
z^ u^ 
JNCASR 

532.51 P07 

III; II 
8 6 4 4 

Direct numerical simulation of transition in 

unstably stratified Poiseuille flow 

A Thesis 

Submi t ted for the Degree of 

MASTER OF SCIENCE (ENGINEERING) 

by 

KAUSHIK SRINIVASAN 

ENGINEERING MECHANICS U N I T 

JAWAHARLAL NEHRU C E N T R E FOR ADVANCED SCIENTIFIC 

RESEARCH 

(A Deemed University) 

Bangalore - 560 064 

D E C E M B E R 2007 



To my Father 





DECLARATION 

I hereby declare that the matter embodied in the thesis entitled "Direct nu

merical simulation of transition in unstably stratified Poiseuille flow" is 

the result of investigations carried out by me at the Engineering Mechanics Unit, 

Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India under 

the supervision of Prof. Rama Govindarajan and that it has not been submitted 

elsewhere for the award of any degree or diploma. 

In keeping with the general practice in reporting scientific observations, due ac

knowledgment has been made whenever the work described is based on the findings 

of other investigators. 

Kaushik Srinivasan 



CERTIFICATE 

I hereby certify that the matter embodied in this thesis entitled "Direct nu

merical simulation of transition in unstably stratified Poiseuille flow" has 

been carried out by Mr. Kaushik Srinivasan at the Engineering Mechanics Unit, 

Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India under 

my supervision and that it has not been submitted elsewhere for the award of any 

degree or diploma. 

(Js :urT' 
Prof. Rama Govindarajan 

(Research Supervisor) 



Acknowledgements 

Prof. Rama Govindarajan, my advisor, for all the guidance in research, of course, 

but also for all the friendly advice that I might have needed every now and then. 

Did I mention showing the massive amount of tolerance and patience needed in 

guiding me? 

Prof. Roddam Narasimha, for teaching me the care and meticulousness that 

scientific research needs, that nothing can be taken for granted. 

Prof. Timothy Poston, for rekindling my interest in pure mathematics and 

rigor, something that I had long thought lost. 

My dad and mom, for instilling me an interest in science in the purest sense, 

well removed from the brahminical notions of education. 

My wonderfully sensible sweet mother, from whom I ve inherited almost every 

mental trait , except her sweetness and of course, her good sense. 

Supraja, my sister- for being my travel agent, banker, troubleshooter, friend 

and a million other things. For supporting me to an extent that I have no reason 

to expect or deserve. 

Komala Ramachandra, for being a catalyst in the immeasurable level of per

spective that I have gained in the past two years, and for making me a better 

person. 

Sriram ananth, for sharing duties with my sister in event mannaging me, for no 

fault of his. 

Pinaki Bhattacharya, for being a friend and for dishing out that sarcastic bit 

of sense (which is of course the only way to communicate) when I needed it most 

but wanted it the least. 

Vivek, for ferrying me aroimd for my thesis printing when I needed it most (and 

for making sure the acknowledgement was placed this high).... 

Anubhab and Ratul for being the other half of the crazy four. 

Rajaram and Vijay for being really good friends. 

Mukund, Harish, Vinod, Sameen, Antina, Vineeta, Rajapandiyan, Bishakh and 

others who I have forgotten to acknowledge though are probably irrelevant... 

The Engineering Mechanics Unit, for being a maniacal, impossible, intolerable, 

unreal meanegrie. But also for being an air-conditioned oasis in the middle of the 

desert. And speaking of air-conditioning... 



Kirti, for making it possible to use, "frozen to the teeth" and "summer" in the 

same sentence without ending up with an oxymoron. 

And of course, the Many denizens of JNCASR, for providing all the entertain

ment over the past two years, albeit unwittingly... 



Abstract 

In the present study, we have implemented a three-dimensional direct numerical 

simulation (DNS) algorithm for the purpose of studying instability and transition in 

a Poiseuille flow with imposed unstable stratification. We are specifically interested 

in studying the algebraic instability mechanism as a route to transition and the 

effect of stratification on the same. 

The DNS uses a mixed finite-difference-spectral algorithm that embodies a sixth 

order central difference scheme in the wall normal direction and spectral fourier 

method in the spanwise and streamwise directions, which are taken to be periodic. 

We first establish the validity of the DNS code in the present context by verification 

of the results obtained from the DNS with that obtained from linear theory, both 

in the case of modal theory and transient growth. In the former case we show that 

the DNS captures the growth rate and frequency of an input disturbance, which is 

in the form of the most unstable eigenfunction, quite accurately. We then study the 

evolution of optimal perturbations of small amplitudes and show that the energy 

evolution curves, in comparison with linear theory, are captured well by the DNS, 

as is the evolution of the actual flow field. 

Our next step is to consider the evolution of a finite amplitude optimal per

turbation in three dimensions which are in the form of streamwise vortices, with 

and without the presence of unstable stratification. We find that the optimal per

turbations redistribute mean shear to form streaks which are organized regions 

of high and low speed fluid relative to the background mean profile. A similar 

mechanism is shown to redistribute the mean temperature profile to form high and 

low intensity temperature streaks. We first consider the evolution of the energy of 

the perturbation and find that the energy evolves in two different growth spurts 

before decaying eventually. By analyzing the temperature and flow fields, which 

are presented at various times in considerable detail, we are able to observe the 

basic mechanism of the streak instability proces. We then compare the nature 
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of streak instability process with and without the presence of stratification and 

consider possible reasons - both physical and computational, for the observations. 
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CHAPTER 1 

INTRODUCTION 

The mechanisms underlying transition from laminar to turbulent flow have been 

intensely studied over the past few decades. Considerable progress has been made 

on many fronts though a coherent picture still remains elusive. Understanding 

this transition process from a physical and mathematical perspective is of course 

dependent on the nature of the flow situation. The simplest and the oldest ap

proach for shear flows is based on first order perturbation theory, referred to as 

linear stability theory (Orr, 1907). The approach involves perturbing an exist

ing flow situation whose stability has to be ascertained (termed the base flow) 

and subsequently linearizing the governing equations in the perturbed field. This 

linearization procedure tacitly assumes that the imposed perturbation is in effect 

infinitesimal or from a physical point of view, arbitrarily small. The linearized 

equations in the perturbation are then analyzed and the solutions examined. The 

existence of solutions which grow exponentially in time proves the fiow to be unsta

ble to arbitrarily small perturbations but the lack of such solutions says little about 

the actual stability of the flow. This method is also referred to as modal analysis 

since one only considers the behaviour of the most unstable mode and assumes that 

the behaviour of the flow is governed by the same. Studying the linear stability 

has seen considerable success in understanding and predicting the initial instabil

ity process in various flow problems but has fallen woefully short in others. The 

Rayleigh-Benard (RB) instability (Chandrasekhar, 1961) which occurs when fluid 

between two walls is heated from the bottom is a prime example where the former 

is true. Linear theory predicts the critical Rayleigh number of instability as well 

as the wavelength of the same. The predictions from linear stability in this case 

match extremely well with experimental observations. But there remain fluid flow 

problems in simple geometries where the predictions of linear theory seem to have 

little or no relation to what is actually observed. An example of this is a class of 

shear flows, notably Poiseuille or Hagen-Poiseuille flow in a channel or pipe driven 

by an external pressure gradient and Couette flow generated by two parallel walls 

or concentric cylinders moving in opposite directions. In case of plane channel flow 

1 



2 Chapter 1. 

the Reynolds number at which transition from laminar to turbulent flow occurs in 

reality is less than half of that predicted by linear theory (Rei) (Nishioka et ai, 

1975). Cylindrical pipe flow and couette flow fare rather worse since linear theory 

predicts that they are stable for all Re something that is well removed from what 

is observed (Coles, 1965). 

Another paradigm in understanding transition is the global non-linear stability 

theory (Joseph, 1976). This approach, as in the previous case, examines the evo

lution of an imposed perturbation over an existing base flow. But in variance with 

linear stability theory the perturbation equations are hot linearized. In general the 

response of a particular physical system to externally imposed perturbations would 

depend on the value of the physical parameters involved (which can be quantified 

by relevant non-dimensional numbers). The aim of global stability theory is to 

find the range of values of the relevant non-dimensional numbers where the energy 

of any externally imposed disturbance, having arbitrary size and structure, de

cays monotonically at all times. This approach is in some sense the other extreme 

to linear stability theory in terms of analysis of transition. The latter can only 

treat infinitesimal disturbances while the former is valid for disturbances having 

arbitrarily large amplitudes. The surprising aspect however is that for the case 

of Rayleigh-Benard flow, the first instability predicted by linear analysis occurs 

at precisely that Rayleigh number where an arbitrary perturbation ceases to de

cay monotonically as predicted by the global theory. The same is not however 

true for the aforementioned class of shear flows where the Reynolds (Res) number 

corresponding to global stability is much smaller than the linear instability case. 

Also here. Res is much less than the experimentally observed transition Reynolds 

number which in turn is much less than that predicted by linear theory, as stated 

previously. 

Other methods have therefore been devised to explain this observed descrepency 

notably the secondary instability mechanism (Herbert, 1983) and the recently es

poused dynamical systems methods which look for full non-linear solutions of the 

governing equations (Hamilton et al. (1995); Jimenez & Pinelli (1999); Waleffe 

(1995a,6)). In the case of shear flows, the latter methodology involves treating the 

governing equations as a dynamical system in the flow field, with the Reynolds 

number being the control parameter. Here laminar and turbulent flow are char

acterized by the existence of a laminar attracting state (which is stable below a 



particular value of Re) and a 'turbulent attractor' which they find, exists only af

ter a particular value of the Re. They find the turbulent attractor to be a class 

of exact travelling-wave solutions of the Navier-Stokes equation which are shown 

to represent a saddle point in phase space. This approach therefore states that 

the possibility of transition to turbulence exists only when the Reynolds number 

reaches the value when the turbulent attractor begins to exists. This theory heis 

enjoyed success both in terms of experimental verification (Hof et ah, 2004) and in 

predicting the correct range of Reynolds numbers for transition (Kerswell, 2005). 

In spite of the success of this theory however, it does not attempt to predict the 

actual transition mechanism but defines the conditions necessary for it. Further, 

this theory cannot in fact explain the earlier mentioned discrepency related to the 

difference in behaviour of Rayleigh-Benard flow on one hand and shear flows on 

the other. 

A key contribution that was made in explaining in the difference in behaviour 

of the two class of problems was by Chimonas (1979) who did an inviscid analysis 

of a shear flow problem and considered not just the traditional modal analysis but 

the contribution from the whole spectrum of the linear operator. He found the 

existense of algebraically growing disturbances which are asymptotically stable but 

can cause growth in short time intervals. Landahl (1980) clarified this mechanism 

further using an elegant and simpler analysis. In a series of papers by Butler & Far-

rell (1992); Farrell (1988) and Reddy & Henningson (1993, 1994) who considered 

the full {i.e. with viscocity included) linearized equations, it was shown that this 

transient growth of disturbances is due to the non-normality of the Linear operator. 

Trefethen et al. (1993) in a seminal paper showed while the behaviour of normal 

operators is described purely by their eigenvalues, it is not so for non-normal op

erators. They were also able to show that the energy of flow field whose evolution 

is described by a normal linear operator monotonically decays at all times if the 

flow is linearly stable {i.e. from the perspective of modal analysis). The linear op

erator which governs the evolution of disturbances in Rayleigh-Benard convection 

can in fact be shown to be normal. This explains the nature of transition here and 

the fact that below the linear stability limit, the energy of all disturbances decay 

monotonically and the linear analysis is sufl[icient to predict the first transition. 

The linear operators for the case of shear flows mentioned above are however non-

normal which means that even when the eigenfunctions are all stable {i.e. below 
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the linear instabiHty hmit), one can have transient growth of disturbance energy. 

This imphes that if this transient growth is sufficiently large, it can trigger tran

sition through the non-linear terms that had been excluded in the linear theory. 

The key aspects of the transient or nonmodal growth have been studied from vari

ous perspectives. Trefethen et al. (1993) showed the relationship of the maximum 

growth to the nature of the pseudospectra of the linear operator and the quantita

tive results were computed by Reddy &: Henningson (1993). The pseudospectrum 

of a linear operator refers to the spectrum of the operator when it is given a small 

perturbation by another arbitrary linear operator, the magnitude of this perturba

tion being the parameter that defines the pseudospectrum. Reddy & Henningson 

(1993) also obtained the conditions for no transient growth and showed that they 

matched with the results from the global analysis of Joseph (1976). 

The interaction of shear with buoyoncy and heat transfer, essentially the prob

lem being studied here, is a frequently occuring problem in the atmosphere and the 

oceans. An important physical phenomenon which involves this interaction is in 

the formation and sustenance of a convective storm. Wilhelmson & Klemp (1981) 

study such storms and the role of both aspects. They find that, though convection 

is the dominant source of energy initially, the presence of vertical wind shear is 

crucial for the stability and sustenance of such storms (also studied by Browning & 

Ludlam (1962)). Further, Weisman &: Klemp (1982) found that vertical wind shear 

also plays a crucial role in the splitting of such storms (referred to as Supercells) 

into left and right moving storms. The problem also has relevance in flows in the 

earth's interior, notably in the liquid outer core and the magma. However the driv

ing mechanism wihch generates the shear in this case is the earth's rotation (called 

Ekman pumping) and frequently involves massive viscosity variations (~ 10^). 

Therefore understanding the dynamics of this interaction process is of consid

erable physical interest. Studies on channel flows involving unstable stratification 

have been numerous and are based on a variants of modal stability analysis. Gal-

laghar and Mercer (1964) and Gage & Reid (1968) used linear theory to study un

stably stratified Couette flow and Poiseuille flow respectively. Lipps (1971) investi

gated the problem using two-dimensional numerical simulations at high Richardson 

numbers. After the onset of convection and in the presence of weak shear, the con

vection rolls can either be ahgned with the flow (longitudinal rolls) or transverse 

to it. Various authors have studied the problem of the pattern selection of the rolls 



using weakly non-linear theory and the Ginzburg-Landau equation. They find that 

for weak imposed shear, transverse rolls dominate initially only to make way for 

longitudinal rolls as the shear increases in intensity. Carriere &; Monkewitz (1999) 

have attempted to understand this change in the roU-tj^^e in terms of a convective 

to absolute instability transition. 

The flow regime we consider here is different from the ones mentioned previously 

in that we have a channel flow with a strong shear and weak imposed stratification. 

In the previous regime described, the flow is convection dominated and hence we ex

pect that modal analysis would be sufficient for describing the dynamics. But since 

nonmodal growth has been shown to be important to describe some types of shear 

flow, we specifically focus on this aspect here. The case of shear flow subject to a 

weak imposed stable stratification has been considered by Farrell & loannou (1993) 

who used the inviscid equations only. Bakas et al. (2001) extended this analysis to 

include viscosity and studied the evolution of the dominant structures in the flow 

from the transient growth results. A recent study by Biau & Bottaro (2004) has 

also looked at transient growth in stably stratified couette flow. All the mentioned 

authors find that the presence of stable stratification reduces the maximum tran

sient growth. The case of unstable stratified channel flow was examined in a recent 

paper by Sameen & Govindarajan (2007) where the effect of viscosity stratification 

was also considered. Their results indicate some surprising trends in the nature 

of the transient growth mechanism in the presence of buoyoncy, especially when 

the heat diffusivity is large. The differences pertain both to the magnitude of the 

transient growth and the nature in which it manifests. In the absence of unstable 

stratification, the maximum growth occurs for disturbances which are streamwise 

independent, a result that hardly changes with imposed stable stratification (see 

(Biau & Bottaro, 2004) and (Schmid & Henningson, 2001)) . With an unstable 

density profile however added however, Sameen & Govindarajan (2007) find that 

the maximum growth is observed for disturbances which are spanwise independent 

and the growth rates are an order of magnitude higher. 

The present endeavour aims to study this problem through Direct Numerical 

Simulations, which are full solutions of the Navier-Stokes equation. We initially 

verify many of the results stated in Sameen & Govindarajan (2007) through DNS 

for very small disturbances. We then consider larger disturbances which might be 

capable of triggering transition through nonmodal growth and trace the physical 



6 Chapter 1. 

mechanism of this transition in both two and three dimensions. The thesis is 

organized as follows : The second chapter focuses on details of the numerical 

method and the various related issues like algorithmic complexity and order of 

accuracy in space and time. The third chapter is a brief summary of results in 

transient growth considered in this thesis and also considers the lift-up mechanism 

for the case of stratified flows. In the fourth chapter we present detailed benchmarks 

for the numerical implementation which validate its physical output for the problem 

in question. In the final chapter, we present and compare the results for the non

linear transition mechanism in three dimensions,with and without stratification. 



CHAPTER 2 

DIRECT NUMERICAL SIMULATION : METHOD 

The channel flow problem has been among the most well studied problems using 

Direct Numerical Simulations primarily because of the symmetries present and the 

consequent simplification of the formulation. In this chapter we describe in detail 

the numerical approach and approximations used alongwith the spatio-temporal 

accuracy of the methods used. 

2.1 Stratified Channel flow 

The schematic of the flow in question is shown in Figure 2.1 It is generated by driv

ing a fluid between two parallel plates with a constant external pressure gradient. 

The walls of the fluid are maintained at constant, but different, temperatures such 

that the lower wall is hotter. The theoretical laminar flow solution is a parabolic 

profile in the streamwise velocity while the mean temperature is a linearly de

creasing profile from the hot to the cold wall. The latter is obtained under the 

assumptions that the viscosity is independent of the temperature and that the 

Boussinesq approximation is valid. The streamwise, spanwise and wall-normal di

rections are along the x, z and y axes. The flow field is characterised by the velocity, 

temperature and the pressure fields (u, v, w-,p^ T, Tm), the temperature field T here 

representing the deviation from the mean background conduction profile, Tm- The 

Boussinesq approximation requires that T{x,y,z,t) < < Tm{y) which means that 

the deviation of the temperature field caused by advection is much smaller than 

the local conduction profile. The governing equations consist of the Navier-Stokes 

equation under the Boussinesq approximation (Eq. 2.4) under which the velocity 

field remains divergenceless (Eq. 2.6) . The temperature evolves in time according 

to an advection difl!"usion equation (Eq. 2.5) . The imposed boundary conditions 

are the no-slip condition for the velocity field (condition 2.13) on the walls while 

the temperature deviation, T vanishes at the walls (condition 2.14) under the as

sumption that the walls are maintained at a constant total temperature. Periodic 
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Figure 2.1: Schematic of a stratified channel flow. 

boundary conditions are imposed in the streamwise and spanwise directions for all 

the fields (condition 2.10) , the periods in the respective directions being Lx and 

L^. The governing equations are : 

du ^ 
- + U.VU = 

dt 

Po Po 
AT 

+ u • VT = v ^ + AcV^T 
2d 

V u = 0 

(2.1) 

(2.2) 

(2.3) 

Here ii = [u^v^w) is the three-dimensional velocity field defined along {x,y,z), 

Pm is the imposed constant pressure gradient along the x direction and po is the 

density of the background mean flow at the center of the channel, v, K and a are the 

kinematic viscosity, heat conductivity and coefficient of thermal explansion of the 

fluid and are assumed to be independent of the temperature. Further, g represents 

the acceleration due to gravity and AT, the total temperature difference between 

the two walls, so that AT = Tm{0)—Tm{2d). The variables are non-dimensionalised 

as follows : 

u' = u/Uc, {x',y',z') ^ {x/d,y/d,z/d), t=t/{Uc/d) 

T' = T/AT, p'=p/poU! 

Here, Uc is the center-line velocity and d the channel half-width. After rewriting 

the governing equations in the non-dimensional variables and dropping the primes, 
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we obtain the equations in the following form : 

du „ „ i?a „ . 1 
- + U.VU = - V p + -
dT _^ ,„ 1 

^ + „ . Vu = - V p + ^ ^ T J + - V ' u + (2/fle)i (2,4) 

^ + u . V r = . / 2 + ^ V ^ r (2.5) 

V - u = 0 (2.6) 

(2.7) 

the non-dimensional numbers here are defined as : 

Reynolds number, Re — —^ (2.8) 

Rayleigh number, Ra — 
UK 

u 
Prandtl number, Pr = — 

K 

Two other non-dimensional numbers which we use frequently in the course of the 

present discourse and are derived from the above definitions, are : 

Grashof number, Gr = —— (2.9) 
Pr 

Ra 
Richardson number, Ri — 

Re^Pr 

The associated boundary conditions are : 

u{x + L^, y,z + Lj, t) = u{x, y, z, t) (2.10) 

p{x + Z/x, y,z + L^,t) = p{x, y, z, t) (2.11) 

T{x + L^, y,z + L„ t) = T{x, y, z, t) (2.12) 

u{x,0, z,t) = u{x,2, z,t) = 0 (2.13) 

T{x,0,z,t) = T{x,2,z,t) = 0 (2.14) 
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2.2 Time Stepping algorithm and accuracy 

The time stepping algorithm used here is a Crank-Nicholson Adam-Bashforth (CN-

AB) semi-implicit scheme. This method has a second order accuracy in time. This 

scheme is elucidated below for the general advection diffusion equation since the 

equations 2.4-2.14 are variants of this : 

^ + u - V / = a V V (2.15) 

The presence of the nonlinear advective terms entails their explicit treatment 

while the diffusive term can be treated in implicit fashion. The implicit treatment of 

the diffusive term is necessary to improve the numerical stability of the discretized 

equations as explicit treatments require the use extremely of small time steps. The 

advective terms are treated using a second order accurate Adam-Bashforth scheme. 

So that we write : 

^ ^ / = -(u • v/)"+5 + ^ ( r + i + n (2.16) 

the first term on the right hand side is rewritten by noting that according to the 

Adam Bashforth method, g"+5 = |c?" - | g " - i + 0{At^). Substituting this and 

rearranging the terms to seperate the n"* and n 4-1"* iterates we get : 

(1 - ^ V ^ ) r + ^ = - A i ( ^ ( u . V / ) " - ^(u • V/)"-^) + (1 + ^ V ^ ) / " (2.17) 

Now since the RHS of the above equation depends only on the previous iterates 

which are known one needs to solve a helmholtz equation which can be done by 

suitably discretizing the Laplacian as is explained in the next section. The Crank-

Nicholson scheme is second order accurate also which means the semi-implicit so

lution Eq. 2.17 is a second order accurate solution of Eq. 2.16. 

2.3 Choice of solution methodology 

In order to arrive at the approach for solving the set of equations, it is sufficient 

to consider the case of Ra — 0. The principal difficulty in solving Eq. 2.4 with the 

imposed constraint, 2.6, lies in the nature of the velocity-pressure couphng. The 
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velocity field has an evolution equation, 2.4 and also has all its boundary conditions 

specified, unlike the pressure term whose boundary conditions on the walls are 

unknown. There is however an additional condition imposed on the velocity field 

, namely 2.6, which one hopes can be used in some form to either eliminate the 

pressure or obtain boundary conditions for the same. There are different methods 

that one might take in order to resolve this issue. One is to introduce another 

variable, in the form of the vorticity which is defined as a; = V x u. The pressure is 

clearly eliminated from the equations when their curl is taken (since V x Vp = 0) 

but at the cost of introducing another variable whose boundary conditions are 

unknown and must still be determined. Following this approach leads us to the so' 

called vorticity-velocity (a; — u) formulation or a vorticity-vector potential (a; — * ) 

formulation where another variable is introduced at the cost of the velocity (u = 

V x ^). 

The method adopted here solves the equations 2.4-2.14 in their existing form 

(commonly referred to as the 'primitive-variables' formulation) without introducing 

the vorticity or vector-potential. Working in this paradigm, there are two direc

tions that one can proceed in. The first approach involves using the zero-divergence 

criterion, 2.6, to derive the boundary conditions for the pressure and then solve the 

equations since now the BCs of all the field variables are known. This approach, 

first used by Kleiser & Schumann (1980) is called the Influence-Matrix approach 

and is loosely based on decomposing the field variables into homogenous and par

ticular solutions of the governing equations. The second technique considers the 

ehmination of the pressure term as a projection of the velocity on the space of 

divergenceless fields. The technique that we here use is a variant of a velocity pro

jection technique and is explained in detail in the next section. The primary reason 

for its choice is the simplicity of the method over the Influence Matrix formulation 

and ease of implementation of the boundary conditions. 

2.4 The Pressure-velocity projection method 

The first implementation of this approach is due to Chorin (1968) who treated the 

pressure term merely as a langrange multiplier to enforce the continuity equation 

on the velocity. Using an operator splitting approach, he obtained a two-step 

predictor-corrector method where the velocity evolution equation is decoupled from 
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V . u^„rf= 0 

D u = O 

n-2 

Figure 2.2: Schematic of the projection method the evolution of the velocity field 
with time. Uexact, u and u are the exact velocity field {i.e. the solution of the 
continuous system, the divergenceless field computed from the present algorithm 
and the auxilliary field respectively. Schematic adapted from Liu et al. (2004) 

the pressure. In the first step, an auxilliary velocity field is evolved as per the 

Navier-Stokes equation but with the pressure term absent. The subsequent step 

involves projecting this auxilliary velocity field onto the space of non-divergent 

vector fields to obtain the corrected velocity field satisfying the continuity equation. 

'I'his approach is clearly shown in the schematic 2.2 where Ugxact) u ^nd u are the 

exact velocity field {i.e. the solution of the continuous system, the divergenceless 

field computed from the present algorithm and the auxilliary field respectively. We 

derive the projection in a series of steps the starting point being the Navier-Stokes 

equation written in the following time-discretized form 

^""^' ""^ = -Vp"+i + (-U • Vu)"+5 + -± -v2 (u"+ i + u") 
At z/ie 

(2.18) 

Writing the LHS as : 

_ (u"+i - u"+i + u"+i - u") (u"+i - u"+i) (u"+i -
LHS := :: = T~, 1 T~r 

At At At 

u") 
(2.19) 
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We now choose to define u""*"̂  as : 

Vp"+^ (2.20) 
At 

Eq. 2.18 now becomes, 

(U"+1 - U") ^ ^ _ ^ ^ ^ ^ „ + . ^ 1 y2(y„+l ^ „„ ) (2.21) 
At 2rie 

Eqs. 2.20 and 2.21 constitute the exact projection method. This is not however 

solvable as the RHS of 2.21 contains a u"+^ term. Ehminating this using 2.20 we 

get, 

(^:ll^^ = (_u . Vu)"+^ + ^ V ^ u " + ^ + u") - ^ V ^ ( V p ) (2.22) 

Therefore we get : 

(u"+i - u") = At{-u • Vu)"+' + ; ^ V 2 ( u " + i + u") + 0(At2) (2.23) 

2.20 and 2.23 constitute the basic projection method due to Chorin. The prob

lem occurs in applying the boundary conditions for pressure. Chorin (1968) used 

Neumann boundary conditions for the pressure but that has been shown to give 

0(1) error in the pressure by Liu et al. (2004). Kim & Moin (1985) improved the 

above approach by using an auxilliary pressure variable to improve the boundary 

conditions and the time accuracy of the method. In the approach of Kim & Moin 

(1985) however, the boundary conditions of the auxilliary pressure variable, <(> are 

not homogenous. A slight modification in their method is introduced wherein (f) 

from the previous time is now introduced in the momentum equation. This modi

fied method for the case for Ra=0, as stated in Lee et al. (2001) is specified below 

— = -V(^" + (-U • Vu)"+2 + _±_v2(u"+i + u") (2.24) 

u"+i - u"+^ = -At(V</)"+^ - V0") (2.25) 

V • u"+^ = 0 (2.26) 

V2(^"+i _</,") = V-u"+ ' (2.27) 
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Vp = Vr+' - ^V(V'(</>"+^ - 0") (2.28) 

It is seen from the above equations that the sphtting method naturally affects the 

temporal accuracy of the numerical approach as in the case of 2.23. This accuracy 

for the set of equations 2.24-2.28 can be easily estimated essentially using the same 

approach as in Eq. 2.23 since : 

Uexact - u = ^ V C V ^ p ) + 0{At^) (2.29) 

Which means that the velocity field has second order error O(Af^). 

2.5 Spatial discretization and accuracy 

The spatial discretization procedure is implementated by taking into consideration 

the nature of the boundary conditions. The domain is periodic in the stream-

wise and spanwise directions, making those amenable to representation by fourier 

series. The vertical direction too can be treated in spectral form by using a Cheby-

shev collocation method but we treat the it using finite differences instead. This 

mixed-finite difference spectral approach has considerable advantages in terms of 

the simplicity of the implementation of boundary conditions. The fourier series 

representation of the field variable is : 

u{x, y, ,̂ i) = E E ^(^- y- ̂ - Oe'̂ '̂ "+'̂ ^̂  (2.30) 
fcx=0 kz=0 

Nx N, 

p{x,y,z,t)=J2Yl P(^-2/' -̂<)e'̂ '̂ "+'̂ '̂  (2.31) 
kx=Okz=0 

Nx N, 

T{x, y, 2,0 = E E ^(^- y^ ̂ - i)ê '̂̂ "̂ *''̂  (2.32) 
fcx=Ofcj=0 

The transformation alows us to re-write the equations 2.4 - 2.6 in terms of the 

variables (u,p, T) in {kx,y,kz) space. It is easy to see that the derivatives in x-

and z- directions have the following simple representations in A;-space : 

-^ > «^x ^ >• ikz (2.33) 
ox oz 
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V ^ iii-^ + ih + kk,) (2.35) 
oy 

The nonlinear terms by virtue of being product terms can be expressed as a con

volution 

/•5 - E E E E/>-y'^^)-^(^-y>^l) (2-37) 
''̂ x k'j. ^z k'^ 

Direct summation of this term has a algorithmic complexity of 0{N^N^) which is 

prohibitively expensive. A pseudospectral approach due to Orszag(1977) can be 

used to reduce the complexity to a vastly more efficient 0{NxNJog{NxN2)). This 

is done by taking recourse to the efficient Fast Fourier transform methods which 

are used here from the open source FFTW library. But the pseudospectral method 

suffers from the so-called aliasing error which occurs because of product terms 

coming from the higher wave numbers. This can be removed by the ubiquitous 

Orszag 3/2 rule. 

The derivatives along the y—axis are evaluated using finite-differences which 

are based on taylor-explansions about each grid point. However y— derivatives 

occuring in different terms of the equations 2.4 - 2.6 are in general, expressed in 

terms of different finite-difference formulas. In the advective-diffusive equation, Eq. 

2.16 for example, the second derivative terms are expressed using a second order 

accurate, central difference scheme shown below : 

dy' 
l^^LJ^i±ll±l + 0{ls.y^) (2.38) 

The first derivative terms occuring in the nonlinear terms (having the form / | ? ) 

are expressed using a 6th order accurate central difference (CDg) scheme in the 

interior of the domain. The point just next to the wall is expressed using a second 

order central difference {CD2) formula while the next point is expressed using a 
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4th order central Difference {CD4) formula. The stencils for these derivatives are 

as follows : 

SCDef 

5y 
fi+3 - 9fi+2 + 45/i+i - 45/i_i + 9/i_2 - / i -3 , ^ , ̂ . 7 

Sy 

+ 0(Ay^)(2.39) 

+ 0{Ay') (2.40) 

6y 

60Ay 

— fi+2 + 8/i+l ~ 8/i_i + /,_2 

12Ay 

^zJizl ^ 0{Ay') (2.41) 
2Ay 

Note that the spatial accuracy of the system as a whole is actually O(Ay^) since 

that is accuracy of the second derivative terms. So the order of accuracy of the 

system is not changed if a higher order scheme is used for the nonlinear terms. But 

in using a higher order scheme for the non-linear terms, one aims not to improve 

the order of accuracy but the spectral resolution. The computation of the non

linear terms by the very nature of the term requires a very high spectral resolution. 

The spectral resolution of the CDe scheme is more than twice that of the CD2 

scheme and this is crucial in the computation of the advection terms even though 

the overall accuracy of the system is unchanged. The notion of spectral resolution 

of finite diflference schemes has been considered in detail in Chapters 10 and 11 of 

Sengupta (2004). In particular the author notes, " It is well known that the spectral 

method has the best accuracy among all discrete schemes. Hence we will calibrate 

all other methods with respect to spectral methods...''. The author goes on to show 

that the CDQ scheme has a better spectral resolution than the CD2 scheme. In fact 

the compact schemes used in general in literature use high order accurate schemes 

in the interior and lower order accuracy schemes at the boundary (usually second 

or third order), as explained in Sengupta (2004) and in Lele (1992). Further in 

section 11.5 (titled "Order of Approximation vs. Resolution") of Sengupta (2004), 

the author states the following, ''The order of approximation usually refers to a 

local series expansion and is measured by leading truncation error term. However, 

resolution refers to the ability of numerical schemes to resolve various length scales 

involved in the problem, and a best view is provided by expressing the unknowns by 

the Fourier-Laplace transform ", and later, ''All these results indicate that the 

formal accuracy of the the truncation error cannot be the sole criteria. A better 

depiction would be in the spectral plane.". In fact our computation of the growth 
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rate of the most unstable eigenfunction had an error ~ 7 - 10% when the CDi was 

used in the interior instead of CDe for the cases computed in Chapter 4, Fig. 4.2. 

The C£>6 scheme however was found to perform better and had an error ~ 2% as 

seen in Table 4.1 in Chapter 4. 

Another necessary issue to consider is the form of computation of the non

linear terms. The non-linear convolution term can be expressed in three different 

forms - the advective if-^), divergence {-^—) or skew-symmetric {7:{fw- + -K~)) 
oy oy I oy oy 

forms. Here we compute the non-linear terms in the advective form because of the 

simplicity in its computation. 

2.6 Staggered grid and grid stretching 

On a normal grid system {i.e. non-staggered), all field variables are specified at 

the same set of grid points and so are all the derivatives. The problems however 

appear in the solution of Poisson equations of the same type as Eq. 2.27. The 

second derivative of one field variable (here </>) equals the first derivative of another 

field variable (u). The same form occurs in solving 2.24 where the second derivative 

of the u equals terms having the first derivative of 0. The issue occurs because 

of the way in which a Poisson equation must be solved. Consider the case when 

the first derivative is represented by the CD2 scheme in 2.41 , so that the second 

derivative term is written as ^-^C^ &y^) ~ ~^^'t • A 'canonical' equation of 

the form mentioned earlier can be written as : 

df d^g , , 

Writing the discrete form using CD2 as mentioned earher, we get 

gi+2 - 2gi -h gi-2 _ /t+i - / i - i 
4Ay2 ~ 2Ay 

(2.43) 

It is seen that the LHS and RHS have no points in common, the so called even-odd 

decoupling. The form of Eq. 2.43 means that with reference to the walls, the even 

and odd points can be separated into two different classes of equations with two 

different solutions. The solution of the Eq. 2.43 therefore oscillates between these 

two solutions leading to the well documented pressure oscillations in the primitive 
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f(uy,T) 

g{uz,ux,p) 

go 

f 1/2 

gi 

f3/2 

f N-3/2 

gN-2 

f N-1/2 

Figure 2.3: Schematic of staggered grid, / a n d g are canonical forms for {{uy,T) 
and {uj;,Uz,p) respectively. The / a n d g points are shown as crosses and squares 
respectively. 

variables formulation on a normal grid. 

A way out is the use of a staggered grid where the variables / and g are stored 

ill staggered fashion, as illustrated in Fig. 2.3. We shall refer to the positions 

of the field variables as 'f-points' and 'g-points' where {uy, T) lie on the former 

and {ux-,Uz,p) on the latter as shown in the schematic. The choice of the grid is 

explained as follows : In case of the equations 2.24 - 2.28, the variables u^ and u^, 

are related to 4> not through an equation of the form, 2.42 but of the form f — -gp, 

which does not have the even-odd decoupling problem mentioned before. This 

occurs because the Fourier series method reduces V0 to {i{kxi + kyk) + •§-})((>, so it 

is only Uy which is related to </> in the form 2.42, thus explaining the choice of the 

staggering arrangement. Thus Ux, u^ and (p are stored at the same points whereas 

the Uy term is evaluated at a set of points which is half a grid-step removed. 

I'lie discrete version of 2.42 can now be written in similar fashion as 2.43 on 

the staggered grid. Suppose we evaluate it at a point pi which is a 'g-point'. Then 

we define the discrete derivative in CD2 form as S'^^^f/6y — (/i+1/2 — fi-i/2)/^y-

Now the second derivative term for g can be evaluated and we get iS'^'^'^^g)/6y^ = 
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{gi+i — 2gi + gj_i)/Aj/^ so that Eq. 2.42 now becomes : 

9i+i - 2gi + fft-i _ fi+i/2 - / i - i /2 
Ay2 Ay 

(2.44) 

The storage of the temperature field is subject to some debate. Verzicco(2001) 

for example advocates that the temperature values be stored at the same points as 

the pressure (0 in this case). We find oscillations in the temperature if this is used 

which can be explained easily. The temperature and the vertical velocity equation 

(as can be seen from Eqs. 2.4 and 2.5) have an obvious symmetry which seems to 

imply that they should be treated similarly. We therefore evaluate the temperature 

terms at the same point as Uy, the vertical velocity. 

The momentum equations for u^, u^ and the pressure poisson equation are 

therefore evaluated at g-points while the evolution equations for Uy and T are 

evaluated at the f-points. One last issue that must be addressed is regarding the 

evaluation of the non-linear terms on this grid. The Uy equation for example needs 

the Ux and u^ values on the f-points which must therefore be interpolated from the 

g-points (and vice — versa for interpolating the Uy field on the f-points). A 5th 

order lagrange interpolation is therefore used for this purpose. 

Further, the grid in the y— direction is stretched so that it is denser near the 

walls and rarer near the center of the channel. This is enforced since much of 

the energy production in both transitional and turbulent shear flows occurs in a 

layer close to the walls. This is not entirely unexpected considering the high shear 

regions in the vicinity of the walls. The grid stretching that we employ is given as 

2d tanhi-ril - ^ ) ) 

where j G [0 : Ny - 1] and y{0) = 0 and y{Ny - 1) = 2. Here 7 is the grid stretch

ing parameter, a higher value of which causes denser clustering of grid points 

near the wall. Therefore to completely define the grid, we need four parameters 

{Nx,Ny,Nz,^) in three dimensions and three parameters (A^̂ , iVy, 7) in two dimen

sions. 





CHAPTER 3 

TRANSIENT GROWTH : LINEAR THEORY 

The brief precis of the theory of transient growth and the underlying physical 

mechanism is presented here. The primary emphasis is on the the notion of optimal 

perturbation and the the 'lift-up' effect that causes it, especially in the presence of 

unstable stratification. 

3.1 Linear stability theory 

When a perturbation is added to an existing base flow state (not necessarily stable), 

the equation governing its evolution can be linearized if the perturbation is suffi

ciently small. Of course an linearization process implies that the perturbation is 

in-eflFect infinitesimal (as is frequently referred to in literature) but in certain cases 

the notion of "sufficiently small" can be quantified from physical considerations, as 

shall be explained later. The governing equations are, of course the Navier-Stokes 

equation and the temperature advection-diffusion equations coupled together un

der the Boussinesq approximation as stated in Eqs. 2.4 - 2.6 .Our starting point 

is a steady base flow state characterized by a mean parallel profile Um (y) and the 

base temperature is assumed to be zero everywhere (note that this is the deviation 

from the mean temperature under the Boussinesq approximation so the actual base 

temperature field is the linear conduction profile). We now add an external per

turbation given by (n, v, w, T) so that the actual flow field is {u + U, v, w, T). Eqs. 

2.4 - 2.6 are then written in these variables and linearized which means that any 

terms in the above equations non-linear in the perturbation quantities are assumed 

to be small and ignored. This leads us to : 

_ + ! ,_+„(; =__e + ,_)V'„ (3.1) 

dv ^^dv dp Ra ^ , I , „ , ,„ „, 

21 
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dw ^Bw dp , 1 , „ , 

Taking the divergence of hnearized momentum equations, we get an equation 

for the pressure given by 

This allows us to eliminate the pressure from the v momentum equation by applying 

the operator V^ to Eq 3.2. We therefore get, 

A second equation is required to completely describe the evolution of the flow. 

This can be obtained in terms of the normal vorticity given by r; = ^ — ^ . This 

equation is obtained from the u and w momentum equations and we get. 

The above equation alongwith Eqs 3.6 an 3.4 completely describe the evolution of 

the perturbation. The fact that the domain is periodic in the x and z directions 

allows us to use a Fourier representation in those directions similar to the one used 

in 2.30 - 2.32 and the corresponding formulas for the derivatives stated in Eq 2.33 

- 2.36. We thus write the stability equation in normal-mode form, i.e. in terms of 

individual modes represented by the wavenumbers a and /3 in the x and z directions 

respectively. We now write the three equations together in the following form : 

Jt2 - D2 0 0 \ 

0 1 0 ^ I 77 I + 10 UsQ 0 I I 77 I = 0 (3.8) 

0 0 1 / 

where A;̂  = a^ + 0^ and D = j - . The operators, Cos and CSQ are the Orr-
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Sommerfeld and Squire operators given by, 

1 
Cos = iaU{e-D'') + iaU"+ -^{k'-D^f 

He 
CsQ = iaU + ^J^e-D^) 

CT = iaU + 
1 

Re.Pr 
(e - D^) 

(3.9) 

(3.10) 

(3.11) 

Equation 3.8 can be expressed in the simphfied form 

d_ 

at 

..9 
M - q = B q 

q = M~^Bq = Aq 

(3.12) 

(3.13) 

(3.14) 

where q = n 
T J 

and M and B are obvious by correspondence with Eq. 3.8. 

Under the framework of Linear stability theory, one looks for travelling wave 

modes, i.e. for any flow variable, f{a,f3,t), we have / = /e""^' where u is in 

general complex. In fact, \i u — ojr + io^i then e~*'̂ ' — e'^'^e'"^''^ which implies that 

the imaginary part, Ui represents the growth rate of this wave and Ur the angular 

frequency. Eq. 3.13 now becomes 

Aq = —iuq (3.15) 

This equation constitutes an eigenvalue problem in u for each wave number pair 

(a,/3). For the case of channel flow, this equation possesses an infinite number 

of discrete eigenvalues. Under the traditional modal framework one looks for the 

eigenvalue having the maximum growth rate, CJJ referred to as the most unstable 

linear mode. If the most unstable mode has Wj > 0 then the the flow variables 

would undergo exponential growth for all times in which case we say that the flow 

is linearly unstable and not otherwise. The exponential growth occurs till the 

perturbation becomes sufficiently large for the non-linear terms, ignored in this 

framework, to become important when this theory is no longer valid. For the case 

of Poiseuille flow, the flow becomes unstable at Rccr ~ 5772. 
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3.2 Transient Growth 

The evolution equation 3.13 can be rewritten in terms of the matrix exponential 

by writing, 

q(^) = e^'q(O) (3.16) 

where q(0) is the initial perturbation. Linear stability theory assumes that 

the stability characteristics are determined purely by the most unstable mode and 

places little significance on the rest of the eigenspectrum . The energy of the 

disturbance is written as € ^ \\Q\\E- The"energy of the system is defined as : 

S = lJ^{\u\' + \v\' + \w\' + \T\')dV (3.17) 

and in terms of the flow variables {v, r], T) the same expression can be easily rewrit

ten as : 

^ = ^ f^{\Dv\' + e\v\' + H' + k'\T\')dV (3.18) 

When the matrix A is normal (meaning that all the eigenfunctions of the matrix 

A are mutually orthogonal), then it has been shown by Farrell & loannou (1996) 

that 

This means that the growth in energy, G(t) experienced by an arbitrary disturbance 

is bounded above by that of the most unstable mode. So the energy of evolution of 

any disturbance described by a normal matrix is determined by the most unstable 

mode. In fact if the flow is linear and the governing matrix, A is normal, Eq. 

3.19 implies that the disturbance energy monotonically decays. For the problem 

in question however, it is found that the matrix A is not normal and therefore 

condition 3.19 is not valid. So even if the fastest growing mode is stable, i.e. 

{<^i)max < 0, the energy can experience growth for intermediate times under the 

purview of linear theory itself. So it is not just the least unstable mode but the 

entire spectrum which must be considered. The class of initial conditions which 

give rise to the maximum transient growth at a particular times are called optimal 

disturbances and the global optimal being the one which gives the maximum energy 

growth over all times. It is possible to find the envelope of the energy evolution of 

optimal disturbances which attain a maximum at every time in an interval. For a 
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given (a,/3), this envelope can be written as 

max G{t,a,p) = max j j ^ ^ ^ (3.20) 

where q{a, /?, t) is written as q{:,t) This means that the energy growth is maximised 

at each time and (a,/3) over the space of all initial conditions given by q{a,P,0). 

Variational methods allow us to write this as 

G ( f , a , / 3 ) - max^ ||g(:,0)|U " " ' "^ ^̂ ^ ^ 

which is precisely the envelope. The envelope ||e^*"'''^'||£; can be computed 

accurately using a singular value decomposition, the details of which are given in 

Schmid & Henningson (2001). Particular interest is reserved towards the maximum 

growth that can occur for a specific value of (a, /3) such that 

GmaAa,/3)^max.Git,a,p). (3.22) 

A good possiblity exists that the greater the (j'max(a,/3), greater is the possibility 

of transition. For a particular set of physical parameters in the problem (here Re, 

Gr and Pr) , one can compute the (Q, /3) value where the Gmax attains a maximum 

which we term as the global maximum. 

G^ax(«>/3) = max-Gma.(a,/?)- (3.23) 

For unstratified Poiseuille flow, Reddy & Henningson (1993) have found that 

the most energetic optimal occurs for Q = 0 and /? = 2.016. Since a = 0, this mode 

is referred to as the Streamwise Vortex (SV) mode. Here we present results for 

Gmax{ci, /?) for the case of unstratified flow and two cases of unstable stratification 

with Grashof numbers 100 and 200 respectively. The results are shown in Fig. 3.1 

a) and have been obtained from the same numerical algorithm used in Sameen 

(2004). It can be seen clearly in Fig. 3.1 a) that the maximum value of Gmax 

occurs for Q = 0, /3 ~ 2. As the unstable stratification increases we see that the 

G^Q^ increases too. Further there seems to be a shift in the value of the /3 where 

the global maximum is obtained, that being closer to /3 = 1.5 now. We then plot 

the G \s t curves at the corresponding parameter values and at the a, (5 location 
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Figure 3.1: Contours of Gr„,ix{o:,P) in the a — (3 plane, a is along the horizontal 
and /i is along the vertical direction. The Reynolds number for each of the three 
cases corresponds to Re=1000 but the Grashof number in each case is a) Gr=0, h) 
Gr^ 100, c) Gr=200. Results computed here are from the same numerical algorithm 
used in Sameen & Govindarajan (2007) 
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300 

Figure 3.2: Curves of G{t){a,l3) vs time for the the three cases corresponding to 
Fig. 3.1 and a value at which the flow is linearly unstable. The Reynolds number 
for each of the four cases corresponds to Re=1000 but the Grashof number in each 
case is a) Gr=0, 6)Gr=100, c)Gr=200, d)Gr=300. For case a) we have /3 = 2 but 
P — 1.5 for the rest, a = 0 is same for all for cases. 
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where the maximum is attained in each case to see the effect of stratification on 

the same. It is seen that with increasing stratification, the nature of the growth 

curves changes considerably as does the maximum value attained which increases. 

Further, the curve corresponding to Gr=300 seems to indicate that the flow might 

be asymptotically unstable. One can understand this by noting that Gr =300 

corresponds to Ra =2400 (since Pr =1) in the definition traditionally used in 

convection literature where the Rayleigh number is based on the total channel width 

as opposed to the half-width used here. Using the former non-dimensionalisation, 

the well known result regarding the transition to convection rolls is i?acr=1708 

which corresponds to Ra — 216.2 here. Even in the presence of shear, studies by 

Clever & Busse (1991) have shown that the critical Rayleigh number varies only 

weakly for instability to longitudinal (or streamwise) convection rolls. The case in 

Fig. 3.2 d) therefore indicates the transition to streamwise convective rolls. Once 

this happens, we do not expect the transient growth mechanism to be of much 

releavance (something that has been verified through numerical computations, as 

mentioned later). We therefore confine ourselves to cases where Ra < Ra^- Note 

that variation of viscosity with temperature is not considered here, but it is well 

known that it can destabilize two-dimensional flow, for example, as seen in Sameen 

& Govindarajan (2007). 

3.3 The Lift up mechanism 

The physical reasons as to why transient growth occurs due to the presence of 

disturbances of the form of streamwise vortices has been well studied in literature. 

The presence of stratification has not however been considered and this is what we 

emphasize. We first explain the mechanism for unstratified flow and extend the 

same to flow with stratification. 

We use the aid of a schematic 3.3 to help understand this mechanism. The fig. 

shows two streamwise vortices aligned in the streamwise direction which is into the 

paper. The vortices are counter-rotating and advect fluid away from one of the 

walls and towards the other. Referring to the schematic we see that the vortices 

advect fluid away from the lower wall towards the channel center. A channel flow 

has a parabolic mean profile which is slower near the walls and faster near the 

centerline. Therefore fluid being advected from the lower wall towards the channel 
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Figure 3.3: Low (in blue) and high speed (in red) streaks created due to an array 
of counter-rotating vortices. 

centerhne will have a lower speed than the surrounding fluid. Due to the geometry 

of the vortices, a well defined region of low speed (relative to the local background 

mean speed) fluid is formed. This is referred to as a low-speed streak. Similarly 

high-speed fluid from the center of the channel is advected towards the low mean-

speed near the wall creating a localized region of high speed fluid, referred to as a 

high speed streak. If the parabolic mean profile is subtracted from the total stream-

wise velocity, the high and low streaks would be visible as regions of positive and 

negative streamwise velocity respectively. This mean-deducted streamwise velocity 

is plotted for the an actual computed case corresponding to Fig. 3.2.a) at the time 

of maximum energy growth in Fig. 3.4. The flow contours shown in Fig 3.4 are 

computed through the DNS with an initial finite amplitude optimal perturbation 

with initial energy density £'„=5xlO~'' at the time of maximum growth. The grid 

parameters used to compute this contour were iV^-^l?, N;,^43, Ny=78 and 7=2 

with the dimensions of the domain being L3.=27r and L^=7r (Note that as a result 3 3 > ' S / 

of non-dimensionalisation, the channel half-width is 1). We see that the streak 

structure is essentially as expected in the heuristic reasoned argument. 

Just as the streamwise vorticites redistribute the mean shear to create high and 

low speed streaks, they also redistribute the mean temperature to create regions 

of hot and cold 'streaks'. However the difference is that while the mean parabolic 

profile is symmetric about the centerline, the mean temperature is anti-symmetric. 

Consider the schematic 3.5, the lower wall is hot and the temperature uniformly 

decreases till the colder wall. The action of the vortices advects hotter fluid near 

the wall to the center which is colder. This creates a localized region which is hotter 

than the surrounding fluid. Further, fluid from the center is advected to the upper 

wall which is colder. Therefore, another region of localized hot fluid is created near 

p o ^ 
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Figure 3.4: Contours of streamwise velocity with the mean subtracted at the time 
of maximum growth in the y — z plane. Here the z— direction is the horizontal 
(iir(>ction. The initial perturbation is the optimal perturbation for (a = 0,/? = 2) 
and Re = 1500, Gr - 0 

the upper wall. Similarly the adjacent pair of coherent vortices advects cold fluid 

from the top wall to the the bottom wall throughout as shown in the schematic 3.5. 

I'he actual temperature contour plot for the evolution of an optimal perturbation 

at the time of maximum growth is shown at the same Reynolds number but at a 

Grashof number of 200. Again, the contours agree with the heuristic arguments. 

The velocity contours at the same time for the stratified case show virtually no 

difference from the unstratified case. This is because the effect of the temperature 

on the velocity field is 0{Ri) and the Richardson number in the present case is 

extremely {Ri = 9 x 10~^) small so that the velocity field with stratfication present 

remains largely unchanged. 
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Figure 3.5: Low (in blue) and high temperature (in red) 'streaks' created due to 
an array of counter-rotating vortices. 

Figure 3.6: Contours of temperature at the time of maximum growth in the y - 2 
plane. Here the z~ direction is the horizontal direction. The initial perturbation 
is the optimal perturbation for (a = 0,/? = 2) and Re ^ 1500, Gr = 200 





CHAPTER 4 

DIRECT NUMERICAL SIMULATION : 

VALIDATION 

Any numerical method which hopes to simulate a physical problem must be val

idated against related experimental and other established numerical results. One 

speaks of a 'numerical experiment' when it is clear that the important length and 

time scales in the problem have been resolved with sufficient accuracy. In the 

present chapter, we validate the direct numerical simulation code described in the 

previous section. The benchmarks that we validate against involve various as

pects of stratified and unstratified shear flows in two and three dimensions. The 

most important benchmark of course corresponds to the phenomenon being stud

ied, namely algebraic growth. Our aim is to study the physics of the nonlinear 

transition mechanism through this process using DNS but for small imposed dis

turbances, we expect the results of the DNS to match with that of linear stability 

theory. 

4.1 Evolution of the most unstable mode 

Here we consider the evolution of a small disturbance imposed over an existing 

base flow. The evolution of such a disturbance can be obtained by considering the 

linearized Navier-Stokes equation, a brief description of which has been given in 

the first section of Chapter 3. We solve the linearized stability equation given in 

Chapter 3, Eq. 3.8 in the form of the eigenvalue problem specified in Eq. 3.15. 

We are in particular interested in the most unstable mode {i.e. with the maximum 

value of LL>i) as is explained in detail in Chapter 3. The approach used here is 

to obtain the eigenfunctions corresponding the the most unstable mode from the 

stability equations and consider them as the initial condition for the DNS code. 

One therefore expects, that for small amplitudes of the input initial disturbance 

having the structure defined by the most unstable eigenfunction, the nature of the 

33 
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200 400 600 800 1000 

Figure 4.1: Time series of vorticity, fi^ evolution at a point y = 1/2 for Re = 7000 

evolution of the disturbance is precisely what linear theory predicts. The initial 

energy density that we use for the input perturbation is Ey ~ 10"^^. We use the 

same energy density for the all the cases considered in this chapter. Since the 

evolution of the disturbance in the linear framework is completely characterised 

by Ur and cot, it suffices to match these numbers obtained from the DNS with the 

corresponding eigenvalue. 

In Fig. 4.1, we plot time series of the vorticity, n^{t) at y = 1/2, a = 1 (which is 

also the value that we use for all the two dimensional computations in this chapter) 

and l3 = 0 {i.e. two-dimensional Poiseuille flow). This is superimposed with the 

expected linear evolution after suitably scaling the amplitude. The figure shows 

an excellent match between the two curves indicating that the DNS captures the 

linear evolution (both iVr and Wi) quite well. The grid parameters used here are 

A'.T = n,Ny = 70,7 = 2.0 while the dimensions of the domain are LX=2-R and 

L^=7r. The resolution chosen corresponds to the minimum that is required, to 

get a value of w^ accurate to the fourth decimal place. This choice also seems to 

ensure that Wr is captured accurately to the second decimal place. We now plot the 

evolution of the energy of the disturbance integrated over the whole domain with 

time. The wave component is clearly averaged out and the energy evolves purely 

according to the growth rate, 2wj, the factor of two of course appearing because 

the energy varies as square of the velocity. The energy evolution obtained from 
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Fi gure 4.2: Evolution of the normalized disturbance energy, E{t)/E(0) vs time. 
The Energy here is averaged over one computational box so that the wave compo
nent is averaged out. The solid curve is obtained from linear stability and the circles 
from DNS. Clockwise from top-left, we have Re = 5000, Re = 7000, Re = 9000 
and Re = 12000 

the DNS is plotted against the curve expected from linear theory in Fig. 4.2 for 

four different Reynolds numbers, 5000, 7000, 9000 and 12000, the grid parameters 

being the same as in the previous results. In each case, one finds the match to 

be comparable to that obtained by Rai k. Moin (1991). The latter authors do not 

provide quantative comparisons and merely show energy evolution curves similar 

to the one in 4.2 and we find that our results compare favourably. 

The Wr and Wj values for the cases described in 4.2 are tabulated in Table 4.1. 

These values are obtained from a time series plot, similar to the one in Fig. 4.1. 

The method used to compute these values first involves finding the envelope of 

the time series plot which corresponds to the exponentially growing part of the 

wave. This can be found by plotting the energy averaged over a computational 

box (as in Fig. 4.2). The growth rate is obtained from the energy curve (which 

is of course a straight line in a semilog graph) and then the original time series is 

divided throughout by the exponential part, leaving just the wave component whose 

frequency can be obtained from a standard curve fitting tool (in our case we have 
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Re 
5000 
7000 
9000 
12000 

{wriWi) from DNS 
(0.2652, -0.001723) 
(0.2583, 0.001755) 
(0.2417, 0.003342) 
(0.2313, 0.004192) 

(wr, Wi) from linear analysis 
(0.261, -0.0017) 
(0.255, 0.0017) 
(0.242, 0.0033) 
(0.222, 0.0041) 

Table 4.1: Comparison of complex frequency w obtained from DNS and linear 
theory corresponding to the curves in Fig. 4.2. The grid parameters are Nx = 17, 
Ny^ 71,7 = 2.0 

Gr 
200000 
400000 
700000 
1000000 

(wr, Wi) frorn DNS 
(0.2578, 0.002012) 
(0.2513, 0.002363) 
(0.2497, 0.002839) 
(0.2524, 0.003321) 

{wr,iUi) from linear analysis 
(0.253, 0.0020) 
(0.256, 0.0023) 
(0.251, 0.0028) 
(0.257, 0.0033) 

Table 4.2: Comparison of complex frequency w obtained from DNS and linear 
theory corresponding to the curves in Fig. 4.7 for Re = 7000 and P r = 1. The 
grid parameters are Nx = 1 7 , Ny — 101, 7 = 2.0 

used MATLAB). Of course since our aim is to study unstably stratified channel 

flow, we need to repeat the previous results with stratification added. However the 

presence of stratification only seems to marginally affect the linear stability results 

in the Reynolds number regime which we consider in our present study, unless the 

stratification is large. We therefore consider four cases with fixed Reynolds number 

(Re = 7000) and increasing Grashof numbers, Gr = 2 x 10^ 4 x 10^, 7 x 10^ and 

10^. Note that the aforementioned parameter values are not in the range that we 

consider presently but are considered purely for the purpose of code validation. 

The grid parameters used for the stratified case are Nx = U, Ny = 91 and 7 = 1.5. 

The reason for the need in increased resolution seems to be the complex spatial 

structure of the temperature eigenfunction. Lesser resolution in the wall-normal 

direction seems to be insufficient to capture the value of Wi accurately to the fourth 

decimal place. 

4.2 Transient Growth 

In this section we consider the evolution of class of disturbances which decay asymp

totically in time but can grow for finite intervals of time. This transient growth is a 
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Figure 4.3: Evolution of the normalized disturbance energy, E{t)/E(0) with time 
for Re = 7000. The solid curve is obtained from linear stabiHty and the circles from 
DNS. Clockwise from top-left, we have Gr = 2 x 10^, Gr = 4 x 10^, Gr = 7 x 10^ 
and Gr = 10^ 

linear mechanism and is possible due to the non-normality of the Orr-Sommerfeld 

and Squire equations as has been explained in Chapter 3. Our starting point is 

the computation of the optimal perturbations for different wavenumber pairs (Q, (3) 

and values of the Reynolds and Grashof numbers. Similarly as described in the 

preivious chapter, the envelope of the evolution of optimal disturbances at different 

times is computed easily using the singular value decomposition. The benchmarks 

in the present chapter are established by initializing the DNS with the optimal 

disturbances and comparing the energy evolution with that obtained from linear 

theory. Here we study two-dimensional (/3 = 0) optimals and and the optimal per

turbations corresponding to streamwise vortices (a = 0). The streamwise vortex 

modes are important because because they exhibit the maximal global transient 

growth ( i.e. over (a,/3) space) as shown in Chapter 3, Fig. 3.1. 

First we consider the evolution of energy for 2D-optimals which achieve a max

imum at various times and compare them with the maximal envelope obtained 

from linear theory. We do this, as mentioned above, for the case a = 1, /3 = 0 

and Re=3000. It can be clearly seen from Fig. 4.4, that the growth rate curves 

obtained from the DNS are in good agreement with the envelope obtained from 
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Figure 4.4: The envelope of the energy growth (seen as a black solid line) obtained 
from linear theory for Re=3000 is plotted with time. The DNS results correspond
ing to energy growth of optimals which have a maximum at various times are shown 
in various colours. The blue curve in particular corresponds to the optimal which 
attains the maximum energy of all optimals and intersects the envelope at the time 
when that is achieved. 

linear theory. A similar result has been obtained for other Reynolds numbers. The 

grid parameters used for the computations in Fig. 4.4 are Nx = 17, Ny — 80 and 

7 = 2.0. This resolution is the minumum needed for ensuring that the maximum 

energy is accurate to the last significant digit. 

Next we consider comparisons between the energy envelope and the evolution 

of the optimal perturbation at different subcritical Reynolds numbers. Of course 

the maxima of both curves must coincide and thats clearly seen in Fig. 4.5. More 

information is obtained by comparing the velocity field at the optimal time obtained 

from the DNS with the same from linear theory. This is shown in figure 4.6 where 

we find that the even the associated phase is captured quite accurately. 

The corresponding results are shown for stratified flow for two different Reynolds 

numbers and Grashof numbers. The energy maxima are again computed accurately 

by the DNS as are the flow fields, indicated by the figures, 4.8 displaying the vertical 

velocity and, 4.9 the temperature field at the time of maximum energy growth. 

The evolution of three dimensional optimal perturbations is computed next for 

the case a — 0 and (3 = 2 again for the case of stratified and unstratified flow. Four 
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Figure 4.5: Evolution of the norraahzed disturbance energy, E{t)/E{0) with time 
for Q = 1, /3 = 0. The soHd curve is envelope of the energy evolution and the 
circles represent the evolution of the optimal disturbance computed from DNS. a) 
Re-2000, ^>)Re=3000, c)Re=4000, ^i)Re=5000 

Figure 4.6: Contours of the vertical velocity, ^ly at the time when maximum energy 
is attained at Re=3000 for input optimal perturbations from a) linear theory and 
6) DNS 
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Figure 4.7: Same as Fig.4.5 but for a)Re=3000 Gr=1000, b)Re=3000 Gr=100000, 
c) Re=4000 Gr=1000, 6)Re=4000 Gr=100000 

Figure 4.8: Contours of the vertical velocity, Uy at the time when maximum energy 
is attained, at Re=3000 and Gr= 100000 for a) linear theory and b) DNS 
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Figure 4.9: Contours of the temperature, T at the time when maximum energy is 
attained, at Re=3000 and Gr=100000 for a) hnear theory and b) DNS 

different Reynolds numbers between 300 and 1500 are used but in the stratified case, 

only two cases are computed due to the long computational times involved. The 

grid parameters used here are N^=n, Ny=8Q, N^=43 and 7=2.0. From Fig. 4.10 

corresponding to the unstratified case and Fig. 4.11 the stratified, we see the there 

is an excellent match in the envelope and the evolution of the optimal disturbance. 

Its not clear to us why this must be and we have found no studies in literature 

which have remarked that the evolution of the optimal streamwise vortices is also 

the envelope for that value of (a, /3). This is an interesting observation that can be 

further explored though it is not done here. 

It has thus been shown that the flow captures the linear evolution of the opti

mal pertubations accurately and this allows us to proceed to study the non-hnear 

evolution of finite-amplitude optimal perturbations for the cases with and without 

stratification in the next chapter. 
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200 

Figure 4.10: Evolution of the normahzed disturbance energy, E{t)/E{0) with time 
for streainwise vortrex, a = 0, /? = 2 The sohd curve is envelope of the energy- evo
lution and the circles represent the evolution of the optimal disturbance computed 
from DNS for Gr=0 and a) Re=300, b) Re=500, c) Re=1000, d) Re=1500 
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Figure 4.11; Same as Fig. 4.10 but for Re=1000 and a) Gr=200, b) Gr=300 



CHAPTER 5 

THREE DIMENSIONAL STREAK BREAKDOWN 

AND TRANSITION 

In the present chapter we consider the evolution of finite ampHtude optimal dis

turbances. The latter are of course obtained from linear theory as explained in 

Chapter 3. It is shown that the flow seeded with optimal disturbances having 

sufficiently large amplitudes becomes unstable to background noise and transition 

occurs. This transition process is studied for the flow with and without unstable 

stratification. Results are compared and the effect of stratification is examined in 

detail for sub-critical Reynolds and Grashof numbers. 

5.1 The basic streak instability 

In chapter 3, the formation of streaks was discussed to be a result of redistribu

tion of the mean shear by streamwise vortices. This redistribution of the mean 

shear causes a distortion of the streamwise velocity and leaves open the possibil

ity of the streak-distorted profile becoming unstable to background noise. Unlike 

in the case of Chapter 4, Fig. 4.10 the amplitude of the input streak is finite. 

Depending on the intial amplitude of the optimal disturbance, the maximum en

ergy growth that occurs might be less than that expected from linear theory due 

to non-linear saturation. Non-linear saturation of the input disturbance generally 

implies that the disturbance amplitute at the time is comparable to that of the 

mean flow. Generally a minimum intial amplitude of the streamwise vortex is re

quired to create the conditions for streak breakdown and transition to occur. The 

threshold amplitude required for transition was investigated in considerable detail 

by Reddy et al. (1998) using a combination of DNS and linear stability of the mean 

flow distorted by the streaks. These authors using extensive numerical simulations 

computed the threshold amplitudes for Couette and Poiseuille flow over a wide 

range of Reynolds numbers. In the present study we keep the amplitude of the 
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initial optimal perturbations at about twice the threshhold amplitude stated in 

the paper of Reddy et al. (1998). This essentially allows for earlier saturation and 

consequently, reduced computation times. Further we do not attempt to study 

the effect of stratification on the amplitude threshold due to lack of sufficient time 

and computational resources. We first illustrate the basic streak instability for 

Re=1000, which corresponds to the lowest Reynolds number at which transition to 

turbulence is observed in channels. This is lower than the lowest Reynolds number 

considered by Reddy et al. (1998) who start from Re=1500. We then consider the 

effect of unstable stratification on the flow at Re=1000 as well as for Re=1500. 

For Re=1000, we start the flow with a finite amplitude disturbance having an 

energy density of 5xl0~^. Note that this is much larger than the value lO" '̂̂  used 

in the previous chapter. By knowing the threshold at Re=1500 from Reddy et al. 

(1998) and using the scaling Re"^'^ that the authors observe from simulations for 

the threshold amplitude, we find that the energy density used for our computations 

is about 2.5 times the threshold at Re=1000. Further, background noise having an 

energy density of 10"^^ in the form of random noise is added to the system. Reddy 

et al. (1998) state that in the absence of this background noise, no transition is 

observed, mirroring our own computations. Fig 5.1 shows contours of the total 

streamwise velocity at the time of maximum growth. This mean velocity field is 

shown to be linearly unstable by Reddy et al. (1998). This instability is referred 

to as streak breakdown and is what we shall examine. The evolution of the energy 

with time normalized by the initial disturbance energy is plotted in Fig. 5.2. 

We now plot the details of the flow field, in particular the streamwise velocity 

at various times with reference to Fig. 5.2. The first maxima corresponds to 

the maximum energy growth due to the streak formation process. f=67 seems to 

correspond to the start of the streak instability and there is energy growth after that 

possibly due to streak breakdown though the disturbance energy eventually decays 

indicating that the streak instability process has not in fact trigerred transition to 

turbulence at this Reynolds number. Detailed analysis of flow field can help better 

understand the instability process. The contour plots of the mean-subtracted flow 

streamwise velocity are plotted below at five different times across one y — z plane 

and two different x — z planes (one at the center and one near the wall) to enable 

visualization of both the high-speed and low-speed streaks. The times at which the 

flow contour plots are shown are marked as crosses in the energy evolution curve 
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Figure 5.1: Contours of total streamwise velocity at the time of maximum growth 
in the y — z plane. Here y— is along the vertical direction and z— along the 
horizontal. The initial perturbation is the optimal perturbation for (a = 0,/3 = 2) 
and Re = 1000, Gr - 0 

500 

Figure 5.2; Evolution of the normalized disturbance energy, E{t)/E{0) with time 
for the optimal disturbance at Re=1000 and (a = 0,/? = 2). The red crosses 
indicate the times at which the flow contours are plotted later in the chapter 
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Figure 5.3: Contours of the streamwise velocity with the mean subtracted at t=24, 
in the ij - z plane, x=Lj/2 with the z- direction being along the horizontal. Here 
/?e=1000 and Gr=0 

shown in Fig. 5.2. We now examine the evolution of the input disturbance using 

the flow contour plots. Figs. 5.3 and 5.4 are the optimal disturbances at the time 

of maxinunn growth attained by the lift-up process explained in Chapter 3 and it 

is clear that no instabihty has occured yet. 

The Re=1000 case undergoes streak breakdown and transition but the distur

bances soon decay to the laminar state. 

In fact the instability does not begin until t=67 where the flow field is plotted 

in Fig. 5.5 and 5.6. The waviness of both the low-speed and high-speed streaks 

heralds the start of an instability. This is corroborated by the fact that the energy 

of evolutuion of the disturbance, shown in Fig.5.2 has a turning point implying 

that the instability just starts to draw energy from the mean shear. After the 

first turning point in Fig. 5.2 at t=67, the energy grows in two different legs, first 

increasing then a small decrease and another large increase to the maximum after 

which the energy starts decaying. The contour plots help understand the physical 

reasons for the existence of these two legs. Fig.5.7 and 5.8 show the streamwise 

velocity contours at t=93, which is well in the middle of the first leg. Here we find 

that though the waviness in the low-speed streaks near the center has changed only 

marginally, the high-speed streaks near the wall have undergone a breakdown into 

two streaks, the process being completed by t=156 as shown in Figs. 5.9 and 5.10. 
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Figure 5.4: Contours of the streamwise velocity with the mean subtracted at t=24, 
in two X — z planes given by y=Ly/2 (left) and y=Ly/6 (right). The x— direction 
is along the horizontal. Here /?e=1000 and Gr=0 

The first leg of the energy increase corresponds to the instability of the high-speed 

near-wall streak which causes the formation of other streaks with lesser mutual 

spacing. This is not entirely surprising. 

The measure of streak spacing along the z— direction, in transitional and tur

bulent flow has seen considerable controversy over the past few years. Results 

from experiments and numerical simulations have shown that in turbulent flow, the 

streak spacing seems to be in the vicinity of 100 wall units (a length scale defined 

on the averaged near wall turbulent shear stress) for many different wall-bounded 

flows including channel flow, Couette flow and boundary layer flow. Butler & Far-

rell (1993) had considered the possibility that the streak spacing observed from 

optimal perturbations (corresponding to Fig.5.3 ) are close to that observed in tur

bulent flows. A withering critisicm by Waleffe (1995a,6) followed who showed that 

the streaks observed in turbulent flows are of a particular kind which, after break

down, regenerate the streamwise vortices that originally generate them through the 

lift-up mechanism. A recent paper by Jimenez & delAlamo (2006) realized that if 

instead of looking for optimal perturbations to the laminar parabolic profile, one 

considers the mean turbulent profile, one obtains exactly the streak spacing of 100 

wall units observed in near wall turbulent flow. A detailed studv of evolution of 
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Figure 5.5: Same as Fig. 5.3 but at t=67 

Figure 5.6: Same as Fig. 5.4 but at t=67 
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Figure 5.7: Same as Fig. 5.3 but at t=93.6 

Figure 5.8: Same as Fig. 5.4 but at t=93.6 
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Figure 5.9: Same as Fig. 5.3 but at t=156 

the streak spacing from optimal perturbations (of laminar parabolic flow) to that 

in turbulent flow is not something we have been able to find in existing Hterature. 

But the aforementioned studies seem to indicate that the near wall streak spacing 

in tmbulent flow is in fact different from that observed in streaks generated from 

laminar optimal perturbations. The breakdown of near wall streaks in the first leg 

f)f tli(> energy growth in Fig 5.2 and shown in Figs. 5.7 and 5.9 might be related to 

the process of 'choosing' the streak spacing. One of the obstacles in undertaking a 

detailed study of this mechanism is that it entails much larger domain sizes along 

the X- and z- directions (and consequently a much higher number of fourier modes 

along these directions to mantain the same numerical resolution used here). This 

is because the periodicity of the domain in these directions inherently forces any 

flow quantity (for example the streak spacing) to exist in integral multiples of the 

periodic length (L^ and L, in this case). A much larger domain length along these 

directions would be needed to ensure that the flow naturally chooses the streak 

spa( ing rather than being forced so by the domain periodicity. However, such a 

stuciy is well beyond our present computational capabilities and shall be reserved 

for future studies. 

The contour plots from a time in the second leg, at t=156 (in Figs. 5.9 and 5.10) 

show the instability and breakdown of the low-speed streaks near the channel center 

and this is what causes the spurt in the disturbance energy. By t=240. Figs 5.9 and 

5.10 indicate that the streak instability starts to die down and the streak structure 
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Figure 5.10: Same as Fig. 5.4 but at t=156 

(defined by localized regions of streamwise velocity) has started to be disrupted 

by the homogenizing action of dissipation towards the laminar parabolic profile. 

The optimal perturbations for Re=1000 therefore cause transition to a different 

temporary unsteady state but not transition to turbulence. However, as remarked 

previously, studies on much larger domain sizes, L^ and L^ (and consequently larger 

Nx and N^) are needed to study this aspect better. 

Next we consider the same flow situation as the previous one with added strat

ification, the Grashof number being 200 which corresponds to Chapter 3, Fig. 3.2 

c) with all other parameters being the same. The optimal perturbation for this 

case is computed from linear theory and used as a starting point for the DNS code. 

We plot the streamwise velocity contours as in the previous case and at the same 

non-dimensional times in the figures 5.13 - 5.21. As we examine the evolution of 

evolution and instability of the streaks in time, we observe considerable similarity in 

the evolution of both the unstratified and the stratified cases. Even here, the streak 

instabiliy seems to proceed at the corresponding times in two legs, corresponding 

to the instability of the high-speed and low-speed streaks in that order. The streak 

spacing and the structure of the near wall streaks after the first instability is seen 

to be similar in the stratified and unstratified cases. Further, comparisons between 

Figs. 5.5 and 5.15 first and then 5.7 and 5.17 indicate that the nature of the in-
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Figure 5.11: Same as Fig. 5.3 but at t=240 

• - 0 .05 

Figure 5.12: Same as Fig. 5.4 but at t=240 
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Figure 5.13: Contours of the streamwise velocity with the mean subtracted at i=24, 
in the y - z plane, -x.=Lx/2 with the z- direction being along the horizontal. Here 
He=1000 and Gr=200. 

stability process and the time at which it occurs is not particularly affected. The 

stratified case however seems to take longer to reach the stable larninar state as 

seen in Fig. 5.22. 

In order to get a better understanding of the comparison between the stratified 

and unstratified cases, we consider the energy of evolution of the flow vs time, as in 

the case of Fig. 5.2. Note that the energy for the stratfied case consists of a kinetic 

energy term and a potential energy term due to buoyoncy. In Fig. 5.23, we plot 

the total energy, kinetic energy, ( Jy{\u^\ + |v^| + |w^|)dV ) the potential energy 

( Jy \T'^\dV ) and the Gr=0 case already plotted in Fig. 5.2 as a reference. The 

most important observation is that the evolution of the kinetic energy term with 

stratification present is only marginally different from the corresponding unstrati

fied case for this value of (a, (3). In fact the maximum disturbance energy attained 

after the onset of the instability is actually lesser now. Further the potential en

ergy evolution shows that, other than the initial transient growth, which is due to 

the lift-up mechanism, the temperature field does not gain from the mean back

ground field during the instability process. From this preliminary study it seems, 

rather paradoxically, that the presence of the unstable stratification has marginally 

stabilized the streak instability process. Note that the our inability to repeat the 

study for higher periodic lengths along the x - and z- directions limits our ability 
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-0.1 

Figure 5.14: Contours of the streamwise velocity with the mean subtracted at t=24, 
in two X — z planes given by y=Ly/2 (left) and y=Ly/6 (right). The .T— direction 
is along the horizontal. Here i?e=1000 and Gr=200. 
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Figure 5.15: Same as 5.13 but at t=67. 
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Figure 5.16: Same as 5.14 but at t=67. 
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Figure 5.17; Same as 5.13 but at t=93. 
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Figure 5.18: Same as 5.14 but at t=93. 
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Figure 5.19: Same as 5.13 but at t=156. 
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Figure 5.20: Same as 5.14 but at t=156. 
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Figure 5.21: Same as 5.13 but at t=240. 
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Figure 5.22: Same as 5.14 but at t=240. 

500 

Figure 5.23; Evolution of the normalized disturbance energy, E{t)/E{0) with time 
for the optimal disturbance at Re=1000 and Gr=200 (a = 0,/3 = 2). The red, 
green and black curves show the evolution of the potential energy, total energy and 
kinetic energy respectively. The blue curve is the kinetic energy evolution for the 
unstratified case and has already been plotted in Fig. 5.2 
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to draw detailed inferences from the results that we have obtained. In particular, 

we had noticed in chapter 3 that the most unstable spanwise wave number, /3, 

shifts continously and rapidly as the Grashof number is increased. In spite of these 

limitations, some aspects of the physics of the problem can be speculated upon 

from the results we have obtained. Some insight can be gained from the paper by 

Bakas et al. (2001), where the authors consider transient growth of plane waves in 

an unbounded uniform shear flow in the presence of stable stratification. At one 

point they remark, "/i should he noted that the vertical velocity in a stratified flow 

induces density perturbations, which if large, can lead to unstable density stratifi

cation that can cause collapse of the plane wave by convective overturning. This 

process limits the validity of the perturbation equations...". The statement here re

flects the possibility of regions of local unstable stratification in a stably stratified 

fluid when optimal perturbations are imposed. The opposite phenomenon seems 

to occur for the wavelength chosen, essentially that the optimal perturbations can 

cause stabilization by inducing regions of stable stratification. This can be easily 

observed by considering the structure of the temperature streaks in Chapter 3, 

Fig. 3.6. The counter-rotating streamwise vortices which constitute the optimal 

perturbations advect hot fluid towards the cold wall and cold fluid towards the hot 

wall. This causes a net homogenization of the temperature and a reduction of the 

vertical unstable gradient, therefore causing a possible stabilization. An interesting 

parallel to this phenomenon occurs in Rayleigh-Benard convection, where the flow 

undergoes an instability from a base state of stationary fluid with unstable density 

stratification to a secondary state involving stable convection rolls which are in 

the form of counter-rotating vortices. The stability of the convection rolls is aided 

by a reduction in the mean unstable temperature gradient by precisely the mech

anism mentioned above for the streamwise-vortices in channel flow. A reasonable 

possibihty therefore exists that the action of the initial perturbation through the 

lift-up process on temperature might tend to balance the effects of a mean unsta

ble stratification to some extent. To actually quantify this point would require a 

stabihty analysis of the velocity streak profile with the corresponding temperature 

streak profile being considered. This would be an extension of the approach of 

Reddy et al. (1998) but is beyond the scope of the work presented here. 

Another reason for the lack of destabilization by the unstable stratification is 

the low value of the Richardson number. The vertical velocity equation is forced by 
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the temperature term Hnearly, as a consequence of the Boussinesq approximation 

through a factor of Ri. The hft-up temperature effect occurs because of the action 

of vertical velocity on the temperature and is as such independent of the Richardson 

number. A higher value of Ri would only marginally change the lift-up but could 

contribute significantly to the instability process. This point is moot however, as 

a higher value of Richardson number would cause linear instability to be active as 

shown in Fig. 5.2 d). 

One possibility that could weaken the possible explanations suggested in the 

previous paragraphs is that the streak instability process significantly disrupts the 

transient stable stratification induced by the lift-up mechanism. This could be 

a purely advective process and is possible, because the symmetries of the velocity 

streaks differs from that of the temperature streaks as explained in the final section 

of Chapter 3. We therefore plot the contours of the temperature field in two planes, 

an X — z plane bisecting the channel center and a y — z plane at the same times 

marked in Fig. 5.2. As we observe the evolution of the temperature at different 

times, we see that the structure of the low and high temperature blobs are not 

significantly disrupted.in a fashion that might reduce the eflFect of the original 

stable stratification zones that occur due to temperature lift-up. At t=240, when 

the instability has begun begun to subside, the temperature streaks seem to break

up in a manner similar to the velocity breakup with lesser mutual spacing. However 

the streak structure still maintains the stable configuration. 

We thus see the transition occuring from optimal disturbances occurs in two 

stages, the first involving the formation of streaks through lift-up and the second 

where the actual instability of streaks. To judge the outcome of the second stage 

of transition merely by measuring the magnitude of transient growth might not 

be appropriate as the previous results indicate. Here the transient growth in the 

total energy with stratification added is twice of that in the unstratified case for 

Gr=200 but the streak instability process is largely unaffected. We have conducted 

computations for a higher value of the Reynolds number, Re=1500 for the cases, 

Gr=0 and Gr=200. Here the transition of the streaks is more violent but the 

observations are essentially the same as that observed for the case of Re=1000. 
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Figure 5.24: Contours of the temperature, T in the (left) x — z plane at y=Ly/2 
and (right) in the y — z plane. The horizontal direction in the left and right figure 
is the X— and z— direction respectively. Here t=24. 
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Figure 5.25: Same as Fig. 5.24. But at t=67. 
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Figure 5.26: Same as Fig. 5.24. But at t=93. 

Figure 5.27: Same as Fig. 5.24. But at t=156. 
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Figure 5.28: Same as Fig. 5.24. But at t=240. 





CHAPTER 6 

CONCLUSIONS AND FUTURE OUTLOOK 

Our present study is aimed at understanding the mechanism of transition in an 

unstably stratified channel flow due to algebraic growth. The class of initial per

turbations that we start with are those which cause maximum transient growth 

from the purview of linear theory. These optimal perturbations are in the form of 

streamwise vortices and cause transient growth using the lift-up mechanism which 

involves redistribution of the mean shear by vortices. The redistribution of shear 

causes the formation of streaks, which are regions of high and low speed flow rela

tive to the background parabolic mean profile. In our present study we find that the 

vortices not only distribute mean shear, but the mean temperature too, causing the 

formation of high and low temperature 'streaks'. The structure of the temperature 

streaks are found to be different than that of the velocity streaks primarily because 

of the difference in symmetry of the temperature and velocity mean profiles, which 

are anti-symmetric and symmetric about the channel centerline, respectively. 

We find that starting with finite-amplitude optimal perturbations, the fiow at 

a Reynolds number of 1000 undergoes transition to a different temporary unsteady 

state, but not transition to turbulence. In particular we identify the streak instabil

ity mechanism which involves two stages that can be identified by the two distinct 

spurts in the evolution of the disturbance energy in time. The first of these stages 

involves the high-speed near-wall streaks undergoing instability, causing them to 

break up into streaks with lesser near-wall spacing. The second stage involves the 

instability of the low-speed streaks, the completion of which causes the flow to re

turn to the original laminar profile. On adding unstable stratification quantified by 

a Grashof number of 200, and repeating the computation, we find that the physical 

process of the streak instability is not particularly affected. Further, by observing 

the evolution of the kinetic energy with and without the presence of stratification, 

we find that there is only a marginal change in the latter case, relative to the 

former. This observation is corroborated by the evolution of the potential energy 

which does not undergo any increase that might indicate that the temperature 

perturbation term gains energy from the background buoyant profile. One of the 

65 
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possible reasons we have considered for this observation is that the structure of the 

temperature streaks is stabihzing in nature. This occurs because of the action of 

the counter-rotating streamwise vortices which move fluid from the hotter to the 

colder and vice -versa causing a reduction in the mean unstable stratification. 

However the above observations and inferences must be considered with caution 

because of the restrictions imposed on the evolution of the instability due to the 

periodicity of the flow imposed by our computations in the streamwise and spanwise 

directions. In particular this might strongly affect the streak instability process 

which causes the formation of streaks of smaller spacing. We find that the spacing 

after instability is essentially half of the existing spacing. It is clear that this 

specific choice of the spacing is an artifact of the periodicity. The same reasons 

might also affect the lack of noticeable change in the instability mechanism in 

the presence of stratification. Unless the computations are repeated for higher 

domain lengths in the periodic directions, any inferences drawn from the present 

j)reliniinary computations are speculative at best. Any future work must therefore 

involve increasing the domain lengths to many times the existing one to allow a 

choice of the streak spacing after the firs.t instability.' Further, a careful study of 

the streak instability process needs to be done using the approach in Reddy et al. 

(1998) where the authors initially compute the mean distorted profile due to streak 

formation and perform a stabihty analysis of the resulting profile. Performing the 

same stability analysis with stratification included is essential to corroborating the 

DNS results. 

Another aspect to be considered is the effect of viscosity stratification and 

buoyancy on the nonlinear evolution of optimal perturbation. The investigations 

of Sameen & Govindarajan (2007) show a fundamentally different character in the 

observed transient growth at moderate Prandtl numbers (~ 0(1)). This study was 

in fact concieved as a first step in studying the more complex problem of viscosity 

stratification added and we hope to do the same in future. 
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