
7591 
JNCASR 

532.053 3 P05 

t 1-̂ 9 1 
^ ^ i n ' ^ / L l d R A R Y 

Effects of ambient viscosity on the entrainment 
and dynamics of a buoyant jet 

A thesis 

submitted for the degree of 

MASTER OF SCIENCE (ENGINEERING) 

by 

MANIKANDAN M.S. 

ENGINEERING MECHANICS UNIT 
JAWAHARLAL NEHRU CENTRE FOR ADVANCED 

SCIENTIFIC RESEARCH 
BANGALORE - 560064 

AUGUST 2005 



332. • 0^^ ^ 

(P<^> /^ 



DECLARATION 

I hereby declare that the work embodied in the thesis entitled "Effects of ambient 

viscosity on the entrainment and dynamics of a buoyant jet" is the result of 

investigations carried out by me at the Engineering Mechanics Unit, Jawaharlal Nehru 

Centre for Advanced Scientific Research, Bangalore, India under the supervision of Dr. 

K.R. Sreenivas and that it has not been submitted elsewhere for the award of any degree 

or diploma. 

In keeping with the general practice in reporting scientific observations, due 

acknowledgement has been made whenever the work described is based on the findings 

of other investigators. 

H-M^o^Js 
M.S. Manikandan 



CERTIFICATE 

I hereby certify that the work embodied in this thesis entitled "Effects of ambient 

viscosity on the entrainment and dynamics of a buoyant jet" has been carried out by 

Mr. M.S. Manikandan at the Engineering Mechanics Unit, Jawaharlal Nehru Centre for 

Advanced Scientific Research, BangaJore, India under my supervision and that it has not 

been submitted elsewhere for the award of any degree or diploma. 

Dr. K.R. Sreenivas 

(Research Supervisor) 



Acknowledgements 

I would like to sincerely acknowledge Dr. K.R.Sreenivas for his guidance throughout my 

work. I especially thank him for allowing me to continue working on the problem that I 

had started working on, as a summer student. 

I also would like to thank Prof. Rama Govindarajan for her constant support and 

encouragement. Her suggestions at various stages of my work have been very helpful. A 

big thanks to Prof. Roddam Narasimha for his valuable suggestions and comments during 

my seminars. 

Mukund's help in my project has been invaluable. I sincerely thank him for his time and 

effort in helping me out in my experiments. Discussions with him have also been very 

inspiring. Thanks to Shreyas in assisting me at various stages in the experiments. 

Mukund and Shreyas have been absolutely fantastic lab mates to live with. 

I also would like to thank Faraz for his help during the initial stages. Sincere 

acknowledgements to Vinod and Sameen for teaching me to work with "Linux". Thanks 

are due to Aneesh, Punit, Kaushik, Pinaki, Kirti and Anjana. 

I am grateful to JNCASR for giving me an opportunity to work here for my M.S. Mr. 

Arokianathan at the workshop has been absolutely great whenever I have approached him 

for help. Thanks to all the people at Dr. Ranga Uday's lab for letting me use their camera 

at various points in time. 

I also would like to acknowledge my parents and my brother for their constant support 

and encouragement. 



Synopsis 

A free-shear flow driven by both initial momentum and buoyancy is a buoyant jet. 

Turbulent buoyant jets spread in a direction normal to their primary-flow direction by 

incorporating irrotational ambient fluid into the turbulent jet-flow; this process is known 

as entrainment. Entrainment process and hence the dynamical behavior of the jet depend 

on several parameters such as ambient density stratification, axial-pressure gradient, 

cross-flow and off-source buoyancy addition, temperature and viscosity contrasts 

between the free-shear flow and the ambient medium. 

In this thesis, the effects of the viscosity of the ambient fluid on the entrairmient and 

dynamics of a buoyant jet are studied via experiments and 2-D simulations using vortex 

methods. Some of the applications of the above situation include the flow of lava into a 

magma chamber, where viscosity variation arises due to a change in temperature and/or 

constituents, and the process industry where polymers have to be blended with additives 

or with polymers having different physical properties. 

All the experiments are conducted in a glass tank of dimensions 30x30x45 cm^. A 

buoyant jet issuing into a fluid of viscosity different from that of the jet fluid (viscosity 

enhanced by addition of suitable amounts of Sodium carboxymethyl cellulose) is studied 

using flow-visualization and other entraiimient-quantification experiments. Experimental 

results indicate that the turbulent jet undergoes a reverse transition. Large scale eddies at 

the interface are suppressed, and the observed entrairmient rate also reduces dramatically 

for the jet in a higher-viscosity medium. 

Results from 2-D numerical simulations, using vortex methods are also presented. Issues 

concerning viscosity-stratification in vortex methods are addressed. Results from the 

numerical simulations have a reasonable agreement with the experimental results. 
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Chapter 1 

1. Introduction 

1.1 Free-Shear flows 

An unbounded region of a large body of fluid that either has an excess momentum (a jet 

or a plume for example) or a momentum deficit (a wake for example) is a free-shear 

flow. Various types of free-shear flows that are observed in natiore are jets (driven by 

initial momentum), plumes (driven by initial buoyancy), wakes (characterized by initial 

momentum deficit) and a mixing layer (characterized by a velocity difference across the 

interface between two co-flowing fluids). 

Typical pictures exhibiting the behavior of various free-shear flows are shown in figure 

1.1. (Blue curves indicating the corresponding velocity profiles) 

—^UX^.Ji 

a) JET/PLUME 
(Experiment) 

b)WAKE 
(Simulation) 

c) MIXING LAYER 
(Experiment) 

Figure 1.1: Free-shear flows 



A free-shear flow, developing in the downstream direction induces the irrotational 

ambient fluid to get into and mix with the turbulent main flow. This process of bringing 

in ambient fluid into the free-shear flow and mixing with it is known as entrainment. 

Free-shear flows and associated entrainment processes are observed in natural 

phenomena like rising of cumulus clouds, smoke coming out of a chimney and a volcanic 

plume. Such flows encountered in most of the natural phenomena and other 

circumstances are invariably turbulent as the laminar counterparts in free-shear flows 

become unstable at moderately low Reynolds numbers. The fact that free-shear flows in 

most practical situations are turbulent and that, only laminar flows can be analytically 

studied, makes the study of turbulent entrainment even more interesting. 

Controlling the mixing of the jet (or plume) with its surroundings is a focus of active 

research. Typical engineering applications demand enhanced combustion between 

injected fuel and background oxidizer, rapid initial mixing and submergence of effluent 

fluid, or improved mixing of a hot exhaust with the surroundings. In this context, there is 

a crucial interest in recognizing and understanding the local nature of the jet instabilities 

and their global nonlinear development in space and time. On the other hand, purely 

academic research in this area is also exciting since it deals with the many challenging 

unresolved scientific issues of non-linear fluid dynamics and turbulence. 

The entrainment process in jets and plumes are well studied and literature on this topic 

dates back to the seminal paper by Morton, Taylor and Turner . Entrainment in free-

shear flows is affected by buoyancy at source , off-source volumetric heating , 

pressure gradient ' '^\ axial acceleration (e.g. by external magnetic field) and non-

circularity of the jets '̂̂  Another factor that could possibly affect the entrainment process 
r o i 

is the viscosity of the ambient fluid. Campbell and Turner have conducted preliminary 

studies and given qualitative results on the effects of viscosity differences between the jet 

and the ambient fluid on the entrainment process. In this work, we have primarily studied 

the role that the viscosity of the ambient fluid plays in the entrainment process in a 

buoyant jet. 



1.2 Turner's work: An Overview '^'^''1 

The entrainment hypothesis in its original form can be stated very simply: "the mean 

inflow velocity across the edge of a turbulent flow is assumed to be proportional to a 

characteristic velocity, usually the local time-averaged maximum mean velocity or the 

mean velocity over the cross-section at the level of inflow". The total inflow at any 

position will depend also on the surface area and the geometry and dynamics of the flow 

- whether it is axisymmetric or two-dimensional, a continuous jet or plume or a suddenly 

released 'thermal'. In this form the assumption is deceptively simple, and even obvious, 

since for a jet in uniform surroundings it can be deduced from the similarity solution or 

justified by the most elementary dimensional considerations, as shown in the next 

section. It has been enormously successful when applied to phenomena over a very wide 

range of Reynolds numbers, from laboratory scale experiments to geophysical ones like 

the volcanic plumes. 

The entrainment assumption, relating the inflow velocity to the local mean velocity of a 

turbulent flow, is used successfully to describe natural phenomena over a wide range of 

scales. Sir Geoffrey Taylor first introduced the entrainment hypothesis in a wartime 

report on the dynamics of hot gases rising in air. He spoke about it later at a Pacific 

Science Association meeting in 1949, but did not follow up that talk with a published 

paper. The idea received a wider exposure through the review lecture by Batchelor (1954) 

and was formally published by Morton B.R. et. al.'̂ ^ 

[2] 1.2.1 Jets and plumes in a homogeneous environment 

Only steady flows in jets and plumes are treated here. The three basic integral properties 

of these flows (integrated across the cross-sectional area at any level) are the fluxes of 

mass, momentum and buoyancy. These are defined by: 
OS 

pju = 27t\pwrdr, (1.1) 



where ^ is the 'specific mass flux' or volume flux, and w is the local mean vertical 

velocity at radius r fi^om the vertical line above the source (figure 1.2); 

GO 

pm = l7t \pw^ rdr, 
0 

where m is the specific momentum flux; and 

CO 

p/3 = 2n:jpwg'rdr, ^ 
0 

where p is the specific buoyancy flux andg'= gAp/ p^, the effective gravitational 

acceleration, and p^ is the constant density of the environment. 

(1.2) 

(1.3) 

Uo I Figure 1.2: A typical turbulent entraining jet 

Figure 1.2 depicts the axial velocity profile in a turbulent jet/plume and also explains 

what we refer to as 'entralnment', which results in an increased axial mass flow at any 

axial location. 



The symbols Q, M and B are used to denote the initial values of (i, m and p. These three 

are the primary variables governing the behaviour of axisymmetric turbulent buoyant jets 

provided that the Reynolds number Af"^ /v exceeds a few thousand, as it does in most 

cases of geophysical interest. When the characteristic linear dimension of the source is 

small compared with the height of rise, Q soon becomes negligible compared with ft and 

the flow can be treated as if it arose by supplying M and/or B, but no volume flux, at a 

point (the virtual source) some distance from the actual source. 

The pure jet is defined by M alone, since m remains constant at all distances z. The mean 

(time-averaged) velocity is self-similar, and is described well by the Gaussian profiles 

W=W„exp[-(-^) '] (1.4) 

K 
where Wm is the mean velocity on the centerline, and bw is a radial scale for velocity. The 

spread of a passive tracer 6 (which is assumed now to be so dilute that it has no 
dynamical effect, though its flux Fe is defined by an integral like (1.3)) is given by 

^ = ̂ „exp[-(-^)^] (1.5) 

Dimensional analysis leads immediately to the following forms for the variation of Wm* 

9m, bw and be with the overall parameters M and z (the similarity solution): 

W^^LM'z 
i 

1 

(1.6) 

b^=Q.mz 

bg=0.l26z 

where the constants in the last two relations are experimentally determined values. Note 

that the spreads of both velocity and tracer are conical with distance z from the source 

with, however, a wider spread of tracer relative to velocity. (This result, with the same 

ratio of be/bw, is also a characteristic feature of plumes, in which the 'tracer', for example 

temperature, is dynamically active.) The conical form follows from the similarity 



assumption, regardless of the form of the profiles, but the specific numerical values given 

in (1.6) do of course depend on the measured profiles (1.4) and (1.5). Measurements of 

turbulent velocities and tracer-concentration fluctuations show that these also have a self-

similar radial distribution, and scale with M and z in a manner consistent with similarity. 

The constants ki and ka in (1.6) can be evaluated using the measured profiles (1.4) and 

(1.5) and the corresponding measurements of turbulence quantities. The value of ki 

computed ignoring the axial turbulent flux of momentum (i.e. assuming that all the 

momentum is carried entirely by the mean flow) is 7.5, but this is reduced to 6.9 (in better 

agreement with the values derived directly from (1.6)) if the turbulent flux is included. 

Similar arguments can be applied to the flux of a conserved tracer to give k2=5.8; again it 

has been found that the axial turbulent flux is not zero, and needs to be taken into account 

to be consistent with the measurements. 

It also follows from the definition (1.1) and the similarity solution for the jet (1.6) that 

\_ 

{H)a{wb^)a{M^z) (1.7a) 

so that ^ = C,M~^ (1.7b) 
dz ' 

The constant Cj for the jet has been found from experiments to have a value of about 

0.25'^ I The form (1.7a) implies that there is a mean rate of inflow across a circular 

boundary (at radius bw, say), which is proportional to (z)' , and therefore proportional to 

the vertical velocity scale Wm given by (1.6). Thus in this simple case the entrainment 

relation does not require an independent assumption, but it follows from the similarity 

considerations which led to (1.6). Moreover, once attention has been concentrated on the 

inflow velocity, the argument can be turned around: the relations (1.6) can be regarded as 

a consequence of the simple dimensional assumption that this 'entrainment velocity' 

should be proportional to the mean (time-averaged) upward velocity Wm (which is the 

sole velocity scale needed if the flow remains similar). 

The corresponding results for pure axisymmetric plumes in homogeneous surroundings, 

in which B is the conserved quantity, can now be described succinctly in similar terms. In 

all cases where B is large enough to be of geophysical interest, the flow will become 



turbulent at a small distance above the source, and Q will be negligible, so that all plume 

properties will depend on B and z. Assuming similar mean profiles (which 

experimentally are again found to be closely Gaussian) leads to a linear spread and the 

following similarity solutions for the maximum vertical velocity and the density 

difference on the axis: 

W=c,Bh ' 
1 I 

(1-8) 

where Ci and C2 are constants. The available measurements of turbulent quantities are far 

fewer for plumes than jets: in particular the magnitude of the axial turbulent fluxes is still 

uncertain, and so therefore are the precise values of Ci and Cj. There is no doubt, 

however, that the levels of turbulent intensity and of concentration fluctuations are much 

higher in plumes than in jets . 

Related dimensional arguments can be used to write the dependence of \i and m on B and 

2 4 

I 5 

(ju)a{Bh') 

Both of these are now increasing with z, as buoyancy acts to increase the momentum of 

the flow and entrainment to increase its volume. Eliminating B gives 

ln = C^m^z (1.9a) 

where Cp is a constant with an experimentally determined value of 0.25. This is the same 

relation as obtained earlier for the jet, except that the local momentum flux m replaces 

the constant momentum flux M for the jet. Taking into account the dependence of m on 

z, it follows that for the plume 

f = fc,«^ (1.9b) 

which should be compared with (1.7b). Thus the rates of entrainment into jets and plumes 

are both defined by the local specific momentum flux m, but (since Cp has the same 



numerical values as Cj in (1.7b)), the experimentally determined coefficient of 

proportionality (or 'entrainment rate') is higher for plumes. As first pointed out by 

Batchelor'^^', it follows from the above that for plumes as well as for jets the entrainment 

relation is a fundamental consequence of the similarity arguments which predict the 

linear spread of radius with height, and is not an independent assumption. 

In the transition regime between jets and plumes, there will therefore be some uncertainty 

about the entrainment and dilution rate, though the form of dependence on the integral 

flow quantities is the same in the two limiting cases. In practical situations, however, the 

jet-like region is often small. The initial specific momentum flux M is continuously being 

increased by buoyancy, and the buoyancy-generated momentum dominates above a 

height of order l^= M *B ^ (Morton''^'). Fischer et. al. '̂ "' have contrasted the behaviour 

of three flows: a pure jet, a pure plume and a buoyant jet having the same M = 3 m"̂  s' 

and B = 0.26 m s" as the first two. They demonstrated that the 'mixed' case rapidly 

becomes plume like, with !„, = 4.5 m, and that the mean dilution 60 m above the source is 

fi/Q = 68, which is essentially that for a pure plume (and nearly three times that predicted 

for the jet). 

1.2.2 The entrainment equations 

The entrainment assumption will now be taken as the explicit starting point, i.e. it will be 

assumed that the inflow velocity at the 'edge' of the flow is some fraction a of the 

maximum mean upward velocity. Using the previous notation, this implies that 

^ = 27ib^aW„ (1.10) 
dz 

where Wm and bw for Gaussian profiles are defined by (1.4). The 'entrainment constant' 

a clearly depends on the profile chosen, and it will be numerically different if equivalent 

'top-hat' profiles are used. Its relation to the constants already given for jets and plumes 

will be discussed below. The larger spread of the time-averaged mass concentration given 

in (1.5) and (1.6) will also be taken explicitly into account. For both jets and plumes 

be/bw has nearly the same constant value (bo/bw = ^) equal to 1.2. 

8 



The equations of conservation of mass, momentum and buoyancy can be written; using 

Gaussian profiles and the Boussinesq approximation, in the following form (see Turner^'' 

and Fischer et. al. ' for a more detailed discussion of the derivation and underlying 

assumptions): 

T^\blwl) = ̂ 'blgd^ (1.11) 
dz 2 
d A^b^W sd , , 

2 •' w m 

dz \ + A 

With the more general application to stratified surroundings in mind, the third (buoyancy) 

equation includes, on the right, N^ = (-g/pi) (dpo/dz) the square of the local buoyancy 

frequency. The value of g' = gG = g (po-p)/pi is calculated using the local density 

difference between the plume p and its environment po at height z, and pi is some 

standard density in the environment. Note again that the numerical coefficients in (l .Il) 

depend on the form of the profiles, and the velocity and length scales used; they are 

different for 'top-hat' profiles. The equations can be solved once initial values of b„, Wm 

and Gn, are specified, as they can be if Q, M and B are known. 

For homogeneous surroundings (N = 0), the similarity solutions are entirely equivalent 

to (1.11), and will in fact be particular solution of these equations. For the limiting cases 

of jets and plumes, Fischer et. al.' have used the experimentally determined parameters 

to show that (for Gaussian profiles) 

ajets = 0 .054 , ttpiumes = 0 .083 (1 .12) 

This difference in entrainment rates for jets and plumes is consistent with the deductions 

made from (1.9b), which indicated that the dilution rate of a plume is higher than for a jet 

for the same local momentum flux. Deductions in (1.7b) and (1.9b) are based on 

experimental observations. There is no reason why Cp and Cj should be the same, and 

hence, the entrainment and the dilution rates are more of observations rather than being 

based on any theory. 



Another point worth repeating is that the values of a given by (1.12) are only indirectly 

related to the angle of spread of the velocity profile in jets and plumes. For jets, (1.10) 

gives dbw/dz = 2a = 0.107, as already set out in (1.6). For plumes, the corresponding 

relation is dbw/dz = (6/5) a = 0.100, although this value is based on much less precise 

data. Thus the angles of spread are little different for jets and plumes, in spite of the fact 

that the 'entrainment rates' as defined above are substantially different. A constant angle 

of spread was suggested as a reasonable fit to all the experimental results on buoyant jets 

over the whole length of the flow, including the transition (List and Imberger'̂ "*'), though 

Chu et. al. have reported anomalously small angles of spread in the transition region. 

1.3 Other factors affecting entrainment 

Experimental results of Bhat and Narasimha'^' have revealed a dramatic difference in the 

entrainment between jets and plumes subjected to off-source volumetric heating and their 

unhealed counterparts. Experimental observations show that plumes entrain more rapidly 

than jets; the greater entrainment by the plume is typically attributed to the presence of 

buoyancy in the plume. In contrast, the addition of buoyancy away from the source by 

volumetric heating produces the opposite effect of reduced entrainment. Narasimha's 

group ' ' has conducted a series of experiments and numerical simulations with jets 

and plumes subjected to volumetric heating to show that latent heat release during 

condensation above the cloud base is the key factor in reducing the rate of entrainment in 

clouds. 

Apart from buoyancy, other factors that affect entrainment are flow acceleration or 

deceleration due to an applied pressure gradient along the flow or other body forces, and 

stratification of the ambient medium. Results from the reacting mixing layers indicate 

that entrainment is reduced by as much as 30% in a reacting mixing layer (flame) 

compared to the non-reacting mixing layer. This reduction is attributed to flow 

acceleration caused by dilation. Experiments of Choi et. al.''*' show that entrainment and 

mixing are high in jets subjected to an adverse pressure gradient, whereas the entrainment 

10 



is reduced or completely suppressed in a jet subjected to a favorable pressure gradient. 
ri8i 

Entrainment is also inhibited in a jet when the injection velocity is increased in time , 

the effect arising from temporal variations and not spatial ones. 

Based on the above experimental observations, Sreenivas K.R. and Ajay K. Prasad' 

have argued that the main factor that affects the entrainment process is the axial 

acceleration. By taking into account the axial acceleration factor in viewing all the 

entrainment data, the anomalous behavior of volumetrically heated jets and plumes is 

easily explained. 

Apart from the above studies, there has been little fundamental research on mixing 

between streams with very different viscosities. Campbell and Turner ' have studied a 

class of flows in which the extent of mixing between a turbulent fluid and its 

surroundings depends on the viscosity ratio between the two fluids. The context for the 

experiments reported by them is a geological one, the injection of a new pulse of magma 

into a magma chamber from below in the form of a 'fountain', but the results have a 

wider significance. For example, viscosity differences play an important role in 

engineering applications like the blending of differently viscous fluids in a process 

industry. 

[8] 1.4 Campbell's work on viscosity effects: An overview' 

When a turbulent 'fountain' of fluid of low viscosity Vi is injected upwards into a less 

dense fluid of higher viscosity (V2), the two fluids may mix thoroughly or not at all, 

depending on the relative magnitudes of an input Reynolds number Rci = wd/ vi and the 

viscosity ratio s-J \\ where w is the mean velocity and d is the diameter of the input. The 

criterion for mixing can be expressed alternatively as wd/ V2 > k, a constant, in agreement 

with a more general theoretical argument which is also outlined in the paper. 

In figure 1.3, a schematic of Campbell's experimental set-up is shown. A denser fluid 

(such as K2CO3 solution) is injected into a tank of another fluid (glycerol, water etc.) and 

11 



the amount of fluid that falls back after losing its entire upward momentum was measured 

to quantify entrainment. The total amount of fluid supplied to the fountain was recorded 

as the height ht of the column of liquid added to the rectangular tank. The 'entrainment 

height' h was measured by subtracting ht from the height hm of the mixed or hybrid layer 

at the bottom of the tank, that is h = hm-ht (The hybrid layer will now have a gradient of 

viscosity, as well as density). The maximum entrainment in each series, equivalent to an 

entrainment height h , was obtained at the minimum value of V2. The results for the 

different series of experiments are compared by normalizing h with h in each case and 

defining H = h/h . 

Fluid falling back after losing 
momentum 

Settled entrained fluid 
r 

• Inlet (Negatively buoyant jet) 

Figure 1.3: Campbell's experimental set-up 

Figure 1.4 shows the main results of Campbell in a graphical form. Figure 1.4a represents 

the results of 'fountain' experiments carried out in a tank 400x196x297 mm deep, using a 

fixed nozzle 7.2 mm diameter and three inflow rates, corresponding to the different 

symbols. The normalized entrainment H (=h / h*, as explained above) is plotted against 

the viscosity V2 of the host fluid in centistokes, on a logarithmic scale. The arrows mark 

the viscosities at which the entrainment is predicted (using a simple theoretical model) to 

12 



7 1 9 

fall to half its maximum value in the experiments with wd = 18 cm s" and wd = 3.9 cm 

s'\ The displacement of these arrows from the corresponding experimental curves is a 

measure of the direct effect of Vi in reducing entrainment. 

Figure 1.4a): Variation of entrainment Figure 1.4b): Variation of entrainment 
with ambient viscosity with inlet viscosity 
at different inlet flow rates 

Figure 1.4b represents a plot of the amount of entrainment H against Vi (in centistokes) 

on a logarithmic scale, measured in experiments with constant Vi (=47 centistokes) and 

wd = 18 cm^ s"'. The measured entrainment heights have been normalized to the amount 

of entrainment (h") expected from the previous experiments with wd = 18 cm^ s"', as read 

from figure 1.4a. 

The results are summarized as follows: 

1. For any value of wd, there is a critical value of V2(= V2') below which changes in the 

viscosity of the host fluid have no influence on mixing. 

2. Once V2> V2', the viscosity of the host fluid has a controlling influence on entrainment, 

which then falls sharply and becomes very small at values of V2> 10v2*̂ . 

3. The higher the value of wd, the higher is the value of V2 at which the viscosity of the 

host fluid first influences entrainment. 

13 



Some of the possible sources of errors in the above experiment are: 

1. Since the fluid after losing its momentum falls back through the ambient fluid 

before settling down, it will possibly entrain some more fluid while falling back. 

This additional entrainment is not accounted for in the experiments. 

2. The fluid that falls back, seriously affects the dynamics of the actual jet. 

Considering the above points, we decided to conduct experiments in a set-up with a 

standard configuration (and hence avoid the above stated problems) and conduct a more 

detailed study of the same problem. In this work, we study the entrainment happening in 

a jet/plumeA)uoyant jet and concentrate on the mechanisms that control the process. The 

study is carried out via experiments and 2-D simulations using vortex methods. 

Qualitative and quantitative conclusions are made from the current study. 

14 



Chapter 2 

Experiments: Details and Specifications 

All the experiments were conducted in a glass tank of dimensions 30x30x45 cm .̂ Pipettes 

with an internal diameter of 1.3-1.4 mm at the exit were used to discharge the jet 

vertically down in the tank. The tank was filled with aqueous solutions with different 

viscosities and a specific density. Brine solution (of density greater than that of the fluid 

in the main glass tank) was discharged through the pipette. Densities of fluids were 

altered by the addition of suitable amounts of salt. Viscosities of the ambient fluid were 

altered by the addition of suitable amounts of Sodium carboxymethyl cellulose (Na-

CMC). To ensure that CMC dissolves entirely in water, viscous solutions containing 

CMC were prepared at least a day before they were used in the experiments. The 

discharge velocity was maintained constant by using a constant head arrangement 

discharging across a constant resistance, as suggested by Debopam Das et. al. The 

arrangement is explained below. 

2.1 Constant pressure-head flow set-up 

Figure 2.1 represents the schematic of the constant pressure-head flow set-up. The 

discharge tube (pipette) was connected to a five litre aspirator bottle through two valves, 

with one of them having fine control. Water level was maintained in a capillary tube 

attached to the top of the aspirator bottle. To get constant flow rate, this level was kept 

constant through a constant flow into the capillary from another constant head constant 

resistance arrangement. This consists of a two-litre aspirator bottle with a fine control 

valve discharging into atmospheric pressure. Here, level in the two-litre aspirator bottle 

provides the constant head, and valve and tubing the resistance. Here, the fine control 

valve from the two-litre aspirator bottle discharges into atmospheric pressure, either into 

the capillary on top of the five-litre aspirator bottle or a burette outside for measuring the 

flow rate. Flow rate was measured by measuring the time taken to collect a specific 

volume of the fluid. The fine control valve from the two-litre aspirator bottle is adjusted 

at the start of every experiment so that the level of the fluid in the capillary does not 

change during the experiment. 
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Inlet fluid with dye 
r = ® = * = = ^ 

u 

; 

Constant head 

k 
Inlet fluid with dye 

^ Ambient 
fluid 

Flow control valve 
Figure 2.1: Constant pressure-head flow set-up 

2.2 Main Tank 

As specified earlier, the main tank was of dimensions 30x30x45 cm . The inlet fluid is 

denser than the ambient fluid and always possesses downward momentum. The inlet 

fluid, along with the entrained ambient fluid, hits the bottom of the tank with a finite 

momentum and bounces back. This leads to mixing of the entrained fluid with the 

ambient fluid. To avoid this problem, a high-density layer (fluid of density greater than 

that of both the inlet and the ambient fluids) was placed at the bottom of the tank. Now, 

the entrained fluid possessing downward momentum hits the high density layer at the 

bottom, loses all of its kinetic energy and settles nicely above this bottommost layer. The 

entrained fluid being heavier than the ambient fluid stays below the ambient fluid. As 

most of the kinetic energy in the jet is absorbed while bouncing off from the bottommost 

fluid layer, mixing of the entrained-jet-fluid with the ambient fluid is suppressed. A 
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schematic of the main glass tank is shown in figure 2.2. Densities of different fluids were 

measured by measuring the mass of a specific volume of the fluid. 

Ambient fluid 
(viscosity = V2) ** 

Figure 2.2: Main tank 

*• Jet fluid 
(viscosity = Vi) 

Jet + 
*" Entrained fluid 

High-density 
layer 

2.3 Viscosity measurement 

Viscosities of fluids were experimentally determined using the Stokes law for a sphere 

falling inside a fluid at low enough Reynolds numbers. For a spherical object of radius r, 

at low speeds the surrounding fluid flow is laminar. The resistance force exerted by a 

viscous fluid on a spherical object of radius 'r' moving through it with constant velocity 

is given by 

Fviscous = (6TI) X (^) X (r) X (v) 

where |i is the dynamic viscosity of the fluid and v the terminal velocity attained by the 

spherical object. This is valid only for Reynolds number less than 80, where the flow is 

substantially laminar. 

For the spherical object in force equilibrium, the viscous force mentioned above and the 

buoyancy force exerted by the fluid balance its weight. 

Vbau(Pball-pfluid)g = Fviscous 

where Vbau is the volume of the spherical ball, pbau its density, p>nuid the fluid density, g 

the acceleration due to gravity and Fviscous the viscous drag force. 
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Spherical balls (of diameter -5 .9 mm) of different densities were dropped into the fluid 

whose viscosity is to be measured. The density difference between the ball and the fluid 

was made small enough to ensure low speeds and hence low Reynolds numbers. The 

balls were allowed to fall through one metre column of the fluid. The time taken to travel 

the last 50 cm was noted down and in turn the terminal speed of the ball was estimated. 

The initial 50 cm of the fluid is large enough to ensure that the ball attains terminal 

velocity. 

2.4 Flow visualization 

The plane containing the centerline of the jet was illuminated using a 532 nm Nd-Yag 

laser light sheet. The laser beam was converted into a planar light sheet using a plano

concave cylindrical lens. Reflecting mirrors were used to deflect the laser beam as per 

requirement. Figure 2.3 represents a schematic of the laser light sheet illumination of the 

main glass tank. 

I Flow from constant prcssurc-hcad 

Nozzle'*' 

Piano concave cylindrical 1< 

NdYag LASER 

Cioss-sectional view as seen by the camera 

Digital camera 

Figure 2.3: Schematic of the flow visualization arrangement 

Fluorescein dye was added to the inlet fluid for flow visualization purposes. A Nikon 

Coolpix 990 camera was placed such that the plane of the jet that was illuminated was 

viewed in a normal direction. 
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Both instantaneous and time-averaged images were taken in all the experiments. 

Instantaneous images were taken by keeping the shutter of the camera open for a while 

and a single pulse of the laser given during this time. The duration of the pulse being very 

small (5-7 nanoseconds), the image taken by this procedure will represent the flow field 

at a certain instance. The flow structure becomes evident in these instantaneous images. 

Time-averaged images are taken by keeping the shutter of the camera open for quite 

some time (~ 8 seconds) and around 10-12 laser pulses given during this. Images of the 

jet at 10-12 different instances superimposed on the same frame represent a time-

averaged picture of the flow. Jet-widths (Scalar spread of the inlet fluid) and the laminar 

length (the distance from the nozzle-exit till where the jet remains laminar) are estimated 

from the time-averaged images. Subtracting out the minimum intensity levels that are 

existent throughout the image filters the raw images obtained. The jet-width at any axial 

location is defined as the radial location (at that axial position) at which the intensity of 

green light becomes (1/e)* of that at the centerline. 

2.4.1 Streak photography 

The ambient fluid was seeded with fine aluminium powder. These particles were passive 

scalars following the fluid flow faithfully. Images were taken by keeping the camera 

shutter open for around 10-15 seconds with the laser illuminating the flow at 40 Hz 

during this period. The images taken show clearly the streaks formed by the particles in 

the ambient fluid. These images help in getting a qualitative picture of the flow-field 

outside the scalar spread of the jet (indicated by the extent to which the green colour of 

the inlet fluid has spread). 
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2.5 Entrainment quantification 

We have also performed experiments where quantitative data on how much entrainment 

happens were measured. As explained in Sec 2.2, the inlet fluid along with the entrained 

fluid (green-coloured because of the presence of fluorescein dye) settles down as a 

distinct layer in between the bottommost layer and the ambient fluid. The height of the 

settled- down green layer in a specific duration of time represents the amount of 

entrainment that has happened during that time (the green layer comprises both the inlet 

fluid that has been pushed in and the entrained ambient fluid). The duration is made short 

enough so that the settling down fluid does not affect the actual jet drastically. Also, at 

the same time, the duration is made long enough so that there is a clear discemable height 

of entrained green fluid that settles down. 

2.6 Results 

The results from the experiments are presented in this section. Only the relevant 

parameters in the experiments and a brief explanation of the figures are given here. A 

detailed discussion is given in Chapter 4. All the results shown in this section correspond 

to the following values for the densities of the inlet and the ambient fluid. 

Pinlet = 1099 kg / m^ Pambient = 9 9 0 kg / m^ 

The exit diameter of the inlet nozzle was 1.4 mm. The dynamic viscosity of the inlet fluid 

was always 0.001 Ns/m . 

The Morton length-scales (defined in 1.2.1) corresponding to different inlet Reynolds 

numbers, for the specific density difference at which the experiments were conducted, are 

listed in table 2.1. The inlet Reynolds number was calculated based on the inlet velocity, 

the inlet diameter and the kinematic viscosity of the inlet fluid. 

Even though the buoyant jet becomes plume-like at axial locations that are as high as 

60dinietfor high inlet Reynolds numbers, the Morton length-scale corresponding to most 

of our experiments (whose inlet Reynolds numbers were within 2000) is within 4.5 cm 
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Inlet Reynolds Number (Re) 

I - 100 

100 - 500 

500 - 1000 

1000 - 1500 

1500 - 2000 

2000 - 2500 

2500 - 3000 

3000 - 3500 

3500 - 4000 

Morton length-scale I^ (cm) 

0.0022 - 0.22 

0.22-1.1 

1.1-2.2 

2.2-3.3 

3.3-4.4 

4.4-5.5 

5.5-6.6 

6.6-7.7 

7.7-8.8 

Wdinlet 

0.0157-1.57 

1.57-7.86 

7.86-15.71 

15.71-23.57 

23.57-31.43 

31.43-39.29 

39.29-47.14 

47.14-55 

55-62.9 

Table 2.1 

from the inlet (corresponding to an axial location ~ 30diniet). This means that we are 

effectively studying a buoyant jet that becomes plume-like very quickly. The Morton 

length scales of all the experiments are presented alongside the figures. Data from regions 

that are well within the Morton length-scale are also presented. 

The following are the notations used for various parameters in all the figures. 

Rciniet - Inlet Reynolds number 

Vi - Kinematic viscosity of the inlet fluid 

V2 - Kinematic viscosity of the ambient fluid 

2.6.1 Flow visualization 

Figures 2.4 a) and b) depict instantaneous pictures of a fully turbulent buoyant jet. 

Notable features here are the presence of coherent structures and the rapid entrainment 

that takes place. Correlation between the coherent structures and the entrainment will be 

discussed later. The dye used is fluorescein dye and the illumination is by 532 imi laser 

light sheet. 
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a) A zoomed-out 
view 

b) A zoomed-in 
view 

Figure 2.4: Fully turbulent buoyant jet and associated entrainment 
RCinlet = 7 0 0 , V2 = Vi 

Figure 2.5 gives a qualitative flavor of the effects of the ambient viscosity on 

entrainment. The dye used in these experiments is potassium permanganate. We observe 

appreciable entrainment in figure 2.5 a), which corresponds to a case where the viscosity 

of the ambient fluid is equal to that of the viscosity of the inlet fluid. At the same 

Reynolds number, we can observe that the entrairmient is completely suppressed when 

the viscosity of the ambient fluid is much higher in comparison with that of the inlet 

fluid. Both are time-averaged images. The exact value of the ambient viscosity in figure 

2.5 b) is not known. The bottommost parts of each of the images indicate the colored 

entrained fluid that has settled above the bottommost high-density layer. 
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a) Rciniet = 1700 b) Reimet = 1700 
V2 = Vi Ambient fluid - more viscous than the inlet fluid 

Figure 2.5: Suppression of entrainment by ambient viscosity 

Figure 2.6 represents a set of time-averaged images of the flow for similar inlet Reynolds 

numbers (-100) but for increasing ambient to inlet viscosity ratios. The extent to which 

the green colour has spread is an indication of the scalar spread rate (scalar referring to 

the inlet fluid particles), which in turn means how much entrainment and hence mixing is 

happening. Since the Reynolds number is very low in all the cases shown in this figure, 

we are effectively looking into the behavior of a plume as the 

corresponding Morton length scales (as shown in Table 2.1) are very small. Appreciable 

noise in all these images can be attributed to the murkiness of the ambient fluid, which is 

unavoidable. We observe that the ambient viscosity plays an important role in 

suppressing the entrainment (scalar spread rate). We also observe from the figure that, the 

effects of the ambient viscosity on the entrainment become important only after a specific 

viscosity ratio is reached. We observe not much difference in the scalar spread rate 

between the cases where the viscosity ratio is one and eleven respectively. We observe an 

appreciable suppression of entrainment in the case where the viscosity ratio is 15. This 
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specific viscosity ratio, above which the ambient viscosity starts playing a prominent role 

in the entrainment process, will be different for different inlet Reynolds numbers. This 

result is supportive of the qualitative conclusions that are drawn by Campbell and 

Turner. 

Figure 2.7 shows the instantaneous images of the entire cases shown in figure 2.6. It is 

interesting to observe that the coherent structures that are very prevalent in the case that 

corresponds to a viscosity ratio of unity are completely absent in the final case in which 

the viscosity ratio is 47. It seems that, the ambient viscosity plays a key role in 

suppressing structures at the interface that are of shorter wavelengths. Structures of 

longer wavelengths are still present even in the high viscosity ratio case. The entrainment 

(and hence mixing) that is happening seems to be strongly correlated with the presence of 

coherent structures at the interface between the inlet jet fluid and the ambient fluid. This 

correlation is consistent with the results presented by Sreenivas' ̂ ^'. 

Time-averaged figures (similar to the ones shown in figure 2.6) were analyzed to estimate 

the scalar spread width (in this case it is the same as the extent to which the green color 

of the inlet fluid has spread) for different cases. Variation of the scalar spread width with 

the axial location, inlet Reynolds number (for the same viscosity ratio) and viscosity ratio 

(for the same inlet Reynolds number) are plotted later in this chapter. 

Figures 2.8 and 2.9 represent a set of time-averaged and instantaneous images 

respectively, taken for similar inlet Reynolds numbers (-830) but for increasing viscosity 

ratios. Qualitatively, the results are similar to what are shown in the figures 2.6 and 2.7, 

the difference being in the magnitude of the inlet Reynolds number. It can be concluded 

from these figures that the viscosity ratio beyond which it starts playing a prominent role 

in affecting the entrainment, is higher for higher inlet Reynolds numbers. The earlier 

comments made on coherent structures and long-wavelength structures are validated 

again in these two figures. The Morton length scales here are again small enough so that 

the flow can be considered plume-like beyond an axial location that is fifteen times the 

inlet diameter. 
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V2 = Vi 
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V2 = l lVi 

RCinlet = 122 
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RCinlet = 67 
V2 = 22vi 

RCinlet = 1 6 7 
V2 = 26vi 

RCinlet = 144 
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Remiet = 108 
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Figure 2.6: Entrainment at similar Rcfniet and increasing viscosity ratios (time-averaged) 
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RCinlet = 1 2 2 

V2 = 15vi 
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Figure 2.7: Entrainment at similar Reiniet^nd increasing viscosity ratios (instantaneous) 

26 



c 
T3" 

RCiniet = 866 
V2 =15 Vi 

RCinlet = 800 
V2 = 17vi 

RCinlet - 825 
V2 = 29v, 

RCinlet — 833 
Vi = 47vi 

Figure 2.8: Entrainment at similar Rciniet and increasing viscosity ratios (time-averaged) 

RCinlet = 866 
V2 =15 Vi 

RCinlet = 800 
V2 = 17vi 

RCinlet - 825 
\z =29vi 

RCinlet — 833 
V2 = 47vi 

Figure 2.9: Entrainment at similar Re-let and increasing viscosity ratios (instantaneous) 
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Experiments were performed at higher inlet Reynolds numbers also, but the 

corresponding images are not presented here, as the qualitative conclusions remain the 

same as above. The data from these experiments were used for the plots shown later. 

In figures 2.10 and 2.11, we show the variation of the scalar spread rate with increasing 

inlet Reynolds numbers, at the same viscosity ratio of 15. Figures 2.10 and 2.11 represent 

time-averaged and instantaneous flow patterns respectively. We observe that the effects 

of the ambient viscosity are more prominent at lower inlet Reynolds numbers and the 

suppression of entrainment becomes negligible at higher Reynolds numbers. The 

instantaneous images clearly show the presence of the longer-wavelength waves even at 

low inlet Reynolds numbers. The emergence of the coherent structures as the inlet 

Reynolds number increases seems to be well correlated with the increase in the scalar 

spread rate. There exists an inlet Reynolds number (specific to the viscosity ratio) beyond 

which the effects of the ambient viscosity on the entrainment are hardly present. This 

means that, beyond the particular inlet Reynolds number, we will observe hardly any 

increase in the scalar spread rate with increasing inlet Reynolds number, working at the 

same viscosity ratio. This result agrees well with the qualitative picture that Campbell 

and Turner have presented in [8]. 

Figures 2.12 and 2.13 present results similar to those in the figures 2.10 and 2.11, the 

only difference being in the viscosity ratio (V2/V1 = 27 in these figures). The same 

analysis has been extended to a much higher viscosity ratio (Vi/Vi = 47) and the results 

are presented in figures 2.14 and 2.15. The variation in the scalar spread rate that we 

observe in these figures agrees well with the conclusions made from figures 2.10 and 

2.11. Also, the inlet Reynolds number beyond which there is no change in the 

entrainment even with an increase in the inlet Reynolds number seems to increase with an 

increase in the viscosity ratio. 

Interesting to note are a few bright spots in the images corresponding to high inlet 

Reynolds numbers at a fairly high viscosity ratio. For example, we observe this in both 
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RCiniet = 7 5 RCiniet = 122 Rejnjet = 3 3 3 RCiniet = 5 0 0 RCfniet = 8 6 6 

Figure 2.10: Entrainment at varying Rei„iet ( va/vi = 15) (time-averaged) 

Rei„iet = 75 Rei„ie,= 122 Rei„iet = 333 Rei„iet = 500 Rei„iet = 866 

Figure 2.11: Entrainment at varying Rei„iet (V2/V1 = 15) (instantaneous) 
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Figure 2.12: Entrainment at varying Rciniet ( V2/V1 = 27) (time-averaged) 
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Reiniet = 144 Reiniet = 383 RCiniet = 766 RCinle. = 1349 
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Rei„,et = 2199 Rei„,e, = 2798 

Figure 2,13: Entrainment at varying Reiniet ( V2/V1 = 27) (instantaneous) 
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Rei„iet = 108 Rei„,et = 200 Rei„,et = 425 Rei„ie, = 833 Rei„ie, = 1999 

Figure 2.14: Entrainment at different Reiniet (vz/vi = 47) (time-averaged) 

•o 
o 

Rei„iet=108 Rei„iet = 200 Rei„,e, = 425 Reimet = 833 Reime, = 1999 

Figure 2.15: Entrainment at different Reiniet (V2/V1 = 47) (instantaneous) 
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the instantaneous and the time-averaged images of the case corresponding to a viscosity 

ratio of 27 and inlet Reynolds numbers of 2199 and 2798 (figures 2.12 and 2.13). These 

were bubbles that were continuously rising up in the tank, after being formed somewhere 

in the middle of the tank. Even though we do not have a clear reason for why they 

appeared, it could be interesting to look into. Their origin could also have been because 

of some air gap that was formed inside the tank before the experiments started. This has 

anyway been brought to notice because the bubbles were observed in more than one 

experiment. 

2.6.1.1 Scalar spread widths: Variation with Rcmiet and Vi/Vi 

As was explained earlier in this chapter, the extents to which the inlet fluid spreads (at 

different axial locations) in all the experiments were evaluated using the distribution of 

the light intensity in the green wavelength range. The scalar width gets specified by the 

radial location where the intensity of green light drops to (1/e)* of the centerline green 

intensity. Since there was appreciable noise in many of the images, accurate estimate of 

the scalar spreads could not me made. The following graphs are used primarily to explain 
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Figure 2.16: Intensity variation with 
less noise 

400 600 801 

Radial location (pixels) 

Figure 2.17: Intensity variation with 
appreciable noise 
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some of the qualitative aspects of the problem. Figure 2.16 shows the typical intensity 

plot when the noise is very low. In figure 2.17, we show a plot that has an appreciable 

amount of noise and this makes the estimate of the scalar spread very difficult. The two 

main factors that result in the noise are murkiness of the ambient fluid and non-

uniformity of the laser illumination. 

In figures 2.18, 2.19 and 2.20, the variation of the scalar width with the axial location for 

different cases is shown. The trend in the variation depends largely on the inlet Reynolds 

number and the viscosity ratio. The jet is conical (with a constant angle of spread) only 

when it is fully turbulent (and hence self-similar). In all the cases, we observe that the 

rate of change of the scalar width with the axial distance from the inlet is very low in the 

region where the jet is laminar. This can be attributed to the absence of coherent 

structures in this region, and will be discussed more in detail in chapter 4. 

The variation of the scalar width beyond the laminar region strongly depends on whether 

the jet becomes fully turbulent or not. In the cases where ambient viscosity is playing an 

important role in suppressing the entrainment, the scalar width tends to remain constant 

beyond some axial distance. Also, we have plotted the variation of the scalar width at a 

particular axial location (and a particular viscosity ratio), against the inlet Reynolds 

number and observe that variation tends to be fairly linear till a particular value of the 

inlet Reynolds number, beyond which the variation is slower. This particular value of the 

inlet Reynolds number, beyond which the variation becomes slower, depends strongly on 

the viscosity ratio. These are plotted in figures 2.21, 2.22 and 2.23. 

Another interesting result was observed when a passive scalar (food color, in this case) 

was released far away from the jet. As we observe in figure 2.24, even though the inlet 

fluid is restricted to a very small width, the momentum has diffused over a much wider 

region. The inlet Reynolds number and the viscosity ratio for this experiment are 

specified alongside the figure. The blue outer dye streak indicates the spread of 

momentum into the ambient, whereas the jet fluid is confined to a smaller region. Based 

34 



25 -1 r "1 r 

0) 
•s 
E 
CO 

Scalar width Vs Axial distance 

- » « -

-e-
^ l > -

-t-

-^ 

R«in.e. = 67 

R«in..t = 83 
R«inl.t = ''50 
R«inl.t = 267 

R«in..t = 350 

20 30 40 50 60 70 80 90 
Axial distance (non-dimensionalized wrt the inlet diameter) 

100 

Figure 2.18: Scalar width Vs Axial distance 

25 r 

1 
•a 
220 

•c 
5 
•a 
0) 

•M 
CO 
c 
o 
(0 

E 

Scalar width Vs Axial distance 
V2=15v^ 

- ^ 

- ^ 

R*lnl.t 

R«inl.t 

"̂ inlet 

= 75 

= 122 

= 333 

= 500 

= 866 

20 30 40 50 60 70 80 90 

Axial distance (non-dimensionalized wrt the inlet diameter) 

Figure 2.19: Scalar width Vs Axia l distance 

100 

35 



20 30 40 50 60 70 80 90 
Axial location (non-dimensionalized wrt the inlet diameter) 

100 

Figure 2.20: Scalar width Vs Axial distance 
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on this result, we decided to look into this issue more in detail using streak photography. 

The results are presented in section 2.6.2. 

Figure 2.24: Scalar spread Vs Velocity spread 
Rei„iet=1500,V2 = 600vi 

2.6.1.2 Entrainment through two different layers 

In figure 2.25, we present a result indicating the behavior of the jet when it enters a high 

viscosity fluid after passing through a fluid of its own viscosity. The transition takes 

place at the interface indicated by the dark line in the figure. In the dotted box shown in 

the figure, small-scale fluctuations in the turbulent jet are evident. When it passes into the 

high viscosity region, all small-scale fluctuations are suppressed, however, small wave-

number fluctuations still persist. In the higher-viscosity medium, the flow seems to have 

undergone a reverse transition (tending towards the laminar regime) resulting in lower 

entrainment. 
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Figure 2.25: Entrainment tlirough two 
different layers, Reiniet = 450 

2.6.2 Streak photography 

As was discussed earlier, experiments were performed with the ambient fluid seeded with 

fine aluminium particles. Images taken with long exposures (8 - 15 s depending on the 

inlet Re and the viscosity ratio) are presented here. The streaks that are formed by the 

particles are indicative of the velocities in the flow. The inlet fluid is dyed with 

fluorescein dye and the scalar spread is indicated by the extent to which the green colour 

has spread. 

Figures 2.26-2.29 are a set of images taken for a particular viscosity ratio (V2 = 78vi) and 

increasing inlet Reynolds number. It is very interesting to note that there is effectively an 

axial co-flow outside the main jet in the case of Rciniet = 267. It is very evident that the 

axial momentum has spread to a much larger extent than the scalar (inlet fluid). This 

points towards an interesting result, which suggests that the scalar width (extent to which 
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the inlet fluid spreads) is very different from that of the velocity width (the extent to 

which the axial momentum has spread) in this case. Also to be noted is the fact that the 

turbulence level is very low in this case and the flow is almost fully laminar. Now, as we 

increase the inlet Reynolds number (figures 2.27-2.29), we observe the particles from the 

ambient fluid tend to travel into the main jet-flow rather than moving downstream 

alongside the jet, as in the case of Rciniet = 267. As the inlet Reynolds number is 

increased, the turbulence level also goes up provided the viscosity ratio is the same. The 

velocities outside the main jet vary from being fully vertical (downwards) to fully 

horizontal (radially inward) as the inlet Reynolds number is increased from the flow 

being fully laminar to the flow being fully turbulent. To support this argument, an image 

from an experiment where the viscosity ratio is unity and the inlet Reynolds number high 

enough to ensure high levels of turbulence (and high levels of entrainment too) is 

presented in figure 2.30. It is very clear from this image that the outside ambient fluid is 

traveling radially towards the jet rather than flowing downstream alongside the jet. The 

velocity and the scalar widths are almost equal here. 

The implications of the results from streak photography are quite important in any mixing 

studies. It is clear that even in cases where there is hardly any entrainment happening, the 

axial momentum can spread to a large extent. There will be no correlation between the 

velocity width and the corresponding entrainment. Hence, inferring on entrainment by 

measuring only the velocity width, as in the work of Agarwal. A and Prasad. A.K.'^'\ 

would be misleading. In any mixing studies, where the primary aim is to study the 

amount of mixing between the inlet and the ambient fluid, it is important to look at the 

scalar spread rates rather than the velocity counterparts. It is important to note that the 

term "entrainment" refers to the process of inducing flow in the ambient fluid and finally 

the mixing of the inlet and the ambient fluids. 

Results from entrainment quantification (Sec. 2.5) have not been presented here. They 

also pointed towards all the qualitative conclusions that have been made based on the 

time-averaged images from which the scalar widths were obtained. It was difficult to 

obtain clean quantitative data because of various factors like the finite size of the main 
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Figure 2.26: Entrainment completely suppressed, velocity width much greater than 
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Figure 2.27: Velocity and Scalar widths, Reiniet = 566, V2 = 78vi 
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Figure 2.28: Reimet = 1499, V2 = 78vi 
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Figure 2.29: Velocity width approaching the scalar width (Rei„ict = 2848, V2 = 78vi) 
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Figure 2.30: Velocity width equal to the scalar width. (Reiniet = 350, V2 = Vi) 
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glass tank (this would mean the jet does not travel through the same distance throughout 

the experiment), very small times before an appreciable coloured layer settles down in the 

case of fully-turbulent flow etc. However, the purpose of having a high-density bottom 

layer to result in a clean standard set-up was achieved in all the experiments. 
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Chapter 3 

2-D Simulations using discrete vortex methods (DVM) 

We have also addressed the same problem via 2-D simulations using vortex methods. A 

brief introduction to how vortex methods work is given below. Also, the advantages and 

disadvantages associated with DVM are discussed. A very detailed introduction to DVM 

can be found in [22, 23]. 

3.1 Introduction 

DVM are numerical schemes that are based on the vorticity in the flow. The main reason 

to base the numerical method on the vorticity is that, typically, only a small portion of the 

flow contains vorticity. This can lead to significant savings in storage and computational 

effort. DVM compute the evolution of vorticity using a Lagrangian approach, in which 

the computational points (vortices) follow the motion of the fluid. Vortex methods for the 

simulation of incompressible flows correspond to a numerical approach with three 

fundamental features. First, the Navier Stokes or Euler equations are formulated in terms 

of vorticity and so the spatial discretization is carried out over the vorticity field instead 

of the velocity field. Second, making use of one of Helmholtz' theorems which states the 

correspondence of vorticity elements with material fluid elements, the computational 

vortex elements are Lagrangian and so convect with the fluid velocity. And third, to 

obtain the fluid velocity one makes use of the fact that the vorticity, defined as CO = V x u, 

can be inverted giving the velocity u as an integral over the vorticity field. This is the 

Biot-Savart law in vorticity kinematics, which allows to completely describe the flow 

field by tracking vorticity elements. 

Describing the flow in terms of vorticity is desirable due to the intuitive power of 

visualizing the vorticity field, especially in complex and unsteady flows. Another 

advantage is the fact that the pressure drops out of the governing equation, and thus only 

needs to be solved for when and where force measurements are desired. In addition, as 

the DVM literature profusely extols, the fact that the vorticity field is predominantly 
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compact means that smaller-sized computational domains can be used, in comparison 

with primitive variable formulations, and also boundary conditions at infinity can be 

automatically satisfied. In contrast, satisfying the free-space boundary condition of 

external flows can be a delicate matter in grid-based with truncated flow domains. 

Furthermore, the Lagrangian vortex particles convect without numerical dissipation, as 

the non-linear term of the Euler or Navier-Stokes equations is traded by a set of ordinary 

differential equations for the particle trajectories. This is, again, in contrast with grid-

based schemes, which inevitably suffer from numerical dissipation. Finally, the essential 

grid-free nature of the DVM is itself an advantage, as grid-generation is often one of the 

most expensive processes in computational fluid dynamics, CFD. The above stated 

advantages are most often critical for high Reynolds number flows. The difficulties that 

arise with DVM, on the other hand, will be discussed later. 

3.2 Basic Formulation of DVM'"^ 

Let u (x, t) be the velocity field and O) (x, t) = V x u (x, t) the vorticity field. Taking the 

curl of the momentum equation and considering an incompressible fluid for which 

V . u (x, t) = 0, the vorticity transport equation is obtained. This is the governing equation 

in vortex methods, which for three-dimensional flow corresponds to the following vector 

equation, 

— + u-Wco = co-yu + \^^co (3.1) 
dt 

The assumptions in the above equation are: constant density flow, constant viscosity 

flow, conservative body forces, an inertial frame of reference and unbounded domain. In 

the case of a two dimensional and inviscid flow, the right hand side of (3.1) is zero and 

the governing equation reduces to the simple form = 0, where — stands for the 

Dt Dt 

material derivative. This corresponds to the basic formulation of vortex methods, for 

which clearly a Lagrangian method based on elements of vorticity is natural and ideal. 

Based on this simplest of formulations, the vortex method historically found its first 
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successful applications in the simulation of phenomena governed by the 2D Euler 

equations. Subsequently, vortex methods have been extended to three-dimensional flow 

by including the vortex stretching/tilting term, and have incorporated the presence of 

internal boundaries by using vortex sheet formulations in the inviscid case and vorticity 

generation models with boundary elements for the viscous case. Viscous effects were 

added first by the random walk method'̂ '*^ but a number of so-called deterministic 

viscous schemes have been proposed and tested during the last two decades. 

In the vortex blob discretization, the elements are identified by a position vector, Xi; a 

strength vector (vorticity x volume) of circulation; and a core size, Oi. The discretized 

vorticity field is expressed as the sum of the vorticities of the vortex elements in the 

following way: 

co(x, t) = (o\x, t) = X r , (OC, (^ - ^, (0) (3.2) 

1=1 

where P. corresponds to the vector circulation strength of particle i (scalar in 2D). In the 

blob version of the vortex method - in contrast to point vortices, the elements have a non

zero core size Oi and a characteristic distribution of vorticity ^^ , commonly called the 

cutoff function. Frequently, the blob cutoff function is a Gaussian distribution and the 

core sizes are uniform (ai=a), which means that in two dimensions one has 

;-exp(—!-': 

kTTCT ka' 

where the constant k determines the width of the cutoff and is chosen by different authors 

as 1, 2 or 4. We have used k = 4 in our simulations. 

C(^) = ̂ ^ e x p ( - i ^ ) , (3.3) 

In the majority of vortex methods (almost all), the Lagrangian formulation is expressed 

by assuming that the vortex elements convect without deformation with the local 

velocity. The velocity is obtained from the vorticity using the Biot-Savart law: 

u{x,t)=\{VxG){x-x)(o{x',t)dx'= JK(x-x')a)(x',t)dx'=ik*a)){x,t) (3.4) 
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where K = VxG is known as the Biot-Savart kernel, G is the Green's function for the 

Poisson equation, and * represents convolution. For example, in two dimensions the Biot-

Savart law is written explicitly as 

uix,t) = — —^ ax (3.5) 
S^-" \x-xf 

For the customary case of an axisymmetric cutoff function q = q(r), r =|A], the velocity 

kernel can be obtained analytically. For the 2-D Gaussian blob with k = 1, one has 

^c (^) = -T-T (->'' ^)(1 - exP(- - ^ ) ) (3.6) 

The formula for the discrete Biot-Savart law in two dimensions gives the velocity as 

follows, 

u{x,t) = -Y^T.K^{x-x.) (3.7) 

Finally, the Lagrangian formulation of the (viscous) vortex method in two dimensions is 

expressed in the following system of equations: 

^ = M(X,,0 , (3.8) 

at 

— = W'Q)+B.C. (3.9) 

dt 

The complete numerical method is defined by Equations (3.8) and (3.9) which express 

that the method is to be implemented by integrating the particle trajectories due to the 

local fluid velocity, while the velocity is obtained from the vorticity using the Biot-Savart 

law. The vorticity field evolves due to the effects of viscosity, both in the free-stream and 

on the boundaries (no-slip condition denoted by B.C.). The viscous effects in the free-

stream are enforced by one of a variety of viscosity schemes available for vortex methods 

(described in the next section), while the effects due to solid boundaries are traditionally 

accounted for by generation of vorticity implemented in a version of the boundary 

element method. This is based on the physical mechanism by which the solid wall is a 

source of vorticity that enters the flow, so a vorticity flux — may be determined at the 
dn 

wall to satisfy the boundary condition of no-slip at the surface.̂ ^ '̂ 
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3.3 Viscous Schemes for Vortex Methods 

Vortex methods have long proved to be an effective tool for the approximation of 

solutions to the Euler equations, and have been used for decades in the simulation for 

both unbounded and bounded flows. In most applications of more than academic interest, 

however, the limitations of the inviscid approximation cannot be accepted. Unfortunately, 

it is not easy to implement a numerical solution of the diffusion term in the vorticity 

transport equation that is compatible with the Lagrangian formulation. This section 

examines the different schemes that have been introduced over the years to include 

viscous effects in vortex methods. 

Majority of viscous vortex methods are based on the viscous splitting or the fractional 

step algorithm. Viscous splitting - sometimes called "fractional step" method - is in fact 

a particular case of the general technique of "operator splitting", and it is introduced to 

viscous vortex methods together with the random walk diffusion scheme by Chorin. 

Convergence of the viscous splitting algorithm for the Navier-Stokes equations in an 

unbounded flow is proved in [26] and [27]. The algorithm consists of sub-time-steps 

where the effects of convection and diffusion are considered successively. More sub-

steps are involved in higher order schemes, but the basic two-step viscous splitting 

algorithm is second-order accurate at each time step and first-order overall (irrespective 

of the time-stepping scheme used). For two-dimensional viscous flows, 

— + u•Wa) = v^co (3.10) 
dt 

Sub-step 1: Convection 

dx 

dco ^ Deo . 
dt Dt 

dt 
dco 

, dt 
= 0 

(3.11) 

Sub-step 2: Diffusion 
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dt 

dx„ 
' =0 

^^ (3.12) 
dco„ 

^ = vAco(x) 
dt 

The convective sub-step in a vortex method is ideally expressed in the Lagrangian frame 

of reference, the same as for an inviscid flow. Using the discrete representation of the 

vorticity field, the velocity is obtained by the Biot-Savart law and the particles are 

advanced in the inviscid sub-step. But the discretization of the vorticity field in vortex 

methods, conceived for the simulation of the inviscid vorticity equation, is not well suited 

for the evaluation of the Laplacian in the diffusive term, because of the unstructured 

nature of the data. Hence a wide variety of approaches have been put forward to include 

diffusive effects in a vortex method. 

The random vortex method (RVM) was introduced by Chorin̂ '̂*̂  and is formulated 

essentially as a fractional step method. It takes into account the viscous effects in the 

mean, simulating diffusion by a random walk, i.e., a Brownian-like motion of the vortex 

particles. Consider the discretized vorticity as expressed by (3.2); in the inviscid case the 

particle strengths F, remain constant, and g-is not a function of time, i.e. the vortices are 

elements of fixed geometry, and the particle positions are updated only as a result of 

convection. The random vortex method acts by modifying the positions of the particles at 

each (diffusive sub-) step by adding a random walk, that is, the particle locations are 

transformed using: x" '̂ - x" + ^" , where the ^" are Gaussian independent random 

variables of zero mean and variance equal to 2vAt. This formula is based on the 

probabilistic interpretation of the diffusion equation, which says that the probability of 

finding a particle that moves at random in Brownian motion is given by (3.12). The main 

disadvantage is that it requires a large number of particles to obtain reasonable accuracy, 

due to its slow convergence rate. Also, only slightly viscous flows can be modeled, and at 

low Reynolds numbers the solution can be quite rough. Generally, the (lower) limit is 

taken as Re = 100. 
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Some of the other viscous diffusion schemes that have been suggested are Particle 

Strength Exchange (PSE), Redistribution Method, Fishelov Method, Diffusion Velocity 

Method and the Core Spreading model. Owing to reasons like requirement of large 

computational powers, lower accuracies involved and loss of the grid-less nature of 

DVM, we decided not to look into the usage of RVM, PSE, Redistribution and Fishelov 

methods for our problem where viscosity is varying in space. A more detailed description 

of all the above viscous schemes is given in [22]. 

3.3.1 Diffusion Velocity 

The diffusion velocity approach'̂ ^^ can be deduced from considering the general case of 

an arbitrary scalar function in two space dimensions F(x,y,t) that moves with velocity 

u(x,y,t) = (u,v), whose evolution equation can be written as 

'-L,M1,M1,0 (3.13) 
dt dx dy 

The two-dimensional vorticity transport equation (3.10) can be written in this form, using 

the incompressibility condition, 

dco d .. V dio. , 3 r/ ^ 3^x 1 « ,^ ^A^ 
- ^ + —[(w ^co\ + — [{v --)ft;] = 0 (3.14) 
at ox CO ox oy CO oy 

Comparing (3.13) with (3.14), where (u, v) is the convective velocity, the diffusion 

velocity is defined by the extra contribution to the total velocity, as follows, 

V do) dco 
"<,= ( ^ - ' ^ (3.15) 

CO ox oy 
so that the vorticity equation can now be written in a conservation from as 

-^ + — {co{u + u^)) + — {co{v + u,^)) = 0 (3.16) 
ot ox oy 

The concept of a diffusion velocity implies that the net flow of vorticity is proportional to 

the vorticity gradient, which is analogous to Pick's law of diffusion where v/co is taken as 

a non-constant diffusion coefficient. It translates into saying that co as a preferred 

direction of transport, namely that of Vo). The way the vorticity gradient is obtained in 
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the diffusion velocity method is by directly taking the derivatives of the cutoff function in 

the discretized vorticity representation. The suitability of the diffusion velocity concept 

was demonstrated in [28] for a one-dimensional diffusion test problem and for the case of 

a circular cylinder at Re = 1200 and Re = 40. However, the results presented for cylinder 

flow are of rather low resolution when compared with finite-difference calculations. 

Comparing equations (3.13) and (3.14) and obtaining an expression for the diffusion 

velocity is equivalent to equating the solutions of the two differential equations. The 

solutions can very well be different by the gradient of an arbitrary scalar potential, 

satisfying the two equations at the same time. No specific reason has been given by the 

authors in [28] for why the gradient of this arbitrary potential should always be zero. 

Even though it seems to work well for some specific situations, the physical basis for the 

method does not seem to be convincing. We have got satisfactory results with the above 

method for a jet where the viscosity does not vary in space. As will be shown later, when 

the viscosity is varying in space, the method is not appropriate. 

Kempka and Strickland have suggested some modifications to the diffusion velocity 

model to account for the non-solenoidal nature of the diffusion velocity that Ogami and 

Akamatsu'^^ have used. A formulation that relates the area expansion of a blob to the 

diffusion velocity divergence is presented. Accurate simulations of the one-dimensional 

diffusion equation are obtained. The method has not been tested out for other more 

complex situations. Also, no justification to why the gradient of an arbitrary scalar 

potential (as explained in the earlier paragraph) in deriving the expression for the 

diffusion velocity is given. 

3.3.2 Core Spreading 

During the earlyl990's, only two viscous vortex methods were well known: the random 

vortex method of Chorin and core spreading, which apparently was used for the first 

time in [30]. The latter method was, however, under discredit due to the mathematical 

objections of Greengard.'^^' Then, a correction was suggested for the core spreading 
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method by Rossi^'^', and interest in this scheme was revived, but still only a very few 

workers have performed further investigations with it. 

The core spreading method, presented by Leonard in [33], is a purely Lagrangian scheme 

that accounts for viscous effects by changing the core size of the particles to exactly solve 

the diffusion equation. It is easily understood using as analogy the classical exact solution 

of the two-dimensional Navier-Stokes equations termed "spreading line vortex"(see 

Batchelor '̂''", p. 204). In this problem the vorticity is given by 

r H' 
aKx,t) = - exp(-i;^) (3.17) 

Consider again the approximate vorticity given by the discretized form (3.2), but write it 

slightly differently to express the fact that the core function will now carry the 

dependence on time, 

(0(x, t) = tO^x, t) = Y.T,{t)C,{x-xM (3.18) 
1=1 

The core function is now chosen to be the solution of the heat equation with initial data 

CM)=-^W''-''^"''Uy)dy = (G * Co)M, (3.19) 

where G is the heat kernel. If the initial distribution function ^^ is a Dirac delta, then 

C,{x) = -^e-^'^'"^ (3.20) 

By comparing with (3.17), the discretized vorticity field in two dimensions can be seen as 

a superposition of "spreading line vortices" of different circulation strengths. The core 

spreading vortex method is then formulated so as to satisfy identically the viscous part of 

the vorticity equation by expanding <7̂  linearly according to 

da^ 
= 4v (3.21) 

dt 

which means that the core of each particle must spread out at a rate proportional to ^|vt 

or y/vAt at each time step. As we use a Gaussian blob function with k = 4, the method is 

expressed in the following simple algorithmic rule: 
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af{t-\•^t) = at{t) + v^t, i = l N (3.22) 

The attraction of this formulation - apart from its utter simplicity of implementation - is 

that the method is fully localized and grid-free in nature (hence more easily expressed in 

a parallel application code), and that it is fully deterministic (so allows faster convergence 

and better error control compared with the RVM). Additionally, a core spreading scheme 

does not necessarily rely on the fractional step method. However, as mentioned, research 

in its regard was largely stalled when the method was declared inconsistent in 1985. , 

and it was proved that the scheme converges to an equation different from the Navier-

Stokes equations. 

The inconsistency of the core spreading method is related to the treatment of the particles 

as solid bodies, from which the "convection error" arises. With the core spreading 

method the diffusion of vorticity is approximated accurately, but the vorticity is advected 

with an average velocity and not with the actual local velocity. The vorticity is 

incorrectly convected even in the limit of infinitely many particles. Greengard derives in 

his note [31] the actual equation which is solved by the vorticity obtained by core 

spreading, which differs from the Navier-Stokes equation in the convection term only. 

But it is easy to understand the problem with a simple argument, noting that with the 

uncorrected method particle cores will grow to a size of at least -JVT in a simulation ran 

to a final time T. As the convergence of a vortex method depends on core size remaining 

small, the method will clearly eventually break down. This simple argument illuminates 

how a correction is implemented, based on adding spatial refinement, e.g., splitting of the 

blobs, which have grown beyond a specified maximum into smaller elements. Rossi 

proved the convergence of the corrected core spreading method with vortex splitting and 

provided details of implementation. He went on to propose vortex merging as a means to 

control problem size^'^\ as the splitting can rapidly increase the blob population. The 

vortex splitting scheme of Rossi is described in Section (3.3.3). 
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3.3.3 Vortex splitting and merging 

As said earlier, a basic core spreading vortex scheme is inconsistent and the splitting 

algorithm controls the consistency error by maintaining small vortex core sizes. ' ' In 

order to maintain small blob sizes throughout the simulation, the basic core-spreading 

scheme is coupled to spatial refinement. The refinement process splits any blob wider 

than / into a configuration of thinner blobs of width less than /. The numerical parameter 

a€ [0,l]controJs the accuracy and stability of adaptive spatial refinement. The refinement 

process will approximate a single vortex element having width / with several blobs of 

width a I. Therefore, a refinement algorithm takes all vortex elements with core sizes 

greater than or equal to / and splits them into many, each of which is scaled by a factor 

of«. 

The particular refinement process is somewhat arbitrary. Here, only 1-4 refinement, 

where one blob splits into four, is explained, but this can be carried out for any "refined" 

configuration. The general strategy is to conserve as many moments as needed to 

constrain the free variables. To begin, a single vortex element with circulation y and 

variance a^ will split into four identical vortices, each with a variance of a^cr^. Without 

loss of generality, one can assume the original vortex is located at the origin. 

Conservation of the zeroth moment indicates the obvious: the new vortices must have the 

same circulation. Conservation of the first momfent along with the rotational symmetry of 

y 
the system requires that each vortex have circulation — and be centered uniformly along 

4 
a circle of radius r. Conservation of the second moment constrains the last variable 

r = 2o-Vl - a^ (3.23) 

Now, all of the free parameters of 1-4 refinement have been determined, and it is possible 

to explicitly describe the algorithm. 

1. Approximate the exact initial vorticity distribution with vortex elements. 

2. Implement the basic core-spreading algorithm to convect and diffuse the vortex 

blobs. 
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3. Split any element with <7, > / according to 1-4 refinement process listed above 

with the refinement radius described in equation (3.23). 

4. Repeat (2) and (3) until reaching time T. 

Rossî ''̂ ^ has suggested the process of merging groups of many Gaussian basis 

functions into a single basis function in vortex simulations. This is performed to 

account for the large computational efforts demanded by the increase in the number 

of blobs while implementing the vortex-splitting algorithm. Nearly overlapping 

computational elements can be expressed more simply as a single element in certain 

situations, reducing the computational load while maintaining the same accuracy. 

Numerical merging will consist of replacing a collection of vortex elements with a 

single element. From the N computational elements, a subset (y.j,x.j,a.j)foT 

l< j<n shall be merged into a single element. The postmerger element will be 

labeled 0 and the subindices ij will be dropped because only the n elements to be 

merged are of importance here. It is necessary to assume that all y.'s{l<i<n) have 

the same sign. Numerical merging conserves the zeroth, first and second moments of 

vorticity. This effectively defines the numerical merging process because these 

constraints determine the strength, position and width of the postmerger element: 

ro=Er, (3.24) 
1=1 

n 

Vo^o =^ri^i (3.25) 
1=1 

4ro^o=Zr , (4o - f+ |x , , -5 j ' ) (3.26) 
i=l 

Maintaining /^ < a. < l^ is necessary to maintain accuracy in the evolution of the 

computational field relative to the exact solution. Choice of which blobs are to be 

chosen for merging, /„, and lu are based on minimizing the difference in the vorticity 

fields before and after the merging event: 
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I - 1 2 , 1 ^ ^ |2 

Kn m ^ Y crt \x-X:\ 
K5) = - ^ [ e x p ( - f L ) _ ^ Z i . ^ e x p ( - L _ ^ ) ] (3.27) 

The goal is to choose efficiently a collection of vortices together with the parameters 

(YQ , JCQ , <7g) so that this error is small. More details can be found in [35]. 

3.4 Fast Multipole Expansion 

For convection of the vortices, the velocity field can be found from the Biot-Savart law. 

Such a velocity field implicitly satisfies mass conservation. However, the computational 

effort required to evaluate it directly is high; it is proportional to the square of the number 

of vortices. Fast algorithms have been developed to do it with much less effort. Clarke 

and Tutty have suggested a zonal decomposition/summation method, which is 

explained below. 

The zonal decomposition method relies on the following theorem: 

Suppose there are Np vortex blobs contained within a domain D, then sufficiently far 

from D, the velocity induced by all Np vortices can be calculated using a Laurent series in 

n, terms (where n, depends only on the accuracy required). 'Sufficiently far' in this case 

turns out to be relative to the maximum distance from any vortex in D (this maximum 

distance is termed the 'radius' of a zone). The coefficients of the Laurent series can be 

calculated in advance of the summation relative to the arbitrary center point'y^'. Hence, 

beyond a certain distance from the center, we can use this series and, if Np is large, save 

work compared to a direct summation over each vortex. The formulae for the 

coefficients, velocity and convergence condition are: 

Let a,=Y,rj(Zj-A)''-'' (3.28) 

1 "' 
then u(z)-iv(z)= —Ya^iZ-Ay^+Oie) (3.29) 

2m K=i 

provided \Z-A\>h(n,,e).sup{\Zj-A\:j^l...Np} (3.30) 
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where a^ are the coefficients for the zone, Tj and Zj are respectively the strengths and 

positions of the vortices in the zone, A is the (complex) center point of the zone and h is a 

function depending on nt, the number of terms used in the series, e, the accuracy required 

and sup, the supremum function. 

To use the theorem effectively, it is necessary to construct an algorithm to decompose the 

entire vortex field into a set of zones. In our simulations, the boxes were constructed in 

the following way. Consider a section that extends to infinity on either side in the lateral 

direction normal to the axis. Its width was chosen to be equal to that of the inlet diameter 

and that specifies its local width. The first section starts right from the exit of the inlet 

pipe. Boxes of size equal to the local width are constructed within the section till the last 

vortex particle in the section is captured within a box. For the next section, the local 

width is chosen as 1.04 fimes the local width of the previous section. This is done to 

account for the vortex particles spreading in the lateral direction (resulting in lesser 

number of particles per unit area at an axially farther location). Sections (and then boxes 

within them) are constructed till the all the vortex particles in the computational domain 

are accounted for. 

The arithmetic mean of the co-ordinates of the vortex blobs within a box is taken as the 

co-ordinates for the center of the box. The distance between the vortex blob (within the 

box) that is farthest from the center of the box and the center of the box is computed as 

the radius of the box. The parameters nt and e are chosen such that the maximum error 

induced by the method is within 1 percent (This is done by comparing the vorticity data 

computed via direct summation and by fast multipole expansion). If the number of 

particles within a box is less than or equal to Nmin (say 7), direct influence of all the 

particles within the box is computed irrespective of whether the convergence condition 

(3.30) is satisfied or not. Typical construction of the boxes with the vortex particles is 

shown in figure 3.1. 
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Figure 3.1: Fast multipole expansion, Number of particles = 1700 

3.5 Viscosity-stratified flows 

The two-dimensional vorticity form of the Navier-Stokes equations for a flow in which 

the viscosity is varying in space is as follows: 

,da> dco do)^ d a> .du dco d co .du dco 
p{— + w — + v — ) = / / — r + 2 ^ — + M—Y + ^ — + 

dt dx dy dx ox dx dy dy dy 

d^[x dv du d^p du dv d^ju du dv 
(3.31) 

,du dv. 
. , V • / ( — + — ) 

dxdy dy dx dx dy dx dy dy dx 

where p is the constant density, u the x-component of the velocity vector, v the y-

component of the velocity vector (x being the axial direction in our simulations), // the 

dynamic viscosity and co the vorticity. 

The main difficulty in implementing vortex methods for a flow governed by (3.31) is 

that, viscous splitting (Sec 3.3) is not an obvious choice as terms containing the 
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derivatives of viscosity, velocity components and vorticity together exist. It is not 

possible to explicitly split the equation into convection and a diffusion part. 

3,6 Simulation Method 

In this section, the procedures adopted to run our simulations for a viscosity-stratified 

case are presented. Two sheets of vorticity represent an inlet slot of width D and length 

PL, through 

C^C^C^OC^ C^C^ . 
^-/YYYWYVYywwwYY7^>i 
^ UAA^UJUUUUUUUUUUUJ ; 

^U 
^7WYY?YV7VVY?V?YV??T^ U M ^ y j y J L A A A M A M ^ ^ 

Figure 3.2: Vortex blobs at the inlet 

which a fluid is flowing at constant speed U. The finite-sized vortex blobs have an 

overlap of around 50 %. Figure 3.2 represents the vortex blobs on the inlet pipe, with the 

circular arrows indicating the sense of rotation of the top and the bottom row of vortices. 

The sizes and the overlap are chosen such that the errors in the velocity profile at the 

centerline of the inlet pipe are within 1 %. The strengths of the blobs are evaluated as 

follows: 

dl 

ooolon oo , 
nT?TTT?WTTrmY7?Tr^ 
oJUUUUUUyAAMi^iJUUUU^ 

^ u 
^7?????????Y????Y???T^ lUJJJJJJJJJJjJJJJJJJJ 

0 

Vdl 
Figure 3.3b 

Figure 3.3a 
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Zooming in on the box (of size dl x dl) drawn with dashed hnes in the figure 3.3a, we 

compute the total circulation around the box. As indicated in the figure 3.3b, the 

circulation comes out as U dl. The circulation in the box, y - \] dl and hence the 

circulation per unit length (y/ dl) = U. The circulation strength of each of the vortex blob 

should therefore be UPL/NP, where Np is the number of vortex blobs representing the 

inlet pipe. 

The inlet fluid is represented by a set of concentration particles (represented in the 

simulations via Gaussian basis functions, similar to the vortex blobs representing the 

Figure 3.4: Concentration particles at the inlet 

vorticity distribution). The concentration particles, which are passive scalars, represent 

the inlet fluid concentration in the entire flow-field. The blobs occupy the entire inlet 

pipe. The strengths and the overlap of these scalar particles are chosen such that the value 

of the concentration evaluated at any point inside the inlet pipe by adding up the 

influence of each and every scalar particle, is unity. This means that a concentration value 

greater than or equal to unity indicates the presence of the inlet fluid only and a zero 

value indicates the presence of the ambient fluid only. Figure 3.4 depicts the inlet scalar 

particles occupying the entire pipe, with around 50 % overlap. Particularly large sizes 

have to be chosen for the scalar particles so that the number of particles needed to 

represent the concentration field does not become huge. The value of the concentration 

evaluated at a point in space is what that decides the local viscosity value. A tan-

hyperbolic function varying from Vj (the inlet fluid viscosity) to V2 (the ambient 

viscosity) as the concentration varies from 1 to 0 is used to map the concentration values 

onto corresponding viscosity values. 

63 



At the end of every time step, vortex blobs and concentration particles are pushed out of 

the inlet pipe into the ambient fluid with the inlet velocity U. The particles in the ambient 

fluid are convected with the Biot-Savart law velocity and the viscous diffusion scheme 

discussed below is used to expand the areas of all the vortex blobs. 

As said earlier, the diffusion velocity model seems to work reasonably well for the case 

where the viscosities of the inlet and the ambient fluid are equal. Since the physical basis 

for the method is not very clear, an extension of the model to viscosity-stratified flows 

was not possible. In our simulations, we have used the core-spreading approach along 

with the corrections suggested by Rossi by performing vortex splitting. The rate at 

which the area of a vortex blob increases is proportional to the value of the viscosity at 

the point in space where the blob's center lies. Even though, this does not account for all 

the terms containing viscosity derivatives in the vorticity equation, we believe that the 

errors will not be huge if the blobs are small enough and the derivatives of viscosity not 

too large. The derivatives are not completely neglected either, as the local viscosity 

values (which are varying in space) are what are used for implementing the viscous 

diffusion part. The concentration particles are treated as passive scalars and this means 

that the diffusion of concentration is not accounted for. The scalar particles are convected 

after every time step with the velocity computed at their centers using the Biot-Savart 

law. Figure 3.5 represents the way the vortex blobs and the concentration particles are 

convected and diffused at every time step. Uc is the convective velocity computing using 

the Biot-Savart law. 

U c + NO DIFFUSION 

U c + VISCOUS DIFFUSION 

Concentration 
particles ^ ^ Vortex blobs 

Figure 3.5: Concentration and Vortex particles 
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The fast multipole expansion algorithm is implemented to reduce the computational 

efforts from O(N^) to O(NlogN).'^*' Vortex merging is implemented to account for the 

huge increase in the number of blobs caused by the vortex splitting technique. 

Randomness within 1% is forced onto the strengths of the blobs that enter the ambient 

fluid, as a means to simulate a real-life situation, which cannot be absolutely disturbance-

free. This will also ensure that the flow is not perfectly symmetric about the x-axis. Blobs 

that have reached an L/D ratio of 160 or beyond are accelerated further by artificial 

forcing to ensure that they don't accumulate at the end and cause errors and difficulties in 

the simulations. 

3.7 Results 

3.7.1 Viscosity ratio = 1.0 

In this section, the results obtained for a case where the inlet Reynolds number and the 

viscosity ratio (V2/V1) are 2000 and unity respectively, are presented. The inlet Reynolds 

number is high enough for the flow to be fully turbulent. No scalar particles are used, as 

the viscosity is uniform in space. 

Figure 3.6 shows the instantaneous vorticity distribution of the fully turbulent jet. 

Interesting to observe is the fact that the initial laminar region (where the entrainment is 

also negligible) seems to be depicted well be two thin sheets of vorticity of opposite 

signs. The importance of the presence of a coherent structure at an axial location (which 

will in turn mean a net non-zero value of vorticity integrated radially over the entire axial 

location) in inducing entrainment at that location will be discussed in the final chapter. 

Fine coherent structures are also evident in this plot. The role of coherent structures of 

smaller wavelengths in the entrainment process will be discussed in the next chapter. 
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Figure 3.6: Instantaneous vorticity distribution 
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In figure 3.7, we show the variation of the (1/e) velocity width with the axial location. 

The jet being fully turbulent, the velocity and the scalar widths are expected to be 

comparable, as observed from our experiments. We observe that the variation switches 

from a straight line of one slope to another. The initial 20-30 d (d is the inlet slot width) 

is in the laminar regime, and hence we observe the slope to be small, as hardly any 

entrainment happens here. Now, as the flow undergoes a transition from the laminar 

regime to the self-similar turbulent regime, we observe the velocity spread rate to become 

much higher (owing to rapid entrairmient) and hence resulting in a larger slope for the 

straight line. This larger slope is in good agreement with the findings of Fischer.''*' 

In figure 3.8, average axial velocities (non-dimesnionalized wrt the local mean centerline 

values) are plotted against the transverse location (radial direction, non-dimensionalized 

wrt the local (1/e) velocity width). The values are taken from various axial locations in 

the region that is after the initial laminar state. All the points, lying on a Gaussian fit 
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(indicated by the dark red line) clearly shows that the flow has attained self-similarity 

after the initial 20-30 d. 

The following were the simulation parameters corresponding to all the results presented 

for the viscosity ratio being unity: 

Core-radius of the vortex blobs at the inlet: 0,25 

Inlet pipe length: 50 

Core radius beyond which vortex splitting is performed = 1 

All the above three values are non-dimensionalized wrt the inlet slot width. 

Re. , = 2000, V- = V, 
inlet ' 2 1 

10 20 30 40 50 60 70 80 90 

Axial location (non-dimesnionalized wrt the inlet diameter) 

Figure 3.7: Linearly spreading (1/e) velocity width 

100 
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J Self-similar axial velocity profile (Re. j ^ = 2000, V2 = v^) 
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Figure 3.8: Self-similar axial velocity profile 

We were interested in the distribution of the inlet fluid concentration in the case of the 

viscosity ratio being equal to unity also. Hence, we proceeded by doing the simulations 

for Rciniet = 2000 and V2/V1 =1 with the scalar particles representing the inlet fluid. 

Averaging was performed over 200 time steps and the maximum core radius specified for 

the vortex blobs was slightly smaller than what was specified for the earlier case. 

Figure 3.7 shows the plot of the variation of the (1/e) velocity width with axial distance. 

As noted earlier, the slope is very small in the initial laminar region and then becomes 

larger once the flow becomes turbulent. Figure 3.9 shows a plot of the (1/e) scalar width 

and the velocity width with axial distance. Interestingly, the scalar width turns out be 

larger than the velocity width at every axial location. It is interesting to note that the 

scalar width can be much smaller than the velocity width or can be comparable to it 
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depending on what the inlet Reynolds number and the viscosity ratio are. Both the scalar 

width and the velocity width are shown together in figure 3.9. The scalar spread rate 

being larger than the velocity spread rate in a fully turbulent jet is consistent with the 

results obtained by Fischer''"'. 
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Figure 3.9: Scalar and Velocity widths 
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Li figure 3.10, by plotting the mean axial velocity profile at different axial locations and 

collapsing them to a single Gaussian variation by using the appropriate velocity and 

length scales, the self-similarity of the velocity profile is shown. In figure 3.11, the 

variation of the mean centerline axial velocity with axial distance is plotted. As expected, 

it decreases with axial distance, the rate of decrease being smaller as we go further 

downstream. 
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Figure 3.12 shows the variation of the mean inlet concentration, averaged over 200 time 

steps. Important to be noted is the fact that the scalar spread rate is appreciable, and traces 

of the inlet have spread to a fairly large extent. The scalar widths here are greater than the 

axial velocity widths. This qualitative trend of the scalar widths being greater than the 

velocity widths is always observed in fully turbulent jets. Instantaneous distributions of 

the inlet concentration and the vorticity are shown in the figures 3.13 and 3.14 

respectively. 

3.7.2 Viscosity Stratification 

The simulations were extended to cases where the viscosity was non-uniform in space. 

The main issue here was the requirement of large computing power and time. To be able 

to capture the effects of the ambient viscosity clearly, we needed to go to a viscosity ratio 

that was as high as 100. Firstly, the number of scalar particles needed to represent the 

inlet fluid to a reasonably good extent was very large. The core radius of the scalar 

particles, in a way specifies the resolution in evaluating the concentration at each point. 

This, even if reasonably small, would lead to a number of particles that is at least twice 

that of the number of vortex blobs in the domain in the equal viscosity case. Secondly, if 

the maximum core size for the vortex blobs (which specifies the resolution in evaluating 

the vorticity at each point) is specified to be the same as that for the equal viscosity case, 

the number of vortex particles reaching this maximum value will be too many too soon. 

This results in at least a hundred-fold increase of the number of particles for the particular 

case of the viscosity ratio being 100. Based on the above issues, the following simulation 

parameters were used for the viscosity-stratified cases: 

Core-radius of tlie vortex blobs at the inlet = 0.25 

Inlet pipe length = 50 

Core radius beyond which vortex splitting is performed = 7.5 

Core radius of the concentration particles = 0.25 
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Figure 3.14: Instantaneous vorticity (Reiniet = 2000, V2 = Vi) 
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Even though, we strongly believe the higher viscosity ratio cases have to be addressed 

with a resolution that is a lot better than what is suggested above, an interesting result 

regarding the velocity and the scalar spreads was captured. 

In figure 3.15, a plot of the velocity and the scalar widths with axial distance for an inlet 

Reynolds number of 100 and a viscosity ratio of 50 is shown. We can clearly see that the 

velocity spread is much more than that of the concentration (of the inlet fluid) beyond 

some axial distance. This is in strong agreement with our experimental results where we 

showed that the scalar spread is much less compared to the axial momentum spread when 

the flow is far from being fully turbulent. A similar result has been obtained for a case 

where the inlet Reynolds number was 2000 and the viscosity ratio 100. This is shown in 

figure 3.16. 

Velocity width is evaluated as the radial location where the mean value of the axial 

velocity drops to (1/e) of the local centerline mean axial velocity. Scalar width is 

evaluated as the radial location where the mean concentration of the inlet fluid drops to 

(1/e) of the local centerline mean concentration. 

The widths in figure 3.16 are larger than the corresponding values in figure 3.15 and this 

is consistent with the experimental observations where an increase in the inlet Reynolds 

number results in the increase in scalar widths for the same viscosity ratio. The effects of 

the change in the viscosity ratio from 50 to 100 are not as large as the increase in the inlet 

Reynolds number from 100 to 2000. 

For the case corresponding to Reiniet =100 and V2 = lOOvi, we have plotted the average 

velocity and scalar concentration profiles at different axial locations. These plots are 

shown in figures 3.17 and 3.18. The qualitative difference in the variations of the scalar 

concentration and the axial velocity are very evident. The axial velocity always has a 

long tail indicating that the axial momentum spreads to a larger extent than the scalar 

concentration. The red line shows the distribution of the scalar concentration and the 

blue line the axial velocity in both the figures. 
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Chapter 4 

Discussion and Conclusions 

The primary role of the viscosity of the ambient fluid in affecting the entrainment process 

in a buoyant jet has been identified. 

For a given inlet Reynolds number, there exists a particular value for the viscosity ratio, 

beyond which the suppression in the entrainment in appreciable. Similarly, for a given 

viscosity ratio, there exists an inlet Reynolds number beyond which the suppression in 

the entrainment becomes negligible. 

In all the cases, it has been observed that the entrainment is negligible in the initial 

laminar portion of the flow. Also, the presence of coherent structures seems to be well 

correlated with appreciable entrainment. To explain this, we look at the three basic steps 

involved in entrainment, as suggested by Roshko' ' ' and Dimotakis' \ The process of 

entrainment in turbulent jets is understood to occur in three phases. The first step, known 

as the induction phase, involves the engulfment of ambient fluid driven by the Biot-

Savart-induced velocity of large vortices residing at the edge of the jet. The inducted 

fluid, although still irrotational, forms a part of the moving turbulent fluid. Subsequent 

turbulent straining of the inducted fluid reduced its spatial scale to a small enough value 

at which viscous diffusion dominates (diastrophy). Finally, viscous diffusion enables the 

inducted fluid to mix at the molecular level with the turbulent flow (infusion). Any 

mechanism that interferes with any of the above three phases will affect the entrainment 

process. 

Off-source buoyancy addition and axial acceleration inhibit the induction phase whereas 

high viscosity ambient suppresses both the induction and the diastrophy phases. Also, the 

induction phase is very ineffective in the initial laminar portion of a turbulent jet. 

Clustering of circulation, which indicates formation of coherent structures, is 

accompanied by an increase in entrainment in the turbulent region. The inlet laminar 

portion, represented by two parallel vortex sheets (resulting in no net vorticity at the axial 
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location) will induce no velocity in the ambient fluid and hence the induction phase is 

ineffective. Hence, the role of coherent structures in enhancing the induction process (and 

hence the entrainment process) is understood. 

The ambient viscosity plays a key role in suppressing the formation of coherent 

structures. The longer wavelength waves remain even in the case of the entrainment 

being completely suppressed in a high-viscosity ambient medium. 

As noted in the chapters 2 & 3, the difference between the scalar and the axial 

momentum spreads is more and more discernible as the flow moves away from the fully 

turbulent regime. We have shown by experiments, how the radially inward velocity 

observed in a jet'plume in a medium of the same viscosity, gradually changes to co-

flowing axial velocity with increasing ambient viscosity. The axial momentum, spreading 

to a much larger extent than the scalar in the high-viscosity case is an important factor for 

understanding the 'entrainment' process. As we have already discussed, the high-

viscosity ratio is a case where the mixing between the inlet and the ambient fluid has 

been completely suppressed but the axial momentum has spread to a large extent. 

Commenting on entrainment, purely based on the axial momentum spread is completely 

misleading. It is important to look at the concentration widths rather than the velocity 

widths in entrainment studies, as the former determines important dynamics like the 

combustion efficiency in flames and precipitation in clouds. Also, the concentration 

dilution represents the final step in the entrainment process, namely infusion. 

Absence of coherent structures for a jet in high viscosity ambient fluid is due to the 

increased stability of the shear layers. Large velocity width of the jet in comparison to its 

small concentration width indicates moving away of the inflection point in the velocity 

profile from the region of high shear and this may contribute to the increased stability of 

the shear layers. Thus, relating shear layer instability to the entrainment process in free-

shear flows will be helpful in modeling their behavior and can address the observed 

variation of entrainment coefficient in free-shear flows subjected to different body forces 

as suggested by [6]. 
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Results from the simulations were very satisfactory for the case of the viscosity ratio 

being unity. Self-similarity and rapid entrainment were two primary features that were 

predicted for a turbulent jet in a medium of the same viscosity as the inlet fluid. The 

scalar width being around 40-50 % greater than the velocity width at any axial location 

(beyond the initial laminar region) in a 2-D planar jet was established. Extending the 

simulation scheme to viscosity-stratified case was non-trivial and the current scheme, 

which approximates the terms involving viscosity derivatives in the vorticity equation, 

demands large computing power. However, the main result of the axial momentum 

spreading more than the scalar in the case of a high-viscosity ambient medium was 

captured. 
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