was varied.
As expected, before bifurcation, there were no axial gradients in the contours of the above
quantities, whereas after the flow bifurcated to the TVF, axial gradients started to develop. The
same exercise was repeated keeping Re1 fixed and changing the height of the computational
domain.

At higher values of Re1, a secondary bifurcation was found. The TVF was seen to bifurcate
to a traveling wave in the negative z-direction, when axisymmetry was imposed, see Fig. 5.3.

0 20 40
0

2000

4000

6000

t = 7

K
E

u

t = 10

t

t = 10.4

t = 11

t = 11.8

(a)

0 10 20 30 40 50
0

200

400

600

800

1000

1200

frequency (f )

—
P
1(
f
)—

(b)

1 1.5 2
0

0.5

1

1.5

r

z

(c)

1 1.5 2
0

0.5

1

1.5

r

z

(d)

1 1.5 2
0

0.5

1

1.5

r

z

(e)

1 1.5 2
0

0.5

1

1.5

r

z

(f)

1 1.5 2
0

0.5

1

1.5

r

z

(g)

Fig. 5.3 Traveling wave at Re1 = 190, Re2 = 0, Ma = 1, Pr = 1, k = 2π/h = 4: (a) Time series
for kinetic energy KEu, (b) single-sided amplitude spectrum for KEu. Figures 5.3c-5.3g show
snapshots of the velocity vector plots at points marked in Fig. 5.3a. Velocity vector plots at (c)
t = 7, (d) t = 10, (e) t = 10.4, (f) t = 11, (g) t = 11.8.

In order to extract dominant dimensionless frequencies, fast Fourier transform (FFT) was
performed. Mean kinetic energies were subtracted and one-sided amplitudes were plotted in the
frequency domain. Dominant frequency of the traveling wave was extracted via the fast Fourier
transform (FFT). This exercise was repeated for a range of Re1 and dimensionless dominant as
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well as second-dominant frequencies were plotted against the inner Reynolds number (Re1).
Dimensionless frequencies converted and plotted against Re1 on the inertial time-scale.

5.2 Finite-size Effects in Compressible TCF

Chapter 4 focused on studying the finite-size effects, in particular the so called ‘anomalous
modes’ [Benjamin [4]] in the compressible TCF. When top and bottom walls are present, the
finiteness of cylinders is characterized by the aspect ratio Γ = h/d where h is the height of
the cylinders and d = R2 −R1 is the gap width. In a finite sized container, because of no-slip
boundary conditions, the velocity near the top and bottom walls drops to zero. The centrifugal
force is weak in comparison with that at the mid-height. Hence, the flow near the top and
bottom is expected to be radially inwards while at the mid-plane, the flow is expected to be
radially outwards. This is indeed what is observed in experiments and numerics. However,
many investigations have shown the existence of so called ‘anomalous modes’ discovered by
Benjamin [4]. ‘Anomalous modes’ include modes which are symmetric about the mid-plane
but have the opposite sense of rotation, i.e., near the top and bottom walls, the flow is radially
outwards. Also, there is a possibility of odd numbered rolls, which break the mid-plane
symmetry. In the small aspect ratio limit (Γ = h/d ∼ 1, h being the length of the cylinder and
d being the gap width d = R2 −R1), single-cell (or, asymmetric two-cell) modes have been
observed.

To the best of our knowledge, single-cell modes in finite-size compressible TCF were
obtained for the first time. To manifest single-cell modes in short-cylinder case (Γ ∼ 1), a
temperature boundary trick was described and employed. In order to visualize obtained single-
cell modes, some steady state velocity vector plots are reproduced in Fig. 5.4 for Γ = 1 at
Re1 = 158, Re1 = 170 and Re1 = 175. From Fig. 5.4, it was clear that the single-roll for a higher
Re1 is bigger as compared to the one at a lower value of Re1. On the other hand, at Re1 = 158,
the single-cell mode does not survive and we get a mid-plane symmetric Taylor-vortex mode.
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Fig. 5.4 Transition from symmetric 2-roll (Panel (b)) to 1-roll (asymmetric 2-roll) solutions
(Panel (c) and (d)): (a) Upper branch of the bifurcation diagram of Fig. 4.8d. Velocity plots at
points marked in Fig. 5.4a: (b) Re1 = 158, (c) Re1 = 170, (d) Re1 = 175 at ε = 0.1, Ma = 1,
Pr = 1, Γ = 1.

We changed the magnitude of ε , which in turn changed the provided artificial vertical tem-
perature gradient. It was observed that for |ε|< 10−6, single-cell modes were not realized. This
observation suggested that single-cell modes obtained in current results are ‘finite-amplitude’
solutions and at least for the range of Re1 considered in this study, disconnected from the
mid-plane symmetric branch.

Other ways of manifesting these modes were also enumerated. To quantify the bifurcation
from a mid-plane symmetric TVF to single-cell modes, axial velocity at mid-plane and mid-
height was chosen as the bifurcation quantity. When the flow was mirror symmetric about
the mid-plane, the bifurcation quantity was zero and when it was asymmetric, the bifurcating
quantity was non-zero. Bifurcation diagrams obtained from different ways of manifesting
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single-cell modes were superimposed and a good match between them was observed (Fig.
4.10).

Bifurcation diagrams were plotted for a range of values of Γ between 0.8 to 1.24. At
Γ > 1.2 the single-cell branches disconnect completely from the main Taylor-vortex branch. In
this sense, single-cell modes became secondary or disconnected modes. Some speculations
were made about the bifurcation scenario and a qualitative phase diagram was plotted in the
(Re1, Γ) plane as given in Fig. 5.5. The line joining circles in Fig. 5.5 represents the locus of
limit points - this needs to be confirmed in a future work.

0.8 0.9 1 1.1 1.2
160

170

180

190

200

210

Γ

R
e
1

2-roll

Coexistence of 2-roll+one-roll

2-roll

Fig. 5.5 Qualitative phase diagram in the (Re1,Γ) plane.

Finally, the aspect ratio Γ was varied at a constant Re1 for a range of Reynolds numbers. Γ

was increased from 3.1 to 6.1 and decreased back to 3.1 while keeping Re1 constant. Some
interesting results were observed. At Re1 = 100 and 125, while increasing Γ a 2 → 4 → 6
roll catastrophic transition was observed and while coming back, catastrophic jumps from
6 → 4 → 2 were seen. However, for Re1 = 150 and 200, when increasing Γ, a direct 2 → 6-
roll jump was observed. On the other hand, when coming back from Γ = 6.1 to 3.1, again
a 6 → 4 → 2 collapse was observed. These findings pointed towards a more complicated
catastrophe than a simple cusp. It appears that there exist multiple entangled cusps in the (Re1,
Γ) plane.

Schematics of the hysteresis for four different values of Re1 (Re1 = 100,125,150,200) are
summarized in Fig. 5.6.
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Fig. 5.6 Schematics of hysteresis for (a) Re1 = 100, (b) Re1 = 125, (c) Re1 = 150, (d) Re1 = 200.

5.3 Possible Future Work

“We are at the very beginning of time for the human race. It is not unreasonable that we grapple
with problems. But there are tens of thousands of years in the future. Our responsibility is to do
what we can, learn what we can, improve the solutions, and pass them on.” - Richard Feynman.

Compressible Taylor-Couette flow is rich in its complexity. Many possible directions can
be taken in future to investigate the pattern formation in this system. Some of the possible ways
of taking this work forward are enumerated below:

1. Write a continuation routine in order to track unstable branches of bifurcation diagrams
at low-aspect ratios.

2. Track high-Re1 traveling wave solutions of Chapter 3 by decreasing Ma, to check its
connection to incompressible TCF.
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3. To check if high-Re1 traveling wave solutions of Chapter 3 survive for rigid top and
bottom walls by varying Schaeffer’s homotopy parameter τ from 0 to 1 [Schaeffer [34]].

4. Continue single-cell modes obtained in Fig. 4.8 in Ma all the way to Ma ∼ 0 in order to
see their connection with single-cell modes obtained in incompressible TCF.

5. Identify the phase-boundaries of (i) limit-points and (ii) subcritical-solutions in the
(Re1,Γ)-plane in Fig. 5.5.

6. Modify the present code to incorporate nonaxisymmetric effects.

7. Look at pattern formation scenario for dense gases and dilute granular gases.



References

[1] Andereck, C. D., Liu, S., and Swinney, H. L. (1986). Flow regimes in a circular Couette
system with independently rotating cylinders. Journal of Fluid Mechanics, 164:155–183.

[2] Balbus, S. A. and Hawley, J. F. (1991). A powerful local shear instability in weakly
magnetized disks. i-linear analysis. ii-nonlinear evolution. The Astrophysical Journal,
376:214–233.

[3] Benjamin, T. and Mullin, T. (1981). Anomalous modes in the Taylor experiment. Proceed-

ings of the Royal Society of London. Series A, 377:221–249.

[4] Benjamin, T. B. (1978). Bifurcation phenomena in steady flows of a viscous fluid. I. Theory.
In Proceedings of the Royal Society of London A, volume 359, pages 1–26.

[5] Chandrasekhar, S. (1960). The stability of non-dissipative couette flow in hydromagnetics.
Proceedings of the National Academy of Sciences, 46(2):253–257.

[6] Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability, Clarendon Press.

[7] Cliffe, K. (1983). Numerical calculations of two-cell and single-cell Taylor flows. Journal

of Fluid Mechanics, 135:219–233.

[8] Cliffe, K. and Mullin, T. (1985). A numerical and experimental study of anomalous modes
in the Taylor experiment. Journal of Fluid Mechanics, 153:243–258.

[9] Coles, D. (1965). Transition in circular Couette flow. Journal of Fluid Mechanics,
21(3):385–425.

[10] Couette, M. (1890). Etudes sur le frottement des liquides. PhD thesis.
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