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Preface

In this thesis, I have designed materials at the nanoscale to tune their energetics,

electronic, magnetic and topological properties using density functional theory (DFT)

computations.

In Chapter 1, I provide a brief introduction to the problems studied in this

thesis. I have followed a program of ‘rational design’ of materials to tune various

properties so as to make them suitable for desired applications. The primary result

that one gets from a DFT calculation is the total energy of a system. Using DFT

total energy calculations, I have studied the size-dependent ionization and etching of

Pt nanoparticles. The parameters varied are the nanoparticle size and the chemical

environment, which is either the gas phase or in the presence of an appropriately

chosen ligand. I present these results in Chapter 3. In Chapter 4, I compute a set

of descriptors to find the optimal candidate dye for use in dye sensitized solar cells

(DSSCs). These descriptors depend on the electronic properties of the dye+substrate

complex, which have been tuned by changing the chemical substituents in the dye

molecules. In Chapters 5 and 6, I study the layer-dependent structural and magnetic

phase transitions in Fe/Ir(001) systems and the structure and magnetic properties

of V deposited on Ag(100), respectively. Here, the magnetic properties have been

tuned as a function of film thickness. In Chapters 7 and 8, topological phases

occurring in germanene-like materials have been studied. The topological properties

have been tuned as a function of chemical pressure induced by introducing chemical
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functionalization. All the projects included in the thesis, except those presented in

Chapters 7 and 8, have been done in collaboration with experimentalists. While the

systems studied in this thesis are diverse, the projects have in common a research

philosophy motivated by the rational design of materials, as implemented using ab

initio density functional theory.

In Chapter 2, I discuss the computational techniques and theoretical formalisms

used in this thesis: DFT, spin polarized DFT, the DFT-D2 technique to include

dispersion interactions, fully relativistic calculations to include spin orbit interactions,

and density functional perturbation theory (DFPT) to calculate the phonon spectra.

In Chapter 3, I study the size-selective ionization and etching of Pt nanoparticles.

Pt is well known to be a noble metal. Pt nanoparticles, although widely used as

catalysts, do not get ionized or etched away during chemical reactions. In contrast

to their generally acknowledged behavior of sintering, experiments done by our

collaborators show that Pt nanoparticles, in the presence of specific ligands, show

size-dependent etching. In other words, instead of smaller particles coming together

to form larger ones, they get etched away to form even smaller nanoparticles. Using

DFT, I compute the energetics of the Pt nanoparticles in the gas phase and in the

presence of ligands. A simple equation, based on thermodynamic considerations,

that dictates the maximum size of nanoparticles up to which etching is favored, is

derived analytically. The maximum size for etching is found to depend on the binding

energy of the Pt atom to the ligands; thus this size can be tuned by a suitable choice

of ligand. The theoretical predictions of maximum nanoparticle size up to which

etching occurs in the presence of specific ligands match well with the corresponding

experimental findings.

In Chapter 4, I calculate a set of descriptors that can be used for predicting the

performance of a dye molecule in a DSSC. Using these descriptors, one can hope to

avoid computationally expensive excited state calculations, or lengthy experiments.

Using DFT, I investigate different electronic properties of the dye+TiO2 complex



to formulate a set of descriptors that take into account the strength of coupling

between the dye lowest unoccupied molecular orbital (LUMO) and the conduction

band of TiO2, the amount of available states in the TiO2 conduction band and

the electron-hole separation to prevent recombination. I combine these descriptors

together to formulate a single descriptor that can predict the performance of a dye

molecule in DSSC. The prediction using this descriptor matches with the prediction

using the transition dipole moment that gives the probability of electron transition

between the highest occupied molecular orbital (HOMO) and the LUMO.

In Chapter 5, I find thickness-dependent magnetic and structural phase tran-

sitions in Fe/Ir(001) systems. Experiments on the layer by layer growth of Fe on

Ir(001), done by our collaborators, find an onset of ferromagnetic ordering beyond 4

monolayers (ML) of Fe. My results show the presence of an antiferromagnetic (AFM)

to ferromagnetic (FM) transition beyond 4 ML of Fe/Ir(001), which matches with the

experimental findings. I find that above 4 ML, the FM ordering is favored over AFM

ordering due to a higher exchange splitting in the FM configuration compared to the

AFM configuration. DFT calculations of structural and elastic properties indicate

the presence of a face centered tetragonal (FCT) structure up to 4 ML and a body

centered tetragonal (BCT) structure beyond 8 ML. These results agree well with the

results of cantilever stress measurements done in previous experimental studies.

In Chapter 6, I find the magnetic and structural properties of a V monolayer

deposited on Ag(001). Angle-resolved photoemission spectroscopy (ARPES) experi-

ments on a monolayer of V deposited on Ag(001) show the presence of additional

surface states, when compared to the ARPES spectra of the bare Ag(001) system.

This suggests that there might be Ag segregation on top of V. I perform DFT calcu-

lations on different V/Ag(100) systems which differ in how far the V layer is buried

under the Ag layer. My calculations show that V wants to go subsurface, i.e., V gets

buried under a single layer of Ag, and prefers AFM ordering. The DFT calculated

band structure projected on the surface layers, shows the presence of surface states,



whose dispersion agrees with that seen in the ARPES data. I find that these surface

states arise from the sub-surface V atoms.

In Chapter 7, I show that chemical pressure can induce a topological phase

transition in germanene-like systems and can produce topological insulators (TI) at

ambient conditions. Topological insulators are materials that have an insulating gap

in the bulk but conducting edge states. Though -CH3 functionalized germanene has

been predicted to undergo a topological transition when subjected to an external

biaxial strain, achieving the required large values of strain by mechanical means is

essentially impossible. I show that, instead, chemical functionalization by -CX3 (X

= H, F, Cl, Br and I) and -CXY2 (X,Y = F or Cl) induces giant chemical strains

on the germanene lattice that can drive the system into a TI phase. I find that

GeCCl3 is a topological insulator at ambient conditions and it stabilizes itself by a

symmetry-lowering distortion, leading to distorted (D)-GeCCl3. I also succeed in

achieving a TI phase at ambient conditions in GeCFCl2 which has a lower chemical

pressure than GeCCl3. Moreover, GeCFCl2 is found to be a large gap TI with a band

gap of 0.23 eV, more than double the band gap of GeCCl3. I hope that this work

will motivate experiments for the synthesis of the above mentioned materials.

In Chapter 8, I show that it is possible to observe a number of non-trivial

topological phases in the three-dimensional (3D) bulk of a single material, GeCCl3,

under suitable conditions. Calculation of the 3D band structure [excluding spin orbit

coupling (SOC)] and the nodal line structure in the 3D k-space of the inversion

symmetric system, shows that it is a Dirac nodal straight line semimetal. Breaking

the inversion symmetry by stacking turns it into a Weyl nodal straight line semimetal.

When SOC is turned on, the inversion symmetric system becomes a weak TI (WTI),

whereas the non-inversion symmetric system becomes a trivial insulator. I show that

by applying hydrostatic pressure it is possible to turn both the WTI and the trivial

insulator into strong topological insulator. My work shows the possibility to study

different topological phases and Fermions in a single material.



In Chapter 9, the main conclusions in each chapter are summarized and possible

directions for future work are discussed.
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Chapter 1

Introduction

1.1 Rational Design of Materials at the Nanoscale

Nanomaterials, or materials at nanometric dimensions, show properties that are

completely different from their bulk counterparts, due to a high surface to volume ratio,

and the possible appearance of quantum effects.[1] Examples of nanomaterials include

zero-dimensional materials like molecules and nanoparticles,[2, 3] one-dimensional

materials like nanowires, nanotubes, nanoribbons,[3–6] and two-dimensional materials

such as monolayers and surfaces.[7, 8]

The conceptual origin of the broad area of nanoscience and technology, can

possibly be traced back to Nobel laureate physicist Prof. Richard P. Feynman’s 1959

lecture, ‘There’s plenty of room at the bottom’,[9] where he indicated that it might be

possible to manipulate atoms and molecules to change the properties of materials. The

field of nanoscience got a major boost with the discovery of the scanning tunneling

microscope in 1981,[10] and the atomic force microscope in 1982,[11] which enabled

experimentalists to ‘directly’ observe phenomena such as surface reconstruction, defect

formation, adsorption, nanocatalysis, etc.[12–14] Advances in computational power

due to rapid development in semiconductor technology in line with Moore’s law,[15]

also aided the discovery of new materials with novel properties. Some of the most

active areas in the field of nanoscale materials research in recent times, that have a

1
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broad range of applications in industry, and that we have worked on in this thesis,

include materials discovery for solar cell applications, reactions using nanoparticles,

magnetism in thin films for use in magnetic storage and spintronic devices, materials

with novel topological properties for use in electronic and spintronic devices, and

quantum computers.

Technological applications drive the search for nanomaterials with novel properties.

In this regard, designing materials that fulfill the requirements of industry for their

desired applications, is of critical importance. The rational design of materials is

based on the concept of ‘design on purpose’,[16] which makes it necessary to define

the problem clearly to start the design of nanomaterials. After the problem is well

defined, conceptual design of the nanomaterials, and theoretical prediction of their

properties using different theoretical tools are performed. Once the design phase is

over, experimentalists synthesize the material, and the experimental characterization

tells us whether the predicted properties match the measured properties of the

synthesized material. If a deviation from the predicted properties is observed, a

thorough analysis to find the reason for deviation is done, and with the insights

gained, we go back to redesigning the nanomaterial.

Often, limitations of the experiments hold us back from a detailed understanding of

the material properties. Experiments, in general, are also costly, and time consuming.

Therefore, computational techniques are required, for the rational design of the

nanomaterials, and for an in-depth understanding of the material properties.

Ab initio density functional theory (DFT),[17, 18] molecular dynamics techniques,[19]

Monte Carlo simulations,[20] etc., are a few popular choices of computational methods.

Ab initio or first principles calculations do not need any experimental input or empiri-

cal parameterization, and can complement the experimental results. This is why first

principles methods are widely used by both chemists and physicists as a predictive

tool to search for and design new materials with novel properties. The increase

in computational power with the advent of supercomputers has made it possible
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to simulate real life materials, starting from their constituent atoms. Sometimes,

limitations imposed by the availability of computing facilities, make it difficult to

study realistic systems with first principles methods. In such scenarios, one can

still work with prototypical models that can capture the essential physics in the

experiment.

In this thesis, we have followed a program of ‘rational design’ of nanomaterials

to tune their energetics, electronic, magnetic, and topological properties, so as to

make them suitable for desired applications. Although the problems dealt with in

this thesis are diverse, they have a common underlying philosophy of rational design

of materials, implemented through ab initio density functional theory.

In Chapter 1, we provide a brief introduction to the problems studied in this

thesis. Any DFT calculation produces the total energy of the system as the primary

result. In Chapter 3, using DFT total energy calculations, we have studied the

size-selective ionization and etching of Pt nanoparticles. The size of the nanoparticles,

and the chemical environment, are the parameters tuned to study the energetics. The

chemical environment can be either the gas-phase, or in the presence of appropriately

chosen ligands. In Chapter 4, we compute descriptors that depend on the electronic

properties of the dye + substrate complex, to find the most suitable candidate dye,

from a set of dye molecules, for use in dye sensitized solar cells (DSSCs). We also tune

the magnetic properties of thin films as a function of film thickness. In Chapter 5, we

study the structural, and magnetic phase transition of a Fe thin film, during its layer

by layer growth on Ir(001). In Chapter 6, the growth of a V monolayer on a Ag(001)

substrate is studied. We also show that that topological properties can be tuned as

a function of chemical pressure induced by the use of different functionalizations in

germanene-like systems. These results are presented in Chapters 7 and 8. All the

projects included in the thesis, except those presented in Chapters 7 and 8, have been

done in collaboration with experimentalists.

In Chapter 2, we discuss the computational techniques and theoretical formalisms
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used in this thesis: DFT, spin polarized DFT, the DFT-D2 technique to include

dispersion interactions, fully relativistic calculations to include spin orbit interactions,

and density functional perturbation theory (DFPT) to calculate the phonon spectra.

A great deal of the research in the field of catalysis is driven by the need for the

production of cleaner and inexpensive fuels,[21] and reduction of harmful by-products

during manufacturing processes.[22, 23] Nanoparticles, which often show very differ-

ent properties than their bulk counterparts, have drawn huge attention in the last

couple of decades due to their applications in catalysis,[24–26] electrocatalysis,[27]

fuel cells,[28] water purification,[29] etc. Moreover, the size-dependent reactivity of

nanoparticles, provides controllability of reactions. A major challenge in the perfor-

mance of nanoparticle catalysts is the tendency of the nanoparticles to agglomerate, or

sinter, to form bigger nanoparticles. The general strategy to overcome this problem is

to use supports or media for dispersion.[30] Tunability of the size of the nanoparticles

down to a single atom, is essential in heterogeneous catalysis, and it requires etching

of atoms from bigger nanoparticles to form smaller nanoparticles. Hence, etching

is a cruicial requirement for the chemical reactivity of the nanoparticles, and for

the controllability of the reactions they are used in. In Chapter 3, we study the

size-selective ionization and etching of Pt nanoparticles. Pt is well known to be a

noble metal. Pt nanoparticles have been widely used as catalysts for various chemical

reactions.[24–26] Interestingly, Pt nanoparticles do not get ionized or etched away

during chemical reactions. The general tendency of the nanoparticles is to coalesce

together to form bigger nanoparticles, a tendency known as sintering. Since the

reactivity of the nanoparticles decreases with their increase in size,[31] this sintering

tendency poses a major problem for the application of these nanoparticles as catalysts

in chemical reactions. Experiments done by our collaborators show that Pt nanopar-

ticles, in the presence of specific ligands, show size-dependent etching. In other words,

instead of smaller particles coming together to form larger ones, they get etched away

to form even smaller nanoparticles, which is a very surprising and interesting result.
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Using DFT, we compute the energetics of the Pt nanoparticles in the gas phase and

in the presence of ligands. Based on thermodynamic considerations, we analytically

derive a simple equation, that dictates the maximum size of nanoparticles up to which

etching is favored. The maximum size for etching is found to depend on the binding

energy of the Pt atom to the ligands; thus this size can be tuned by a suitable choice

of ligand. The theoretical predictions of maximum nanoparticle size up to which

etching occurs in the presence of specific ligands match well with the corresponding

experimental findings. The results obtained in this work can provide new routes to

Pt chemistry, and can find uses in various technological applications.

Continuous depletion of fossil fuels, and the need for cleaner sources of energy

to counter global warming, have provided an enormous impetus to the search for

new solar cell materials, in recent years. The search for new materials and devices

that can replace the present silicon based photovoltaic devices, and increase the

conversion efficiency, is still ongoing. Candidate materials include perovskites,[32]

chalcogenides,[33] and organic dyes,[34, 35] which constitute the ‘third generation’

solar cells.[36] Among these, dye sensitized solar cells (DSSCs) provide a low cost

alternative, that are also mechanically robust. Moreover, the large number of available

organic dye molecules, as well as their structural, and electronic tunability make

DSSCs an attractive candidate in solar cell technology. On the other hand, the

availability of such a big sample space of potential dye molecules, makes it absolutely

necessary to devise methods for theoretical prediction of the efficacy of the dyes

in DSSCs, to avoid performing a vast number of time consuming and expensive

experiments. In Chapter 4, we calculate a set of descriptors that can be used for

predicting the performance of a dye molecule in a DSSC. The availability of a large

pool of organic dye molecules, makes it difficult for experimentalists to choose the right

candidate dyes that have the potential to show high conversion efficiency in a DSSC.

Using the formulated descriptors, one could possibly avoid computationally expensive

excited state calculations, or lengthy experiments. Using DFT, we investigate different
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electronic properties of the dye+TiO2 complex to formulate a set of descriptors that

take into account the strength of coupling between the dye LUMO and the conduction

band of TiO2, the amount of available states in the TiO2 conduction band and the

electron-hole separation to prevent recombination. We combine these descriptors

together to formulate a single descriptor that can predict the performance of a dye

molecule in DSSC. The prediction using this descriptor matches with the prediction

using the transition dipole moment that gives the probability of electron transition

between the HOMO and the LUMO. These descriptors can be used individually, or

may be implemented in a machine learning model as key performance indicators

(KPIs) to filter a large pool of organic dye molecules, and choose a smaller set, which

can then be used in experiments to test their performance in DSSCs.

The discovery of giant magnetoresistance (GMR) in 1988,[37, 38] and tunnel

magnetoresistance (TMR) in 1991,[39] and subsequent application of these phenomena

in magnetic read/write devices,[40] have encouraged research in the area of magnetic

thin films. Due to broken symmetry and reduced dimensionality, magnetic thin

films show different properties from their bulk counterparts. Some materials, which

are nonmagnetic in their bulk, can show magnetic properties at the thickness of a

few monolayers.[41, 42] Also, magnetic materials such as Fe, and Ni, show thickness

dependent magnetic phase transitions.[43, 44] In this regard, a thorough understanding

of the formation of magnetic monolayers on nonmagnetic substrates, as well as their

layer-by-layer growth, is crucial for their application in devices to be effective. In

Chapter 5, we find thickness-dependent magnetic and structural phase transitions in

Fe/Ir(001) systems. Understanding the structure and magnetic properties of thin films

is essential for their application in magnetic storage or spintronic devices. Experiments

on the layer-by-layer growth of Fe on Ir(001), performed by our collaborators, find

an onset of ferromagnetic ordering beyond 4 monolayers (ML) of Fe. Our results

show the presence of an antiferromagnetic (AFM) to ferromagnetic (FM) transition

beyond 4 ML of Fe/Ir(001), which matches with the experimental findings. We find
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that above 4 ML, the FM ordering is favored over AFM ordering due to a higher

exchange splitting in the FM configuration compared to the AFM configuration. DFT

calculations of the structural and elastic properties indicate the presence of a face

centered tetragonal (FCT) structure up to 4 ML and a body centered tetragonal

(BCT) structure beyond 8 ML. These results agree well with the results of cantilever

stress measurements done in previous experimental studies.[45] The results suggest a

minimum thickness in a Fe thin film on Ir(001), beyond which it can be used as a

ferromagnetic thin film, for different applications.

In Chapter 6, we find the magnetic and structural properties of a V monolayer

deposited on Ag(001). Previous experimental and theoretical studies performed on

V thin films on Ag, show conflicting results,[42, 46, 47] which may arise due to the

fact that the surface energy of V is more than that of Ag, making the formation

of a monolayer of V on Ag, unfavourable,[42] but leaves room for the possibility of

cluster formation, or Ag segregation. Angle-resolved photoemission spectroscopy

(ARPES) experiments on a monolayer of V deposited on Ag(001) show the presence of

additional surface states, when compared to the ARPES spectra of the bare Ag(001)

system. This suggests that there might be Ag segregation on top of V. We perform

DFT calculations on different V/Ag(001) systems which differ in how far the V layer

is buried under the Ag layer. Our calculations show that V wants to go sub-surface,

i.e., V gets buried under a single layer of Ag, and prefers antiferromagnetic (AFM)

ordering. The DFT calculated band structure projected on the surface layers, shows

the presence of surface states, whose dispersion agrees with that seen in the ARPES

data. We find that these surface states arise from the sub-surface V atoms. Our

results shed new light on the long standing debate on the structure, and magnetic

properties of a V monolayer deposited on Ag(001). Similar methodology can be

applied to study the magnetic behaviour in monolayers, of other nonmagnetic systems.

Since the theoretical proposal of topological insulators by Kane and Mele,[48, 49]

and subsequent experimental realization by König et al.,[50] the class of topological



1.1 Rational Design of Materials at the Nanoscale 8

materials has drawn a lot of attention due to their unique properties, and potential

application in spintronic devices, and as dissipationless transistors for quantum

computers. The topological materials discovered till now can be broadly classified into

the categories of topological insulators (strong and weak),[51, 52] Dirac semimetals,[53]

Weyl (type-I and II) semimetals,[54] and nodal line semimetals.[55] A lot of materials in

each of these classes have been theoretically predicted, and experimentally realized, but

the scope of research for realizing new topological materials that can be incorporated

at low cost in the present day silicon or germanium based device technology, is still

open. In Chapter 7, we show that chemical pressure can induce a topological phase

transition in germanene-like systems and can produce topological insulators (TI) at

ambient conditions. Topological insulators are materials that have an insulating gap

in the bulk but conducting edge states. The discovery of materials that are topological

insulators at ambient conditions, and can be incorporated in the present Si or Ge-

based semiconductor technology, is of prime importance for their possible applications

in spintronics and quantum computers. The inability to form stable monolayers of

germanene while keeping its topological properties unharmed, has led to the idea of

functionalizing germanene to improve its stability.[56, 57] Though -CH3 functionalized

germanene has been predicted to undergo a topological transition when subjected to

an external biaxial strain, achieving the required large values of strain by mechanical

means is essentially impossible. We show that, instead, chemical functionalization by

-CX3 (X = H, F, Cl, Br or I) and -CXY2 (X,Y = F or Cl) induces giant chemical

strains on the germanene lattice that can, in some cases, drive the system into a TI

phase. We find that GeCCl3 is a topological insulator at ambient conditions and it

stabilizes itself by a symmetry-lowering distortion, leading to distorted (D)-GeCCl3.

We also succeed in achieving a TI phase at ambient conditions in GeCFCl2 which

has a lower chemical pressure than GeCCl3. Moreover, GeCFCl2 is found to be a

large gap TI with a band gap of 0.23 eV, more than double the band gap of GeCCl3.

We hope that this work will motivate experiments for the synthesis of the above
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mentioned materials.

In Chapter 8, we show that it is possible to observe a number of non-trivial

topological phases in the three-dimensional (3D) bulk of a single material, GeCCl3,

under suitable conditions. Semimetals (Dirac and Weyl), and nodal line semimetals,

are examples of types of materials other than topological insulators, that show

topologically non-trivial properties. The observation of these different topological

phases in a single material is rare, and achieving such a feat can open up possibilities

in a broad range of applications. Here, we use the presence or absence of inversion

symmetry, along with hydrostatic pressure, in the 3D bulk of GeCCl3 to obtain all

the topological phases mentioned above. Computation of the 3D band structure

[excluding spin orbit coupling (SOC)] and the nodal line structure in the 3D k-space of

the inversion symmetric system, show that it is a Dirac nodal straight line semimetal.

Breaking the inversion symmetry by appropriate stacking, turns it into a Weyl nodal

straight line semimetal. When SOC is turned on, the inversion symmetric system

becomes a weak TI (WTI), whereas the non-inversion symmetric system becomes a

trivial insulator. We show that by applying hydrostatic pressure it is possible to turn

both the WTI and the trivial insulator into a strong topological insulator. Our work

shows the possibility of studying different topological phases and fermions in a single

material.

In Chapter 9, the main conclusions in each chapter are summarized and possible

directions for future work are discussed.
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Chapter 2

Methods

2.1 Density Functional Theory

All materials consist of many interacting nuclei and electrons. Density functional

theory (DFT) provides us with a formalism to treat this many body problem exactly.

Over the years it has become an indispensible tool for the calculation of electronic

structure in condensed matter systems. In this chapter we present an overview of

DFT, which has been used in all the computations throughout this thesis.

2.1.1 The Many Body Problem

The Hamiltonian for a many-body interacting system is given by:[1]

Ĥ = −
∑

I

~
2

2MI

∇2
I −

~
2

2me

∑

i

∇2
i +

1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
−
∑

i,I

ZIe
2

|ri −RI |
+

1

2

∑

i 6=j

e2

|ri − rj|
,

(2.1)

where h is Planck’s constant and ~ = h/2π. ri is the position coordinate of the ith

electron of mass mi and charge e, and RI is the position coordinate of the Ith nucleus

of massMI and charge ZIe. The indices i, j run over all the electrons and I, J run over

all the nuclei in the many-body system. The first two terms on the right-hand-side

of Eq. (2.1) represent the nuclear and electronic kinetic energies respectively. The

subsequent terms are the nuclei-nuclei Coulomb repulsion, electron-nuclei Coulomb

17
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attraction and the electron-electron Coulomb repulsion, respectively.

2.1.2 Born-Oppenheimer Approximation or Adiabatic Ap-

proximation

The nuclear masses MI are much larger than the electronic mass me. This results

in different time scales associated with the motion of nuclei and electrons; the electrons

move much faster than the nuclei. Motivated by this fact, Born and Oppenheimer

proposed a scheme for separating the electronic and nuclear degrees of freedom in

the equations of motion.[2] They showed that a perturbation series can be defined

based on the inverse masses of the nuclei {1/MI}, valid for the full interacting system.

Setting the masses of the nuclei to infinity, one can then ignore the kinetic energy

of the nuclei. This would essentially mean electrons instantaneously following the

motion of the nuclei, and is the very essence of the Born-Oppenheimer approximation.

Ignoring the kinetic energy of the nuclei, then, the many-body Hamiltonian can be

written as

Ĥ = T̂ + V̂ext + V̂int + EII , (2.2)

where T̂ is the electronic kinetic energy operator given by:

T̂ =
∑

i

− ~
2

2me

∇2
i , (2.3)

V̂ext is the potential acting on the electrons due to the nuclei,

V̂ext =
∑

i

Vext(ri), (2.4)

V̂int is the potential representing electron-electron interaction,

V̂int =
1

2

∑

i 6=j

e2

|ri − rj|
, (2.5)
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and EII includes the classical interaction between nuclei and any other terms that

contribute to the total energy of the system.[1]

2.1.3 The Hohenberg-Kohn Theorems

In an attempt to formulate an exact theory of interacting particles, Hohenberg

and Kohn (HK) proved two theorems.[3] The formulation applies to any system

of interacting particles in an external potential Vext(r). Since the nuclei-nuclei

interactions EII can be added later, the Hamiltonian in Eqs. (2.2) – ( 2.5) can be

rewritten as

Ĥ = − ~
2

2me

∑

i

∇2
i +

∑

i

Vext(ri) +
1

2

∑

i 6=j

e2

|ri − rj|
. (2.6)

The Hohenberg-Kohn theorems are stated below.

Theorem I: For any system of interacting particles in an external potential

Vext(r), the potential Vext(r) is determined uniquely, except for a constant, by the

ground state particle density n0(r).

As a consequence of this theorem, one can uniquely determine the external

potential from the knowledge of the ground state particle density which in turn can be

computed from the solution of the many-body wave function that is the solution of the

Schrödinger equation involving the potential. This results in a self-consistent solution

procedure for determining the ground state particle density, as will be described in

the next section.

Theorem II: A universal functional of energy E[n] in terms of the density n(r)

can be defined, valid for any external potential Vext(r). For any particular Vext(r),

the exact ground state energy of the system is the global minimum value of this

functional, and the density n(r) that minimizes the functional is the exact ground

state density n0(r).

The HK theorems show that all the properties such as the kinetic energy, etc.,

are uniquely determined once n(r) is specified. Each such property then can be
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considered as a functional of n(r), and hence the total energy functional EHK [n] can

be written as

EHK [n] = F [n] +

∫

d3rVext(r)n(r). (2.7)

Comparing Eq. (2.7) with Eq. (2.6), one finds that the functional F [n] consists of the

kinetic energy of the electrons (T [n]) and the electron-electron interaction (Ee−e[n]),

F [n] = T [n] + Ee−e[n], (2.8)

where the first term F [n] is a universal functional of the density that is the same

for all electronic systems. Knowing F [n] will therefore enable us to obtain the exact

ground state density and energy by minimizing the total energy of the system, given

by Eq. (2.7), with respect to variations in the density n(r).

However, the exact form of the universal functional F [n] is not known. The HK

theorem is only an existential proof and does not provide the form of F [n]. The reason

behind the success of DFT lies in the proposal of a very effective approximation for

the universal energy functional F [n], by Kohn and Sham in 1965,[4] which we discuss

further below.

2.1.4 The Kohn-Sham Ansatz

The Kohn-Sham (KS) ansatz, which is by far the most widely used way in which

density functional theory has been applied, provides a method of mapping the problem

of an interacting N -electron system onto an equivalent problem of N non-interacting

fictitious electrons. It rests upon two assumptions:[1]

1. The exact ground state density can be represented by the ground state density

of an auxiliary system of non-interacting particles.

2. The auxiliary Hamiltonian is chosen to have the usual kinetic energy operator

and an effective local potential Veff(r) acting on an electron at point r.
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Using the above two assumptions, the Kohn-Sham approach replaces the Hohenberg-

Kohn universal energy functional F [n] with:

F [n] = Ts[n] + EH [n] + Exc[n], (2.9)

where, Ts[n] is the kinetic energy of the non-interacting electrons, given by (using

Hartree atomic units ~ = me = e = 4π/ǫ0 = 1):

Ts = −2
1

2

N/2
∑

α

∫

ψ∗
α(r)∇2ψα(r)dr = −

N/2
∑

α

∫

ψ∗
α(r)∇2ψα(r)dr, (2.10)

where the multipliers 2 and 1/2 in first term on the right hand side of the equation

come due to the two spins and ~
2/2me, respectively.

In Eq. (2.10), the electron-electron interaction term Ee−e[n] of Eq. (2.8) has been

replaced by the sum of the Hartree energy (EH [n]), defined as the classical Coulomb

interaction energy of the electron density n(r) interacting with itself, and a residual

energy contribution due to the exchange asymmetry and correlations. The Hartree

energy is given as:

EH [n] =
1

2

∫

d3rd3r′
n(r)n(r′)

|r− r′| . (2.11)

The residual energy contribution due to the exchange asymmetry and correlations can

be put together along with the kinetic energy difference into the so-called exchange-

correlation energy Exc, which is defined as:

Exc[n] = 〈T̂ 〉 − Ts[n] + 〈V̂e−e〉 − EH [n], (2.12)

where 〈T̂ 〉 =
∑

i

−1
2
∇2

i , and Ve−e =
1
2

∑

i 6=j

1
|ri−ri|

is the potential energy representing

electron-electron interactions.

The KS total energy functional (EKS[n]) is given by:

EKS = F [n] +

∫

drVext(r)n(r). (2.13)
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The variation of EKS[n] with respect to the density n(r), with the constraint

that the total number of electrons in the system is fixed, leads us to the Kohn-Sham

Schrödinger-like equations, which essentially describe the problem of an interacting

many-electron system as a system of N fictitious non-interacting Kohn-Sham electrons

moving in an effective potential VKS[n(r)], given by:

{

−1

2
∇2 + VKS(r)

}

ψα(r) = ǫαψα(r), (2.14)

where the first term is the kinetic energy of the fictitious non-interacting electrons

and VKS is the effective potential experienced by the non-interacting particles, given

by:

VKS(r) = Vext(r) + VH(r) + Vxc(r), (2.15)

where VH(r) = δEH

δn(r)
is the Hartree potential and Vxc(r) = δExc

δn(r)
is the exchange-

correlation potential. The potential VKS(r) needs to be found self-consistently with

the resulting density given as:

n(r) = 2

N/2
∑

α=1

ψ∗
α(r)ψα(r). (2.16)

A flowchart demonstrating the self-consistent procedure to solve Eqs. (2.14) - (2.16) is

shown in Fig. 2.1. The KS-approach explicitly separates out the independent particle

kinetic energy and the long-range Hartree terms. The remaining exchange-correlation

term can be reasonably approximated as a local or nearly-local functional of density,

as we will see in the next section.
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Figure 2.1: Flowchart showing the self-consistency loop for solving the KS equation,
Eq. (2.14).

2.1.5 Approximations for the Exchange-Correlation Func-

tional

The exchange energy arises from the fact that electrons obey Pauli’s exclusion

principle, as a result of which electrons of the same spin experience a repulsive inter-

action between them, called the exchange interaction. The corresponding exchange

energy is defined as the difference between the Hartree and Hartree-Fock energies.

The correlation energy is a result of complicated many-body interactions between

the electrons, whereby the electrons try to reduce the Coulomb repulsion between

themselves by screening themselves. It is given by the difference between the exact

energy and the Hartree-Fock energy.

Since the exact form of the exchange-correlation potential is not known, it is

generally approximated as a local [Local Density Approximation (LDA)] or semilo-

cal [Generalized Gradient Approximation (GGA)] functional of the density and is

expressed in the general form

Exc[n] =

∫

dr n(r)ǫxc[n(r)], (2.17)
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where ǫxc[n(r)] is an exchange-correlation energy per electron at point r that depends

only upon the density n(r) in some neighbourhood of point r.

In the LDA, the exchange-correlation being local in nature, depends on each point

in space independent of other points and the exchange-correlation energy is locally

assumed to be same as that of a homogeneous electron gas,[4] i.e.,

ǫxc[n(r)] = ǫhomxc [n(r)]. (2.18)

Approximate forms of ǫhomxc (n(r)) have been obtained from Quantum Monte Carlo

simulations by Ceperley and Alder,[5] which were later parametrized by Perdew and

Zunger,[6] using a simple analytical form.

The LDA does not take into account the variation of electron density from one

place to another. To overcome this deficiency, the exchange-correlation energy can be

evaluated with an approximation that, at each point in space, is not only a functional

of n(r) but also of its gradient:

ǫxc(n(r)) = ǫxc(n(r), |∇n(r|). (2.19)

A variety of ways were proposed,[7–9] to apply this idea and these are collectively

known as the Generalized Gradient Approximations (GGA). Two of the most widely

used GGA functionals are the Perdew-Burke-Ernzerhof (PBE) functional,[9] and the

Perdew-Wang functional.[8]

2.1.6 Hybrid Functionals

In a system of interacting particles usually the exchange contributions are sig-

nificantly larger in absolute value than the corresponding correlation effects.[10] An

accurate representation of the exchange functional is therefore necessary to obtain

meaningful results from DFT. The observation that the LDA and the GGA trends

are opposite to those of the Hartree-Fock and the fact that within the Hartree-Fock
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picture the exchange effects can be exactly computed, motivated the development of

approximations which combine these two approaches.[11] This resulted in the hybrid

exchange-correlation functionals with DFT correlation and a combination of DFT

and Hartree-Fock exchange, having the following general form:

Ehyb
xc = αEHF

x + (1− α)EDFT
x + EDFT

c , (2.20)

where the weight α is found by fitting the results of the corresponding functional to

the experimental or calculated data, or set a priori in the case of adiabatic connection

functionals.[12] It turns out that the hybrid functionals are more reliable in calculating

band gaps in solids or HOMO-LUMO gaps in molecules, atomic enthalpies, transtion

or excited state geometries and vibrational frequencies. Some popular examples

of hybrid functionals include B3LYP,[13, 14] PBE0,[12] HSE,[15] and Meta hybrid

GGA.[16] In this thesis we have used HSE (Heyd-Scuseria-Ernzerhof) and B3LYP

(Becke, three-parameter, Lee-Yang-Parr) hybrid functionals.

2.1.7 Basis Sets

Solving the KS equations usually requires expansion of the electronic wavefunctions

in a basis set {φβ(r)}. Many types of basis sets exist e.g., plane waves,[17, 18],

Gaussians,[19] Muffin Tin Orbitals,[20] localized atomic orbitals,[21] etc. We have

used a plane wave basis for the majority of the work done in this thesis. For optimizing

the structure of large nanoparticles and calculating the ground state properties of a

few ligand complexes, a basis set of localized atomic-like orbitals has been used, as

implemented in SIESTA.[21] A brief description of these basis functions is presented

below.

Plane Waves

Since the electrons experience a periodic potential in an extended system, Bloch’s

theorem suggests that the electronic wavefunctions can be expanded in terms of plane
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waves. The KS orbitals can then be represented as:

ψα,k(r) =
∑

G

cα,k+Ge
i(k+G).r, (2.21)

where G is a reciprocal lattice vector, α is the band index, and k is a wavevector

in the first Brillouin zone. This summation is truncated by a kinetic energy cutoff

(Ecut) which determines the number of plane waves in the basis, and is given as

(~2/2m)|k+G|2 ≤ Ecut.

The computational cost while using plane waves depends on the number of plane

waves in the expansion, which increases greatly if one tries to expand the wavefunctions

in the core region. This problem is resolved by the use of pseudopotentials, as described

later.

The set of plane waves is discrete only if the system is periodic. This requires the

use of artificially periodic supercells if the system is not periodic. For example, if

the system is not periodic in one or more dimensions, it is made artificially periodic

along that direction by the introduction of a vacuum spacing.

Localized Basis Set

When using a plane wave basis set to perform calculations on systems of low

dimensionality, such as molecules, nanoparticles etc., a significant part of the compu-

tational effort is spent to represent the vacuum that fills the supercells. A common

approach to overcome this problem is to use basis functions that decay exponentially

to zero at sufficiently large distances. Atomic orbitals (AO),[22] Slater-type orbitals

(STO),[23] Gaussian-type orbitals (GTO),[24] etc., are examples of commonly used

localized basis sets.

STOs are expressed as:[23]

φnlmζ
STO (r, θ, φ) = αYlm(θ, φ)r

n−1e−ζr (2.22)

where α is a normalization constant and Ylm(θ, φ) is a spherical harmonic and n, l
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and m are principal, orbital angular momentum and magnetic quantum numbers,

respectively. ζ determines the radius of the orbit. Since STOs are nodeless functions,

so except for lowest lying states (1s, 2p, etc.) one needs a linear combination of

several STOs with variable exponents to represent each atomic orbital.

In GTOs, the exponentials in STOs are replaced by Gaussian-type orbitals. This

is advantageous since all the Coulomb integrals now can be performed analytically,

which saves computational cost. The GTOs are represented as:[24]

φnlmζ
GTO(r, θ, φ) = αYlm(θ, φ)r

2n−2−le−ζr2 (2.23)

The accuracy of a calculation depends on the size of the basis set. Increasing the

number of basis functions improves the quality of the calculation, e.g., in SIESTA, if

a single basis function per atomic orbital is used, this is called a minimal or single-ζ

basis set. To improve accuracy one can add more basis functions of the same type,

which leads to double-ζ (DZ), triple-ζ (TZ) and in general n-tuple ζ basis sets.

2.1.8 Pseudopotential Approximation

The core states of an atom are highly localized, and do not take part in the

chemical bonding. Moreover, representation of these states requires a large number

of basis functions in an all-electron plane wave DFT calculation. This leads to a

huge computational cost. One can however replace the core region of the atom

by an effective potential that treats the interaction between the ‘ionic core’ and

valence electrons with sufficient accuracy. This is known as the pseudopotental

approximation.[25, 26] The oscillations of valence electrons in the core region are

removed with a constraint that the pseudo-wavefunctions match the actual valence

wavefunctions beyond a certain cut-off radius. A good pseudopotential should have

the following properties:[27]

1. smoothness : the pseudo-wavefunction and its first and second derivatives should

match smoothly at the core radius cutoff.



2.1 Density Functional Theory 28

2. transferability : the same pseudopotential can be used in different chemical and

structural environments.

3. softness : it should require a low plane wave cutoff.

It was believed that to ensure good transferability, the norm of the pseudo-

wavefunction should be equal to the norm of the all-electron wavefunction in the core

region. This is known as the norm-conservation criterion and such pseudopotentials

are known as Norm-conserving pseudopotentials.[1] The norm-conservation criterion is

relaxed in Ultrasoft pseudopotentials.[28] However, due to relaxation of this criterion,

some charge in the core region is lost and has to be added as ‘augmentation charge’.

2.1.9 k-point Sampling and Smearing

Many physical quantities such as the total energy, density of states, etc., are

obtained by integrating over the wavevectors in the first Brillouin zone (BZ). In

practice this integration over the first BZ is replaced by a summation over a finite

mesh of k-points. Generally, the most widely used k-point mesh is the Monkhorst-

Pack grid. [29] In this scheme, the k-point grid is generated using the formula:

kn1,n2,n3
=

3
∑

β=1

2nβ −Nβ − 1

2Nβ

bβ, (nβ = 1, 2, 3, ..., Nβ) (2.24)

where Nβ is the number of divisions in the reciprocal space along the β direction (β

= 1, 2, 3) and b1, b2 and b3 are the primitive reciprocal lattice vectors.

Increasing the number of k-points in numerical integrations increases the accuracy

of the calculations, but at the same time the computational cost also goes up. One

can use the symmetries of the system (point group symmetries) to reduce the BZ to

the irreducible BZ (IBZ), and consider only the k-points in the IBZ.

In order to obtain faster convergence one can consider fewer k-points by using the

smearing technique, especially for metallic systems. For insulators and semiconductors,

the density of states goes to zero before the Fermi level or the occupied states. For
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metals the density of states does not go to zero and remains finite at k-points

separating the occupied and unoccupied states in reciprocal space. One therefore

introduces a step function to ensure zero contribution from the unoccupied states.

However, the resolution of a step function at the Fermi energy is very difficult in

plane waves. Using the smearing technique, one can replace the step function with a

smoothly varying function for the occupation of states near the Fermi energy. Some

of the existing smearing techniques are Gaussian smearing, [30] Methfessel-Paxton

smearing, [31] and Marzari-Vanderbilt smearing. [32]

2.1.10 Calculation of Forces and Stresses

To obtain the optimized geometry of any system one needs to minimize the forces

and stresses in the system. Zero force implies the atomic coordinates are relaxed and

zero stress means the cell parameters are optimized.

The force on an ion I is equal to the derivative of the total energy with respect to

the ionic position RI , which according to the Hellmann-Feynman (HF) theorem is

related to the expectation value of the derivative of Hamiltonian,[33] given as:

FI = −∂E(RI)

∂RI

= −〈ψ| ∂Ĥ
∂RI

|ψ〉 (2.25)

where ψ is the eigenfunction of the Hamiltonian Ĥ. This theorem relieves one from

calculating the total energy of a system at many configurations to compute the

derivative and shows that computation of the total energy at a single configuration

is sufficient to calculate the forces. The HF theorem assumes that the basis set

used in the computation of forces is complete. But in actual cases the basis sets are

truncated and/or position-dependent, giving rise to Pulay forces.[34, 35] The use of a

position-independent basis set such as a plane wave basis set avoids this problem and

is one of the major advantages of using a plane wave basis set.

Similarly, stresses can be calculated using the Nielsen and Martin theorem,[36]

which relates the derivative of the total energy Etot with respect to the strain ǫαβ, to
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the expectation value of the derivative of the Hamiltonian with respect to the strain,

given as:

σαβ = − 1

Ω

∂Etot

∂ǫαβ
= − 1

Ω
〈ψ| ∂Ĥ

∂ǫαβ
|ψ〉 , (2.26)

where Ω is the volume of the system. Similar to HF forces, the truncated basis set

can lead to errors in the computed stress values. To reduce these errors the stress

calculations usually require a higher energy cut-off Ecut for plane waves than that

would be required for total energy convergence.

2.1.11 Spin Polarized DFT

To extend the KS theory to the spin-polarized system it is sufficient to consider

the total electronic density to be composed of two independent spin densities as

n(r) = n↑(r) + n↓(r). Each spin density is evaluated separately as is done in normal

DFT:

nσ(r) = 2
Nσ
∑

α=1

ψσ∗
α (r)ψσ

α(r), (2.27)

where σ = {↑, ↓} is the spin of the electron, and Nσ is the number of orbitals of spin

σ. The spin-polarization or magnetization density is defined as m(r) = n↑(r)− n↓(r).

The KS equations can now be written in terms of the spin polarized charge density

and the magnetization density as (in Hartree units):

{

−1

2
∇2 + V σ

KS(r)

}

ψσ
α(r) = ǫσαψ

σ
α(r), (2.28)

where V σ
KS is the KS effective potential, given as:

V σ
KS(r) = Vext(r) + VH(r) + V σ

xc(r), (2.29)

where the exchange-correlation potential is defined as:

V σ
xc(r) =

δExc[n(r),m(r)]

δnσ(r)
. (2.30)
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These equations can be solved in a similar fashion to the non-spin-polarized KS

equations, with approximations for the XC functional.

2.1.12 Dispersion Interactions: The DFT-D2 Method

Dispersion interactions are a form of attractive, long range, non-local interactions

which arise as a response of the electrons in one region to instantaneous charge

density fluctuations in another region.[37, 38] They are also known as van der Waals

interactions or London interactions. The leading term of such an interaction is an

instantaneous dipole-induced dipole interaction and the corresponding energy decays

as − 1
R6 , where R is the interatomic separation. Dispersion interactions play an

important role in many systems, such as layered materials, molecules on surfaces,

DNA, proteins, etc.

The dispersion interactions can be included in the DFT calculations either as semi-

empirical corrections on top of the existing local functionals,[39, 40] or as non-local

exchange-correlation functionals that incorporate the London interactions.[41, 42] In

this thesis, wherever needed we have included the London dispersion interactions using

the “DFT-D2” treatment of Grimme.[39] In this method the dispersion corrected

total energy is given as:

EDFT-D2 = EDFT + Edisp, (2.31)

where EDFT is the total energy from DFT calculations and Edisp is the dispersion

correction given by:

Edisp = −s6
Nat−1
∑

I=1

Nat
∑

J=I+1

CIJ
6

R6
IJ

fdamp(RIJ), (2.32)

where Nat is the number of atoms in the system, CIJ
6 denotes the dispersion coefficient

for a pair of atoms I and J ,

CIJ
6 =

√

CI
6C

J
6 , (2.33)

s6 is a global scaling factor that depends only on the approximate functional used,
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and RIJ is the interatomic distance between the atoms I and J . fdamp(RIJ) is a

damping function used to avoid singularity at small RIJ , given as:

fdamp(RIJ) =
1

1 + e−d(RIJ/Rr−1)
, (2.34)

where Rr is the sum of atomic van der Waals radii,[43] and d is a damping parameter

with a typical value of 20.[39]

2.2 Relativistic DFT

To take into account the relativistic effects of the electrons it is necessary to

solve the Dirac equation instead of the Schrödinger equation. In the presence of an

electromagnetic field, the Dirac equation gives rise to the spin-orbit coupling term

in addition to the relativistic corrections to the kinetic and potential energies of the

electron.[44] Starting from the Dirac equation, the relativistic Kohn-Sham equation

can be written as:[45]

(cα.p+ βmec
2 + Veff (r) +Bxc.σ)ψν(r) = Eνψν(r), (2.35)

where c is the velocity of light, p is the momentum operator, Eν is the eigenvalue of

the equation including the rest mass energy, and α and β are 4× 4 matrices given by:

α =







0 σ

σ 0






, (2.36)

and

β =







I2 0

0 −I2






, (2.37)



2.2 Relativistic DFT 33

ψν is the 4-component vector:

ψν(r) =



















φ↑
ν(r)

φ↓
ν(r)

χ↑
ν(r)

χ↓
ν(r)



















, (2.38)

where ↑ and ↓ indicate the spin-up and spin-down electrons, respectively, φν and χν

are large and small components of the wavefunction, respectively, and σ denote the

Pauli spin matrices.

The Hamiltonian in Eq. (2.35) can be rewritten as the sum of three terms: the

Hamiltonian of the spin-polarized KS equations HSP , the contributions coming from

spin-orbit interaction HSO and the contribution coming from the relativistic terms

other than that of spin-orbit (mass-velocity, Darwin, and non-hermitian) H1. In the

scalar relativistic approximation, HSO is neglected.

2.2.1 Spin-Orbit Interactions

The spin-orbit interaction is a relativistic effect. An electron in its rest frame sees

the nucleus moving in an orbit around it, generating a magnetic field proportional to

the orbital angular momentum, which in turn interacts with the spin dipole monent

of the electron. This is the origin of spin-orbit coupling, which results in a splitting

of electron energy levels. In general, spin-orbit coupling becomes more and more

prominent as the nuclear charge increases. Thus for heavier atoms relativistic effects

need to be included for a reliable description of the electronic properties of the system.

As discussed in Section 2 above, spin-orbit effects are included in the ab initio

calculations by solving the relativistic generalization of the KS equations presented

in Eq. (2.35), which is the sum of three terms, HSP , HSO and H1. The spin-orbit
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operator HSO can be written as:

HSO =
1

2m2
ec

2
σ.(∇Veff )× p̂, (2.39)

where p̂ is the momentum operator.

In this thesis spin-orbit coupling is included in the calculations by the use of fully

relativistic pseudopotentials,[46] to study the topological properties of germanene-like

systems.

2.3 Phonon Calculations: Density Functional Per-

turbation Theory

A wide range of physical properties of solids such as resistivity of metals, super-

conductivity, etc., depend on the lattice-dynamical behavior. With the development

of DFT it is possible to obtain accurate phonon dispersions on a fine grid of wave

vectors covering the entire Brillouin zone (BZ) using linear response theory of lattice

vibrations, also known as the density functional perturbation theory (DFPT).[47–49]

2.3.1 Lattice Dynamics from Electronic-Structure Theory

The adiabatic approximation described in Section 1.2 lets us decouple the vi-

brational degrees of freedom from the electronic degrees of freedom. Using this

approximation the lattice-dynamical properties of a system can be determined by the

eigenvalues ε and the eigenfunctions Φ of the Schrödinger equation:

{

−
∑

I

~
2

2MI

∂2

∂R2
I

+ E(R)
}

Φ(R) = εΦ(R). (2.40)

where RI is the coordinate of Ith nucleus, MI its mass and E(R) is the Born-

Oppenheimer energy surface.

The equilibrium geometry is found by equating the Hellman-Feynman forces (see

Section 1.9) to zero, FI = −∂E(R)
∂RI

= 0. The vibrational frequencies ω corresponding
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to this geometry are found by determining the eigenvalues of the Hessian of the

Born-Oppenheimer energy, scaled by nuclear masses:

det | 1√
MIMJ

∂2E(R)

∂RI∂RJ

− ω2| = 0. (2.41)

The Hessian of the Born-Oppenheimer energy surface appearing in Eq. (2.41)

is obtained by differentiating the Hellman-Feynman forces with respect to nuclear

coordinates:

∂2E(R)

∂RI∂RJ

= − ∂FI

∂RJ

, (2.42)

where the Hellman-Feynman forces are given as:

FI = −
∫

nR(r)
∂VR(r)

∂RI

dr− ∂EN(R)

∂RI

, (2.43)

where EN(R) is the electrostatic interaction between different nuclei. Calculation

of Eq. (2.42) involves finding the ground-state electron charge density nR(r) as well

as its linear response to a distortion of the nuclear geometry, ∂nR(r)/∂RI . This is

shown in the next section.

2.3.2 Linear Response

The electron-density response ∂nR(r)/∂RI needed to determine the matrix of

interatomic force constants, can be evaluated by linearizing the one-electron KS

equation, charge density and the effective potential, with respect to the wave function,

density and potential variations, respectively.

Linearizing the charge density leads us to:

∆n(r) = 4Re

N/2
∑

n=1

ψ∗
n(r)ψn(r), (2.44)

where ∆ is the finite-difference operator. The variation of Kohn-Sham orbitals,
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∆ψn(r), is obtained by first-order perturbation theory as follows:

(HSCF − ǫn)|∆ψn〉 = −(∆VSCF −∆ǫn)|ψn〉, (2.45)

where HSCF is the unperturbed KS Hamiltonian and ∆ǫn = 〈ψn|∆VSCF |ψn〉 is the

first-order variation of KS eigenvalues ǫn. The first-order correction to the self-

consistent potential is given by

∆VSCF (r) = ∆V (r) + e2
∫

∆n(r′)

|r− r′|dr
′ +

dvxc(n)

dn

∣

∣

∣

n=n(r)
∆n(r). (2.46)

Equations (2.44) – (2.46) form a set of self-consistent equations for the perturbed

system completely analogous to the KS equations in the unperturbed case, with

the KS eigenvalue equation being replaced by the solution of a linear system, given

by Eq. (2.45). Note that ∆VSCF (r) is a linear functional of ∆n(r), which in turn

depends linearly on the ∆ψ’s, casting the whole self-consistent calculation in terms

of a generalized linear problem.

The advantage of DFPT over other nonperturbative methods for calculating the

vibrational properties (such as the frozen-phonon method, where the total energies

are calculated for a series of displaced atomic positions, and numerical differences are

then computed), is that the responses to perturbations of different wavelengths are

decoupled. This feature allows one to calculate phonon frequencies at arbitrary wave

vector q, avoiding the use of supercells and with a computational load independent

of phonon wavelength.

2.4 Crystal Orbital Hamilton Population

Crystal orbital Hamilton population (COHP), first proposed by Prof. Roald

Hoffmann,[50] is a technique to analyze chemical bonds in molecules or solids using

orbital-pair interactions. It is a bonding indicator constructed by weighting the density

of states (DOS), by the corresponding elements of the Hamiltonian. A related concept
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to COHP is the crystal orbital overlap population (COOP), where, as the name

suggests, the DOS is weighted by the overlap population. Since in the Hamiltonian,

a negative hopping term indicates bonding, a negative COHP indicates a bonding

contribution, whereas a positive COHP indicates an antibonding contribution. To

understand the formulation of COHP, we start with the definition of local density of

states (LDOS), given by:[51]

LDOSµT,µT′(E) =
∑

j,k

C∗
µT′,j(k)Cµ′T

′,j(k)δ(ǫj(k)− E), (2.47)

where C(k) contains the coefficients of linear combinations of atomic orbitals (AOs)

µ, to represent crystal orbitals (LCAO-CO), building the wavefunction of the jth

band. The indices of the AOs are a short-hand notation (µ ≡ A,L) to represent the

orbital at atom A, positioned at a point RA in the unit cell given by the lattice vector

T, with the quantum numbers L (≡ n, l and m). Note, in the LCAO definition, one

speaks of LDOS, whereas in the projected framework, one works with projected DOS

(pDOS); the only difference is the route to obtain the coefficient matrices C(k). The

COHP is then defined as the LDOS weighted by the Hamiltonian matrix elements,

given as:[51, 52]

COHPµT,νT′ = HµT,νT′

∑

j,k

C∗
µT,j(k)CνT′,j(k)δ(ǫj(k)− E). (2.48)

where HµT,νT′ are the elements of the Hamiltonian matrix H. In our work we

have used the COHP method, as implemented in the LOBSTER package,[53] to

understand the bonding and antibonding contributions corresponding to the valence

band maximum, and conduction band minimum in germanene-like materials, as

discussed in Chapter 7.
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2.5 Calculation of Z2 Topological Indices

Topological insulators (TIs) are materials with non-trivial band topology char-

acterized by what are called the Z2 invariants.[54] TIs display an insulating band

gap in the bulk while having conducting edge states corresponding to the surface.

For two-dimensional (2D) systems a single Z2 index identifies a TI, whereas for

three-dimensonal systems (3D) there are four indices; one strong and three weak.

These indices broadly divides the TIs into two classes, viz. the strong TI (STI) where

the strong index is always 1, and the weak TI, where the strong index is 0, but at

least one of the weak indices is 1. Note, for 2D systems, the absence of weak indices

mean that all the 2D TIs are STIs.

The calculation of the Z2 indices for inversion symmetric systems (in 2D and 3D)

is quite straightforward, and it involves the computation of the parity of the bands

at the time reversal invariant momenta (TRIM) points, as described below. For 2D

systems, the topological invariant Z2 is computed by evaluating the parity of the

bands at the four time reversal invariant momenta (TRIM) points in the BZ, using

the following equations:[55]

δi =
∏

m

ξm(Λi), (2.49)

where the product is over the pairs of parity eigenvalues of the occupied Kramers

doublets resulting from the time reversal symmetry, at the TRIM points Λi, given

by ξm(Λi) , without multiplying the corresponding time reversed partners. The Z2

invariant ν is then given by

(−1)ν =
4
∏

i=1

δi. (2.50)

The Z2 topological index, for the inversion symmetric structures in 3D, has been

calculated using the parity of the bands at the eight time reversal invariant momenta
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(TRIM) points in the Brillouin zone (BZ), using the following equation:[55]

δi =
∏

m

ξm(Λi), (2.51)

where the product is over the pairs of parity eigenvalues of the occupied Kramers

doublets resulting from the time reversal symmetry, at the TRIM points Λi, given by

ξm(Λi) , without multiplying the corresponding time reversed partners. The strong

topological invariant ν0 is then expressed as

(−1)ν0 =
8
∏

i=1

δi. (2.52)

The other three weak invariants are given by the product of the δi’s for which the

TRIM points Λi=(n1n2n3) =
1
2
(n1b1+n2b2+n3b3), (b1,b2, and b3 being the reciprocal

lattice vectors), reside in the same plane, given as

(−1)νk =
∏

nk=1;nj 6=k=0,1

δi=(n1n2n3). (2.53)

There are several methods to calculate the Z2 invariant for a system without

inversion symmetry.[56–58] Among them, the Wilson loop,[57] and the Wannier

charge center (WCC) method[58] are equivalent. In this thesis we have followed the

WCC method prescribed by Soluyanov et al., and implemented in the WannierTools

package.[59] The WCC corresponding to the home unit cell is defined as:

xn =
i

2π

∫ π

−π

dk 〈unk|∂k|unk〉 . (2.54)

where |unk〉 are the Bloch states corresponding to the band n (n = 1...N/2) and k is

a k-point in the BZ. To calculate the Z2 index, one needs to calculate the number of

jumps in the gap centers (∆m; m ∈ [0,M ]), defined as the center of the largest gap

between two adjacent WCC, along a k-path (along kx, ky or kz) divided into (M + 1)
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points. The Z2 index is then defined as:[60]

∆ =
M
∑

m=0

∆m mod 2. (2.55)

This suggests that even/odd number of jumps result in Z2 index of 0/1, indicating

trivial/topological insulator.

2.6 Calculation of Surface States

The surface states carry signature of the bulk topology, and are an important indi-

cator for the non-trivial nature of the bands in topological insulators and semimetals.

We use the surface Green’s function (SGF) technique for calculating surface states for

a semi-infinite system, as implemented in the WannierTools package.[59] It employs

the iterative Green’s function method developed by Guinea et al. and Sancho et

al.,[61, 62] involving the concept of principal layers large enough so that the hopping

between next nearest layers are negligible. One keeps on replacing the principal

layer by two principal layers iteratively, until the interaction between the effective

layers (each iteration doubles the number of layers included in the new effective layer)

become as small as desired. The detailed algorithm is presented in Ref.[62]. The

quantity of interest is the surface spectrum function A(k||, ω), obtained from the

imaginary part of the SGF, and is given as:[59]

A(k||, ω) = − 1

π
lim
η→0+

Im Tr Gs(k||, ω + iη). (2.56)

where k|| are the k-points in the surface BZ, ω is the energy, and Gs is the SGF.

Surface states are plotted so that the intensity of the bands is proportional to the

surface spectral function.
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2.7 Codes Used

The density functional theory computations used in this thesis are performed using

the Quantum ESPRESSO,[17] VASP,[63] SIESTA,[21] and Gaussian09[64] packages.

Calculation of surface states, and Z2 indices for systems without inversion symmetry,

have been done with the help of WannierTools package.[59] Computation of COHP

for bonding analysis has been performed using the LOBSTER package.[53]

The atomistic structures of systems and charge density plots reported in this thesis

are obtained using the XCrysden[65] and VESTA[66] software packages. Various two-

and three-dimensional graphs are obtained using the Xmgrace and gnuplot software

packages, respectively.
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Chapter 3

Size-selective Ionization and

Etching of Pt Nanoparticles

In this chapter, we study the size-selective ionization and etching of Pt nanoparticles.

In contrast to their generally acknowledged behavior of sintering, experiments carried

out by our collaborators in the group of Prof. Sreebrata Goswami, show that Pt

nanoparticles, in the presence of specific ligands, show size-dependent etching. Using

density functional theory calculations, we study the energetics of Pt nanoparticles in

the gas phase, and in the ligand environment, to confirm this finding, and also to

understand why the usual behavior of sintering is reversed to etching in the presence

of the ligands. We also find the condition dictating the maximum size of the Pt

nanoparticles, up to which etching is favored in the presence of the ligands.

3.1 Introduction

Nanoparticles, due to their high surface to volume ratio, and effects of quan-

tum confinement, show properties that are significantly different from their bulk

counterparts.[1] Early experiments by Haruta et al. showed gold nanoparticles of size

< 10 nm deposited on transition metal oxides, can be used for low temperature oxi-

dation of hydrogen and carbon monoxide.[2] Subsequently, Gardner et al. compared

the catalytic activity of Pt and Au nanoparticles in terms of low temperature CO

49
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oxidation.[3] Around the same time, Yang et al. used Cu, Co, and Mn as catalysts for

CO oxidation.[4] These experiments opened up the area of metal nanoparticle assisted

catalytic reactions. Since then, in the last couple of decades, metal nanoparticles have

found their applications not only in catalysis,[5–7] but also in electrocatalysis,[8] fuel

cells,[9, 10] water purification,[11] etc. The catalytic activity of a nanoparticle can

be tuned by varying its size and shape, to control important reactions in heteroge-

neous catalysis, such as hydrogen evolution reaction (HER),[12, 13] oxygen reduction

reactions (OER),[14, 15] etc.

Although Pt is a noble metal, its nanoparticle form has long been used in hetero-

geneous catalysis.[12–15] The interest of the research community in Pt nanoparticles

(Pt NPs) is growing fast due to their wide range of applications involving ‘green tech-

nology’, including in catalytic converters,[16] for decomposition of polluting aromatic

compounds,[17] photochemical solar energy harvesting,[18] and water treatment.[19]

Several other applications of Pt NPs include gas sensors,[20, 21] bio imaging,[22, 23]

detection of important biological molecules,[24, 25] and even nanomedicine.[26] Such

widespread applications have resulted in an ever-increasing demand for Pt, whereas its

abundance in Earth’s crust is quite limited (0.01 ppm). This demands in optimization

and controllability in the structure and size of Pt at the nanoscale to increase its

effectiveness in various applications.

One can tune the size and shape of Pt NPs to gain controllability over their

reactivity.[27, 28] A major obstacle in controlling the size of the nanoparticles is the

tendency of the nanoparticles to agglomerate, or sinter, to form bigger nanoparticles.

To prevent sintering, surfactants, and polymers are used in suspension with the

nanoparticles,[29, 30] which sometimes reduce the number of surface binding sites,

affecting the catalytic activity of the nanoparticle. One could also possibly tune the

size of the nanoparticles by etching, where atoms get detached from bigger NPs, to

form smaller NPs, and which also happens to be a crucial requirement for chemical

reactions. Very recently, it has been shown that gold nanoparticles can be etched to



3.2 Experimental background 51

control their shape, with proper choice of ligands.[31] However, it is found that Pt

nanoparticles (Pt NPs), in general, do not want to ionize or dissociate in most of the

chemical reactions, with the exception of in the presence of aqua regia, and fluorine

gas.

In this work we show that the tendency of the Pt NPs to sinter, can be reveresed

to a tendency of etching. We find that the Pt NPs participate in stoichiometric

chemical reactions, in the presence of specific ligands (L) through the formation of a

monometallic di-radical complex, Pt(L)2. The reaction is found to be size-selective,

in that it results in complete dissolution of Pt NPs up to a maximum nanoparticle

size. This maximum size of the nanoparticle is found to be dependent on the type of

the ligand used, and can be tuned by changing the ligand by modifying its different

derivatives. We believe that these results present a drastic deviation from our present

understanding of the chemical reactivity of platinum, and increase the possibility of

the use of zero valent noble metal NPs in stoichiometric chemical reactions.

3.2 Experimental background

In this section we have described the experiments done on the size-selective etching

of Pt NPs in the presence of a π-acidic azo-aromatic ligand L, by our collaborators in

the group of Prof. Sreebrata Goswami at IACS, Kolkata. The experimental design is

schematically depicted in Figs. 3.1 (a), (b), the details of which can be found in the

PhD thesis of Dr. Debabrata Sengupta.[32] Different batches of Pt NPs with sizes

ranging from 2 to 30 nm are synthesized and mixed with a solution of 2-(phenylazo)

pyridine, L1, in chloroform solvent. After reaction, the solution is drop cast on a

carbon-coated copper grid. Transmission electron microscopy (TEM) images of the

drop-cast film are taken to determine the size of the NPs contained in the film (and

hence in the solution), which show the size-dependent reactivity of the NPs. The size

d of a NP is defined here as the diameter of the minimal bounding circle enclosing

its TEM image. It is observed that in the presence of L1, the color of the solution
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changes from red to green [see the insets to Figs. 3.1(a) and 1(b)], and only Pt NPs

of size d ≤ 6 nm get ionized and are etched away. In contrast, NPs with size > 6 nm

remain unreacted.

The experimental results are presented in three groups, divided according to the

sizes of the NPs before the reaction: (1) Group 1, for approximately monodisperse

NPs with size < 6 nm [shown in Figs. 3.1(c)-(e)], (2) Group 2, for approximately

monodisperse NPs with size > 6 nm [see Figs. 3.1(f)-(h)], and (3) Group 3, for NPs

with a distribution of sizes ranging from 2 nm to 20 nm [Figs. 3.1(i)-(k)].

Fig. 3.1(c) shows a TEM image taken before the reaction for Group 1. NPs with

size ≤ 6 nm are visible in the image before the reaction, all of which disappear after the

reaction [Figs. 3.1(c)-(d)]. The pre-reaction histogram in Fig. 3.1(e), for the sample

of Group 1, shows the NP size distribution before the reaction (d = 3.92± 1.89 nm).

No corresponding post-reaction histogram is available in this case, since all the NPs

get dissolved during the course of the reaction. In contrast, for Group 2, which is

comprised of NPs with d > 6 nm, no reaction occurs after mixing with L1, indicated

by the color of the solution that remains unchanged. Clear traces of unreacted NPs

are also observed in the post-reaction TEM image [see Figs. 3.1(f)-(g)]. Importantly,

the size distribution of NPs before and after the reaction remains virtually unchanged,

as indicated in the histograms in Fig. 3.1(h), with d = 11.65±3.60 nm before reaction,

and 12.19± 3.94 nm after reaction. It is also worth noting that in the post-reaction

TEM images, it is found that unreacted NPs tend to agglomerate. This is supported

by our theoretical understanding (presented further below).

The size-selectivity of this reaction is further investigated using a mixture of NP

sizes (Group 3). Instead of using a monodisperse collection of NPs, a collection of

NPs with a broad distribution in size, ranging from 2 nm to 20 nm, is taken for reaction

with L1. It is found that only those NPs with size d ≤ 6 nm, get dissolved selectively,

while the rest remain unreacted. Figs. 3.1(i) and 3.1(j) show representative TEM

images before and after the reaction occurs. As shown in Fig. 3.1(k), the distribution
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Figure 3.1: Panels (a), (b) show schematic presentation of chemical reactivity of
Pt NPs with L1: smaller size NPs (d ≤ 6 nm) react but larger NPs do not. (c), (d)
show TEM images before and after reaction between NPs with d ≤ 6 nm and L1 and,
(e) the corresponding NP size distribution in pre- and post-reaction samples. (f)-(h)
Same as (c)-(e) for NPs with d > 6 nm. (i) TEM images before the reaction of a NP
sample with a wide range (2-20 nm) of NP sizes. (j) Post reaction TEM image of
the sample shown in (i), where only the smaller NPs (≤ 6 nm) react. (k) Histogram
corresponding to (i), (j). Note, from Fig. 1(e), it can be argued that even a NP of 7
nm reacted and that could be the threshold. However, the number of such particles is
too small. In several batches experiments do not show particles of 7 nm at all. Hence,
the fact that post reaction image does not contain 7 nm NPs as unreacted, could be
due to sampling uncertainty. Even NPs of size ∼ 6.5 nm have been found to remain
unreacted. Hence, the threshold size has been indicated as 6 nm. Experimental data
courtesy of Prof. Sreebrata Goswami and Debabrata Sengupta.

of NP sizes before the reaction can be approximated as a superposition of two

Gaussians centered at ∼ 4.00 nm and 10.98 nm (see the red bars in the figure). After
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the reaction, only a Gaussian centered at ∼ 11 nm remains, while the other disappears

(see the green bars in the figure), indicating that even in a mixture, only the NPs

smaller than the threshold size of 6 nm undergo selective dissolution.

It is found that the reaction proceeds by squential detachment of Pt atoms

through the formation of Pt(L1)2 complex. The presence of the Pt(L1)2 complex

has been verified by various spectroscopic techniques, viz., in situ nuclear magnetic

resonance (NMR), ultraviolet-visible (UV-Vis) and 1HNMR. The structure of the

Pt(L1)2 complex is determined using X-ray diffraction (XRD), and the oxidation state

of the Pt atom in the complex, using X-ray photoelectron spectroscopy (XPS). The

electronic state of the L1 ligand was further verified using Raman spectroscopy, which

matches well with the DFT simulated Raman spectra as discussed further below.

Motivated by the experiments described above, which show the counter-intuitive

behaviour of size-selective etching of Pt NPs in presence of L1 ligands, we perform

DFT computations on Pt NPs, to study their energetics in the gas phase and in the

presence of L1 and six other related ligands. The results are discussed further below.

3.3 Systems under study

To understand the size-selectivity of etching of Pt NPs by azo-aromatic ligands,

we consider NPs Ptn of selected sizes up to n = 2057 atoms (∼ 4.4 nm) as shown

in Fig. 3.2. The initial guesses for the structures of the nanoparticles of sizes up to

n = 70, are taken from the Cambridge cluster database; [33] the structures are then

optimized using DFT and Hellmann-Feynman forces. NPs with n = 309, 923 and

2057, are assumed to have cuboctahedral structure which is a common practice in the

literature,[34] and optimized with DFT calculations. We note that for computational

reasons, it was not feasible to perform DFT on larger sized clusters, our size-dependent

trends were therefore extrapolated to larger sizes.

A total of seven azo-aromatic ligands are studied which can be divided into

two groups: (i) a family of 2-(arylazo) pyridines (L); viz. 2-(phenylazo) pyridine
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Figure 3.2: The optimized geometries of the Pt nanoparticles (Ptn, n = 1− 2057)
are shown. The largest nanoparticle considered for DFT calculations has 2057 atoms,
which corresponds to a diameter d = 4.4 nm.

(L1), 4-chloro-2-(phenylazo) pyridine (L2), 2,6-dimethyl-2-(phenylazo) pyridine (L3),

4-methyl-2-(phenylazo) pyridine (L4) and (ii) common di imine ligands; viz. 9,10-

phenanthroline (Λ1), 2-(phenylimino) pyridine (Λ2) and 2,2-bipyridine (Λ3). The

chemical structures of these ligands are presented in Fig. 3.3.
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Figure 3.3: The chemical structure of the di imine ligands: (a) 9,10-phenanthroline
(Λ1), (b) 2-(phenylimino) pyridine (Λ2), and (c) 2,2-bipyridine (Λ3), and a family
of 2-(arylazo) pyridines (L); viz. (d) 2-(phenylazo) pyridine (L1), (e) 4-chloro-2-
(phenylazo) pyridine (L2), (f) 2,6-dimethyl-2-(phenylazo) pyridine (L3), and (g)
4-methyl-2-(phenylazo) pyridine (L4).

The energetics of the Ptn NPs are studied in the gas phase and in presence of the

seven ligands mentioned above.

3.4 Computational details

Our calculations have been performed within the framework of ab initio spin polar-

ized density functional theory, using the Quantum ESPRESSO (QE),[35] SIESTA,[36]

and Gaussian[37] packages. A combination of packages is used because different codes

have different capabilities regarding which properties can be easily calculated. In

all cases exchange-correlation interactions are treated using the PBE form for the

generalized gradient approximation.[38] Van der Waals interactions are incorporated

using the DFT-D2 method.[39, 40] In QE, the Kohn-Sham equations are expanded

using a plane wave basis set, with cut-offs of 40 Ry for wavefunctions and 400 Ry

for charge densities. Interactions between the ionic cores and valence electrons are

described using ultrasoft pseudopotentials.[41] The Gau-PBE hybrid functional has

been used for accurate estimation of the gap in energy between the highest occupied

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of

the ligands.[42] In SIESTA, we use a double-ζ polarized localized basis with a mesh

cutoff size of real-space grid taken to be 200 Ry. The Raman spectra of the ligand

L1 and the Pt(L1)2 complex have been computed using the Gaussian package, using
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Figure 3.4: Comparison of the DFT (Gau-PBE hybrid functional) calculated (red
dashed) HOMO-LUMO gaps of the ligands in the gas phase, with the experimental
HOMO-LUMO gaps (black solid) measured using UV-Vis and cyclic voltammetry.
Experimental data courtesy of Prof. Sreebrata Goswami, and Debabrata Sengupta.

6-311G(d,p) basis for lighter atoms (C, H and N) and SDD basis for Pt atoms. In

all cases, a vacuum spacing of at least 10 Å is introduced along all non-repeating

directions and the reciprocal space sampling is done at the zone center only.

3.5 Results and Discussion

3.5.1 Ligands in the gas phase

Before looking at the properties of the di-radical complex, it is instructive to

compare the electronic properties of the ligands in the gas phase, with the experiments.

We thus verify the position of the HOMO and the LUMO of the ligands in the gas

phase, as computed from DFT using the Gau-PBE hybrid functional, with the

exprimental values obtained from cyclic voltammetry and UV-Vis spectral analysis

(see Fig. 3.4). Note that all the energies are calculated with respect to the vacuum

energy. We find that the HOMO-LUMO gap of the ligands in the gas phase is

reproduced well in the DFT calculations, which provides verification of the method

used.
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Table 3.1: Bond parameters: experimental and DFT optimized bond distances (Å)
and bond angles (◦) of complex Pt(L1)2 complex. For the labeling of the atoms, see
Fig. 3.5.

Bond Parameters
Pt(L1)2 complex

Experimental Theoretical (DFT)

Pt-N1 2.006(3) 2.0676
Pt-N3 1.965(3) 2.0650
Pt-N1a 2.006(3) 2.0677
Pt-N3a 1.965(3) 2.0650
N2-N3 1.335(5) 1.3284
∠ N1-Pt-N3 76.59(12)◦ 76.4642◦

∠ N1a-Pt-N3 103.41(12)◦ 104.6774◦

3.5.2 Formation of the Pt(L)2 complex

The etching of Pt nanoparticles proceeds through sequential detatchment of the

Pt atoms in the form of a Pt(L)2 complex. It is experimentally verified that in the

presence of the chosen ligand, L1, Pt(L1)2 is formed. The XRD data suggests that the

geometry of the Pt(L1)2 complex is square planar. In Fig. 3.5(a), we show the DFT

optimized geometry of the complex, with appropriate symbols used to define the bond

parameters. A comparison of the bond lengths and angles obtained from experiment

and theory is presented in Table 3.1. We see that the DFT computed bond lengths

and angles match very well with the experimental values. In Fig. 3.5(b), we plot the

spin density of the Pt(L1)2 complex, where up (red) and down (green) spin densities

can be seen to be located on the two ligands, leading to an antiferromagnetic coupling.

This observation also agrees well with the fact that the Pt atom loses one electron to

each of the ligands resulting in a +2 oxidation state, as confirmed by the XPS data.

Raman spectroscopy is used for further verification of the electronic state of

the L1 ligands. By performing natural bond orbital (NBO) analysis, we find that

in the electron acceptor orbitals of the LUMO and the LUMO+1, 73% and 58%,

respectively, of the charge density is localized around the azo-group. Hence, we

monitor the azo-stretching modes in the ligand L1 present before the reaction and

in the Pt(L1)2 complex formed after the reaction, to assess the ligand redox state.
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Figure 3.5: The optimized geometry of the Pt(L1)2 complex, with labels used to
denote bond parameters, is shown in (a). (b) shows the spin density with red and
green lobes indicating up and down spins, respectively. (isosurface value: 0.003
e/Bohr3)

In Fig. 3.6, we show the differential Raman spectra (in solid blue), obtained from

the difference of the spectra before and after the reaction. The upper and lower

panels represent the experimental and DFT computed Raman spectra, respectively.

The differential vibrational frequencies corresponding to the azo-stretching modes

obtained by simulating the Raman spectra of L1 (indicated by the red arrows in

the figure) using DFT calculations are assigned at 1555, 1478 and 1459 cm−1; and

of Pt(L1)2 (indicated by green arrows in the figure) at 1410, 1323 and 1274 cm−1.

These results show a good match to the vibrational peaks of the azo-modes from

experimentally obtained differetial Raman spectra (before reaction: 1493, 1450 and

1423 cm−1; after reaction: 1367, 1295 and 1255 cm−1), providing convincing evidence

of the formation of the diradical complex.

To summarize, in this section we compared our DFT computed results with the

experimental data, which confirms that in the process of etching of Pt NPs, Pt atoms

are 2-electron ionized and etched from the NP by the L1 ligand, resulting in the

formation of the diradical Pt(L1)2 complex. Next, we investigate the size-selectivity

of the etching process and show that the threshold size of etching can be tuned by
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Figure 3.6: Comparison of experimental (upper panel) and DFT computed (lower
panel) Raman spectra. The blue curve shows the difference of Raman spectra
before (red) and after (green) reaction. The red and green arrows indicate the
frequencies corresponding to the azo-stretching modes, before and after the reaction,
respectively. In both the experiment and the DFT results, we see a blue shift in the
frequencies correspondin to the azo-stretching modes. Experimental data courtesy of
Prof. Sreebrata Goswami and Debabrata Sengupta.

suitable choice of ligands.

3.5.3 Thermodynamics of sintering vs. etching

Both ionization and etching of Pt nanoparticles are counter-intuitive, and com-

pletely opposite to the usually observed phenomena of inertness and sintering. In order

to understand and confirm this experimental finding, we perform DFT calculations.

We consider the thermodynamics, as a function of nanoparticle size n, of a sequential

process where one Pt atom is either added to a Ptn cluster to form a Ptn+1 cluster

(sintering) or detached from it to form a Ptn−1 cluster (etching). The energetics of

these two processes are compared in the gas phase and in the ligand-environment,

where L1 ligands are available to bind to Pt atoms. We note that because of the high

computational cost, we perform DFT calculations only for selected sizes up to n =

2057, where n is the number of Pt atoms in the nanoparticle, beyond this, results are

obtained by extrapolation.

In Figs. 3.7 [(a)-(c)], we study the energetics, as computed from DFT, when

out of N Pt atoms in the gas phase, n atoms form a Ptn nanoparticle, while the
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Figure 3.7: Theoretical explanation for reversal of behavior in the presence of
ligands L: We consider the thermodynamics of sintering vs. etching in the gas phase
(a)-(c) and in the presence of the ligands L1 (d)-(f) and Λ1 (g)-(h). The horizontal
lines represent the total energies ∆Etot, as computed from DFT, of the system of
either (a)-(c) Ptn nanoparticle + (N − n) free Pt atoms, or (d)-(i) Ptn nanoparticle
+ (N − n − 1) Pt(L)2 moieties + 2(n − 1) free ligands L, as a function of n. Here
L is the ligand L1 or Λ1. A negative/positive slope for ∆Etot vs. n implies that
sintering/etching is favoured. The inset in (c) shows that the slope of the fitted
curve remains negative for all n, indicating sintering is always favourable for Pt
nanoparticles in the gas phase. In contrast, the inset to (f) and the graph (i) show
that the slope changes sign beyond a certain value nmax in the presence of the ligands
L1 and Λ1. The corresponding maximum cluster sizes beyond which etching no longer
occurs are found to be nmax = 9, 930 (6.6 nm) and nmax = 43 (1.07 nm), respectively.
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remaining N − n atoms remain as free atoms. The small horizontal line at each n

indicates the total energy of the system as a function of n, we see that the slope

of the graph is always negative, indicating that sintering is always favored in the

gas phase, irrespective of nanoparticle size n. Similarly, in Figs. 3.7 [(d)-(f)] we plot

the total energy in the ligand environment for Ptn + (N − n) number of Pt(L1)2

moieties + 2(n − 1) free ligands L1. This represents a sequential process where a

Pt nanoparticle containing n Pt atoms can change in size to one containing one

less Pt atom by detachment of one Pt atom to two L1 ligands forming the Pt(L1)2

moiety. We see that in the presence of the ligand L1, the shape of the graph is quite

different from that in the gas phase: it is clear that the slope of the graph starts

out at n = 1 as strongly positive and reduces as n increases; the calculated slope

remains positive till n = 9, 930 (d∼ 6.6 nm) beyond which the slope becomes negative.

From the extrapolated results, beyond n = 2057, one can clearly see that there is a

critical nanoparticle size of ∼ 6.6 nm (n = 9, 930) below which etching is favored,

whereas for nanoparticles bigger than this, sintering is energetically favored. This is

in remarkably good agreement with the experiments, where it was found that the

reactions occurred only for nanoparticles when d is ≤ 6 nm. This also supports the

experimental observation that larger nanoparticles tend to agglomerate (sinter) when

mixed with L1, as can be seen from the TEM image in Fig. 3.1(g), (j).

To extrapolate our results for larger nanoparticle sizes, we use the following

quadratic equation to fit the DFT results:

∆Etot = a0n
2 + a1n+ a2, (3.1)

where ∆Etot is the total energy, and n is the nanoparticle size. Eq. (3.1) is used to fit

the plot of the energies of both Ptn + (N − n)Pt system, vs. n, in the gas phase,

and the energies of Ptn + (N − n) Pt(L)2 moieties + 2(n− 1) free ligands L, vs. n,

in the ligand environment.



3.5 Results and Discussion 63

Figure 3.8: Thermodynamics of etching in presence of ligands (a) L2, (b) L3, (c)
L4, (d) Λ2, and (e) Λ3. The horizontal lines represent the total energies ∆Etot, as
computed from DFT, of the system of Ptn nanoparticle + (N−n−1) Pt(L)2 moieties
+ 2(n− 1) free ligands L (L = L2, L3, L4, Λ2, and Λ3), as a function of nanoparticle
size n. The positive/negative slope of the ∆Etot vs. n plots suggests etching/sintering
is favored. The maximum allowed nanoparticle size (nmax) for etching, is indicated
by labels and arrows in magenta.
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In the following, we derive the condition determining the maximum size nmax

where the etching stops in presence of the ligand L. We show that the condition

is quite general and is applicable not only to L1, but also to other related ligands

(Λ1, Λ2, Λ2, L2, L3 and L4). As discussed above, the positive/negative slope of the

graph of ∆Etot vs. n (see Fig. 3.7) indicates that etching/sintering is favored. In the

absence of the ligands, the slope of the graph is given by:

E(Ptn)− E(Ptn−1)− E(Pt) = −Esub(n), (3.2)

where E(X) is the total energy of the system X, Ptn is a gas phase cluster containing

n Pt atoms, and Esub(n) is the sublimation energy defined as:

Esub(n) = −[E(Ptn)− E(Ptn−1)− E(Pt)]; Esub(n) > 0, ∀n. (3.3)

We note that the right hand side of Eq. (3.2) is always negative. This implies that in

the gas phase sintering is always favored. In the presence of the ligand L, the slope

of ∆Etot vs. n can be written as:

E(Ptn)− E(Ptn−1)− E(Pt(L)2) + 2L

= Esub(n) + Eb(Pt(L)2) < 0, ∀n < nmax (3.4)

where, Eb(Pt(L)2) is the binding energy of the Pt atom to the two ligands in the

Pt(L)2 complex, given by:

Eb(Pt(L)2) = −[E(Pt(L)2)− E(Pt)− 2E(L)]. (3.5)

In Eq. (3.4), nmax is the size of cluster at which the slope of ∆Etot vs. n becomes 0. In

other words, the etching stops when Esub(nmax) = Eb(Pt(L)2). This is the condition

for the maximum cluster size nmax, up to which etching takes place in the presence of
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Table 3.2: Comparison of the maximum nanoparticle size nmax in Ptn, where etching
stops, nanoparticle diameter d (nm) corresponding to nmax and the binding energies
of the Pt atom to the corresponding ligands, in the Pt(L)2 complex.

Ligands nmax d (nm) Eb (eV)

L1 9,930 6.58 7.72
L2 8,511 6.25 7.66
L3 11,285 6.87 8.29
L4 8,879 6.34 7.68
Λ1 43 1.07 5.68
Λ2 109 1.46 6.88
Λ3 76 1.29 6.27

the ligand L. We note that Esub(n) is, in general, an increasing function of n. Thus,

if we are to change the ligand L1 to other ligands L with a smaller/larger the binding

energy to the Pt atom, the critical size at which the etching stops would also become

smaller/larger.

To verify this hypothesis further, we consider two classes of closely related ligands:

(i) a family of 2-(arylazo) pyridines (L); viz., 4-chloro-2-(phenylazo) pyridine (L2),

2,6-dimethyl-2-(phenylazo) pyridine (L3), 4-methyl-2-(phenylazo) pyridine (L4) and

(ii) common di imine ligands; viz., 9,10-phenanthroline (Λ1), 2-(phenylimino) pyridine

(Λ2) and 2,2-bipyridine (Λ3).

In Fig. 3.8, we show the energetics of the Ptn + (N − n) Pt(L)2 moieties +

2(n − 1) free ligands L, vs. n, where L = L2, L3, L4, Λ1, Λ2, and Λ3. The fit and

extrapolation have been done using Eq. 3.1, and the extrapolated results are shown

in the insets of Fig. 3.8 (a)-(c). In all the cases we see that the slope is positive

at first and then decreases to a point where the slope becomes zero, indicating the

maximum nanoparticle size nmax, up to which etching is favoured, and then the slope

decreases showing the presence of sintering. The nmax values are shown using arrows

in magenta, and are tabulated in Table 3.2.

We find, from DFT, that Eb(Pt(L)2), calculated using Eq. 3.5, for the ligands L1 –

L4 has values of 7.72, 7.66, 8.29 and 7.68 eV, respectively. The Eb values for the Λ

family of ligands Eb(Pt(Λ)2) with L = Λ1−Λ3, are 5.68, 6.88 and 6.27 eV, respectively,
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and are smaller than the Eb values of the L-family of ligands, which result in nmax

values as small as 43, 109 and 76, respectively [see, Figs. 3.7(i), 3.8(d) and (e) for Λ1,

Λ2 and Λ3, respectively]. The nmax values for L2 – L4 as shown in Figs. 3.8[(a)-(c)] are

found to be 8,511 (∼ 6.2 nm), 11,225 (∼ 6.9 nm) and 8,869 (∼ 6.3 nm), respectively,

implying a threshold size of ∼ 6 nm for this reaction while the threshold for Λ-series

comes out as ∼ 1 nm. The ligands with their corresponding nmax and Eb values

are tabulated in Table 3.2. Experimentally, all the ligands of the L-series dissolve

Pt NPs with d ≤ 6 nm, while those of the Λ-series do not. This matches well with

our theoretical findings. Since > 95% of the isolated NP-size have d > 1 nm, the

threshold for Λ-series could not be experimentally detected. Nonetheless, the insights

developed above, can provide guidance in further design of ligands with different Eb

values that can control the occurrence of the reaction as well as the NP size-threshold

for the reaction.

3.6 Conclusions

The work presented in this chapter shows size-elective ionization and etching of

Pt NPs. In a radical departure from their tendency of sintering, experiments done by

our collaborators show that Pt nanoparticles, in the presence of π-acidic azo-aromatic

ligands, show size-dependent etching. In other words, instead of smaller particles

coming together to form larger ones, they get etched away to form even smaller

nanoparticles. Based on thermodynamic considerations of the nanoparticles in the

gas phase and in the presence of ligands, we derive a simple equation that dictates

the maximum size of nanoparticles up to which etching is favored. The maximum size

for etching is found to depend on the binding energy of the Pt atom to the ligands;

thus this size can be tuned by a suitable choice of ligand. The theoretical predictions

of maximum nanoparticle size up to which etching occurs in the presence of specific

ligands match well with the corresponding experimental findings. We anticipate that

this strategy might be relevant for other metals as well, and that it potentially offers
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a new chemical route in metal-radical chemistry. The ligands and their derivatives

can also be used to dissolve Pt nanoparticles in catalytic converters in the form of

di-radical complex, and later reduced to extract the platinum from the complex,

providing a simpler and cleaner way of reusing the platinum, that can help solve a

major challenge in the automobile industry.
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Chapter 4

Identifying Optimal Dye

Sensitizers for Use in Solar Cells

In this chapter, we have identified and computed a set of descriptors to find the

optimal candidate dye for use in dye sensitized solar cells (DSSCs). Experiments

carried out by our collaborators in the group of Prof. Patchanita Thamyongkit, show

high absorptivity in the long wavelength region, for a set of novel (not previously

considered) dye molecules. We choose these molecules as our candidate dyes and

perform density functional theory (DFT) calculations on them in the gas phase and

on a TiO2 substrate, in an attempt to determine which of these dyes might provide

the best performance as a sensitizer in DSSCs. Many of the results presented in this

Chapter have been published in Ref. [ 1].

4.1 Introduction

Dye-sensitized solar cells (DSSCs) have attracted considerable attention in recent

years as a low-cost alternative to conventional solid-state photovoltaic devices.[2, 3]

Large absorption coefficients, ease of structural modification, the possibility of large-

scale synthesis and economically friendly production have made organic DSSCs ideal

candidates for solar cell applications. In a DSSC set-up, dye molecules in the elec-

trolyte get adsorbed on the substrate, preferably TiO2, acting as the cathode material.

73
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The dye molecules absorb solar energy and the electrons in the highest occupied

molecular orbital (HOMO) of the molecule get excited to the lowest unoccupied

molecular orbital (LUMO) of the dye, and then to the conduction band of the TiO2.

The holes left behind in the HOMO of the dye, get replenished by the electrons

supplied by the redox reaction occurring in the electrolyte.

Previous theoretical and experimental studies have shown that several parameters,

corresponding to these different stages of the DSSC operation, can be tuned to control

the energy conversion efficiency of the dyes in a DSSC.[4–8] First of all, the dye

molecule must have large electronic absorptivity in the visible region for efficient

absorption of solar energy and excitation of electrons to the LUMO. The absorptivity

can be tuned by modification of the π-conjugated donor-acceptor structure.[4, 9]

The position of the frontier orbitals of the dye with respect to TiO2 valence and

conduction bands is also crucial: Bahers et al.[7] suggested that the HOMO of the

dye must lie within the band gap of the TiO2 substrate, and the LUMO of the dye

must lie right above the conduction band bottom edge of TiO2. In this regard the

interaction of the dye with the electrolyte may be important as it has been shown to

affect the energy of the conduction band edge.[10] de Angelis et al.[6] have shown

theoretically, that the effective electronic coupling between the dye and the substrate

is also important as it affects the injection of the excited electrons from the dye to the

substrate. This coupling between the dye and the TiO2 has been shown to depend

on the anchoring group and the adsorption geometry of the dye molecule on the

substrate. Kim et al.[11] have shown that the structure of the molecule, especially the

donor-acceptor geometry affects the charge separation and hence the recombination

of electrons and holes. It has been shown that the extended π-conjugation in the

donor structure results in larger electron-hole separation,[12] ultimately affecting the

conversion efficiencey of the dye in a DSSC.

Thus, the factors determining the performance of the dye molecules in a DSSC

include alignment of frontier orbitals of the dye molecule with respect to the band
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gap and conduction band edge of TiO2, coupling between the molecule and the

substrate, and the electron-hole separation. Tuning these parameters needs an in-

depth understanding of the electronic properties of the dye+substrate complex. As

will be discussed further below, in our work we have formulated a set of descriptors

that can capture these different factors affecting the performance of a dye molecule

in a DSSC.

Difluoro-4-bora-3a, 4a-diaza-s-indacenes or so-called BODIPYs are very well

known organic dyes widely used for several optoelectronic and optical applications.

Due to their high absorption coefficients and fluorescence quantum yields, high

(photo)chemical stability and improved synthetic availability,[13] they have been

used in organic solar cells,[14–17] as fluorescent dyes for imaging,[13, 18–20] optical

sensors,[21–24] and laser dyes,[25–27] etc. Their photophysical and electrochemical

properties can be tuned by changing the substituents in a BODIPY core structure. In

this study we have investigated theoretically (while our collaborators have, simultane-

ously, investigated experimentally), the effect of aromatic-derived or aryl meso-groups

and extended π-conjugated systems at β-positions, on the photophysical and electro-

chemical behaviour of the BODIPY, with a view to determining its suitability as a

dye-sensitizer. Based on the electronic properties of the dye + substrate complex, we

have calculated using density functional theory (DFT), a set of descriptors to find

the optimal candidate dye from a set dyes, for use in DSSCs.

4.2 Experimental background

Our experimental collaborators in the group of Patchanita Thamyongkit have

recently synthesized a series of novel BODIPYs with phenyl, thienyl and bithiophenyl

meso-substituents, with the goal of examining their photophysical and electrochemi-

cal properties.[1] Thienyl and bithiophenyl groups are chosen due to the fact that

thiophene and polythiophene derivatives are known to have good electronic proper-

ties, environmental stability and structural versatility,[28] and are widely used for
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optoelectronic applications.[29–31] The structures of the target BODIPY, benzo-

dipyrrin, benzo-BODIPY and cyclohexyl-fused BODIPY derivatives bearing thienyl

and bithiophenyl meso-substituents are shown in Chart 4.1. By such systematic

structural variation, the effects on the photophysical and electrochemical properties of

the presence of boron-chelation, the number of thiophene units in the meso-group, and

the fused rings at the β-positions of the BODIPY core, compared with phenyl group,

can be intensively studied. To avoid an interfering effect from a reactive carboxyl

group on the photophysical and electrochemical measurements, the derivatives with

ethyl ester groups, as a protected form of the carboxyl groups, at α-carbons of the

BODIPY core (compounds 2′, 3′ and 4′ in Chart 4.1) are used in the measurement. In

theoretical calculations, the molecules having carboxyl meso-groups at the α-carbons

(compounds 2, 3 and 4 in Chart 1) were taken into consideration to explore the

possibility of using these compounds as a photosensitizer in dye-sensitized solar cells

(DSSCs), because the dye molecule requires such a group to attach onto a TiO2

substrate.

A comparison of the absorption maxima (λabs,max) of 1a, 1b and 1c, with that

of 3a′, 3b′ and 3c′, respectively, from UV-visible spectroscopy measurements [see

Table 4.1] shows that the presence of the benzo-fused rings and the α-ester groups

on the pyrrolic rings of 3a′, 3b′ and 3c′, causes a red shift of λabs,max by 139 – 142

nm. Moreover, a similar comparison of λabs,max of 2a′ vs. 3a′, 2b′ vs. 3b′ and 2c′

vs. 3c′ reveals that the boron-complexation of the benzo-dipyrrins leads to a red shift

of λabs,max by 68 – 77 nm. Therefore, the boron-complexation and the introduction

of the benzo-fused ring at the β-positions of the BODIPY cores play a major role in

the compounds achieving high absorptivity in the long wavelength region, which is

preferable for photovoltaic devices.

Motivated by the above experimental results, we have carried out density functional

theory (DFT) calculations on the benzo-BODIPY’s, which exhibit high absorptivity

in the long wavelength region. We therefore focus here on molecules 3a, 3b and
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Figure 4.1: Structures of BODIPYs and dipyrrins of interest are shown. Compounds
2, 3 and 4 have carboxyl anchor groups (R = -COOH) in the theoretical calculations,
whereas in the experiments ethyl ester groups (R = -COOEt) are present for the
corresponding compounds 2′, 3′ and 4′.

3c, and also 4b as a comparative molecule, to investigate the effect of the extended

conjugated system on the β-benzo-fused rings of the BODIPY core. The details of

the systems, calculations and results are presented below.

4.3 Systems under study

To compare our DFT results with the experiments, we first calculate the electronic

properties of the 3a, 3b, 3c and 4b molecules in the gas phase. Since molecule-

substrate interactions have a significant impact on device performance, in order to

evaluate the potential of the dye molecules as candidates for use in DSSCs, we place

the 3a, 3b, 3c and 4b molecules on the anatase TiO2(101) surface. The final relaxed

geometries of these molecules adsorbed on TiO2 are shown in Fig. 4.2. Note, as

mentioned in Section 2, instead of ethyl ester groups (3a′, 3b′, 3c′, and 4b′), carboxyl

meso-groups at the α-carbons of the BODIPY core (3a, 3b, 3c, and 4b) are used
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Table 4.1: The photophysical properties of the target BODIPYs and dipyrrins. λabs,
ǫ, λem and φf denote the absorption wavelength, the molar extinction coefficients,
emission wavelength and the fluorescence quantum yields, respectively.

Compound λabs (nm) [ǫ× 105 (M−1 cm−1)]a λem (nm) φf
b

BODIPY
1a[32] 344, 503 (0.5) 521 0.05
1b 393, 514 (0.5) 553c, 617 0.02
1cd 312, 514 (0.5) 341, 567 –e

4b′ 439, 556 (0.5) 582 0.05
Benzo-dipyrrin

2a′ 574 (0.4) –f –g

2b′ 579 (0.3) –f –g

2c′ 589 (0.2) –f –g

Benzo-BODIPY
3a′ 642 (1.0) 663 0.37
3b′ 656 (0.7) 676 0.29
3c′ 658 (0.5) 678 0.23

a Only ǫ at the absorption maximum (λabs,max) was determined.
b The φf values were calculated by using mythelene blue (φf=0.04 in
ethanol) as reference.[50]

c Emission signal was observed as a shoulder.
d The photophysical properties were investigated in CH2Cl2, according
to a published report.[41]

e Data was not provided by published report.[41]
f No peak was observed.
g Value could not be calculated.

as anchoring groups for all the molecules to investigate the performance of these

molecules as dye-sensitizers. The colour codes for all the atoms are shown in the side

panel of Fig. 4.2 (a).

4.4 Computational details

Our ab initio DFT calculations are performed using the PWscf package of the

QUANTUM ESPRESSO distribution.[33] Interactions between the ion cores and

the valence electrons are treated using ultrasoft pseudopotentials.[34] Exchange-

correlation effects are taken into account using a generalized gradient approximation

(GGA) of the Perdew-Burke-Ernzerhof (PBE) form.[35] A plane-wave basis set is

used with a cutoff of 40 Ry for wavefunctions and 400 Ry for charge densities. Van

der Waals interactions are incorporated using Grimme’s DFT-D2 scheme.[36, 37] The
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anatase TiO2(101) surface is modeled using a (6× 1) surface unit cell comprised of

two layers, each of which contains 24 Ti atoms and 48 O atoms; tests were performed

to verify that the results obtained do not change appreciably upon using thicker

TiO2 slabs. A single dye molecule is placed on the surface of this two-layer slab.

The Brillouin zone is sampled at the zone center Γ only. In order to ensure that

our use of periodic boundary conditions does not introduce spurious interactions

between the dye molecule and the TiO2 slab in the neighboring cell (due to the

introduction of artificial periodicity normal to the surface of the slab), we introduce

an additional vacuum spacing of ∼ 12 Å above the molecule along the y-direction,

i.e., perpendicular to the TiO2 surface. All atoms are allowed to relax, except those

in the lower layer of the substrate. The force convergence threshold is kept at 0.001

Ry/bohr along each Cartesian direction.

4.5 Results and discussion

In order to confirm and understand the experimental results, as well as to extend

them so as to find a set of descriptors to predict the performance of the dye molecules

for use in DSSCs, we have carried out DFT calculations on the 3a, 3b, 3c and 4b

molecules in the gas phase and when adsorbed on the TiO2(101) surface.

4.5.1 Adsorption geometry and energetics

Since the mode of attachment of the dye molecules to the substrate is known to

affect phenomena, such as electron injection and recombination dynamics, which play

a significant role in determining the overall performance of the DSSC,[6] the details

of the adsorption geometry need to be investigated. Therefore, we first determine the

preferred adsorption geometry for the dye molecules when adsorbed on the anatase

TiO2(101) surface. To ensure that we have found the lowest energy configuration of

the molecule + substrate system, we have performed calculations starting from several

different initial geometries. Previous theoretical studies[5, 6, 38–42] have shown that

in general, three possibilities exist for the preferred anchoring geometry of the COO-
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Figure 4.2: Lowest energy adsorption geometries for dye molecules 3a, 3b, 3c
and 4b, adsorbed on TiO2 substrate. Labels in 3c indicate the notation used to
distinguish various Ti, O and C atoms. The dihedral angles θ1 and θ2 are defined as
∠C1-Ti2-Ti2′ and ∠C2-C1-Ti2, respectively, where Ti2′ is the periodic image of Ti2
along the +a direction. Note that all the molecules have a sesquidentate geometry
consisting of one monodentate and one bidentate tethering.
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Table 4.2: Adsorption geometries as determined from DFT calculations. The
bond lengths between O of the dye molecules and Ti of TiO2, the dihedral angle
corresponding to different dye molecules on the TiO2 substrate, and the adsorption
energies of the molecules. See Fig. 4.2 for the naming convention for atoms.

Dye molecule Bond length (Å) Dihedral angle (θ) Adsorption energy (Eads)

O1-Ti1 O2-Ti2 O3-Ti3 θ1 θ2 (eV/mol)
3a 2.163 1.986 1.912 90.2◦ –a 8.74
3b 2.145 1.990 1.920 92.5◦ –a 8.62
3c 2.136 1.982 1.920 98.2◦ 136.7◦ 9.54
4b 2.149 1.907 1.907 95.3◦ –a 8.97

a Due to the absence of C2, the θ2 value is not available.

group to metal atoms of the substrate, namely (1) monodentate (ester-like),[43] (2)

bidentate (chelating)[44] and (3) bidentate (bridging) geometries.[45] Among these,

the most commonly found lowest-energy geometry is usually the bidentate bridging

one, though in some cases, the monodentate geometry has also been found to be

favored.[43] Interestingly, we find that for all four molecules studied here, the lowest

energy geometry is one with a combination of monodentate and bidentate (bridging)

anchoring, i.e., the dye molecule is anchored to the substrate at two points, one of

which features a single O-Ti bond, while the other features two O-Ti bonds, where

the O and the Ti atoms come from the dye molecule and the substrate, respectively

(see Figure 4.2). We are unaware of any previous studies where such a tethering of

the molecule to the substrate has been observed, and we term this a ‘sesquidentate’

anchoring mode. The relevant bond lengths and dihedral bond angles (θ), as defined

in Fig. 4.2(c), are presented in Table 4.2. We find that the bond lengths at the

bidentate bridging site (O1-Ti1 and O2-Ti2) are always larger than those at the

monodentate bridging site (O3-Ti3) for all the molecules investigated.

In order to ensure long-term stability of the dye + substrate complex in a DSSC, the

molecules should have strong binding to the substrate, preferably in the chemisorption

range.[46] In order to understand the nature of adsorption of the dye molecules on

the TiO2(101) surface and compare the corresponding strength of binding of the

molecules with the substrate, we calculate the adsorption energy per molecule (Eads),
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defined as:

Eads = −[E(TiO2 +mol)− E(TiO2)− E(mol)], (4.1)

where E(TiO2 + mol), E(TiO2) and E(mol) denote the total energies (from DFT

calculations) of the TiO2 + dye-molecule system, the TiO2 substrate and the gas-

phase dye-molecule, respectively. The magnitudes of the adsorption energies shown in

Table 4.2 indicate that all the dye molecules considered above undergo chemisorption

on the TiO2 substrate, with 3c having the largest Eads. This indicates strong binding

for all the dye molecules to the TiO2 surface, essential for proper injection of charge

carriers from the dye-molecule to the substrate.

4.5.2 Alignment of frontier oribtals

Upon photoexcitation of the dye, the efficiency of the transfer of excited electrons

from the lowest unoccupied molecular orbital (LUMO) of the dye molecule to the

semiconductor is known to be proportional to the energy difference between the

LUMO and the conduction band (CB) edge of the semiconductor, and therefore, the

LUMO should lie well within the CB of TiO2.[7] Further, for efficient absorption of

solar radiation, it then follows that the highest occupied molecular orbital (HOMO)

of the dye molecule should lie within the band gap of the semiconductor.[47] To

ensure that the dye molecules considered here satisfy the above mentioned criteria,

we examine the alignment of the frontier orbitals of the dye molecules relative to the

TiO2 band edges.

In order to find the position of the HOMO and the LUMO of the dye molecules

with respect to the band edges of the TiO2 substrate, in Fig. 5.5 we plot the projected

density of states (PDOS) of the dye molecules adsorbed on TiO2. The band gap

region of TiO2 is represented by the shaded area in the PDOS plot. The energy

scale in the x-axis is shifted by the HOMO of the dye molecule so that the zero

of the x-axis represents the HOMO of the molecule. We see that for all the dye

molecules, the HOMO and the LUMO are contributed mostly from the C-atoms (red
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Figure 4.3: The projected density of states of the molecule + TiO2 system. The
energy is shifted by the highest occupied molecular orbital (HOMO) of the corre-
sponding molecule, so that the zero of x-axis represents the HOMO of the molecule.
The band gap region of TiO2 is represented by the black shaded region. The color
codes in the legends depict contributions from different atomic species. We see that
for all the molecules the HOMO lies within the band gap of TiO2, whereas the lowest
unoccupied molecular orbital (LUMO) is in the conduction band of TiO2.
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solid line). We find that the position of the LUMO with respect to the conduction

band (CB) edge of the TiO2, is almost identical for all the dye molecules considered.

Moreover, the HOMO lies within the band gap of TiO2, whereas the LUMO lies

within the CB of TiO2. Therefore, all the dye molecules under investigation meet

the above mentioned criterion for efficient absorption of solar radiation and transfer

of photoexcited electrons to the TiO2. We note here that the band gap of TiO2 is

underestimated by the GGA calculation, which is a well-known shortcoming of DFT.

However, as will be discussed further below, this does not affect our procedure for

estimating the efficiency of the dye molecules.

To further quantify the alignment of the frontier orbitals, and compare with the

experimental results, in Figs. 4.4(a) and (b), we show our experimentally measured

and theoretically computed results for the positions of the frontier orbitals of the dye

molecules, respectively, as well as their alignment with respect to the band gap of

TiO2. We note that though the experimental results are for compounds 3′ and 4′ in

solution, while the calculations are for compounds 3 and 4 when placed on the TiO2

(see Chart 4.1), this is not expected to have a significant effect on the band gaps.

We see from Fig. 4.4 that the theoretically computed values for the HOMO-

LUMO gaps, as well as the band gap of TiO2, are underestimated with respect to the

experimentally measured values. This is a well-known shortcoming of standard DFT

calculations. However, it is clear that both experiments and DFT calculations show

the same trends. We see from Fig. 4.4(b) that the LUMO of all four molecules is

positioned almost identically. We also see that while variation of the meso-substituents

on the BODIPY cores does not appreciably affect the position of the HOMO, extension

of the BODIPY conjugation system by replacing the β-cyclohexenyl-fused rings with

the benzo-fused one in 3a, 3b and 3c, as compared to 4b, results in a marked

upshift in the energy of the HOMO, and thus narrowing of the energy gap. A similar

trend is seen in the experimental HOMO-LUMO gaps when 4b′ is compared with

3a′, 3b′ and 3c′. Recent work by our experimental collaborators in the group of
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Figure 4.4: Experimental and theoretical energy level diagrams of the target
BODIPYs (1a and 1b) and the benzo-BODIPYs in comparison to the conduction band
edge of TiO2 and the I−/I−3 oxidation potential. Panel (a) shows the experimentally
obtained values for 1a, 1b, 4b′, 3a′, 3b′ and 3c′, while panel (b) shows the results
from DFT for 4b, 3a, 3b and 3c when adsorbed on TiO2. The theoretical values
are referenced with respect to the vacuum energy. The shaded regions correspond to
the valence and conduction bands of TiO2; VBM and CBM indicate the theoretically
computed valence band maximum and conduction band minimum, respectively. Note
that while DFT underestimates the energy gaps, as expected, the trends across the
molecules are same in the experiment and the theory.
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Patchanita Thamyongkit, on porphyrin derivatives, also shows that introduction of

benzo-fused rings should have considerable impact on the HOMO/LUMO levels of

the dye molecules.[48]

The reproduction of the experimental trends in the theoretical calculations is made

more evident in Fig. 4.5, where we have plotted the experimental as well as theoretical

results for the HOMO-LUMO gaps, with the latter being computed both in the gas

phase and for the molecules adsorbed on TiO2. We note that the experiments were

performed for the molecules in solution, whereas the calculations were performed for

the molecules when adsorbed on TiO2; we observe, however, that this does not affect

trends. We also note that upon performing calculations for the isolated molecules in

the gas phase, we find only a very slight increase in the HOMO-LUMO gap compared

to our results for the molecules when deposited on the TiO2 substrate. To summarize,

as presented in both Figs. 4.4 and 4.5, the theoretical calculations confirm the

experimental conclusion that all four of the compounds considered in this section

satisfy the criteria concerning the alignment of the energies of their frontier orbitals

with respect to the band edges of the TiO2 substrate.

4.5.3 Theoretical prediction of performance of dyes in DSSCs

In this section, we use ab initio DFT calculations to compute a set of descriptors

that can predict the photosensitizing performance of the four dye molecules when

used in combination with the TiO2 substrate, in the DSSC. It is known that the

overall efficiency of the DSSC depends on several parameters, and an understanding

of how to predict the performance using theoretical methods is still the subject of

intense research. In this respect, the formulation and use of descriptors can help us

in the rapid screening of large pools of candidate dye-substrate combinations. Here,

the efficiency of four factors that are known to determine the performance of the

DSSCs, viz., the alignment of frontier orbitals of the dye molecule with respect to

the CB edge of TiO2, electron transfer from the excited dye molecule to empty states

in the TiO2 substrate, the prevention of electron-hole recombination and change in
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Figure 4.5: Correlation between the experimental results for 3a′, 3b′, 3c′ and 4b′,
and the theoretical results for the HOMO-LUMO gaps for 3a, 3b, 3c and 4b. The
black squares show the experimental values, while the red circles and blue triangles
show the values as calculated from DFT for the molecules in the gas phase and
when adsorbed on TiO2, respectively. Note that the same trends are observed in the
experiment and the theory, though DFT underestimates the energy gaps, as expected.

dipole moment upon excitation, are theoretically evaluated. These factors are then

quantified in the form of descriptors as discussed below.

Role of electronic structure: Descriptors for predicting efficiency of dyes

In order to gain insight into the role played by the electronic structures of the

four candidate compounds, we have plotted the charge densities corresponding to the

HOMO and the LUMO, for the dye molecules adsorbed on TiO2, in Fig. 4.6. It is

interesting to note that for the 4b molecule, the green lobes, corresponding to the

isosurfaces of the charge densities of the HOMO, are mostly localized on the C atoms

of the BODIPY core, whereas for 3a, 3b, and 3c, the charge densities corresponding

to the HOMO are spread throughout the molecule, with significant weight on the

bithiophenyl group extending away from the surface, in the case of 3c; this is in

sharp contrast to the LUMO, where the charge density is primarily localized on C

atoms close to the substrate. This observation will have implications for electron-hole

recombination, which we discuss further below.
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Figure 4.6: The isosurfaces of the charge densties for states corresponding to the
HOMO (left image of each panel and the LUMO (right image for each panel) for 4b,
3a, 3b and 3c on TiO2 are shown. The isosurfaces corresponding to a value of 0.004
e/Å3 are plotted as green lobes.)
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Electron transfer from the excited states of the dye molecules to the empty states

in the CB of TiO2 depends primarily on two factors: (1) the strength of the matrix

element coupling the excited states of the dye molecules to the CB states of TiO2

and, (2) the density of states available in the CB of TiO2 for the electronic transition.

As mentioned in Section 5.2, for all four molecules, the LUMO is positioned in the

midst of the continuum of states of the TiO2 CB, and is broadened due to coupling

(hybridization) between the dye and the substrate. In order to quantify the coupling

strength, we first compute the descriptor full width at half maximum (FWHM) of

the peak corresponding to the LUMO of the dye molecule in the projected density

of states (PDOS) of the system consisting of the dye adsorbed on TiO2; it has been

suggested that this broadening should serve as a good estimate of the strength of the

molecule-substrate coupling.[6] The values of the FWHM for all four dye molecules

when adsorbed on TiO2 are plotted in Fig. 4.7(a). We see that the values of the

FWHM are roughly the same for all four molecules, reflecting the similarity in the

anchoring groups and anchoring geometries. However, there is a slight variation, with

the smallest value of FWHM for 3b and the largest for 3a.

The effects of the two factors mentioned above, viz., the density of states available

in the CB of TiO2, and the coupling between the molecule and TiO2 (appearing

implicitly via its effect on the broadening of the dye states) can be both incorporated

in a single descriptor by computing the coefficient of injection, Cinj, which we define

as:

Cinj =

∫

FWHM

gDye(E)gTiO2
(E)dE, (4.2)

where gDye(E) and gTiO2
(E) are the electronic densities of states corresponding to

the LUMO of the dye molecule and the CB of TiO2, respectively, and E is the

electronic energy. The integration is carried out over an energy interval equal to the

FWHM, centered about the LUMO of the dye molecule. We note that our definition

of Cinj differs from that of previous authors[49, 50] in that it does not contain a term



4.5 Results and discussion 90

explicitly describing the coupling between the molecule and the substrate, which

is difficult to compute. Instead, the inclusion of such a term is bypassed in our

expression, with its effects being instead implicitly incorporated by the limits of

integration being set equal to the FWHM interval that has been computed above. In

Fig. 4.7 (b), we have plotted our results for Cinj, as given by Eq. (4.2), for the four

dye molecules. Reflecting the influence of the values of FWHM, we find that Cinj is

smallest for 3b and largest for 3a, suggesting that, if only charge injection mattered,

3a should be the optimal choice for use in the DSSCs, among the four compounds

considered here. However, we note that the percentage differences in the values of

Cinj among the four compounds are not large, presumably as a result of the similar

sesquidentate type anchoring geometry for all four dye molecules on TiO2. While the

precise numerical values of Cinj may change upon incorporating a more sophisticated

treatment of the molecule-substrate coupling, we believe that the basic trends are

captured in our simple model.

Another factor determining the performance of the DSSC is the likelihood of

electron-hole recombination, which adversely affects the performance of the device,

since recombination with holes reduces the photocurrent. When electrons are excited

to previously unoccupied states of the dye molecule, holes are created in formerly

occupied states. An increase in the spatial separation between these excited elec-

trons in the LUMO and the holes in the HOMO, should increase the probability of

successful electron transfer to the electrode. A rigorous calculation of properties of

the excited state, such as its charge density,[7] would require the application of more

computationally expensive techniques, such as time-dependent density functional

theory (TDDFT). However, we note that within the single particle picture, the rele-

vant spectroscopic quantities, viz., the ground state oxidation potential (GSOP) and

the excited state oxidation potentials (ESOP), can be approximated by the HOMO

and the LUMO, respectively.[51] Accordingly, we will estimate a descriptor called

the electron-hole separation (EHS) by computing the spatial difference between
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Figure 4.7: DFT results for various factors affecting the performance of the four
compounds studied here when used in the DSSCs in combination with TiO2. Bar
diagrams corresponding to the computed values of (a) full width at half maximum
(FWHM) of the LUMO of the dye molecules when adsorbed on TiO2, (b) coeffcient of
injection (Cinj), (c) electron-hole separation (EHS), (d) Cinj×EHS and (e) difference
of dipole moments correspondin to LUMO and HOMO (∆µ).

the positions of the charge centers corresponding to the LUMO and the HOMO.

Previously, the practice has been to calculate the EHS between the ground state,

and the excited state,[8] but the assumption explained above, relieves us from the

computationally expensive excited states calculation. Thus, the EHS is given by:

EHS =

∫

rρLUMO(r)dr
∫

ρLUMO(r)dr
−

∫

rρHOMO(r)dr
∫

ρHOMO(r)dr
. (4.3)

where r is the position coordinate, and ρLUMO(r) and ρHOMO(r) are the charge densities

corresponding to the energies of the LUMO and HOMO, respectively. We have plotted

ρLUMO(r) and ρHOMO(r) for all the dye molecules in Fig. 4.6. As mentioned above, a

simple visual examination reveals that for 4b, the charge density corresponding to the

HOMO of the molecule is mostly on the C atoms of the BODIPY core, whereas for

the others it is spread throughout the molecule. On the other hand, for 3c the charge
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densities corresponding to the LUMO of the molecules extend on the bithiophenyl

group, away from the surface. These observations already hint that the EHS may

be the shortest for 4b and longest for 3c. These conclusions are confirmed by the

quantitative results for the EHS plotted in Fig. 4.7(c). As pointed out above, the

presence of the large bithiophenyl group in 3c is probably responsible for its large

value of the EHS.

We note that both the descriptors, Cinj and EHS affect the efficiency of the dye

for DSSC applications by taking care of different aspects of the electronic structure

of the dye + TiO2 system. In order to simultaneously incorporate the contributions

of both the descriptors, we have plotted in Fig. 4.7(d) the values of a composite

descriptor Cinj ×EHS for the four dye molecules. It is evident that upon considering

both charge injection and EHS, 3c appears to be the optimal candidate for use

in DSSCs among all four compounds considered in this section. This is primarily

because of the fact that the EHS is significantly larger in 3c than for the other three

compounds.

Another descriptor that can provide considerable insight into the performance of

the dye molecule as the sensitizer in the solar cell is ∆µ, the difference in the dipole

moment between the HOMO and the LUMO of the dye on TiO2. The magnitude of

this vectorial quantity provides an indication of the probability of the excitation of an

electron from the HOMO to the LUMO upon absorption of light, while its direction

tells us about the spatial direction of charge transfer upon the excitation. It is given

by Eq. (4.4) as follows:

∆µ = µLUMO − µHOMO,

where

µs = −
∫

rρs(r)dr+ e
∑

i

Ziri. (4.4)

Here, ρs is the electronic density in the state s, integrated over an energy window

corresponding to the FWHM of state s. Zi and ri are the ionic charge and position
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of the ith atom, and e is the unit of electronic charge. In Fig. 4.7(e), we have plotted

the values of ∆µ for the four compounds, along with figures showing the magnitude

and direction of ∆µ. We note that once again compound 3c appears to show the

optimal features, in that it possesses the highest value of ∆µ.

Thus using the descriptors Cinj × EHS and ∆µ, we incorporate all the factors

affecting the effective electronic communication between the dye and the substrate,

and conclude that 3c is the best candidate dye for use in DSSCs.

4.6 Conclusions

We have studied a series of benzo-BODIPY derivatives having phenyl, thiophenyl

or bithiophenyl meso-substituents, as candidate dye molecules for potential use in

DSSCs. Based on DFT calculations, we found that the dye molecules attach on

TiO2 with a sesquidentate anchoring mode. We observed the same trends in the

position (in energy) of their frontier orbitals and in the values of their energy gaps

as those obtained from the experiment, upon making the various substitutions,

which confirmed the reliability of the calculations. To find the most favorable dye

having an effective electronic communication with the TiO2 substrate, we considered

a combination of several factors, viz., efficient charge injection to TiO2, the good

electron-hole separation and the large change in the dipole moment upon the excitation.

Based on these factors we computed a set of descriptors which suggested that the

benzo-BODIPY derivatives bearing the bithiophenyl meso-substituents should be the

optimal dye senstiizer for the DSSCs among all molecules studied herein.
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Chapter 5

Magnetic and structural phase

transitions in Fe thin films on

Ir(001)

In this chapter, we study the thickness-dependent magnetic and structural phase

transitions in Fe/Ir(001) systems. Experiments done on the layer-by-layer growth of

Fe on Ir(001), in the group of Prof. PS Anil Kumar at the Indian Institute of Science,

Bangalore, show a magnetic transition in the Fe films beyond a certain thickness.

Using DFT calculations, we confirm the existence of such a transition, and attempt to

gain insight into the driving force for such a transition. We will show that our results

on the changes in structural and elastic properties with increase in Fe film thickness

agree well also with cantilever stress measurements done in previous experimental

studies.[1]

5.1 Introduction

The structure and magnetic properties of thin films are known to be different

from their bulk counterparts. The growth, structure and magnetic properties of

ferromagnetic thin films on nonmagnetic substrates are important to understand for
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applications in magnetic devices such as giant magnetoresistance (GMR), tunnel

magnetoresistance (TMR), magnetic random access memory (MRAM), etc.[2] Pseu-

domorphic growth, i.e., the epitaxial growth of films with the same in-plane lattice

parameter as that of the substrate, allows investigation of strain effects resulting from

the epitaxial misfit between the lattice constants of the film and the substrate.

The in-plane lattice parameter of Ir(001) [a|| = a(Ir)/
√
2 = 2.72 Å] lies in between

that of body centered cubic (bcc)-Fe (= 2.87 Å) and face centered cubic (fcc)-Fe

(= 2.53 Å),[1] making Ir(001) an interesting substrate for the epitaxial growth of Fe

thin films, on a fcc(001) substrate. Although a lot of theoretical and experimental

investigations have been done on the Fe/Ir(001) system,[1, 3–8] the evolution of

structure and magnetism of Fe on Ir(001), during layer-by-layer growth, is still

a matter for debate. Experiments by Andrieu et al.,[5] suggested a body centered

tetragonal (bct) phase up to 5 monolayers (ML), and a bcc phase for larger thicknesses.

But they did not find any correlation between structure and magnetism of Fe on

Ir(001), during its growth. A high resolution transmission electron microscopy study

by Snoeck et al. also suggested the existence of a bct phase up to 5 ML.[9] For thicker

layers they suggested a bct phase near the Fe/Ir interface, and a bcc phase away

from it. Recent studies by Martin et al., through strain measurement along with

quantitative LEED and STM analysis, reported that the first two monolayers (MLs)

of Fe on Ir(001) grow as face-centered tetragonal (fct), 3 to 10 ML grow as bct on

the fct precursor, and 11 ML onwards grow as bcc.[1]

In terms of magnetic behavior, bcc Fe is ferromagnetic (FM),[10] whereas fcc Fe

exhibits varied magnetic states, such as nonmagnetic (NM), low spin ferromagnetic

(LSFM), high spin ferromagnetic (HSFM), and antiferromagnetic (AFM) based

on magnetovolume energy dependence on lattice parameters.[5, 11–14] Theoretical

calculations on free-standing Fe, have shown thickness dependent FM and AFM

solutions; a monolayer of Fe has been shown to be ferromagnetic, but for a bilayer,

a competition between FM and AFM configurations has been found.[15, 16] It has
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been reported that bct Fe on Ir(001) exhibits low spin ferromagnetism below 5 ML

with 2 dead layers.[6, 7] Theoretical calculations by Louzana et al. have shown a

monolayer of Fe on Ir(001) to be ferromagnetic, however interlayer coupling for 2-3

ML has been found to be AFM along with intralayer FM coupling.[17] Calculations by

Hamad et al. reported that 1 ML Fe on Ir(001) has a FM configuration, whereas the

ground state of 3-4 ML bct Fe can be ferrimagnetic (FiM) or FM, and 5 ML onwards

FM ordering starts.[18, 19] Theoretical calculations for noncollinear magnetism of Fe

ultra-thin films on Ir(001), based on spin-cluster expansion technique in combination

with the relativistic disordered local moment scheme, by Deák et al. have suggested

the presence of a spin spiral for two monolayers, and noncollinear spin structure with

nonzero net magnetization for four monolayers.[20]

The absence of a conclusive understanding of the structure and magnetic ordering

of the growth of Fe on Ir(001) has motivated us to perform further experimental and

theoretical studies on this system. Our experimental collaborators have grown Fe on

Ir(001) pseudomorphically, and studied the structure and magnetic behavior layer

by layer, using medium energy electron diffraction (MEED) and magneto-optic Kerr

effect (MOKE) measurements. We have performed density functional theory (DFT)

calculations on up to 14 ML of Fe on Ir(001) to understand the evolution of structure

and preferred magnetic ordering with increase in the number of ML of Fe grown on

Ir(001). The theoretical results agree well with the experimental data as we will show

further below.

5.2 Recent experimental results

Recently our experimental collaborators in the group of Prof. P S Anil Kumar

have performed experiments on the layer-by-layer growth of Fe on Ir(001). The

details of the experimental methods and results can be found in the PhD thesis of

Pradeep A. V.[21] In order to investigate the magnetic ordering of the Fe/Ir(001)

system, they have performed magneto optic Kerr effect (MOKE) measurements on
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Figure 5.1: Experimental results showing (a) MEED oscillations and (b) Kerr
rotation as a function of film thickness for Fe/Ir(001). The sudden decrease in the
amplitude of the MEED oscillation signifies a bct to bcc transition beyond 11 MLs of
Fe on Ir(001). The non-zero Kerr rotation beyond 4.5 MLs, denotes a FM magnetic
ordering. Beyond 12 MLs, the Kerr rotation more or less saturates indicating a bulk
bcc-Fe phase. Experimental data courtesy of Pradeep A V and PS Anil Kumar.

the layer-by-layer growth of Fe. In Fig. 5.1(a) the plot of Kerr rotation per unit

thickness as a function of Fe thickness is shown. A non-zero Kerr rotation is observed

beyond 4.5 ML, indicating the onset of ferromagnetic ordering. It is pointed out

that the blips present in the MOKE data for small thickness (< 4 ML) are due to

mechanical movements of the detector stage, and are magnified for smaller thickness

due to normalization by small number of ML. The intensity of MEED oscillations is

used to observe the growth and thickness of the Fe films on the Ir(001)-(1× 1) surface

as shown in Fig. 5.1(b), where each peak of the sinusoidal oscillations signifies the

growth of an additional Fe ML. A sudden decrease in the amplitude of the oscillations

is observed between 11 ML and 13 ML, which points towards the end of the region of

pseudomorphic growth and the beginning of the growth of strain-relaxed bcc Fe. The

possibility of the presence of a bct to bcc transition between 11 ML and 13 ML, is

expressed by a green background up to 12 ML, indicating the bct phase.

Motivated by the above experimental observations, we will perform density func-

tional theory calculations on the Fe/Ir(001) system to address the following questions:

(1) is there a magnetic transition as a function of layer thickness? (2) is there a
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structural transition as a function of layer thickness? (3) at what film thicknesses do

these transitions occur?

5.3 Systems studied

The Fe/Ir(001) systems are modeled by varying the number of Fe layers (1 – 14

ML) over the Ir(001) substrate. For 1 – 6 ML of Fe, the Ir substrate is modeled by

a slab containing 6 ML of Ir, whereas for Fe films with thickness > 6 ML, 12 ML

of Ir are used. The Ir(001) substrate has a face-centered cubic (ABAB...) stacking

along the [001] direction, and a
√
2 ×

√
2 surface cell with in-plane lattice constant

a||. Here, a|| is equal to a
Bulk
Ir /

√
2, where aBulk

Ir is the bulk lattice constant of Ir. This

choice of unit cell means that there are two atoms per layer in the unit cell. For

all the calculations, we fix the three bottommost layers of Ir at the bulk interlayer

separation along [001], while the remaining layers are allowed to relax during the

structural optimization. To mimic the pseudomorphic growth of Fe films over Ir(001),

the in-plane lattice constant for the Fe layers is kept the same as that of the Ir layers.

As discussed further below, as a result, the Fe layers experience a biaxial compressive

strain, due to the lattice mismatch between Ir and Fe.

In order to compare the energetics of the various magnetic configurations, we have

studied nonmagnetic (NM), ferromagnetic (FM) and antiferromagnetic (AFM) cases

in each Fe/Ir(001) system. For the AFM cases, different spin configurations, with zero

total magnetic moment, are considered. As an illustration, we schematically depict the

various AFM configurations considered for the 2 ML Fe/Ir (001) system in Fig. 5.2.

In the AFM1 and AFM2 configurations, the sum total of the magnetic moments for

each layer is zero. However, for AFM3, the spins are coupled ferromagnetically within

a layer, but antiferromagnetically between neighboring layers. When the number of

Fe layers is > 2, similar kinds of spin alignments are considered, with the ABAB...

stacking maintained. Note however that we consider the AFM3 configuration only

when we have an even number of Fe overlayers, as otherwise this spin alignment
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Figure 5.2: Examples of different AFM onfigurations of the Fe layers considered
for DFT calculations are shown in panel (a). Three different AFM configurations
are considered, and are shown for 1 – 4 ML. Dashed circles denote Fe atoms in the√
2×

√
2 surface cell. Up and down spins are represented by red up and blue down

arrows, respectively. The difference between AFM1 and AFM2 configurations can
be understood by comparing the spin configurations in layer 1 and 3, in each case.
In AFM1, layer 1 and 3 have identical spin configuration, whereas in case of AFM2,
in layer 3, up spins of layer 1 is replaced by down spins, and vice versa. AFM3

shows intra-layer FM ordering and inter-layer AFM ordering. In panel (b), the AFM
configuration in the 1Fe/Ir(001) structure is shown. Fe and Ir atoms are shown in
red and grey, respectively. The spin orientations are nominally shown to be in-plane,
using blue arrows.

cannot lead to a zero total magnetic moment.

5.4 Methods

We have used the Vienna Ab initio Simulation Package (VASP) to perform all our

density functional theory (DFT) calculations.[22, 23] The electronic wavefunctions

are expanded using a plane wave basis set with a cut-off of 360 eV. The exchange-

correlation interactions are described using the spin-polarized generalized gradient

approximation (GGA), with the Perdew-Burke-Ernzerhof (PBE) functional. [24] To

describe the electron-ion interactions, we use the projector augmented wave (PAW)

method,[25, 26] which explicitly includes the Fe 3d and 4s electrons, and the Ir 5d

and 6s electrons, as the valence states. In order to sample the Brillouin zone, we
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have used the Monkhorst-Pack scheme.[27] For all our calculations we have used a

16× 16× 1 k-mesh. To avoid interations between periodic images, a 20 Å vacuum is

introduced normal to the surface, in all surface calculations. For all the structural

relaxations, a 10−3 eV/Å force convergence criterion is used. Using the aforesaid

parameters, we obtain the bulk lattice parameters of Ir (aBulk
Ir ) and Fe (aBulk

Fe ) to

be 3.89 Å and 2.83 Å, respectively. These values are in excellent agreement with

experimental data.[1] Note that this leads to a mismatch of 2.83% between the Fe

layers and the Ir substrate.

5.5 Results and Discussion

5.5.1 Magnetic phase transition in Fe thin films on Ir(001)

Table 5.1: Magnetic configurations and the energy differences with respect to the
lowest energy configuration (∆E), for 1 – 6 ML Fe on Ir(001).

Structures
∆E (eV)

AFM1 AFM2 AFM3 FM NM

1Fe/Ir(001) 0 – – 0.38 1.25
2Fe/Ir(001) 0.00011 0 0.55 0.41 1.64
3Fe/Ir(001) 1.13 0 – 1.55 2.46
4Fe/Ir(001) 0.21 0 2.49 1.46 2.56
5Fe/Ir(001) 1.49 1.40 – 0 3.96
6Fe/Ir(001) 3.96 4.38 4.74 0 5.54

As mentioned in Section 5.3, we have considered different magnetic configurations

for each thickness of Fe film deposited on Ir (001). For each of these systems, we

have calculated the energy difference (∆E) with respect to the corresponding lowest

energy configuration. In Table 5.1, we tabulate the ∆E for 1 – 6 ML of Fe on Ir(001).

The energy difference per Fe atom, of the AFM , and the FM configurations for 1 –

6 ML of Fe on Ir(001), have been plotted in Fig. 5.3, where we see that an AFM

configuration is energetically favourable for ≤ 4 ML Fe film thickness, whereas from

5 ML onwards, the FM configuration is favoured. Since, for the 1 – 4 ML thickness
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of Fe film, the AFM2 structure is the lowest energy one, and for 1 ML Fe/Ir(100),

AFM1 and AFM2 structures are identical, we therefore consider the AFM2 structure

for all further comparison and analysis. From now on, we refer to it simply as the

AFM configuration. The observed AFM to FM transition is in excellent agreement

with the experimental finding, where the non-zero Kerr rotation beyond 4.5 ML

suggests a non-ferromagnet up to 4 ML of Fe.

Figure 5.3: Results from DFT calculations for the energy difference between the
(lowest energy) AFM and the FM configurations per Fe atom, plotted against
the Fe layer thickness. The FM configuration is higher in energy than the AFM
configuration for ≤ 4 ML, beyond 4 ML, the FM configuration becomes energetically
favorable over the AFM configuration.

The plot in Fig. 5.1(a) showing the experimental result of Kerr rotation per unit

thickness as a function of thickness of Fe grown on Ir(001) can be approximately

compared to DFT calculated magnetic moment per layer as a function of thickness,

as shown in Fig. 5.4(a). The region in blue denotes that for 1 – 4 ML, Fe/Ir(001)

prefers AFM ordering with zero net magnetic moment. From 5 ML onwards, the FM

ordering is energetically favoured, and is denoted by a blue background. The plot

shows that as we move from 5 to 6 ML Fe, the magnetic moment increases a little

and then decreases, moving towards the value of 2.16 µB/atom, computed for Fe bcc

bulk. In order to see the change in the magnetic moment of Fe atoms in the AFM

configuration with increasing thickness, in Fig. 5.4(b) we have plotted the magnetic
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Figure 5.4: DFT results for the evolution of magnetic moments with thickness of
the Fe film. Average magnetic moment (µB/layer) as a function of Fe layer thickness,
is shown in (a). The black line (solid) shows the value of the magnetic moment
calculated for Fe BCC bulk. The blue and orange background show, respectively,
the regions where AFM and FM ordering is preferred. Similarly, panel (b) shows
average magnetic moment per atom (µB/atom), as a function of number of Fe ML.

moment per atom as a function of the thickness of Fe film.

In order to understand the reason behind the AFM to FM transition beyond 4

ML of Fe on Ir(001), in Fig. 5.5 we plot the projected density of states (per atom)

(PDOS) of the Fe-d orbitals for 4 ML, 5 ML and 6 ML thick Fe films. In each figure,

the plots are arranged in a way such that the topmost panel is the PDOS for the Fe

layer (“Layer 1”) at the interface with vacuum. The vertical dashed line at the zero of

the x-axis shows the position of the Fermi energy (ǫF ). The d-density of states of the

FM configurations is represented by brown shaded regions. In the case of the AFM

configurations, the d-density of states of the spin up and down states is represented

by solid and broken red lines, respectively. Looking at the PDOS one can clearly see

that on going from 4 ML to 5 ML Fe [compare Figs. 5.5 (a) and (b)], there is a sharp

splitting of states corresponding to opposite spins, across the Fermi level. This is the

exchange splitting, which can be quantified by calculating the difference between the

band centers for spin up and spin down states: ∆Eex = |ǫd↑ − ǫd↓|,[28, 29] where the
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band center for the d-states (up or down), ǫdσ is given by the following equation:

ǫdσ =

∫ ǫmax

ǫmin
ǫgdσ(ǫ)dǫ

∫ ǫmax

ǫmin
gdσ(ǫ)dǫ

. (5.1)

where gdσ(ǫ) is the PDOS of spin up or down d-states. Using Eq. (5.1), the band

centers for the d-states of FM configurations of all the systems are plotted in Fig. 5.5,

where blue up and down triangles show the band centers for spin up and down

states, respectively. In Fig. 5.6 we plot the exchange splitting ∆Eex for 2 – 6 Fe

layers on Ir(001). We see that for ≤ 4 ML, ∆EAFM
ex > ∆EFM

ex , making the AFM

configuration energetically more favourable. Beyond 4 ML, there is a transition,

and ∆EFM
ex > ∆EAFM

ex , which stabilizes the FM configuration as compared to the

corresponding AFM configuration, resulting in the observed AFM to FM transition.

To summarize the results of this section, we have confirmed the magnetic phase

transition observed in the experiments, identifying it as an AFM to FM transition,

occurring between 4 and 5 ML of Fe/Ir(001), stabilized by the exchange splitting. In

the next section, we look into the changes in the structural and elastic properties of

the Fe layers, as a function of the layer thickness.

5.6 Structural phases in Fe/Ir(001) system

The in-plane lattice constant of Ir is in betweeen those of bcc-Fe and fcc-Fe, which

allows pseudomorphic growth of Fe on Ir. Previous studies show that Fe undergoes

structural changes in its layer-by-layer growth on Ir(001).[5, 7, 9] It has been suggested

that Fe films begin to grow with the fct structure, and subsequently change to bct,

and finally to bcc as the film thickness increases.[1]

Here, we investigate the existence of these different structural phases as a function

of film thickness. In order to achieve this goal, we first look at the structural changes,

and then see how these structural changes manifest themselves in elastic properties.
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Figure 5.5: Projected density of states (PDOS) per atom, for (a) 4 MLs Fe (b) 5
MLs Fe and (c) 6 MLs Fe films deposited on Ir(001). The blue up and down triangles
denote the band centers for the up spin and down spin density of states, respectively,
for the FM configuration.



5.6 Structural phases in Fe/Ir(001) system 114

Figure 5.6: Exchange splitting ∆Eex for 2-6 layer Fe/Ir(001). The plots show that
the stabilization of FM structure over AFM structure beyond 4Fe/Ir(001) is due to
the increase in ∆Eex, when one goes from 4Fe/Ir(001) to 5Fe/Ir(001).

5.6.1 Structure changes in Fe/Ir(001) as a function of Fe film

thickness

We first look at the geometrical parameters of the Fe layers for different film

thicknesses. In Fig. 5.7(a) we have plotted the interlayer distances (dij ’s) between the

ith and jth Fe layers where the Fe layers are numbered in increasing order from the

vacuum toward the interface with Ir. We see that the first two interlayer separations,

d12 and d23, change only up to film thicknesses of 6 ML. After 6 ML, the d12 and d23

remain unchanged. This means that as we grow progressively thicker layers of Fe,

the effect on the geometry of the Fe/Ir interface decreases, and becomes negligible

after 6 ML of Fe grown on Ir(001).

In order to comment further on the structure of the Fe layers, we note that the

difference between a bulk bct structure and a bulk fct structure is generally expressed

in terms of the difference in the ratio of the out-of-plane and the in-plane lattice

constants, c/a. The bct structure is one of the 14 three-dimensional Bravais lattices,

unlike the fct structure. However, the fct structure can also be viewed as a bct

structure, as is illustrated in Fig. 5.7(a). Here, for c/a = 1, we have a bcc structure,

and for c/a =
√
2 we have the fcc structure. Thus the larger the deviation of c/a

from 1.0, the more that we can say that we have gone away from a bcc structure
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towards a fcc structure, or we can alternatively say that we are progressing from a

bct to fct structure.

To observe changes in the c/a ratio, in Fig. 5.7(b) we plot the c/a ratio averaged

over the number of Fe layers in the entire Fe film, (c/a)avg, as a function of the Fe film

thickness. We see that (c/a)avg increases up to 6 ML, and then there is a monotonic

decrease. This decrease in (c/a)avg is due to two reasons: (i) the absence of the

Fe/Ir interface effect beyond 6 ML, as shown in Fig. 5.7(a) and as has already been

discussed above, and (ii) an increase in the number of Fe layers in the middle (away

from surface and Fe/Ir interface), that have the same (small) interlayer separation.

The combination of these two factors leads to a decrease in the c/a ratio when

averaged over an increasing number of Fe layers. The monotonic decrease in the

(c/a)avg towards 1.0, suggests that beyond 6 ML, Fe on Ir(001) has a bct structure.

The structural changes discussed above give rise to changes in elastic properties

as discussed further below.

5.6.2 Structural changes manifested in elastic properties

Fe thin films grown on a fcc substrate exhibit structural change depending on the

strain, film thickness, and temperature.[30] Cantilever stress measurements done by

Martin et al. suggest that the first two layers of Fe grow as a fct precursor.[1] A bct

phase is observed up to 10 ML on further deposition of Fe.

In Fig. 5.8(a), we show the experimental results of cantilever stress measurements,

where the cantilever stress change ∆(τF tF ) is plotted against the film thickness (ML).

It is found that in the region between 1 and 4 ML of Fe on Ir(001), the film stress

undergoes a transition from positive stress (+6 GPa) to negative stress (−10 GPa),

as shown in Fig. 5.8(a). Here the sign convention is that negative stresses correspond

to compressive stress, and positive stresses correspond to tensile stress.

In order to comment on the structural phases corresponding to these stresses,

Martin et al. calculated the film stress from continuum elastic theory.[1, 31–34] They

found that for bcc- and fcc-Fe, the in-plane film stresses suggested by continuum
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Figure 5.7: Panel (a) shows the schematic of an fct unit cell (dashed lines) of lattice
constant

√
2a, inside a bcc lattice of lattice constant a. (b), and (c) show the DFT

results for the changes in geometry as a result of Fe film thickness. The first two
interlayer spacings (dij) as a function of the thickness of the Fe film in different
Fe/Ir(001) systems are shown in (b). The average c/a ratio of the Fe layers as a
function of Fe ML is plotted in (c).

elastic theory are −11 GPa and +11.4 GPa, respectively. Comparing these values

with the experimental values of stresses, they concluded that for the first two layers,

Fe grows in a fct structure. After 2 ML, it grows in a bct structure upto 10 ML.

Beyond 10 ML, as indicated by the decrease in the slope of cantilever stress change

with increasing thickness, Fe layers move towards a bcc structure.

We perform DFT computations to calculate the in-plane stress as a function of

Fe film thickness, and compare our results with the film stress suggested by the

continuum elastic theory. In Fig. 5.8(b), we plot the in-plane stress of Fe layers versus
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Figure 5.8: Panel (a) shows the results of cantilever stress measurements by Martin
et al,[1] where the cantilever stress change [∆(τF tF )] versus Fe layer thickness (ML)
is plotted. In (b) the DFT results of in-plane stress as a function of number of Fe
ML is shown. In both experimental and DFT calculated results, positive/negative
slope indicates fct/bct phase of Fe.

the number of Fe ML on Ir(001). We find a positive slope of +11.56 GPa up to 4 ML,

and a negative slope of −7.84 GPa beyond 8 ML of Fe. Both the sign and magnitude

of these values are in good agreement with the in-plane stresses of fcc (+11.4 GPa)

and bcc Fe (−11 GPa), respectively, calculated from continuum elastic theory.[1] This

indicates that up to 4 ML, the Fe layers are in a fct structure, and further deposition

of Fe beyond 8 ML, leads to growth in a bct structure. As shown in the experimental

results in Fig. 5.8(a), we also find a decrease in the slope of in-plane stress beyond

12 ML, suggesting that thicker layers beyond 12 ML, are close to the bcc structure.

This finding also agrees well with the MEED oscillation results (see Fig. 5.1(b)),

where we see a decrease in the intensity of the oscillation between 11 ML and 13 ML,

indicating the end of pseudomorphic growth and beginning of the growth of strain

relaxed bcc-Fe. However, we note that in our calculations, the growth is constrained

to be pseudomorphic: due to the use of periodic boundary conditions, we do not

permit the Fe overlayers to grow with a lattice constant that differs from that of the

Ir substrate.
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Interestingly, in the plot of in-plane stress as a function of number of Fe ML

in Fig. 5.8(b), along with the structural phase transitions, we see the signature of

the magnetic phase transition from AFM to FM , when going from 4 to 5 ML of

Fe/Ir(001). The in-plane stress is seen to decrease sharply when the AFM to FM

transition occurs beyond 4 ML.

5.7 Conclusions

We have studied the thickness-dependent magnetic and structural phase transitions

in the Fe/Ir(001) system. Experiments on the layer-by-layer growth of Fe on Ir(001),

performed by our collaborators, find an onset of ferromagnetic ordering beyond 4

monolayers (ML) of Fe, with no net magnetic moment present below this thickness.

Our DFT results show the presence of an AFM to FM transition beyond 4 ML of

Fe/Ir(001), which matches with these experimental findings. We find that above 4 ML,

the FM ordering is favored over AFM ordering due to a higher exchange splitting

in the FM configuration compared to the AFM configuration. DFT calculations

of structural and elastic properties indicate the presence of a fct structure up to 4

ML, and a bct structure beyond 8 ML. These results agree well with the results of

cantilever stress measurements done in previous experimental studies.
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Chapter 6

Electronic and magnetic structure

of thin films: V deposited on

Ag(001)

In this chapter, we study the structure and magnetic properties of a monolayer of V

deposited on Ag(001). Experiments performed in the group of Prof. K. S. R. Menon at

the Saha Institute of Nuclear Physics, Kolkata, show evidence of V going sub-surface

upon deposition on Ag(001). We perform density functional theory calculations to

investigate the tendency of V to go sub-surface, and its preferred magnetic ordering.

6.1 Introduction

The reduced dimensionality of ultrathin films may lead to very different magnetic

properties compared to their bulk counterparts. This behaviour can be exploited

in applications like magnetic storage and spintronic devices.[1–3] In this respect,

monolayers of 3d transition metals which show itinerant magnetism, serve as good

model systems to study two-dimensional magnetism.

At the thickness of a few monolayers, materials show very different magnetic

behaviour compared to their bulk behaviour. Theoretical calculations by Blügel et al.

123
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have shown that Mn and Cr monolayers prefer antiferromagnetic (AFM) ordering on

Pd(001).[4] Fe and Ni show thickness dependent magnetic phases, when grown on

Ag(001) and Cu(111), respectively.[5, 6] Using ab initio electronic structure calcula-

tions, Krüger et al. showed that although V, Cr, and Mn prefer antiferromagnetic

ordering in their monolayer over Ag(001), changing the substrate to Ag(111), can

change their magnetic configuration.[7] While Cr and Mn show row-by-row antiferro-

magnetism, V becomes ferrimagnetic on Ag(111). Recently Biswas et al. have shown

that a monolayer of Cr on Ag(001), not only prefers c(2× 2) AFM ordering, but also

goes sub-surface instead of making an overlayer.[8]

The magnetic state of V ultra-thin films has been the subject of research for a

long time without any conclusive study till date. Early experiments by Rau et al. on 1

– 7 monolayers (ML) of V on Ag(001) using electron capture spectroscopy, suggested

that there was long-range ferromagnetic ordering with a thickness-dependent Curie

temperature.[9] On the other hand, another study by M. Stampanoni et al. on 1 – 3

ML of V on Ag(001) using spin-polarized photoemission spectroscopy, has not found

any evidence of ferromagnetism.[10] The authors of this study concluded that this

could be due to the existence of a Curie temperature below the temperature at which

the experiment has been performed (30 K), or may indicate the presence of other

types of magnetic order.

Magneto optic Kerr effect (MOKE) measurements by R. Fink et al. did not seem

to provide any evidence for the existence of ferromagnetism. The authors measured

the LEED pattern, to check for a weak c(2× 2) antiferromagnetic order, but did not

find any evidence of elastic exchange scattering from an antiferromagnetic lattice.

However, they also pointed out that the sensitivity of the LEED apperatus could

be questioned, and therefore claimed the null LEED results could not be cited as

evidence of the absence of antiferromagnetic order. More recent experiments using

X-ray magnetic circular dichroism, by M. Finazzi et al. have also failed to see any

signature of ferromagnetic ordering.[11, 12]
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Theoretical calculations using the full potential linearized augmented plane wave

(FPLAPW) method by S. Blügel et al. suggested that the V monolayer on Ag(001),

favours an antiferromagnetic c(2 × 2) superstructure.[13] They also showed theo-

retically, the presence of c(2 × 2) antiferromagnetic ordering in monolayers of Cr

and Mn, while Ti, Fe, Co, and Ni order in the ferromagnetic p(1× 1) configuration.

Experiments by J. Moodera and R. Meservey, have also detected antiferromagnetic

coupling between V atoms for a coverage less than 1.5 ML,[14] beyond which they

report the occurrence of ferromagnetism.

One should also note that the absence of a conclusive result in the previous studies

can arise from the fact that the growth of a flat monolayer of V on Ag(001) is unlikely

since the surface energy of vanadium (3 J/m2) is more than the surface energy of silver

(1.2 J/m2).[11] This suggests that intermixing at the interface may be unfavourable,

but cluster formation, or Ag segregation on top of V, can be thermodynamically

favoured over a layer-by-layer growth.[11] In order to find (i) the structure and

stability of monolayer of V on Ag(001) and (ii) the preferred magnetic ordering of

such a system, we perform both experiments and theoretical calculations, as discussed

further below.

6.2 Experimental motivation

Our experimental collaborators in the group of Prof. K. S. R. Menon, have

performed ARPES and LEED studies on the growth of V films on Ag(001) at different

substrate temperatures (108 K – 473 K). The details of the experimental setup and

results can be found in the PhD thesis of Asish Kundu.[15] Upon deposition of a

monolayer of V on Ag(001), the appearance of an additional surface state near the

high symmetry M point, at 300 meV higher binding energy than the bulk band (see

Fig. 6.1) is observed. This feature suggests that the V layer is going sub-surface,

resulting in a change in the surface potential. It is pointed out that although LEED

measurements do not show the presence of a weak c(2× 2) superstructure indicating



6.3 Computational details and systems 126

Figure 6.1: ARPES data showing surface states at M for (a) bare Ag(001), and (b)
1 ML V/Ag(001) grown at 108 K. Upon deposition of V, additional surface states
can be seen to occur near the M point in (b), suggesting Ag segregation over V.

an antiferromagnetic configuration, this cannot be treated as a compelling evidence

of the absence of antiferromagnetic order in the monolayer V film. It is possible that

the intensity of the half-order spots is much weaker, and below the sensitivity of the

LEED setup. Moreover, the Néel temperature can be lower than 108 K, which is the

lowest temperature that could be achieved in the existing experimental setup.

Motivated by these results, we perform density functional theory (DFT) calcula-

tions to address the following issues: (i) does V want to stay on surface, or prefers to

go sub-surface, (ii) what is the preferred magnetic ordering of V on Ag(001)? and

(iii) how does the electronic structure get modified upon V deposition?

6.3 Computational details and systems

All calculations have been performed within the framework of spin-polarized

density functional theory (DFT), as implemented in the Quantum ESPRESSO

package.[16] The electronic wavefunctions are expanded in a plane-wave basis set with

cutoffs of kinetic energy and charge densities set to 45 Ry and 450 Ry, respectively.

The exchange-correlation interations are treated using the Perdew-Burke-Ernzerhof

(PBE) form of the generalized gradient approximation.[17] The ion-electron interations
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Figure 6.2: The top view of atomic arrangements of (a) Ag(001) and (b) V/Ag(001)
systems are shown. The dark blue, dark gray, and light gray spheres represent V, first
substrate layer, and second substrate layers of Ag atoms, respectively. The primitive
surface unit cells are indicated by solid orange lines.

are described using ultrasoft pseudopotentials.[18]

The surface of Ag(001) is modeled by a 15 atomic layer thick slab of Ag in the

[001] direction. We deposit the V monolayers symmetrically on the Ag substrate,

i.e., on both the top and the bottom surfaces of the slab. Four different atomic

configurations of V monolayers on Ag(001) are considered: (1) V/Ag(001), where

each surface of Ag(001) has an overlayer of V monolayer, (2) 1Ag/V/Ag(001), where

each surface of V/Ag(001) has an overlayer of Ag, (3) 2Ag/V/Ag(001), where two Ag

layers cover the surface of V/Ag(001), and (4) 3Ag/V/Ag(001), where each surface

of V/Ag(001) is buried under 3 layers of Ag. Since each of the above mentioned

configurations consists of 17 atomic layers (15 atomic layers of Ag and 2 atomic layers

of V), we can compare their energies directly. We introduce a vacuum separation of

∼ 18 Å to minimize the interaction between the periodic images along the direction

normal to the surface.

The coordinates of all atoms of the slab except the middle three layers are relaxed

using Hellmann-Feynman forces, using a force convergence threshold of 0.001 Ry/bohr

along each Cartesian direction. The Brillouin zone is sampled using a 12 × 12 × 1

Monkhorst-Pack [19] k-point grid for the
√
2×

√
2 surface unit cell.

All calculations have been performed using the optimized lattice constant of Ag,
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Figure 6.3: The (a) side view, and (b) the top view of the atomic structure of
V/Ag(001) in the antiferromagnetic configuration. Blue and gray spheres represent
V and Ag atoms, respectivey. The red arrows indicate the direction of the spins,
which, here, are shown to be in-plane. However, the out-of-plane directions are also
equivalent.

which is found to be 4.16 Å, very close to the experimental lattice constant of 4.09

Å.[20] Ag has a face-centered cubic (fcc) crystal structure while V crystallizes in a

body-centered cubic (bcc) structure. The lattice constant of bulk V is found to be

3.00 Å, whereas the in-plane Ag-Ag distance is (4.16/
√
2=) 2.94 Å. A 1× 1 surface

unit cell is shown in Fig. 7.1(a) by an orange square; note that this unit cell is rotated

by 45◦ with respect to the fcc surface unit cell. The small mismatch between the

Ag(001) and V(001) surface unit cell allows pseudomorphic growth of V on Ag(001).

We have performed nonmagnetic (NM), antiferromagnetic (AFM) and ferro-

magnetic (FM) calculations on all the four systems described above. In the AFM

configuration, a V atom of a particular spin is surrounded by four V atoms of opposite

spin, in the same layer. For a direct comparison of the energetics of AFM, FM and

NM configurations, all calculations have been performed in a
√
2×

√
2 surface unit

cell [see Fig. 7.1(b)].

The use of a surface supercell in real-space as described above, results in a ‘folding’

of bands in the supercell Brillouin zone (BZ). In order to compare the computed band

structure with the ARPES data, one needs to ‘unfold’ the bands. We have employed
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a band-unfolding scheme as described by Biswas et al.[8] for this purpose, and as also

described in detail below.

6.3.1 Unfolding and projection of band structure

In order to describe the method of unfolding, let us denote all the wave-vectors in

the primitive Brillouin zone (PBZ) and supercell Brillouin zone (SBZ), as k, and K,

respectively, and the volume of the PBZ and SBZ as ΩPBZ, and ΩSBZ, respectively.

For each K of the SBZ, there are NG number of GSBZ vectors of the supercell that

satisfy the following equation,[21]

ki = K+GSBZ
i where i = 1...NG, (6.1)

where ki is any vector in the primitive BZ and NG = ΩPBZ

ΩSBZ

.

Let us consider the single-particle Kohn-Sham (KS) states of the supercell to

be ψSC
K,m; these can be obtained by solving the KS equations self-consistently by

performing calculations using the supercell. When using a plane-wave basis, one can

write:

|ψSC
K,m〉 =

∑

{GSBZ}

c
K−G

SBZ,m |K−GSBZ〉 , (6.2)

where m is a band index, |K−GSBZ〉 represents the plane-wave basis functions, and

c
K−G

SBZ,m are the plane-wave expansion coefficients. Similarly, the single-particle

Kohn-Sham states of the primitive cell ψPC
K,ν are written as:

|ψPC
k,ν〉 =

∑

{GPBZ}

c
k−G

PBZ,ν |k−GPBZ〉 , (6.3)

where ν is the band index in the primitive cell. Note that the set of vectors {GPBZ}
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is only a subset of {GSBZ}. Thus Eq. (6.2) can be rewritten as:

|ψSC
K,m〉 =

∑

{GPBZ}

c
K−G

PBZ,m |K−GPBZ〉+
∑

{GSBZ 6=G
PBZ}

c
K−G

SBZ,m |K−GSBZ〉 (6.4)

Our aim is to obtain the {GPBZ} from the given set of {GSBZ}. This can be

obtained by employing the condition:

GSBZ ·A = 2πM ∀{GSBZ}, (6.5)

where M is an integer and A is a lattice vector of the primitive unit cell. Eq. (6.5)

gives non-zero contributions only for {GPBZ}.

The probability of ψSC
K,m having the same character as a primitive cell state with

wave-vector k, is given by the spectral weight PK,m(k). The spectral weight then can

be obtained as:[21]

PK,m(k) =
∑

ν

| 〈ψSC
K,m|ψPC

k,ν〉 |2. (6.6)

As we are interested in obtaining the band structure in the PBZ, we can ignore the

second term in Eq. (6.4). Then, from Eqs. (6.3) and (6.4), and (6.6), we can write

PK,m(k) =
∑

{GPBZ},ν

|c
K−G

PBZ,m|4δmν . (6.7)

To obtain the contributions coming from the atomic states to the bands, one can

write ψSC
K,m, as

ψSC
K,m =

∑

q

Aqφq, (6.8)

where {q} is the set of good quantum numbers. φq is the atomic orbital of the state

q, and Aq’s are the coefficients. The probability of the wavefunction ψSC
K,m having the

same character as a wavefunction φq is given by:

| 〈φq|ψSC
K,m〉 |2 = |Aq|2. (6.9)
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Now, to obtain the contributions coming from the atomic states to the unfolded

bands, one needs to calculate the probability of the primitive cell wavefunction ψPC
k,ν

having the same character as a wavefunction φq. Thus, this projection can be written

as:

| 〈φq|ψPC
k,ν〉 |2 = | 〈φq|ψSC

K,m〉 〈ψSC
K,m|ψPC

k,ν〉 |2 = |Aq|2PK,ν(k). (6.10)

In Section 4.2, we employ this method to obtain the band structure in order to

compare with the experimental ARPES data.

6.4 Results and Discussion

We first look at the relative stability of the four systems, and see how the magnetic

ordering plays a key role in determining the stability. We restrict ourselves only to

collinear magnetic ordering, i.e. FM and AFM ordering. In Section 4.2, we compare

our results with the experimental ARPES data.

6.4.1 Stability and magnetic ordering

We have obtained the optimized geometries of all the four systems in AFM, FM

and NM configurations. Table 4.1 shows the tabulated values of the relative stability

(∆E) of different structures with respect to the lowest energy structure. We find

that the most energetically favourable structure is 1Ag/V/Ag(001), indicating that V

prefers to be buried under one monolayer of Ag. Comparing the energetics we find

that for each structure the AFM configuration is the most favourable one, whereas

the NM configuration is energetically the most unfavourable. The AFM structures

of 2Ag/V/Ag(001) and 3Ag/V/Ag(001) lie higher in energy than 1Ag/V/Ag(001)

by only 39 and 99 meV/V atom, respectively. The reason for favouring the AFM

configuration over FM, is discussed further below.

In Fig. 6.4 we show the interlayer distances denoted as dij ’s, the distance between

the ith and jth layers, of all the systems studied here. Note that dij’s are numbered

starting from the surface, e.g., d12 denotes the interlayer separation between the surface
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Table 6.1: Energetics of FM, AFM and NM configurations of V on Ag(001) systems
are presented. ∆E represents the difference in energy of a given configuration with
that of the lowest energy configuration.

System Magnetic structures Non-magnetic structures
FM AFM NM

∆E
(meV/V atom)

mFM
V

(µB)
∆E

(meV/V atom)
mAFM

V

(µB)
∆E

(meV/V atom)
mNM

V

(µB)
V/Ag(001) 830 3.03 751 2.91 1160 0

1Ag/V/Ag(001) 181 2.29 0 2.56 302 0
2Ag/V/Ag(001) 185 2.05 39 2.44 256 0
3Ag/V/Ag(001) 221 2.24 99 2.54 329 0

layer, and the layer below it. Since a symmetric slab is taken, distances up to d78 are

shown. The interlayer distances of both the FM and AFM magnetic configurations

are found to be similar, indicating that the preferred magnetic configurations of

the system have negligible effect on the dij’s. For all the systems, the interlayer

distances are found to be sensitive to the position of the V atom in the slab, due to

the formation of interface with Ag. For NM systems [see orange diamonds in Fig. 6.4],

the interlayer distances involving layers forming interfaces between V and Ag atoms

are found to be less than the corresponding interlayer distances of the magnetic

systems; this is the well-known magnetovolume effect, where the introduction of a

magnetic moment results in an expansion of interlayer distances in its vicinity.

To understand the reason behind the preference of AFM configuration over FM,

we first compare the projected density of states (PDOS) of the d-orbital of V in the

AFM and FM configuration in each structure (see Fig. 6.5). Positive and negative

values represent majority and minority spins, respectively. The red dashed and blue

solid curves indicate the AFM and FM configurations, respectively. We notice that for

a given system, the density of states of the majority states of V atom near the Fermi

energy (EF ) is narrower for the AFM configuration than the FM configuration. Since

the width of the peaks in the density of states of the d-states for FM configurations is

much broader, this leads to less exchange splitting between the majority and minority

spin states. To quantify the splitting between the energy levels of majority and
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Figure 6.4: The variation of interlayer distance dij for (a) V/Ag(001), (b)
1Ag/V/Ag(001), (c) 2Ag/V/Ag(001), and (d) 3Ag/V/Ag(001) in NM (shown in
orange diamonds), FM (shown in blue circles) and AFM (shown in red squares)
configurations.

minorrity spin states, we calculate the exchange splitting ∆Eex, defined as the energy

difference between the band center of density of states of majority and minority

d-states (ǫd) of V, ∆Eex = (ǫ↑d − ǫ↓d). The d-band center is defined as:

ǫdσ =

∫ ǫmax

ǫmin
ǫgdσ(ǫ)dǫ

∫ ǫmax

ǫmin
gdσ(ǫ)dǫ

. (6.11)

where gdσ(ǫ) is the density of states of the d-band of a given spin σ of V atom. In

the case of 1Ag/V/Ag(001) system, the calculated ∆ex for AFM is found to be 1.75

eV, which is higher than the exchange splitting of 1.67 eV in the FM configuration.

This makes the AFM configuration energetically more favourable than the FM

configuration.

In Table 6.1 we have also listed the magnetic moment per V atom (mV) for both

the FM and AFM configurations, for all the structures. One might expect that as the

V layer goes deeper into the Ag substrate, the increased hybridization of V atoms
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Figure 6.5: The projected density of states (PDOS) of the 3d states of V atoms
of both AFM (shown in red dashed lines) and FM ( shown in solid blue lines)
configuration in (a) V/Ag(001), (b) 1Ag/V/Ag(001), (c) 2Ag/V/Ag(001) and (d)
3Ag/V/Ag(001).

with Ag atoms will decrease the mV. Surprisingly, we find mV does not get reduced

significantly as the V monolayer goes sub-surface. To understand the reason behind

this observation, we plot the PDOS of V 3d orbitals and the Ag 4d orbitals (both

above and below the V layer) in Fig. 6.6 We find that 3d majority spin states of

V (blue curve) are well separated in energy from the 4d majority spin states of the

nearest neighbour Ag atoms indicating weak hybridization. This allows the V atom

to retain a significant magnetic moment even when it is buried under 3 layers of Ag,

as seen in 3Ag/V/Ag(001).

So far we have found that V prefers to go sub-surface and that the most stable

structure is 1Ag/V/Ag(001). The structure prefers AFM ordering over FM ordering,

and the NM structure is always the least favourable one. For the lowest energy
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Figure 6.6: The projected density of states (PDOS) of the Ag 4d states (shown by
gray filled curve for the layer above V monolayer and by red dashed lines for the
layer below the V monolayer) and V 3d states (shown by solid blue lines) in the
antiferromagnetic (AFM) configuration of (a) V/Ag(001), (b) 1Ag/V/Ag(001), (c)
2Ag/V/Ag(001) and (d) 3Ag/V/Ag(001).

configuration, we next compare our results with the ARPES data.

6.4.2 Comparison with experimental results

Our experimental collaborators have obtained both LEED and ARPES data for

one monolayer of V grown on Ag(001). Although they do not find evidence of a c(2×2)

superstructure in the LEED data, it is pointed out that this does not necessarily mean

the absence of an AFM order, since short-range AFM ordering in the film can have

length scales larger than the photoemission correlation length, but smaller than the

LEED coherence length.[15] One can therefore, still expect AFM bands in the ARPES

spectra. We have already shown that the 1Ag/V/Ag(001) structure in the AFM

configuration is energetically most favoured. In order to confirm the experimental
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Figure 6.7: (a) shows the calculated projected band structure of the bare Ag(001)
along the high symmetry direction Γ− X− Γ, as shown in the surface Brilluin zone
in (b). The ARPES data along the same path is shown in (c). Experimental data
provided courtesy of K. S. R. Menon. EF denotes the Fermi energy. In the colour
scale of the calculated band structure, ‘yellow’ and ‘dark blue’ indicates highest (one)
and lowest (zero) projection.

findings, in this section we compare the AFM results for the 1Ag/V/Ag(001) structure

with the experimental ARPES data.

We first compare our calculated band structure with the ARPES data obtained

for the bare Ag(001) surface in Fig. 6.7 along the high-symmetry direction Γ−X− Γ.

In Fig. 6.7(a), the band structure is produced by projection on atoms in the first three

layers (both top and bottom) of the slab. The color bar represents the amount of

projection from these layers with highest projection normalized to one, and denoted

by yellow, whereas zero projection is represented by blue colour. Since this band

structure is produced using a 1×1 unit cell, no unfolding is required. We find that
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the band structure is in good agreement with the ARPES data, in the sense that

the linearly dispersive band with highest intesity near X matches well with the

corresponding band seen in the ARPES spectra.

Figure 6.8: Calculated band structure of 1Ag/V/Ag(001) system for the AFM
configuration is plotted in (a), along the high-symmetry direction Γ − X − Γ. (b)
shows the surface Brillouin zone corresponding to the 1×1 cell (solid square and high
symmetry points Γ,X, and Γ), and

√
2×

√
2 cell (dashed square and high symmetry

points Γ′,X′ and Γ′). The second derivative of the ARPES data along the same
direction is shown in (c). Experimental data provided courtesy of K. S. R. Menon.
EF denotes the Fermi energy. In the colour scale of the calculated band structure,
‘red’ and ‘dark blue’ indicates highest (one) and lowest (zero) projection.

We have plotted the calculated band structure of the AFM configuration of

the 1Ag/V/Ag(001) system in Fig. 6.8(a), along with the second derivative of the

corresponding ARPES data in Fig. 6.8(c). The unfolding of band structure from

the Brillouin zone of the
√
2 ×

√
2 cell [shown in the figure by the dashed square
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and high symmetry points Γ′, X′ and M′ in Fig. 6.8 (c)] to the Brillouin zone of the

1× 1 cell [shown in the figure in the figure by the solid square and high symmetry

points Γ, X and M in Fig. 6.8 (c)] is necessary since an AFM configuration cannot be

defined in the primitive chemical unit cell. The colour scale denotes the amount of

projection of the atomic states corresponding to the top two layers of the slab, i.e.,

the overlayer Ag atoms and the subsurface V atoms. Both the radius and the colour

of the circles change proportional to the amount of projection. The ‘red’ represents

highest projection while ‘dark blue’ represents zero projection. In the case of the

calculated AFM band structure in Fig. 6.8(a), we find the majority and minority

bands are degenerate in the entire energy range considered here.

In order to compare the AFM band structures with the ARPES data, we choose

five states, namely, S1 − S3 at the Γ point, S4 at the X point and S5 at a k-point

[(0.3580, 0.3580, 0) in 2π/a units, marked by a red circle] in the X → Γ direction in

the surface Brillouin zone, as shown in Fig. 6.8(a). We find that, upon deposition of

V, the morphology of the bands changes considerably, as can be seen by comparing

the projected band structure of bare Ag(001) [see Fig. 6.7 (a)], with that of the

1Ag/V/Ag(001) [see Fig. 6.8(a)]. When we compare the experimental ARPES data of

the 1Ag/V/Ag(001) system in Fig. 6.8(c) with that of the bare Ag(001) in Fig. 6.7(c),

we note the appearance of an extra band at the Γ point at ∼ −2 eV. The dispersion of

this band correlates well with that of S2 at −1.5 eV in the calculated band structure

[see Fig. 6.8 (a)], having the highest intensity among S1 − S3. This provides further

evidence that the 1Ag/V/Ag(001) structure prefers AFM ordering. It should be

noted that there is an offset in energy in the position of the states at the Γ point

when comparing calculated and experimental results. This is due to the fact that the

ARPES data is taken at 428 K, and it is found that with lowering the temperature

the bands at the Γ point go up in energy.[15] Thus ARPES data at lower temperature

should show better agreement with the calculated band strucure. Unfortunately, at

the same time, when the temperature is lowered, the quality of the ARPES data is
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found to degrade, and therefore, we present comparison with the high temperature

ARPES data.

Figure 6.9: The top [(a)-(e)] and side views [(f)-(g)] of the electronic charge densities
(magenta) corresponding to states S1 − S5 of the AFM 1Ag/V/Ag(001) system. The
top view correspond to the x− y plane whereas side views correspond to x− z plane.
The blue and gray spheres represent V and Ag atoms respectively. The isosurface
value used for the charge density is 0.002 electron/a.u.3.

To gain further insight into the origin of these states, in Fig. 6.9 we plot the

electronic charge densities corresponding to these states for the AFM configuration

of 1Ag/V/Ag(001) structure. The states S1, S2, S3, S4 and S5 appear at energies

E − EF of −0.99 eV, −1.54 eV, −2.14 eV, −1.2 eV, and −2.59 eV, respectively.

Analyzing the charge density profiles and the corresponding PDOS, we see that S1

and S4 have major contributions from subsurface V atoms; S1 originates primarily

from the 3dxy orbitals of the sub-surface V atoms, whereas S4 arises mostly from

from 3dzx and 3dzy orbitals of V atoms. While S2 shows partial contribution from

the 3dz2 orbital of the V atoms, S5 arises primarily from Ag atoms at the surface. S3

shows major contribution from the 4dz2 orbital of the Ag atom at the surface, and
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tbe charge density is found to decay gradually into the bulk.

6.5 Conclusions

Using density functional theory, we have studied the structural and magnetic

properties of a monolayer of V deposited on Ag(001). Experiments find additional

surface states in the ARPES spectra upon deposition of V on Ag(001), when compared

to bare Ag(001). This suggests Ag segregation on top of V. The energetics computed

using DFT, of different V/Ag(001) systems which differ in how far the V layer is

buried under the Ag layer, show that V wants to go sub-surface, i.e., V gets buried

under a single layer of Ag, and prefers AFM ordering. The larger exchange splitting in

the AFM ordered 1Ag/V/Ag(001) system, stabilizes it over the FM ordered one. The

DFT calculated band structure projected on the surface layers, shows the presence of

surface states, whose dispersion agrees with that seen in the ARPES data. We find

that these surface states arise from the sub-surface V atoms.
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Chapter 7

Topological Phase Transitions

Induced by Giant Strains

Produced by Chemical Pressure

In this chapter, we study an alternative route of applying strain in germanene-like

systems, namely, the chemical pressure, through functionalization of the germanene

lattice. We show that chemical pressure can induce a topological phase transition

in germanene-like systems and can, in principle, produce topological insulators at

ambient conditions.

7.1 Introduction

Topological insulators (TIs), also known as quantum spin Hall insulators, are a

recently identified class of materials.[1] These materials possess an insulating band

gap in the bulk, but the Fermi level is crossed by topologically protected edge states

which are robust against disorder. These edge states allow dissipationless transport

of charge and spin, making such materials promising candidates for use in a wide

range of applications. [2–6]

The concept of topological insulators were first put forward by Kane and Mele in

145
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2005,[1] where graphene was shown to be a topological insulator. But the extremely

small spin-orbit gap in gap in graphene makes it unsuitable for application in devices.

Subsequently the first realization of topological insulator was done in HgTe quantum

wells.[7] Around the same tim,e Liang Fu et al. proposed three-dimensional topological

insulators.[8] The class of topological insulators is identified by what is called by the

Z2 topological invariant. Whereas a single Z2 index is used to identify two-dimensional

TIs, in three-dimensions (3D) there are four invariants (one strong topological index,

and three weak topological indices) which broadly classify 3D TIs into two classes, viz.,

the weak topological insulators (WTI), and the strong topological insulators (STI).

For inversion symmetric systems, the calculation of Z2 indices is quite straightforward,

involving the computation of the parity of the bands at the time reversal invariant

momenta (TRIM) points.[9] On the other hand, for the systems without inversion

symmetry, one generally employs the method suggested by Soluyanov and Vanderbilt

et al., based on the concept of time-reversal polarization.[10] Since its discovery, many

topological insulator materials in two- and three-dimensions have been suggested,

and experimentally realized.[2, 4, 11]

Due to the presence of a strong topological index, and the potential ease of control

of charge carriers by gating in nanoelectronic devices, two-dimensional (2D) TIs are of

especial interest.[12, 13] However, compared to three-dimensional TIs, relatively few

2D TIs have been identified thus far, especially at ambient conditions. Considerable

effort and ingenuity have been devoted to modifying the native prototypical structure

of various 2D materials, either physically or chemically, so as to induce topological

transitions. There are two general approaches for realization of 2D TIs:[14] (1) opening

a band gap in 2D Dirac materials, such as graphene, germanene, and silicene by spin-

orbit coupling, and (2) by inducing a band inversion in narrow-gap semiconductors,

through strain, or electric field. For example, it has been shown that As and Sb

bilayers become topological insulators at mechanical strains > 6 %.[15] Phosphorene

bilayer has been shown to undergo a topological phase transition with an electric
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field of 0.3 V/Å.[16]

As mentioned above, some of the routes explored to obtain topological phase transi-

tion have been the application of strain, chemical functionalization, and doping.[13, 17–

22] Some authors have explored the possibility of inducing a topological transition

in 2D systems by doping or chemical pressure. Weeks et al. have tried to introduce

large spin-orbit gap in graphene, by doping it with heavy adatoms like indium and

thalium.[23] Chen Si et al. have tried to functionalize germanene by halogen atoms,

achieving a maximum strain of 5% due to functionalization by iodine.[17] Xu et

al. achieved a strain of 3.6% by changing the concentration of sulfur and selenium

in BiTl(S1−δSeδ)2, to obtain a topological phase transition.[24] Thus, to date, the

strains achieved, while admittedly large compared to the values that can be achieved

by mechanical means, are still relatively modest.[24, 25] Here, we show that it is

possible to achieve far larger values of strain through chemical pressure, that can

induce topological transition at ambient conditions, or reduce the magnitude of the

mechanical strain needed for the transition.

Germanene is analogous to graphene in that it is a monolayer of germanium atoms

arranged in a honeycomb lattice, though the structure is buckled perpendicular to

the plane of the monolayer.[26] Cahangirov et al. have shown theoretically, that the

low-buckled structure (buckling ∆ = 0.44Å) of germanene is more stable than the

high-buckled one (∆ = 2.23Å).[27] It is pointed out that the transverse acoustic

phonon branch of low-buckled structure of germanene has small imaginary frequencies

near the zone center, which may be interpreted as implying that small flakes of

germanene can be stable. At its equilibrium lattice constant of 3.97 Å, calculations

have predicted that germanene should be a TI with a spin-orbit coupling (SOC) band

gap of ∼ 24 meV.[27–30] Although small flakes of germanene have been shown to be

stable, fabrication of germanene on a substrate without destroying its topological

properties, has not yet been achieved.[14]

Ways of stabilizing germanene include functionalizing with -H and -CH3 groups.[31,
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32] It is found that GeH is stable up to 75 ◦C, beyond which amorphization and

dehydrogenation begins to occur. GeCH3 has been shown to be stable up to 250 ◦C.

Calculations have predicted that GeH and GeCH3 should become TIs at tensile strains

of 10% and 12%, respectively. [13, 33] Unfortunately, these values of strain are still

rather high to be easily achievable.

In this work, we explore the alternative possibility of straining the germanene

monolayer by systematically applying increasing chemical pressure. We do this by

functionalizing instead with -CX3 groups, where X is, in turn, one of the halogens

F, Cl, Br and I. It is well-known that the atomic size increases as one progresses

downward along a column of the periodic table. We show that one can also tune the

induced strain in the system by using a combination of different halogen atoms in

the form of functionalization by -CXY 2, where X and Y can be F or Cl atoms. This

gives us flexibility in producing intermediate values of strain, not achieved in GeCX3.

Below, we show that these chemical substitutions impose giant strains on the

germanene lattice, which significantly modify the electronic structure, yet allow one

to have a topologically non-trivial phase at either ambient conditions or at a smaller

strain than for germanene functionalized with -CH3.

7.2 Systems under study

To study the effect of chemical pressure, we have considered two types of func-

tionalization of a single monolayer of germanene, viz., functionalization by -CX3, and

by -CXY 2. In the case of GeCX3, the H atoms in GeCH3 are replaced by a halogen

X (X = F, Cl, Br and I). In GeCXY 2, the H atoms in GeCH3 are replaced by a

combination of two different halogen atoms X and Y (X, Y = F or Cl), resulting in

GeCFCl2 and GeCF2Cl structures.

Figs. 7.1(a) and (b) show schematic top and side views of the parent structure

of GeCX3, we will refer to this as the P structure. We note that the P structure

has a three-fold symmetry which can get destroyed upon applying chemical pressure,
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Figure 7.1: Panels (a) and (b) show schematic top and side views, respectively for
the P -GeCX3 structure. Panel (c) shows the top view of the D-structure of GeCCl3.
(d) and (e) show the top and side views, respectively for the GeCXY2 structure. The
shaded rhombuses in (a) and (d) denote the unit cells of the respective structures.
Red, Green and Blue spheres indicate Ge, C and X atoms, respectively. X can be
H, F, Cl, Br or I in GeCX3, whereas X and Y can be F or Cl in GeCXY2. The
black and magenta colored zigzag lines in (c) show bonds of different lengths due to
distortion. In contrast, all the Ge-Ge bonds in (a) are equal in length.

resulting in a distorted (D) structure with lower symmetry, as shown in Fig. 7.1

(c). Figs. 7.1(d) and (e) show schematic top and side views, respectively of the

GeCXY 2 structure. Each Ge atom is connected to a -CX3 group, or a -CXY 2

group in the case of GeCX3, or GeCXY 2, respectively. In GeCX3, the Ge atoms

form a buckled honeycomb lattice, with alternate Ge atoms in each hexagon of the

honeycomb displaced along +ẑ and −ẑ, where the z direction is normal to the plane

of the monolayer. In contrast, GeCXY 2 departs slightly from a pure honycomb

lattice, in the sense that the two in-plane primitive lattice vectors are unequal in

length. GeCXY 2 also presents a buckled structure like GeCX3. The buckling in

both the structures is characterized by ∆ (see Fig. 7.1(b)), which is the sum of the

displacements (from the central plane) of the alternate Ge atoms in each hexagon,

along the +ẑ and −ẑ directions, perpendicular to the plane of the monolayer.
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7.3 Computational details

Our calculations have been performed using ab initio density functional theory

(DFT) as implemented in the Quantum-ESPRESSO package,[34] using a plane wave

basis set, ultrasoft pseudopotentials [35] and the PBE form of the generalized gradient

approximation.[36] The cut-offs for wave functions and charge densities are 40 Ry

and 400 Ry respectively. Most calculations are also repeated using the HSE06

hybrid functional,[37] together with norm-conserving pseudopotentials.[38] van der

Waals interactions are incorporated using the ‘DFT-D2’ method.[39, 40] Spin-orbit

interactions are treated using fully relativistic pseudopotentials.[41] To minimize

interactions between artificially periodic images along the z direction, a supercell

length of 20 Å is used along z. A 12× 12× 1 k -point mesh is used for Brillouin zone

(BZ) summations. All atomic coordinates are relaxed until forces are < 1.0× 10−3

Ry/bohr.

All structures considered in this paper are found to possess inversion symmetry.

Therefore the topological invariant Z2 is computed by evaluating the parity of the

bands at the four time reversal invariant momenta (TRIM) points in the BZ, using

the following equations:[4, 9]

δi =
∏

m

ξm(Λi), (7.1)

where the product is over the pairs of parity eigenvalues of the occupied Kramers

doublets resulting from the time reversal symmetry, at the TRIM points Λi, given

by ξm(Λi) , without multiplying the corresponding time reversed partners. The Z2

invariant ν is then given by

(−1)ν =
4
∏

i=1

δi. (7.2)

The nature of the bonding in the systems considered is analyzed by making use of

the Crystal Orbital Hamilton Population (COHP), as implemented in the LOBSTER

package.[42, 43]
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7.4 Results and Discussion

7.4.1 Geometry and energetics

In this section we look at the geometrical parameters of the optimized structures

of GeCX3, and GeCXY 2. To get an idea of the chemical pressure induced in the

respective systems due to functionalization, we will measure the strains in the systems

when compared to GeCH3. Finally we will comprare the thermodynamic stability of

the various systems in terms of the cohesive energies. The details of the geometrical

parameters, functionalization induced strains, and cohesive energies of the GeCX3,

and GeCXY 2 systems, are summarized in Tables 7.1 and 7.2, respectively.

We find that the lattice constant of a monolayer of germanene is 4.00 Å, while that

of P -GeCH3 is aH0 = 3.98 Å, in good agreement with previous values.[27, 28, 32, 33]

On replacing H by a halogen X in P -GeCH3, the corresponding equilibrium lattice

constant aX0 increases relative to aH0 . In Fig. 7.2(a), we have plotted our results for

aX0 , as well as the corresponding values of strain ǫ = (aX0 − aH0 )/a
H
0 . We see that

as expected, by terminating germanene with -CX3 containing halogen atoms X of

increasingly larger size, we have succeeded in considerably expanding the lattice

constant, thereby mimicking the effect of applying a significant tensile strain to the

underlying germanene lattice: ǫ = 9.5%, 37.4%, 48.9% and 62.8% for X = F, Cl,

Br and I, respectively. Achieving such large strains by mechanical means would of

course be unfeasible. If aX0 is determined primarily by steric interactions between

the X atoms, then based on a hard sphere model, one would expect aX0 = 2
√
3rX ,

where rX is the van der Waals radius for the element X. We see from Fig. 7.2(a)

that the predictions of the hard sphere model are satisfied to a large extent for all

the halogens X. We find that with the increase in lattice constant of GeCX3 due

to functionalization with larger halogen atoms, the buckling ∆ reduces, as shown in

Fig. 7.2(b).

In the GeCXY 2 systems, we find that the in-plane lattice constants a1 and a2,
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Table 7.1: The following table shows the lattice constants (aX0 ), Ge-Ge bond
lengths, buckling (∆), strains with respect to P -GeCH3 lattice constant (ǫ) and
cohesive energies (Ecoh), of germanene, P -GeCH3 and P -GeCX3 (X = F, Cl, Br and
I) systems.

System
aX0
(Å)

Ge-Ge bond length
(Å)

∆
(Å)

ǫ
(%)

Ecoh

(eV/formula unit)

Germanene 4.00 2.41 0.68 – 3.39
P -GeCH3 3.98 2.44 0.80 0 12.57
P -GeCF3 4.36 2.58 0.58 9.5 18.03
P -GeCCl3 5.47 3.19 0.39 37.4 11.30
P -GeCBr3 5.93 3.44 0.34 48.9 10.16
P -GeCI3 6.48 3.75 0.33 62.8 9.19

Figure 7.2: We compare equilibrium lattice constants as obtained from DFT and a
hard-sphere model in (a). Panel (b) shows how the buckling ∆ changes with the lattice
constant of GeCX3. The star in (b) denotes the value for germanene monolayer.

are unequal, as can be seen from the values presented in Table 7.2. The presence of

two Cl atoms per Ge atom in GeCFCl2, as compared to one Cl atom per Ge atom in

GeCF2Cl, increases the steric interaction in GeCFCl2, compared to GeCF2Cl, which

results in larger chemical pressure in GeCFCl2. This is reflected in the larger lattice

constants a1 and a2, and strains ǫ1,2 = (a1,2 − aH0 )/a
H
0 in GeCFCl2, as compared to

GeCF2Cl. We note that the strains ǫ1,2 generated along the lattice vetors a1 or a2,

in GeCFCl2, are larger than that in GeCF3, but smaller than in GeCCl3. This has

implications on both the stability and the topological properties of GeCFCl2, as will

be discussed further below.

In order to compare the thermodynamic stabilty of the different systems considered,
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Table 7.2: The following table shows the in-plane lattice constants along x and
y, a1 and a2, respectively, Ge-Ge bond lengths, buckling (∆), strains with respect
to P -GeCH3 lattice constants along a1 and a2, ǫ1 and ǫ2, respectively, and cohesive
energies (Ecoh), of GeCF2Cl and GeCFCl2 systems.

System
a1
(Å)

a2
(Å)

Ge-Ge bond length
(Å)

Buckling (∆)
(Å)

ǫ1
(%)

ǫ2
(%)

Ecoh

(eV)

GeCF2Cl 4.33 4.24 2.58 0.69 8.8 6.5 15.83
GeCFCl2 4.77 4.83 2.77 0.65 19.8 21.4 13.47

we compute their cohesive enrgies. The cohesive energies of the GeCX3 (EX
coh), and

the GeCXY 2 (EXY2

coh ) are defined as:

EX
coh = −[Etot(GeCX3)− 2Eiso

tot (Ge)− 2Eiso
tot (C)− 6Eiso

tot (
1

2
X2)]/2, (7.3)

and,

EXY
coh = −[Etot(GeCXY2)−2Eiso

tot (Ge)−2Eiso
tot (C)−2Eiso

tot (
1

2
X2)−4Eiso

tot (
1

2
Y2]/2. (7.4)

where Etot(GeCX3), and Etot(GeCXY2) are the total energies, as computed using

DFT, of a unit cell of GeCX3 and GeCXY 2, respectively (containing two formula

units), and Eiso
tot (A) is the total energy of an isolated atom A. We note that all the

cohesive energies presented in Tables 7.1 and 7.2, are positive, signifying that it is

thermodynamically feasible to form these structures. Interestingly, GeCF3 has the

highest cohesive energy among all the structures. GeCF2Cl and GeCFCl2 have higher

cohesive energies than GeCH3, whereas GeCCl3 has marginally lower cohesive energy

than GeCH3. This shows that by substituting H in GeCH3 by different halogen atoms

of larger size, one can improve the thermodynamic stability of the system. In terms

of thermodynamic stability, GeCF3, GeCF2Cl, GeCFCl2, and GeCCl3 have higher

cohesive energies among the systems considered, and thus we will focus on these

systems to explore their electronic and topological properties.
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7.4.2 Electronic properties: effect of mechanical strain in

GeCH3 and GeCF3

In this section we look at the electronic properties of the GeCH3 and GeCF3 systems

at ambient conditions and under external mechanical strain. To apply mechanical

tensile and compressive strain on the respective structures, the in-plane lattice vectors

are stretched or compressed equally. The strain is defined as ǫX ≡ (a− aX0 )/a
X
0 , with

its positive/negative value indicating tensile/compressive strains. Note that unlike

ǫ [presented in Fig. 7.2 (a) above], here the strain ǫX is defined relative to aX0 , the

equilibrium lattice constant not of GeCH3 but of GeCX3.

We first consider the effects of replacing H by F in P -GeCH3. We find that at

their equilibrium lattice constants, P -GeCH3 and P -GeCF3 exhibit direct band gaps

Eg of 1.15 eV (1.75 eV) and 0.44 eV (0.86 eV), at the zone center, when computed

with the PBE (HSE) functional; the experimental value for GeCH3 is 1.7 eV.[32]

In Figs. 7.3(a) and (b), we show how Eg varies with strain for GeCH3 and GeCF3,

in the absence of SOC. We see that for GeCH3, Eg decreases upon applying tensile

strain, becoming zero at a critical value ǫXc = 10% (14%) with PBE (HSE). Fig. 7.3(b)

shows that for GeCF3, the value of ǫXc is considerably reduced, to 5% (7%) with

PBE (HSE). On including SOC, the band gaps at ǫXc for GeCH3 and GeCF3 are

0.12 eV and 0.09 eV, respectively. In the subsequent section we will show that at

these critical strains GeCH3 and GeCF3 undergo topological phase transitions, and

become topological insulators (TIs). The data in Figs. 7.3(a) and (b) are re-plotted

in Fig. 7.3(c), with the abscissa as the lattice constant a of GeCX3. We see that

Eg appears to be primarily determined by the lattice constant a, though the slight

differences in Eg for GeCH3 and GeCF3 at the same values of a suggest that there

may also be small chemical effects.

The observed non-monotonic behaviour of the band gap Eg as a function of

strain ǫX for GeCH3 (see Fig. 7.4) is not uncommon in two-dimensional materials;

similar behavior has also been seen for other monolayer systems, e.g., MoS2 and
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Figure 7.3: Straining the germanene lattice by chemical pressure: the P structure
of GeCX3. Panels (a) and (b) show the band gap Eg (without SOC) for GeCH3 and
GeCF3, respectively. Negative (positive) strains correspond to compressive (tensile)
strains, and filled (empty) symbols represent PBE (HSE) results. In (c) we show how
Eg varies with lattice constant a for all halogens X.

phosphorene.[44, 45] To understand the reason behind such a behaviour, we compute

the Crystal Overlap Hamilton[ian] Population (COHP),[42] making use of the LOB-

STER package.[43] The COHP separates out pairwise atom-resolved contributions to

the band-structure energy of a system; most notably if the negative of the COHP is

positive/negative, then the corresponding state has bonding/antibonding character.

We recall the expectation that in general (e.g., for the simple case of a two-level

system in a diatomic molecule), as two interacting systems are brought closer together,

bonding states move down in energy, whereas anti-bonding states move up in energy.

In Fig. 7.4 we plot the COHP for the VBM and CBM for GeCH3, as a function

of strain ǫX , for Ge-Ge and Ge-C bonds. We see that the COHP does not change

appreciably with strain for the VBM, whereas there are pronounced changes in the

COHP for the CBM. This suggests that changes in Eg are governed primarily by

changes in the nature of the CBM. As expected, the behavior of the CBM is governed

mainly by the nature of Ge-Ge bonds. We see that as we move away from ǫX = 0%,

i.e., as we apply either a compressive or tensile strain, −COHP becomes progressively

more positive for Ge-Ge bonds. This means that the contribution from Ge-Ge bonds

acquires a more bonding character, and the CBM should move down in energy,

which would tend to decrease the band gap. However, we note that the behavior of
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Figure 7.4: -COHP plots of GeCH3 for (a) VBM and (b) CBM, at different values
of strain. Turquoise squares and violet circles indicate contributions to COHP from
Ge-C and Ge-Ge pairwise interactions.

the −COHP for the Ge-C bonds is opposite that for Ge-Ge bonds, with the states

acquiring a more antibonding character as compressive strain is applied. Due to the

CBM having a small contribution from Ge-C bonds, the maximum band gap is moved

away from zero strain to ǫX = −4%. This explains the observed behaviour of the

electronic band gap with strain in GeCH3. We expect that the approach developed

above is quite general and can be applied to understand the non-monotonic behaviour

in the band gap as a function of strain in other two-dimensional systems as well.

7.4.3 Topological phase transitions

We discuss here the topological phase transitions in the GeCX3 and GeCXY 2

systems. We will see that replacing H atoms in GeCH3 with bigger halogen atoms

can induce topological phase transitions at ambient conditions, or reduce the strain

needed for the transition.

We find that GeCH3 and GeCF3 become TIs at tensile strains ǫX of 10% and 5%,

respectively (PBE values). While this result is known for GeCH3, for GeCF3, this

represents a new finding, and shows that replacing H by F considerably reduces the

strain at which the topological transition occurs. The presence of the topological

insulator phase has been verified by computing the Z2 invariant using Eqd. (8.1) and
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Figure 7.5: Orbital projected band structure of P -GeCF3 at strain ǫX = (a) 0%
and (b) 5%. The color indicates the fractional contribution of Ge-sp orbitals (yellow)
relative to Ge-p orbitals (blue).

(8.2), as well as observing band inversion and the presence of conducting edge states.

In order to demonstrate the existence of band inversion, in Fig. 7.5 we plot the

orbital-projected electronic band structure of GeCF3 (using PBE+SOC) at strains

ǫX of 0% and 5%. In these figures, the color of the bands shows the orbital nature,

with yellow and blue colors indicating purely sp-like and purely p-like character,

respectively; intermediate colors indicate a mixed nature, according to the drawn

color bar. We see that at ǫX = 0%, the valence band maximum (VBM) at the Γ point

has p-like nature with parity +1, whereas the conduction band minimum (CBM) has

sp nature with parity −1. This situation is reversed at ǫX = 5%, with the VBM

having sp-like nature with parity −1, and the CBM having p-like nature with parity

+1. In other words, a band inversion has occurred.

The presence of the conducting edge states has been verified by calculating the

band structure of a nanoribbon of the strained (5%) GeCF3, periodic in the [100]

direction and of length 23.8 nm in the [010] direction. The band structure shown in

Fig. 7.6 is obtained using the tight-binding approximation, with parameters obtained
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Figure 7.6: Band structure of a nanoribbon of GeCF3 under 5% tensile strain. A
pair of topologically protected edge states can be seen to cross the Fermi level at the
zone center. The inset shows the zoomed in view of the pair of edge states crossing
the Fermi level near the zone center.

by Wannierization of our DFT results, using the WannierTools package.[46] In this

figure, one can see a pair of topologically protected edge states crossing the Fermi level

at the center of the one-dimensional Brillouin zone corresponding to the nanoribbon.

Next we replace the H atoms in GeCH3 by Cl atoms. We find that it is no

longer necessary to strain the system to observe a topologically non-trivial phase:

calculation of Z2 for P -GeCCl3 at ǫX = 0 reveals that it is a TI. However, computing

the phonon frequencies for this structure reveals the presence of imaginary modes,

i.e., this compound is not dynamically stable in the P structure. By displacing the

atoms along the eigenvectors of the imaginary mode, we find a lower-energy stable

structure for GeCCl3, we call this the distorted or D structure [see Fig. 7.1(c)]. The

stabilization in energy due to distortion is small (35 meV/primitive unit cell), and

the lattice constant is unchanged. The distortion consists primarily of a symmetry-

lowering in-plane distortion of the Ge atoms within the unit cell for GeCCl3, similar

to the Peierls distortion of one-dimensional atomic chains. Thus, while all the ‘green’

Ge-Ge bonds in P -GeCCl3 [see Fig. 7.1(a)] have length 3.18 Å, the ‘magenta’ and

‘black’ Ge-Ge bonds in D-GeCCl3 [see Fig. 7.1(c)] have lengths of 3.57 Å and 3.04 Å,
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Figure 7.7: (Projected band structures (PBE+SOC) of (a) P -GeCCl3 and (b)
D-GeCCl3, for the topmost valence band and lowest-lying conduction band. The
color indicates the fractional contribution of p, j = 3/2 relative to p, j = 1/2, with
red color corresponding to totally j = 3/2 character; note that the color scales are
different in (a) and (b). The inset in (b) shows the 2D Brillouin zone.

respectively. The dynamical stability of the D-GeCCl3 structure has been studied in

detail in the next section. The electronic structure, in particular the topography of

the valence and conduction bands, is significantly modified as a result of the distortion.

In Figs. 7.7(a) and (b), we have plotted the orbital-projected band structure along

high-symmetry directions of the BZ for the P and D structures; we see that as a

result of the distortion, the VBM and CBM shift from Γ to two points in the BZ

lying along the K1-Γ-K2 direction. Interestingly and importantly, the D structure is

also a topological insulator, with a SOC band gap of 0.1 eV. The band inversion for

D-GeCCl3 is evident in Fig. 7.7(b).

In Fig. 7.8(a), we show the topography of the topmost valence band and lowest-

lying conduction band, for the whole BZ, for D-GeCCl3. The band-structure is

characterized by the presence of two Dirac-cone-like features. In Fig. 7.8(b), we

have plotted the band structure of a nanoribbon of D-GeCCl3, periodic in the [100]

direction and of length 28.4 nm in the [010] direction. A pair of edge states can



7.4 Results and Discussion 160

Figure 7.8: Band structure of D-GeCCl3 (PBE+SOC): Panel (a) shows the topogra-
phy of the topmost valence band and the bottommost conduction band, and (b) shows
the band structure of a nanoribbon, characterized by the presence of topologically
protected edge states crossing the Fermi level.

be seen to cross the Fermi level at the edge of the one-dimensional Brillouin zone

corresponding to the nanoribbon [see Fig. 7.8(b)].

We find that both GeCBr3 and GeCI3 are TIs in the P structure, but are again

dynamically unstable. However, unlike the case of GeCCl3, GeCBr3, on going to the

D-structure, becomes a trivial insulator with an indirect band gap of 0.63 eV. For

GeCI3, we are unable to find a dynamically stable structure.

In section 4.1, we have seen that GeCFCl2 has a lattice constant in between that

of GeCF3 and GeCCl3, which reduces the chemical pressure in GeCFCl2, compared

to GeCCl3. It is also thermodynamically more stable than GeCCl3. The next step

is therefore to see whether one can achieve topological phase transition in GeCFCl2

in absence of any external mechanical strain. Importantly, we find that the Z2

invariant of the GeCFCl2 system is 1, signifying the existence topological insulator

phase at a lower chemical pressure than GeCCl3 and at ambient conditions. The

orbital projected band structure (using PBE+SOC) of GeCFCl2 in Fig. 7.9 shows the

presence of sp-type band inversion as is found in GeCF3, at 5 % strain. Interstingly,

GeCFCl2 has a band gap (PBE+SOC) of 0.23 eV, which is twice the band gap of

D-GeCCl3, making it a large-gap TI.

We find that GeCF2Cl, with a chemical pressure much lower than GeCFCl2, is a
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Figure 7.9: Orbital projected band structure (PBE+SOC) of GeCFCl2. The color
indicates the fractional contribution of Ge-sp orbitals (yellow) relative to Ge-p orbitals
(blue).

trivial insulator with a band gap (GGA) of 0.70 eV at zero strain.

7.4.4 Dynamical stability

We now look at the dynamical stability of the systems which we find to be TIs

either at ambient conditions, or under mechanical strain, namely, GeCF3, GeCCl3,

and GeCFCl2. For this purpose we calculate the phonon band structures of these

systems along the high symmetry paths in the BZ.

In Figs. 7.10(a) and (b), we present the phonon band structures of the GeCF3

system, at 0%, and at 5% strains, respectively. The absence of imaginary modes

as shown in Fig. 7.10 (a), suggests that GeCF3 is dynamically stable at ambient

conditions. At 5% strain, we see a softening of the acoustic branch very close to the

zone center, which generally corresponds to long wavelength ripples in the structure,

and is a well-known feature in monolayer systems, such as graphene and MoS2, under

strain.[47, 48] The absence of imaginary phonon frequencies at other k-points away

from the zone-center, indicates that GeCF3 is dynamically stable at 5% strain, where

it is shown to be a TI. Further verification of the stability of these structures is

obtained by performing ab initio molecular dynamics (MD) simulations using a 3× 3

orthorhombic supercell containing 180 atoms, where we find that the structure do

remains stable at a temperature of 300 K, for a 8 picoseconds run.

The presence of imaginary modes at all the k-points in the BZ, for P -GeCCl3
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Figure 7.10: Phonon band structures of GECF3 at (a) 0%, and (b) 5% strains.
In panels (c) and (d) we plot the phonon bands for the P -GeCCl3, and D-GeCCl3
systems. (e) shows the phonon band structure of GeCFCl2.
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[see Fig. 7.10 (c)], suggests that the structure is dynamically unstable. As mentioned

above in section 4.3, removal of imaginary modes by displacing the atoms along

the eigenvectors of the imaginary mode at the zone center, results in the D-GeCCl3

structure. In Fig. 7.10 (d), we plot the phonon band structure of D-GeCCl3. We find

that the symmetry lowering distortion removes the negative phonon frequencies near

the zone center, although it fails to remove imaginary modes from other k-points,

e.g., near the M and K high-symmetry points in the BZ. We find that this distortion

breaks the three-fold symmetry of the honeycomb lattice, resulting in unequal Ge-Ge

bond lengths, as shown by magenta and black lines in Fig. 7.1 (c), though the lattice

paramters remain unchanged.

As discussed in Section 4.1, comparison of cohesive energies shows that GeCFCl2

is thermodynamically more stable than GeCCl3. The phonon band structure of

GeCFCl2 shown in Fig. 7.10 (e), reveals that although GeCFCl2 contains imaginary

modes like D-GeCCl3, the magnitude of the frequencies is much less negative than

compared to D-GeCCl3. ab initio MD simulation using a 4×4 orthorhombic supercell

containing 320 atoms, shows that the structure remains stable at temperature 20 K,

during a 8 picoseconds run. Therefore, we expect that GeCFCl2 can prove to be a

suitable candidate for low temperature applications, e.g., dissipationless transistors

in quantum computers.[49]

7.5 Conclusions

In summary, we have found that by functionalizing germanene by -CX3 groups,

where X is a halogen, as one goes down the column, one produces a progressively

greater strain in the system due to increased steric repulsion between neighboring

-CX3 groups. The giant strains thus induced are significantly larger than can be

achieved by mechanical means or by deposition on a substrate with a lattice mismatch.

One can also manipulate the chemical pressure in the system through the use of a

combination of different halogen atoms in the functional group, e.g. -CXY 2 (X, Y =
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F or Cl). We show that, as a result, GeCCl3 and GeCFCl2 are topological insulators

at ambient conditions, while GeCF3 displays a topological transition at a relatively

small tensile strain of 5%. These results can be compared to the strains of 10% and

12% at which GeH and GeCH3 have been predicted to become topological insulators.

Moreover, GeCFCl2 is found to be a large-gap TI. We hope our work will stimulate

experimental work on the synthesis and measurement of the properties of GeCFCl2,

GeCCl3, and GeCF3. Our results have significant implications for the prospective

use of these materials in future devices.
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Chapter 8

GeCCl3: A Model Topological

Material

In this chapter, using density functional theory calculations, we show that it is

possible to observe a number of non-trivial topological phases, such as strong and

weak topological insulators, Dirac and Weyl nodal line semimetals, in the three-

dimensional bulk of a single material, GeCCl3, under suitable conditions.

8.1 Introduction

Materials with non-trivial band topology have drawn tremendous attention in the

past few years since the discovery of topological insulators (TIs). [1–5] Topological

semimetals, such as Weyl semimetals (WSMs), Dirac semimetals (DSMs) and nodal-

line semimetals (NLSs) provide useful test systems to check fundamental theories of

physics (e.g., Dirac and Weyl fermions) beside providing possibility of novel device

applications. They also make it feasible to study new types of fermions which do not

have their counterpart in high-energy physics. e.g., type-II Weyl, spin-1 Weyl, double

Dirac, etc. [6–9]

Topological insulators, or quantum spin Hall (QSH) insulators are materials with

a bulk insulating gap, and conducting edge states. In three-dimensions (3D) there can

be weak (WTI) or strong topological insulators (STI) depending on whether the edge
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states are topologically protected, or in other words, robust against disorder, or not.

Kane and Mele proposed graphene as the first TI, with a very small band gap (∼ 0.04

meV), introduced due to spin-orbit coupling (SOC).[10] However, the extremely

small band gap in graphene makes it unsuitable for use in devices. Subsequently,

the HgTe-CdTe semiconductor quantum well was predicted to show QSH effect in

two-dimensions (2D), and this was soon experimentally realized.[11, 12] Since then a

lot of materials have been shown to display topological insulator properties, either at

ambient conditions, or under the application of strain, or electric field.[13, 14]

Topological semimetals, like topological insulators, are also characterized by

surface states, but do not show a bulk band gap. WSMs are semimetals whose low-

energy excitations are Weyl fermions that manifest themselves as linearly dispersive

bands in three-dimensional (3D) momentum space through nodes called Weyl points.

The Weyl points always appear in pairs. In a WSM, either the time reversal symmetry

(TRS) or the inversion symmetry (IS) is broken. The existence of Weyl fermions

was first propesed by Wan et al. in pyrochlore iridates,[15] where the appearance of

surface states in the form of Fermi arcs, has been theoretically observed. Subsequent

theoretical proposals of Weyl semimetals include the materials HgCr2Se4,[16] and

Hg1−x−yCdxMnyTe.[17]

When both TRS and IS are present, the pair of Weyl points becomes degenerate,

leading to a DSM phase. [18] The possibility of the existence of a four-fold degenerate

Dirac point in the 3D bulk of a material was first proposed by Abrikosov and

Beneslavskii,[19] and more recently by Wang et al., and Young et al.[20] In some

instances, the Dirac point is found to be protected by space group symmetries.

Examples of such symmetry-protected DSMs include Cd3As2,[21] and Na3Bi.[22]

In a Dirac or Weyl semimetal the bands can cross along a line or a closed curve,

resulting in a NLS. NLSs have been theoretically proposed in a number of materials,[23]

but conclusive experimental evidence, using angle resolved photoemission spectroscopy

(ARPES), has only been found recently for TiB2,[24] and ZrB2.[25]
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Although these distinct topological phases have been realized separately in different

materials, a study of all these phases in a single material is absent due to lack of

multitunability of a material in general. In this chapter we discuss the results from

density functional theory calculations on bulk GeCCl3 in inversion symmetric and

non-inversion symmetric form. We show that since GeCCl3 is a layered material, one

can use thickness and stacking in addition to strain or pressure to tune its topological

properties. We see that the topological property of GeCCl3 is different in the bulk as

compared to its monolayer, leading to different topological phases in them. Inversion

symmetry in the system can be broken by altering the stacking from AA- to AB-type,

which results in a further topological phase transition. Moreover, we show that by

applying a moderate amount of hydrostatic pressure, one can make both the IS and

NIS (non-inversion symmetric) systems transition into STIs. The details of these

results are presented further below.

8.2 Systems under study

In our previous study (see Chapter 8), we have shown that the removal of the

dynamic instability at the Γ point of the Brillouin zone of monolayer of GeCCl3 (in-

plane lattice constant a = 5.47 Å) results in a symmetry-lowering distortion, achieved

by displacing the atoms in the unit cell along the eigenvectors of the imaginary phonon

mode at the zone center. As a result of the distortion, the Ge-Ge bonds along the

zigzag direction of GeCCl3 are unequal: the ‘magenta’ and ‘black’ Ge-Ge bonds are

of lengths 3.57 Å and 3.04 Å respectively (see Fig. 8.1(a)). The D-GeCCl3 strcture is

more stable than its parent structure, P -GeCCl3 (35 meV/unit cell lower in energy),

and the lattice constant remains unchanged. The distorted GeCCl3 (D-GeCCl3)

monolayer is shown to be a topological insulator. In the following discussion, we will

study the topological properties of the bulk D-GeCCl3, in 3D.

In Fig. 8.1(a) we show the top view of the bulk unit cell (blue shaded rhombus)

of inversion symmetric D-GeCCl3, with an AA stacking, whereas in (b) the inversion
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Figure 8.1: Structures of D-GeCCl3: panels (a) and (b) [(c) and (d)] show the
schematic top (side) views of D-GeCCl3. (a) and (c) correspond to AA-stacking
(with IS), whereas (b) and (d) correspond to AB-stacking (without IS). The shaded
rhombus in Blue in (a) and (b) depicts a unit cell. Red, Green and Blue spheres
indicate Ge, C and Cl atoms, respectively. Magenta and black colored lines in (a)
show bonds of different lengths due to in-plane distortion. Panel (e) shows the bulk
BZ and its (010) surface (in pink).

symmetry is broken by AB-stacking. Panels (c) and (d) show the side views of the

AA- and AB-stacked D-GeCCl3, respectively, along with the corresponding unit cells.

Note, in the AB-stacking the cell length has doubled in the direction perpendicular

to the plane of D-GeCCl3. The in-plane lattice constant, which is the same as that of

monolayer D-GeCCl3, of both AA- and AB-stacked systems, is 5.47 Å. The interlayer

separation between two consecutive D-GeCCl3 layers for the AA-stacked structure

is 3.24 Å. The AB-stacked D-GeCCl3 is found to have a slightly larger interlayer

separation of 3.39 Å.

8.3 Computational details

Our calculations have been performed using ab initio density functional theory

(DFT) as implemented in the Quantum-ESPRESSO package. [26] The Kohn-Sham

equations are expanded in a plane wave basis set, together with ultrasoft pseudopo-

tentials, [27] and the PBE form of the generalized gradient approximation. [28] The
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cut-offs for wave functions and charge densities are 40 Ry and 400 Ry respectively.

8 × 8 × 6, and 8 × 8 × 3 Monkhorst-Pack k-point meshes are used to sample the

Brillouin zones (BZs) of the AA-stacked and AB-stacked D-GeCCl3, respectively.[29]

All atomic coordinates are relaxed until forces are < 1.0× 10−3 Ry/Bohr. van der

Waals interactions are incorporated using the ‘DFT-D2’ method.[30, 31] Spin-orbit

interactions are treated using fully relativistic pseudopotentials.[32]

The structures of the nodal lines, surface states and Fermi arcs have been computed

using the WannierTools package, [33] which involves wannierization of the plane wave

basis, and subsequent implementation in a tight binding approximation, using the

Hamiltonian overlap matrix elements obtained from the wannierization.

The Z2 topological index for the inversion symmetric structure has been calculated

using the parity of the bands at the eight time reversal invariant momenta (TRIM)

points in the Brillouin zone (BZ), using the following equation:[34]

δi =
∏

m

ξm(Λi), (8.1)

where the product is over the pairs of parity eigenvalues of the occupied Kramers

doublets resulting from the time reversal symmetry, at the TRIM points Λi, given by

ξm(Λi) , without multiplying the corresponding time reversed partners. The strong

topological invariant ν0 is then expressed as

(−1)ν0 =
8
∏

i=1

δi. (8.2)

The other three weak invariants are given by the product of the δi’s for which the

TRIM points Λi=(n1n2n3) =
1
2
(n1b1+n2b2+n3b3), (b1,b2, and b3 being the reciprocal

lattice vectors), reside in the same plane, given as

(−1)νk =
∏

nk=1;nj 6=k=0,1

δi=(n1n2n3). (8.3)
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To compute the Z2 index for the structures without inversion symmetry we use

the the Wannier charge center method as implemented in WannierTools,[33, 35]

which computes the number of jumps in the Wannier charge centers, when plotted

against a k-point path in the Brillouin zone (BZ). Even/odd number of jumps indicate

trivial/topological insulator.

8.4 Results and Discussion

8.4.1 Nodal lines in D-GeCCl3

In chapter 7, we have seen that D-GeCCl3, in its monolayer, is a topological

insulator. In this chapter, we look at the topological properties of D-GeCCl3 in its

3D bulk. Henceforth, in this chapter, when we refer to D-GeCCl3, we always mean

the layered bulk structure.

In order to observe the presence of Dirac or Weyl nodes, we start by looking at

the 3D band structure of the AA (IS) and AB stacked (NIS) D-GeCCl3, excluding

spin-orbit interactions. In Fig. 8.2(a), we plot the 3D band structure (without

incorporating SOC), of the topmost valence band, and the bottommost conduction

band, of the inversion symmetric, or AA-stacked D-GeCC3, at kz = 0. To capture

the details of the morphology of the bands near the Dirac or Weyl nodes, we use a

fine k-mesh of 49× 80× 1 k-points, in the portion of the BZ which contains the Dirac

or Weyl points. We see the presence of a pair of Dirac cones which lie close to the

high-symmetry line K1-Γ-K2 (see Fig. 8.1 (e)) in the BZ. Upon breaking the inversion

symmetry through stacking in AB-stacked D-GeCCl3, each of these Dirac nodes is

found to get split into pairs of Weyl nodes as shown in Fig. 8.2(b).

To understand how these Dirac or Weyl nodes extend in the BZ, we plot the nodal

line structure of the Dirac and Weyl points in Figs. 8.2(c) and (d), respectively. The

nodes represent points in the 3D BZ where the band gap is ≤ 3 meV. We note that

the use of a finer k-point mesh can result in a lower threshold of band gap, closer to 0

eV, for the generation of the nodal lines. In Fig. 8.2(c), we see that the Dirac points
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Figure 8.2: 3D band structures (without SOC) and structure of nodal lines: panels
(a) and (b) show the 3D band structures of Dirac and Weyl NLSs, respectively at
kz = 0. Two Dirac nodes can be seen in (a), each of which splits into a pair of Weyl
nodes as the inversion symmetry is broken by stacking, as shown in (b). The straight
lines in Red in (c) [(d)] shows the structure of the nodal lines of Dirac (Weyl) NLS.
The computed Berry phases in closed loops around nodal lines are also shown in (c)
and (d).

in the BZ form a pair of nodal straight lines, extending in the kz direction of the BZ.

Each of these Dirac nodal straight lines splits into a pair of Weyl nodal straight lines

as shown in Fig. 8.2(d) when the inversion symmetry is broken by AB stacking.

We confirm the topologically non-trivial nature of the nodal lines, by computing

the Berry phase on a closed loop around the nodal lines. The Berry phase is calculated

using the following equation:[36]

γn =

∮

An(k).d l, (8.4)

where An(k) = i 〈un(k)|∇k|un(k)〉 is the Berry connection, and un(k) is the Bloch

wavefunction of the n-th band. We find that the Dirac and Weyl nodal lines have

a non-zero Berry phase of either +π or −π as shown in Figs. 8.2(c) and (d). This

provides evidence of the non-trivial topological nature of the nodal lines. The opposite
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signs of the Berry phases indicate the opposite chirality of the Dirac and Weyl nodal

lines. This observation is important as the surface states are known to connect the

nodes of opposite chirality, as will be seen further below.

8.4.2 Surface states in D-GeCCl3

The signature of the Dirac and Weyl nodal lines are the drumhead or flat surface

states near the Fermi level. We have used the surface Green’s function technique, as

implemented in the WannierTools package,[33] to calculate the surface state spectrum,

where the intensity of the bands is proportional to the spectral function, which is the

imaginary part of the surface Green’s function.

Figs. 8.3(a) and (b) show the surface states at the (010) surface of D-GeCCl3,

corresponding to the Dirac and Weyl nodal straight lines, respectively. The surface

BZ is shown in Fig. 8.1(e). The low dispersion or flat nature of these surface states

should be noted, which is a characteristic feature of the surface states corresponding

to the nodal line semimetals. In Figs. 8.3(c) and (d) a zoomed-in view of the surface

states near the Fermi energy is shown. A single surface state connecting the Dirac

nodal lines, and a pair of surface states connecting the Weyl nodal lines of opposite

chirality, are visible in Figs. 8.3(c) and (d), respectively.

8.4.3 Effect of SOC and hydrostatic pressure

We find that the inclusion of SOC results in the opening up of a band gap in both

the IS and NIS systems. The band gap introduced by spin orbit splitting turns out

to be 0.11 eV (0.21 eV), for the IS (NIS) structure. The 3D band structure of the IS

(NIS) system is plotted in Fig. 8.4 (a) [(b)], which shows clearly the opening of band

gap in both the systems.

The inclusion of SOC not only introduces a band gap, but also changes the

topological nature of the systems. The Z2 invariants for the inversion symmetric

system turn out to be (0; 0, 0, 1) indicating that the system becomes a weak

topological insulator (WTI), since the strong topological index is 0, whereas one of
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Figure 8.3: Surface states: panels (a) and (b) show the drumhead surface states
corresponding to the Dirac and Weyl NLSs, respectively. In (c) [(d)] the zoomed in
view of the surface states near the Fermi energy is shown for the Dirac (Weyl) NLS.
In case of the Dirac NLS, a single surface state connects the Dirac nodes, whereas in
Weyl NLS, a pair of surface states connects the pair of Weyl nodes.

the weak topological indices is 1. On the other hand the non-inversion symmetric

system turns out to be a trivial insulator as all the Z2 indices become 0.

It has been shown previously, that application of hydrostatic pressure in 3D bulk

systems, such as Bi2Se3,[37] NaBaBi,[38] BiTeI,[39] etc., can induce topological phase

transitions leading to TIs. Therefore, it is instructive to further investigate whether

the inversion symmetric (IS) or non-inversion symmetric (NIS) D-GeCCl3 can be

made to undergo a further topological phase transition through the application of

hydrostatic pressure.

We find that applying a hydrostatic pressure as small as 2.0 GPa (volume com-

pression ratio V/V0 = 0.90) would turn the topologically trivial (with SOC) NIS

system into a WTI with Z2 = (0;0,0,1). At the same amount of hydrostatic pressure,

the IS system is found to remain a WTI.

We further increase the hydrostatic pressure to see whether the D-GeCCl3 systems

can be turned into a STI. At a hydrostatic pressure of 6.3 GPa, we find that the

strong topological index of both the IS, and the NIS systems turns out to be 1. This

indicates that both the systems become STIs, irrespective of the presence of inversion
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Figure 8.4: 3D band structure of D-GeCCl3 (with SOC): panels (a), and (b) show
the 3D band strcutures (with SOC) of the IS (AA-stacked), and NIS (AB-stacked)
systems, respectively. In both cases we see opening of band gap due to spin-orbit
interactions.

symmetry in the system. Both the IS and NIS systems are found to remain strong

topological insulators even when the pressure is increased, e.g., at 8.7 GPa, both of

them show Z2 = (1; 0, 0, 1).

In order to look into the band inversion mechanism, we plot the orbital projected

band structures (PBE + SOC) of the IS system in the upper panel in Figs. 8.5 (a)-(c),

and of the NIS system in the lower panel in Figs. 8.5 (d)-(f), for different amounts

of hydrostatic pressures, viz., 2.0 GPa, 4.5 GPa, and 6.3 GPa. The corresponding

values of the volume compression ratios are V/V0 = 0.90, 0.84 and 0.80, respectively.

The color indicates the fractional contribution of p, j = 3/2 relative to p, j = 1/2,

with red color corresponding to completely p, j = 3/2 character.

Comparing the projected band structures of IS (NIS) D-GeCCl3, at 4.5 GPa (see

Fig. 8.5(b) {(e)}] with that of 6.3 GPa [see Fig. 8.5(c) {(f)}], we can clearly see the

character of the valence band maximum (VBM) and the conduction band minimum

(CBM) being flipped, indicating that the band inversion occurs between the VBM

and CBM at the Γ point in the BZ, when one goes beyond a hydrostatic pressure

of 4.5 GPa. Interestingly, in the NIS system, the inversion happens once between

the VBM and the CBM at ∼5.4 GPa and then between CBM and CBM+1 as the

pressure is increased further. We find that the band inversion between CBM and
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CBM+1 occurs when the hydrostatic pressure exceeds 5.4 GPa.

To summarize, we have observed a number of topological phases in the 3D bulk

of D-GeCCl3. The Dirac and Weyl NLS phases can be observed in the bulk GeCCl3

in 3D, in the absence of SOC. When both inversion and time reversal symmetries are

present, GeCCl3 is a Dirac NLS, and it turns into a Weyl NLS when the inversion

symmetry is broken by changing stacking from AA to AB. From the structure of

the nodes in the 3D BZ, we see that these are nodal straight line semimetals in the

sense that the nodes form a straight line in the three-dimensional BZ. We note that

the occurrence of nodal straight lines is rare, and has been reported recently only

in the phonon band structure of MgB2. [40] Inclusion of SOC turns the IS system

into a WTI, and the NIS system, into a trivial insulator. One can reach a STI phase

in both the IS, and NIS systems, through a WTI phase, by applying an appropriate

amount of hydrostatic pressure.

8.5 Conclusions

Using density functional theory calculations, we have found that the bulk inversion

symmetric D-GeCCl3 (excluding SOC) is a Dirac nodal straight line semimetal.

Breaking the inversion symmetry turns it into a Weyl nodal straight line semimetal.

Inclusion of SOC introduces a band gap and turns the inversion symmetric system into

a weak topological insulator, whereas the inversion asymmetric structure now becomes

a trivial insulator. One can further make both the weak topological insulator and

the trivial insulator turn into a strong topological insulator by applying hydrostatic

pressure. Thus, one can in principle obtain all the four topologically non-trivial phases

(Dirac semimetal, Weyl semimetal, weak topological insulator and strong topological

insulator) in the three-dimensional bulk of a single material. Recently layered materials

have been found to show robust magnetism down to the monolayer limit. [41, 42] Very

recently superconductivity has also been demonstarted in monolayer van der Waals

materials. [43, 44] Engineering heterostructures which combine GeCCl3 with these
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systems could be a promising playground for realizing novel phases by introducing

magnetism or superconductivity in conjunction with topology.
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Chapter 9

Summary and Outlook

We now summarize the main findings of this thesis and provide a brief outlook for

the possible future directions of research.

Throughout the thesis, we have followed the broad theme of rational design of

nanomaterials. Using density functional theory calculations, we have designed the

materials to tune their electronic, magnetic, chemical, or topological properties, with

desired applications in mind. Except for the results presented in Chapters 7 and 8,

all the work has been done in collaboration with experimentalists.

We started with tuning the ionization and etching properties of Pt nanoparticles,

by changing their size and chemical environment. We found a radical reversal of the

usual sintering tendency of Pt nanoparticles, to a tendency of etching, in the presence

of π-acidic azo-aromatic ligands, and their derivatives. We found that one can tune

the maximum nanoparticle size for which etching (instead of sintering) occurs, by

changing the ligand environment. Based on the thermodynamics of etching, a simple

equation was derived that could predict this maximum nanoparticle size. We believe

that our results can open new avenues in Pt-chemistry, and can provide applications

regarding dissolution, collection and reuse of Pt nanoparticles in catalytic converters,

synthesis of anti-cancer drugs, etc. Further research needs to be carried out to find

appropriate ligands for size-selective etching of nanoparticles of other noble metals,

189
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such as Au and Ag.

Next, in Chapter 4, we formulated a set of descriptors that can predict the efficacy

of dye molecules in a dye sensitized solar cell, without going through expensive excited

states calculations. Using these descriptors, we predicted the best candidate dye

molecule from a set of dye molecules suggested to us by our experimental collaborators.

We note that these descriptors can be used to screen a large set of dye molecules

to find suitable dyes to be used in the dye sensitized solar cells. The possibility

of extending this work by using machine learning models to predict the solar cell

conversion efficiency, is also open.

In Chapter 5, we tuned the thickness of Fe thin films, to tune their magnetic

properties. We found that Fe goes through both magnetic and structural phase

transitions, in its layer-by-layer growth on Ir(001). Exchange splitting was found to

stabilize the ferromagnetic ordering of Fe over antiferromagnetic ordering, beyond 4

monolayer thickness of Fe. Ab initio stress calculations suggested that Fe layers prefer

a face centered tetragonal structure up to 4 monolayers, and body centered tetragonal

structure beyond 8 monolayers. Our results put a lower limit to the thickness of the

Fe thin films, when used as ferromagnetic films on Ir(001).

In Chapter 6, we tried to shed light on the long standing debate on the structure

and magnetic configuration of a V monolayer, grown on Ag(001). We found that the

V monolayer, instead of forming an overlayer on Ag(001), preferred to go subsurface,

and favored an antiferromagnetic ordering stabilized by exchange splitting. Our

results matched well with the experimental angle resolved photoemission spectroscopy

data. We note that a similar strategy can be applied to study the structure and

magnetic properties of monolayers of other metals that are nonmagnetic in the bulk.

Finally, in Chapters 7 and 8, we proposed chemical pressure as a route to in-

duce topologically non-trivial phases in germanene-like systems, in two and three-

dimensions. We showed that chemical functionalization of monolayer germanene

by -CX3, where X is a halogen, as one goes down the column of the periodic table,
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produces progressively larger strains due to steric repulsion between neighbouring

-CX3 groups. This strain, in effect can induce topological phase transitions in the

systems at moderate external strains, or at ambient conditions. We found that GeCF3

is a topological insulator at 5% strain, whereas GeCCl3 is a topological insulator

at ambient conditions. We also tried using different halogen atoms together in the

functional group in the form of -CXY2 (X, Y = F or Cl). It turned out that GeCFCl2

is a large gap topological insulator at ambient conditions. Calculations excluding the

spin-orbit interactions showed that going from the monolayer to the three-dimensional

bulk in GeCCl3, based on presence or absence of inversion symmetry, one can produce

Dirac, or Weyl nodal straight line semimetal, respectively. Inclusion of spin-orbit

coupling makes the Dirac (Weyl) nodal line semimetal turn into weak (trivial) topo-

logical insulator. One can further make both of them turn into strong topological

insulator by application of appropriate amount of hydrostatic pressure. We hope that

our work will motivate experiments to synthesize these materials. It also opens up

the possibility to use these layered materials to make heterostructures with magnetic

monolayers, to realize novel phases by introducing magnetism in conjunction with

topology.
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