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Abstract

In the present work, we study the effect of off-source volumetric heating on a start-

ing plume in an attempt to understand the fluid dynamics of clouds. Clouds play

a major role in weather and climate. In the tropics cumulus clouds are particu-

larly prominent. They generally form due to condensation of water vapor in the

moist air that rises from heat sources or hot spots on the ground. Previous work

(as reviewed by Narasimha & Bhat (2008))has shown that off-source volumetric

heating of a self-similar jet or a plume results in cloud like flow characteristics. A

starting plume is particularly relevant to clouds as the life cycle time of a single

cloud is of the order of a few hours and is usually not long enough to generate

completely self-similar flows. We carry out Direct Numerical Simulation (DNS)

of the Navier-Stokes equations under the Boussinesq approximation to study such

flows.

We start with two-dimensional (2D) simulations to explore suitable algorithms

and boundary conditions. A clustered Cartesian grid is used for the computation.

The equations are solved using the projection method and finite difference schemes.

For integration in time, second order Adams-Bashforth and Crank-Nicolson meth-

ods are used for advection and viscous diffusion respectively. The code is verified

by demonstrating conservation of buoyancy flux and satisfaction of the divergence-

free condition. The 2D simulation of the starting-plume model gives results broadly

similar to those seen in the experiments on round jets and plumes. In the heat-

injection zone the spread rate of the plume decreases. Immediately above the

heat-injection zone instabilities begin to reappear and the spread rate tends to

recover.

As the simulations in 2D showed promise, we started developing a three di-

mensional (3D) DNS code. A cylindrical domain is chosen for the computation,

as the flow is axisymmetric in the mean. The governing equations in cylindrical

coordinates possess a geometric singularity at the axis, r = 0. A method proposed
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by Verzicco & Orlandi (1996) is used to overcome this problem. The algorithm

and numerical schemes used for 3D simulations are basically same as in 2D. In

this type of flow, where the entrainment at the flow boundaries is of interest, the

issue of boundary conditions assumes utmost importance. We have experimented

with different boundary conditions and found zero vorticity at the lateral bound-

ary and zero normal derivatives at the outflow to be most appropriate. As the

calculations are computationally intensive, we have parallelized the code using the

domain decomposition technique and run it on the Tata’s super-computer Eka at

CRL, Pune. To the best of our knowledge no results on starting plumes with or

without off-source heating have been reported, and hence the validation of the code

is not possible; therefore we have verified it according to the appropriate conser-

vation principles (as done in 2D simulations). Results are reported here for a grid

resolution of 100× 100× 100 and it has been observed that heat addition leads to

dramatic changes in the structure of the plume. In the Heat-Injection Zone (HIZ),

there is a drastic decrease in the stream-wise vorticity component as the amount

of heat added increases. The values of azimuthal velocity, whose mean is zero, are

an indication of turbulent fluctuations. It is found that heating leads to decay of

azimuthal fluctuating velocities suggesting relaminarization-like behaviour of the

flow in HIZ.
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Nomenclature

d0 : Heat source diameter

T0 : Heat source temperature over ambient

z : Vertical direction

t : Time

zb : Beginning of the heat injection zone

zt : End of the heat injection zone

u : Velocity vector

T : Change in temperature over ambient

p : Pressure

ρ : Density

J : Heat added per unit volume per unit time

Cp : Specific heat at constant pressure

ν : Kinematic viscosity

α : Coefficient of thermal expansion

κ : Thermal diffusivity

g : Acceleration due to gravity

ẑ : Unit vector in vertically upward direction

H : Off-source heat addition function

Tlimit : Threshold temperature to identify heating area

Uo : The velocity scale used for non-dimensionalisation

Re : Reynolds number

Pr : Prandtl number

G : Heat Release Number

Ri : Richardson number

n : Time step index
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∆t : Time increment

ũn+1 : Intermediate velocity in the projection method

φn+1 : pn+1 − pn

x : Cross-stream direction (2D)

y : Streamwise direction (2D)

xmax : Maximum length in x direction (2D)

ξ, η : Transformed co-ordinates corresponding to x and y re-

spectively (2D)

r : Radial direction (3D)

θ : Azimuthal direction (3D)

i : Index for x direction (2D) and θ direction (3D)

j : Index for y direction (2D) and r direction (3D)

k : Index for z direction (3D)

q : Dependent variable used in 3D simulations related to the

velocity field

t∗ : Non-dimensional time

jp, kp : Number of sub-domains along r and z directions respec-

tively in the parallel architecture

np : Total number of processors
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CHAPTER 1

INTRODUCTION

Cumulus clouds are fluffy clouds which sometimes look like pieces of floating cotton

in the sky. These are prominently seen especially in the tropics, with flat bases and

tops sometimes reaching high up into the atmosphere like towers, all the way to

the tropopause or even beyond (nearly 15km). Figure 1.1(a) is a picture of natural

clouds and figure 1.1(b) is an image from a dye flow visualization of a jet sub-

jected to off-source volumetric heating evolving in an ambient fluid whose density

is discontinuous at the level where the jet spreads out horizontally (Narasimha &

Bhat (2008)). The remarkable resemblance between real clouds in the sky and the

laboratory jet with off-source heating indicates that one of the major dynamical

influence on a cumulus cloud is heat released during condensation of the water

vapor. With this motivation we study the fluid dynamics of clouds further.

Figure 1.1: (a) Natural clouds. (b) Laboratory flow visualization of a jet sub-
jected to off-source volumetric heating in a discontinuously stratified environment.
(Narasimha & Bhat (2008))
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2 Introduction

Cloud formation begins typically with moist air near some hot spot on the

surface rising up into the atmosphere by convection. During the ascent, the moist

air parcel undergoes an adiabatic expansion with a drop in its temperature. When

this parcel is sufficiently saturated with water vapour, its further ascent leads to

the condensation of excess water vapour into liquid drops or ice particles forming

a cloud. The shape of a cloud is mainly influenced by the amount of latent heat

released, stratification due to density variation of air in the atmosphere and cross

winds.

In a fluid dynamical perspective, the flow involved in a cloud formation and

growth can be seen as a natural turbulent shear flow, and can be more specifically

put into the class of thermals and plumes (Turner (1973)). The evolution of a cloud

flow is different from a classical plume as it is imparted with additional buoyancy

force away from the surface due to the latent heat released during condensation of

water vapour. The behaviour of an ordinary plume has been studied extensively

and reviewed in Turner (1969) and List (1982). One major feature in this type of

a shear flow is the entrainment of ambient fluid through lateral edges. In case of a

turbulent plume, the ambient fluid is continuously engulfed into the core fluid by

the large eddies followed by rapid small scale mixing across the core with constant

entrainment coefficient (Turner (1986)).

The plume models based on the entrainment hypothesis of Taylor (Morton

et al. (1956)), which have been successful in predicting flow development in a va-

riety of geophysical situations (Turner (1986)), fail to make realistic estimates of

either liquid-water concentrations or height of penetration in clouds (Squires &

Turner (1962) and Warner (1970)). From measurements of the temperature and

liquid-water concentration in tall Colorado cumuli using an aircraft, Paluch (1979)

inferred that the entrainment of ambient air from the sides may be very small in
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tall cumulus clouds. This study showed that the observed cloud thermodynamic

properties can be accounted for only if air from the cloud base ascends to the top

without laterally mixing with the surrounding air. Similar observations on cumu-

lonimbus clouds in the tropics have been reported by Riehl (1972). A summary

of the earlier ideas on entrainment and mixing processes in clouds has been given

in Simpson (1983). Emanuel (1994) pointed out that early cloud parameterization

schemes based on plume entrainment model are not in agreement with observations.

A new approach to study the fluid dynamics of clouds started with the ex-

periments carried out at the Centre for Atmospheric Sciences, Indian Institute of

Science in Bangalore. A novel technique has been developed to study the effect of

locally enhanced buoyancy by volumetric heating of a shear flow (jet/plume) (Bhat

et al. (1989)). The volumetric heat has been achieved by ohmic heating of water

which is made electrically conducting by adding small quantities of acid and us-

ing non-conducting deionized water as the ambient fluid. Elavarasan et al. (1995)

reported an exploratory study of the flow using this setup and a detailed analysis

is given in Bhat & Narasimha (1996). Flow visualization using Laser-Induced-

Fluorescence (LIF) has revealed a drastic reduction in the jet spread rate due to

heating. It has been observed that the coherent eddy structures get disrupted in

the heat-injection zone leading to a relative reduction in entrainment. Based on

such observations an entrainment model for clouds has been proposed. Similar in-

vestigations have been reported by Agrawal & Prasad (2004) and Venkatakrishnan

et al. (2003). In their Particle-Image-Velocimetry (PIV) measurements, Agrawal

& Prasad (2004) have found similar observations due to heating as in Bhat &

Narasimha (1996) except for the normalized turbulent intensity. Narasimha &

Bhat (2008) reanalyzed the data from all the three groups and summarized the

current status of the problem. They attributed the disagreement in normalized
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turbulent intensity to higher electrical conductivity of jet fluid in Agrawal’s exper-

iments.

A plume is a buoyancy driven flow and is a better analogy for cloud flow than a

jet, which is momentum driven. Experiments on a self-similar plume subjected to

off-source heating have shown characteristics similar to discussed above (Venkatakr-

ishnan et al. (1999)).

A two-dimensional theoretical model for entrainment in jet and plumes (with

and with out off-source heating) is given in Sreenivas & Prasad (2000). They

explain the entrainment process based on vortex-dynamics principles and the effect

of the baroclinic torque (due to stratification in the flow) on large scale structures.

In a plume, the density stratification in the core flow is unstable and results in

a baroclinic torque enhancing the formation of eddy structure. As a result, the

entrainment in a plume is greater than in a jet. Off-source heating creates a

stable stratification in the core flow of a plume which decreases the eddy formation,

thereby reducing the entrainment when compared to an unheated plume. Based on

this model Sreenivas (2004) studied the effect of acceleration on the entrainment

process in a planar jet, by carrying out simulations using diffusion-vortex method.

The result indicates reduction in entrainment with axial acceleration.

In addition to the experiments, attempts have also been made to simulate the

flow by solving the Navier-Stokes equations using Direct Numerical Simulation

(DNS) in which all the characteristics are computed in detail. The simulation of

free shear flows like jets and plumes is found to be difficult as they evolve in a

space with no clear boundaries. A major challenge lies in accurate computation of

the entrainment flow field. DNS of incompressible round jets have been extensively

studied (Boersma et al. (1998) and Babu & Mahesh (2004)). A recent simulation

of a turbulent plume solved under the low mach number approximation is due to



5

Plourde et al. (2008). In their solutions they observe periodic generation of vortex

rings near the heat source. The rings then travel downstream, interact with the

core flow and destabilize it leading to a turbulent flow field. They have also looked

at the instantaneous entrainment process in the plume in great detail. According to

them, the entrainment process consists of local contraction and expulsion phases,

which result in large fluctuations of instantaneous entrainment coefficient both

in space and time. Basu & Narasimha (1999) carried out a temporal simulation

using spectral methods in a periodic domain. The results obtained from their

computation are qualitatively in agreement with the experiments and have further

shown that heating leads to dramatic increase in the vorticity and its gradients in

the flow. A spatially evolving jet with enhanced buoyancy has been simulated by

Agrawal et al. (2004). In this simulation, the governing equations are solved in

a spherical coordinate system with a traction-free condition for lateral boundary

and convective boundary condition at the outflow. The amount of off-source heat

introduced in the flow is proportional to a scalar concentration obtained by solving

an advection-diffusion equation. The value of their Richardson number is nearly

40 times higher than in experiments and real clouds.

Turner (1973) has pointed out that a starting plume may be more relevant to

modelling clouds as the life cycle time of a single cloud is of the order of a few hours,

usually not long enough to generate completely self-similar flows. To the best of our

knowledge no results on starting plumes with or without off-source heating have

been reported. In the present work we investigate a starting-plume flow subjected

to off-source volumetric heating as a model for cloud flow using Direct Numerical

Simulation (DNS) technique.

This thesis is structured as follows: In chapter 2 the governing equations, com-

putational details, and parallelization details are outlined. The results obtained
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from 2D simulations have been presented in Chapter 3. Chapter 4 deals with the

3D simulations of axisymmetric plumes. The conclusions from the present work

and future work are outlined in Chapter 5.



CHAPTER 2

COMPUTATIONAL METHOD

2.1 Flow Configuration

As discussed in chapter 1, we investigate in this thesis whether a cumulus cloud

flow can be simulated using a starting plume with off-source volumetric heating. A

schematic of the flow under consideration is shown in figure 2.1. The configuration

consists of a starting plume rising from a heat source (e.g. hot spot on the ground)

of diameter d0, whose temperature is T0 over the ambient temperature. As the

plume reaches the Heat-Injection Zone (HIZ) which begins at a height zb and

ends at zt, it is subjected to off-source volumetric heating. The amount of heat

injected in HIZ is to be made dynamically similar to the latent heat released during

condensation of water vapour in the cloud.

2.2 Governing Equations

It is assumed that the density changes in the flow due to heating are very small and

the effect of change in density appears only as a buoyancy term in the momentum

equation. Thus the flow is governed by the incompressible Navier-Stokes equations

under the Boussinesq approximation and with off-source heat addition as proposed

in Basu & Narasimha (1999).

Continuity:

5.u = 0 (2.1)

7



8 Computational Method

Figure 2.1: A schematic of a starting plume with off-source volumetric heating.

Momentum:

∂u

∂t
+ u.∇u = −1

ρ
∇p+ ν.∇2

u− gαT (2.2)

Energy:

∂T

∂t
+ u.∇T = κ∇2T +

J

ρCp

H(z, r, t) (2.3)

Here u is the velocity vector, T the change in temperature above ambient, p

the pressure, ρ the density, J the heat added per unit volume per unit time, Cp

the specific heat at constant pressure, ν the kinematic viscosity, α the coefficient of

thermal expansion and κ the thermal diffusivity. The acceleration due to gravity

g acts vertically downwards and is given by g = −gẑ, where ẑ is the unit vector

in the vertically upward direction. The off-source heat is added according to the

function H(z, r, t) defined as follows.
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H(z, r, t) = 1 for zb ≤ z ≤ zt, T (z, r, t) ≥ Tlimit

= 0 else where

Here, Tlimit is a threshold used to identify the off-source heating area at a particular

height in the HIZ.

2.3 Non-dimensional Equations and Numbers

The governing equations are non-dimensionalized using the heat source diameter d0

as the length scale and heat source temperature T0 as the temperature scale. The

velocity scale is obtained as U0 =
√
gαT0d0. The equations in the non-dimensional

variables (indicated with asterisk) are as follows:

∇∗.u∗ = 0 (2.4)

∂u∗

∂t∗
+ u

∗.∇∗
u

∗ = −∇∗p∗ +
1

Re
∇∗2

u
∗ − T ∗ẑ (2.5)

∂T ∗

∂t∗
+ u

∗.∇∗T ∗ =
1

RePr
∇∗2T ∗ +GH(z, r, t) (2.6)

The non-dimensional numbers in the above equations are defined as follows. Reynolds

number, Re = U0d0
ν

Prandtl number, Pr = ν
κ

Heat release number, G = J
ρCp

d0
U0T0

From here on the asterisk on the non-dimensional terms will be dropped in this

chapter for convenience.
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2.4 Time Discretization

For time discretization we use Adams-Bashforth Crank-Nicolson semi-implicit scheme

(Faure et al. (2008) and Armfield & Street (1999)). The non-linear advective

term in the equation demand explicit treatment for which a second order accurate

Adams-Bashforth scheme is used. The Crank-Nicolson scheme, which is implicit in

nature, is used for the linear diffusion term. This scheme is unconditionally stable

and improves the numerical stability of the overall time discretization. The pres-

sure and buoyancy terms are treated implicitly. The method is illustrated below

for computing u-velocity component at (n + 1)th time step.

un+1 − un

∆t
+

(3

2
(u.∇u)n − 1

2
(u.∇u)n−1

)
= −∇pn+1 +

1

2Re

(
∇2un+1 +∇2un

)
(2.7)

2.5 Method of Solution : Projection Method

In incompressible flows, the velocity and the pressure are coupled through the in-

compressibility constraint that leads to difficulty in the numerical simulation. In the

late 1960’s, Chorin (1968) and Temam (1969) introduced the concept of projection

to solve the Navier-Stokes equations in primitive-variable form using the method of

fractional step or operator splitting. The first step of the two-step method involves

the calculation of the auxiliary velocity field û using the Navier-Stokes equations in

the absence of the pressure term. In the subsequent step a divergence-free velocity

field is obtained by correcting the auxiliary velocity field using the updated pres-

sure obtained from the Pressure Poisson equation (PPE). In the correction step,

the initial velocity field is orthogonally projected to a non-divergent space such

that the vorticity remains unchanged. The steps in the projection method can be
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from the time discretized equation as follows.

u
n+1 − u

n

∆t
+ (u.∇u)n+

1

2 = −∇pn+1 +
1

2Re

(
∇2

u
n+1 +∇2

u
n
)

(2.8)

where u
n = u(x, n∆t), (u.∇u)n+

1

2 = (3
2
(u.∇u)n − 1

2
(u.∇u)n−1)

Now writing the transient term on the LHS of Eq.2.8 as (un+1−ũ
n+1

)+(ũ
n+1

−un)
∆t

,

we can algebraically split the equation as:

ũ
n+1 − u

n

∆t
+ (u.∇u)n+

1

2 =
1

2Re

(
∇2

u
n+1 +∇2

u
n
)

(2.9)

u
n+1 − ũ

n+1

∆t
= −∇pn+1 (2.10)

The viscous term in Eq. 2.9 contains un+1 which can be replaced using Eq. 2.10.

Rearranging the terms in the equation we get

ũ
n+1 − u

n

∆t
+ (u.∇u)n+

1

2 =
1

2Re

(
∇2

ũ
n+1 +∇2

u
n
)
− ∆t

2Re
∇2∇p (2.11)

This can be rewritten as:

ũ
n+1 − u

n

∆t
+ (u.∇u)n+

1

2 =
1

2Re

(
∇2

ũ
n+1 +∇2

u
n
)
−O(∆t2) (2.12)

Eqs. 2.12 and 2.10 are the two steps of the projection method due to Chorin. A

lot of work has been done on this method in the past four decades to improve its

accuracy, but it still remains a major area of research. Recently an overview on

the projection method has been given by Guermond et al. (2006), discussing the

current status and future challenges. The major issue is regarding the boundary

condition for pressure. Chorin (1968) used a Neumann boundary condition for

pressure, but this has been proved to lead to an O(1) error (Liu et al. (2004)).
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In the present simulations we use a second-order incremental pressure-correction

scheme proposed by Van Kan (1986). The first substep involves the calculation of

velocity using the pressure gradient value from the previous time step. In the second

substep the corrected velocity is obtained by introducing an auxiliary pressure

which is obtained by solving the Poisson eqaution. The method is illustrated below

for the equations discretized in time according to section 2.4.

ũn+1 − un

∆t
+ (u.∇u)n+ 1

2 = −∇pn +
1

2Re
(∇2ũn+1 +∇2un) (2.13)

un+1 − ũn+1

∆t
= −∇φn+1 (2.14)

where φ is defined as

φn+1 = pn+1 − pn (2.15)

and is obtained by solving the Poisson equation:

∇2φn+1 =
1

∆t
∇.ũn+1 (2.16)

2.6 Spatial Discretization

There are several methods such as finite difference, finite volume, spectral etc. to

compute the spatial derivatives. As the geometry of the flow is simple we choose

finite difference schemes for spatial discretization, as they are easy to implement.

In 3D simulations the governing equations are solved in the cylindrical coordinate

system, which restricts us to use second order central difference schemes to ob-

tain the derivatives. For a uniformly spaced grid (shown in fig.2.2(a)) the finite
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difference derivatives are obtained from the Taylor series expansion as follows.

∂u

∂x
=

ui+1 − ui−1

2∆x
(2.17)

∂2u

∂x2
=

ui+1 − 2ui + ui−1

∆x2 (2.18)

In case of a non-uniform grid, the equations are transformed to a uniform grid in

Figure 2.2: (a) One-dimensional uniform grid. (b) Grid with boundary point.

which the spatial derivatives are computed. Near the boundary (fig.2.2(b)) we use

polynomial fitting of second order to compute the derivatives as

∂u

∂x
=

4ui+1 − 3ui − ui−1

3∆x
(2.19)

∂2u

∂x2
=

2ui+1 − 3ui + ui−1

0.75∆x2 (2.20)

2.7 Computational Grid

For spatial discretization of the equations we use a clustered cartesian grid for 2D

simulations and a uniform cylindrical grid for 3D simulations. In both the cases,

scalar quantities like pressure and temperature are computed at the cell centers
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and velocity components at the center of corresponding cell faces. This type of

arrangement is known as staggered grid or MAC mesh, which has been proposed

by Harlow & Welch (1965). An advantage of using such a grid is that it prevents

the pressure oscillations which are usually seen in finite difference solutions on a

collocated grid (For detailed discussion see Patankar (1980)). Figure 2.3 illustrates

the arrangement and index notation of flow variables in a 2D and 3D grid.

Figure 2.3: Staggered grid arrangement in 2D cartesian and 3D cylindrical coordi-
nate systems.

In the 2D grid, the following clustering function is used.

x = xmax
sinh(aξ)

sinh(a)
, 0 ≤ ξ ≤ 1 (2.21)

where xmax is the maximum length in the x-direction, a is the clustering parameter

and ξ is the transformed coordinate.
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2.8 Governing Equations : Revisited

2D Simulations

To solve the governing equations (2.4-2.6) in a 2D uniform grid, we transform the

equations in the physical plane (non-uniform grid) to a uniform grid computational

plane. The equations in the transformed plane are given in Eqs. 2.22-2.25. Here, u

and v are the velocity components in x and y-directions respectively. ξ and η are

the transformed coordinates corresponding to the x and y coordinates, which are

related according to the clustering function in Eq. 2.21. We thus obtain

ξx
∂u

∂ξ
+ ηy

∂v

∂η
= 0 (2.22)

∂u

∂t
+ ξxu

∂u

∂ξ
+ ηyv

∂u

∂η
= −ξx

∂p

∂ξ
+

1

Re
(ξxx

∂u

∂ξ
+ ξx

2∂2u

∂ξ2
+ ηyy

∂u

∂η
+ ηy

2∂2u

∂η2
) (2.23)

∂v

∂t
+ ξxu

∂v

∂ξ
+ ηyv

∂v

∂η
= −ηy

∂p

∂η
+

1

Re
(ξxx

∂v

∂ξ
+ ξx

2∂2v

∂ξ2
+ ηyy

∂v

∂η
+ ηy

2 ∂2v

∂η2
) (2.24)

∂T

∂t
+ ξxu

∂T

∂ξ
+ ηyv

∂T

∂η
=

1

RePr
(ξxx

∂T

∂ξ
+ ξx

2∂2T

∂ξ2
+ ηyy

∂T

∂η
+ ηy

2∂2T

∂η2
) (2.25)

3D Simulations

The major difficulty in solving the governing equations in cylindrical coordinates

is due to the geometric singularity at r = 0 . This problem has been addressed by

Verzicco & Orlandi (1996). They use a staggered grid and rewrite the terms in the

equations in terms of qθ = uθ, qr = r.ur and qz = uz (see Eqs. 2.26-2.29), which

avoids the computation of flow variable at r = 0.

∂qr

∂r
+

∂qθ

∂θ
+ r

∂qz

∂z
= 0 (2.26)

Dqθ

Dt
= −1

r

∂p

∂θ
+

1

Re

[
1

r

(
∂

∂r
r
∂qθ

∂r

)
− qθ

r2
+

1

r2

∂2qθ

∂θ2
+

∂2qθ

∂z2
+

2

r3

∂qr

∂θ

]
(2.27)
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Dqr

Dt
= −r

∂p

∂r
+

1

Re

[
r

∂

∂r

(
1

r

∂qr

∂r

)
+

1

r2

∂2qr

∂θ2
+

∂2qr

∂z2
− 2

r

∂qθ

∂θ

]
(2.28)

Dqz

Dt
= −∂p

∂z
+

1

Re

[
1

r

∂

∂r

(
r
∂qz

∂r

)
+

1

r2

∂2qz

∂θ2
+

∂2qz

∂z2

]
(2.29)

The terms on the left hand side of the above equations are total derivates. A de-

tailed procedure of implementation that includes obtaining derivatives near r = 0

has been discussed in Verzicco & Orlandi (1996).

2.9 Solution of Linear Algebraic System of Equations

In our simulations, the Crank-Nicolson scheme has been used for time discretiza-

tion of the viscous terms. This is implicit in nature and leads to a system of linear

algebraic equations that needs to be solved. A similar situation is also encountered

while obtaining the pressure field from PPE. For solving these systems of equations

we use the Successive Over-Relaxation (SOR) method, which is an indirect or iter-

ative procedure. This method is simple to implement and can be parallelized easily.

2.10 Code Parallelization

The Direct Numerical Simulation of unsteady incompressible Navier-Stokes equa-

tions is computationally intensive and demands large CPU time and physical mem-

ory (RAM). The calculation of the flow field at a particular time step using the

projection method involves solving the Pressure Poisson Equation which is an el-

liptic Partial Differential Equation (PDE). It is well known that elliptic PDEs have
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a slow rate of convergence and hence for major share of computational time. Ac-

cording to our experience, 2D simulations can be done using a serial code (which

is run only on one processor) at high resolution also, typically taking a couple of

days to solve. In case of 3D simulations, it is not practical to use a serial code

even at lower resolutions as it takes several weeks to compute. This compels us to

parallelize the code and run it on multiple processors simultaneously.

The architecture of a parallel computer plays a major role in arriving at suitable

programming methods and algorithms. Based on the memory system the parallel

architecture is classified into the following.

• Shared Memory - All processors operate independently, but share the same

memory resources.

• Distributed Memory - Each processor operates independently and has its own

local memory.

• Hybrid Distributed-Shared Memory - A combination of the above architec-

tures.

Programming on a shared memory computer is much easier as compared to oth-

ers. In the present market these computers can have a maximum of 16 processors.

This solves the computing-time issue to a certain extent, but becomes impractical

for high resolution simulations. On the other hand, there is no restriction on the

number of processors that a distributed memory computer can have. This moti-

vates us to parallelize the DNS code based on distributed memory using Message

Passing Interface (MPI), a language-independent communications protocol used to

program parallel computers (Wikipedia). A schematic of the distributed memory

architecture is shown in figure 2.4.
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Memory

Processor ProcessorProcessor

Memory Memory

Network

Figure 2.4: A schematic of distributed memory architecture.

As the DNS calculations are carried out on a grid, we choose domain decomposi-

tion technique for parallelizing the code. The basic idea here is to divide the grid

into several sub-domains and compute the flow variables in these sub-domains on

different processors. A row/column of ghost cells are provided at the boundary

of each sub-domain to hold the values communicated from neighbouring proces-

sors. A novel parallel algorithm which uses minimal physical memory and data

communication has been designed. The major steps involved are the following.

• Dividing the computational grid into several sub-domains and distributing

them to different processors.

• Gathering of flow field data from each processor to print them into output

files.

• A synchronized communication of sub-domain boundary values between neigh-

bouring processors when they get updated.

In the first attempt, we decomposed the domain only in one dimension. This in-

volves slicing of cylindrical grid into sub-domain normal to the z-direction. The

number of processors is chosen in such a way that equal sized sub-domain are
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obtained. The 1D decomposition of the domain is fairly straight forward to imple-

ment, but restricts the usage of maximum number of processors to the number of

grid points in z-direction. A diagram illustrating the decomposition and commu-

nication of boundary values between neighbouring sub-domains is shown in figure

2.5.

Figure 2.5: A schematic of 1D domain decomposition in r-z plane.

Domain decomposition in two dimensions has been done in the r-z plane. The com-

putational grid is sliced along both r and z-directions resulting in disk or donut

shaped sub-domains. Figure 2.6 shows the schematic of the decomposition in r-z

plane. Here the processors are arranged in a 2D array such that the number of

processors along a particular dimension is equal to the number of sub-domains in

that dimension. If the number of sub-domains along r-direction and z-direction are

jp and kp, then the total number of processors (np) required for the simulation is

given by np = jp× kp. Parallelization of the code in two dimensions is not as easy

as in one dimension and needs utmost care to synchronize the data communication,

which otherwise leads to deadlocks in the program; the communications involved

are shown in figure 2.6. In principle the number of processors that can be used
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Figure 2.6: A schematic of 2D domain decomposition in r-z plane.

here is much more than in 1D decomposition. As an example, for a 100×100×100

grid the program allows us to use 10000 processors, which of course might not be

the most efficient configuration. The code is written in such a way that a shared

memory programming can be done in the θ-direction, thereby making the program

highly efficient to run on hybrid memory super-computers.

The code has been initially written and tested on a DELL T7400 work-station

which has 8 processors. The final computations have been be done on the Tata’s

super-computer Eka at Computational Research Laboratories, Pune.



CHAPTER 3TWO-DIMENSIONAL SIMULATIONS
We start with two-dimensional (2D) simulations in an attempt to explore different

computational procedures, solution algorithms, numerical schemes and boundary

conditions. Sreenivas (2004) has discussed that the effect of volumetric off-source

heating on entrainment is a 2D process where the axial stretching of the flow occurs

due to acceleration of the fluid. Moreover, the study of a 2D starting plume could

be relevant for flow in line or row clouds. Much work on a plume originating from

a point source in an infinite domain has been reported in the literature (Fuji (1963)

and Gebhart (1973)). However, we are not aware of any results on plumes rising

from a finite heat source on a solid wall for the validation of our DNS code. There-

fore we verify the code by satisfying conservation principles like the divergence-free

condition and the conservation of buoyancy flux. In this chapter, we first present

the solutions for an unheated plume in laminar and turbulent regimes and later

move onto heated plume to study the effects of off-source heating.

3.1 Simulation Details

As discussed in chapter 2, a non-uniform Cartesian grid used in the simulation is

clustered near the bottom wall and the center-line (figure 3.1). Simulations have

been done for different values of the various parameters which are tabulated in

table 3.1. The results presented here are computed using a grid resolution of 256 x

256, in a domain of size 80d0 along both horizontal and vertical directions. Laminar

flow is computed for the Reynolds number of 100 and turbulent flow for 3000. The

21
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Figure 3.1: Computational grid used in simulations (resolution : 256× 256).
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Simulation Parameters Values
Domain size 40d0 x 40d0, 80d0 x 80d0

Grid resolution 64 x 64, 128 x 128, 256 x 256
Time step size 0.001, 0.005, 0.01
Reynolds Number 100, 1000, 3000

Table 3.1: The values of Simulation Parameters used in simulation.

value of the Prandtl number is 1 in both cases.

3.2 Boundary Conditions

One of the major difficulties in the simulation of a plume is due to the lateral

and outflow boundary conditions, as there are no clear physical boundaries. The

bottom boundary is a solid wall with a heat source at the center, which imposes

a no-slip and no-flow through condition. Our study is a class of free shear flows

where there is significant entrainment of the ambient fluid through the edges. In

the literature, free-slip and traction-free conditions have been used at the lateral

boundary Boersma et al. (1998). The free-slip condition does not allow flow through

the boundary,which may affect the entrainment. The traction-free condition per-

mits flow across the lateral boundary and also satisfies the condition that the

entrainment velocity reaches a constant value asymptotically. Hence, we use the

traction-free conditions at the lateral boundary. The selection of outflow boundary

is crucial, as the use of an inappropriate condition will lead to spurious reflection

in the flow from the outflow. We have carried out numerical experiments with con-

vective boundary condition and Zero Normal Derivative (ZND) of flow variables at

the outflow, and found ZND to be more appropriate.
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3.3 Laminar Flow - Code Verification

Figure 3.2 show the vorticity contours and velocity vector plots for the laminar

starting plume. The flow begins with the formation of a pair of counter-rotating

vortices near the heat source (figure 3.2(a)). These vortices, which constitute the

plume-head, ascend vertically, attached to the core flow. As the flow is incompress-

ible, the divergence of the velocity vector provides a measure for the accuracy of

the present code. In our simulations the divergence free condition is satisfied to an

order of 10−6. Another quantity which is conserved along the streamwise direction

in a fully developed laminar plume is the Buoyancy Flux Integral (BFI) defined as

BFI =

∫
Tυdx

T0U0d0
(3.1)

in non-dimensional form. The peaks in the BFI plot (figure 3.3) correspond to the

position of the plume head at that particular time. Once the plume head goes out

of the domain, BFI remains nearly constant along the streamwise direction. The

centerline velocity plotted along the streamwise direction is shown in figure 3.3.

3.4 Turbulent Flow - Code Verification

A similar procedure as used in the computation of a laminar plume has been

adopted for verification of the code for the turbulent plume. The incompressibility

condition is again satisfied to an order of 10−6. The BFI fluctuates significantly

along the streamwise coordinate at all the times (figure 3.4). It can be observed

that all the fluctuations are about a constant mean value which is shown by a

broken-line in the figure. We cannot average the flow quantities in time, as we are

looking at a starting plume where the height of the plume changes at every instant.
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Figure 3.2: Vorticity contours and velocity vector plots of the laminar plume at
different non-dimensional time instants. (a) t∗ = 10, (b) t∗ = 100, (c) t∗ = 200



26 Two-Dimensional Simulations

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

y/d
0

∫T
vd

x/
T

0U
0d 0

50
100
130
200
220

Time

0 20 40 60 80
0

0.5

1

1.5

2

2.5

y/d
0

v c/U
0

50
100
130
200
220

Time

Figure 3.3: Plots of buoyancy flux integral and centerline velocity along streamwise
coordinate at different times.
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Figure 3.4: Plots of buoyancy flux integral and centerline velocity along streamwise
coordinate at different times.
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3.5 Classical Turbulent Starting Plume

The evolution of an unheated turbulent plume at a Reynold number of 3000 is

shown in figure 3.5. In order to have an early transition, the flow is tripped by

adding 5% noise (with zero mean) to the heat source temperature T0. It can be

seen that the plume spreads at a nearly constant rate and has developed a sinuous

instability. One interesting observation about the turbulent starting plume is that

the plume head detaches from the core flow. Futhermore, it remains in a laminar

state and rises with greater vertical velocity than the core flow.

3.6 Starting Plume with Off-Source Heating

In this section, we look at a starting plume subjected to off-source heating, which is

dynamically similar to the latent heat released due to condensation of water vapour

in the clouds. The volumetric heating starts when the plume head reaches the heat-

injection zone (HIZ) located between y/d0 of 15 and 35. The amount of heat added

in HIZ corresponds to a non-dimensional heat release number (G, defined in chapter

2) of 0.01 and is distributed across the flow according to a Gaussian profile with a

width determined from the velocity distribution of the unheated plume solution.

Figure 3.6 illustrates the flow structure of a heated plume at different times.

Off-source heating imparts an additional buoyancy to the fluid that accelerates the

plume as it reaches HIZ. The spread rate of the plume is seen to decline in HIZ,

and as the plume passes beyond HIZ it increases considerably. It is also evident

that because of the off-source heating the entrainment velocity (cross-stream ve-

locity near the lateral boundary) is significantly lower as compared to that in the

pre-HIZ region (see figure 3.7). The recovery of spread rate above the HIZ can be

attributed to relaxation towards the growth rate characteristic of an unheated
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Figure 3.5: Vorticity contours and velocity vector plots of the turbulent plume at
different non-dimensional time instants. (a) t∗ = 100, (b) t∗ = 200, (c) t∗ = 250
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Figure 3.6: Vorticity contours and velocity vector plots of the turbulent start plume
with off-source heat addition. Re = 3000, G = 0.01 (a) t∗ = 100, (b) t∗ = 200, (c)
t∗ = 250
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turbulent plume.

A comparison of vorticity contours for an unheated and heated starting plume

is shown in figure 3.8. The coherent structures which are distinctly seen in the

unheated plume are disrupted due to off-source heating. The heating also has an

effect in enhancing the vorticity values in the flow. The maximum vorticity in the

heated case is found to be 5 times greater than that in unheated case. Furthermore,

with the heated plume, we observe a protected core with diffuse boundaries, which

is consistent with the experimental findings of Venkatakrishnan et al. (1999).

The results indicate that even a 2D simulation can capture the reduction in

entrainment due to off-source heating, which is in agreement with entrainment

reduction due to the axial stretching and subsequent stabilization of shear layer

as suggested by Sreenivas & Prasad (2000) and Sreenivas (2004). This model is

predominantly based on a 2D process, thus it can be captured by the present 2D

simulations.
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Figure 3.7: Horizontal velocity variation normal to the core flow in the plume, in-
dicating entrainment velocity at different streamwise coordinates. The continuous
line in the plot is at a height in HIZ towards the top.
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Figure 3.8: Vorticity contours of an unheated and a heated starting plume at a
Re = 3000. (a) G = 0, t∗ = 310, (b) G = 0.01, t∗ = 150





CHAPTER 4THREE-DIMENSIONAL SIMULATIONS
The results of 2D simulations show promise and reproduce the major features that

have been observed in earlier experiments on jets and plumes with off-source heat-

ing. The 2D simulations can not however capture all aspects of three-dimensional

(3D) turbulent flows, as the vortex stretching and tilting mechanisms are absent.

So it is necessary to carry out 3D simulations to capture the characteristics of the

real flow. This chapter presents results of 3D starting plumes with and without

off-source heating.

4.1 Boundary Conditions

The bottom and top boundary conditions are no-slip and zero-normal derivative

respectively, the same as in the 2D simulations. In the case of axisymmetric flow

the use of the traction-free condition at the lateral boundary will reduce to the

condition ∂ur

∂r
→ 0. This implies that if ur tends to a non-zero constant as r → ∞,

the inflow from the ambient will in general be infinite, which is not acceptable.

According to Schneider (1981), for a sufficiently high Reynold number (≥ 500) the

outer flow, and therefore also the flow at a lateral boundary sufficiently far from the

core flow, is irrotational. Therefore, we shall take the lateral boundary conditions

to be (a) ∂rur

∂r
= 0 (so the mass influx from the ambient, proportional to rur , is

finite), and (b) ω = 0 (the vorticity is zero as the flow is irrotational).

33
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Simulation Parameters Values
Grid resolution 80d0 × 80d0 × 80d0, 100d0 × 100d0 × 100d0,

128d0 × 128d0 × 1280, 256d0 × 256d0 × 256d0
Time step size 0.001, 0.005, 0.01
Reynolds Number 100, 1000, 2000, 3000

Table 4.1: The values of Simulation Parameters used in the computations.

4.2 Simulation Details

In the 3D simulations, we initially used a rectangular domain to solve the governing

equations. This demanded a high resolution grid in order to capture the axisym-

metry of the off-source heating. This problem was resolved by using a cylindrical

domain in all our computations. The governing equations are singular at the axis

r = 0, which we handle using a method proposed by Verzicco & Orlandi (1996) (see

section 2.8). As the simulations are computationally intensive, the code has been

parallelized using the domain decomposition method. The final computations have

been carried out on the super-computer Eka at the Tata Computational Research

Laboratories, Pune, India.

Simulations have been carried out for different values of the various parameters

listed in table 4.1. The results presented here are computed using a grid resolution

of 100×100×100, in a domain of size 15d0 in the streamwise direction and 12d0 in

the radial direction. Laminar flow is computed for the Reynolds number (defined

in section 2.3) of 100 and turbulent flow for 2000. The value of the Prandtl number

is taken as 1 in both cases.

In the case of turbulent flow simulations, we trip the flow by adding synthetic

white noise (around 5%) to the heat source temperature (T0) at around 40 randomly

chosen meshes. As the the elements in a cylindrical grid do not all have the same

area, the tripping method makes sure that the mean of the area-weighted values of
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the imposed disturbance levels is zero.

4.3 Laminar Flow - Validation

The contours of vertical velocity at different times for the laminar axisymmetric

starting plume are shown in figure 4.1. The development of the plume is seen to be

qualitatively similar to that in 2D simulations. Here, the plume head is a vortex

ring which is formed near the heat source as the flow starts. As the plume-head

moves out of the computational domain, the flow within the domain eventually

tends towards a self-similar state.

For the verification of the code, we follow the same procedure as in 2D simu-

lations. The divergence-free condition is satisfied to an order of 10−8. Figure 4.2

shows the buoyancy flux integral (BFI) plotted along the streamwise direction at

different instant of time. The peaks in the graph correspond to the position of the

plume-head; as the plume reaches a self-similar state, the BFI tends to remains

nearly constant on an average. The self-similar velocity profile obtained from the

present simulations has been compared with the analytical expression given in Yih

& Wu (1981) and is found to be in good agreement with it (figure 4.3).

4.4 Turbulent Flow - Verification

The variation of BFI along the streamwise coordinate is shown is figure 4.4. Even

though the BFI values fluctuate as expected in turbulent plumes, an approximate

mean line can be visually constructed (broken line in the figure), indicating that the

mean BFI is constant over time well upstream of the plume-head. Furthermore,

the incompressibility condition is satisfied to an order of 10−7. These serve as
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consistency tests for the present 3D turbulent code.

4.5 Turbulent Starting Plume with and without Off-

Source Heating: Non-dimensional Parameters

In this section, we present the results of 3D turbulent simulations and discuss the

effects of off-source volumetric heating on the dynamics of the starting plume. The

off-source heat-injection zone (HIZ) is between the heights zb = 7d0 and zt = 10d0.

The heating begins when the plume-head reaches the bottom of the HIZ and a

constant amount of heat per unit volume per unit time (J) is added across the

plume. A threshold on the temperature value (0.001T0 in the present case) is used

to determine the plume width for heat injection, making use of the fact that the

temperature of the plume fluid will be greater than that of the ambient fluid.

The other non-dimensional number relevant to the flow is the bulk Richardson

number (Ri), defined as

Ri =
△ρgb

ρU2
,

where △ρ is the (local) change in the density of the fluid, b the local characteristic

length and U the local characteristic velocity. This can be reduced to the non-

dimensional flow variable as

Ri = △T

T
b
do

(
Uo

U

)2

In clouds, the value of the local Richardson number Ri varies from 0.1 to 2 in the

cumulus type and from 0.3 to 3 in the cumulonimbus type clouds Venkatakrishnan

et al. (1999). In order to obtain the Richardson number in our simulation, the

relation
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Heat release number(G) Richardson number(Ri)
0.01 0.06
0.05 0.3
0.1 0.6

Table 4.2: Non-dimensional heat release numbers and the corresponding Richard-
son numbers used in computations.

Ri = G

(
b

d0

)2 (
U0

U

)3

is used in terms of the non-dimensional heat release number (G) and the values are

tabulated in table 4.2.

4.6 Results

We present here a quick look summary of the observations that follow from the

3D starting plume simulations reported in this thesis. For this purpose we chiefly

look at axial section of the azimuthal and axial components of the velocity and the

vorticity vector fields in sections 4.6.1 and 4.6.2, and the temporal evolution of the

axial distribution of the velocity and vorticity components in section 4.6.3.

4.6.1 Velocity Plots

Figure 4.5 and 4.6 show visualizations of the fluctuating turbulent velocity field

with different colours representing ranges in the visualized variable. Contours of

uθ for four different levels of volumetric heating (G = 0, 0.01, 0.05 and 0.1), at time

t∗ = 28 in θ = 0,π plane (or the x = 0 plane) are shown in figure 4.5. At the two

lowest values of heating the velocity fields are largely similar. For G = 0.05, the

plume-head appears to have virtually separated away from the rest of the plume,

leaving a region within the heat-injection zone (HIZ) where the velocity values are
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very low. At this value of the heating the plume-head is just crossing the upper

boundary of HIZ. When the heating is further increased to G = 0.1, the plume-

head has crossed the upper boundary of HIZ. The velocity field within the HIZ

still shows only very low values, although there are streak structures just above

the lower boundary of HIZ. It can be noted that the width of the plume-head is

appreciably narrower (about a third) when compared to the width of the unheated

plume just below the beginning of the HIZ.

Figure 4.6 shows the azimuthal velocity field, at the last time step where com-

putations were terminated. The times at which the computation was terminated

are noted in each diagram. For G = 0 and t∗ = 35, the unheated plume has just

reached the top of the heat-injection zone. At G = 0.01 the plume head has crossed

the upper boundary of HIZ and the width of the plume within HIZ is slightly lower

than that of the unheated plume. On the whole the red and green regions within

the heat injection zone are now more elongated than in the unheated case, consis-

tent with the acceleration that the fluid experiences due to the additional buoyancy

force in the HIZ. At G = 0.05 and t∗ = 31 the plume-head has gone beyond the

top of the HIZ (compare with figure 4.5 at G = 0.05) and is followed by a region in

the upper half of HIZ where the velocity remains low. Also, compared to the flow

at t∗ = 28, an appreciable velocity field has emerged in the lower half of HIZ. In

the case of G = 0.1, the computation has been terminated at t∗ = 28, at the same

instant at which the flow is shown in figure 4.5. Comparing the two flows shown

here, at G = 0.05 and G = 0.1 (although at different times), we see that increase

in heating has resulted in a narrowing of the plume-head (almost by a factor of

half).

A similar visualization of the streamwise velocity field is shown in figure 4.7.

Comparing the data at G = 0 and G = 0.01, we once again see that a narrow
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plume-head is emerging from the top of HIZ. The width of the plume within HIZ is

slightly greater at the bottom of HIZ and slightly narrower at the top. At G = 0.05,

t∗ = 31 there is a relatively high velocity at and beyond the top of HIZ due to the

additional buoyancy generated by the off-source heating. Although the core here

remains relatively narrow, there is a wider region of low values of the uz field at

the top of HIZ. Even in the case of G = 0.1 and t∗ = 28, there is a larger region

of low velocity fluid outside the core of high velocity fluid in the top half of HIZ.

It must be noted that in the colour code adopted for the velocity field, the green

regions represent relatively low values of the globally normalized velocity uz

Uo

. It is

therefore necessary to point out that the wider regions seen in HIZ at G = 0.05 and

0.1 also represent regions where the velocity, as a fraction of the (generally higher)

center-line velocity, is lower than in the unheated plume. More detailed analyses of

figures 4.6 and 4.7 are necessary to understand the precise nature of the changes in

the velocity profiles across the plume. It is worth noting that the characters of the

distribution of uθ and uz are very different. In particular, it should be remembered

that figure 4.7 displays the values of the instantaneous streamwise velocity rather

than a turbulent fluctuating component, which is usually obtained by subtracting

an appropriately defined mean value. Such a mean value is difficult to define in

the non-stationary turbulent flow of the starting plume that we are studying here,

except in the case of the azimuthal field where the mean is zero by symmetry. This

has an important implication for the interpretation of these pictures, where the

azimuthal velocity field represents the turbulent fluctuations and the axial field

does not. The axial field represents the value of the total velocity, in which the

turbulent component is not in general a very large part.
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4.6.2 Vorticity Plots

The contours of the azimuthal vorticity (ωθ) field are shown in figures 4.8 and 4.9.

Note that unlike the azimuthal velocity uθ, the ωθ field here represents the total

azimuthal vorticity. We see that the injection of heat has an appreciable influence

on the vorticity field at G = 0.05 and 0.1, and the plume-head takes the rough

shape of an arrow head. Interestingly, towards the bottom of the arrow head the

vorticity values near the axis are extremely low. It appears therefore as if vorticity

is concentrated in the region near the tip of the arrow head. Once again with these

diagrams the width of the plume appears larger in the heat-injection zone with the

addition of heat.

Figure 4.9 shows the same field at different times, each marking the termination

of the computer run at the respective heating levels. By and large the conclusions

are similar. At G = 0.05 and t∗ = 31 the plume head has penetrated well above

HIZ. In case of G = 0.1 and t∗ = 28, we also see a tendency for the plume head

like structure to separate from the rest of the plume, corresponding perhaps to a

puffing regime of the kind also seen in Figure 4.6. Note in particular the fibrous

streaks which are below the plume-head towards the bottom of the heat injection

zone.

The streamwise vorticity at t∗ = 28 is plotted in figure 4.11. At G = 0.01 it

can be seen that the vortex patches are stretched presumably due to acceleration

resulting from the additional buoyancy force in HIZ. (This can be seen clearly even

in the contours of the individual regions of high and low vorticity.) The plume here

seems to have narrowed down slightly. For the heating values of G = 0.05 and 0.1,

as we have seen in earlier pictures of the velocity field, the acceleration appears to

be so high that the plume-head has moved rapidly away from the rest of the plume.
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A relaminarization-like behaviour is observed in the region of off-source heating.

4.6.3 Temporal Evolution of Flow Variables

The simulations reported above contain considerable information about the evolu-

tion of the starting plume with and without off source heating. Although in each

case we have only one realization, certain characteristics of the evolution will be

seen to stand out.

We shall present below data on axial variation of selected flow variables with no

heating (G = 0) and with the maximum heating used in the simulations (G = 0.1).

Figures 4.12 to 4.14 show the results with no heating at t = 22, 28 and 35. The

following are the salient features revealed by the figures.

• Figure 4.12, showing the azimuthal component of the velocity uθc is an indi-

cator of where transition to turbulent flow occurs. From the figure this would

appear to be at z/d0 ≈ 2.5, beyond which the amplitude of the fluctuating

uθ increases rapidly.

• Figure 4.13 shows uzc, whose streamwise variations appear quite large. It is

seen that at later times uzc appears to be generally higher than at t∗ = 22.

The general nature of the variation suggests an association with the passage

of the plume head. It is possible to recognize the location of the plume-head

at each value of t∗ by the presence of the peak velocities.

• Figure 4.14 shows |ω|, which reaches high values around z/d0 = 2 to 6, the

peaks again corresponding to the plume head.

We shall now consider the solution at G = 0.1 and present distributions at

t = 22, 24 and 28.
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• First of all Figure 4.15 shows the evolution of the temperature at the center-

line. Note that the highest values occur about 1 diameter after the end of

the heat injection zone.

• Figure 4.16 shows uθc. The fluctuations increase after transition at z/do =

2.5, go down in the heat injection zone and increase thereafter at t∗ = 28.

• Figure 4.17 shows a dramatic increase in uzc at t
∗ = 28 about one diameter

after the injection of heat roughly where the temperature is also highest.

• Figure 4.18 shows that ωz has its lowest values in the heat injection zone.

• Figure 4.19 shows that the trend of absolute vorticity from z/d0 = 0 to 8 is

a general decrease. Although we cannot define in any rigorous way the mean

value of any flow variable in the starting plume, we note here that the scaling

for the similarity solution for the steady turbulent plume suggests that the

vorticity scale decreases with streamwise distance like z−
4

3 (the thickness goes

like z and the centre-line velocity like z−
1

3 . The general trend of the vorticity

field till the beginning of the heat injection zone is therefore as expected. With

heat addition the vorticity values shoot up. There is considerable generation

of vorticity towards the end of and beyond the upper boundary of the heat

injection zone.

Movies showing the time evolution of the azimuthal vorticity for different levels

of heating are available in the compact disc attached to the thesis.
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Figure 4.2: Plot of buoyancy flux integral along streamwise coordinate at different
times.

Figure 4.3: Velocity profile plotted along the radial direction.
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Figure 4.4: Plot of buoyancy flux integral along streamwise coordinate at different
times.
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Figure 4.12: Plot of azimuthal velocity for an unheated plume along the streamwise
coordinate for different times.

Figure 4.13: Plot of axial center-line velocity for an unheated plume along the
streamwise coordinate for different times.
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Figure 4.14: Plot of absolute vorticity at center-line for an unheated plume along
the streamwise coordinate for different times.

Figure 4.15: Plot of center-line temperature for a heated plume (G = 0.1) along
the streamwise coordinate for different times.
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Figure 4.16: Plot of azimuthal velocity for a heated plume (G = 0.1) along the
streamwise coordinate for different times.

Figure 4.17: Plot of axial center-line velocity for a heated plume (G = 0.1) along
the streamwise coordinate for different times.
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Figure 4.18: Plot of axial vorticity at center-line for a heated plume (G = 0.1)
along the streamwise coordinate for different times.

Figure 4.19: Plot of absolute vorticity at center-line for a heated plume (G = 0.1)
along the streamwise coordinate for different times.



CHAPTER 5CONCLUSIONS AND FUTURE WORK
In this thesis, we have carried out 2D and 3D direct numerical simulation of a

starting plume with and without off-source volumetric heating, in an attempt to

understand the fluid dynamics of cloud flows.

The 2D simulations show that volumetric heating leads to disruption of large

scale structures at the lateral edges of the plume. In the heated plume, there is

a drastic increase in the vorticity and we observe a protected core with no clear

lateral boundary between the plume and the ambient fluid, consistent with previous

experimental work on cloud flows. A reduction in entrainment of ambient fluid is

seen in the heat injection zone, suggesting that these effects of volumetric heating

are present also in a two-dimensional phenomenon.

A 3D DNS code which is parallelized using domain decomposition has also

been developed to study starting plumes. We have found that zero vorticity at

the lateral boundary and ∂rur

∂r
= 0, and zero normal derivate condition at the

outflow boundary, are most appropriate for simulating this type of flow. A novel

method has been used for parallelizing the code, using minimum physical memory

and optimized data communication between the processors. The results of the 3D

simulations indicate a drastic change in the flow structure due to off-source heat

addition. As heating is increased, the width of the plume-head narrows down.

Heating leads to increase in the absolute value of vorticity in the plume-head. At

higher values of heating, the plume-head accelerates through the HIZ and detaches

from the core. A relaminarization-like behaviour is also observed.

Further data analysis of the present results and detailed parametric study need

57
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to be carried out. In future a more careful prescription for off-source volumetric

heating profiles needs to be explored.
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