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Abstract 

The study of granular materials has received a recent upsurge of interest in physics. 

This has been motivated by both the relevance of such flows to a wide range of 

industrial and geological processes, and by the realization that granular materials 

provide an excellent test bed for a number of fundamental questions in the context 

of modern fluid dynamics and nonequlibrium statistical mechanics. Most of the 

theories of granular fluid are based on the Boltzmann or Enskog-Boltzmann equa

tion of inelastic hard spheres. In this regard particle dynamics simulations make a 

bridge between theory and experiment. 

An event-driven molecular dynamics code has been developed which is based 

on the paper of Lubachevsky (1991) and the book by Rapaport (1995). The com

putational approach employed in this study mainly consists of initialization, book

keeping and diagnostic parts. This code is very fast and can handle a large number 

of particles (A'̂  ~ 10^) and has been generalized to three dimensions. It can be 

used to simulate various kind of plane granular flows (Couette flow, Poiseuille flow, 

Chute flow, etc.) with rough, frictional particles. For the simplest model of rough, 

inelastic spheres, two material parameters are needed to characterize the collision 

process: the normal coefficient of restitution, e, and the tangential coefficient of 

restitution, /?. For a more realistic collision model of rough particles, we have taken 

into account the effect of Coulomb friction which helps to distinguish between the 

sliding and the rolling contacts, resulting in a contact-angle (7) dependent tangen

tial restitution coefficient (3{'y). 

With the above code, we have probed various microscopic and macroscopic 

propreties of unbounded granular shear flow for which a steady linear velocity 

profile is applied with a constant velocity gradient via shifting the replica images 

of top and bottom boundaries without deforming the box (Lees-Edwards bound

ary condition). This code has been tested for bounded shear flow too for which 
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physical boundaries arc required: wall-particle interactions are modeled using the 

same collision dynamics of particle-particle interaction. For either case, the system 

is allowed to reach a 'non-equilibrium' steady-state condition by monitoring the 

temporal evolution of system's kinetic energy. 

In this work we have thoroughly examined the effects of particle roughness and 

rotation on the probability distributions of fluctuating translational and rotational 

velocities as well as density and spatial velocity correlations in the Boltzmann 

limit (for which the particle volume fraction, 0, is close to zero) of unbounded 

shear flow. We found that both translational and rotational velocity distribution 

functions (VDF) arc non-Gaussian with stretched exponential tails, except in the 

limiting cases of perfectly smooth (/? = —1) and rough (0—1) particles with elastic 

collisions (e = 1). One important finding is that the translational and rotational 

velocities are correlated in direction. Particle roughness has important effects on 

oricntational and velocity correlations even when the collisions are perfectly elastic 

(e = 1) and the system is homogeneous. Oricntational and spatial velociy correla

tion are responsible for non-Gaussian distributions of translational and rotational 

velocities. 

With increasing system density, the dissipation-induced density inhomogeneity 

is observed over the whole domain. A pronounced asymmetry about the mean 

value is observed for the probability distributions of local density, local shear rate 

and local spanwise rotational velocity. Therefore the calculation of "local" VDF 

is a proper way to study such inhomogeneous systems. For a moderately dense 

system {(() — 0.3), an interesting phenomenon is observed for the local VDF of 

streamwise translational velocity, its tails undergo a transition from an stretched 

exponential to an under-populated Gaussian distribution with decreasing dissipa

tion and finally to a Gaussian for no dissipation. The VDF of spanwise rotational 

velocity makes a transition from stretched exponential tails to a Gaussian with 

decreasing dissipation. For the dense system {4> = 0.5) with dissipation, the VDF 

for streamwise translational velocity is a Gaussian with under-populated tails. The 

effect of Coulomb friction on VDFs has been studied for different values of friction 

coefficient ^ ior (p = 0.3 with the critical roughness being set to Po — 0. With 

the incorporation of Coulomb friction, a pronounced asymmetry of the tails of the 

VDFs of rotational velocities is seen and the skewness of the distribution increases 

with increasing dissipation. 



Lastly, we have calculated some rheologoical properties of unbounded shear 

flow of rough, frictional particles. Our simulations results on pressure and shear 

viscosity compare well with the predictions of Lun's (1991) rheological model at 

small dissipations. The model predictions deteriorate with increasing dissipation 

which is tied to the inherent assumptions of the underlying model which is valid for 

quasi-elastic (e ~ 1) particles in the prefectly smooth and rough (|/3| ~ 1) limits. 

Our results on normal stress differences (A/i and A/'2) suggest that a non-Newtonian 

constitutive model is required for moderately dissipative rough, frictional particles. 
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Chapter 1 
INTRODUCTION 

During the last two decades, much -work has been devoted to understanding the 

rheology (Savage (1984); Campbell (1990); Hutter & Rajagopal (1994)) and, more 

recently, the dynamics of granular materials (see, for reviews, Jaeger et al. (1996); 

Herrmann et al. (1998); Kadanoff (1999); Goldhirsch (2003), Aranson & Tsimring 

(2006)). In the rapid flow regime in which the particles move around randomly, 

interacting mainly via instantaneous dissipative coUisions with negligible intersti

tial fluid effects, the granular material has been modelled as a system of smooth 

inelastic hard spheres. The standard statistical mechanical tools of the kinetic the

ory of dense gases have been modified to develop appropriate rheological models 

for a continuum description of such fluidized granular materials (Lun et al. (1984); 

Jenkins & Richman (1985); Goldshtein & Shapiro (1995); Sela & Goldhirsch (1998); 

Montanero et al. (1999); Garzo & Dufty (1999)). If the particles arc "smooth", 

their collisions can be characterized by a single parameter , the normal restitution 

coefficient (e), with the limiting case of e = 1 being tied with elastic collisions and 

no energy loss. It is now well-known that this "added" inelasticity is a source of 

many interesting and unresolved phenomena in granular flows: clustering (Hopkins 

& Louge (1991), Goldhirsch & Zanetti (1993), Tan k Goldhirsch (1997), Alam & 

Nott (1997),Mikkelson et al. (2002) ); waves and patterns (Forterrc k Pouliquen 

(2002), Conway & Glasser (2004), Alam & Luding (2005), Alam (2006), Aranson 

&: Tsimring (2006)); oscillons (Umbanhowar et al. (1996)); segregation and Brazil-

nut phenomenon (Rosato et al. (1987), Ottino & Khakhar (2000), Mobius et al. 

(2001), Hong et al. (2001), Alam et al. (2006), Reis k Mullin (2004), Burtally 

et al. (2002)); non-Gaussian velocity fluctuations (Losert et al. (1999), Moon et al. 

(2004)). 

Real particles are always characterized by some degrees of " roughness", giving 

rise to surface friction. Consequently, the rotational motion becomes important to 

deal with rough, frictional particles. Even in the limit of nearly inelastic particles 
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(e RJ 1), the added complexity of the rotational motion gives rise to additional 

hydrodynamics fields: the spin/rotational velocities and the rotational granular 

temperature (Condiff & Dahler (1964); Theodosopulu & Dahler (1974) ; Dahler 

& Theodosopulu (1974); Jenkins & Richman (1985); Lun & Savage (1987); Lun 

(1991); Luding et al. (1998a); Mirarai et al. (2002); Hayakawa (2001); Goldhirsch 

et al. (2005)). It turns out that the translational and rotational temperatures of a 

granular fluid are not equally partitioned (Lun k Savage (1987); Lun (1991); Huth-

mann &i Zippelius (1997a) ; McNamara & Luding (1998)), except in perfect rough 

limit. More importantly, at finite densities , there is an additional contribution 

to the stress tensor that renders it "asymmetric"- a signature of the "micropolar" 

theory (Condiff & Dahler (1964); Kanatani (1979); Mirarai et al. (2002)). Another 

new ingredient associated with rotational motion is the transport via the "couple" 

stress (i.e. the flux of angular momentum) which becomes important in the pres

ence of boundaries. The implications of the additional hydrodynamics fields, the 

energy non-equipartition, the asymmetric stress tensor and the couple stress on the 

dynamical behavior of a granular fluid are not known a priori, and have not been 

investigated rigorously for a driven system. 

The molecular dynamics (MD) simulation work of Moon et al. (2004) has elu

cidated the role of friction on pattern formation in oscillated granular layers. They 

found that while the squire, stripe and hexagonal patterns are stable for frictional 

particles (that match with experimental results), only the stripe-pattern is stable 

for frictionless particles. Certain experimental phenomena (e.g. the parametric 

sloshing of particles, the shock-wave formation, etc.) also occur in MD simulations 

with and without friction, but there are important differences in the details of these 

phenomena. There has been some work on the 'rotationally-driven' granular fluid 

(Caflero et al. (2002); Luding et al. (2003)). These authors showed that a granular 

fluid can be made spatially homogeneous even at very high dissipation levels by 

transferring energy from the rotational degrees of freedom to their translational 

counterpart, even though its (translational) velocity distribution function shows 

large deviations from a Gaussian. They also explained some recent experimental 

results (see, for details, Luding et al. (2003)) by driving on both the translational 

and the rotational degrees of freedom. The consensus that emerges from the above 

discussion is that the rotational motion should not be neglected for a realistic mod

elling of dynamics and pattern formation in granular media even in the dilute limit. 



To develop constitutive models of rough granular gases, a systematic study of 

correlations and the distribution functions of both 'translational' and 'rotational' 

fluctuating velocities is of fundamental interest. While the deviation of transla

tional velocity distribution functions (VDF) from a Gaussian has been extensively 

studied using theory (Esipov & Poschel (1997)), van Noije &; Ernst (1998)), Gold-

hirsch & Tan (1996)), simulation (Cafiero et al. (2000), Moon et al. (2004)a ) and 

experiment (Losert et al. (1999); Rouyer k Menon (2000)), similar results on 'ro

tational' VDFs are very scarce. The high-velocity tails of translational VDFs have 

been characterized in terms of stretched exponentials or power-laws (Moka & Nott 

(2005); Vijaykumar & Alam (2007)). 

For a rough granular gas, one needs to probe possible 'orientational' correlations 

between translation and rotation (Brilliantov et al. (2007)), in addition to standard 

density and velocity correlations. It has been recently established (Brilliantov et al. 

(2007)) that such orientational/directional correlations are strong and the limit of 

smooth granular gas is singular in a heated granular gas. The last result readily 

raises doubts about the validity of the hydrodynamic theories (Goldhirsch et al. 

(2005)) that are built on Chapman-Enskog-type perturbation expansions around 

the " smooth" limit of vanishing roughness. 

The present thesis deals with particle dynamics simulations of frictional gran

ular materials. The first part of this thesis is to develop an efficient event-driven 

code to simulate three dimensional plane granular flows (Couette flow, Poiseuille 

flow, Chute flow, etc.). The rest of the thesis deals with probing various micro

scopic (velocity fluctuations, correlations, etc) and macroscopic (rheology) proper

ties of unbounded granular shear flow.The collision model for this work is the well 

known inelastic hard-sphere model that incorporates particle surface roughness and 

Coulomb friction. 
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1.1 Organisation of thesis 

Chapter 2 

In this chapter we start our work with modelhng the rough granular particles 

and their collision dynamics based on both constant-/^ and variable-/? models. 

Then we discuss about our developed code on the basis of the algorithm given 

by Lubachevsky (1991) and Rapaport (1995) for both unbounded and bounded 

granular shear flows. Finally, we will highlight on the method of averaging, fol

lowed by validation of our code. 

Chapter 3 

All results in this chapter are taken for a dilute system (with a particle volume 

fraction (p = 0.01), well known as the Boltzmann limit. We calculate velocity 

distribution functions (VDFs) for both translational and rotational velocities over 

a wide range of normal and tangential restitution coefficients. Then we study the 

pair and velocity correlation functions and the effect of particle surface roughness 

on correlation functions. We end this chapter by studying possible " orientational" 

correlation between translational and rotational velocities. 

Chapter 4 

The effects of system density (non-Boltzmann limit) on VDFs, density and velocity 

correlations are studied in this chapter. Here we work on moderately dense and 

dense granular flows having particle volume fractions of 0 = 0.3 and 0.5. The effect 

of Coulomb friction on various microscopic properties is studied for a system with 

(I) = 0.3. Related results for a system density oi (p = 0.1 are shown in Appendix I. 

The results on density and velocity correlations are shown in Appendix II. 

Chapter 5 

In this chapter, various rheological quantities like pressure, shear stress, shear vis

cosity and normal stress differences (A/i, A/2) are computed and compared with the 

theoretical prediction given by Lun (1991). The effect of particle roughness and 

Coulomb friction on normal stress differences are studied in detail. 



Chapter 2 
COLLISION MODEL AND SIMULATION METHOD 

In this chapter, we describe the colUsion model and the simulation methodology. 

Our simulation is based on inelastic hard spheres for which the interaction potential 

(^(r) is purely repulsive: 

Hr) = r ' : : (2.1) 

where d is the diameter of the hard sphere. In the absence of any external force, the 

particles move in straight lines at a constant speed between collisions and change 

their velocities immediately when a collision occurs. This means that the collisions 

are instantaneous and the impulsive force comes in the picture at the moment of 

their collision at the contact point. 

2.1 Collision Model for Rough Part icles 

Figure 2.1: Schematic diagram of two particles just before collision 

We consider a monodisperse system of rough, inelastic spheres of size d, mass 

5 
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m, and the moment of inertia / , interacting via hard-sphere potential. The pre-

collisional translational and angular velocities of particle i are denoted by c, and 

iOi, respectively, and the corresponding post-collisional velocities are denoted by 

the primed symbols, c. and w,'. Let k^ ^ Zj - z, = k be the unit vector directed 

from the center of the i-th particle to that of j - th particle. The total pre-collisional 

relative velocity at contact, gy, between particle i and j is given by 

g y = Cij - -dkx{uJi + LUj), (2.2) 

where Cjj = ĉ  — Cj is the translational velocity of particle i relative to j . 

2.1.1 Constant- /? mode l 

For the simplest model of rough, inelastic spheres, two material parameters are 

needed to characterize the collision process (Lun & Savage (1987),Lun (1991),Gayen 

& Alam (2006)): the normal coefficient of restitution, e, and the tangential coeffi

cient of restitution, p. The former is an indicator of the inelasticity of a particle 

and the latter an indicator of its surface roughness. The pre- and post-collisional 

velocities of the colliding particles are related via the following expressions: 

k-g:,- = -e(k-g,,), kxg^ = -/3(kxg,,) (2.3) 

In general, 0 < e < 1 and — 1 < /? < 1. For collisions between perfectly smooth 

particles /5 = — 1, with increasing value of f3 being an indicator of the increasing 

degrees of particle surface friction. The value oi f3 — 0 represent the case for which 

the particle surface friction and inelasticity are sufficient to eliminate the post-

collisional tangential relative velocities. For 0 < /? < 1, the spin-reversal occurs 

after a collision (Maw et al. (1981)), and the case oi P — 1 corresponds to the 

collision between perfectly rough particles. 

From the conservation laws of linear and angular momemtum, the relationship 

between pre- and post-collisional velocities can be written as 

m {Ci - ĉ ) = m {c'j - Cj) = J, (2.4) 

I{J,-u^) = /(u;;.-c^,) = - ^ d ( k x J ) , (2.5) 



2.1 Collision Model for Rough Particles 

with i 7̂  j and the collisional impulse is given by 

J = mr]2gij + m{r]i- 772) k (k-gy), (2.6) 

with 

m = ^(1 + e), m = \{l + f3)/K{l + K), K^ AI/{md') (2.7) 

Here K is the nondimensional moment of inertia of a particle: K = 2/5 for solid 

spheres, 2/3 for a thin-shell sphere (i.e. the mass m is uniformly distributed over 

its surface), and 0 when the mass m is concentrated at the centre of the sphere 

(i.e. for point particles). 

2.1.2 Coulomb Friction: Variable-/? model 

For a more realistic collision model of rough particles, we have taken into account 

the effect of Coulomb friction which helps to distinguish between the sliding and 

the rolling contacts ( Maw et al. (1981) ;Walton (1993); Luding et al. (19986); 

Jenkins & Zhang (2002);Goldhirsch et al. (2005)). Coulomb's law connects the 

normal and tangential forces at contact. If the tangential impulse is less than the 

product of the friction coefficient and the normal impulse, i.e., |kx J | < fx |k-J|, the 

sticking contact occurs, where /i is the coefficient of friction. The surface tangential 

velocity is written as 

kxg^ = -/3o(kxg,,) (2.8) 

where /?o is a phenomenological constant, characterising the restitution of velocity 

in the tangential direction for sticking contacts, with —1 < /3o < 1. From the ex

perimental data of Maw et al. (1981), Lun and Bent (1994) found that the values of 

/3o and // for the commercial ball bearings are 0.4 and 0.123, respectively. Foerster 

et al. (1994) did some experiments with glass particles for which /5o = 0.44 and 

/i = 0.09. 

When the tangential impulse is greater or equal to the product of the friction 

coefficient and the normal impulse, the sliding contact occurs and the following 

equality holds: 

| k x j | = / / | k - J | . (2.9) 
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Figure 2.2: Schematic picture of the velocities of two colliding particles at contact 

From (2.6) and (2.9), the tangential coefficient of restitution can be found explicitly 

as 

/3= - l + M(l + e) 1 
1 I'̂ 'SijI (2.10) 
KJ Ikxgyl 

This can be rewritten in terms of the impact angle which is defined as the angle be

tween the contact vector k and the relative velocity at the contact of two particles, 

as shown in figure 2.2: 

(5^~l + ^l{l + e){l + ^]cot^. (2.11) 

It follows from figure 2.2, 0 < 7 < 7r/2. Let us define a critical angle 70 such that 

when 7 > 7o there is sliding (Coulomb friction) during a collision and when 7 < 70 

there is sticking (or the particles are 'rough'); at 7 = 70, /? = (5Q. The critical angle 

is given by 

cot^o ^ 
K{1 + /3o) 

n{l + e){l + K) 
(2.12) 



2.1 Collision Model for Rough Particles 

For simulations the value of P is taken from /3(7) and (3o : 

Pin) = mm |/3o, - 1 + M(1 + e) f 1 + - j cot^^ . (2.13) 

This collision angle dependent model will henceforth be referred to as " variable-/3" 

model. 

2.1.3 Wall-Particle Collision Model 

When a particle coUides with a wall we assume it collides with a rough surface 

of infinite mass. As the walls arc rough, particle's tangential as well as rotational 

velocity change after the collision. We use e^ and /3^ to denote normal and tan

gential restitution coefficients for particle-wall interactions. The collision rule for 

constant-/3u, model is: 

Figure 2.3: Close view of wall collision for ith particle 

H y g y s i - e ^ ( n y g r ) , nyXg-; = -/3^(nyXgf), (2.14) 
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Here the unit vector can easily be found from figure 2.3 (see also figure 2.11) as ny 

and -Hy when the particle interaction is with upper and lower walls, respectively; 

g^ and g'^ are, respectively, the pre-collisional and post-collisional relative velocity 

at wall-particle contact. Similarly, we can obtain an expression for wall-particle 

impulse: 

m ( c i - c - ) = Jw, I{ujl-u!i) =--d{nyX3„), (2.15) 

and 

Jw = 2mv^gr + 2m « - rj^) k (k-gf), (2.16) 

where Jw is the impulse for wall-particle collision and 

^r = ^( l + e..): V2=li^ + Pn,)/K{l + K). (2.17) 

For a realistic model of wall-particle collision, we take into account Coulomb 

friction. Here PQ' and //^ represent the collisional properties for wall-particle inter

action. Similarly, as before the unit vector must be replaced by ny and —ny when 

the particle interaction is with upper and lower walls, respectively. We define 7"' 

and 7^ as the impact angle and the critical angle for wall-particle interaction. If 

the tangential impulse is less than the product of the friction coefficient and the 

normal impulse, i.e., |nyXj^| < /Xw |ny-Jw|, the sticking contact occurs for which 

the surface tangential velocity is 

Figure 2.4: Schematic picture of the velocity of a colliding particle at wall 



2.2 Algorithm for Event-Driven Simulation 11 

nyXg«': = -/?o"(nyXgr). (2.18) 

When the tangential impulse is greater or equal to the product of the friction 

coefficient and the normal impulse, sliding contact occurs and the following equality 

holds: 

From (2.16) and (2.19), the tangential coefficient of restitution can be found ex

plicitly as 

/3^ = - l + ^„( l + e ^ ) f l + -^ jcoi (7") . (2.20) 

From figure 2.4 the range of 7*" is defined as: 0 < 7*̂  < 7r/2. As in particle-

particle interaction, a critical angle 70 is defined such that when 7*" > 7^ there 

is sliding (Coulomb friction) during collision, when j"" < JQ there is sticking; at 

7^ = 7^, /3„ = /3^. For simulations the value of /?"' is taken from P^ij"') and p^: 

Pwir) = rnin h^, - 1 + /x„(l + e^) (l + ^) 00^(7")} • (2.21) 

2.2 Algorithm for Event-Driven Simulation 

2.2.1 Algorithm: Unbounded Shear Flow 

The computational approach employed in this study mainly consists of initializa

tion, book-keeping and diagnostic parts. The present algorithm is based on the 

paper of Lubachcvsky (1991) and the book by Rapaport (1995). In the first part, 

the positions of particles are initialized in a control volume of specific dimension. 

Their translational and rotational velocities are taken from a Gaussian distribution 

randomly. The average initial velocity is set to zero for both velocities. The outline 

of the algorithm is provided below (Lubachevsky (1991)) followed by discussions. 
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aoxLENcnm 

BOX LENGTH L " BOX LENGTH L. 

Figure 2.5: Initially particles are placed in a 3D box 

Initialisation 

timenow — 0 ; 

endtime = timbig; 

Ndim = 3 ; 

new[i) <— 1 

old{i) ^ 2 

time[i, 1] <— 0 

partnr[i, 1] <— A 

state[i, 1] <— initial state of i th component 
i=lVN 

1. while timenow < endtime do { 

2. timenow <— mm [iime [z, ?ieit;[i]]]j<j<^ 

i* <— index for minimum time (i.e. timenow) 

jj <— partnr[i*,neu;[i*]] 

if { 33 > 0 then /" state update required" / ; 

statcl ^ advance(state [i*, o/d[z*]], time [i*, old[i*\\, time [i*, new[i*]]) ; 

state [i*,new[i*]] <— cellcrossing [statel]; 

if cellcrossing in boundary special treatment for state [i*, new[i*]] ; 

if {1 < jj < N /" two-component interaction"/ 

stat2 <— advance(siaie [jj, old\jj]], tim.e \jj, old[jj]], tim.e [jj, new[jj]]) ; 

{state [i*, new[i*]], state [jj, ne'w[jj]]) <— processcollision [statel, state2] 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 
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11. partnr [jj, new\jj]] < i* /" no update for jj " / ; 

12. Tiew\jj] ^ old\jj];old[jj] •^ 3 - new\jj] ; 

} /" end two-component interaction"/ ; 

13. new\jj] <— old[i*]; old[i*] <— 3 - new[i*] ; 

} /"end state update required clause"/ ; 

14. call for predictevent /" to get the value P and Q /" 

P <— minj^A(i')Pi'j, 'whereA{i*) — {I < i < N,j ^ i*, 

time\j,new[j]] > P^.j}; 

ifP < +00 thenjj <—an index which supplies this minimum (i.e. P) and 

Q <— minkeBQi'k, whereB — {I < k < Ndim}; 

a Q < +00 then k* •«—an index which supplies this minimum (i.e. Q) 

15. R <— min{P,Q}; time[i*,new[i*]] <— R ; 

16. if i? < +00 then 

17. if P < Q then partnr [i*,new[i*]] ^ N + k* 

18. else {/" c a s e Q > P " / 

19. time [jj, new[jj]] <- R; 

20. m, *^ partnr [jj,new[jj]\ ; 

21. partnr \jj, new[jj]] <- jj; partnr [jj, new[jj]] <- i*; 

22. ii m ^ A and m ^ i* then partnr [m, new[m\] <— A ; 

} /" end Q > P clause 

} /"end while loop"/ 

Periodic Boundary 

Periodic boundary conditions are intended to mimic very large systems i.e., the 

investigated system is thought to be much larger than the simulated number of 

particles. The particles are contained within a primary simulated volume; when a 

particle leaves one side of this volume, it re-enters from the opposite side as shown 

in figure 2.6. Thus, periodic boundary conditions allow the simulation to proceed 

as if the primary volume was surrounded by identical copies of itself. 
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Figure 2.6: The basic simulation volume (particles are of black color) is repeated in 
all dimensions an infinite number of times. Here the neighbor volumes are drawn 
in grey. 

Shear Boundary : Lees-Edward Boundary Condi t ion 

For the case of unbounded shear flow, some modifications are needed on the top 

and bottom boundaries. According to Lees-Edwards boundary condition (Lees & 

Edwards (1972)), a steady linear velocity profile is applied with a constant velocity 

gradient via shifting the replica images of top and bottom boundaries without de

forming the box. The idea is to replace sliding walls by sliding replica system: layers 

of replicas that are adjacent in the y-direction move with a relative velocity -yZ/̂ nx 

(see figure 2.7 ), which ensures periodicity at a shear rate 7. Here L^, Ly and L^are 

dimensions of the simulation box along x, y and z directions, respectively and HX, ny 

and Hz are the respective unit vectors. The coordinate system is fixed at the centre 

of the simulation box. A particle crossing a y-boundary requires special treatment 

because the x-components of its position and velocity are both discontinuous (not 

for the replica system just entered but relative to the opposite side of the region 

itself into which the particle is actually inserted). The velocity change, whenever 
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Figure 2.7: Homogeneous shear boundary conditions (box with colour balls is the 
simulation box) 

a ± y-boundary is crossed, is ^^'^LyUx, and the coordinate change is ^dxiiy^, where 

the total relative displacement of the neighboring replicas, only meaningful over 

range —Lx/2 < dx < -Li/2, is given by dx = {'^Lyt+Lx)YCiodi{Lx — Lxl'2) • Note that 

since the x-coordinate changes when a y-boundary is crossed, an additional correc

tion for periodic wraparound in the x-direction may be needed. Interactions that 

occur between particles separated by the y-boundary require an offset value of —dx-

When using the cell method {Allenk.Tildesley (1987)) for the interaction cal

culation, the range of neighbor cells in the x-direction for adjacent cells on the 

opposite sides of the y-direction must extend over four cells, rather than the usual 

three, to allow for the fact that the cell x-cdges of the sliding replicas are not usu

ally aligned. If there are Mx cells on an edge, the additional cell offset across the 

± y-boundary is AM^ =Int[A4(l T dx/Lx)] - Mx (Rapaport (1995)). 

Predict Event 

Predicting future events after a collision or cell crossing is carried out by the sub

routine " Predictevent". 
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Figure 2.8: Particle are scheduled for ccllcrossing event 

Cellcrossing Event : 

The first part of the routine looks at possible cell-boundary crossings in all di

rections and picks the earliest one. In figure 2.8 we are showing a snapshot at a 

particular time with five particles in x-y plane (z plane is not shown for clarity). 

The space is divided into nine cells. Next we calculate the time for cell-crossing 

and keep track of only minimum time required for this event for all particles. That 

time is defined in the above algorithm by Qik for the ith particle. 

Qik = cellcrossingtime {state [i, old[i]], time [i, old[i]], k) (2.22) 

where 1 < i < N and 1 < A: < Ndim. Here Ndim is taken as 3 for 3D simulation 

i.e. k can take value 1,2 and 3 according to cell-crossing in the x,y and z directions, 

respectively. After that Q — min [Qik] — Qik', and k* is an index which provides 

this minimum (i.e. Q) 

Collision Event : 

The second part of the algorithm examines every particle in cells that must be 

scanned for all possible collisions and determines whether a collision is possible or 

not. The interesting dynamics of hard-sphere system is embodied in collision rules; 
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moving baD 

immobile baD 

Figure 2.9: Geometrical meaning of two solutions of |rij + cyrj = d 

between collisions nothing happens and the particles move in straight lines (if there 

is no body force ). Consider two identical particles i and j separated by a distance 

Ty = Fi — Tj and having a relative velocity cy = Ci — Cj. These particles will collide 

when their separation becomes equal to their diameter d; if this happens it will 

occur at some time T in the future, where r is the smaller positive solution of 

kg + Cyr| = d, (2.23) 

which is a quadratic equation in r: 

T^ + 2b,jT + rl - d^ 0. (2.24) 

If hij = ryCy > 0, then the particles are going away from each other and they will 

not collide. If 6^ > 0, it may still be true that bfj — cfj [rfj — dJ^) < 0 , for which eqn. 

2.24 has complex roots and again no collision occurs. For other cases (assuming 

that the spheres are not overlapping), two positive roots arise, the smaller of which 

corresponds to impact 

-6. 
T = 

[̂ ?, - 4 (4 - ^̂ )] 
1/2 

(2.25) 
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Wc store this value [r + timenow] to P^ which is defined as: 

Pij — collisiontime {state [i, old[i]], time [i, old[i]], state [j, old[j]], time [j, old[j]]) 

(2.26) 

where I <i,j < N. Now P = m.in [Py] = Pijj and jj is that particular interacting 

particle which suppHes this minimum i.e. P. 

After getting P and Q, we have to compare their values to predict the final future 

event for the ith particle. 

Case 1: 

Q < P; zth particle is scheduled for cellcrossing event. It is indicated by partnr [i, new[i]] 

array. 

partnr [i, new[i]] ^^ N + k* 

Case 2: 

Q > P; ith particle is scheduled for collision event with jjth particle. It is indi

cated by 

partner [i, new[i]] <— jj, 

partner [jj, new[jj]] <— i, 

Delayed Update 

Event-driven algorithms are the best choice for models where discrete instanta

neous events occur asynchronously. In this algorithm, if at time t, an event involv

ing particle i is processed, only the state of that particle is examined and explicitly 

modified (Rapaport (1980); Lubachevsky (1991)). The states of most other par

ticles need not be known at t and are not examined by the algorithm. Therefore 

the application of advance, cellcrossing or propcesscolision should be delayed 

until the latest possible moment when the scheduled event is being processed. This 

saves computational time. If their is no external force (gravity, magnetic field etc.) 

in the system, the advance event of the ith particle can be written schematically 

as: 
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X 
TO-^Br^ 

position at time t 
(the circle centre) 

Figure 2.10: One particle is shown at time t i.e. timenow. Its state is required to 
be updated via cellcrossing or pre-collisional event 

Advance Event: 

position {i, new{i)) <— position {i, old{i)) + 

{time {i, new{i)) — time {i, old{i))) velocity {i, old(i)), 

velocity {i, new{i)) <— velocity {i, old{i)) 

Here two arrays new[l : N] and old[\ : N] with elements equal 1 or 2 are main

tained. The value nett;[i] is the pointer to the new event for component i and 

the value old[i] is the pointer to the old event for component i. When nei/;[z] is 

updated, old[i] is updated immediately after, so that relation neit;[z] -I- old[i] — 3 

remains invariant. 

2.2.2 Algorithm: Bounded shear flow 

Figure 2.11 shows a schematic diagram of bounded granular Couette flow which is 

a simple geometry where both shear and physical boundary interactions exist. To 

simulate Couette flow we use the same algorithm for unbounded flow with some 

modifications. In our simulation of granular Couette flow, we place two physical 

walls at Ly distance apart in y-direction. The upper and lower walls are moving 



20 Chapter 2. 

Figure 2.11: Schematic view of bounded shear flow. 

with +C/nx and —[/nx, respectively. In other directions, we are putting periodic 

boundary conditions. The algorithm is as follows: 

Initialisation 

timenow = 0 ; 

signal = 0 ; 

endtime — timbig; 

Ndim = 3 ; 

new{i) 

old{i) 

time[i, 1] 

partnr[i, 1] 

state[i, 1] 

^ 1 

^ 2 

^ 0 

^ A 

<— in initial state of i th component 
i=lViV 

1. while timenow < endtime do { 

2. timenow <— m^n[t^•me[i,new[i]]]^^^^J^ 

i* <— index for minimum time (i.e. timenow) 

3- 33 •<— partnr[i*,ne'u;[i*]] 
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Figure 2.12: Schematic of the initial arrangement of particles in a 3D box with 
physical walls 

,time [i*,new[i*]]) ; 

4. if { jj > 0 then /"state update required"/ ; 

5. statel <— advance(stote [i*, o/(i[i*]], time [i*, old[i* 

6. state [i*, new[i*]] '^ cellcrossing [statel]; 

7. if cellcrossing in boundary special treatment for state [i*, new[i*]] ; 

8. if {1 < jj < N + Ndim + 1 /" wall-particle interaction interaction"/ 

9. state [i*, new[i*]] <— wallcollision [statel] 

} /" end wall particle interaction"/ ; 

10. if {1 < jj < N /" two-component interaction"/ 

11. stat2 ^- adva.nce{state [jj, old[jj]], time [jj, old[jj]], tim.e [jj, n€w[jj]]) 

12. {state [i*,new[i*]], state [jj, new[jj]]) <— processcollision [statel, state2] 

13. partnr [jj,new[jj]] < i* /" no update for jj " / ; 

14. new[jj] <- old[jj]; old[jj] <- 3 - new[jj] ; 

} /" end two-component interaction"/ ; 

15. new[jj] «— old[i*]; old[i*] <— 3 - new[i*] ; 

} /"end state update required clause"/ ; 

16. call for predictevent /" to get the value P and Q /" 

P <— m,inj^A(i')Pi'j, 'whereA{i*) = {l<i<N,j^ i*, 

time\j,new[j]] > Pi^j}; 
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if P < +00 thenjj •*—an index which suppHes this minimum (i.e. P) and 

Q <— minkeBQi'k, whereB — {\ < k < Ndim}; 

if Q < +00 then k* +—an index which suppUes this minimum (i.e. Q) 

17. R <— min{P, Q}; time [i*, new[i*]] <— R ; 

18. if i? < +00 then 

19. if P < (5 then partnr [i*, new[i*]] ^ N + k* 

20. if event is wall collision then partnr [i*,new[i*]\ «— AT + Ndim + 1 

20. c l s e { / " c a s e ( 5 > P " / 

21. time [jj, new[jj]] ^ R; 

22. m <— partnr [jj, new[jj]] ; 

23. partnr [jj, new[jj]] ^ jj; partnr [jj, new[jj]] <- i*; 

24. if m 7̂  A and m ^ i* then partnr [m, new[m\] *— A ; 

} /" end (5 > P clause 

} /"end while loop"/ 

From the above algorithm, it is clear that except the predictevent the rest of 

the algorithm is same as in the unbounded case. In the predictevent subroutine, 

besides calculating cell-crossing time for a particle we have to take into account 

the time taken by the particle to collide with physical walls in both directions of 

y-axis. The minimum time is stored in Q. If the time taken for wall-collisions is 

minimum, then signal <— 1 and we update its partnr array as: 

partnr [i, new[i]] <— Â  -I- Ndim + signal 

On the other hand, if the time taken for the cellcrossing event is minimum, then 

signal <— 0 and we update partnr array as in the unbounded case (section 2.2.1). 

2.3 Method of Averaging and Macroscopic Quan

tities 

In simulations of granular flow, the energy is supplied in the form of shear force 

applied to the domain. This energy is then transferred from mean flow to ran

dom motion of particles via shear work. The energy is always dissipated due to 
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Figure 2.13: (a) Schematic diagram for bin-wise averaging and (b) cellwise averaging 
metiiod 

particle-particle and wall-particle (bounded flow) interactions. Therefore, a non-

equihbrium steady-state (Campbell (1990), Lun & Bent (1994), Tan & Goldhirsch 

(1997), Alam & Luding (2003), 2003a, 2005, 2005) is achieved after the dissipa

tion and production balance. Monitoring system's kinetic energy with time is one 

way to get an idea about the steady-state. The statistical measurements of vari

ous quantities are performed only when system has reached steady-state condition. 

After the steady-state condition, the microscopic properties of the flow, local mean 

velocity (u), granular translational temperturc (T), rotational temperature (9) and 

system density ((f)), remain invariant in time. 

All the statistical quantities are calculated based on two procedures. One is bin-

wise averaging method where the whole simulation box is divided into a number 

of bins across the channel height. The schematic diagram for "binwise" averaging 

method is shown in figure 2.13(a). Translational (T) and rotational (6) energies 

have been calculated based on binwise averaging method and their temporal evo

lution are shown in the main panel of figure 2.14(a); inset shows their ratio. Figure 

2.14(b) shows the same as in figure 2.14(a), but all results are based on "cell-wise" 
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Figure 2.14: (a) Temporal evolution of translational and rotational energy, calculated 
based on binwise averaging method (main panel); inset shows temporal evolution of their 
ratio, and (b) Same as (a), but energy is calculated based on cellwise averaging method 
with 3x3x3 cells. Total number of particles is N = 1000. 

averaging method. There is no pronounced difTerence observed for results based on 

two methods. But with the increase of system size, along with collisional dissipa

tion, the density inhomogeneity is not only observed across the channel height but 

also over the whole system. Then we need another method where the whole system 

is divided into a number of cells shown in figure 2.13(b) and the local mean quan

tity is calculated based on "cell-wise averaging" method. Extensive comparison 

between two methods will be discussed in chapter 4. After imposing the cellwise 

averaging method, the macroscopic quantities can be calculated as follows: 

<t>k = 
6 Vk 

(2.27a) 

(2.27b) 

k^^^ a;'' = (a;*') = ^ ^ ^ ^ ' ^ J (2-27C) 
j 

(2.27d) 

(2.27e) 

where d is the diameter and m is the mass of a particle, taken as unity, Nk is the 

T = - ( C - C ) 
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number of particles and I4 is the volume of the A:th cell. Here c and C = c— < c > 

are the instantaneous and fluctuating translational velocities, respectively; LO and 

il — uj — (io) are instantaneous and fluctuating (peculiar) roatational velocities, 

respectively; (c'') and (17'') denote the mean translational and roational velocity 

of A;th cell, respectively. T and 6 are the translational and rotational granular 

temperatures, respectively; / is the moment of inertia of a particle. 

2.4 Code Validation 

2.4.1 Unbounded Shear flow 
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Figure 2.15: Effect of e on streamwise velocity profile for unbounded shear flow. 

For the validation of our code, we compare the results based on Allen &: Tildesley 
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code and our code. This is very well-known code that can deal with small system 

size without having any efficient features that present code has, like delayed update, 

cell-crossing event etc. Results are based on simulations oi N = 1000 and unit shear 

rate; in all cases we maintain a volume fraction </> = 0.3 and unit cubic section for 

simulation. Figure 2.15 shows streamwise velocity profile for (a) e = 0.99, (b) 

e = 0.9, (c) e = 0.7 and (b) e = 0.5. This profile is independent of any restitution 

parameter. 
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Figure 2.16: Effect of/3 on translational temperature for unbounded shear flow. 

Figure 2.16 shows the effect of tangential restitution coefficient on translational 

temperature. Simulation results agree with analytical results (5.11 in Chapter 

5) in the elastic limit (e ~ 0.99) except for rough particles. For rough particles 

(/3 ~ 1.0), the simulation results deviate from analytical results with increasing 

value of e. This deviation is shown in insets of figure 2.16 which shows the ratio of 
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simulation and analytical temperatures. 
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Figure 2.17: Effect of /3 on temperature ratio for unbounded shear flow. 

The ratio of rotational and translational temperatures, 6/{9 + T), is shown in 

figure 2.17; each inset shows the deviation from theoretical values. Here we are 

getting large deviation at intermediate values of /3. For perfectly rough particles 

{0 — 1.0) with e = 1, translational and rotational granular temperatures are equally 

partitioned. At the other extreme, i.e. for perfectly smooth particle {(3 — —1.0), 

^ == 0, i.e. all the energies are contained in translational degrees of freedom. This 

result agrees with simulation results in figure 2.18 taken from previous work ( 

McNamara k Luding (1998)). 

In figure 2.19 we show results for spanwise rotational velocity w .̂ At f3 = -1.0, 

the bridge for the transfer of energy from the translational to rotational degrees 

of freedom through collision dynamics breaks down. For /3 ~ — 1, the transfer 
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Figure 2.18: Figure from McNamara & Luding (1998) showing temperature ratio 
with tangential restitution coefficient. 

of energy from the translational to rotational degrees occur at a very slow rate. 

Therefore, we have to go for higher number collisions to get a value of LJZ close to 

the analytical one. Figure 2.19 also shows that the magnitude of uj;^ varies with the 

value of e. 

2.4.2 Bounded Shear flow 

For bounded shear flow too, we have compared results from the code based on the 

algorithm given in Allen & Tildesley (1987) with those from our present code. All 

results are shown for A'̂  = 1000, with 4> = 0-3, ê , = 0.9, (3 — l.G = (3^ for different 

values of e. 

Figure 2.20 shows the streamwise velocity profile across the channel height for 

different values of normal restitution coefficient. We are getting considerable slip 

at the wall. We see that the profile deviates from a straight line as we increase 

inelasticity. For e — 0.5 and e = 0.7, the velocity gradient is higher near the wall 

compared to the centre of the channel. 

In figure 2.21 the volume fraction is plotted across the channel height, with 

parameter values as in figure 2.20. Here we clearly see variations of density across 

the channel height; lower density exists near the wall and higher density is prevailing 
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Figure 2.19: The effect of j3 on the spanwise rotational velocity for unbounded sheared 
flow taken from present code and Allen & Tildesley. 

around the channel-centre. If we decrease restitution coefficient we get an increase 

in density variation. In the elastic limit, i.e e ~ 1.0, the density is almost constant 

apart from the vicinity of two walls. 

Granular translational temperature profile is shown in figure 2.22. Both codes 

agree with each other for different values of e. In the elastic limit the temperature 

is almost constant across the channel. With the decrease of e, the temperature 

variation becomes prominant across the channel height. The reason behind large 

temperatures near the wall is due to the low density and large velocity gradients 

there. Due to this large velocity gradient, the impact velocity of particles is large 

which results in a higher random velocity of the particles. This enhances granu

lar temperature at walls. When this temperature comes through particle-particle 
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Figure 2.20: Velocity profile across the channel height for <̂  — 0.3, P = 1 = Pw and 
Bu, = 0.9 

collisions, it is also dissipated via coUisional inelasticity. Therefore, for inelastic 

particles, at lower concentration part the dissipation is also low which results in a 

higher temperature. In the elastic hmit, due to the uniformness of velocity gradient 

and density, temperature remains constant across the channel. 

Figure 2.23 shows the particle spanwise rotational velocity across the channel 

height. It shows higher magnitude of rotational velocity near the walls due to large 

torques given by the walls. Near the centre of the channel the rotation velocity is 

almost uniform. The reason behind the jaw-like structure in figure 2.23 becomes 

clear if we consider particle dynamics near the wall (see figure 2.24). 

A drastic change in the rotational velocity occurs near the boundary region 

of thickness of the order of a particle diameter. This is due to different ways of 
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Figure 2.21: Density vaxiation Eicross the channel height, with parameters values as in 
figure 2.20. 

generation of angular momentum. In the shear flow of granular particles (Alam 

&; Luding (2003), Alam k. Luding (2005)), most of the collisions occur on the 

upstream faces of a particle (see figure 2.25). Due to these two types of collisions, 

a colliding particle gets a clockwise rotation i.e. half of the shear rate induced in 

the system. In the centre part of the channel, the boundary effect is less and the 

magnitude of rotational velocity is close to half of the shear rate. On a collision 

with the wall, a particle gets a large value of rotation which is proportional to 

the slip velocity. Therefore just near the wall a large clockwise rotation is added 

to the particle. But a particle just below the first layer from wall experiences a 

counter clockwise field set by the first layer (see the bottom part of figure 2.24). 

Due to these two eflFects near the wall, the magnitude of the rotational velocity is 
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Figure 2.22: Temperature profile across the channel, with parameters values as in figure 
2.20. 

less compared to other regions. This gives rise to two peaks near the walls in figure 

2.23. 

The profiles of rotational temperature, 6, and temperature ratio, 6/T, are shown 

in figures 2.26 and 2.27, respectively. If we decrease e, a distinct difference between 

regions near the wall and the centre of the channel becomes visible. Due to large 

shear rates and low particle concentration near the wall, the transitional tempera

ture lower in that region. 
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Figure 2.23: Variation of spin wise rotational velocity across the channel height, with 
parameters values as in figure 2.20. 
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Figure 2.24: Top portion of figure shows rotation governed by shear field and 
bottom shows rotation due wall motion. 
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Figure 2.25: Plot for collision angle distribution for 0 = 0.3 and e = 0.9 in 2D (Alam 
& Luding (2003)). The collision angle is defined as the angle between the contact 
vector and the x-axis (measured anticlockwise from positive x-axis. Note that the 
collisions are more likely in the second (7r/2 < 6c < ir) and fourth (37r/2 < 6c < 2-ir) 
quadrants which is due to the antisymmetric velocity profile in shear flow. 
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Figure 2.26: Variation of rotational temperature across channel height, with parameters 
values as in figure 2.20. 
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Chapter 3 
BOLTZMANN LIMIT: VELOCITY FLUCTUATION 
AND CORRELATION 

Granular flow at a very low density, well known as granular gas, is studied in this 

chapter. In the low density limit, the granular fluid behaves like a gas. Here all 

results are presented for a particle volume fraction (f) = 0.01, with the number of 

particles being N = 8000. For a few representative cases, the results were checked 

by using N = 4000 and 16000. 

Before discussing correlations and distribution functions of fluctuating veloci

ties, we present results on various mean-field quantities to check whether the flow is 

homogeneous or not. To check whether the particles are homogeneously distributed 

or not, we probe the distribution of mean density (volume fraction of particles) by 

dividing the computational box into 10x10x10 cells such that there are about eight 

particles in each cell. In the main panel of figure 3.1, the probability distribution of 

density and the effect of dissipation on it are shown. It is observed that there is no 

dissipation-induced density inhomogeneity in the system; for all dissipation levels 

the local density varies from 0.003 to 0.017 in about 90% cells. Two left insets show 

the projected snapshots of all particles (at steady state after 60000 collisions per 

particle ) in the xy and yz-planes which suggest that no clustering is visible even 

at e = 0.5 and /3 = 0, and the particles are homogeneously distributed over the 

domain. In the top and bottom right insets, the probability distributions of trans-

lational and rotational temperatures are shown, respectively; these distributions 

also remain relatively unchanged (except tail regions) with increasing dissipation. 

In figure 3.2, we show the effect of particle roughness on Knudsen number. We 

define Knudsen number as Kn = l/L, where the mean free path, /, is computed by 

averaging the distance (/ = \/Sx^+Sy^ + 6z^) covered by particles during succes

sive collisions over a large number of collisions and L is the length of the simulation 

box. In figure 3.2 the maximum Kn occurs at /? ~ 0 and at other two limits, |/3| = 1, 

39 
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0.06 

Figure 3.1: Probability distributions of mean density(mean panel), rotational (right 
upper inset) and translational temperature (right lower inset) for (p = 0.01, N = 8000 
and /? = 0 for different values of e. Two left insets show projected particle snapshots in 
the xy- and yz-planes at steady state for /3 = 0 and e = 0.5. 

it attains minimum values. The increases of Kn with dissipation can be explained 

from the similarity between the behavior of granular particles with gas molecules. 

At higher energy state (e ~ 1) the agitation of particles is more due to the in

crement in their random motion and hence the collision frequency increases. This 

leads to smaller mean-free time which is responsible for smaller mean-free path, 

{Kn = l/L) at e = 1. The probability distribution of free path (/) has been plotted 

for P = -0 .999 and /? = 0 in bottom left and right insets in figure 3.2. In the 

smooth limit, the tail of P{1) is exponential for e = 1 as in a molecular gas (Reif 

(1985)). With increasing dissipation, the tail follows a power law distribution. 

3.1 Velocity Distribution Function (VDF) 

The fluctuating velocities, d = Ci-{c^), are calculated based on cell-wise averaging 

as discussed in chapter 2. The VDF for translational velocity is plotted in the main 

panel of figure 3.3. In this plot, three data sets for e = 0.5, 0.7 and 1 have been 
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Figure 3.2: Effect of particle roughness on Knudsen number Kn (mean panel)for (p — 
0.01 for different values of e. Two middle insets show Probability distributions of mean 
free path for p = -0.999 and 0 — 0, respectively. 

Figure 3.3: Translational velocity distribution (main panel) for /3 = —0.999 and ((> = 0.01. 
Top left inset shows —ln[—ln[P{Cx/cr)/P{0)]] with ln{Cx/o-) and top right inset depicts 
deviation at low-velocity region. The bottom inset shows the effect of e on the kurtosis 
of the distribution. 

superimposed, and the black dashed line represents a Gaussian distribution. Note 

that the horizontal axis of the velocity distribution is scaled by a, the standard 
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deviation of the given quantity, and the vertical axis has been scaled such that 

P(0) ~ 1. For the elastic case (e = 1), P{Ci) closely follows a Gaussian distribution 

and the deviation starts increasing as we increase inelasticity. The tails of the 

distribution follow an stretched exponential: 

P{x) ~ exp(—7X°), with x = C, Jl (3.1) 

where 7 and a are the prefactor and exponent for the distribution, respectively; 

for a Gaussian distribution, 7 = 1/2 and a = 2. The upper left inset in figure 3.3 

shows the variation of —ln[—ln[P{Cx/(y)/P{^)]] with ln{Cx/(y)\ the slope of this 

straight-line provides the value of the exponent a. For the low-velocity region, the 

deviation from Gaussian can be calculated by AF(x ) = P{x) — exp(—x^/2), with 

X — C/a,V./cr. In the top right inset of figure 3.3, the deviation A{P{C/(T)) is 

plotted in linear scale which becomes more pronounced with increasing collisional 

dissipation. 

(a) (b) 

Figure 3.4: (a) VDF for C, (main panel) for /3 = 0 and (f> = 0.01. Top left inset shows 
—ln[—ln\P{x/a)/P{Q)]] with ln{x/a) and top right inset depicts deviation at low-velocity 
region. The bottom inset shows the effect of e on the kurtosis of the distribution, (b) 
same as (a), but for fit 

In order to quantify the deviation from Gaussian distribution, we have calcu-
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lated the kurtosis of distribution: 

(3.2) 

where 

/

OO /-OO 

(x — f)^/(x)dx, H2 = {x — x)^f{x)dj 
OO ^ —OO are the fourth and second moments about the mean of the distribution, respec

tively. The kurtosis for Gaussian distribution is 3. The dependence of kurtosis on 

dissipation is studied in the bottom inset of figure 3.3 and it varies almost linearly 

with e. For elastic collisions (e = 1), K{Ci) ~ 3.0 which indicates that the distribu

tion is nearly Gaussian. In the smooth limit (j5 ~ —1), the VDFs for all rotational 

velocities fi^ are nearly Gaussian (not shown here). Note that we do not find any 

discernible difference among the VDFs of all three components of each velocity (C, 

and Q,i with i = x,y, z) and each velocity component follows the same distribution 

for a given e. 

(a) (b) 

Figure 3.5: Same as figure 3.4, but for^ = 1 

Next we study VDFs for C, and Qj for /? = 0 in figures 3.4(a) and 3.4(b), 

respectively. Beside P{Ci), in the VDFs of fij the deviation is observed due to 

rotational dissipation at /3 = 0. Even for e = 1, the deviation at tail regions of 

both P{Ci) and P{ui) is visible and found to follow stretched exponentials. The 
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deviation in the head region of P{0.z) is shghtly asymmetric (see top right inset 

of figure 3.3 (b)) at higher dissipation (e = 0.5). This asymmetry vanishes as we 

move towards elastic Hmit. The effect of e on K(O^) is shown in the bottom inset 

of figure 3.4(b). The translational VDFs in figure 3.4(a) follow a similar behavior 

as that for /9 ~ — 1, but the deviations at low and high-velocity regions are more 

pronounced than for the VDFs of C, at smooth limit. Both the translational and 

rotational velocity distributions deviate from a Gaussian even in the elastic limit 

(e = 1) for /3 = 0. This is due to the additional rotational dissipation. 

The VDFs of both translational and rotational velocity at perfectly rough limit 

/? = 1 are shown in figure 3.5(a)-(b). The deviations of P(C,) and P{Ui) from a 

Gaussian are less as compared to any other roughness (—1 < (3 < 1). 

The effect of particle roughness on the exponent and prefactor of a distribution 

of the form P{x) ~ exp{—^xX°''') ( with x = C, fi) is studied in figure 3.6(a)-(b). 

*-»e = 0,99 
• - • e = 1.0 

(a) (b) 

Figure 3.6: (a) Variation of exponent for the stretched exponential, a,, with /3; trans
lational (main panel, ac) and rotational (inset,an) velocity.(b) Vaxiation of prefactor 7̂  
with 13. Typical error-bars are shown on few data points. 

The variations of exponents for translational velocity (ac) and rotational velocity 

(aa) are shown in main panel and inset of figure 3.6(a), respectively. It is clear 

that even for perfectly elastic collisions (e = 1) the tails of both translational and 

rotational VDFs deviate from a Gaussian (except at /3 = ±1 for which ac — 2 — 

an)', this deviation is maximum at /? ~ 0. Note that at e = 1 the functional 
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(a) (b) 

Figure 3.7: (a) Surface plot for exponent of P{Cx) varing /? and e (b) Same as (a) for 

(a) (b) 

Figure 3.8: (a) Surface plot for prefactor of P{Cx) varing /? and e, (b) Same as (a) for 
P{^z) 

forms of ac and ao, are asymmetric and symmetric (around /3 = 0), respectively. 

With increasing inelasticity, both ac and an decrease sharply, and an also becomes 

asymmetric around /3 = 0. A least square fit to our data suggests that â  follows 
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a power-law relation with inelasticity: 

ai = 2- Ai{\ - e'^f' (3.3) 

with i = C,n, and {Ac, Be) ^ (5/8,2/3) at /? = - 1 and {Ac, Be) « (3/4,1) 

and {AQ,BQ) SS (3/8,7/8) at /3 = 1. Similarly, the prefactors (7c) for transla-

tional (main panel) and rotational (7^) velocity (inset) are shown in figure 3.6(b). 

For a Gaussian distribution the prcfactor 7̂  is 1/2. The deviation from Gaussian 

is pronounced at /3 ~ 0 for any value of normal restitution coefficient (even for 

perfectly elastic case, e = 1). The deviation starts decreasing if we move towards 

(3 = ±1 . Same informations about a, and 7i are shown as surface plots in 3.7 and 

3.8, respectively, as functions of e and /3. 

3.2 Density and Velocity Correlations 

We have studied the effect of normal and tangential restitution coefficients on the 

pair correlation and the spatial correlation functions. 

Pair Correlation Funct ion 

The pair correlation function {g{r)) is defined as the probability of finding another 

particle at distance r from a test particle. Thus g{r) gives information about the 

local spatial ordering of particles. The expression for g{r) is given below (Allen & 

Tildesley (1987)): 

2V ^ ^ 

where V is the volume and A'' is the number of particles. 

Spatial Velocity Correlation 

The spatial velocity correlation is given by (Allen &; Tildesley (1987)): 

G^^{r) = {CAR)UJi + r)) (3.5) 
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Figure 3.9: (a)Pair correlation function (main panel). Velocity correlation for streamwise 
translational (top inset) and spanwise rotational velocity (bottom inset) for /3 = -0.999 
and (j) — 0.01. (b) Velocity correlation for spanwise rotational velocity, showing the 
absolute value. 

where x = {x,y,z} and C = C', Q. When particle velocities are random , the 

correlation is zero; a non-zero value of G^^ indicates correlation. In figure 3.9(a) 

Figure 3.10: Same as in the figure 3.9, but /3 = 0 

(main panel), the pair correlation function is shown for a dilute granular gas (0 = 

0.01) at smooth limit f3 ~ - 1 . No significant correlation for density is observed 

for any value of e; it behaves almost like a gas. But significant correlation of 

streamwise velocity, Gg^, is observed in the top right inset of figure 3.9. This 

velocity correlation is more pronounced with increasing collisional dissipation. The 
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Figure 3.11: Same as figure 3.9 but for /? = 1 

correlation for spanwise rotational velocity is shown in the bottom inset of figure 

3.9(a). In figure 3.9(b) we have plotted the absolute value of G^Q which shows that 

considerable amount of negative correlation exists for flz • 

The variation of roughness also has pronounced effect on streamwise velocity 

correlation (see figures 3.10 and 3.11). Even for quasi-elastic limit (e ~ 1) with 

/3 = 0, pronounced velocity correlation for streamwise translational velocity is 

observed in figure 3.10 as compared to perfectly rough and smooth limits. 
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Figure 3.12: Velocity cross correlation function Cff^ 
for dilute system with (a) /3 = 0 and (b) /3 = 1 
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The velocity correlation between streamwise translational velocity and spanwise 

rotational velocity Gf^Q is shown for /? = 0 and 1 in figure 3.12(a) and (b), respec

tively. This correlation shows an oscillatory behaviour for nearly elastic system, 

and the oscillations decrease with increasing dissipation. 

3.3 Orientational/Directional Correlation 
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Figure 3.13: (a) Variation of A(t) = cos^^ with time for different values of e with 
P = 0,(j) = 0.01 and N = 8000. Left and right insets show the distributions of cos'^'i and 
cos'^, respectively, (b) Variation of < cos'^^ > with f3 for different e. Larger symbols 
(triangle and hatched-cycle) at /3 = 0 for each e correspond to simulations with N = 4000 
and 16000, respectively. 

The translational and rotational fluctuating velocities are not " directionally" 

correlated in a molecular gas, but such an " orientational" correlation has recently 

been found in a freely cooling granular gas (Brilliantov et al. (2007)). According 

to Brilliantov et al. (2007), the orientational/directional correlation between trans

lational and rotational velocities is quantified in terms of the mean square of the 
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cosine of the angle ^ , between C = c— < c > and fi = to— < uj >: 

i = l ^ ' ' ' t = l 

For a molecular gas, A is 1/3. In figure 4.27(a) the temporal evolution of A(i) (main 

panel) for different values of normal restitution coefRcient(e) is shown, with the 

tangential restitution coefficient being set to (3 — 0. The corresponding probability 

distributions of cos^"^ and cos"^ are shown in left and right panels, respectively. 

P{cos'^) is symmetric about the zero mean for all e, but its width becomes narrower 

with decreasing e. From the main panel and left inset, we find that even for 

perfectly elastic collisions (e = 1), the mean value of A{t) deviates from 1/3 (for a 

molecular gas), signaling the presence of orientational correlation. 

The variation of the temporal average of A{t) with particle roughness, /3, is 

shown in figure 4.27(b); the dot-dash line represents the hmiting value of 1/3 for 

a molecular gas. Note that the data points for e = 1 (thick blue dashed line) and 

e — 0.99 almost overlap with each other. For any value of e, the orientational 

correlation is maximum at /3 ~ 0 and it decreases monotonically as we approach 

the perfectly smooth (/3 = —1) and perfectly rough {j3 — 1) limits. This latter 

observation is in contrast to that in a freely cooling dilute granular gas (Brilliantov 

et al. (2007)) for which < A > varies nonmonotonically with /? for — 1 < /? < 0 and 

0 < /3 < 1. Most importantly, unlike in its freely cooling granular gas counterpart, 

the case of quasi-elastic colHsions (e ~ 1) appears to be non-singular in a shear flow 

in the sense that the orientational correlation smoothly decreases to its uncorrelated 

value (1/3) for both the perfectly smooth (/? = —1) and rough {(3 — 1) limits. 

3.4 Effect of Coulomb friction: Variable-/? model 

Here we present results with coulomb friction model i.e. instead of constant-/? 

model, the collision-angle dependent /3(7) is used at the time of collision. The 

coefficient of friction is also an important parameter for the determination of /3: 

/3(7) = min |/3o, - 1 + /i(l + e) (l + -^ j cot-A , (3.7) 

where /3o is the critical value of particle surface roughness. 
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Figure 3.14: In main panel the effect of roughness on temperature ratio 9/{6 + T) for 
different values of e for 0 = 0.01 with constant /? model. Temperature ratio based on 
variable-/? model for friction coefficient /z = 0.1 and 1.0 in the top left and bottom right 
inset, respectively. 

Figure 3.15: Effect of roughness on Knudsen Number Kn for different values of e for 
(p — 0.01 in main panel for constant-/? model. Insets for results based on variable-^ 
model. Left and right insets for /i = 0.1 and 1.0, respectively. 

3.4.1 Effect of friction on temperature ratio and orientational 

correlation 

The variation of temperature ratio, 9I{0 -f- T) , for different values of roughness pa

rameter /?, taken constant throughout the simulation, is shown in the main panel 

of figure 3.14. The black dashed line is representing the theoretical prediction for 
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Figure 3.16: Effect of roughness on orientational correlation for different values of e 
for (f) — 0.01 in main panel for constant /3 model. Insets for results based on variable-/? 
model. Left and right insets for /j. = 0.1 and 1.0, respectively. 

temperature ratio (Huthmann & Zippelius (19976),Lun k Savage (1986), Gayen & 

Alam (2006)). Now with variable-/? model, the effect of critical roughness parame

ter Po on temperature ratio is plotted for different values of e, setting the coulomb 

friction /x = 0.1, in the top left inset of figure 3.14. The same set of results is shown 

for // = 1.0 in the bottom right inset of figure 3.14. At lower value of Coulomb fric

tion (^ = 0.1), the value of temperature ratio monotonically increases with critical 

Po and starts deviating from the constant-/? model for 0 < /?o < 1. This deviation 

is more if we increase collisional dissipation. For /i — 1.0, the value of temperature 

ratio is independent of the normal restitution coefficient and the deviation from 

the constant-/? model occurs only at higher values of /?o. If we further increase the 

value of //, 0{9 + T) based on both models agree with each other (not shown). 

The variation of Knudsen Number, Kn, at any value of critical particle rough

ness /?o depends on Coulomb friction. The main panel of figure 3.15 is the same 

as figure 3.2. At lower friction (// = 0.1) for any values of e, starting from smooth 

limit /?o ~ — 1, Kn increases with /?o and then becomes constant. With increasing 

collisional dissipation, Kn increases and follow the same trend as we have seen 

in constant-/? model. For ^ — 1.0 (right inset of figure 3.15), after reaching a 

maximum value, Kn starts decreasing monotonically as in the constant-/? model. 

The friction coefficient /j, has a pronounced effect on orientational correlation 

A{t). Figure 3.16 shows a comparison between constant-/? and variable P models. 
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In the main panel the effect of roughness on (A(i)) is same as in figure 4.27(b). 

The left and right insets show the effect of friction coefficient on (A(f)). In the left 

inset of figure 3.16, A is calculated by varying the critical roughness /3o for /i = 0.1. 

After a certain value of /?o ~ —0.75, A is independent of the critical roughness 

parameter, irrespective of normal restitution. For higher friction {fj, = 1.0), the 

orientational correlation follows the same trend with roughness as in the case of 

constant-/? model (right inset of figure 3.16). Note that for elastic case (e = 1) and 

perfectly rough limit (/3o ~ 1), there is considerable orientational correlation for 

fi = 1.0. This correlation at elastic limit (e ~ 1) with |/3| ~ 1 vanishes for larger 

values of friction coefficient. 

3.4.2 Effect of Friction on Velocity Distribution Function 

(a) (b) 

Figure 3.17: (a) VDF based on variable-/3 model for Ci (main panel) for /JQ = 0, /i = 0.1 
and (f> = 0.01. Top left inset shows of —ln[—ln[P{x/a)/P{0)]] with In{x/a); top right 
inset depicts deviation at low-velocity region. The bottom inset shows the effect of e on 
the kurtosis of the ditribution. (b) Same as panel (a) for Q^ 

Figures 3.17-3.19 show the effects of friction coefficient on VDFs for the critical 

roughness /3o = 0. Results are taken for three particular values of friction param

eter, /u ~ 0.1,1.0 and 10.0 as shown in figures 3.17, 3.18 and 3.19, respectively. In 

every figure the top left inset shows the variation of —ln[—ln[P{x/a)/P{0)]] with 

ln{x/a), with x — C,fl. The deviation in low velocity region in hnear scale is 
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depicted in the top right inset and the bottom inset shows the variation of kurtosis 

with normal restitution coefficient. If we increase the value of friction coefficient, 

the VDFs deviate more from a Gaussian. The asymmetry in the low velocity re

gion of P{^z) appears with increment of friction parameter, // at e = 0.5. At large 

values of ^ the VDFs for Ci and Qi fairly agree with the VDFs based on constant-/? 

model. The deviation is more pronounced between two models at small values of 

friction coefficient and at a critical value of roughness close to /?o = 1. 

(a) (b) 

Figure 3.18: Same as figure 3.17 but /x = 1 

The effects of Coulomb friction is summarised in figures 3.20 (a) and (b). Figure 

3.20(a) shows the effect of friction coefficient on the kurtosis of P{Cx) for different 

dissipation levels in the main panel and the inset shows the same for spanwisc 

rotational velocity; critical roughness /3o is set to 0. The kurtosis of both veloci

ties increases with Coulomb friction and after reaching a large value it becomes a 

constant. Figure 3.20 (b) shows the variation of the exponents of tails of P{Cx) 

and P{^z) (main panel and bottom inset, respectively) over /x for different normal 

restitution coefficient e. With increasing value of /i, the exponents {ac and an) 

decrease, signalling more deviation from a Gaussian. Therefore, in the variable-

/3 model, // is one of the essential parameters in energy transfer process between 

translational and rotational motions, along with critical roughness /3o. 
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(a) (b) 

Figure 3.19: Same as figure 3.17 but /x = 10 
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Figure 3.20: (a) Variation of kurtosis for streamwise translational and spanwise rota
tional velocity on friction coefficient, fi, for different values of e in main panel and in the 
inset, respectively, (a) Effect of /i on exponent of streamwise translational and spanwise 
rotational velocity in main panel and inset, respectively. 





Chapter 4 
EFFECT OF DENSITY: VELOCITY FLUCTUATION 
AND CORRELATION 

435(K) 58500 

Figure 4.1: Projected particle snapsliots in xy-plane at steady state for </) = 0.3, (3 = 0 
and e = 0.5. Number below each snapshot denotes time instant given in terms of collisions 
per particle. 

43500 58500 

Figure 4.2: Same as figure 4.1 but here projection is in yz-plane. 

In this chapter we investigate the effects of density (particle volume fraction) 

on velocity distribution functions and various correlations. The variation of system 

density not only changes the dynamics of the flow, but has great effects on various 

57 
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system properties, like local density distribution, orientational correlation, VDF, 

pair correlation and velocity correlation function. 

(a) (b) 

Figure 4.3: (a) Probability distribution of local density for different normal restitution, 
e (main panel); inset is same as in main panel, but P{4>) is in log scale, (b) Local shear 
rate, 7, distribution for different collisional dissipation in linear scale and log-scale in 
main panel and top right inset, respectively. 

Figures 4.1 and 4.2 show some typical snapshots of particles projected in xy 

and yz-plane, respectively, for a moderate volume fraction (j) = 0.3, with (3 = 0.0 

and e = 0.5. The local clusters, formed over the domain, make the system inho-

mogeneous both in xy and yz-plane. These clusters are unstable and change with 

time. This also indicates the multi-steady states possessed by the system. This 

type of dissipation-induced density-inhomogeneity is observed for moderately dense 

systems with large number of particles. 

The probability distribution of mean-density, P{<j)), is shown in figure 4.3(a); 

to calculate P(0) we divide the computational into 10x10x10 cells and then take 

average over a few thousands snapshots. In the quasi elastic limit e ~ 1, the system 

is almost uniform. The local density varies significantly as we increase dissipation. 

Figure 4.3(a) shows that for higher dissipation level (e = 0.5) there is about 90% 

chance of finding local cells having density </> ~ 0.25 — 0.4. The variation of local 

shear-rate 7 for different collisional dissipation is shown in figure 4.3(b). At elastic 

limit e ~ 1, ^ (7) is symmetric about the mean of the distribution; this symmetry 
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Figure 4.4: (a) Probability distribution of local translational temperature for different 
normal restitution, e (main panel); inset is same as in main panel, but P{(j>) is in log scale, 
(b) Probability distribution of local rotational temperature in linear scale and log-scale 
in main panel and top right inset, respectively, (c) Probability distribution for spanwise 
rotational velocity in log-scale (main panel) and in linear scale (inset). 

breaks down with increase of inelasticity. The probability distribution function of 

T,0 and ujz are shown in figures 4.4(a), 4.4(b) and 4.4(c), respectively. The shape 

of each distribution changes drastically for e < 0.7, signalling the onset of cluster 

formation. 
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4.1 Velocity Distribution Function (VDF) 

In this secetion we represent results on velocity distribution functions (VDF) of 

dense flows for constant-/? model. The results are presented for particle volume 

fractions oi (j) = 0.3 and 4> = 0.5. Another set of results for a lower volume frction 

(j) = 0.1 look similar to those of ^ = 0.3 which is documented in Appendix I. 

4.1.1 Moderately Dense Flow 

Figure 4.5: Translational velocity distribution for (p = 0.3 for /? : -0.999 

Here we study moderately dense flow by fixing the volume fraction to (j) = 0.3. 

For smooth limit /3 ~ —1.0, the probability distribution of translational fluctuating 

velocity P{Ci) is shown in figure 4.5 along with the variation of kmrtosis (lower 

inset) for different values of e. For higher dissipation (e = 0.5), the deviation 

is pronounced with K{CX) ~ 8.5. The upper left inset in figure 4.5 shows the 

variation of —ln[-ln[P{Cx/cr)/P{0)]] with ln{Cx/(T). At low-velocity regions, the 

deviation from a Gaussian is calculated from AP{x) = P{x) — exp(-x^/2) , with 

X = C/c7, n/(T, which is shown in the top right inset of figure 4.5. The deviation 

for low-velocities increases with increasing collisional dissipation. 

The most dissipative case, /? = 0, is studied in figure 4.6. An interesting obser

vation is that the VDF of streamwise translational velocity undergoes a transition 

from an stretched exponetial to a Gaussian with under-populated tails with increas

ing e. The variation of kurtosis with normal restitution coefficient e, in the bottom 
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(a) (b) 

Figure 4.6: (a) Translational and (b) rotational velocity distributions for </> = 0.3 and 
/3 = 0 

-inl-lt|P(C^yi'(0)li|' 

(a) (b) 

Figure 4.7: (a) Translational and (b) rotational velocity distributions for (j) = 0.3 and 
(3=1 

inset of figure 4.6(a), indicates that this transition occurs at e ~ 0.8. For P{^z), a 

transition is observed from a Gaussian to an stretched exponential to an exponen

tial with decreasing e as seen in the lower inset of figure 4.6(b). It may be pointed 

out that the kurtosis of an exponential distribution is 6 and that of a Gaussian is 3. 



62 Chapter 4. 

5vln[-ln[P(C,))P(0)]l 

0.5 1 1 

r» «i=0.2±0.02 1 

0 

•• 4 = 0.5 + 0.05 • ( „ 
- - Gaussian I^P,' 

J ^ E f 1 22 
* ^ ^ r ' 

r /' 
0.2 

W \ 

e = O.S ! 
p=o.o • 

a.W A 

0.1 0.4 0 

1 

0 

1 1 1 1 1 1 1 1 1 1 1 

4P(C) 

• ^ 
. 1 . 1 , 1 . 1 . 1 . 

3 -2 -i 0 1 2 
CJa 

11 
0 

C/o 

(a) (b) 

Figure 4.8: "Local" velocity distribution with varying local cell-density for (a) transla-
tional and (b) rotational velocity for e = 0.5 and (3 = 0.0 

(a) (b) 

Figure 4.9: "Local" velocity distribution with varying local cell-density for (a) transla-
tional and (b) rotational velocity for e = 0.7 and 0 = 0.0. 

For perfectly rough hmit (/3 ~ 1), P{Ci) and P{il.i) are shown in figures 4.7(a) 

and 4.7(b), respectively. For P{Cx) a transition from an under-populated tail to a 

Gaussian is observed with increasing e. 

The above study of P{Ci) and PiVti) does not reveal true picture about 'local' 

VDFs since the system has a wide variation in local density (especially at e = 0.5, 
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(a) (b) 

Figure 4.10: Effect of e on local velocity distribution for P = 0.0 and local density 
(̂  = 0.3 ± 0.03 for (a) translational and (b) rotational velocity 

0.7) as shown in 4.3. The results in figures 4.5-4.7 only provide a weighted prob

ability distribution of P{Ci) and F(fii) taking the whole range of local density 

variation (0.2 - 0.5) for a particular value of e. Note that this density variation is 

prominent for e < 0.7 for our system. 

To study "local" VDFs we have chosen four specific values of local volume 

fraction 0 = 0.2,0.3,0.4 and 0.5. First we pick up those cells having an average 

local density of 0.2 ± 10%, and calculate the probability distributions of Ci and Q, 

for particles belonging to those cells. Similarly we go for cases with local cell 

densities of 0 = 0.3, 0.4 and 0.5. The local probability distributions of Cx and Q^ 

for P = 0.0 and e = 0.5 are shown in figure 4.8. The deviation of P{C^) and P(fi^) 

from Gaussian is more for lower density regions compared to denser parts of the 

system. The tails of both P{C,,) and P(f)J follow an stretched exponential 

P{x) ~ e -fiX" with X = d/a or ^i/a 

where 7, and a, are the prefactor and exponent of distribution. There is a hnear 

rise of exponent with increase of local cell density as shown in the bottom insets 

of figure 4.8. For AP(n), an asymmetry is observed in the head-region for lower 

dense parts of the system as shown in the top right inset of figure 4.8(b). Similar 



64 Chapter 4. 

Fi gure 4.11: Projected particle snapshots in xy-plane at steady state for cp = 0.5, /? = 0 
and e = 0.7. Number below any snapshot denotes time instant given in terms of collisions 
per particle. 

43500 58500 

Figure 4.12: Same as figure 4.1 but here projection in yz-plane. 

results for P{Cx) and P{^z) with e = 0.7 and /? = 0.0 are shown in figure 4.9 by 

varying local cell-density 0 ~ 0.3 — 0.5 with 10% tolerance. 

Now to summarize the case (3 = 0.0 we have taken all C^ and Q~ in those cells 

having an average "local" density same as the "overall" system density i.e. (f) = 0.3 

with 10% tolerance and varied the normal restitution coefficient e. The probability 

distributions of C^ and fi^ are plotted in figure 4.10 for e = 0.5,0.7,0.8,0.9 and 

1.0. The most interesting observation is that there is a sharp transition from an 

stretched exponential tail {ac < 2) to an under-populated Gaussian tail {ac > 2) 

for P{Cx) at e > 0.8, clearly seen in the bottom inset of 4.10(a). For PiS^z), 

however, the tails undergo a transition from an stretched exponential (an < 2) to 

a Gaussian (an = 2) with increasing e, see the bottom inset of figure 4.10(b). From 
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Figure 4.13: Same as figure 4.3 but 0 = 0.5. 

the right inset og figure 4.10(b), we find that the asymmetry for low velocities of 

^2, (i^z), becomes prominent for e < 0.7. 

4.1.2 Dense Flow 

Here we briefly discuss the VDFs of dense flows by setting the overall system vol

ume fraction to 0 = 0.5 which is close to the freezing-point density of hard spheres 

in three dimension. Figures 4.11 to 4.14 are analogues of figures 4.1 to 4.4 for 

4> = 0.5. For dense flows, the main observation is that the system is almost ho

mogeneous and there is no discernible dissipation-induced density inhomogeneity 

even at e = 0.5. 

The VDFs for both translational and rotational velocities are shown in flgures 

4.15-4.17. For any value of particle roughness, /3, the VDF of C^ follows a Gaussian 

with under-populated tails. The reason behind this under-populated distribution 

can be explained on the basis of system density. At higher system density, the 

random movement of particles is restricted which results in less fluctuations in the 

particle motion. 

Figures 4.18 and 4.19 show the local VDFs of C^ and Q^ for e = 0.7 and 0.9, 

respectively. The VDFs of Cx is more under-populated as we move towards the 
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Figure 4.14: Same as figure 4.4 but for system density ^ = 0.5. 

denser zones of the same system (see the variation of exponents, ac(</>), with local 

density in the lower inset of figures 4.18(a) and 4.19(a)). For ^(f i j ) , however, the 

tails are over-populated (an < 2) and approach a Gaussian with increasing local 

density. Another difference with results for 4> = 0.3 is that the deviation of P{flz) 

at low velocities remain symmetric about fl^ = 0 as seen in right upper insets of 

figures 4.18(b) and 4.19(b). 
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Figure 4.15: Translational velocity distribution for cj> = 0.5 and P = -0.999 

4.2 Effect of Density on VDFs with Coulomb Fric

tion 

In this section, all results are presented for the 'variable-/?' model which incorpo

rates Coulomb friction. As in the dilute system, Coulomb friction has strong effects 

on temperature ratio, 6/{6 + T), VDFs, etc. 

In the main panel of figure 4.20, the effect of (3 on temperature ratio is shown 

for different values of e for 'constant-/?' model. The black dashed line indicates 

theoretical prediction of temperature ratio. For the 'variable /?' model, the varia

tion of temperature ratio on critical roughness /?o with /i = 0.5 is plotted in the 

right inset, and the left inset shows the effect of friction coefficient, /i, on temper

ature ratio for which /3o is set to 0. It is observed that for low values of friction 

coefficient [fi < 10~ )̂ the temperature ratio is independent of both roughness and 

normal restitution coefficient. In the range 10"^ < /i < 1 with any value of critical 

roughness /3^, the temperature ratio sharply increases with fi; after fx > 1 this ratio 

becomes a constant. Figure 4.20 also tells us that the temperature ratios based on 

both 'constant-/?' and 'variable- /?' models agree with each other upto a large value 

of /? for higher friction coefficient /x. These observations mirror those in the recent 

work of Herbst et al. (2005) for a heated granular gas. 

In figure 4.21, the "local" VDFs for Cx and Q^ are shown with parameters as 
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(a) (b) 

Figure 4.16: (a) Translational and (b) rotaional velocity distribution for ((> = 0.5 and 
0 = 0 

(a) (a) 

Figure 4.17: (a) Translational and (b) rotational velocity distributions for cp = 0.5 and 
/3 = 1. 

in figure 4.8, but the value of the coefficient of friction, n, is taken as 0.1 and other 

parameters are /So = 0 and e = 0.5. The same set of results for e = 0.7 is shown 

in figure 4.22. As before, the tails of P{Cx) deviate more for lower local density 

compared to the denser zone. (This deviation also depends on /x that we will see 

later). A pronounced asymmetry between two tails is observed in the VDF of Q^ 
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(a) (b) 

Figure 4.18: Local velocity distributions with varying cell-density for e = 0.7 and /? = 0 

-M-iil[P(cwto)i; 

Figure 4.19: Same as figure 4.18 for e = 0.9 

in figures 4.21(b) and 4.22(b). We calculate skewness (A) to get an idea of this 

asymmetry quantitatively: 

A = 
_M3_ 

3 /2 ' 
M2 

where 

M3 
/

OO /.QO 

(x - xffix)dx, H2= (x- xff{x)dx 
•OO J — OO 

(4.1) 

(4.2) 

are the third and second moments about the mean of the distribution, respectively. 

The variation of skewness on local (/> is shown in the bottom insets of figures 4.21(b) 
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Analytical ratio 
e = 1.0 
e = 0.9 

„ ^ ^ e = 0.7 
« = 0.3 • _ , e = 0.5 

Figure 4.20: Main panel shows the effect of j3 on temperature ratio, 6I{6 + T), for 
different values of e with <t> = 0.3. Black dashed line indicates theoretical temperature 
ratio based on 'constant /?-model'. For 'variable (3-modeV, the variation of temperature 
ratio over critical roughness /3o for /i = 0.5 is shown in the right inset, and in the left 
inset, the effect of friction coefficient, /i, on temperature ratio is shown for 0o = 0. 

Figure 4.21: Local velocity distribution function for (a) translational and (b) rotational 
velocity, with varying local cell-density for 4> = 0.3, e = 0.5, /̂ o = 0 and ^ = 0.1. 

and 4.22(b). This asymmetry becomes more pronounced as we move towards the 

low dense regions of the domain. From the upper left insets of figures 4.21(b) and 

4.22(b), we find that the low velocities of F(n^) are also asymmetric as in the 

constant-/? model. 

In figure 4.23, the effect of e on the local VDFs of C^ and Q^ are shown for 
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(a) (b) 

Figure 4.22: Same as figure 4.21 but for e = 0.7. 

cells where the "local" volume fraction is same as the system average density i.e. 

(f) = 0.3 with 10% tolerence. A transition is observed for the tails of P{Cx) from an 

stretched exponential to an under-populated Gaussian distribution (see lower inset 

of figure 4.23(a)). For P(flz) in figiire 4.23(b), the asymmetry of tails increases for 

higher dissipative system. For elastic system, 6 = 1, P{Qz) agrees with a Gaussian. 

Similar results are obtained by increasing the value of friction coefficient /x = 10.0 

' I ' I ' I ' I ' 
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Figure 4.23: Effect of e on local velocity distribution for /3o 
0 = 0.3 ± 0.03 for (a) translational and (b) rotational velocity. 

0, /i = 0.1 and 
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t-^..-

(a) (b) 

Figure 4.24: Same as figure 4.23 but for /x = 10. 

as shown in figure 4.24; other parameters are as in figure 4.23. 

^ -1 

0.01 

Figure 4.25: Variation of skewness for spanwise rotational velocity distribution on fric
tion coefficient, /x, for different values of e (main panel). Left and right inset show the 
effect of II on K{CX) and QC, respectively. 

The effect of friction coefficient on local VDFs is summarized in figure 4.25 for 

(f) = 0.3 and /?o = 0. The main panel shows the variation of skewness, An, for 

spanwise rotational velocity on friction coefficient for different values of e. The left 

and right insets of figure 4.25 show the effect of /x on kurtosis and exponent of 

P{Cx)- From this figure it is clear that the effect of /x becomes more pronounced 
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for dissipative system (e = 0.5); the skewness of P{Qz) decreases with increasing 

/i for e = 0.5. This can be explained from the energy transfer point of view. 

At higher value of friction coefficient, the energy transfer rate from translational 

to rotational motion increases. P{Cx) deviates more from a Gaussian at higher 

coUisional dissipation level, with the increase of /x. In the insets of figure 4.25, the 

variations of K{CX) and ac on /x supports the above idea. 

4.3 Effect of Density on Orientational Correlation 

0.32 

0.3 

0.28 

0.26 

* ' 6 = 0.5 
. .£ = 0.90.7 
• ' 6 = 1 . 0 

16+04 2e-K)4 2e+04 2e+04 3e+04 4e4-04 
collisions/particle 

Figure 4.26: Temporal evolution of A{t) at steady-state for /? = 0 for three different 
values of e for a moderately dense system, 4) = 0.3. The left inset and right insets show 
the probability distribution of cos'i! and cos^^ respectively. 

In main panel of figure 4.26 the temporal evolution of A{t) = cos'^^'i/ (see eqn 

3.6 in chapter 3) for different values of normal restitution coefficient(e) is shown, 

with the tangential restitution coefficient being set to (3 = 0. Recall that ^ is the 

average angle between the fluctuating translational (Ci = Ci — (ci)) and rotational 

velocities (Sli = oJi — {UJ;}). The corresponding probabihty distributions of cos^^ 

and cos"^ are shown in left and right insets, respectively. P{cos'^) is symmetric 

about the zero mean for all e, but its width becomes narrower with decreasing e. 
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Figure 4.27: Effects of normal and tangential restitution coefficients on orientational 
correlation for granular system having volume fraction (a) 0.01, (b) 0.1, (c) 0.3 and (d) 
0.5. Bold black dashed line indicates 1/3. 

Prom the main panel and left inset, we find that even for perfectly elastic collisions 

(e = 1) the mean value of A{t) deviates from 1/3 (for a molecular gas), signaling 

the presence of orientational correlation. 

Figure 4.27 shows the dependence of {A{t)) on both restitution coefficients and 

volume fraction. In dilute limit, (p = 0.01, for any value of normal restitution co

efficient, the correlation increases from / ? = — ! ; the maximum correlation occurs 

for P ~ 0.0 where dissipation is maximum and for /? > 0.0 the correlation starts 
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Figure 4.28: Effect of particle roughness on spanwise rotational velocity for moder
ately dense (main panel) and dilute system (right inset). Left inset shows the temporal 
evoluation of u;̂  at steady-state for dilute and dense system in smooth limit P = -0.999. 

Figure 4.29: Effect of density on orientational correlation in main panel for different 
e with 0 = Q. The left and right insets show the same as in the main panel but for 
0 = -0.999 and 0.999, respectively 

weakening upto the perfectly rough limit /3 ^ 1.0 . With the increase of system 

volume fraction, the translational motion of particles is more constrained towards 

the direction of shear-force and the rotational velocities shift their direction to

wards perpendicular to shear plane. This gives a lower correlation between two 

motions. On the contrary, at /? ~ - 1 , with increasing system volume fraction (A) 

deviates more from 1/3 with higher dissipation in collision. This strong correlation 

occurs in the smooth limit for inelastic particles due to the one-way energy transfer 
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Figure 4.30: Orientational correlation based on instantaneous particle velocities, with 
parameters as in figure 4.27. 

from translational to rotational mode, with translational velocities being the only 

source of momentum transfer during the collision process. 

In iigure 4.28, the main panel shows the variation of spanwise rotational ve

locity on particle roughness (3 iov (p = 0.3 for different values of e, and the top 

right inset shows the same as in the main panel but for a dilute system (^ = 0.01). 

It is clear from this figure that for perfectly smooth limit /3 ~ - 1 and at higher 

dissipation, the magnitude of the rotational velocity is lesser than its theoretical 
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value (i.e. half of the shear-rate), as compared to the dilute limit. This supports 

the above fact of insufficient energy transfer from the translational to the rotational 

mode in a dense system at /3 ~ —1. At the other limit {j3 = l),the orientational 

correlation weakens even for inelastic particles if we move towards the dense system. 

The effect of system volume fraction and restitution coefficients on orientational 

correlation are summarised in figure 4.29. In the smooth limit, the inefficient 

exchange of energy process is more dominant than density effect and this leads to 

a high correlation between two motions. In other limits /? ~ 0 and P ~> 1, the 

density effect dominates. 

Lastly, the orientational correlation is calculated based on instantaneous par

ticle velocities c, and w-,. The dependence of volume fraction and two restitution 

coefficients on this correlation is shown in figure 4.30; the parameter values are as in 

figure 4.27. It is seen that the instantaneous particle velocities are more correlated 

in all respects than the correlation between the fluctuating velocities. 





Chapter 5 
RHEOLOGY OF FRICTIONAL GRANULAR SHEAR 
FLOW 

This chapter is devoted to study the rheological properties of an unbounded sheared 

granular fluid. Parallelly we will go for test and validation of the available con

stitutive models (Lun (1991)) against the rhehological data obtained from our 

simulation. The effects of particle roughness and Coulomb friction on transport 

coefficient are elucidated in detail. 

5.1 Equations of motion and consti tut ive model 

In this section we briefly recall the equations of motion and constitutive model 

of a rough granular fluid which was originally derived by Lun (1991). Note that 

this constitutive model of Lun is ba.sed on the constant—/3 model and does not 

incorporate Coulomb friction. Next we consider the uniform shear flow for which 

the mean field quantities and the expressions for various transport coefficients are 

explicitly written down. 

5.1.1 Nondimensional Equations of Motion 

We have non-dimensionalized all quantities via the following scaling: 

x ' = - , i* = 7^ u* = —, n* = -
d d'y 1 ' 
T e '4' P L 

T* = —— e* = — - * • = p* = L* 

where d is the particle diameter, 7 is the sheax rate and Pp is the material density 

of particles. Here onwards, for convenience, we will omit the starred-superscript to 

79 
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denote nondimensional quantities. The resulting non-dimensional equations take 

the following form (Gayen & Alam 2006): 

d(j> 

'dt 

4 > ^ = 

3 DT 

-V-(<^u) 

- V - P + ^g 

-V-L + ^ 

- V q - P r V u - P 

- V q ^ - L:Vfi - Vr -- Q - ^ 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The nondimensional forms of the stress tensor, the angular momemtum source, 

the translational and rotational heat fluxes are given by (Lun 1991; Gayen & Alam 

2006): 

P = [ p - C ( V - u ) ] l - 2 / i s S - / x a x ( 2 n - V x u ) (5.6) 

* = - 2 / i r ( 2 f i - V x u ) (5.7) 

q = -nVT-KhSId (5.8) 

q̂  = -K^Vr - K ;̂,V6', (5.9) 

where S is the non-dimensional strain-rate deviator 

S = ^ ( V u + ( V u ) ^ ) - ^ ( V . u ) . (5.10) 

The associated nondimensional transport coefficients have the following forms: 

K<?̂ ,T) = T!M), P^s{4>.T,Q) = Vfh{<i),e/T) 

K{ci>,T,e) = Vff,{<t>,e/T) Kh[<i>,T,e) = Vfu{<i>,e/T) 

Kr{cp,T,e) = ^fff,r[4>,e|T) Krh{cP,T,e) = VfUh[4>,o/T) 

V{cP,T,e) = T^^^M<P,d/T) P.(0,T,e) = -T^'^hM.e/T), 

where p is the pressure, /x̂  the shear viscosity, /x̂  the rotational viscosity, C, the 

bulk viscosity, K '̂S can be identified with various-types of thermal conductivity 
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(Lun 1991); 'D{(j),T,9) and 'Dr{(j),T,6) are the translational and rotational dissipa

tions, respectively. In all above expressions, fi{(j),6/Tys are the non-dimensional 

functions of density and temperature, related to different transport coefficients 

whose explicit forms can be found in Gayen & Alam (2006). 

5.1.2 Steady Uniform Shear Flow 

Here we consider the steady {d/dt{-) =), fully developed {d/dx{-) = 0) planer 

shear flow of rough, inelastic spheres, having no variation in the spanwise direction. 

For this case, the mass balance equation, the x- and z-components of the linear 

momentum equations and the x- and y-components of the angular momentum 

equations are identically satisfied. The only non-zero velocity field is the streamwise 

velocity which varies hnearly with y, with constant density and granular energies 

throughout the flow-field. Thus, the base-state hydrodynamic-fields are given by 

• . <̂  = constant 

u = {u^,Uy,u^Y = (72/, 0,0)^ 

fi = (u;.,u;„u;,)^ = (0,0,-7/2)^ 

T = T{<j),e,P) = constant 

6 = 9{(j),e,P) = constant 

> , (5.11) 

where 7 is the non-dimensional shear rate. 

The base-state spin-velocity field, fi, is obtained from the balance equation for 

angular momentum: 

* = 0 = ( 2 n - V x u ) 

^ fi = ^ ( 0 , 0 , - 7 ) ^ = {UJ,,iJy,UJ,f. (5.12) 

Thus, the mean spin velocity in USF is equal to the rate of rotational bulk defor

mation. This, together with the balance equation of rotational granular energy, 

yields: 

Pr = 0 = -T^/Vsr 
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If the translational and the rotational granular energies are equally partitioned (i.e. 

T = 6), then it can be easily verified that 

which corresponds to perfectly rough particles. The other extreme of perfectly 

smooth particles (/? = —1) yields ^ = 0, i.e. all the energies are contained in 

translational degrees of freedom. Thus, under general conditions, the equipartition 

principle does not hold for a granular system; this happens due to the transfer of 

momentum between the translational and the rotational degrees of motion. 

The explicit expression for T is obtained by equating the production term due 

to the shear-work with the dissipation term in the balance equation for the trans

lational kinetic energy: 

- P : V u = V 

^ ^ ' ' dy 

^ ^' V^J = ^ = ^^ (̂^̂^̂  -d^ = ^^ 
^T = .^MMIIlliMl (5 14) 

^ Mcf>,9/T;e,P,K) ^^''^^ 

By specifying the values for the particle volume fraction {(j)) and the two resti

tution coefficients (e and /?), we can calculate all transport coefficients (pressinre, 

viscosity, thermal conductivity, etc.). These theoretical predictions on pressure 

and shear viscosity will be compared with our simulation results in the following 

section. 

5.2 Stress Tensor: Pressure, Viscosity and Normal 

Stresses 

The macroscopic stress, as measured in discrete particle simulations , is a byproduct 

of the particle-level mechanisms of momentum transfer. As in the hard-core model 

of dense gases, the stress is sum of its kinetic and coUisional components. The 

former arises from the transport of momentum as the particles move through the 



5.2 Stress Tensor: Pressure, Viscosity and Normal Stresses 83 

system carrying their momentum, while the latter is due to direct interparticle 

collisions. 

The non-dimensional total stress is calculated from (Alam & Luding (2003),2005) 

P = P ' ' + P'= 

d 
5]] Ci (8> Ci + — Yl (Jy ® k) 
i=l collisions 

(5.15) 

where P' ' and P*̂  are the kinetic and colhsional contributions to the total stress P , 

respectively, and Jy is the coUisional impulse. For the collisional stress, the sum is 

taken over all collisions during the averaging time window r^. Note that the trace 

of the kinetic part of the stress tensor is used to calculate the granular energy. 

Now we decompose the total stress, defined in the compressive sense, in the 

following way: 

P = P ' ' + P'= = p l + n , (5.16) 

where p is the pressure, 11 the pressure deviator and 1 the imit tensor. Prom the off-

diagonal components of the pressure deviator, we can calculate the shear viscosity 

which relates the shear stress to the rate of strain (Alam & Luding (2003)): 

du 
dy' 

/is = = |nx!,|. (5-17) 

^ y r^* j _ . 

The diagonal components of the pressure deviator, could be different from zero, 

giving rise to normal stress differences (Alam & Luding (2003),2005); 

U2 = ^yy-^". (5.18) 
p 

The former is called the first normal stress difference, and the latter the second 

stress difference. Note that we have scaled these quantities by pressure. For a 

Newtoniaji fluid, A/i = 0 and M2 = 0. Hence the non-zero values of A/i and Af2 are 

indicators of the non-Newtonian character of the fluid. 
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From our simulation of unbounded granular shear flow, we will calculate pres

sure, shear viscosity and two normal stress differences. For all simulations in this 

chapter, we have considered a small system with 1000 particles so that we can eUm-

inate the effects of dissipation-induced inhomogeneities and the system remains ho

mogeneous. The homogeneity of the uniform shear flow alllows us to calculate the 

stress by averaging it over the whole computational box (Campbell (1990), Alam 

& Luding (2002), Alam k Luding (2003a)). 

5.3 Results 

5.3.1 Pressure and Shear Viscosity 

Figure 5.1 shows the variations of pressure and shear viscosity with particle volume 

fraction for different values of e for perfectly smooth particles by setting /3 = — 1. 

Figure 5.1(a) shows that for any value of normal restitution coefficient, pressure 

initially decreases with volume fraction and after reaching a minimum value at 

(j) ~ 0.15, it starts increasing. The reason behind this non-monotonicity is that the 

total stress is a combination of a collisional and a kinetic part (see eqn.5.15) . In 

dilute regime the collisional contribution is negligible and the kinetic contribution 

dominates. In dense limit, the collisional contribution dominates and the kinetic 

contribution is negligible. So, at two extreme values of volume fraction, one expects 

higher values of stress. The sohd lines in the figure 5.1 indicates the theoretical 

prediction of the results taken from eqn. Lun' model. For elastic limit, e ~ 1, both 

simulation and theoretical results fairly agree with each other (except for higher 

volume fraction). The value of pressure decreases with decreasing e. Similar trends 

for viscosity are observed in figure 5.1(b) with particle volume fraction and normal 

restitution coefficient. The particle volume fraction has a large effect on viscosity. 

The effect of surface roughness (/?) on pressure and viscosity is studied in figures 

5.2(a) and (b) for /? = 0.0. For any value of normal restitution coefficient, both 

pressure and viscosity decrease for /3 = 0 as compared to perfectly smooth case 

(/? = —1). The deviations from theoretical values are pronounced even for elastic 

particles ( e = 1.0) with /? = 0. This is tied to the assumptions in the constitutive 

model of Lun (1991) which is valid for |/3| ~ 1. The simulation results in figure 5.3 

agree well with theoretical predictions. 
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(a) (b) 

Figure 5.1: Variation of (a) pressure and (b) viscosity with volume fraction, (p, for 
smooth particles /3 = — 1. Continuous lines represent the theoretical prediction of Lun's 
model (1991). 

(a) (b) 

Figure 5.2: Same as in figure 5.1, but for /3 = 0. 

The effect of Coulomb friction on the pressure and viscosity is shown for the 

coefficient of friction /i = 0.1 and 10 as in figures 5.4 and 5.5, respectively. It is 

observed that at lower values of Coulomb friction, the simulation results for pressure 

and viscosity deviate more from the theoretical model based on the constant-/? 

model, as compared to higher values of fi. 
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0 0.1 0.2 0.3 0.4 0.5 

(a) (b) 

Figure 5.3: Same as in figure 5.1, but for /? = 1. 

(a) (b) 

Figure 5.4: Variation of (a) pressure and (b) viscosity with the volume fraction, cp for 
critical roughness /9o = 0 with // = 0.1. 

5 .3 .2 N o r m a l S t r e s s Di f f erence 

Figure 5.6 shows the variation of two normal stress differences (A/"! and ^2) with 

particle volume fraction for a normal restitution coefficient e = 0.9. In the right 

inset, the effect of volume faction on A/i is plotted for different values of normal 

restitution coefficients. The first normal stress difference A/i is always positive and 

has a maximum value at Boltzmann hmit. It then decreases with volume fraction. 
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(a) (b) 

Figure 5.5: Same as in figure 5.4 but for /x = 10.0 

A "sign-reversal" of M occurs at higher volume fraction (Alam & Luding (2003)). 

The value of A/i increases with increase in the collisional dissipation. It is noted 

that M changes its sign at 0 ~ 0.468 for e = 0.99; the sign reversal of A/i occurs 

at higher volume fractions for system with higher collisional dissipation. This sign 

reversal of M was noted by Alam & Luding (2003), and was subsequently tied to 

the microstructural reorganization of particles, leading to the formation of directed 

" force-chains". 

Figure 5.6 shows that the second normal stress difference, N2, is negative in 

Boltzmann limit and changes its sign from negative to positive in dilute limit 

{(j) w 0.130); then it monotonically increases with increasing (/>. At very low den

sities, the contribution of collisional components to the stress is less as compared 

to the kinetic counterpart. At moderate density, the colHsional stress becomes 

important which dominates in the dense limit. Thus, the behaviour of Mi and 

A/2 are dictated by kinetic and collisional stresses in the dilute and dense limits, 

respectively. 

For perfectly smooth particles we can compare our results with the work of 

Sela & Goldhirsch (1998) who derived constitutive expressions for the stress tensor 

upto the Burnett-order for a dilute granular fluid ((/>—> 0). For uniform shear flow. 
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0.25 

r'O.i.'i-

Figure 5.6: Constant-/? model: In main panel the variations of Â i and M2 with solid 
volume fraction are shown for restitution coefficient e = 0.9 and /3 = — 1. The arrow 
indicates the critical volume fraction where A'; changes sign. Right inset shows the 
variation of Mi with volume fraction for different values of e. 

Figure 5.7: Same as figure 5.6 but for e = 1 and /? = 0 with constant-/? model. 

it can be verified (Sela & Goldhirsch (1998); Alam & Luding (2005a)) that the 

expressions for normal stress differences take the following forms: 

N2 = 

1.6735e - 0.04315e^ 

1.2996 + 0.0966e 

0.14189e - 0.003659e^ 

1.2996 + 0.0966e 

(5.19) 

(5.20) 

where e = (1 — e^) is the degree of inelasticity. Clearly, for a given inelasticity 
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0.4 0.5 

Figure 5.8: Same as figure 5.6 but for e = 0.9 and (3=1 with constant-/? model. 

e ^ 0, A/i > 0 and ^^2 < 0 in the Boltzmann limit. For example, for e = 0.9, 

the values of normal stress differences are A/l « 0.24 and A/2 ~ -0.0203 ; the 

corresponding results from our simulation are Mi ~ 0.2401 and A^ « —0.0240 at 

a volimie fraction of (/> = 0.01. 

The same set of results on A/i and A/'g are shown for /3 = 0.0 in figure 5.7. It 

is noted that even for elastic collisions e = 1, A/l does not undergo a sign-reversal 

even at 0 = 0.52. It is also observed that the value of A/i increases at /? = 0.0 as 

compared to the perfectly smooth case, /? = - 1 . The effect of Coulomb friction on 
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Figure 5.9: Variable-^ model: In main panel the variation of A/i and A/'2 with solid 
volume fraction, for restitution coefficient e = 1.0 and /i = 0.1. The arrow indicates the 
critical volume fraction where Ni changes sign. Right inset shows the variation of A/i 
with volume fraction for different values of e. 
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both the normal stress differences is depicted in figures 5.9 and 5.10 for ^ = 0.1 and 

/i = 10.0, respectively. With increase of Coulomb friction, the magnitudes of both 

N\ and M-i increase. As a result, J\f\ changes its sign at a higher volume fraction 

for the system having a large value of friction coefficient (i. 
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Figure 5.10: Same as figure 5.9 but with /i = 10.0. 



Chapter 6 
SUMMARY 

In the present thesis, an efficient event-driven molecular dynamics code has been 

developed which is based on the paper of Lubachevsky (1991) and the book by Ra-

paport (1995). The computational approach employed in this study mainly consists 

of initialization, book-keeping and diagnostic parts. This code is very fast and can 

handle a large number of particles (A'̂  ~ 10 )̂ and has been generalized to three 

dimensions (3D). It can be used to simulate various kind of plane granular flows 

(Couette flow, Poiseuille flow. Chute flow, etc.) with rough, frictional particles. 

For the simplest model of rough, inelastic spheres, two material parameters are 

needed to characterize the collision process: the normal coefficient of restitution, 

e, and the tangential coefficient of restitution, p. For a more realistic collision 

model of rough particles, we have taken into account the effect of Coulomb friction 

which helps to distinguish between the sliding and the rolling contacts, resulting 

in a contact-angle (7) dependent tangential restitution coefficient /?(7). This code 

has been tested and validated for both unbounded and bounded granular shear 

flows. For the latter case of bounded flow, the wall-particle interactions are mod

eled using the same collision dynamics of particle-particle interaction. For either 

case, the system is allowed to reach a 'non-equilibrium' steady-state condition by 

monitoring the temporal evolution of system's kinetic energy. 

The rest of the thesis dealt with investigating various microscopic and macro

scopic propreties of "unbounded" granular shear flow. We have studied various 

aspects of granular flow like the velocity distribution function (VDF), density and 

spatial velocity correlations, orientational correlation and rheology. 

In the Boltzmann limit (0 = 0.01), no dissipation-induced density inhomohene-

ity is observed in oiu: system even for the most dissipative case (at e = 0.5 and 

13 = 0) that we have studied. We have thoroughly examined the effects of particle 

roughness and rotation on the probability distributions of fluctuating translational 

and rotational velocities as well as density and spatial velocity correlations. The 
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VDFs of translational velocity (Cj) and rotational velocity {Qi) folllow an stretched-

exponential distribution having the shape 

P{x) ~ exp(-7x"), withx = C, n, (6.1) 

where 7 and a are the prefactor and exponent for the distribution, respectively. 

The deviations from a Gaussian, both at the tail and low velocity regions, have 

been found oberved for inelastic system. Even for an elastic system (e = 1), the 

deviation is pronounced for rough particles with /? = 0; for two limiting cases of 

perfectly smooth (/? = —1) and rough (/? = 1) particles, the velocity distributions 

agree with a Gaussian. Strong spatial velocity correlations for streamwise trans

lational velocity have been observed even for elastic system with /? = 0. Unlike a 

molecular gas, the translational and rotational velocities of a granular gas are shown 

to be directionally correlated. This orientaional correlation is a smooth function of 

particle roughness for any level of collisional dissipation. It is maximum at 3̂ ~ 0 

and monotonically decreases towards two extreme Umits of /3 = ±1 . Orientational 

and spatial velociy correlation are responsible for non-Gaussian distributions of 

translational and rotational velocities. 

With increasing system density, the dissipation-induced density inhomogeneity 

is observed over the whole domain. A pronounced asymmetry about the mean 

value is observed for the probabihty distributions of local density, local shear rate 

and local spanwise rotational velocity. Therefore the calculation of "local" VDF 

is a proper way to study such inhomogeneous systems. For a moderately dense 

system (0 = 0.3), an interesting phenomenon is observed for the local VDF of 

streamwise translational velocity: its tails undergo a transition from an stretched 

exponential to an under-populated Gaussian distribution with decreasing dissipa

tion and finally to a Gaussian for no dissipation. The VDF of spanwise rotational 

velocity makes a transition from stretched exponential tails to a Gaussian with 

decreasing dissipation. For the dense system (</> = 0.5) with dissipation, the VDF 

for streamwise translational velocity is a Gaussian with under-populated tails. The 

effect of Coulomb friction on VDFs has been studied for different values of friction 

coefficient /U for (/> = 0.3 with the critical roughness being set to /3o = 0. With 

the incorporation of Coulomb friction, a pronounced asymmetry of the tails of the 

VDF of rotational velocities is seen and the skewness of the distribution increases 
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with increasing dissipation. 

Lastly, we have investigated the rheologoical properties of unbounded shear 

flow of rough, frictional particles. Our simulations results on pressure and shear 

viscosity compare well with the predictions of Lun's (1991) rheological model at 

small dissipations. The model predictions deteriorate with increasing dissipation 

which is tied to the inherent assumptions of the underlying model which is valid for 

quasi-elastic (e ~ 1) particles in the prefectly smooth and rough (|/?| ~ 1) hmits. 

Our results on normal stress differences (A/i and M2) suggest that a non-Newtonian 

constitutive model is required for moderately dissipative rough, frictional particles. 





Appendix I 

RESULTS FOR VOLUME FRACTION (f) = 0.1 

Here we present some results on VDFs for a particle volume fraction of 0 = 0.1. 

These results are similar to those for (̂  = 0.3 as disscussed in chapter 4. 

Figure I.l: Translational velocity distribution for <A = 0.1 for /? = -0.999 
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(a) (b) 

Figure 1.2: (a) Translational and (b) rotational velocity distributions for <̂  = 0.1 
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Figure 1.3: (a) Translational and (b) rotational velocity distributions for 4> = 0.1 and 
/3= 1.0 
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Appendix II 
DENSITY AND VELOCITY CORRELATIONS 
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Figure II. 1: Pair correlation function (main panel) for /? = 0 and cj) = 0.3. Left and 
right insets show same as main panel but for /? = —0.999 and 0.999, respectively 

Figure II.2: Same as figure II.2 but for cj) = 0.5. 
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Figure II.3: Main panel shows the streamwise velocity correlation based binwise aver
aging method and inset for cellwise averaging method. 

Figure II.4: Main panel shows the streamwise velocity correlation on the middle xz-plane 
for /? = 0 and (p = 0.3. Left and right inset show same as main panel but for /3 = -0.999 
and (3 = 0.999, respectively. All are based on cellwise averaging. 
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