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                                                  Abstract 
 
Flapping wings exhibit better performance than the fixed wings as the size of the flying objects  
 
decrease. In nature flight by the flapping wings is predominant in case of insects and small birds.  
 
Motivated by this aspect engineers have been trying to devise Micro Air Vehicles (MAV) using  
 
flapping wings. Many interesting phenomena like delayed stall, leading edge vortex, wake cap- 
 
ture etc., have been suggested as mechanism of lift generation & enhancers in the case of insect  
 
flapping flight. Our focus is on impact of asymmetry in upstroke speed and downstroke speed in 
 
lift generation and parametric study to find the optimum wing kinematics. Both experimental st- 
 
udy using mechanical models and numerical simulations by using  the Discrete Vortex Method  
 
(DVM) have been done to find the efficacy of this mechanism in lift generation. Influence of ki- 
 
nematic parameters like inclination of the mean position of the wings, amplitude and asymmetry  
 
ratio have been studied through numerical simulations. A brief study have been done to explore  
 
the impact of  flexibility on lift generation  through simulations.  
 
In chapter 1, a brief overview of the previous works on the insect flight is discussed. Different  
 
unsteady mechanisms responsible for lift generation are briefly highlighted. In second chapter  
 
experimental evidence have been presented to show the effectiveness of  asymmetric flapping  
 
over the symmetric flapping and influence of inclination of the mean position of the wings. In 
 
third chapter we present numerical simulations of flapping flight using 2-D discrete vortex m-   
 
ethod. Results of parametric dependence on lift are presented in the last chapter. 
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                                                 CHAPTER 1 
 
                                            INTRODUCTION 
 
Insect flight has been an enigmatic phenomenon for long time. From biologists point of view    
 
it provides an insight into insect physiology and evolutionary process. For physicists and eng- 
 
ineers insect flight performance at low Reynolds number is fascinating. Flapping mechanism 
 
of insects involves several interesting processes like leading edge vortex, delayed stall etc. It  
 
has been observed that the fixed wing airfoils don’t exhibit a good performance in the regime  
 
of Reynolds number below 500000 (McMaster & Henderson 1980, Lissaman 1983,  Mueller  
 
1985) because of laminar boundary layer separation.  
 
It has been envisaged by engineers that extensive study of the flapping mechanism within the  
 
low Reynolds number regime of 10-10000 would provide the clues for the optimum lift  gen- 
 
eration. One of the main motivations for the study of flapping flight is its applicability in the  
 
design of  MAVs (micro air vehicle). These vehicles are useful in various types of applicatio- 
 
ns including surveillance, communication relay links, ship decoy and detection of  hazardous   
 
biological, chemical or nuclear spills. Although there is no strict definition of micro air vehi- 
 
cles, they are generally defined to have sizes of 15cm or 6 in) with a mass of 80 gram ( Mu- 
 
eller & Delaurier 2003). One of the advantages of flapping mechanism is that at small sizes 
 
it generates lift  and thrust without excessive weight (Delaurier & Harris 1982, Kellog et al  
 
(2001b). It may also utilize coupling between the flexible wings and aerodynamic forces (i.e.   
 
aeroelasticity) so as to  improve aerodynamic performance. 
 
     Study of the insect flights is a challenge due to its small size and high flapping frequency.  
 
Separating aerodynamic forces from the inertial forces in free flight conditions has been a v- 
 
ery tricky issue (Zanker and Gotz 1990). Also insects rely on visual feedback, so it’s necess- 
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ary to check whether the lighting conditions do not change insect’s behaviour (Sane  2003).  
 
However in recent times high speed photography have helped to determine the evolution of  
 
the flow  field around the insect wings and has helped to gain insight into phenomena like f- 
 
low separation & leading edge vortex stabilization (Ellington 1999). A lot of study has also 
 
been done using dynamically scaled mechanical models and using  computational models f- 
 
or studying flapping flight. In this chapter we describe past literature with the major breakt- 
 
hroughs in analyzing the flapping mechanism of insects.  
 
1.1 Unsteady aerodynamic features of insect flight: 
 
a. Wagner effect :In 1925 Wagner has first proposed that  an impulsively started wing  

 
from rest takes time in attaining the steady state circulations which is experimentally proved  

 
by Walker (1931). There may be two reasons, firstly there may be delay in attainment of the  

 
Kutta condition due to viscous action. Secondly the counteracting interaction of the shedded  

 
vortices on the bound circulation of the wing may be the cause of the delay. However Dicki- 
 
nson (1999), Walker (2002) have shown that Wagner effect is not effective in the Reynolds  
 
number regime 10-1000 relevant to the insects. 

 
b. Clap and fling mechanism :  

 
Figure1.1: Different stages of clap and fling mechanism (S.P. Sane 2003) 
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The clap and fling mechanism have been extensively studied by Weis-Fogh (1973), Lighthill  
 
(1973), Spedding and Maxworthy (1986). Figure 1.1 (a, b, c) constitutes clap process. Figure 
 
1.1 (a, b) shows that the wings progressively closes starting from the leading edge. Figure 1.1 
 
c shows that circulation of opposite nature of the wing nullifies each other thereby decreasing 
 
the shedded vortices. It prevents the Wagner effect and help in rapid growth of the circulation  
 
and utilization of the lift for greater period of the stroke. Moreover, jets emanated from the cl- 
 
apping wings provide lift in upward direction. Figure 1.1 d-f represents the fling mechanism.  
 
The leading edge continues to fling apart keeping the trailing edges stationary. In the low pres- 
 
sure region between wings fluid rushes in and helps in growth of  circulation of opposite natu- 
 
re in the wings. The net circulation around two wings is zero there by obeying Kelvin’s circul- 
 
ation theorem. However, Dickinson (1999) argues that the clap mechanism is not suitable as it  
 
results in substantial wear and damages. Although, he agrees that the fling can be used by the 
 
micro robots like tiny insects he opines that extra lift can be used by using higher wing beat   
 
frequency and relatively larger wings. 
 
c. Delayed Stall: 
 
Other interesting feature of the insect flight is their capacity to operate at higher angle of attack 
 
without any stall. As the insect wings are generally like rigid flat plates, at high angles of attack  
 
flow separates at the leading edge and then reattaches along the chord. So flow continues smoo- 
 
thly over the trailing edge. The leading edge separation zone is called leading edge bubble. This  
 
phenomena is called thin airfoil separation bubble. As stall occurs in this case later than conven- 
 
tional airfoils it’s called delayed stall. Experimental evidence for this has been shown by Maxw- 
 
orthy (1979), Ellington (1979) and Dickinson et al (1999). Enhancement of lift due to the leadin- 
 
g edge bubble have been proposed by Polhamus(1971). A schematic view of leading edge bubble 
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has been given in Fig  1.2 (a, b). 

 
 
In Fig 1.3 the flow field due to leading edged bubble is shown. In their experiment of model  
 
hovering hawkmoths Dickinson et al  (1999)  show that a span wise steady flow occurs from  
 
wing hinge towards the wing tip, stabilizing the leading edge separation bubble. As this flow  
 
redirects the momentum in spanwise direction, momentum of the flow from along the chord- 
 
wise direction decreases resulting in a smaller leading edge vortex which can  sustain the re- 
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attachment for a longer time. For the low aspect ratio (LAR) wings below ~ 1.5 these tip vor- 
 
tices are present over a greater area and therefore exerts a greater influence on its aerodynam- 
 
ic characteristics. These types of wings are assumed to have two sources of lift: (a) linear and 
 
(b) nonlinear. The linear lift is general lift due to circulation around airfoil. The non linear lift 
 
is created by the tip vortices form the low pressure cells on the wing’s top surface, as is obser- 
 
ved in delta wings at high angle of attack. This non linear effect increases the lift-curve slope 
 
as the angle of attack enhances, and it is considered to be responsible for the high value of  st-   
 
all angle  (Delaurier 2003).  

 
Fig 1.3 Time-averaged features of a transitional separation bubble (Horton 1968) 
 
d. Kramer effect 

 
At the end of each stroke, insect wings undergo substantial pronation and supination (rotation) 
 
about a spanwise axis (Dickinson et al,1993). During translation wings tend to rotate about the 
 
spanwise axis causing deviation from the Kutta condition and the stagnation point moves away 
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from the trailing edge. This results in a sharp velocity gradient at trailing edge. However due 
 
to viscous effect there is always a tendency to maintain the Kutta condition by generating ad-  
 
ditional circulation. With increasing angular speed Kutta condition may never be achieved b- 
 
ut the tendency to achieve it creates additional circulation. In the context of aerodynamic flu- 
 
tter Kramer first noticed it in 1932 and it is so called Kramer effect. Alternatively it is termed  
 
as rotational lift by Dickinson (2002). 
 
e. Added mass 
 
Apart from the circulation based lift, there is a lift imparted by the surrounding fluid subject- 
 
ed to acceleration by the wings. Experimentally it’s difficult to separate this effect from circ- 
 
ulation based lift. Typically this effect is called added mass (Vogel 1994) or virtual mass (El- 
 
lington (1984 b) effect. It has been observed by Hamdani & Sun (2000) that the added mass   
 
forces are closely tied to the initial  stages of flow separation and fluid acceleration. 
 
f.   Quasi steady modeling: 
 
Studying flapping motion would have been easier if quasi steady modeling was sufficient for 
 
explaining the lift produced. The idea behind the modeling is to assume that the instantaneous  
 
aerodynamic forces on flapping wings are equal to forces during steady motion of the flapping  
 
wings at the  identical instantaneous velocity and the angle of attack (Jensen 1956). However  
 
Ellington (1984a) showed that the mean lift during hovering is more than that predicted by the  
 
quasi steady model. Inadequacy of the model is further proved by Ennos (1989), Zanker Gotz  
 
(1990) and Dudley (1991). 
 
g. Asymmetry in upstroke speed and downstroke speed 
 
It has been shown by Shreyas (2005) through experiments and numerical simulation that lift  
 
is generated due to the asymmetry (difference) in the upstroke speed and downstroke speed.  
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Keeping parity with nature he imposed faster downstroke speed and showed that lift is pro- 
 
duced. On the other hand the net lift over a cycle is nil for a symmetric flapping. In the sy- 
 
metric flapping he has shown that jets are emanated in four directions of the flow field im- 
 
plying equal momentum transfer in both upward and downward directions. Hence the  net 
 
lift imparted to the wings over a cycle is nearly zero. However in asymmetric flapping two 
 
jets are emanated in downward direction. So the net upward momentum transferred to the 
 
wings generates an upward lift. Figure 1.4 a, b presents the flow structures due to symmet- 
 
ric and asymmetric flapping  respectively. 
 

 
                                   ( a)                                                           (b) 
 
Fig 1.4 (a) Symmetric flapping td=tu=10 sec (b) asymmetric flapping td=10 sec,  
             tu =20 sec (Shreyash, 2005) 
 
1.2 Physical Modeling of insect flight 
 
Due to the difficulties in visualizing and analyzing the insect flights scientists have adopted  
 
dynamic scaling method to construct mechanical models. In order to preserve the fluid flow  
 
dynamic similarity, two parameters Reynolds number and reduced frequency parameter  i.e. 
 
body velocity/wing velocity have to be similar for an insect and its model. Several unsteady  
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mechanisms like clap and fling (Bennet 1977; Maxworthy,1979; Spedding & Maxworthy  
 
1986), delayed stall (Dickinson, Gotz 1993), rotational lift (Dickinson et al 1999; Sane &  
 
Dickinson 2002) and wing-wake interactions (Dickinson 1994; Dickinson et al 1999) ha- 
 
ve been studied in detail using this method. 

 
1.3 Motivation and definition of the problem 
 
The main factors that motivate us to study flapping mechanism are: 
 
a)   Wind tunnel testing of  insect flights reveals that the measured forces are less than  
           
              that essential for active flight (Ellington 1984). Quasi steady aerodynamic theory  
               
              fails to predict the lift generated  due to flapping flight. 
 
b)   Although many unsteady mechanisms have been identified for the lift generation, 
 
              there is lack of engineering principles for optimum lift performance of MAVs. F- 
 
              or optimum flight of MAVs there are different parameters like angular amplitude 
 
              θ, inclination of the axis of mean position Ф, angular frequency ω, asymmetry ra- 
 
              tio (upstroke frequency : downstroke frequency) size which affect the  flight perf- 
 
              ormance. Investigating the perfect regimes of these parameters for optimum flight 
 
              performance have not been done earlier and demands attention. Figure 1.5 shows 
 
              the mean position of the wing and angular amplitude. 
 
 c)         Coupling of the aerodynamic forces with the wing flexibility is an interesting phe- 
     
             nomena. Whether flexibility improves lift and finding out the optimal distribution 
 
             on of the flexural rigidity along the wing is an interesting problem to study. 
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              Fig 1.5  Ф: mean position of the wing, θ: angular amplitude of the wing 
 
 
In this work we have tried to study simple mechanisms of lift generation in the regime of 
 
the Reynolds number around 1000. Also we have explored the parametric dependence of 
 
flapping flight. Impact of flexibility on flight performance has also been studied. We have 
 
carried out numerical simulation using 2-D discrete vortex method and experiments using 
 
mechanical flapping models. 
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                            CHAPTER 2 

       Experiments using mechanical models 
 
With the increase in computational speed computer simulation of flapping flight has helped in  
 
understanding different mechanisms. Still, experimental studies are important in getting insig- 
 
hts in understanding unsteady mechanisms of insect flight and in validating numerical simula- 
 
tions. Due to small size of the insect wings it’s hard to place sensors and measure lift produce- 
 
d during each instant of flight. Even with high speed photography, it is difficult to do flow vi- 
 
sualizations due to small size and making insects to fly in predefined and desired path. Consi- 
 
dering these constraints, we have carried out the flow visualizations using mechanical flappin- 
 
g models based on dynamic similarity criterion (Reynolds number). In this set of experiments 
 
we have considered hovering flight configuration as the power required for this is maximum 
 
(Ennos 1989,  Ellington 1984). 

     
 2.1     Experimental setup 
 
We conducted the flow visualization experiments in a square tank with 1.2×1.2 square meter  
 
cross section and with a depth of 0.8 meters using water as working fluid.  Flow visualization   
 
experiments are done around Re 1000, with wings of larger  size (50cm×8cm) flapping at lo- 
 
wer frequency. These wings are fitted to the steel rods and driven by a stepper motor which is  
 
further controlled by Galil motion controller card equipped with a resolution of 2 lakh counts 
 
per revolution. 
 
Design and construction: Following are the components of experimental setup indicated in  
                                        
Fig 2.1. 
 
1.  Two rectangular wings of Perspex-sheet (50cm×8cm). 

      
2. Two stainless steel rods are used as shafts on which wings are mounted. 

 10



 
3.  A stepper motor housing. 
 
4. Four hardened MS rods as harnesses for the wing shafts and the motor housing. 
 
5. A brass base weighing 2 kg to hold the wing shafts in position at bottom of the tank. 
 
6. Two halogen lamps, each of 300 watt power. 
 
7. A vertical stand for mounting the camera. Pictures were taken from a position so that the  
 
camera’s focal plane is parallel to the water surface.  
 

 
 
                                             Fig 2.1 Schematic of the experimental setup 
 
Design considerations of the wing: 
 
In order to perform the flow visualization experiments we have to take care of certain design  
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considerations of the wing. The wing chord length c is used in experiments is 8cm except  
 
in two experiments where c is 14 cm. In order to satisfy the open boundary condition, the 
 
ratio of wing length to tank dimension should be large enough so that  flow field is not a- 
 
ffected by the presence of  wall boundaries. Also the chord length should be large enough 
 
to do proper flow visualization. To reduce the three dimensional effects, aspect ratio (l/c) 
 
must be made as large as possible within practical limits. The wing aspect ratio (l/c) used 
 
is 6.25. Wing thickness is kept 3 mm, and gap between two rods is kept 7mm. Two wing 
 
shafts are coupled by two pairs of  plastic gears whose pitch diameter was 13mm and wi- 
 
ng shafts are of 6mm diameter.   
                                                      
Wing Kinematics 
 
Flapping mechanism is driven so that wing angular velocity is a sinusoidal motion prof- 

ile. The angular velocity is given as    2 sin(2
2

)f ft
θ

ω π π=  

where ω= angular velocity (radians/second),θ = angular amplitude ( radians), 
 
f= frequency (Hertz) and t= time (seconds). 
 
Experiments have been used with two types of velocity profiles, symmetric and asymm- 
 
etric flapping. In figure 2.2, the two velocity profiles are illustrated. 

 
 
Figure 2.2 Variation of angular speed vs. time in symmetric and asymmetric flapping 
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Symmetric Flapping: In this type of flapping the upstroke period is equal to downstroke p- 
 
eriod (tu=td ). 
 
Asymmetric flapping: In this type of flapping the downstroke time is less than the upstroke  
 
time (tu>td ). The asymmetry ratio (AR= td/ tu)  is an indication of degree of asymmetry. Shre- 
 
yas (2005) has found that asymmetric flapping can produce lift. It is found in nature that bir- 
 
ds and insects flap faster in the downstroke period compared to upstroke speed (Ennos1989).  
 
However, it is not known for a given situation what asymmetry ratio can produce maximum 
 
lift. The wings flap with θ  amplitude about a mean position. The motion can be programm- 
 
ed through Galil software. In this motion Reynolds number is defined as:                                                         
 

                                              
2(2 )sin(2 )Re

2
f ft cθ π π

ν
=  

2.2 Flow visualization Technique 
 
In order to understand mechanism of lift generation in flapping flight our first attempt  was  
 
to get some qualitative dependence observing the flow field. The unsteady flow field gene- 
 
rated by flapping motion, is captured using a digital camera over a long exposure time (2-4 
 
sec) to get an insight into the phenomena. For the flow visualization streak photography te- 
 
chnique is used. 
 
Streak Photography 
 
Streak photography is a technique where long exposure pictures are taken of the dispersed  
 
particles in the fluid. The picture represents the pathline of the particle over that time. If the 
 
particles in flow field can faithfully follow the fluid motion, overall image of  the pathlines 
 
of particles represents a vivid picture of the flow structure. For this purpose we used alumi- 
 
nium particles of 10 micron size sprinkled over the water. Two halogen lamps of 300 watt 
 
are used for illumination. A Canon camera whose settings can be remotely assigned by the 

 13



computer is used for taking pictures with a given exposure time. Exposure time is given 2 
 
to 4 sec depending on the flapping frequency. 
 
2.3 Results: 
 
2.3.1 Symmetric flapping with Ф=0: 
 
Starting with the mean position of the wings at zero degree (horizontal position) we drive  
 
the wings with an angular amplitude of 120o i.e. 60o on each side of the mean position. F- 
 
igure 2.3 shows the configuration of the wing and velocity profile. Photographs have been 
 
taken at  an interval of  7 seconds to capture the flow field at the end of downstroke, upst- 
 
roke and at mean position. When the wings are at mean position Fig 2.4 c there are four j- 
 
ets in the four quadrants of the tank. Jets emanate from the centre and rush to four corners 
 
of tank. As momentum associated with jets in the upward direction and downward directi- 
 
on is almost equal in magnitude, so the lift averaged over a cycle is nearly zero.  

 
                                       (a)                                                                        (b) 
 Figure 2.3(a) wing configuration and its (b) symmetric velocity profile 
 
Figure 2.4 a and b are the flow structures at end of upstroke and downstroke. The wakes seem  
 
to be moving downward with the downstroke speed. In the figures 2.4 a and b the wakes app- 
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ear to exchange their position. It can be argued that the upward momentum is nearly equal to  
 
downward momentum. So the net momentum over a cycle is nearly zero.   
 

 Figure 2.4 (a) end of upstroke of 1st                           Figure 2.4 (b) end of downstroke of 1st  
                                   cycle                                                                                                cycle 

 

                    
                        
                                      Figure 2.4 (c) end of 15th cycle                       
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2.3.2 Asymmetric flapping with Ф=0: 
 
By asymmetric flapping we mean that the downstroke speed is greater than the upstroke period. 
 
As the downward speed is greater the shedded wakes are advected downward due to the greater  
 
speed. As the wake vortices are having downward momentum at the end of each cycle the total  
 
upward momentum imparted to the wings is substantial and lift is generated.  Figure 2.5 shows  
 
the wing configuration and velocity profile. Figure 2.6 shows flow structures at different cycles  
 
of the asymmetric flapping.  
 

          
                                (a)                                                       (b)   tu=14 sec; td=7 sec                
 
Fig 2.5 (a) wing configuration (b) velocity profile of the asymmetric flapping  
 
In the fig 2.6 b and c two downward jets can be observed. By the time of 15th cycle although  
 
the downward jets are not distinct, the downward portion of the flow structure (fig 2.6 d) are  
 
having the greater share of  vortices implying downward momentum transfer.                       
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        Fig2.6 (a) first cycle                                                          Fig2.6 (b) fifth cycle 
 
 

 
                      
 
        Fig2.6 (c) tenth cycle                                                     Fig2.6 (d) fifteenth cycle 
 
        
 

 17



2.3.3 Symmetric flapping with mean position inclined to horizontal axis        

he two results presented in previous sections are earlier shown by Shreyas (2005). Our aim 

 to find out the influence of the mean position of the wing on lift. Even in the case of sym- 

etric flapping, with the mean position of the wing inclined to horizontal axis at certain de- 

ree, lift is generated. Figure 2.7 represents the wing configuration and the velocity profile.                    

 
T
 
is
 
m
 
g
               

               
                                        (a)                                                                              (b)  

orizontal axis. Jets are pumped in downward direction which in turn imparts upward lift to 

e wings. In the next chapter, through numerical simulation it has been shown that even in  

mmetric flapping lift is generated with the  mean position  inclined to horizontal axis. 

                                                                                                                                        .                                  
      

 

Fig 2.7 (a) wing configuration (b) velocity profile of the symmetric flapping  
                                                                                                             
Figure 2.8 shows flow visualizations for symmetric flapping with mean position inclined to  
 
h
 
th
 
sy
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  Fig 2.8 Symmetric flapping with Ф= -60o and θ=60o at 10th cycle; chord length c=14 cm 
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2.3.4 Asymmetric flapping with mean position inclined to horizontal axis: 
 
If inclined mean position increases the lift generation for the symmetric flapping it will surely  
 
enhance lift for asymmetric flapping as substantial lift is already generated with the mean pos- 
 
ition aligned with  the horizontal axis. Figure 2.9 shows the wing configuration and the veloci- 
 
ty profile. 

 
                      Fig 2.9 (a) wing configuration                  (b) velocity profile  
 
Fig 2.10 represents the flow structure at the end of the 10th cycle with Ф=-15o. It can be obse- 
 
rved that the two outgoing jets are inclined around -15o with respect to horizontal axis. Figure 
 
2.11 shows the flow diagram when the mean position is at Ф=-60o and the angular amplitude  
 
is 60o. The jets in Fig 2.11 are clearly having greater downward component than that of fig 2. 
 
10. Although we can’t make any quantitative statement from these figures numerical simulat- 
 
ions in the next chapter shows that the inclination of the mean position substantially increases 
 
lift. Also it is shown through simulation that with the increase of mean position w.r.t horizon- 
 
ntal axis lift is enhanced. Results of flow visualization presented in Figures 2.8 & 2.11 are do- 
 
ne with Aditya K as part of his summer internship. In the figure 2.11 wings flap between -30o 

 

-90o. As a result the wake vortices of each wing interact with each other strongly.  
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                                         Fig 2.10 at end of 10th cycle Ф=-15o; θ=30o; c=8cm  
 

                         
                                          Fig 2.11 at end of 5th cycle Ф=-60o; θ=60o; c=14 cm 
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                                              CHAPTER 3 
 

                                NUMERICAL   SIMULATION 
 
In the last chapter experimental results were presented to gain qualitative insight into lift 
 
production in flapping flight. To get quantitative information two dimensional numerical  
 
simulation of flapping wings using discrete vortex method are carried out. We have used 
 
 inviscid and well as incompressible flow conditions. The discrete vortex method has so- 
 
me  advantages: 
 

1. In this scheme we need to solve only those regions of the flow where vortices are 
 
Located, whereas other methods require to solve the whole flow field. 

 
2. As the wings are flapping, grid generation is required in the grid based methods in 
 
      each time step. In vortex method we don’t require grid generation which saves co- 
 
      mputational complexities and simulation time. 
 

One problem with vortex method is, as it is a N body problem which needs mutual intera-   
 
action of N particles. Thus computation cost increase enormously with number of vortex  
 
bodies. However this drawback can be solved by implementing the Fast multipole method 
 
(FMP).  
 
3.1 Basic formulation of Discrete Vortex Method 
 
The governing Navier Stokes equation is  

      upuu
t
u 21. ∇+∇−=∇+
∂
∂ ν

ρ
                                                     (3.1.1) 

In this equation there is pressure term, to eliminate p let u ( ,t) be the velocity field and  
→

x
 

),(),( txutx
→→

∇=Ω be the vorticity field. By taking curl of the equation (3.1.1) the vortici- 
 
ty  transport equation is obtained; which is : 

                                                Ω∇+∇Ω=Ω∇+
∂
Ω∂ 2.. νuu
t

                                (3.1.2) 
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The first term on the right hand side of 3.1.2 is vortex stretching and vortex tilting. As our   
 
simulations are confined to 2D, this term will be zero. Under inviscid assumptions the sec- 
 
ond term in the right hand side can be neglected. In our simulation, we have used constant 
 
density flow, conservative body forces and unbounded region. So the equation (3.1.2) red- 
 

uces to:                                              0=
Ω

Dt
D                                                      (3.1.3) 

where
Dt
D  is material derivative. This leads to basic formulation of vortex method for whi- 

ch Lagrangian method based on elements of vorticity has been adopted. In the simulations, 
 
point vortices have been avoided as point vortices have singularities and mutual interaction 
 
of  two point vortices at very small distance may blow up the solution, instead vortex blobs 
 
are used .The total vorticity field is expressed as the summation of  individual vortex blobs 
 

as follows:                                                           (3.1.4) ))(()(),(
1

txxttx i

N

i
i i

→→

=

→→

−Γ=Ω ∑ σζ

where  is the circulation strength of vortex particle.iΓ iσ
ς  represents the distribution of  the   

 
vorticity and is called cutoff  function. For vortex blobs cut off function assumes Gaussian  
 
distribution having uniform core size ( iσ =σ  ). The cut off function in 2 D is expressed as:           

                                                                                    (3.1.5) 
 
where k represents the width of the cutoff. For ‘k’ although different authors have suggest- 
 
ed 1, 2 or 4, we have used k=1 in our simulations. As per inviscid condition the vortices co- 
 
nvect  with the local velocity  without any deformation.  
 
Now using Biot-Savart law velocity can be obtained as: 
                                                    

                                                                                (3.1.6)                                      
 
                                                   
 
 

 23



                                 
Fig 3.1 Velocity at point P due to vortex distribution 
 
For 2-D vortex blob the velocity (u,w) is as follows: 

                               ))exp(1(
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                                      (3.1.7) 

 
Where   and 222 )()( ii zzxxr −+−= σ  is the vortex core radius. 
 
Now the Lagrangian form of vortex method in 2D can be expressed as  
  

                            ),( txu
dt
dx

i
i =                                                                               (3.1.8) 

 
We have used no normal flow condition as boundary condition. Using the equation (3.1.8), we  
 
calculate velocity of the individual particles taking into account  the mutual interaction of   the  
 
shedded wake vortices and vortices on  the wing using Biot-Savart law. It has been shown in t- 
 
he simulations of  2D flow (Wang 2000, Hamdani & Sun 2000) and 3D flows( Rammurti & S- 
 
andberg 2002)  airfoils show a  remarkable similarity in forces calculated at  Reynolds number  
 
100 and 100000.These results motivated us to adopt 2D simulations without viscosity effect w- 
 
hich is also bolstered by  the empirical data (Usherwood & Ellington 2002,b). Even though our  
 
simulations are “inviscid”, very fact that we take a finite vortex core for  vortex blob implies v- 
 
iscous effect. The core size σ is related to viscosity and time steps as follows: 

           
2

2

12  
4

t
t

σσ π ν ν
π

= Δ ⇒ = ×
Δ

    represents fluid viscosity in our simulations. 

3.2 Numerical implementation of discrete vortex method 
 

In this section we have discussed the implementation of vortex method for flapping wings. 
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3.2.1 Definition of geometry 
 
The two wings considered in our simulations are being modeled as the flat plates used in our  
 
experiments. As the simulation is 2D, we don’t consider third dimension i.e. any length along 
 
the axis of  rotation. 

 
3.2.2 Choice of singularity 

 
      In our simulation we have used vortex blobs instead of point vortices. Point vortices are avo- 

 
ided because mutual interaction of  two vortices at very close distance will cause huge fluctu- 
 
ations a singularity. So we have used the vortex blobs described in the equations (3.1.7). We 
 
represent  the wing surface as a series of discrete vortices on  each panel’s quarter point. The  
 
shedded wakes are also modeled as vortex blobs. 

 
3.2.3 Kinematics 
 
The angular velocity of the flapping wing is given as   
   

                           sin( )
2

t
θ

θ ω=    cos( )
2

t
θ

θ ω ω
•

=                                                 (3.2.1)  

where θ  is angular amplitude  and ω  is angular frequency. Each time step (∆t) is taken to be  
 
0.001 sec. The distance of the shedding from the chord tip is 0.3U∞∆t  along the chord length. 
 
3.2.4 Discretization of geometry 
  

 
Fig 3.2 Discretization of the wings into panels and description of each panel 
 
Each wing is divided into N panels of equal length. For our simulation we have generally  
 
used  10 panels for unit chord length 1. At each  panel’s quarter point vortices are placed 
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and at each three quarter point of a panel termed as collocation point, we are implementing 
 
no normal flow boundary condition. For each collocation point the local normal vector has  
 
to be calculated. The normal ni  at each collocation point is calculated as : 
 

)cos,(sin

1

)1,(

2
ii

i

i

dx
d

dx
d

n αα
η

η

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

−
=                                                                         (3.2.2) 

 
If the wing is rigid and planar iα  is same for all panels for an individual time step. Howe- 
 
ver  for flexible wings iα  is to be calculated for each individual panel. 
 
3.2.5 Influence coefficients 
 
Influence coefficient is defined as the normal velocity induced at the collocation point by 
 
a panel of unit circulation strength. So for a unit strength vortex element j the influence c- 
 
oefficient at ith collocation point is   
                                                         iijij nwua .),(=                                                    (3.2.3) 
Thus the set of algebraic equations are as follows: 
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                                                                                                                                    (3.2.4) 
 
 
 
 
 
 
The influence coefficients a11 to a1N are due to contribution of 1 to N th  panel vortices on  
 
1st  collocation point. The influence coefficient  is contributions from the latest wake  iwa
 
vortices at each time step. Now according to Kelvin’s circulation theorem it is known th- 
 
at  in a inviscid barotropic flow with conservative body forces the net circulation around  

a closed curve moving with the fluid remains constant with the time i.e. 0=
Γ

Dt
D . 

So from the set  of  equations in (3.2.4) the  last  equation represents the Kelvin condition  
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    where is the net circulation of N panels at the time ‘t’. 0)()( =Γ+Δ−Γ−Γ
iwttt ∑

=

Γ=Γ
N

i
it

1
)(

                                                                                                                              (3.2.5)                                        
The right hand side equation represents the normal flow velocity induced by previous sh- 
 
edded wakes and the wing motion: 
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                                                                      (3.2.6) [ iiwwi nwtWutURHS .)(,)( ++−=
This set of equations represents the boundary conditions of our problem:                                                       
           
         ( 0. =×−Φ∇+Φ∇ nrWB ω                                                                           (3.2.7)                                       
where the disturbance potential Φ  is divided into wing potential BΦ  and wake potential  

wΦ   respectively and ω be the angular velocity and  is the position vector of  the point  r
→

 
 on  the wing. 
 
So at each time step we have to calculate the influence coefficients. The set of (N+1) eq- 
 
uations solves the circulation around the wings and  the strength of the latest shedded v- 
 
ortex. 
 
3.2.6 Force Calculations 
 
It can be shown that pressure difference between upper and lower surface is (Katz): 

            )(
1

∑
=

∞ Γ
∂
∂

+
Δ

Γ
=Δ

j

k
k

j

j
j tl

Up ρ                                                                (3.2.8) 

where  is the circulation around each panel,jΓ jlΔ  is the length of each panel, U∞ is the 
 
free stream velocity. We have used half of wing tip velocity as U∞. The 2nd term is time   
 
derivative of the sum of vortices from leading edge to jth  panel. Since the 2nd term on b- 
 
eing  multiplied with air density at 20oC (1.2×10-3 gm/cm3 ) becomes much smaller in   
 
comparison to the 1st term it is neglected during lift calculation. Also when time avera- 
 
ged lift calculation is done considering  both the terms there seems to be difference in 
 
second order with the lift calculated using the first term only. 
 
The total lift is obtained by integrating the pressure difference along the chord length: 

          L=Fz =                                                                          (3.2.9) )cos(
1

jj

N

j
j lp αΔΔ∑

=

 
  



 
                              A flow chart is given in Fig (3.2). 

 
 

       
 

                 Fig. 3.3 Algorithm of discrete vortex method for flapping wing 
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3.2.7 Wake Movements 
 
After the solution of the equations (3.2.4) the movement of the wakes are calculated. Accor- 
 
ding to Biot Savart law each vortex  must move with the local velocity which is the summa- 
 
tion of the velocity components induced by the wing and other shedded vortices. During ea- 
 
ch time step their new locations are calculated as follows: 
 
                                                                                             (3.2.10) twuzx ii Δ=ΔΔ ),(),(
 
We have run our programme using Matlab 7.1 on dual core processor, 2.67 GHz,3 GB RAM. 
 
For 1000 time steps implying 2×1000 shedded vortices computation time generally takes 20 
 
minutes. As vortex method involves many-body interaction problem computation time incre- 
 
ases with increase of number of time steps. It generally takes 2 hours for marching 2000 time  
 
steps. Due to RAM constraint we can’t go beyond 2500 time steps. However, it is our specul- 
 
ation that FORTRAN programming will save computational time and more time steps can be 
 
done. 
 
3.3    Results and discussions 

 
   In this section we will present simulation results indicating velocity field, vorticity field, time  
 
   averaged lift diagrams  and discuss the effects of different parameters like inclination (Ф), an- 
 
  gular amplitude (θ), flexibility and ratio between upstroke speed to downstroke speed (AR) on 
 

lift magnitude.   
 

3.3.1 Symmetric flapping     
 
In symmetric flapping, we have observed the velocity fields at different cycles. When the wi- 
 
ngs  are in the  horizontal position after each cycle, in each quadrant of  the velocity field we  
 
observe vortices of the opposite sign resulting in net circulation of zero. In fig 3.4 we have s- 
 
hown the velocity field at first cycle. In the first cycle the growth of circulation around wings  
 
can be observed. It has been highlighted that with upstroke there are shedded wakes behind 
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the wing. With the start of downstroke the shedded vortices are present both in upward half  
 
and downward half. In the final stages it is observed that in four quadrants, of the velocity f- 
 
ield circulations of the opposite nature are present. In figure 3.5, we have shown the evoluti- 
 
on of the velocity field at different cycles. Observing the velocity field, it can be inferred th- 
 
at the four  directional jets are observed. This indicates that over a cycle zero-net upward m- 
 
omentum transfer and have zero lift. In figure 3.6 the variation of lift(dyne) in the case of sy- 
 
mmetric flapping is present and it’s almost symmetric about the x axis . 
 

Now we have calculated time averaged non dimensional force ∫=
t

dtL
t

L
0

_
.1  

                                                                   where L= 3

2

c
tFz

ρ
 .               (3.3.1) 

 
Fz   = vertical force dyne/cm length of the wing perpendicular to the plane 
 
t     = (td + tu) sec 
 
ρ    =1.2×10-3  gm/cm3 

 
c     = chord length, c =1 cm  
 

In fig 3.7, we present the variation of  with time. From fig 3.7, it is evident that the time 
_
L

averaged force   is zero over 40 cycles is zero indicating zero lift.  Hence the symmetric 
_
L

 
 flapping produces four jets and zero-net force.  
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Fig 3.4 (a) velocity field during initial  upstroke at 12o b) at 23o θ=80o; Ф=0o;  
                  td=0.017 sec; tu=0.017 sec; AR=1; 
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Fig 3.4 (c) velocity field during  40o upstroke d) at 33o downstroke θ=80o; Ф=0o;  
                 td=0.017 sec; tu=0.017 sec; AR=1; 
 
 



 

 
 
Fig 3.4 (e) velocity field during 14o downstroke f) at 0o downstroke θ=80o; 
                 Ф=0o; td=0.017 sec; tu=0.017 sec; AR=1; 
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Fig 3.4 (g) velocity field during -32o downstroke h) at -38o downstroke θ=80o; 
                 Ф=0o;   td=0.017 sec; tu=0.017 sec; AR=1; 
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Fig 3.4 (i) velocity field during -35o downstroke j) at -38o downstroke θ=80o;  
                Ф=0o; td=0.017 sec; tu=0.017 sec; AR=1; 
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a.    b. 

c.    d.

 
     
        Fig 3.5  a) velocity field after  2  revolutions              b) after 3 revolutions 
                     c) after 20 revolutions                                     d) after 25 revolutions 
                         θ=80; Ф=0 degree; td=0.017 sec; tu=0.017 sec; AR=1; 
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Fig 3.6 lift (dyne) over 20 cycles in case of symmetric flapping with θ=80o     
             angular amplitude, Ф=0o and frequency of 20 rev/s   
                 

  
Fig 3.7 time averaged force  over 20 cycles of symmetric flapping with θ=80

_
L o     

            Angular amplitude, Ф=0o and frequency of 20 rev/s    
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3.3.2 Effect  of inclination in symmetric flapping 
 
In the earlier section it is shown that if the mean position of the wings are at zero degree the 
 
time averaged force turns out to be zero. However one could explore the effect of Ф, i.e. in- 
 
clination of the mean wing position inclination with respect to the horizontal axis on the lift.  
 
We present simulation results indicating flow field in which Ф=-20o; θ =80o  for symmetric  
 
flapping in figure 3.8. In figure 3.8a, we present velocity field for the similar symmetric fla- 
 
pping with  Ф=0o. Here after 40 cycles we observe 2-jets moving horizontally. However wh- 
 
en  Ф=-20o, the direction of these jets are inclined to horizontal  and is imparting downward  
 
momentum for the fluid. Thus we could say that even when the flapping is symmetric, if the  
 
inclination of mean-wing position is negative we could generate lift. Figure 3.9 presents the  
 
comparison of  vorticity field  and velocity contour for  Ф=0o and  Ф=-20o. For Ф=-20o it is 
 
observed that the shedded vortices are mostly in the downward half. In the velocity contour 
 
plots we observe that the zone of maximum velocity is inclined downward to the horizontal.   
 
Figure 3.10 shows the effect of inclination of the mean position w.r.t. horizontal axis on non  

dimensional lift. However, with symmetric flapping  is small but non zero.  
_
L
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           Fig 3.8 a. Velocity field after 40 revs of symmetric flapping with no inclination  
                                  θ=80o; Ф=0o; td=0.025 sec; tu=0.025 sec; AR=1; 

        
   Fig 3.8 b. Velocity field after 40 revs of symmetric flapping with initial inclination of -20 degree 
                 θ=80o degree; Ф=-20o; td=0.025 sec; tu=0.025 sec; AR=1; 
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   a. b. 

 
c. d. 

                     Fig 3.9 vorticity field at (a) Ф=0o; (b)Ф=-20o; 
                                  velocity contour plot at (c) Ф=0o; (d)Ф=-20o; 

 
Fig 3.10 Effect of the inclination of the mean position wing  on the lift .Wings are 
               inclined at the given angles w.r.t horizontal axis 
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3.3.3 Asymmetric flapping  
 
Unlike symmetric flapping asymmetric flapping is identified as lift generator even when the  
 
mean position of the wing is horizontal. As observed in nature, we have also maintained the  
 
downward stroke to be more faster than the upward stroke. Unlike symmetric flapping in th- 
 
is case most of the time only the 2 jets are formed which are moving in downward direction.  
 
The net downward momentum transfer by these jets in turn impart an upward thrust resulti- 
 
ng in finite lift. In the following figures fig 3.11 the subsequent development of  two jets wi- 
 
ll be observed in the velocity  field  of  1st, 2nd, 4th and 20th cycles. Figure 3.11 shows that in 
 
the 1st cycle there are four jets in four direction but with  2nd cycle the 2-directional jets sets 
 
in resulting in net lift. Fig. 3.12 shows the combined velocity and vorticity field of asymme- 
 
tric flapping after 1st, 3rd, 11th, 18th, 20th and 40th cycles. The jets and the shedded vortices b- 
 
oth are  heading downwards. 
 
Fig 3.13 presents the contour plot of the velocity field for asymmetric flapping. In all the fi- 
 
gures of 3.13 it is  evident that the high velocity zones and the shedded vortices are adjacent 
 
to wings. Fig 3.13a shows that during 1st cycle the high velocity is very localized near the w- 
 
ings. Fig. 3.13  b, c, d suggests that the high velocity zone is spread for a wider area and the  
 
high velocity zone is moving in downward  direction . So this downward momentum of flui- 
 
d in turn imparts upward lift to wings. This also proves that the time averaged force becomes  
 
larger and larger with the number of flapping cycles till it attains a steady state value. Figure 
 
3.14 shows the lift over 20 cycles of asymmetric flapping. Figure 3.15 shows that the non di- 
 
mensional force as described in equation 3.3.1 in case of the asymmetric flapping is non zero.  
 
The negative of the time averaged force is  the actual value of  the lift.  
 
3.3.4 Effect of inclination in asymmetric flapping 
 
Figure 3.16 emphasizes the fact that with the increase of inclination of the mean position w.r.t  
 
horizontal axis lift increases. The mean inclination of the wing position helps in increasing do- 
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wnward component  of  the jets to enhance lift. Figures 3.17 a,b,c show the velocity field  and  
 
vorticity field at the 20th cycle of  asymmetric flapping of different inclinations. Figure 3.17 d, 
 
e,f  illustrates the velocity contours. It is evident that the jets of fig 3.17 a, d  are confined wit- 
 
hin 0 to -1 of  vertical axis whereas the jets in fig 3.17 c, f  are rushing through the zone of  -2 
 
to -3. It proves that the downward component of the jet momentum is enhanced and hence ca- 
 
using the increase of lift. 
 
3.3.5 Effect of angular amplitude 
 
Figure 3.18 highlights the influence of angular amplitude on lift. The figure shows more or less  
 
an upward trend with the angular acceleration. Since the angular amplitude term directly appears  
 
in angular acceleration, the lift is increased. Unless the angular amplitude becomes so large that   
 
the wings interfere among themselves at the end of the downstroke, lift increases with the angul- 
 
ar amplitude. Figure 3.19(a, c) and (b, d) shows the velocity contour & vorticity field at angular  
 
amplitudes of 80 degree  and 135 degree with -20 degree initial inclination. 
 



a b

  c d

 
 
Fig 3.11 velocity field of asymmetric flapping with downstroke 30 rev/s and upstroke         
              Speed: downstroke speed =1:2 (a) 1st revolution (b)2nd revolution (c) 4th      
              revolution and (d) 20th revolution  θ=80o; Ф=0o; td=0.017 sec; tu=0.034 sec; 
              AR=0.5; 
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a.            b.

 
 
 
 
c. 

      
 
 
   
 d. 

 
Fig 3.12 a) velocity and Vorticity field of 1st cycle    (b) 3rd cycle 
              c) 11th cycle                                                     (d) 18th cycle  

                                θ=80o; Ф=0o; td=0.017 sec; tu=0.034 sec; AR=0.5; 
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e

 
   f. 

 
 

icity fields after 20 revs and   f) 40 revs. 

 

         Fig 3.12 e) Velocity and Vort
                           θ=80o; Ф=0o; td=0.017 sec; tu=0.034 sec; AR=0.5; 

 



a.            b.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
c. 

 
 
 
 
 
 
 
 
 
 
 
 
            
 
 
           d. 

 
Fig 3.13 a) Velocity contour over the flow field in (a) 1st cycle    (b) 4th cycle 
                                                                                    (c) 14th  cycle (d) 20th cycle 
                  θ=80o; Ф=0o; td=0.017 sec; tu=0.034 sec; AR=0.5; 
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                         Fig 3.14 lift of asymmetric flapping for 20 cycles 
                                       θ=80o; Ф=0o; td=0.017 sec; tu=0.034 sec; AR=0.5; 

 
 
 Fig 3.15 Average non dimensional lift over 40 revs of asymmetric flapping in case of  
                rigid wings (upstroke speed=20 rev/s 80 degree amplitude) θ=80o; Ф=0o; 
                 td=0.013 sec; tu=0.026 sec; AR=0.5; 
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    Fig 3.16  influence of angular amplitude on lift θ =80o ; upstroke speed=20rev/s;   
                   upstroke speed:downstroke speed=1:2; td=0.013 sec; tu=0.026 sec; AR=0.5;                                
  

 

a 
 
b c

d e f

             Figure 3.17 velocity and vorticity field at (a) Ф=0o  (b) Ф=-10o  (c) Ф=-20o

                                Contour of velocity field at   (d) Ф= 0o  (e) Ф=-10o  (f) Ф=-20o

                                θ=80o; td=0.013 sec;  tu=0.026 sec; AR=0.5; 
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  Fig 3.18 Influence of angular amplitude on lift with Ф=20o, Ф=-25o, Ф=-30o; 
                θ=80o; td=0.013 sec; tu=0.026 sec; AR=0.5; 
 
a b

c 
d

 
 
Figure 3.19 a) velocity contour at θ= 80o b) at θ=135o  
                    c) vorticity and velocity field at θ=80o d) at θ=135o td=0.013 sec;  tu=0.026 sec;   
                        AR=0.5; 
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3.3.6 Effect of  flexibility on lift 
 
In this section the effect of flexibility of wings on lift performance is discussed. It is generally  
 
assumed that the wing deflection is determined by the combination of  fluid dynamic pressure  
 
forces associated with flapping elastic processes of the wing. However the instantaneous curv- 
 
ature of the wings determines the spatial distribution of  pressure stresses, thereby altering ben- 
 
ding moments also. Thus coupling between fluid and solid loads is a pervasive and  often an  
 
unresolved issue.  
 
As there is uncertainty about the causes of the wing deformation, we have modeled each wing  
 
as cantilever  beam and the loading is assumed to be proportional to the kinetic energy. Using  
 
proper boundary conditions, we calculate the deflection equation using the bending deflection  
 
equation. During the simulation, we assumed that the wing deforms during upstroke and rema- 
 
ins rigid during  downstroke. Figure 3.20 shows the different positions of the wing with deflec- 
 
ted and rigid conditions.  
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The deflection equation is as follows: 
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                    (a)                                                    (b)                                                (c) 
 Figure 3.20 Rigid and deflected wing positions during upstroke at (a) -55o (b) -5o (c) 20o 

                     with Ф=120o  and EIfront : EIrear =5 
 
Figure 3.21, 3.22 shows the influence of flexibility in case of symmetric flapping and asymmet- 
 
ric flapping respectively. On the asymmetric flapping the influence of flexibility is more promi- 

nent. Now considering 
2

EI
ρω  as a  parameter in the deflection equation we want to observe the  

effect of change of flexural stiffness EI. Keeping the 1st half of wing 
2

EI
ρω =1 and then reducin- 

g the other half’s stiffness ,we want to find the optimum ratio for maximum lift generation.  
 

Observing the figure 3.23a,b it can be said that front

rear

EI
EI

 ratio ranging from 5 to 6 gives maximum 

lift. 
 
3.3.7 Effect of asymmetry ratio 
 
 In this section the effect of upstroke speed to downstroke speed ratio is discussed. Figure 3.24 
 
is the lift contour over asymmetry ratio (upstroke speed: downstroke speed ratio). Keeping ea- 
 
ch downstroke speed fixed we went on calculating lift for different asymmetric ratios  ranging  
 
from 0.2 to 1 in steps of 0.05. It shows that lift increases with downstroke frequency. The opt- 
 
imum asymmetry ratio for maximum lift generation ranges from 0.4 to 0.7. Figure 3.25 shows 
 
the influence of asymmetry ratio for four downstroke speeds. Fig 3.26 shows that at lower sp- 
 
eed the asymmetry ratio is around  0.4 to 0.55 and  in higher speed it generally occurs near 0.7.  
 
Since the simulations have been done with asymmetry ratio at interval of  0.05 the error bar of  
 
± 0.025 has been incorporated. 
 
 51



 
 
 
3.3.8 Effect of speed 
 
Since calculation of lift involves the term Uρ Γ  and U inherently depends on angular frequency  
 
it’s natural that lift increases with frequency. Figure3.27 shows lift Vs. Reynolds number where 
 
Reynolds number is based on average tip wing velocity and kinematic viscosity of air at 20o C.  
 
However the nondimensional lift in figure 3.28 does not show clear trend.  
 
3.3.9 Effect of size 
 
Figure 3.29 shows the effect of size on lift .The contour plot reflects the fact that lifts increases  
 
with size as well as frequency. Figure 3.30 shows the comparison of lift calculated using vortex  
 
method and the formula given by  Ellington(1999) .  

The formula is as follows  :
2 2 4

0.387 ln R CM
AR

Φ
=    

where m(kg), Ф(rad), n(Hz) and R(m). Here CL is assumed as 2 because 2-3 is generally ceffic- 
 
 ient of lift for hovering(Ellington 1999). In our simulations we have initially calculated lift per 
 
unit depth of the plane. Then we calculate lift along the breadth. We have taken aspect ratio of   
 
wing to be 2. In Fig 3.30 a it is evident that lift is almost same in both the cases. With increase  
 
in wing length the dependence of fourth power on R given by Ellington’s formula predicts, ho- 
 
wever our lift estimations are much smaller than the Ellington’s formula. In fig 3.30 b, c the lift   
 
calculated  by vortex method for the asymmetric flapping accounts 60% of Ellington’s formula 
 
in 25-30 freq/s but beyond that it’s much less. 
 
3.3.10 Comparison using data on insects 
 
a. Small Fly: It’s frequency is 500 rev/s. Each wing length is about 5mm. Each wing breadth is  

taken to be 2.5 mm. Using zero degree inclination,150 degree amplitude and d

u

t
t

 =0.5 our lift is  

219.26 dynes. Ellington’s formula gives us mass=207.22 mg. As one gm weight=981 dynes the  
 
force is equal to 203.28 dynes. 
 
b. Mosquito: It’s frequency ranges from 150 Hz to 300 Hz. Using upstroke frequency =150 Hz. 
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and downstroke speed=300 rev/s the effective frequency is 200 Hz .Each wing length and brea- 
 
dth is taken to be 8mm and 4mm respectively. Mosquito weight is 3mg .Using 170 degree of 
 
angular amplitude our calculation is 159.31 dyne. Ellington’s formula yields 273.79 dyne. Bo- 
 
th the calculations indicate the lift generated is much higher than that needed for sustaining its  
 
weight (3mg-wt=2.943dyne). It’s our speculation that due to very small sizes it experiences s- 
 
ubstantial drag which is not accounted in our inviscid calculation. 
 
c. Butterfly: It’s frequency is 20 Hz, using 5cm wing length, mean breadth 5cm, 80 degree of 
 

angular amplitude, d

u

t
t

 =0.5  and our calculation gives 1706.5 dyne. Ellington’s formula gives  

1.9gram or 1863.9 dyne. Using data from SanDiego zoo site butterfly wing ranges from 0.3cm  
 
to 30 cm with body weight ranging from 0.003 grams to 3 grams. If for 5cm wing span the b- 
 
ody weight is about 1-1.5gm, again this is less than both our calculations and Ellington’s esti- 
 
mation.  
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Average non dimensional lift over 20 revs of 
symmetric flapping 20revs/sec  80 degree of amplitude 
for rigid wing 
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Average non dimensional lift over 50 revs of 
symmetric flapping  20 rev/s 80 degree amplitude 
for flexible wing 
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Figure 3.21 influence of flexibility in case of symmetric flapping 
                    θ=80o; td=0.025 sec;  tu=0.025 sec; AR=1;Ф=0 

Average non dimensional lift over 40 revs of 
asymmetric flapping in case of rigid wings (upstroke 
speed=20 rev/s 80 degree amplitude) 

Average non dimensional lift over 40 revs of 
asymmetric flapping  in case of flexible wings 
(upstroke speed=20 rev/s 80 degree amplitude) 

 
Figure 3.22 influence of flexibility in case of asymmetric flapping  
                    θ=80o; td=0.013 sec; tu=0.026 sec; AR=0.5; Ф=0 
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a                                                                                     b 

 
                           Ф=-25o; θ=80o                                θ=80o; Ф= -30o

 

  Fig 3.23 Influence of bending deflection parameter ratio on lift td=0.013 sec; tu=0.026  
                sec; AR=0.5;  

                         
Fig 3.24 lift contour plot with downstroke frequency and asymmetry ratio.Ф= -25o;   
               θ=80o; for a fixed downstroke speed upstroke speeds are varied and thus  
               asymmetry ratio is varied.   
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  Figure 3.25 Lift vs. asymmetry ratio Ф= -20o; θ=80o;  

 
 
Figure 3.26 Ratio of upstroke speed: downstroke speed at which highest lift occurs       
                    Vs. Downstroke speed 
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7 Lift vs. Reynolds number Ф=0o,-20o,-25o, θ=80o; The AR at which 

 

                                        

 Non dimensional Lift Vs. Reynolds Number Ф=0 ,-20 ,-25 ; θ=80 ; The AR 

 
 

igure 3.2F
                     highest Lift occurs for a fixed downstroke speed is selected .          
 
  

 
igure 3.28F o o o o

                     at which highest Lift occurs for a fixed downstroke speed is selected   
 
 
 



 
Fig 3.29 Contour of lift (dynes) over size (cm) and downstroke frequency (rev/s). 
              Ф=-25o, θ=80o; The AR at which highest Lift occurs for a fixed downstroke 
              speed is selected   

Fig 3.30 Comparison of lift calculates using vortex method and Ellington’s formula 
              a) 1cm b) 1.5 cm c) 2cm Ф=-25o; θ=80o; The AR at which highest Lift occurs 
              for a fixed downstroke speed is selected    
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                                               Chapter 4 
                         CONCLUSION 
 
In this chapter the conclusions are summarized based on our experimental and simulation  
 
results conducted on flapping wings. 
 
1. Flow visualization figures obtained by the experiments on mechanical flapping models    
 
suggest that due to momentum transfer in both upward and downward directions, net lift  
 
produced in symmetric flapping is zero. On the other hand momentum is transferred in the  
 
downward direction in case of  asymmetric flapping which yields a net upward lift to the  
 
wings. Also velocity fields obtained by numerical simulation of flapping wings supports  
 
the conclusion drawn from experimental observations. 
 
2. For the mean position of the wings aligned with the horizontal axis the net lift produc- 
 
ed over a cycle is nearly zero. If the mean position of the wings is inclined to the horizo- 
 
ntal axis i.e. Ф 0, lift is generated even in  the case of symmetric flapping although the ≠
 
lift is small. Generally with the increase of inclination (Ф) lift increases. In case of  asy- 
 
mmetric flapping lift is substantially enhanced. 
  
3. Lift increases with the angular amplitude. However amplitude θ must not be such that 
 
the flow between the wings interact with each other at the end of downstroke or upstroke- 
 
es to hamper the lift generation. 
 
4. In order to mimic the flexible wings we have examined the impact of flexibility of w- 
 
ings on lift. As we don’t have clear idea regarding loading and EI of the wings, we have 
 
imposed  loading on the wings and created deflection on wings. When flexibility is imp- 
 
osed along the wing length during upstroke, lift is increased. 
 
5.  From our experiments and simulations it’s evident that asymmetry in upstroke speed  
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and downstroke speed generates positive lift. So we examined the optimum range of as- 
 
ymmetry ratio for maximum lift. The asymmetry ratio (upstroke speed:downstroke spe- 
 
ed) should be around 0.4 to 0.5 for frequency upto 45 rev/s and 0.6-0.7 for higher  wing 
 
beat frequency (45-70 rev/s) to generate optimum lift. However, experimental verificat- 
 
ion is essential. 
 
6. Simulation using vortex method and with asymmetric flapping, we could account al- 
 
most full lift for 1cm wing in comparison with Ellington’s formula (1999). Ellington h- 
 
as considered coefficient of  lift around 2. Our lift is equal to lift estimated by Ellington 
 
formula in the case of chord length 1cm and accounts nearly 60% in case of  larger  wi- 
 
ng sizes like1.5cm and 2cm. In spite of not considering various viscous mechanism lik- 
 
e delayed stall, leading edge separation bubble, we could account large fraction of  the 
 
lift by asymmetric flapping. So it can be claimed that the asymmetry flapping is an eff- 
 
ective & important  way of producing lift. 
 
In spite of our simulations we feel that experimental evidence is essential for verifying  
 
our simulation results. Particle image velocimetry (PIV) of the flow field can be an ef- 
 
fective  tool in matching the vorticity and velocity field generated by simulation. High  
 
speed photography of hovering insects is also an effective way of detecting the asymm- 
 
etry in insect flights. Force measurement  in mechanical flapping models with the help  
 
of quality sensors can also give a clearer picture of the lift profiles and utility of asym- 
 
metric flapping and wing flexibility.  
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                                                   APPENDIX-I 
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   c 

 
 
 
 
d 

 
Fig 5.1 Pressure distribution over a flapping wing at (a) 10o upstroke (b) 38o  
            upstroke (c) at 14o downstroke (d) -24o downstroke ; θ=80o ; Ф=0o ;   
            tu=td=0.025 sec 
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Fig 5.1 Pressure distribution over a flapping wing at (e)-36o downstroke (f) -27o    

 
 
 
e 

 
 
f 

 
 
 
 
 
 
 
 
g

 
 
 
 
 
 
 
 
h

            upstroke (g) at 14o upstroke (h) -24o upstroke θ=80o ; Ф=0o ; tu=td=0.025 sec  
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