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Synopsis

Materials exhibiting large linear and nonlinear optical polarizations are a sub-

ject of great interest due to their many potential applications. In this thesis, I

have investigated the factors that control such polarizations in the molecular

and supramolecular levels. The main emphasis has been to understand the

role of weak intermolecular forces like the dipole-dipole, hydrogen-bonding

and π-stacking interactions, in controlling the overall polarization responses

in such class of materials. Another major theme that has been considered

in the thesis is the modeling of the structures and optical properties of vari-

ous metallic clusters. We have devised strategies to stabilize various metallic

clusters through the inorganic route.

The thesis is divided into eight chapters.

The first chapter provides a brief introduction to linear and nonlinear po-

larizations and their various potential applications. The design of molecular

and supramolecular materials possessing high laser damage thresholds with

high dielectric constants and fast laser response time have been discussed.

Various strategies are discussed for enhancement of the polarization responses

in macromolecular aggregates like organic crystals and thin-films structures.

A number of computational techniques are also outlined for the calculation of

vi



the static and dynamic electric field induced linear and non-linear response

functions.

In the second chapter, a theory is developed based on dipole- dipole inter-

actions to determine the excitation spectra of multichromophoric aggregates

in various orientations of the monomers. Numerical calculations are per-

formed on dimers of D-π-A systems like paranitroaniline and their derivatives

in various modes of arrangements to quantify the proposed analytical theory.

We predict that the head-to-tail arrangement of the dipoles in the aggregate

leads to the maximum enhancement in the second harmonic responses (β).

Additional H-bonding interactions between the monomers further increases

the polarization responses.

The third chapter aims at providing a quantitative estimation of the

role of dipolar and H-bonding interactions in controlling the polarization

responses in molecular aggregates. These two forces have been optimized

for the (HX)n aggregates (X=F, Cl and Br). It is found that for the strong

H-bonded clusters like the (HF)n, planar cyclic rings are formed leading to

very small β. However, for H-bonds of intermediate strengths, non-centric

structures are formed with appreciable β value. Similar conclusions are also

derived from the calculation of β for the linear chains of (HF)n aggregates.

The main inference from this chapter is that the H-bonding in the interme-

diate energy scales with appropriate directionality will lead to cooperative

enhancement in β.

The fourth chapter deals with the conformational orientations of dipolar

molecules that are connected through alkane chains which result in confined

geometries. Systems like calix[3]arenes provide a nice example to study the



role of dipolar frustration in the odd-membered chromophoric aggregates.

The calculations performed on calix[3]arenes suggest that, while the β-value

decreases monotonically with increase in the cone-angle of the all-parallel

calix[3]arenes, it increases with increase in the cone-angle for the frustrated

geometries. Molecular structures as retrieved from the structural database

support our conclusions with cone-angle as the unique parameter.

The fifth chapter discusses the variation in β for the dipolar aggregates

which are connected by flexible spacers. The specific dipolar orientations

are considered for oxo-bridged paranitroaniline dimers (PNA-O-PNA) for a

quantitative estimation of dipolar interactions. We suggest molecular sys-

tems where the maximum polarization responses can be attained by ’confor-

mationally locking’ the dimers through C-C bridges. Additionally, the origin

of the odd-even oscillations in the second harmonic generation responses in

alkyl bridged di-chromophores are also discussed. A simple theory based on

the conformational flexibility of the alkane chains is provided to explain the

oscillations in β for these systems. It is shown that for the dipoles connected

by even spacers, there is a cancellation of the dipole moment together with

β, due to the staggered conformation of alkane chains. However, when the

number of spacers are odd, the dipoles have an eclipsed conformation which

leads to addition of the dipole vectors with appreciable β.

The sixth chapter compares and contrasts the conventional π- conjugated

systems with the all-metal molecular systems like Al4Li4 for their nonlinear

optical responses. It is shown that the all-metal clusters exhibit polarizations

that are orders of magnitude higher than their organic counterparts of similar

sizes. This arises primarily due to the poor σ-π separation in the all-metal



molecules which remarkably reduces the optical gap for the all-metal Al4Li4

systems. The strong charge-transfer from the alkali metals to the Al4 ring

further enhances the transition dipole moment.

The seventh chapter provides a methodology for separating the σ and π

energies in the ground state structures for clusters. Through this method,

we are able to assign the overall aromaticity/antiaromaticity within all-metal

systems. The method is also utilized to study the σ electron delocalizations

in a σ-only clusters like the (Li)n systems. The (Li)n clusters exhibit odd-

even oscillations in their binding energies as a consequence of frustration and

pairing up of the σ electrons for the odd and even membered (Li)n clusters,

respectively. A simple Heisenberg-spin Hamiltonian qualitatively explains

the odd-even oscillations in magnetic binding energies.

In the final chapter, strategies are proposed for the possible synthesis of

all-metal antiaromatic compounds through the organometallic route like com-

plexations of transition metal ions. Complexation of the 4π Al4Li4 clusters

with low-valent transition metals like Fe(0) and Ni(0) facilitates metal-to-

ligand charge transfer leading to an addition of two extra π-electrons to the

Al4Li4 rings and making it aromatic. Substitution reactions are also proposed

within the conventional sandwich complexes wherein the organic molecules

can be replaced by the all-metal systems. We find that, while for the half-

sandwich complexes, (Al4M4)Fe(CO)3 (M=Li, Na and K), direct substitu-

tions are highly exothermic, for the full-sandwich complexes, (Al4M4)2-Ni,

the substitution reaction proceeds through a hybrid organic-inorganic inter-

mediate, (Al4M4)Ni(C4H4) which makes it suitable for synthesis.



Nomenclature

e : Electron

ω : Frequency of applied field

χ : Optical Susceptibility

η : Refractive Index

α : Linear Polarizability

β : First order Hyperpolarizability

γ : Second order Hyperpolarizability

µ : Dipole Moment

~ : Planck’s Constant

ρ : Charge-Density

NICS : Nucleus Independent Chemical Shift

J: Exchange Coupling

RCP: Ring Critical Point



au: Atomic Unit

B3LYP: Becke exchange + 3-parameter Lee-Yang-Parr correlation

H-bonding: Hydrogen Bonding



Contents

Acknowledgements iii

Synopsis vi

Nomenclature x

1 Introduction to linear and nonlinear optical polarizations in

molecules and aggregates 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Nonlinear Optical Processes . . . . . . . . . . . . . . . . . . . 3

1.3 Second-Order Optical Processes . . . . . . . . . . . . . . . . . 7

1.4 Symmetry Requirement for Second-Order Processes . . . . . . 8

1.5 Methodologies for preparing a noncentrosymmetric crystal . . 9

1.6 Third-Order Optical Processes . . . . . . . . . . . . . . . . . . 12

1.7 Relationship between Macroscopic and Microscopic Polariza-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Calculations of Nonlinear Optical Polarizabilities . . . . . . . 17

1.8.1 Finite Field Approach . . . . . . . . . . . . . . . . . . 17

1.8.2 Sum-Over-States Approach . . . . . . . . . . . . . . . 19

xii



1.8.3 Correction-Vector (CV) Method . . . . . . . . . . . . . 21

2 Excitation spectra of molecular aggregates: Davydov split-

ting and its consequences on nonlinear optical response func-

tions 24

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Exciton model for the molecular aggregates . . . . . . . . . . . 26

2.3 Excitation Spectra in the Molecular Aggregates . . . . . . . . 30

2.4 Dimer Geometries . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . 38

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Understanding the role of dipolar and H-bonding interac-

tions in fine-tuning the optical response functions in molec-

ular aggregates 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Optimized structures of finite HX (X=F, Cl and Br) clusters . 50

3.3 Nonlinear optical responses in linear HX and CO chains . . . 57

3.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Nonlinear optical responses of multichromophoric aggregates

in confined geometries: A case study for calix[3]arenes 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Model for Calix[3]arene . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xiii



4.4 Ground state dipole moment . . . . . . . . . . . . . . . . . . . 71

4.5 Excitonic splitting for a multidipolar aggregate . . . . . . . . . 72

4.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . 75

4.7 Analysis of calix[3]arenes . . . . . . . . . . . . . . . . . . . . . 85

4.8 CSD search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Dipole Orientation Effects in oxo-bridged dinitroanilines and

odd-even oscillations in nonlinear optical responses in alkyl

bridged dichromophores 94

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 O-bridged PNA dimer: PNA-O-PNA . . . . . . . . . . . . . . 96

5.3 Study on Dipole-(CH)2-Dipole . . . . . . . . . . . . . . . . . . 101

5.4 Optical response functions: Role of spacer length . . . . . . . 106

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Non-linear optical properties of all-metal clusters and π-isoelectronic

organic molecules: Charge transfer and delocalization effects113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Geometry Optimizations . . . . . . . . . . . . . . . . . . . . . 114

6.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . 116

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 A Model for σ-π separation: Critical examination of the role

of σ and π electron delocalizations 125

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiv



7.2 σ-π electron separation scheme . . . . . . . . . . . . . . . . . 127

7.3 Results for the all-metal clusters . . . . . . . . . . . . . . . . . 128

7.4 Case study for the alkali-metal clusters: (Li)n . . . . . . . . . 135

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8 Strategies to stabilize all-metal antiaromatic molecules: Com-

plexation with 3d-transition metals 143

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Optimized structures for the ligands . . . . . . . . . . . . . . . 144

8.3 Fe(CO)3 complex . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.4 Metal sandwich complex . . . . . . . . . . . . . . . . . . . . . 151

8.5 All-metal sandwich complexes: Substitution of C4H4 by Al4M4 154

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Bibliography 159

xv



List of Figures

1.1 Molecules which exhibit significant χ(2) in the bulk crystal. . . 11

2.1 [Top Portion] Schematic representation of exciton splitting

due to dipole-dipole interactions for various molecular orienta-

tions. The arrows indicate the vector quantities. φ is the angle

between the dipoles and θ is the angle between the dipole and

its molecular axis. [Bottom Portion] Dimer configurations (a,

b, c and d). Orientations of the monomer dipoles in a com-

posite system, with D→ A representing dipolar axis. Each

molecule has two levels |G > and |E > and the arrows be-

tween states indicate the allowed transitions. Splitted states

of the composite systems are denoted as dashed lines. . . . . . 32

2.2 (A) Structure of the three molecules considered for the quan-

titative estimations (B) The distance, d, for each of the four

dimeric configurations. In each case as shown, the distance is

between the two inter-monomeric neighboring N -atoms. . . . . 34

xvi



2.3 Plot of the excitation gap (in au) and µβ (in units of au), as a

function of the distance, d (in Å). The upper panel (open and
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Chapter 1

Introduction to linear and

nonlinear optical polarizations

in molecules and aggregates

1.1 Introduction

A material undergoes distortion when exposed to an external electric field.

The atoms develop a separation of charges that leads to creation of instan-

taneous dipoles which tend to counteract the external field. The electromag-

netic radiation thus induces a forced separation of the charges. This leads

to a dipolar oscillation in the system, which emits radiation of the frequency

of its oscillation. Thus, as the wave field travels through the medium, it

induces polarization whose oscillation launches an electromagnetic wave of

its own. Since, there can be an out-of-plane component to this new wave,

the net result is a phase shift in the emerging wave. This phase shift is the

1
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index of refraction of the material.

Under this external influence, the material becomes polarized with an

induced dipole moment. Each constituent molecule of the material acts as a

dipole with a dipole moment Pi. The dipole moment vector per unit volume

P is given by

P =
∑

i

Pi (1.1)

where the summation is over the dipoles in the unit volume. The induced

polarization in a material depends on the strength of the electric field. For

a weak field, one can write the polarization as

P = χE (1.2)

where, χ is called the polarizability of the medium. The polarizability is

related to the dielectric constant (ε) of the medium by

ε = 1 + 4πχ (1.3)

From an atomistic viewpoint, the electric field distorts the electron distribu-

tion of an atom or molecule. Thus the molecular polarization can be written

as

µi = αE (1.4)

Here, α corresponds to the polarizability of the atom or molecule. The

polarizability of a system is directly proportional to the number of charges

present in it.
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The wavelike properties of light are described by an oscillating electro-

magnetic field, E(r,t). Consequently, the material response P, and its linear

susceptibility are also time and space varying quantities. Thus, the previous

equation (1.2) modifies to

P (r, t) =
∑
ri

χrri
E(ri, t) (1.5)

It can be seen that the polarization can be induced in a different direction to

that of the applied field. This occurs because of the tensorial nature of the

polarizability.

1.2 Nonlinear Optical Processes

However, a large number of new phenomena emerged with the invention

of Lasers. With sufficiently intense laser radiation, the previous relations

require modification. The bulk polarization P, for a strong external field is

then defined by a phenomenological power series expansion in terms of the

applied electric field as [1–3]:

P = χ(1)E + χ(2)EE + χ(3)EEE + . . . (1.6)

Here, χ(n) is the nth-order susceptibility of the medium and E represents the

total electric-field experienced by the system. The nth-order susceptibility

is a tensor quantity of rank (n+1) which has 3n+1 elements [4]. Thus, χ(1)

is a second-rank tensor with nine elements, χ(2) is a third-rank tensor with

twenty-seven elements, χ(3) is fourth-order tensor with eighty-one elements,
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and so on. This number is, of course, drastically reduced by symmetry re-

quirements as not all elements are linearly independent and in most practical

materials much fewer elements are required to describe the tensor. Thus, at

a strong electric field, the optical characteristics of a medium, such as dielec-

tric permittivity and refractive index etc., which depend on the susceptibility,

also become a function of the electric field E [5–8].

The possibility of exploiting a monochromatic light beam for the pro-

duction of nonlinear optical phenomenon was first experimentally shown by

Frenken et al [9]. They observed ultraviolet light at twice the frequency of

a ruby laser (λ=6493 Å), when the light was made to traverse through a

quartz crystal. Also, at the same time there were reports of multi-photon

absorption processes through which one could access high energy states that

are otherwise forbidden by dipolar transitions, with relatively low-energy

photons [10].

These experiments attracted huge attention from the science community

and marked the beginning of a rich field called Nonlinear optics [11, 12].

The field witnessed a tremendous growth with the development of newer

lasers [13,14]. The evolution of lasers from their predecessors, the microwave

beam and and the solid state masers, have been due to the phenomenal con-

tribution by Townes, Basov and Prokhorov (they were awarded Nobel prize

in 1964 for their discovery of laser) and N. Bloembergen (he was awarded

the Noble prize in 1981). In short, lasers are sources of coherent light, char-

acterized by a high degree of monochromaticity, high directionality and high

intensity or brightness. With dye lasers, it is possible to cover the range

of wavelengths from 350-950 nm continuously, including the whole visible
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spectrum. A variety of nonlinear processes, including harmonic generation,

extend the range of coherent sources throughout the infrared and into the

vacuum ultraviolet.

Nonlinear optical (NLO) phenomena encompasses a broad range of light

mediated processes like second harmonic generation, electro-optic Pockels

effect, optical rectification, third harmonic generation, optical Kerr effect and

intensity dependent refractive index. It should be noted that the nonlinear

optical processes were observed even before the discovery of lasers. Processes

like the optical Kerr effect and the Pockels effect have been known for a very

long period of time.

When an isotropic liquid comprising of asymmetric molecules (like ni-

trobenzene) is placed in an electric field, the molecules tend to align them-

selves parallel to the direction of the field. Because the molecules are not

symmetrical, the alignment causes the liquid to become anisotropic and as

a result bifringent. Thus, a light wave which enters the liquid, splits into

two waves traveling at two different velocities with two different refractive

indices. Thus the refractive index of a material can depend on the strength

of the applied electric field. This is known as an electro-optic effect. The

first order electro-optic effect (observed in crystals of KH2PO4) is known as

Pockels effect. It is linear in the ac-field. The quadratic process is called the

Kerr effect. A Pockels cell, usually requires a small voltage of 1-5 kV while

a Kerr cell requires a high voltage of 10-20 kV.

The manifestation of the nonlinear optical behavior can be clearly seen

by substituting a sinusoidal field E = E0 + E1 cosωt into the polarization.

Substituting this in the previous equation (1.6) gives:
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P = (E0 + E1 cosωt)χ(1) + (E0 + E1 cosωt)2χ(2)

+(E0 + E1 cosωt)3χ(3) + . . . (1.7)

Rearranging the equation,

P = (χ(1)E0 + χ(2)E2
0 + χ(3)E3

0)

+(χ(1)E1 + 2χ(2)E0E1 + 3χ(3)E2
0E1) cosωt

+(χ(2)E2
1 + 3χ(3)E0E

2
1) cos2 ωt

+(χ(3)E3
1) cos3 ωt+ . . . (1.8)

Using the trigonometric relations, cos2 ωt = (1 + cos 2ωt)/2 and cos3 ωt =

(cos 3ωt+ 3 cosωt)/4, one gets

P = χ(1)[E0 + E1 cosωt]

+χ(2)[E2
0 + (1/2)E2

1 + 2E0E1 cosωt+ (1/2)E2
1 cos 2ωt]

+χ(3)[E3
0 + (3/2)E0E

2
1 + 3E2

0E1 cosωt+ (3/4)E3
1 cosωt

+(3/2)E0E
2
1 cos 2ωt+ (3/4)E3

1 cos 3ωt] + . . . (1.9)

The 1st term in the brackets for all χ(n) are constant factors. They give rise

to a dc field across the medium.
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1.3 Second-Order Optical Processes

Now let us consider the processes associated with the χ(2) in details. From

eqn (1.9)

P (2) = χ(2)[E2
0 + (1/2)E2

1 + 2E0E1 cosωt+ (1/2)E2
1 cos 2ωt] (1.10)

The coefficient E0E1 corresponds to the linear electro-optic effect and is

represented as χ(2)(-ω;ω,0). The sign attached to a frequency is negative if

the photon is emitted and positive if it is absorbed. The last term which is

square in the ac-electric field and and has a frequency of 2ω is known as the

second harmonic generation (SHG) process. Considering that two coherent

light waves of unequal frequencies ω1 and ω2 are traveling in the material,

the 2nd and 4th terms from the previous equation (1.10) become

χ(2)(1/2)E2
1 [cos(ω1 − ω2)t+ cos(ω1 + ω2)t] (1.11)

Thus, one now has two new frequencies (ω1 + ω2) and (ω1 − ω2). This phe-

nomenon is known as optical mixing. While, ω1 + ω2 is called the sum-

frequency generation (SFG), ω1 − ω2 is called the difference-frequency gen-

eration (DFG). The second harmonic generation (SHG) process, actually, is

a special case of SFG where the frequencies of the photons from the incident

beams are equal (ω1 = ω2). Similarly, optical rectification (OR) is a special

case of DFG for ω1 = ω2. Thus the OR susceptibility is represented as χ(2)

(0;ω,-ω).

A solution or a glass, in its natural form being random, does not exhibit
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any second-order effect. For biological systems, important second- order ef-

fects are associated with the interface and with electric field poling. Surface

induced second harmonic generation from a biological membrane provides a

powerful method for second-harmonic imaging for selectively probing interac-

tions and dynamics involving membranes. The electric-field- induced second

harmonic generation provides an excellent probe for membrane potentials

and has been found to be very promising for use in bio-imaging [15, 16].

1.4 Symmetry Requirement for Second-Order

Processes

In 1962, it was proposed by Kleinman that in many nonlinear processes,

where all the interacting frequencies are far away from resonances, energy

is simply exchanged between the fields and not dissipated in the medium

[17, 18]. This amounts to the susceptibility tensors being invariant under

any permutation of their Cartesian indices. For instance, in the χ(2), the

symmetry relations give rise to:

χ
(2)
ijk = χ

(2)
ikj = χ

(2)
jik = χ

(2)
jki = χ

(2)
kij = χ

(2)
kji (1.12)

Thus, due to Kleinman symmetry relations, the number of independent

components of χ(2) reduces from 27 to 10 and that of χ(3) from 81 to 15.

For a medium to exhibit frequency conversion processes mediated by χ(2),

the medium must have nonzero χ(2). This condition requires that at a molec-

ular level the nonlinear coefficient, β, must be nonzero. Furthermore, the
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orientationally averaged sum of β at all sites that gives rise to the macro-

scopic χ(2) should not be zero. These two conditions lead to the following

symmetry requirements for the realization of χ(2) 6= 0:

1. For noncentrosymmetric molecules (without any inversion symmetry),

β-being an odd rank (3rd rank) tensor, is not zero.

2. The molecules in the bulk form are arranged in a noncentrosymmetric

structure. Only then the overall χ(2) is non-zero.

A molecular design often uses systems like D-π-conjugation-A where a

molecular unit involving π-conjugation is connected to an electron donor, D

(such as -NH2), at one end and an electron acceptor group, A (such as -NO2),

to the other end. A classic example of such a system is para-nitroaniline.

Extensive calculations have been performed on this molecule over the years,

since it serves as a model for understanding many NLO phenomenon [19–21].

1.5 Methodologies for preparing a noncen-

trosymmetric crystal

.

Lot of efforts in the last two decades have been directed towards under-

standing and controlling the factors that may lead to an acentric crystal

with large NLO response functions. It is quite a non-trivial task to arrange

molecules in a noncentrosymmetric fashion in the crystal. It requires a com-

bination of chemical intuition, theoretical understanding of intermolecular

forces as well as very sound crystal engineering to tailor molecules for such
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applications.

D-π-conjugated-A molecular systems show large NLO responses because

of the delocalized nature of the π-electrons resulting in low-energy excitonic

levels with high oscillator strength. However, these dipolar molecules tend to

pack in an anti-parallel arrangement in the crystal, thereby, making the SHG

response for the whole crystal almost zero. This drawback has led to search

for other molecular materials. The most important of such molecules has

been the 3-methyl-4-nitropyridine-1-oxide (POM) shown in Fig 1.2 (a). For

this molecule, there is a cancellation of the ground state dipole moment as

the dipole moments for the pyridine-1-oxide and the nitrobenzene fragments

are equal and opposite. So, the molecules have no urge to crystallize in anti-

parallel arrangements. However, for such a system, even though the ground

state dipole moment is zero, the excited states are dipolar in nature. Such

molecules thus exhibit large β values. The crystal for POM has been found

to exhibit a substantial χ(2) (about two times that of LiNbO3).

In 1993, Zyss et al. have shown that molecules with octupolar moments

are very promising candidates for NLO applications in crystals [22–24]. For

these molecules, even though the ground state dipole moment is zero, the

higher order multipoles like the octupolar moment is non-zero. Very similar

to that for POM, these molecules also have a non-centrosymmetric arrange-

ments in the crystal structure. Such a molecule exhibiting large octupolar

moment is shown in Fig 1.2 (b).

Another way of ensuring noncentrosymmetricity in a crystal is the in-

corporation of chiral substituents in the molecular structure. Optically pure
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Figure 1.1: Molecules which exhibit significant χ(2) in the bulk crystal.

material, compounds which have only left-handed and/or right handed sym-

metry, are inherently non-centrosymmetric. Such compounds are, in fact,

readily available in the nature (amino acids, sugars and alkaloids are well

known examples existing only in a single enantiomer). Thus, crystals of

these materials are expected to be NLO active. Some of the best known

examples are, methyl-2-(2,4-dinitroanilino)-propionate (MAP) and and N-

(4-nitrophenyl)-L-prolinol (NPP). They are shown in Fig 1.2 (c) and Fig 1.2

(d) respectively.
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1.6 Third-Order Optical Processes

The third-order polarization component from equation (1.9) has the form

P (3) = χ(3)[E3
0 + (3/2)E0E

2
1(1 + cos 2ωt) +

3E2
0E1 cosωt+ (3/4)E3

1(cosωt+ cos 3ωt)]

(1.13)

The E2
0E1 term corresponds to the dc Kerr effect; the E0E

2
1 term is the ac

Kerr effect or the optical Kerr effect and is represented as χ(3)(-ω; 0,0,ω).

The E3
1 term describes third harmonic generation (THG) response. THG is

a special case of four wave mixing, which in general can be written as:

χ(3)(−ωσ;ω1, ω2, ω3)E(ω1)E(ω2)E(ω3) (1.14)

where three photons with frequencies, ω1, ω2 and ω3, result in a fourth fre-

quency of ωσ. For ω1= ω2= ω3, the χ(3) medium generates a new photon of

frequency 3ω. Thus, an incident fundamental light of wavelength at 1064 nm

(from an Nd:YAG laser) will produce a third harmonic beam at 355 nm in

the UV region. Again, like in the case of second- harmonic generation, it is a

coherent process with three incident frequencies and there is no resonance as-

sociated with it. Some important processes in nonlinear optical spectroscopy

are shown in Table. 1.1.
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Table 1.1: Some important processes involving Nonlinear Optical Spec-
troscopy.

Process Order Frequency Relation

Linear Response 1 -ω; ω

Pockels Effect (EO effect) 2 -ω;ω,0

Sum mixing 2 -ωa; ω1,ω2

Optical Rectification (OR) 2 0;ω,-ω

Intensity-dependent refractive index 3 -ω; ω,-ω,ω

Optical Kerr effect 3 -ω1; ω2,-ω2,ω1

dc Kerr effect 3 -ω; 0,0,ω

Two-photon Absorption (TPA) 3 -ω1; -ω2,ω2, ω1

Third-harmonic generation (THG) 3 -3ω; ω,ω,ω

Coherent anti-stokes Raman scattering 3 -(2ω1-ω2); ω1,ω1,-ω2

General four Wavemixing (FWM) 3 -ωa; ω1,ω2, ω3

Three-Photon Absorbtion (TPA) 5 -ω1; -ω2,-ω3, ω3,ω2,ω1

nth harmonic generation n -nω; ω,ω,......,ω

Multi-photon Absorption (MPA) 2n-1 -ω; ......-ω,ω.....ω
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1.7 Relationship between Macroscopic and Mi-

croscopic Polarizations

The classical method to relate the individual molecular polarizations with the

bulk susceptibilities is through the orientated gas-model. The oriented-gas

model is based on the following hypothesis:

1. The molecular polarizations are additive.

2. The charge distribution in each molecule is determined by the in-

tramolecular field only and is consequently independent of motions and dis-

tributions introduced by other molecules of the crystal.

Within the framework of the oriented-gas model, for a bulk system (such

as liquids, molecular solids or organic glasses) consisting of weakly interacting

molecules, the bulk polarization P is derived from the distortion of electronic

clouds in constituting molecules. The bulk linear optical susceptibilities χ(1)

and non-linear optical susceptibility χ(n>1) are, therefore, obtained from the

corresponding molecular nonlinear optical coefficients α, β, γ etc, by using

a sum of the molecular coefficients over all the molecular sites. The sum

should consider their orientational distribution (different orientations at dif-

ferent sites). Let the crystallographic axes be labeled with (I,J,K) and the

microscopic polarization axes in the individual molecules be (i,j,k). The an-

gle between the crystallographic axis I and the microscopic axis is, is denoted

as θIi
(s). Then it is fairly simple to transform the microscopic α and β into

χ(1) and χ(2) as:
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χ(1) =
1

N

∑
i,j

N∑
s=1

(cosθ
(s)
Ii cosθ

(s)
Jj )αij (1.15)

and

χ(2) =
1

N

∑
i,j,k

N∑
s=1

(cosθ
(s)
Ii cosθ

(s)
Jj cosθ

(s)
Kk)βijk (1.16)

where the sum index (s) runs upto the number of molecules (N) in the crys-

tal per unit volume. Nonlinear optical interactions in a molecular medium,

described by the bulk nonlinear optical susceptibilities, now become primar-

ily molecular properties, described by the values of χ(1) and χ(2). Thus, for

a material to have interesting NLO activity, both the individual molecular

hyperpolarizability and the orientation effects have to be optimized. In gen-

eral, charge distribution due to π-electrons are readily deformable. Therefore,

molecules with conjugated π-electrons give rise to large molecular hyperpo-

larizabilities (β and γ). In comparison, contribution due to σ-electrons are

considerably smaller. However, the factors that govern their interactions in

the supermolecule/ crystal are still not very clear.

Additionally, the basic assumptions within the oriented-gas model are

themselves quite drastic. For almost all molecular crystals, H-bonding and/or

the dipolar interactions are the most important intermolecular forces and al-

though these interactions are quite weak in magnitude, are strong enough

to control the crystal geometry of the macromolecular systems. Such inter-

molecular forces do indeed lead to cooperative enhancement or damping in

the polarization responses of the aggregates. Thus, in a strict sense, α and

β are not additive quantities. For example, Peris and co-workers have con-

sidered head-to-tail arrangement of paranitroaniline and their calculations
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have shown large cooperative enhancement in the molecular second-harmonic

generation (SHG) coefficients (β). They have also considered chains of HF

molecules in both their linear and zig-zag orientations wherein they find co-

operative enhancement of β for the linear chains, while cooperative damping

for the zig-zag chains [19]. Champagne and co-workers have performed cal-

culations on the crystals of 3-methyl-4-nitroaniline (MNA) wherein they find

that such crystals show very strong anisotropy in polarization along the crys-

tallographic axes [20]. For the long axis, where the molecules are arranged in

head-to-tail fashion, H-bonding leads to enhanced electrostatic interactions

as a consequence of which the transition dipole moment to the charge transfer

states increases. This enhances only one diagonal component of β. However,

such interactions being absent in the other two directions, lead to reduction

in β along those axes.

It is therefore, of fundamental interest, to optimize the parameters that

control the bulk nonlinear optical susceptibilities together with the molecular

hyperpolarizabilities. There have been a lot of efforts previously to derive

the bulk susceptibilities from molecular analogues by both semi-empirical

and ab-initio methods [25, 26]. However, a proper understanding of the re-

lationship between the orientation and bulk property is still elusive. Re-

cent combined experimental and theoretical work by Custelcean et al. in-

vestigates the role of the steric interactions of the alkyl groups in N,N-

Dialkylthioureas in fine-tuning the H-bonding interactions in the crystalline

environment [27]. Lee et al have performed density functional theory calcu-

lations for the charge-density and topological feature like atoms-in-molecules

(AIM) on the monomers, dimers, heptamers and X-ray structures of thiourea



1.8 Calculations of Nonlinear Optical Polarizabilities 17

S,S-Dioxide, to understand the intermolecular charge density distributions for

different sizes of the aggregates [28].

As a whole, from the technology point of view, the synthesis of newer

crystals with large nonlinear optical cross section requires an understanding

of the processes involved in crystallization together with the forces that stabi-

lize non-centric arrangement of molecules in the crystals and self-assemblies.

1.8 Calculations of Nonlinear Optical Polar-

izabilities

For the calculation of microscopic nonlinearities, there are many approaches.

Only three of them will be outlined here which have been used extensively in

the subsequent chapters. These are Finite Field Approach, Sum-Over-States

Approach and Correction vector method.

1.8.1 Finite Field Approach

The finite field approach expands the energy of the system in terms of the

static field, F as:

E(F ) = E(0)− µiFi −
1

2
αij[FiFj]−

1

6
βijk[FiFjFk]

− 1

24
γijkl[FiFjFkFl] . . . (1.17)
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The optical response functions µ, α, β and γ are the 1st, 2nd, 3rd and 4th order

derivatives of the energy with respect to the static field respectively. These

derivatives are calculated numerically using a five-point formula, where the

energies are calculated at five different fields; F =0, F =F, F =2F, F =- F

and F =- 2F and a truncated series of the above expansion is used to derive

the various order derivatives [29, 30]. For example,

αii = [[
5

2
E(0)− 4

3
[E(Fi)− E(−Fi)]

+
1

12
[E(2Fi)− E(−2Fi)]]/F

2
i (1.18)

βiii = [[E(Fi)− E(−Fi)]−
1

2
[E(2Fi)− E(−2Fi)]]/F

3
i (1.19)

γiiii = [[−6E(0)] + 4[E(Fi) + E(−Fi)]

−[E(2Fi) + E(−2Fi)]]/F
4
i (1.20)

Although this method has been quite popular, it suffers from the following

limitations:

1. The numerical n-point formula for calculation of the energy derivatives

are valid only for very low field strengths like 0.001 V.

2. The energies need to be extremely accurate for the calculation of their

derivatives. For example, the calculation of γiiii requires the energy to be

accurate to the order of 10−14 eV for even a small field of 0.0001 au. As

the molecular integrals in quantum chemical calculations are seldom more

accurate than 10−12 eV, finite field procedure for hyperpolarizabilities may

not be reliable enough.
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1.8.2 Sum-Over-States Approach

The sum-over-states (SOS) approach has its basis in a perturbation theory

method developed by Ward and Orr to account for the effects of an externally

applied electromagnetic field on the motions of electrons [31, 32]. Under

the influence of the oscillating field the electrons will be perturbed and the

resulting polarization in the molecule can be obtained by the inclusion of the

field as a perturbation

H1 = −e(Er) sinωt (1.21)

to the Hamiltonian and collecting terms of appropriate orders in the electric

field. In this expression, E is the amplitude of the field and r is a coordinate

associated with the position of the electrons and is calculated from

r =
∑

a

ra (1.22)

in which a is summed over all of the electrons and

−e.r = µ (1.23)

The polarizability and hyperpolarizabilities are expressed as an infinite sums

over various excited states in which the numerators contain dipolar integrals

of the type

< m|µp=i,j,k|n > (1.24)

where m 6= n. It corresponds to the transition dipole moment between the

two states m and n.
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The expression for the polarizability is then given by

αij(ω) =
∑
m

e2

~
[
< g|µi|m >< m|µj|g >

(ωmg − ω)
+
< g|µj|m >< m|µi|g >

(ωmg + ω)
] (1.25)

In this expression g refers to the ground state and m refers to the excited

state with ωmg = ωm - ωg.

The first hyperpolarizability term β[-(ωp+ωq);ωp,ωq], which is responsible

for the second-harmonic generation, is given by

βijk[−(ωp + ωq), ωp, ωq] = P
∑
mn

e3

2~2
[
< g|µi|n >< n|µj|m >< m|µk|g >

(ωng − ωp − ωq)(ωmg − ωp)

+
< g|µj|n >< n|µi|m >< m|µk|g >

(ωng + ωq)(ωmg − ωp)

+
< g|µj|n >< n|µk|m >< m|µi|g >

(ωng + ωq)(ωmg + ωp + ωq)
](1.26)

The symbol P indicates that the summations must be performed over all

permutations of the Cartesian indices i, j and k, with the electric field fre-

quencies ωp and ωq. This summation generates terms that are products of

transition dipole moment matrix elements and also sums and differences of

dipole moments between the ground and excited states as well as between

various excited states. The above expression simplifies into an intuitively

appealing expression if one considers the properties of the molecule to be

approximated by a simple two-level model. The two-level model is discussed

in details in the next chapter.
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The second hyperpolarizability term γ(ωt;ωr,ωq,ωp) is expressed as

γkjih = P
∑
mnv

e4

4~3
[
< g|µk|v >< v|µj|n >< n|µi|m >< m|µh|g >

(ωvg − ωr − ωq − ωp)(ωng − ωq − ωp)(ωmg − ωp)

+
< g|µj|v >< v|µk|n >< n|µi|m >< m|µh|g >

(ωvg + ωr)(ωng − ωq − ωp)(ωmg − ωp)

+
< g|µj|v >< v|µi|n >< n|µk|m >< m|µh|g >

(ωvg + ωr)(ωng + ωr + ωq)(ωmg − ωp)

+
< g|µj|v >< v|µi|n >< n|µh|m >< m|µk|g >
(ωvg + ωr)(ωng + ωr + ωq)(ωmg + ωr + ωq + ωp)

] (1.27)

The computation of the polarizabilities thus involves the evaluation of various

dipole moment operators µnm and the energies, then summing over all the

terms. These sums are actually infinite sums over all the excited states.

However, in practice, one often utilizes the sum over the appropriate excited

states.

1.8.3 Correction-Vector (CV) Method

In practice, the SOS method can only be expected to be successful if there

is rapid convergence as the excited states of increasing energy are added to

the perturbative expansion. This criteria is satisfied to a reasonable extent

in the case of linear polarizability, where the main contribution comes from a

small number of excitations associated with charge transfer across the system.

However, this is not so in the case of first and second hyperpolarizabilities,

where the slow convergence leads to greater difficulties as a very large number

of excited states have to be considered. This makes the calculations for the

hyperpolarizabilities extremely slow.
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Another method developed by Soos and Ramasesha [33,34], for the com-

putation of NLO coefficients, involves the variational calculation of the first

and second order correction vectors φi
(1)(ω1) and φij

(2)(ω1,ω2) to the unper-

turbed ground state in the presence of a perturbation. These vectors can be

solved from the two inhomogeneous linear equations as:

(H − E0 + ω1 + iε)|φ(1)
i (ω1) >= µ̃i|G > (1.28)

(H − E0 + ω2 + iε)|φ(2)
ij (ω1) >= µ̃j|φ(1)

i (ω1) > (1.29)

where H is the unperturbed Hamiltonian, E0 is the ground-state energy, ω1

and ω2 are frequencies and µ̃i is the component of the dipole displacement

operator, µ̃i=µ̂i-< G|µ̂i|G > and ε is the average lifetime of the excited

states. Once the correction vectors are calculated, the NLO coefficients can

be readily determined as:

αij(ω) = (< φ
(1)
i (ω1)|µ̂j|G > +(< φ

(1)
i (−ω1)|µ̂j|G > (1.30)

βijk(ω1, ω2) = Pijk(< φ
(1)
i (−ω1 − ω2)|µ̂j|φ(1)

k (ω2) >) (1.31)

γijkl(ω1, ω2, ω3) = Pijkl < φ
(1)
i (−ω1 − ω2 − ω3)|µ̂j|φ(2)

kl (−ω1 − ω2,−ω1) >(1.32)

where Pijk and Pijkl are the permutation operators. The tumbling average
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quantities, ᾱ, β̄ and γ̄ are defined as:

ᾱ =
1

3

∑
i

(αii)

β̄ =

√∑
i

βiβ∗i ; βi =
1

3

∑
j

(βijj + βjij + βjji)

γ̄ =
1

15

∑
ij

(2γiijj + γijji) (1.33)

where the sums are over the coordinates x, y, z (i, j = x, y, z) and β∗i refers to

the conjugate of βi vector. The advantage of defining the tumbling average

NLO coefficients is that they allow quantitative comparison of the calcu-

lated coefficients with experimental systems for three-dimensional molecules

or aggregates.

For the present thesis, the computations are limited to those NLO prop-

erties which are mostly governed by the polarizations of the electronic states.

That is to say that the electric field does not distort the lattice nor does it

couple to the vibronic structure of the system [35,36].



Chapter 2

Excitation spectra of molecular

aggregates: Davydov splitting

and its consequences on

nonlinear optical response

functions

2.1 Introduction

The development of materials with large nonlinear optical (NLO) properties

is a key to controlling the propagation of light by optical means. In par-

ticular, the response of the materials to the application of the electric field

has found tremendous applications in designing materials for NLO devices.

These devices are being used in numerous applications, from lasers to optical

24
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switches and electronics.

Some of the best NLO properties are displayed by the organic π-conjugated

materials [37,38]. The organic materials are of great interest because of their

low cost, ease of fabrication and integration into devices. One of the advan-

tage in working with organic materials is that they allow one to fine tune the

chemical structures and properties for the desired nonlinear optical proper-

ties. Because of a delocalized π-electron system, the macroscopic NLO po-

larizabilities of these materials are in almost all cases, governed by the NLO

characteristics of the constituent molecules. This is an added advantage of

modeling organic systems with optimally required NLO properties.

It would thus be of fundamental interest to explore theoretically the de-

pendence of NLO response functions in organic aggregates to changing the

nature and arrangement of the constituent chromophores. The energy shift

due to the formation of various packing geometries reflect the change in

polarization of the local environments. In this chapter, an exciton theory

based on Davydov splitting is presented for N molecular aggregates with a

varying orientations of monomeric molecules. Paranitroaniline (PNA) and 2-

methyl-4-amino-nitrobenzene have been selected as models for the numerical

calculations 1.

1Paper based on the work reported in this chapter has appeared in J. Chem. Phys.
118, 8420 (2003)
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2.2 Exciton model for the molecular aggre-

gates

In this section, a basic model which can explain the electronic excitations of

one dimensional molecular aggregates is discussed. As it is quite well known

in the field of strong correlations, an excitonic state is the result of electron

correlation and the exciton theory is an interaction theory between these

excitonic states. In a self-assembled aggregates with low packing densities,

the excitons are considered to be Frenkel type excitons where the electron and

hole of a monoexcitation are located on the same molecular site. To develop

a simple theory, composite molecules are considered, which includes van der

Waals dimers, trimers and higher order aggregates. As has been pointed

out in a number of previous works [39, 40], if the direct overlap between the

chromophoric molecular orbitals (M.O.) is negligible, the exciton interactions

can be expressed in the direct product basis of the chromophoric M.O.s.

Let us begin our discussion with the zeroth order Hamiltonian. The

Hamiltonian for the mth molecule alone in an aggregate can be written as

Hm =
∑

k

|km > (Ek,m) < km| (2.1)

where km specifies the kth electronic state of the mth molecule. The wave-

function for the N number of molecules (in an aggregate) can be approxi-

mated as a linear combination of product functions |k1, k2, . . . , km, . . . , kN >,

where the km’s are the kth electronic states for the molecule m. If the

electronic exchange interactions are considered, the excitations will be the
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admixtures of charge transfer states which correspond to Wannier type exci-

tons. However it is assumed here that the intermolecular distances are large

enough to make electron exchange effects quite negligible, at least in low

order. The ground state of N molecules is then the tensorial product of the

molecular ground states.

|G >= |G1, G2, . . . , Gm, . . . , GN > (2.2)

Each molecular excitation gives rise to a band of N degenerate product states

in the zeroth order. For excitation e in the mth molecule, it reads

|m, e >= |G1, G2, . . . , Gm−1, em, Gm+1, . . . , GN > (2.3)

In general the spatial structure of an aggregate is not quite well defined.

However translational symmetry can be assumed to be valid in case of a

molecular crystalline system. Here, the case of a perfect molecular aggregate

is considered. The exciton coupling interaction term is denoted as Hm,n for

the interaction between the monomers, m and n. The energy expressions

are derived with the general Hm,n terms. For the N monomeric molecules,

energy matrix for any excitation e, for the perturbation Hm,n will have the
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general form

[Emn] = EG(N − 1) +



Ee H1,2 H1,3 . . . H1,N

H2,1 Ee H2,3 . . . H2,N

H3,1 H3,2 Ee . . . H3,N

...
...

...
...

...

HN,1 HN,2 HN,3 . . . Ee


(2.4)

where EG and Ee are the ground state energy and energy for the excitation

e respectively. The matrix is assumed to be symmetric so that Hm,n = Hn,m.

However the above matrix can be solved exactly only for a few cases.

Imposing either periodic or open boundary condition in a one-dimensional

case, the energies of the N perturbed states can be written as,

E(q) = (N−1)EG+Ee+2Hm,m+1 cos q+2Hm,m+2 cos 2q+2Hm,m+3 cos 3q+. . .

(2.5)

where the energies are written in momentum space, q. Note that, both

for periodic and open boundary conditions, the q-space energies are same,

although the wavefunctions are completely different.

An analytical solution of the above expression can be obtained only for

the nearest neighbor case. Assuming Hm,m+1 as the strongest coupling and

neglecting all other types of coupling, the width of the excitation band e

can be estimated to be 4Hm,m+1 for periodic and 4Hm,m+1 cos(π/N + 1) for

the open chain case. However, if all the other (|m − n| > 1) Hm,n cou-

plings are considered, the width will be increased by 25% of the nearest
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neighbor values. Moreover, the allowed transition is different for two dif-

ferent boundary conditions. For an open chain, the allowed transitions are

to the states with q = π/(N + 1), 2π/(N + 1), . . . , Nπ/(N + 1). For the

periodic chain, however, the transitions are to the momentum states with

q = 0, π/N, 2π/N, . . . , (N − 1)π/N values. The expressions for Hm,n cou-

pling are considered next and followed by this, the consequences of the ar-

rangement of monomer molecules on the allowed electric dipole transitions

are discussed.

For dipolar molecules, the strongly allowed transition would be to the

lowest exciton state and the coupling interactions can be approximated at

large distances by a point dipole model. Assuming all molecules to be same,

the coupling interactions can be written as

Hm,n =
~Mij. ~Mij

r3
mn

− 3( ~Mij.~rmn)( ~Mij.~rmn)

r5
mn

(2.6)

where ~Mij is the transition moment from state i to state j of the monomer

molecule and rmn is the distance between the two molecular centers m and n.

It is to be noted that both the transition dipole and the molecular axis(~rmn)

are vectorial quantities. Thus, the magnitude of the interaction term will

depend crucially on the relative orientations of the dipolar molecules as well

as on the axis joining their centers. We shall give here a purely quasi-classical

vector treatment to this interaction as we assume electrostatic interaction

between the transition moments.
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2.3 Excitation Spectra in the Molecular Ag-

gregates

A number of cases can be analyzed where the dipolar molecules are arranged

in various orientations. Let us assume that in the aggregate the chromophores

are arranged as shown in Fig. 2.1 (upper panel). The directions shown there

correspond to the polarization axis of the corresponding chromophores. The

aggregate is constructed such that the chromophores are oriented with an

angle φ between them and each monomer creates an angle θ with its molecular

axis. It is quite simple to derive the splitting energy in this case from equation

(2.6),

∆E = 2
M2

gs

r3
mn

(cosφ− 3 cos2 θ) (2.7)

Therefore a singlet excited state of the monomer molecule would split

according to the angles, (θ, φ). Let us now derive the splitting patterns in

the simplest aggregation for that of a dimer. The ground state and the

excited state in two monomers can be represented as |g1 >, |e1 > and

|g2 >, |e2 > respectively. On the formation of the head to tail arrange-

ment of a dimer (θ, φ=(0,0) as shown in Fig. 2.1(a)), the ground state of

the dimer |G >=|g1.g2 > is stabilized due to favorable dipole-dipole attrac-

tion while the excited state splits into |E1 >= 1√
2
.[|e1.g2 >+|g1.e2 >] and

|E2 >= 1√
2
.[|e1.g2 >-|g1.e2 >]. Since, dipolar interaction is attractive for this

case, |E1 > is lower in energy than |E2 >. The dipole-allowed transition

occurs from |G > → |E1 >, while transition is forbidden to the |E2 > state.

Clearly, the transition energy is smaller than the gap for the monomers and
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thus this mode of aggregation leads to red-shift in the adsorption spectra.

Strong absorption corresponding to
∑

e
1

E−E(e)
|Mge|2 will appear for transi-

tion to this state.

For the case of repulsive dipolar interactions as shown in Fig. 2.1(b), the

ground is destabilized, while the excited states are: |E1 >= 1√
2
.[-|e1.g2 >-

|g1.e2 >] and |E2 >= 1√
2
.[-|e1.g2 >+|g1.e2 >]. In this case, |E1 > is higher in

energy that |E2 >. Thus, the allowed transition (G → |E1 >) involves larger

energy and the spectra will be blue shifted.

Apart from the linear arrangement of the dipoles, a very common orienta-

tion of dipoles are the parallel and anti-parallel stacking arrangements of the

dipolar chromophores. They are shown schematically in Fig. 2.1(c) and Fig.

2.1(d) respectively. For the parallel arrangement [2(c)], the ground state of

the dimer |G >=|g1.g2 > is destabilized due to unfavorable dipole- dipole re-

pulsion while the excited state splits into |E1 >= 1√
2
.[|e1.g2 >+|g1.e2 >] and

|E2 >= 1√
2
.[|e1.g2 >-|g1.e2 >]. However, now due to dipole-dipole repulsion,

|E1 > is destabilized in comparison to |E2 > and |G > → |E1 > represents

the dipole allowed transition. For the anti-parallel arrangement, the ground

state as well as the |E1 >= 1√
2
.[|e1.g2 >+|g1.e2 >] state are stabilized and the

dipole allowed transition occurs from |G > → |E1 >. Other than the ideal

cases shown in Fig. 2.1 (a,b,c and d), for intermediate angular orientation

(different φ and θ) of the dipoles, it becomes fairly simple to find the exci-

tation spectra for the dimers using the above formalism. Note that, for such

cases, both the states E1 and E2 become accessible from the ground state,

with varying oscillator strengths depending on the transition electric dipoles.
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Figure 2.1: [Top Portion] Schematic representation of exciton splitting due
to dipole-dipole interactions for various molecular orientations. The arrows
indicate the vector quantities. φ is the angle between the dipoles and θ is
the angle between the dipole and its molecular axis. [Bottom Portion] Dimer
configurations (a, b, c and d). Orientations of the monomer dipoles in a
composite system, with D→ A representing dipolar axis. Each molecule has
two levels |G > and |E > and the arrows between states indicate the allowed
transitions. Splitted states of the composite systems are denoted as dashed
lines.
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2.4 Dimer Geometries

To obtain a quantitative understanding in general cases with high to low

packed monomer densities in an aggregate, numerical calculations are per-

formed for the ground and excited singlet states of a few composite molecules.

Computation work on a large aggregate is quite impossible so only double

molecules are considered. However, a dimer gives information which would

be useful in predicting its behavior in a large aggregate structure. Three

model chromophoric molecules are considered to estimate their aggregation

effects quantitatively. They are shown in Fig. 2.2 (A). In van der Waals and

hydrogen bonding aggregates, the observed electronic spectra correspond to

the exciton type interactions. As the exciton states are the fundamental ex-

citations of interacting systems, for an accurate analysis, it is very important

to know the correlated electronic spectra of the systems thoroughly. It is

quite possible that some states which are weak in the monomer molecule

may become active in the double molecule, due to reduced symmetry. This

asks for a reliable quantitative interpretations.
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Figure 2.2: (A) Structure of the three molecules considered for the quantita-
tive estimations (B) The distance, d, for each of the four dimeric configura-
tions. In each case as shown, the distance is between the two inter-monomeric
neighboring N -atoms.
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Geometries of the monomer molecules were optimized using AM1 param-

eterized Hamiltonian, a part of semi-empirical MOPAC package. No sym-

metry constraints were used in the optimizations. However, for the dimer

configurations, although the optimized monomers are used, the composite

structures are not optimized. These geometries were used to compute the

SCF MO energies and then the spectroscopic properties using the Zerner’s

INDO method [41]. The levels of CI calculations, with singles (SCI) and

multi-reference doubles CI (MRDCI) is varied, to obtain a reliable estimate

of the second order optical response functions. The later method is par-

ticularly important since it includes correlation effects substantially. The

MRDCI approach adopted here has been extensively used in earlier works,

and was found to provide excitation energies and dipole matrix elements in

good agreement with experiment [42, 43]. As reference determinants, those

determinants are chosen which are dominant in the description of the ground

state and the lowest one-photon excited states [44]. The MRDCI results in-

clude 4 reference determinants including the Hartree-Fock (HF) ground state.

For each reference determinant, 5 occupied and 5 unoccupied molecular or-

bitals are used to construct a CI space with configuration dimension of 800

to 900. To calculate NLO properties, the correction vector method is used,

as described in the introduction chapter [33]. Given the Hamiltonian matrix,

the ground state wave function and the dipole matrix, all in CI basis, it is

straightforward to compute the dynamic nonlinear optic coefficients using

either the first order or the second order correction vectors. Details of this

method have been discussed in the first chapter.
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To study the double molecules, the optimized monomers are first gen-

erated. Then, by translating and (or) rotating in long axis direction, two

of the same molecules are put together. The distance between these two

monomers is such that no covalent bonding is possible between the inter-

monomeric nearest-neighbor atoms. Electronic excitation energies and spec-

troscopic properties are computed using the same formalism developed in the

previous section.

The NLO properties for organic charge-transfer complexes like D-π-A

can be captured very nicely by a two state model [45]. This model assumes

that the electronic properties of the molecule are determined by a ground

state and a low-energy charge transfer excited state. Polarization results

primarily from the mixing of the charge-transfer state with the ground state

through the interaction of the molecule with the electric field. In the two-

state formalism, the complicated β expression reduces to:

βtwo−level =
3e2

2~
ω12f∆µ12

(ω2
12 − ω2)(ω2

12 − 4ω2)
(2.8)

where ω12 is the frequency of optical transition between states 1 and 2, f is the

oscillator strength and is the square of the transition moment between the

ground state and the charge transfer excited state <1|er|2> and ∆µ12 is the

difference between the ground-state and the excited-state dipole moments.

From this expression, it is evident that as the optical gap (energy difference

between the ground state and the 1st dipole allowed state) decreases (which

can be implemented by increasing the conjugation length of the molecule)

the magnitude for β increases. For the favorable head-to-tail arrangement
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of the chromophores, the exciton level energies to the lowest dipole allowed

state reduces. As a result, the optical response functions increase.

Before the results on double molecules are presented, the dipole mo-

ments and the polarizabilities obtained from our MRDCI method are com-

pared with earlier ab initio calculations. For the PNA, the dipole moment

from our MRDCI calculations (2.8au) compare fairly well with the ab initio

value(∼ 3au). At a frequency of 0.028838au, the ab initio calculations give

the polarizabilty ∼ 90au, compared to 57au from our calculations, for the

PNA. For other frequencies too, the trend is very similar; for frequencies

0.077au, 0.1098au and 0.150au, the ab initio(MRDCI) values are 100(63),

107(73) and 134(115) respectively [46, 47]. For 4-amino-4′-nitro azobenzene,

the higher level calculations with large basis functions give a value of static

linear polarizability close to 160au. At a small frequency (0.028au), our esti-

mation gives a value of 140au. The hyperpolarizabilities too are comparable

for the PNA molecule; for a frequency of 0.005au, the ab initio estimation

gives 892au [19] while our calculations for the same frequency give 821au. It

is to be noted that these values from the ab initio calculations vary ±20%

depending on the basis states used. Since MRDCI numbers have also been

used to quantify the experimental results, and given the comparisons above,

it is believed that the results presented below give an accurate picture for

double molecules at various distances and configurations.
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2.5 Results and Discussions

Paranitroaniline is used as the first model molecule (molecule-I in the Fig.

2.2). The monomer molecule has a weak absorption band at 0.15798au with

an oscillator strength of about 0.01, and a strong absorption band at about

0.169au with the oscillator strength ∼ 0.43. The linear polarizability and

the EFISH (electric field induced second harmonic) coefficients (product of

transition dipole and the first hyperpolarizability, µβ) of the monomer are

45au and 2604au respectively at an electric field frequency of 0.00367eV. For

the detailed comparisons of the interaction effects, four configurations of the

PNA double molecules are considered, out of which two are in-plane and the

other two are out-of-plane configurations. These four configurations are also

shown in Fig. 2.2 (B).

In the Table. 2.1, the dependence of the ground state dipole moment,

lowest singlet excitation gap, oscillator strength of the excitonic singlet, the

linear polarizabilities and the EFISH coefficients(µβ), as a function of the

nitrogen to nitrogen distance between two PNA molecules are shown in all

the four configurations (see Fig. 2.2B for the definition of distance, d, in

various cases). Note that the β is the tumbling average quantity, defined as

β = 1/3(βxyy + βyyx + βyxy).
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Table 2.1: The dependence of the ground state dipole moment (µG in au),
lowest singlet excitation gap (gap in au), oscillator strength (f), linear polar-
izability and the first hyperpolarizability (both in units of au), for a range
of inter-PNA N-N distance, dist in Å. Four dimer configurations have been
considered (see Figure 2.2, for the configuration structures).

θ=0 and φ=0 θ=180 and φ=0

dist µG Gap f α µβ dist µG Gap f α µβ

2.5 10.25 .111 1.65 104 39999.5 2.9 0.0 1.84 1.63 60.3 0.0

2.6 10.09 .119 1.63 101 39831.2 3.0 0.0 1.84 1.63 60.6 0.0

2.7 9.809 .132 1.60 96.5 38430.1 3.1 0.0 1.84 1.63 60.9 0.0

2.8 9.589 .142 1.56 93.1 36715.1 3.2 0.0 1.84 1.63 61.1 0.0

2.9 9.412 .148 1.53 90.4 35113.8 3.3 0.0 1.84 1.63 61.2 0.0

3.0 9.274 .155 1.40 88.4 33726.4 3.4 0.0 1.83 1.64 61.5 0.0

3.2 9.074 .158 1.49 85.3 31556.5 3.6 0.0 1.83 1.64 61.7 0.0

3.5 8.897 .161 1.47 82.3 28845.3 3.8 0.0 1.83 1.64 61.9 0.0

3.8 8.799 .163 1.45 79.6 27953.7 4.0 0.0 1.83 1.65 62.2 0.0

4.0 8.866 .161 0.97 79.6 21612.4 4.5 0.0 1.82 1.66 62.7 0.0

4.5 8.791 .163 0.94 78.3 20406.9 5.2 0.0 1.82 1.67 63.1 0.0

5.0 8.740 .164 0.92 76.9 19551.7 5.6 0.0 1.82 1.67 63.3 0.0

6.0 8.673 .166 0.90 74.9 18396.2 6.0 0.0 1.81 1.67 63.6 0.0

7.0 8.630 .168 0.88 74.3 17672.9 6.6 0.0 1.81 1.67 63.8 0.0

8.0 8.602 .169 0.86 73.6 17117.9 8.8 0.0 1.80 1.68 64.3 0.0

9.0 8.579 .169 0.86 72.9 16849.5 9.7 0.0 1.80 1.68 64.6 0.0
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θ=0 and φ=90 θ=180 and φ=90

dist µG Gap f α µβ dist µG Gap f α µβ

3.9 8.052 .131 1.59 55.6 16390.0 4.0 0.0 .165 0.910 74.9 0.0

4.0 8.064 .131 1.60 56.0 16644.7 4.2 0.0 .165 0.880 73.5 0.0

4.5 8.091 .133 1.63 57.2 17463.5 4.5 0.0 .165 0.870 72.8 0.0

5.0 8.119 .134 1.64 58.2 18196.1 4.7 0.0 .166 0.870 72.8 0.0

5.5 8.146 .135 1.65 59.1 18832.9 5.2 0.0 .167 0.870 72.8 0.0

6.0 8.170 .136 1.65 59.9 19387.8 5.7 0.0 .168 0.870 72.8 0.0

6.5 8.190 .137 1.66 60.6 19860.1 6.2 0.0 .168 0.860 72.8 0.0

7.0 8.205 .137 1.66 61.2 20270.3 6.7 0.0 .169 0.750 72.8 0.0

7.5 8.221 .138 1.67 61.7 20616.1 7.1 0.0 .170 0.580 72.8 0.0

8.0 8.237 .138 1.67 62.2 20916.3 7.6 0.0 .170 0.530 72.2 0.0

8.5 8.245 .138 1.67 62.5 21171.1 8.1 0.0 .171 0.510 72.2 0.0

9.0 8.253 .139 1.68 62.8 21389.4 8.6 0.0 .171 0.500 72.2 0.0

9.5 8.264 .139 1.68 63.1 21575.8 9.1 0.0 .172 0.487 72.2 0.0

10. 8.268 .140 1.68 63.3 21739.6 9.6 0.0 .172 0.478 72.2 0.0

20. 8.319 .140 1.69 64.8 22795.1 10. 0.0 .172 0.470 72.2 0.0
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In Fig. 2.2 (B), the configurations (b) and (c) have a center of symmetry

as the dipolar angle is 180◦. The dipoles are facing opposite to each other re-

sulting in exact cancellation of the corresponding dipoles of PNA monomers.

Furthermore, in configuration (b), the same two groups (NH2 in this case)

are in the line next to each other, which results in repulsive interactions at

short distances. On the other hand, in configuration (c), at short distances,

there are attractive interactions due to π-stacking interactions. In the other

two configurations, namely in (a) and (d), the corresponding monomeric

dipoles create a 0◦ angle, resulting in a favorable quadrupolar configurations.

However as in configuration (b), similar repulsive interactions exist at short

distances in configuration (d) due to the same groups being next to each

other.

Hydrogen bonding interactions stabilize the composite systems. Small

positive and negative charges develop at the electropositive (hydrogen) and

electronegative (nitrogen in our case) ends respectively in the composite

structure. The distances are such that there exist rooms for formation of

two hydrogen bonds (strength being strongest to weakest), at least in the

configuration (a), for N-N distances of up to 3.8Å. The splitting of the exci-

tonic levels, where hydrogen bonding is possible, corresponds to the combined

effects of the dipole-dipole as well as the attractive Coulomb interaction due

to hydrogen bonding. Specifically, the Coulombic interactions play a major

role in its quantitative estimation, due to the large charge transfer possibil-

ities in the hydrogen-bonded configurations. Hydrogen bonding also effects

the ground state dipole moment of the composite molecule. This is the

very reason for which in case (a), the ground state dipole reaches twice it’s
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monomeric value only at large distances. However the repulsion due to the

same group at close distances (cases b and d) reduces the ground state dipole

of the double molecule. For case (a), the excitonic gap reduces while oscilla-

tor strength, α and µβ increase dramatically at small distance values where

hydrogen bondings are possible. Due to hydrogen bonding, the µβ value is

almost 14 times greater than the monomeric µβ. Considering the two-level β

value, which is proportional to both ∆µ and f , the Frenkel exciton estimate

would give µβ ∼ 22745au at small distances. For case (d), at large distances,

the µβ value is what is expected from exciton theory. However, at small

distances, because of the repulsion between the same groups, the µβ of case

(d) is close to the µβ of (a) at large distances. Other cases are not quite

interesting but note the excitation energy gap for cases (b) and (c). For case

(c), π-stacking is very weak at a N-N distance of ∼ 4Å, while for case (b),

the repulsion energy is very high for all the distances. The zero value of µβ

signifies the symmetry effects as well as our computational accuracies, for

both cases (b) and (c).

The configuration (a) is an asymmetric dimer. The exciton theory based

on dipole-dipole interactions provide a small shift (maximum ∼ 0.011au)

even at small distances, with oscillator strength of the order 0.4. The strong

red-shift at small distances is mainly due to hydrogen bonding. The lowest

singlet excited state in the dimer is excitonic in character. These excitations

have appreciable intensity and are associated with an appreciable dipole mo-

ment change, along the long axis of the dimer. The calculated low-energy

excitonic character can be associated with the long-wavelength features ob-

served in J-band aggregates [48, 49]. Previously a linear increase in the β
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value was reported for HF linear polymeric configurations [19]. Coupled

with the discussion above, one can thus safely conjecture that the PNA ag-

gregates with hydrogen-bonded chromophores lying in-line can give rise to

a large β value, with a one-photon absorption frequency deep inside the

IR-region [19]. A few experimental confirmatory examples of such planer

(although not exactly in-line) monomeric stacks, with large SHG coefficients

have been reported earlier [50, 51].

As the splitting energy strongly depends on the oscillator strength, two

other dipolar molecules in their planar optimized structures are also consid-

ered. These molecules have high oscillator strengths. For 2-methyl parani-

troaniline, the oscillator strength is 0.5, while it is 1.6 for the 4-amino-4′-nitro

azobenzene. In Fig. 2.3, the lowest excitation gap and the µβ value at an

electric frequency of 0.00367au have been plotted for the double molecules

(II) and (III) (as referred in the Fig. 2.2 (A)). The geometries of the dimer

configuration is considered at the most favored arrangement, i.e, the θ = 0

and φ = 0 configuration. Also given are the monomeric counterparts of the

same quantities in each of the figure panel. As expected, due to the in-line

arrangements of monomer molecules, the quantities like hyperpolarizabilities

increase drastically for the composite molecules, while the singlet-singlet gap

reduces considerably.

The present semi-empirical calculations go beyond the PNA dimer con-

sidered in ab initio calculations [19]. However, the same optimized geometry

of the PNA dimer is considered as suggested by Peris et al to study the

dispersion behavior. The N-N distance is considered to be 3.6Å in the head-

to-tail arrangement as in configuration (a), Fig. 2.2 (B). It is found that
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Figure 2.3: Plot of the excitation gap (in au) and µβ (in units of au), as a
function of the distance, d (in Å). The upper panel (open and filled circles) is
for the dimer with molecule-(II) as monomer and the lower panel (open and
filled diamonds) is the same with molecule-(III) as monomer. In both cases,
the µβ values are calculated for the oscillating frequency, ω = 0.00367au.
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Figure 2.4: Dispersion curves for µβ (in units of au) for dimeric configura-
tions of three molecules (see text for details); PNA dimer (filled circles), 2-
methyl-paranitroaniline dimer (filled diamonds) and 4-amino-4′-nitro azoben-
zene dimer (filled triangles). Frequency is in au unit.
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the molecules are hydrogen bonded most efficiently at this distance and the

dimers are in their global minimal energy. For the other two molecules, sim-

ilar distances are considered as in (PNA)2. On these dimer geometries, the

dependence of µβ on the frequency of the applied electric field is computed.

The frequencies are chosen such that the system remains quite away from

any resonance. Note that, for β, the one-photon resonance occurs at fre-

quency corresponding to one-half of the one-photon gap. In Fig. 2.4, the

EFISH coefficients (µβ) for a frequency range, 0.00183au to 0.0349au are

presented. For all three dimers, the µβ increases smoothly with the increase

in frequency. The scaling is verified by fitting the data in frequency power,

which gives an exponent ∼ 2 for all three cases.

2.6 Conclusions

To conclude, extensive computations of a few dipolar organic molecules have

been carried out on a number of dimeric configurations to understand the

aggregation effect. Although our results are based on semi-empirical compu-

tation, the use of a number of reference configuration interactions account for

a substantial correlation effects, and thereby give rise to qualitatively (if not

exact quantitative) accurate picture for double molecules at various distances

and configurations. It is found that the best arrangement is the in-line head-

to-tail arrangement, which gives rise to an enormous increase in nonlinear

optical properties. It is also shown that such a structure is extremely sta-

bilized through hydrogen-bond formation and exciton-exciton interactions.
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This dimer configuration is associated with an appreciable absorption inten-

sity, and for an aggregate, this would appear deep in the IR-region. For at

least two molecules, PNA [52,53] and 2-methyl-paranitroaniline [54, 55], the

crystal structure shows that they crystallize in the most favored arrangement

as per our discussion, but the whole crystal structure becomes unsuitable for

serious consideration. This can be avoided through the self assembly tech-

niques [8], building arrays of the compounds in the desired pattern. The

problems associated with such self-assembly is the relatively low packing

densities [56]. This could however be avoided to some extent by connecting

the monomers through efficient hydrogen-bondings or π-stacking, to form

an infinite network of one-dimensional chains or co-facial planer structures.

However, to achieve this, the molecular characteristics of the constituent

monomers and their surrounding interaction effects have to be properly opti-

mized. It is stressed that even if the monomers can not be arranged exactly

in-line with each other, the effects discussed here will still be observed to

some extent below a certain critical angle. To determine this critical angle,

one simply requires knowledge about the phase relations between each of the

transition dipole pairs. Therefore, a synthetic scheme well suited for the best

dipolar arrangements of various monomers can be fine tuned to obtain large

nonlinear optical properties at extremely low-energy.



Chapter 3

Understanding the role of

dipolar and H-bonding

interactions in fine-tuning the

optical response functions in

molecular aggregates

3.1 Introduction

As discussed in the last chapter, the dipole-dipole interactions have strong

effects on NLO properties of aggregates through excitonic splitting. The role

of H-bonding in governing the NLO properties of various supramolecular ag-

gregates have, however, rarely been investigated in details. The strength of

the hydrogen bonding is generally understood on the basis of its partition

48
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into various contributions, like the electrostatic energy, exchange repulsion

energy, polarization energy and charge-transfer energy [57]. Out of these

terms, the charge-transfer(CT) effects are very important in controlling the

NLO responses as such terms govern the strength of the transition dipole mo-

ment from the ground state to the optically active states. The CT salts are

therefore quite well-known as technologically important NLO materials [58].

Although, the charge-transfer efficiency in hydrogen bonding are compara-

tively smaller than the CT-salts, the very fact that the H-bonding itself can

be tuned under various environmental conditions like solvation and polarity,

result in various degree of charge-transfer efficiencies.

Recently, Wu and co-workers have studied chains of urea molecules upto

septamers and their calculations show that intermolecular H-bonding are

quite significant in controlling the β and that proper inclusion of electron

correlations at the Moller-Plesset 2 (MP2) level lead to enhancement of 15

percent in β value from the additive value as derived from the oriented gas-

model [59]. However, calculations on the H-bonded dimers of aromatic car-

boxylic acids with various donor functionalizations by Sarma et al. show that

the extent of intermolecular interactions due to H-bonding does not lead to

cooperative NLO properties [60]. Thus, the contribution of H-bonding to the

collective NLO responses in aggregates seems to be unclear. A proper under-

standing can be gathered through the systematic variation in the strengths

of H-bonding.

In this chapter, the effect of H-bonding on second order polarizabilities

(β) for a series of linear molecular assemblies is critically examined. A model

system: HX (X=F, Cl,Br) has been chosen for the analysis. HX provides a
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nice variation of the strength of bonding between the molecules, (HF > HCl

> HBr). While HF chains have the strongest H-bonding, interactions in HBr

chain is seemingly dipole-dipole type. Additionally, pure dipolar aggregates

such as linear CO chains have also been considered. The HF chains show

large cooperative damping in β from the additive values and provide clear

signatures for the H-bonding effects. Weakly H-bonded systems like the HCl

and HBr chains, in contrast, have similarities with the pure dipolar chain

and have polarizations that are close to being additive 1.

3.2 Optimized structures of finite HX (X=F,

Cl and Br) clusters

We have considered HF, HCl and HBr clusters at different levels of the-

ory. For the geometry of a single monomer unit of HX, electron correlation

at different levels are considered: DFT (B3LYP and B3PW91) and MP2.

The basis sets are varied from the 6-31G level to the Dunning’s correlation

consistent polarized valence double zeta basis level augmented with diffused

functions (aug-cc-pVTZ). The B3LYP/aug-cc-pVQZ level of theory provides

a value of dHF (µG) = 0.92Å (1.81 D), dHCl (µG) = 1.28Å (1.15 D) and dHBr

(µG) = 1.42Å (0.83 D). These bond lengths compare fairly well with the

experimental results, 0.917Å (1.86 D), 1.274Å (1.11 D) and 1.414Å (0.788

D) respectively [61]. Thus, all further calculations are performed using these

bond lengths derived at the B3LYP//aug-cc-pVQZ level.

1Papers based on the work reported in this chapter have appeared in (1). J. Mol.
Struct. (Theochem) 756, 97 (2005). (2) J. Chem. Theory Comput. 2 30 (2006).
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We have also optimized the structures of the aggregates: (HF)n, (HCl)n

and (HBr)n. The extent of electron correlations was varied from the B3LYP

and B3PW91 to the MP2 level to confirm the global minimal energy of these

structures. The geometries obtained from our calculations are shown in Fig.

3.1, Fig. 3.2 and Fig. 3.3 for (HF)n, (HCl)n and (HBr)n respectively. For

both HF and HCl clusters, our reported structures are very similar to those

obtained from previous works in the literature [62]. For HBr, a frequency

analysis was additionally performed to verify the ground state geometries.

Structures of different symmetries were used as starting points to reach to

the global minimal energy ground state. However, it has to be admitted that

these structures have other geometries that are very close in energy to those

reported here.

As can be seen, there is a very strong cooperative interaction between

the molecules as all the geometries have cyclic forms. The advantage of

forming a cyclic structure arises because of the ability to form hydrogen

bonding between the terminals which otherwise remain open for a non-cyclic

system. The cyclic forms are stabler by ≈ 2-3 kcal/mol compared to the

acyclic structures for HF. For example, for n=3 and n=4 although a non-

cyclic geometry ensures the participation of 2 and 3 lone-pairs of halides

respectively in H-bonding, the ends remain free. A cyclic form thus ensures

the highest number of connections for the H-X...H pairs.

However, the overall stability of the cyclic form decreases in the order HF

>HCl > HBr, following the trend in H-bonding strength. The variation in

the strength of the H-bonding also has effects on the individual structure.

For example, while for HF, all the cyclic structures are planar due to stronger
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Figure 3.1: Optimized structures of HF clusters (B3LYP/aug-cc-pVQZ level
optimization).
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Figure 3.2: Optimized structures of HCl clusters (B3LYP/aug-cc-pVQZ level
optimization).
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Figure 3.3: Optimized structures of HBr clusters (B3LYP/aug-cc-pVQZ level
optimization).
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H-bonding, HCl and HBr have non-planar puckered structures for the larger

cyclic systems: n=5 and 6. (HCl)5 has an envelope-like structure while

(HBr)5 has a half-chair like structure. Such structures are well-known for the

organic five-membered molecules like cyclopentane with almost equienergetic

envelope (Cs symmetry) and half-chair form (C2 symmetry) [63]. Also, the

minimum energy structure for (HF)8 (not shown) was found to have a highly

symmetric crown type geometry (D4d) similar to that for cyclooctane. It

is very interesting to note that these H-bonded systems also show similar

steriochemical features as in organic π-bonded molecules.

For n=6, (HF)6 has a hexagonal planar structure while for (HCl)6 and

(HBr)6, the structures are non-planar half-open book type. Formation of

non-planar structures indicate the presence of strong non-bonded interactions

between the lone-pairs of electrons (3 each) on the Cl and Br, which are not

quenched by the formation of weak H-bonds.

For an analysis of the energetics associated with these structures, the

binding energies for the clusters are calculated as; ∆E0,n: = nE0[(HX)] -

E0[(HX)n]. The binding energies are corrected for the zero-point vibrational

energy (ZPVE) and the basis set superposition errors (BSSE). BSSE was

eliminated using the counterpoise correction(CP) scheme [64, 65]. Fig. 3.4

shows the binding energies for the (HF)n, (HCl)n and (HBr)n for n=1 to 6, at

the B3LYP/aug-cc-pVQZ level. The binding energy increases with increase

in the cluster size. HF clusters are bound strongest while the HBr clusters

are weakly bound.
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Figure 3.4: Variation of binding energy, ∆E for different sizes of optimized
clusters for HF, HCl and HBr.
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3.3 Nonlinear optical responses in linear HX

and CO chains

From the discussion above, it is clear that the H-bonded clusters have a strong

preference for a cyclic architecture. However, such cyclic geometries lead to

centrosymmetricity, thereby reducing substantially the even-order NLO (like

β) responses. Many NLO active materials like urea, PNA and MNA have a

linear arrangement of the chromophores connected by H-bonds. Therefore, to

model the H-bonding effect in a single linear chain, a linear chain for (HX)n

is considered here. The distance between each HX unit is kept constant for

all chain lengths. Fig. 3.5 shows the linear chains considered. The H-X...H

distances are also shown. These are the average H-X...H distances derived

from literature.

For an analysis of the energetics associated with these linear structures,

the binding energies for the clusters are calculated using the definition: ∆E0,n

= nE0[(HX)] - E0[(HX)n]. All the energies are again corrected for zero-point

vibrational energy (ZPVE) corrections and the basis set superposition errors

(BSSE). Fig. 3.6 shows the binding energies in HF, HCl and HBr linear

clusters at the B3LYP/aug-cc-pVQZ level (for cluster sizes upto n=6). The

binding energies for the HF chain increases with increase in the cluster size.

However, the binding energy remains almost constant for the HCl chain and

for the HBr chain, the binding energy decreases with increase in the chain

length. The negative binding energies for the HBr clusters arise essentially

due to fact that the stable clusters of the (HBr)n are cyclic and the lin-

ear chains are the high energy structures. However, the linear HBr chains
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Figure 3.5: Structures for the linear chains of HF, HCl and HBr. The dis-
tances (in Å) between each monomer is kept constant as shown in the figure.

act as model to mimic the H-bonding in the weak interactions limits for

chromophores arranged in a 1-dimensional manner. It is thus interesting

to examine the nonlinear optical properties for these three limiting cases of

stability in these linear chains.

The linear and the nonlinear optical coefficients for these clusters are

computed using the finite-field method at an external electric field of 0.001

au. The 1st hyperpolarizabilities (β) for the three cases show entirely different

pictures (seen clearly from Fig. 3.7). For the (HF)n, β increases initially till

n=3 and then decreases. As already mentioned, there is a very strong H-

bonding and such local maxima shows a clear signature of H-bonding effects.

For HCl and HBr however, there are no signs of decrease in β with increase

in the chain length. HCl chain shows a sharp increase till n=3 and then
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Figure 3.6: Variation of binding energy, ∆E for different sizes of clusters for
HF, HCl and HBr in linear chains.
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increases slowly. A rapid increase implies that H-bonding is still active for

HCl at smaller oligomeric length but unlike HF, the bonding is not strong

enough to reduce β with increase in n. For HBr, however, there is an uniform

increase in β with the increase in chain length and the profile shows no

discontinuity, indicating that H-bonding is very weak for all values of n and

does not lead to any additional polarization effects.

For a clear comparison of these H-bonded aggregates with a purely dipo-

lar aggregate, the NLO coefficients of a linear CO chain are also calculated.

The distance between each CO unit in linear chain is considered to be 3.95

Å, while the CO bond-length is found to be 1.13 Å. The large CO...CO dis-

tance indicates pure dipole-dipole interactions. This CO linear chain mimics

interactions in many NLO crystals constituted of π-conjugated molecules like

PNA and MNA without however the H-bonded interactions. Thus, an anal-

ysis based on only a dipolar aggregate allows one to understand the effects

of the dipolar component in a more detailed manner. For the CO chain, β

shows a linear increase with increase in the nuclearity. Thus, when there

are no effects of H-bonding, β has a linear profile. The deviation from the

dipolar interactions increases in the order HBr < HCl < HF. In the limit-

ing cases of weak H-bonding, the 1st hyperpolarizability is mainly governed

by the dipolar interactions. However, the decrease of β with increase in n

must have a H-bonded origin which shows large cooperative phenomena of

decreasing β with increasing n. It is interesting to note that the interactions

with various length scales can lead to completely different NLO features.
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3.3.1 Analysis

For a quantitative understanding of the cooperative nature of various inter-

actions, the β of a molecular chain βn is compared with n isolated molecules,

nβ1 (where β1 is the SHG of a single monomer). These two quantities are

plotted in Fig. 3.7 for all the four systems. HF shows a highly nonlinear pro-

file in βn with large deviation from the linear multiples of monomers (nβ1).

The polarization of the whole system decreases with strong H-bonding be-

tween monomers. HCl also shows a deviation wherein the βn increases with

the increase in n but the increase is slower although the slope is positive.

The cases for HBr and CO are very similar. For both of them, βn has a

larger value than nβ1 implying that the contribution of dipole-dipole interac-

tions (Davydov splitting) towards polarizations helps increase βn, in contrast

to ”strong” H-bonding. Thus, cooperative damping in the NLO properties

decrease with decrease in the strength of H-bonding for linear 1-D aggregates.

The reduction in the magnitude of βn with increase in n for HF can be

traced to the change in the polarizations of the ground state in comparison

to the dipole allowed excited state. It is found that for the HF chains, there

is a large increase in ∆µ (µexcitedstate - µgroundstate) at small chain lengths

(n=2), but a steady decrease in its magnitude with the increase in the chain

length. For CO however, the ∆µ increases with increase in chain length.

From the two-level expression for β, an increase in the magnitude of ∆µ

implies large β. This explains the initial increase of β for HF at small chain

length (cooperative phenomena) and the monotonic increase of β for CO,

with increase in n. For the weaker H-bonded systems like HCl and HBr, the
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Figure 3.7: Variation of βn (solid line, with circles) and nβ1 (dotted line) for
HF, HCl, HBr and CO. Note the close similarity in profiles for HBr and CO.
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∆µ profiles progressively tends towards the purely dipolar CO profile.

To further understand the reason behind such a large polarization at

small chain lengths for the strongly H-bonded systems, the Mulliken charge

densities on the electronegative F-atom are calculated with the increase in

the chain length, both in the ground and the lowest optically excited state.

In the ground state (GS), δ−F ≈ -0.5 for all chain lengths. In the excited

state(ES), however, only for the monomer (HF), there is a strong feature

of change in polarity (increased ionicity). For example, for HF (n=1), δ−F

(ES) ≈ +0.316. But as n increases, the average ionicity decreases. Thus,

for n=2, only one of the F atoms is ionic and the other F atom remains at

δ−F ≈ -0.5, similar to that in the GS. With further increase in n, the ionic

contribution decreases further. Since for every n, there is only one F atom

which is polarized in the excited state, the reduction in average ionicity with

increase in n is of the order ∼ 1/n. Note that, the F atom which is polarized

in the excited state is involved in hydrogen bonding with the neighboring

H atom while its own hydrogen partner remains at the chain end without

being involved in H-bonding. Interestingly, out of three types of F atoms in

the (HF)n chain, the leftmost H-F is different and so is polarized. This is

purely due to the chain nature of the aggregates and explains the decrease

in ∆µ as well as the β with the increase in n for HF. Thus, the boundary

conditions play a very important role in determining the local polarizations

in an aggregate. CO, on the otherhand, is predominantly covalent and thus

the ionic contribution in the ES is small. δ−O is ≈ -0.29 both in the GS and

the ES and no local polarization effects are found. On the application of

an electric field, all the π-electrons in the (CO)n are polarized, resulting in
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increase of β with increase in n.

Similar conclusions can also be made for the optimized structures for the

H-bonded systems. For the optimized structures shown in Fig. 3.1, Fig. 3.2

and Fig. 3.3, most of the cyclic structures (at small n) have centrosymmetric

architectures and as a result β values are quite small. This is particularly

true for HF that has the strongest H-bonding amongst all. Thus, while a lin-

ear H-bonded chain creates a favorable situation for NLO activity (for HCl

and HBr), the actual preference of a cyclic structure reduces the polariza-

tion responses. However for HCl and HBr, the larger cyclic structures have

a noncentrosymmetric structure and β is non-zero, however, much smaller

[almost (1
5
)th] compared to their linear analogues.

3.4 Conclusions

Several important conclusions can be drawn from this work. Our computa-

tions based on linear and quasi one-dimensional chains serve as a thumb-rule

model for estimation of interactions in actual crystalline geometries for most

NLO active H-bonded compounds.

(i) Our energy calculations for the three hydrogen bonded species show

that there is a strong preference for the cyclic structures. Such a cyclic

structure although stabilizes the system, incorporates centrosymmetricity

in the geometry thereby reducing the second harmonic response functions.

However, for macromolecular aggregates of π-stacked molecules like PNA or

MNA, a linear chain of H-bonds are sustained in the crystal.

(ii) We found that it is favorable to have H-bonding in the intermediate
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regime (HCl...HCl)/(HBr...HBr) for large NLO coefficients across 1-D chains.

A very strong H-bonding as that for HF...HF is found to reduce the NLO

response functions. Although there is an enhancement of β even for pure

dipolar aggregate like CO...CO, such chains are not stable. This is a very

important result since in most crystals as well as in biological systems like

DNA and proteins, intermediate H-bonding like N-H...O and N-H...N are the

most predominant interactions. Thus, a relatively weak H-bond creates an

ideal balance between the actual stability of the aggregate and increase in

the NLO response functions.



Chapter 4

Nonlinear optical responses of

multichromophoric aggregates

in confined geometries: A case

study for calix[3]arenes

4.1 Introduction

Much effort have been directed towards the synthesis of calix[n]arenes in the

last decade [66]. In these class of systems, the individual chromophores are

arranged in the form of ’baskets’ by connecting the constituent molecules by

linkers like (CH2)n or (CH2O)n. Thus, these compounds provide an innova-

tive strategy of arranging the chromophores in a parallel arrangement [67].

Moreover, one can even increase the number of chromophores in such an

66
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assembly by changing ’n’. The inter-dipolar angle can be varied by func-

tionalizing the lower and upper rims of the ’baskets’ with groups of different

sizes. The overall structure is then controlled by steric classes of interac-

tions. It would thus be very interesting to ask how the individual dipoles of

the chromophores interact in such a multi-molecular assembly and how such

interactions and molecular properties translate into controlling the overall

NLO properties of the calix[n]arenes. Although there has been a substantial

effort in designing calix[n]arenes with large NLO responses [68], a proper un-

derstanding from a molecular viewpoint is still to be attained. To the best of

our knowledge, there has been only a few works to model the NLO properties

of these systems so far [69,70] 1.

4.2 Model for Calix[3]arene

In this chapter, modeling the NLO properties in calix[3]arenes is undertaken

by studying the dipolar interactions in a similar geometrical arrangement

with a hydrogen fluoride trimer, (HF)3. The dipole interaction is varied by

(i) changing the inter-dipolar angle amounting to opening up of the ’bas-

kets’ and (ii) increasing the inter-dipolar distance. Additionally, since the

most favorable arrangement from a dipole interaction point of view is the

anti-parallel arrangement, similar calculations are performed for such a ’frus-

trated’ dipolar system, (HF)3, with two dipoles in the parallel arrangement

while the third one in the anti-parallel orientation with the other two. We

find that for such a ’frustrated’ arrangement, with the basket opening up,

1Paper based on the work reported in this chapter has appeared in Chemistry. A
European. J. 11, 4961 (2005).
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a favorable hydrogen-bonding interaction develops, which further stabilizes

the system. Finally, the calculations on the true calix[3] arene systems have

been performed and we have compared these results with the model (HF)3

system.

4.3 Theory

Three HF molecules are arranged parallel to each other so that the lower base

(lower rim) has three H atoms and the upper base (upper rim) has three F

atoms. The three H and the three F atoms in each rim form two equilateral

triangles. The geometry is shown in Fig. 4.1 (A). This is the all-parallel

arrangement for the dipoles, applicable for a parallel cylindrical arrangement

as in calix[n]arenes.

However, the most stable arrangement of such a dipolar arrangement is

the anti-parallel arrangement. Systems like calix[4]arene have a significant

percentage of the anti-parallel form (u,d,u,d; u,u,d,d) apart from the all-

parallel cone geometry (u,u,u,u or d,d,d,d) [71]. Such a relaxation from the

all-parallel to the anti-parallel arrangement is possible only for calix arenes

with even number of chromophores, n=4,6,8 etc. For odd number of dipoles

in the assembly, such a relaxation is however, not possible. For example, for

n=3,5,7 etc. the dipoles are in a frustrated arrangement where the overall

dipole-moment for the relaxed geometry does not vanish. The individual

chromophores in calix[n]arenes are connected by short bridges that prevent

random orientations of the dipoles. The simplest of such an arrangement is

the (HF)3 system shown in Fig. 4.1 (B). In fact, the (HF)3 system is the
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Figure 4.1: Arrangement of dipoles in a basket-type geometry for (A) parallel
and (B) anti-parallel geometries. (a) Parallel dipoles with inter-dipolar angle,
θ=00, (b). Geometry as the dipoles open up, the lower rim radius remains
constant and the upper rim radius changes, (c) Fully opened basket with
inter-dipolar angle, θ=1200.
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simplest case for a molecular assembly that can be studied for both parallel

and frustrated cases simultaneously.

The inter-dipolar angle for real molecular systems is controlled by the

steric bulk of the groups on the lower and the upper rim of the cylinder.

Increasing the bulkiness of the groups in the upper rim while keeping the

steric bulk of the lower rim constant, increases the inter-dipolar angle, with

opening up of the basket. Thus, with opening, the system with a cylindrical

symmetry is converted into a conical-shaped geometry.

For modeling the opening up of the cylinder for both the parallel (A)

and frustrated dipoles (B), the lower rim with corresponding three atoms

are kept constant and the coordinates of the three atoms in the upper rim

are varied. The radius of the upper rim can be increased by translating the

corresponding atomic coordinates according to: X=X+kX, Y=Y+kY and

Z=Z-kZ, while keeping all the three molecular (HF) bond lengths fixed. The

Z-axis corresponds to the internuclear axis and k is the flattening parameter

which varies from 0 to 1.0. While the k=0 case corresponds to the perfect

cylindrical arrangement for an inter-dipolar angle, θ=00 [see Fig. 4.1(a)], the

k=1.0 signifies the other extreme, where, the cylinder becomes completely

flat (Z coordinates are zero) so that all the six atoms (3H and 3F) are on the

same plane, forming a circular disk. For such a case (k=1.0), the inter-dipolar

angle, θ=1200 [see Fig. 4.1(c)]. For all intermediate values of k, between 0.0

to 1.0, the cylinder is progressively opened up and the inter-dipolar angle, θ

increases from 00 to 1200 [see Fig. 4.1(b)].
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4.4 Ground state dipole moment

With the dipoles opening up, the total ground state dipole moment changes

as a function of the inter-dipolar angle. A general dipole moment expression

for the combined effect of three dipoles can be written as

µG =
√
µ2

a + µ2
b + µ2

c ± 2µaµb cos θab ± 2µbµc cos θbc ± 2µcµa cos θca (4.1)

where µa, µb and µc are the dipole moment vectors for three dipoles a, b, c

and θab, θbc and θca represent the angles between the corresponding dipoles.

Note that, the dipolar angle determines the phase (+ve for parallel and -ve

for frustrated arrangement) of the dipoles.

For the present case when all the dipoles are same (homomolecular sys-

tem), µa=µb =µc=µi and θab=θbc=θca=θij. In the parallel orientation [4.1

(A)], all the vectors remain in-phase. Thus, the total dipole moment is given

by

µG =
√

3µ2
i + 6µ2

i cos θij (4.2)

For θij=00, the µG has a maximum value of 3µi. When θij increases from 00

to 1200, the µG decreases monotonically to zero.

In the frustrated arrangement [4.1 (B)], two of the inter-dipolar angles

are out-of-phase and one of them is in-phase. Thus the total dipole moment

is

µG =
√

3µ2
i − 2µ2

i cos θij (4.3)

For this geometry, the µG increases from µi (for θij=00) to 2µi (for θij= 1200).

Thus, for such a frustrated dipolar system, the ground state dipole moment
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is a monotonically increasing function of the inter-dipolar angle.

4.5 Excitonic splitting for a multidipolar ag-

gregate

The above expressions for the dipole moments are purely classical without

any correlation among the dipoles. However, for systems with nonzero ground

state dipole moment, there exists a strong dipole-dipole interaction. This

dipole-dipole interaction leads to a large excitonic coupling and the effects

are most prominent in the excited state of the molecules. A general scheme of

such interactions has been considered in details in chapter 2. Here we outline

a scheme of interaction between the three dipolar molecules as shown in Fig.

4.2. For such an aggregate, while the ground state, G,[|G >=|g1g2g3 >] is sta-

bilized with respect to the monomer ground states [gi], the excited states [ei]

which remain degenerate at infinite distance between the monomers, undergo

splitting into three states, (E1 [|E1 >=2|e1g2g3 > - |g1e2g3 > - |g1g2e3 >],

E2[|E2 > = |g1e2g3 > - |g1g2e3 >] and E3 [|E3 > = |e1g2g3 > + |g1e2g3 > +

|g1g2e3 >]), when they are brought closer (see Fig. 4.2). Interestingly, out

of these three states, two states (E1 and E2) are degenerate while E3 is non-

degenerate and symmetric. The extent of splitting, ∆E, however depends

on the strength of dipole-dipole interactions, given by

∆E =
∑
i,j

2
M2

gs

r3
ij

(cos θij − 3 cos2 ψi) (4.4)
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where Mgs is the transition dipole from the ground state to the excited singlet

state of the monomer, rij is the inter-dipolar distance between the molecules

i and j and the summation index runs over all the three molecules. The

aggregate is constructed such that the orientation angle between any two

monomers is θij [θij=θ12=θ23= θ31=θ] and each monomer creates an angle ψi

with its molecular axis [also ψi =ψ1=ψ2=ψ3=ψ]. From the above expression,

it is evident that a singlet excited state of the monomer molecule would

split according to the intermolecular angles (θ) and molecule-dipole angles

(ψ). For linear molecules or Donor-π-Acceptor type chromophores with a

para orientation (for example, paranitroaniline), the dipolar axis and the

molecular axis are collinear with ψ=00.

With the increase in the inter-monomer angle corresponding to the flat-

tening up of the basket, there is a variation in the oscillator strength in the

three states, E1, E2 and E3. For the parallel case, at θ=0, E3 is the only

dipole allowed state with large oscillator strength, since it corresponds to the

in-phase combination of all the three dipoles. However, as the inter-dipolar

angle increases, in addition to E3, E1 and E2 also become dipole allowed,

more so, for large flattening angle. For the frustrated assembly, however,

all the states are dipole allowed at θ=0 and as θ increases, the E1 and E2

become strongly allowed (higher oscillator strength) while the transition to

E3 becomes progressively weaker.
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Figure 4.2: Excitonic splitting in a trimolecular dipolar aggregate due to
dipole-dipole interactions. |G > and |E1 >, |E2 >, |E3 > represent the
unnormalized eigenfunctions for the ground and excited states respectively
in the assembly. Each |gigjek > is a direct product state of the aggregate
involving the monomer states |gi >, |gj > and |ek > of the monomers i, j
and k respectively.
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4.6 Results and Discussions

We have computed the dipole moment and the equilibrium ground state

bond-length for hydrogen fluoride molecule (HF). Electron correlation has

been taken into account through two different methods: The Becke’e three

parameterized hybrid DFT method (B3LYP) and the MP2 methods. In order

to compare the effects of electron-correlation as well as basis set effects, the

level of basis set is varied from the 6-31G to aug-cc-pVQZ for both the two

methods. The experimental values for the Req and dipole moment of HF

are 0.920 Å and 1.80 Debye respectively [61]. The B3LYP/aug-cc-pVQZ

level reproduces the experimental results quite well with Req=0.920 Å and

µ(HF)=1.8084 Debye.

In the previous section, the analytical expressions for the total ground-

state dipole moments have been derived as a function of the inter-dipolar

angle. Since it does not include any correlation effect, the ground-state dipole

moments for the (HF)3 assembly at various inter-dipolar angles are computed

using the B3LYP/aug-cc-pVQZ method. The variation of the dipole moment

with the inter-dipolar angle for the all-parallel geometry of the dipoles (case

A in Fig. 4.1) is plotted in Fig. 4.3. The inter-dipolar distances (d) are

varied from 1.5 Å to 4.5 Å. For comparison, the same plot for the analytical

classical dipole moment is also shown.

At small inter-dipolar distances like 1.5 Å, the computed dipole moment

shows a very large deviation from the non-interacting analytical value. For

example, at θ=00, the magnitude of the total dipole moment is only 3.9721

Debye compared to the analytical 5.4252 Debye, a reduction of 27 percent.
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Figure 4.3: µG as a function of the inter-dipolar angle, θ for the parallel
dipolar assembly.
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But, as the basket opens up, the deviation decreases and both the computed

and the analytical values converge to 0 Debye for θ=1200. This signifies the

role of electronic correlations for the (HF)3 assembly at small inter-dipolar

distances and small inter-dipolar angles. But, as the inter-dipolar distance

(d) between the HF monomers increases (around d∼ 4.5 Å), the intermolec-

ular interaction decreases and the system transforms into a classical dipolar

assembly.

The variation of µG for the frustrated dipolar system (B) shows very in-

teresting features (see Fig. 4.4). At small inter-dipolar angles, the calculated

dipole moments differ from the classical values, particularly for small d val-

ues. This is similar to the case for parallel dipoles. However, contrary to

the parallel dipoles (see Fig. 4.3) where, with increase in the dipolar angle,

the deviation becomes less prominent, the frustrated dipolar systems show

very large deviation from the classical dipole moment values for large θ. The

deviation is the largest for the case of small inter-dipolar distance of 1.5Å.

As the basket starts to open up, two of the hydrogen atoms in two HF

molecules come close to the fluorine atom of the third HF molecule. Initially

the F...H-F angle is 900 but as the dipoles flatten up, the F...H-F angle

increases towards 1800. Such a linear F...H-F conformation has been found

to be most suitable for the H-bonding interaction [72]. Therefore, with the

increase in the inter-dipolar angle, the H-bonding interaction increases. The

effect is most profound for the inter-dipolar distance of 1.5Å as the F...H-

F bond is strongest at such distances. H-bonding interaction is primarily

electrostatic in nature with δ− on the F atoms and δ+ on the H atoms.

Not only the linearity, the distance between the electronegative atom and
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Figure 4.4: µG as a function of the inter-dipolar angle, θ for the frustrated
dipolar assembly.
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hydrogen atom also is crucial for effective charge transfer. Therefore, there

is an overall enhancement of 30 percent in the dipole moment magnitude

compared to the non-interacting value in the ground state dipole moment at

small inter-dipolar distances and large θ values. However, as the inter-dipolar

distance increases, the H-F...H bond becomes weaker and there is very little

enhancement in the dipole moment from the classical value.

From the above discussion, it is clear that the extent of exciton splitting

as well as the ground state dipole moment depend on the angular orientation

of the dipoles. It will be novel to study such effects on the variation of the

nonlinear optical properties for such systems.

For a quantitative estimation of the optical gap and the non-linear optical

response property like the 1st hyperpolarizability (β) for the geometries at the

various inter-dipolar angles, the frequency dependent hyperpolarizability are

calculated at 1064 nm corresponding to the experimental Nd:YAG frequency

using the well-established TDHF formalism with 6-31G(d,p) basis set. The

level for the basis set is varied from 6-31G(d,p) to 6-311G++(d,p) without

any significant change in the magnitudes for the optical gap or β. The optical

gap and β values are thus reported at the level of TDHF/6-31G(d,p).

In Fig. 4.5, the HOMO-LUMO gaps are plotted as a function of the

inter-dipolar angle for the (HF)3 (all-parallel system, case A, in Fig. 4.1) for

a number of inter-dipolar distances. It is further verified that the HOMO-

LUMO gap from TDHF/6-31G(d,p) actually corresponds to the optical gap

found from ZINDO-CI calculations. The optical gap is calculated as the

energy difference between the geometry relaxed ground state and the lowest

optically allowed state with substantial oscillator strength. This corresponds
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Figure 4.5: Optical gap as a function of the inter-dipolar angle, θ for the
parallel dipolar assembly at TDHF/6-31G(d,p) level.
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to the vertical optical absorption gap. It is found that, for the (HF)3 system

at a small inter-dipolar distance of 1.5 Å, the optical gap is only 14 eV

compared to 21 eV for large inter-dipolar distance, for a small inter-dipolar

angle, θ = 0. As the inter-dipolar angle increases, the gap for the small

inter-dipolar distance increases up to θ ≈ 700, after which the optical gap

saturates to a value of 21 eV. For larger inter-dipolar distances of 2.5 Å, 3.5 Å

and 4.5 Å there is no excitonic splitting and the gap remains almost constant

at 21 eV. To quantify the extent of splitting in the (HF)3 system, the optical

gap for a single HF molecule is computed. The gap is ≈ 22 eV. Thus our

results show that it is possible to reduce the optical gap to 60 percent of the

monomer value in an aggregate. Such a remarkable effect can be realized by

only fine tuning the inter-dipolar distance and the associated phase angle.

Similar features are also seen for the frustrated dipolar assembly, which

is shown in Fig. 4.6. The optical-gap increases from 16 eV to the monomer

(non-interacting) limit of 22 eV after an inter-dipolar angle of ≈ 700. For

larger inter-dipolar distances, there is no excitonic splitting and the gap

remains constant at 22 eV. Note that, for small inter-dipolar distance of 1.5

Å and for θ = 0, the frustrated case (case B in Fig. 4.1) shows larger gap

(16 eV) compared to the all-parallel geometry (A) (14 eV) due to H-bonding

stabilization of the ground state for the former.

The variation of the first hyperpolarizability (β) is investigated as a func-

tion of the inter-dipolar angle and the distances between them for the parallel

orientations. At a small inter-dipolar distance of 1.5Å, the magnitude of β

decreases very rapidly with the increase in the inter-dipolar angle till θ ≈ 300

[Fig. 4.7(a)]. After such a initial steep decay, β decreases monotonically and
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Figure 4.6: Optical gap as a function of the inter-dipolar angle, θ for the
frustrated dipolar assembly at TDHF/6-31G(d,p) level.
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reduces to zero at θ = 120. Thus, the β profile shows a clear signature of two

parameters. At smaller inter-dipolar angles (θ < 500), it is the optical gap

that controls the magnitude of β. In fact, for smaller θ, the plot is similar

to the plot for the optical gap (mirror image) which increases and then satu-

rates (see Fig. 4.5). Since, the optical gap appears in the denominator in the

β expression, the optical gap and the β have an inverse relationship, clearly

visible by comparing Fig. 4.5 and Fig. 4.7(a). At larger inter-dipolar angles,

however, when the optical gap almost saturates, the dipole difference (effec-

tively the difference between the ground state and the excited state dipole

moment) controls β. This is again clearly seen by comparing Fig. 4.7(a) and

Fig. 4.3.

However, with the increase in the inter-dipolar distances, the optical gap

becomes constant and saturates to the monomer limit. For such cases, the

dipole moment difference between the ground state and the excited state

(with the maximum oscillator strength) plays the major role in determining β

with the increase in inter-dipolar distance. This is seen in the Fig. 4.7(b). For

the inter-dipolar distance of 2.5Å, the plot for β shows a monotonic decrease

and decays to zero at θ = 120. If the optical gap was solely responsible for

β, then the graph would have looked flat.

At large inter-dipolar distances, optical gap saturates, so that the magni-

tude of the excitonic splitting is no more important. However, the question

remains whether the excited state is more polarizable than the ground state.

In fact, we find that it is the ∆µ12 which governs the magnitude of β at inter-

mediate dipolar angles for large inter-dipolar distances. The signatures for

such dipole moment controlled β is also seen for higher inter-dipolar distances
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Figure 4.7: Variation of β with respect to the inter-dipolar angle at varying
inter-dipolar distances for parallel orientation at TDHF/6-31G(d,p) level. β
is in atomic units.
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which also decay monotonically to zero at θ = 120. The β value for distances

3.5Å and 4.5Å are shown in Fig. 4.7(c) and Fig. 4.7(d), respectively for the

parallel dipolar assembly.

The frustrated dipolar assembly (case B in Fig. 4.1) also exhibit very

similar qualitative trends. For a small inter-dipolar distance of 1.5Å, β decays

with the increase in the inter-dipolar angle till θ ≈ 300 (Fig. 4.8(a)). Such

a steep decrease is also due to the increase in the optical gap at such inter-

dipolar angles. However, after the saturation of the optical gap, β is entirely

controlled by the dipole moment which increases with the increase in the

dipole moment (Fig. 4.4). At larger inter-dipolar distance of 2.5Å (Fig.

4.8(b)), 3.5Å (Fig. 4.8(c)) and 4.5Å (Fig. 4.8(d)) where the optical gap

saturates, β shows a monotonic increase with the increase in the inter-dipolar

angle again due to similar features in dipole moment (see Figure 4.4).

4.7 Analysis of calix[3]arenes

Until now, the case for a model system of (HF)3 with three dipolar units has

been discussed. Molecular species like calix[3]arenes have a similar arrange-

ment for the chromophores and by suitable functionalization at either end of

these constituent units, these chromophores can be made dipolar. A simple

prototype calix[3]arene that can serve as the model for any other higher or-

der (n>3) and more involved examples of such calix[n] arenes is considered

here. Fig. 4.9 shows the two molecules (i) and (ii) that have been consid-

ered for the computations. The geometries were optimized at the ab-initio
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Figure 4.8: Variation of β with respect to the inter-dipolar angle at varying
inter-dipolar distances for frustrated orientation at TDHF/6-31G(d,p) level.
β is in atomic units.
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level using the B3LYP method at a 6-31G++(d,p) basis set. The geome-

try optimized synthon, (CH3)3C-Ph-NO2, is also shown. Such a monomer

is selected, because, the steric interaction between the tert-butyl groups will

prevent the aggregate to flatten. Additionally, three synthons are connected

by -CH2-CH2-CH2- units. Such a linker is useful, since, it is optically inert

and does not involve in extended π-conjugation between the chromophores.

Thus the changes in the optical properties in the aggregate and the individual

monomer can be understood within the excitonic model.

(i) has a parallel orientation for the dipoles. As can be seen from the

structure, the monomers do not make the same phase angle with each other

as the structure relaxes from the exact parallel arrangement to a relaxed ge-

ometry. For (ii), a similar case of frustrated dipolar geometry is considered

that has been discussed earlier in the context of (HF)3. Two of the (CH3)3C-

Ph-NO2 moieties are parallel while the third one remains anti-parallel to the

other two. Energy minimization for the structure leads to a relaxation from

the all unidirectional orientation. The dipole moment of the monomer is 5.92

D while the aggregate (i) has a dipole moment of 13.1 D. One can calculate

the average cone angle, θij for such an arrangement using equation (4.2), as

both µG and µi are known. It is found that for structure (i), θij=71.570. Note

that, the individual dipoles do not make an uniform angle with respect to

each other and thus θij is not an uniquely defined angle due to relaxation in

the optimized structure. This is true for all the real molecular architectures in

calix[n]arenes. However, θij does provide a very simple ”thumb-rule” param-

eter for defining the cone angle and the dipole interaction for such otherwise

complicated geometries. For (ii), the net dipole moment for the aggregate is
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Figure 4.9: Structure of the synthon, (CH3)3-Ph-NO2; (i), the all-parallel
dipolar aggregate; (ii), the frustrated dipolar aggregate; (iii), geometry from
crystal structure of a molecule in all-parallel arrangement of dipoles. H not
displayed in (i),(ii) and (iii) for sake of clarity. The light green arrow shows
the direction of the computed dipole moment. Atom color code: H=white,
C=black, N=blue and O=red.
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4.67 D, less than that for a single molecule and the dipolar axis for (ii) (seen

as a green arrow) does not coincide with the cylindrical axis of the geometry.

Using equation (4.3) for (ii), θij is found to be 67.800.

For these molecules, the SCF MO energies and then the spectroscopic

properties were computed using the Zerner’s INDO method. The levels of

CI calculations are varied, with singles(SCI) and multi-reference doubles CI

(MRDCI), to obtain a reliable estimate of the second order optical response

functions. All the calculations have been performed for the frequency 1064

nm corresponding to the Nd:YAG laser.

For the parallel arrangement of the monomers, (structure (i) in Fig.

4.9) excitonic splitting due to dipole-dipole interactions is substantial, ∆β

(βmolecule - 3βmonomer) = 705 au (see Table. 4.1). Note that there is a large

increase of β compared to its monomer value of 7593.2 au, even though inter-

dipolar angle, θij, is quite large. However, for structure (ii), ∆β = -3734.1 au,

supporting the fact that dipolar axis and the cylindrical axis do not coincide

due to relaxation of the structure.

For a more conclusive comparison of the evolution of the 1st hyperpo-

larizability with respect to the inter-dipolar angle, the magnitude of β with

the increase in the inter-dipolar angle, θij, is computed. This is done by re-

moving the -CH2-CH2-CH2- connectors between the chromophores and then

flattening the calix[3]arene similar to what has been done for (HF)3. The

profile is shown in Fig. 4.10. βcalix[3]arenes shows a monotonic decay with

the increase in the inter-dipolar angle and decays to zero at θ = 120. It is

very interesting to note that similar features appear for the all-parallel (HF)3

assembly too. Thus the (HF)3 model system serves as a very good template
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for studying interactions in real supramolecular assembly.

4.8 CSD search

For high NLO responses, the inter-molecular conformation of the dipoles

should be parallel or almost parallel. To find real molecular systems where

such a single orientation is possible, a search was carried out using the key-

word ’calix[3]arene’ in the Cambridge Structural Database [73] (CSD version,

5.25, November 2003 release). Structures of low quality (R > 10 %), disor-

dered or in which the position of H atoms have not been determined, were

excluded. A total of 4 structures were reprieved. Of these, two of the struc-

tures, CSD code: DIPWEE [74] and QETWAN [75] maintain a parallel-like

orientation of the monomer chromophores. These two molecules maintain

such a parallel arrangement for entirely two different reasons. DIPWEE has

a large cavity size that incorporates a fullerene which prevents crossover to

the frustrated dipolar form. However, due to large cavity, it gives rise to a

large cone angle conformation. From the analysis based on the (HF)3 ge-

ometry, it has been shown that structures with a large cone angle are not

suitable for efficient NLO applications. Thus, the calculations for this molec-

ular crystal was not pursued further.
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Table 4.1: Ground state dipole moment (in Debye) and first hyperpolariz-
ability (in atomic units) for individual constituent and their aggregates in
calix[3]arenes.

Molecule µG β

(CH3)3-Ph-NO2 5.920 7589.727

(i) trimer: parallel 13.093 23474.100

(ii) trimer: frustrated 4.670 19035.087

(iii) trimer: crystal geometry 6.650 32076.640

QETWAN, on the otherhand is the simplest yet extremely interesting.

The structure has been shown in Fig. 4.9 (iii). It has all the three individual

chromophores in the same parallel orientation. The fourth chromophore on

the top is functionalized at the meta- positions such that it acts as a stitch

for the rest of the three and forces a parallel orientation for the dipoles

through ’conformational locking’. The light green arrow is the ground state

dipole moment axis and it passes almost exactly through the central axis

of this basket and thus is very suitable candidate that supports our dipolar

model based on (HF)3. The compound has the highest magnitude for the

1st hyperpolarizability among all the systems considered for this work (β =

32076.64 au).

4.9 Conclusions

In this chapter, an analytical theory for the variation of the ground state

dipole moment on the orientation of the dipoles with cyclic boundary condi-

tions has been developed. ’Cone-angle’ is proposed as a unique parameter by
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Figure 4.10: Variation of β with respect to the inter-dipolar angle for the
parallel orientation of the monomers in calix[3]arene at the ZINDO/MRDCI-
CV level. β is in atomic units and θ is in degrees.
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which many interesting phases of aggregation can be derived. The numerical

calculations for the ground-state dipole moments on the small model dipolar

aggregates of (HF)3 (parallel and frustrated cases) show that these analytical

expressions are very reliable provided the molecular orbitals of the individual

species do not overlap with each other.

The numerical calculations for the optical properties like β show a very

large role of excitonic splitting at small dipolar distances, as a result of which,

β decays very rapidly. At large inter-dipolar distances, however, β shows a

monotonic decrease due to similar decrease in the ground state dipole mo-

ment. The calculations provide the means of finding nonlinear polarizabilities

for various cone angles, applicable for real molecular entities. Finally, the cal-

culation on calix[3]arenes show that indeed the dipolar orientation model is

very suitable for studying actual molecular baskets where the conical sym-

metry is preserved.



Chapter 5

Dipole Orientation Effects in

oxo-bridged dinitroanilines and

odd-even oscillations in

nonlinear optical responses in

alkyl bridged dichromophores

5.1 Introduction

From the discussions in the previous chapter in the context of calix[3]arenes,

it is clear that the NLO properties of aggregates of chromophores connected

through -(CH)2 or oxygen atom can be understood reasonably well through

the exciton theory. These connectors, in fact, act as harmless stitches. How-

ever, since they are flexible, lead to many different orientations in the dipoles.

94
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The NLO responses of these orientations would be expected to be different

due to various dipolar phase combinations. For a clear understanding of

the effects of such specific orientations, the NLO properties of a few dipolar

chromophores are calculated in this chapter.

The case for a dimer composed of D-π-A molecules like paranitroaniline

(PNA) that are connected through an oxygen bridge is first discussed. The

molecule considered is PNA-O-PNA. The interest in this system stems from

the fact that the two PNA molecules can be arranged in side-by-side fashion

through connectivity in the ortho-position by an oxygen atom resulting in

a non-centrosymmetric system. Similar compounds have been synthesized

by several groups [76, 77]. However, due to the sp3 hybridized nature of

the bridged O-atom, the interdipolar angle is quite large. This in turn re-

duces the hyperpolarizability for the dimer from the additive values of two

monomers. However, it is proposed that a new molecule where the monomers

are connected by an additional C-C linkage leads to conformational locking

of the monomers in almost an all-parallel orientation, resulting in large hy-

perpolarizability for the dimer.

In the next case, two dipolar chromophores are considered that are sepa-

rated by an alkyl bridge. The number of groups in the alkyl bridge is varied

to obtain a quantitative estimate of the orientation of the dipoles, together

with its effect on NLO properties of the system. Since, dipolar orientations

are strongly dependent on the conformations of the intervening methylene

groups, the overall dipole moment as well as the 1st hyperpolarizability (β)

show an odd-even oscillations with the variation in the number of methylene

groups. Such odd-even oscillations are well-known in literature for many



5.2 O-bridged PNA dimer: PNA-O-PNA 96

physical properties like the melting points of organic solids [78] and the ori-

entation of alkanethiols in self-assembled monolayers (SAMs) [79]. Also,

there have been recent experimental reports of odd-even oscillations in NLO

properties of organic molecules similar to those discussed here [80] and even

in different molecular systems [81].

The oscillations in the physical properties such as melting point are gen-

erally understood on the basis of packing efficiencies in the van der Waals

solids. The alkanes with odd-number of carbon atoms are packed less orderly

than their even counterparts. However, oscillations in the electrical proper-

ties like hyperpolarizabilities are difficult to understand as they are very

sensitive to both the nature of ground state and the excited states. Herein,

it is shown that such oscillations arise due to conformational flexibility of the

intervening alkane chains between the dichromophores1.

5.2 O-bridged PNA dimer: PNA-O-PNA

The ground state optimized structure for such a molecule is shown in Fig.

5.1(A). The two PNA molecules are orientated in two different planes with an

interdipolar angle (φ)of 43.40, calculated at the AM1 (Austin Model 1) level.

Additional frontier orbital analysis shows that there is almost no overlap

within the π-electrons of the two PNA rings [82] and thus, the dipole moment

of the dimer can be accurately described by the classical vector addition

scheme with an appropriate phase factor.

Fixing one PNA molecule and rotating the other PNA molecule along the

1Papers based on the work reported in this chapter have appeared in (1) J. Phys.
Chem. A 108, 320 (2004). (2) J. Phys. Chem. A 109, 4112 (2005).
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Figure 5.1: (A) Ground state optimized structure of PNA-O-PNA at the
AM1-level. φ represents the interdipolar angle (B) Optimized structure of
PNA-O-PNA bridged through C-C linkage at meta-position. (C) Molecu-
lar structure of PNA-O-Si(CH3)2-O-Si(CH3)2-O-PNA as retrieved from the
Cambridge Crystallography Database (CCDC).
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O-PNA axis changes the interdipolar angle (φ) from 0 to 120 degrees. The

conformation for φ=00 corresponds to the parallel side-by-side arrangement

of the dipoles while φ=1200 corresponds to an almost anti-parallel arrange-

ment. Thus, it is interesting to ask what happens to the second harmonic

response of the molecular dimer as one changes the interdipolar angle (φ).

Molecules with different interdipolar angles can be synthesized by suitable

substitution of alkyl groups on the rings that can stabilize specific orienta-

tions of φ or by replacing one of the PNA rings by meta-nitroaniline (MNA)

or ortho-nitroaniline (ONA).

In Fig. 5.2 (Top panel), the total ground state dipole moment µG (in

Debye) for PNA-O-PNA is plotted with variation in the interdipolar angle.

As can be seen, the dipole moment decreases with increase in the interdipolar

angle. This can be easily understood by considering the combined effects of

ground state dipoles of each monomer. If the two dipoles are parallel and in

the same plane, the in-phase combination (φ=00) of the resultant dipole is

the sum of the two individual dipoles.

The bridged oxygen atom in fact does not play any significant role in de-

termining the nonlinear optical coefficients. It basically controls the distance

between the two nitroaniline dipoles. Due to its high electronegativity, it

just increases the total dipole moment of the dimeric systems (it is roughly 1

Debye increase purely because of oxygen) to the same extent for all values of

the dihedral angle, φ. The minimum distance between the dipolar axes of the

molecules is more than 4 Å, thereby, ensuring that no explicit intermixing

of the π molecular orbitals of the chromophores occur validating the exciton

theory based on the dipole-dipole interaction model as discussed in chapter
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Figure 5.2: [Top Panel] Variation of the ground state dipole moment (µ) (in
Debye) with increase in the interdipolar angle (in degrees). [Lower Panel]
Variation of the EFISH coefficient (µβ) (in esu-units) with increase in the
interdipolar angle (in degrees).
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2. Thus, even though the semi-classical theory of dipole-dipole interaction

does not take into account the electronic properties of the bridged O atom,

it is found that the qualitative trend in splitting energy as a function of the

angle, φ, is almost the same with those obtained from singles-configuration

interactions (SCI) calculations for the di-nitroaniline systems.

For the calculations of the optical coefficients, an excitation frequency of

1064nm (1.17eV) which corresponds to the frequency of the Nd-YAG lasers

is used. The variation in EFISH (electric field induced second harmonic

coefficients) coefficients with the increase in the dihedral angle (φ) is shown

in Fig. 5.2 (Lower Panel). The trend is very similar to that for the ground

state dipole moment in Fig. 5.2 (upper panel). To be precise, the magnitude

of EFISH coefficient decreases with increase in the torsional angle for the

PNA-O-PNA.

The results compare fairly well with the experimental values reported

earlier. For example, the calculated β for the optimized geometry Bis (2-

amino-4-nitrophenyl) ether (φ=430) is β=16.4× 10−30esu. The experimental

value for the same molecule with Hyper-Rayleigh Scattering (HRS) technique

at the Nd:YAG frequency has been reported to be 22.0× 10−30esu [76].

A very important aspect of the above discussion is to design the di-

nitroaniline system so that the maximum NLO activity can be attained.

The highest EFISH coefficients (494.4 × 10−30esu) is obtained for PNA-O-

PNA with zero dihedral angle. Such a high value of EFISH coefficient is

not possible to be realized from the PNA-O-PNA molecular system as the

optimized geometries of the di-nitroaniline molecules discussed above are not

planar due to steric repulsions. Therefore, the best way to achieve this would
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be is to connect the oxo-bridged rings by a carbon-carbon bond in the meta

position. Optimizations of this structure, (shown in Fig. 5.1 (B)) at the AM1

level of theory, confirms that the nitroaniline rings are almost planar with

the dihedral angle φ very close to zero. Thus one can make the two dipoles

parallel to a large extent by bridging the two rings by a covalent bond. The

EFISH coefficients for this bridged structure is 471.5×10−30esu, which is close

to the parallel (φ = 0) PNA-O-PNA dipole value of 494.4×10−30esu [82].

To further verify the existence of dimers of PNA, a detailed search for

such structures in the Cambridge Crystallographic database was performed.

A very interesting system, similar to our theoretically considered structure

is found to be PNA-O-Si(CH3)2-O-Si(CH3)2-O-PNA (CSD id: TOFPIN.cif)

(see Fig. 5.1 (C)) [77], where the monomers are connected by a siloxane

bridge. Presence of such siloxane backbone provides large thermal stabil-

ity and mechanical strength to the dimer. Being rigid, this backbone locks

the two monomers in non-centrosymmetric orientations with an interdipolar

angle of 360.

5.3 Study on Dipole-(CH)2-Dipole

To understand the relationship between SHG coefficients and the geometrical

orientations of the intervening methylene groups in dipole-(CH)2-dipole sys-

tems, a set of molecular systems are considered as shown in Fig. 5.3 (A). All

the geometries have been optimized using the AM1 parameterized Hamilto-

nian available in the Gaussian 03 set of codes. Some of the compounds (with

smaller alkyl units) have already been synthesized in good yields and well
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Figure 5.3: (A) Molecular structure of the system considered; (B) Orientation
of the dipoles for odd and even chains.

characterized, although, single crystalline forms are not available. The ge-

ometries obtained by the AM1 calculations have been compared with those

obtained using the DFT based methods at B3LYP/6-31G+(d,p) level for

the smaller sized chromophore with n=2. It is found that the geometries

obtained by both the methods have similar bond lengths and bond angles.

To further verify that the geometries do correspond to the global minima,

the geometry for an experimentally synthesized molecule very similar to one

considered by us: 4,4′-Diamino-2,2′-dinitrodiphenylmethane [83] is also op-

timized. Even at the AM1 level, the geometry and the bond lengths/angles

turn out to be same as found experimentally (XRD data).
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R-CH2-CH2-R, R=Ph-N=N-Ph-NO2, is the simplest symmetric case which

can be considered to understand the conformational orientations, as shown

in Fig. 5.3 (B). Rotation along the central C-C bond produces different

conformations. For a torsional angle, φ=0, the situation corresponds to an

eclipsed geometry while for φ=180, the conformation is staggered. In Fig.

5.4, the potential energy profile for the system with increase in torsional an-

gle is plotted. The most stable point in the potential energy surface (PES)

corresponds to φ=180 (staggered orientation in the dipoles) while the most

unstable case corresponds to φ=0 (the eclipsed form). Also, there exists a

local minima between φ=60 and 80 and a local maxima at φ=120. This

is similar to the gauche butane interaction well-known in literature [63, 84].

This arises due to the stronger non-bonding interaction between R and H at

an angle of φ=120, compared to the weak R, R interactions in the gauche

form at φ≈ 60.

For n = 2, the energy difference between the staggered and eclipsed

form is 8 kcal/mol while that between the staggered and the gauche form is

1.04 kcal/mol. For comparison, the differences are 4.4-6.1 kcal/mol and 0.9

kcal/mol respectively for butane. For a longer chain, however, since there are

more number of CH2 groups, the degrees of freedom are much larger, allowing

it to be in a state of random relaxed geometry without much constraints. In

the same figure (Fig. 5.4), the PES for the longest chain considered in the

work: n=12 is also plotted. Note that, for such a large methylene bridge,

there is no well-defined torsional angle parameter. However, for the sake

of comparison, the central C-C bond, C(6)-C(7) is twisted. It has a lower

energy difference between the staggered and eclipsed form (6.5 kcal/mol) and
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between the staggered and gauche form (0.84 kcal/mol), as expected.

For both n=2 and n=12, the energy difference between the eclipsed and

the staggered forms are more than the thermal energy at room temperature.

The staggered form is the lowest energy orientation for all the systems in the

n=even cases. However, since the gauche conformation lies at a local minima,

for longer chains, this conformational form becomes thermally accessible. A

gauche form is interesting because it induces helicity in a linear chain. Such

helical chains being chiral has been shown to exhibit good NLO responses

[85–87].

The odd-chains however, show remarkable contrast. For the odd-chains,

the favorable arrangement corresponds to an eclipsed orientation for the

dipoles. This is explicitly shown in Fig 5.3 (B). One can understand this

phenomenon from the simple fact that all the alkyl units being in sp3 en-

vironment introduce staggered geometry for all central units but eclipsed

orientation between the extreme ends where the dipoles are located. So, the

odd-chains will have an eclipsed orientation for the dipoles. For the even

chains, however, there is no such frustration in the dipole orientations and

all the units including the end dipoles remain staggered. Such a remarkable

variation between the eclipsed and staggered conformation can be achieved

by only changing the number of spacers between the dipoles.
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Figure 5.4: Potential energy (in kcal/mol) as a function of twist along the
central C-C single bond: for n=2, solid line (circles) and n=12, dashed line
(diamond).
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5.4 Optical response functions: Role of spacer

length

The geometries [shown in Fig. 5.3 (A) with varying n] obtained from the

AM1 calculations are used to compute the SCF MO energies and then the

spectroscopic properties using the ZINDO/Correction vector method.

In Table 5.1. the magnitudes of the ground state dipole moment (µG),

oscillator strength (f), the optical gap (δE) [defined as the energy difference

between the ground state and the lowest energy dipole allowed state], lin-

ear polarizability (ᾱ) and 1st hyperpolarizability (β̄) are reported for the

molecules from n=1 to n=12. Note that, the tumbling average quantities are

reported for the optical response functions, defined as

ᾱ =
1

3

∑
i

(αii)

β̄ =

√∑
i

βiβ∗i ; βi =
1

3

∑
j

(βijj + βjij + βjji)

(5.1)

where the sums are over the coordinates x, y, z (i, j = x, y, z) andβ∗i refers

to the conjugate of βi vector. All the calculations have been performed at

a frequency of 1064 nm (1.67 eV) corresponding to the Nd:YaG laser. It is

found that that while the linear polarizability (ᾱ) remains almost constant

throughout the series (≈ 1550), the ground state dipole moment as well as

the 1st hyperpolarizability (β̄) show strong odd-even oscillations. Specifically,

β̄ shows an order of magnitude increase for odd chains compared to the even
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chains. Furthermore, their values remain almost constant with the increase

in the number of CH2 spacers, n, albeit for n=odd and n=even separately.

The even chains have very little dipole moment (≈ 3 D) while it is orders

of magnitude higher (≈ 45 D) for the odd chains. The dipole moment for

the single molecule, Ph-N=N-Ph-NO2 is calculated as, µG ≈ 39.20 D. For

a perfect parallel arrangement in the dipoles, the classical non-interacting

picture predicts the total dipole moment as 2× single chromophore value

and 0 for a perfect anti-parallel arrangement.
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Table 5.1: The oscillator strength (f), optical gap (δE) in eV, ground state
dipole moment (µG) in Debye, linear polarizability (ᾱ) in units of 10−24 esu
and 1st hyperpolarizability β̄ in units of 10−30 esu for the chromophores in
Fig. 5.3 (A), with increase in spacer length.

Spacer f δE µG ᾱ β̄

n=1 2.01 4.25 44.40 1500.48 537.06

n=2 2.59 4.42 3.02 1561.44 73.03

n=3 1.78 4.34 46.32 1475.04 614.24

n=4 2.52 4.43 3.36 1560.96 50.91

n=5 1.72 4.43 45.12 1539.36 647.88

n=6 2.50 4.43 3.58 1556.64 48.38

n=7 1.82 4.44 42.34 1488.96 813.08

n=8 2.66 4.46 3.50 1490.88 93.31

n=9 1.56 4.43 47.47 1540.8 636.36

n=10 1.83 4.43 2.35 1555.2 70.73

n=11 1.62 4.43 43.73 1610.4 594.89

n=12 1.84 4.43 3.84 1618.56 73.26

While for the even spacers the dipole moments are nearer to zero (the

molecules are rod-shaped), the odd-spacers show much smaller value from

the classical result of twice the single chromophore value. Such a trend

can be easily understood: for the even chains, the dipoles are staggered

and almost perfectly anti-parallel, however, for the odd chains, even though

the orientations are eclipsed, the dipoles are not exactly parallel because

of the sp3 hybridization along the alkyl principle axis (the molecules are

banana shaped). It is straightforward to calculate the angle (φ) using the
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classical dipole addition formula: µ2
eff=µ

2
1 + µ2

2 + 2µ1µ2cosφ. φ is calculated

as 110 degrees for the odd chains. Note that, although a classical dipole

expression is used to find the phase angle, it comes out as a good assumption

as the saturated CH2 groups have very little electronic coupling with the

π-electrons in the either ends of the bridge. For example, the actual angle

for the optimized molecule with n=3 is 112 degree. Very similar to the

oxygen atom in the oxo-bridged PNA dimer system, discussed previously in

this chapter, the alkyl units in this case basically act as stitch between two

dipoles.

With the increase in the number of alkyl units, the distance between the

dipoles increases. But, the distance between the even dipoles is more than

their odd counterparts as the even ones have a centrosymmetric arrangement

which increases their interchromophore distances. Thus, the end-to-end dis-

tance between the dipoles also exhibit an odd-even effect (Fig. 5.5 (a)). For

each even distance, β̄ is smaller and for each odd distance, β̄ is larger. Fig.

5.5 (b) shows the variation in the 1st hyperpolarizability, β̄, with respect to

the number of CH2 units. Very similar to that for the ground state dipole

moment, β̄ also shows a very prominent odd-even oscillation. For odd chain,

β̄≈ 700 while the even chain have β̄≈ 80 (in units of 10−30 esu). The cal-

culations are based on a CI basis with its dimension varying till a proper

convergence is reached.

Within the two-state model, the SHG coefficient is directly proportional

to the oscillator strength and the dipole moment difference and β̄ is inversely

proportional to the optical gap. Thus, any phenomenon that decreases the

gap or increases the dipole moment difference between the ground and the
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Figure 5.5: (a) Variation of interchromophore distance, d (in Å), (b) 1st hy-
perpolarizability β̄ (in units of 10−30 esu), (c) Difference between the ground
state and the excited state dipole moment, ∆µ (in Debye) with the increase
in the spacers length, n.
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excited state or increases the oscillator strength will enhance β̄. The calcu-

lations show that both the optical gap (δE) as well as oscillator strengths

almost remain same for the even and odd chromophores (seen in Table. 5.1).

Thus, the only factor that governs such an odd-even oscillation is the ∆µ.

Fig 5.5(c) shows the variation of ∆µ with increase in the spacer length. One

can clearly see the odd-even variation in ∆µ similar to that observed for β̄.

This is to say that the excited state polarization has a strong dependence on

the interchromophoric arrangement.

5.5 Conclusions

To conclude, it is found that for dimers of dipolar molecules like PNA-O-

PNA, the perfect side-by-side arrangement of the dipoles leads to a large

hyperpolarizability, with a small torsional angle (φ) between the dipoles. It

is shown in this chapter that one can achieve such a constrained environment

by additionally connecting the dipoles by the C-C bridge.

Additionally, the odd-even fluctuation in the SHG for dipoles connected

through alkyl bridge is analyzed. This phenomenon is found to be different

from the variation of the physical properties like melting point in organic

solids that have their origin in the van der Waal interactions among the

molecules where crystal packing is the most important parameter. The po-

tential energy analysis of twisting along the single bond shows that although

the staggered form is the most stable geometry for the even chains, a ther-

mally allowed local minima exists between φ=60-80, corresponding to the

gauche form with helical structure. For example, it is found that for every
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100 molecules in the staggered form, there are 18 molecules in the gauche

form (corresponding to the Boltzmann distribution at room temperature)

and even for the n=2 case, the Boltzmann weighted average of 1st hyperpo-

larizability, β, has a magnitude of 160.8 × 10−30 esu. In the solid state due to

environment effects, the possibility of existence of such a helical form (local

minima) exists. As a result, for the even chains although a global minima

form ensures β to be very small, supramolecular effects as in thin-films will

introduce appreciable β.

This phenomenon is, however, a consequence of the interactions in a single

alkyl chain. In crystals or thin films, intermolecular interactions will be

important and packing efficiency will ultimately decide the final geometries.

But, the fact that a simple theory based on intramolecular interactions can

capture this effect indicates that at least, for these molecules, intramolecular

interactions are quite important in the macroscopic scale.



Chapter 6

Non-linear optical properties of

all-metal clusters and

π-isoelectronic organic

molecules: Charge transfer and

delocalization effects

6.1 Introduction

The NLO properties of organic π-conjugated materials depend crucially on

the delocalization of the π-electrons over the σ-backbone. The first and sec-

ond hyperpolarizabilities, β and γ for the π-conjugated polymers increase

with the conjugation length (L) roughly as L3 and L5 respectively [88].

Therefore, the general strategy to model NLO materials has been to increase
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the conjugation length. However, there exist an upper limit for every off-

resonant susceptibilities [89]. Alternative to these π-conjugated compounds

has hardly been explored theoretically. But, with the gaining popularity of

various ab-initio level methods [90], there has been a tremendous impetus

in investigating the structure and electronic properties of both homogeneous

and heterogeneous small clusters in recent years [91,92].

Small Al4 rings like Al4M4 and their anions Al4M
−
3 , M=alkali metals, have

been a subject of current interest [93,94] because of their unique characteris-

tics and close structural resemblance with the C4H4. However, although C4H4

is an anti-aromatic species, these Al4-clusters have recently been reported to

be σ aromatic [95]. Thus, it would be interesting to ask whether these rings

are better polarizable than their organic counterpart; whether the structural

characteristics has any role in their polarization response functions. Organic

π-conjugated systems are stabilized due to π-electron delocalizations, while

the inorganic metal complexes reduce their energy through strong charge

transfer. It is described in the following that these metal clusters offer a

unique polarization response due to their ionic character and poor σ-π sep-

aration, contrary to conventional π-conjugated systems, leading to large op-

tical coefficients1.

6.2 Geometry Optimizations

The calculations are started by first optimizing the ground state geometries

of the Al4-clusters (Al4Li4 and Al4Na4). All the optimizations have been done

1Paper based on the work reported in this chapter has appeared in J. Phys. Chem. A
108, 9527 (2004).
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using the B3LYP//RHF/6-31G(d,p) method available in the GAMESS elec-

tronic structure set of codes [96]. Since, it is intended to compare the optical

properties of these small four-membered rings with their organic analogue,

C4H4, the geometry for cyclobutadiene was also optimized. The level of basis

set is varied from 6-31G(d,p) to 6-311G+(d), to ensure that these geometries

correspond to the global minima in the potential energy surface. Additional

frequency calculations are performed to confirm the obtained structures as

the ground state geometries. The final geometries indeed remain indepen-

dent of the selection of the basis set. The ground state structure of C4H4

has a rectangular D2h structure with alternate short and long C-C bonds.

The structure of the Al4 skeleton in Al4M4 is similar to cyclobutadiene with

shorter and longer alternate Al-Al bonds and the counter-ions are so arranged

that an overall C2h symmetry is maintained in Al4M4.
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Table 6.1: The bond length alteration, ∆r (in Å), Optical Gap (in a.u.) and
the average Mulliken charge (∆q) on the ring for the clusters from ZINDO
calculations.

Molecule ∆r Gap ∆q

Al4Li4 0.1283 0.0819 -0.592

Al4Na4 0.1302 0.0909 -0.174

C4H4 0.245 0.2410 0.000

C6H6 0.000 0.2588 0.000

6.3 Results and Discussions

The linear and nonlinear polarizabilities are calculated by the Zerner’s INDO

method with multi-reference doubles CI (MRDCI) calculations. The MRDCI

is particularly important since it includes correlation effects substantially.

All the ZINDO calculations are performed with 4 reference determinants

including the Hartree-Fock ground state, at an electrical frequency of 0.001

au, much below any optical resonance. The ZINDO formalism is specifically

parameterized so that both the σ and π electrons are explicitly considered.

In fact, this method is very essential for studying the Al4Li4 and Al4Na4

systems for which the σ-π separations are quite poor.

Table 6.1 shows the bond-length alteration (BLA), ∆r (defined as the

average difference between the bond lengths of two consecutive bonds), the

optical gap (energy difference between the ground state and the optically

active state i.e, having finite oscillator strength) and the average Mulliken

charge on the Al4 ring for all the geometries.
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Figure 6.1: Plot for the electron density in Al4Li4.

To directly compare the efficiency of these Al4-clusters with the con-

ventional π conjugated systems, we also calculate the optical properties for

cyclobutadiene (C4H4) and benzene (C6H6) at the same level of theory. It

is evident that for the Al4-clusters, the ∆r is very small compared to the

C4H4 (anti-aromatic) but larger than C6H6 (aromatic, ∆r =0). For the

Al4-clusters, there is a substantial amount of charge transfer from the alkali

atoms to the Al atoms (negative charge), making them act as donor and ac-

ceptor respectively. In fact, charge transfer is almost complete from the four

Li-atoms to the Al4-ring. This is clearly seen from the plot of the electron

density for Al4Li4 (Fig. 6.1). Thus, the Al4-ring behaves as a formal 4π

electron system, π-isoelectronic with C4H4.

Such a charge transfer induces polarization in the ground state structure

and reduces the optical gap. On the other hand, the C-H bond being perfectly

covalent, there is almost no charge transfer in case of C4H4 and C6H6. These

thus have large optical gaps due to finite size molecular architecture.
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In Table 6.2, the magnitudes of the ground state dipole moment, µG,

the linear(α), and nonlinear (β and γ) polarizabilities for the clusters are

reported from the ZINDO calculations. Note that we report the magnitudes

for the tumbling averaged ᾱ, β̄ and γ̄, as defined earlier in chapter 1 (equation

1.33).

The ground state dipole moment µG and β̄ are zero for the C4H4 and

C6H6 due to its perfect centrosymmetric geometry. However, the ᾱ and γ̄

being odd-order polarizations, have finite values. For the Al4-clusters, due

to the C2h symmetry of the ground state structure, the dipole moments

and β̄ are zero. The optically active states are the low-energy metallic σ-

levels for the Al4-clusters and the lowest optical gap is about 0.085 au. For

the C4H4 and C6H6, however, the optical gaps are quite large (0.25 au)

due to their insulating nature and the transitions are exclusively π-π∗ type

with no intervening σ-orbitals. Since the optical coefficients are inversely

proportional to the optical gaps and proportional to the dipolar matrices, a

large optical gap implies low magnitudes for the optical coefficients. C4H4 has

the highest magnitude of BLA and optical gap and the least charge transfer

on the ring structure, thereby smallest magnitude of γ̄. On the other-hand,

although BLA is zero for C6H6, due to complete π-electron delocalization,

there is no charge transfer in the finite molecular structure leading to large

optical gap and weak polarization. Consequently, γ̄ is also very less for

C6H6. In contrast, the optical coefficients in general are quite large for the

Al4-clusters. For example, the γ̄ for the Al4-clusters are roughly 104 times

more than that for C4H4 and C6H6. This is because the γ̄ is a third order

property with 4 dipolar matrices in the numerator and 3 optical gaps in the
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denominator [97].
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Table 6.2: The ground state dipole moment, µ̄G, linear polarizability, ᾱ, 1st

hyperpolarizability, β̄ and the 2nd hyperpolarizability, γ̄ for the clusters and
for trans-polyacetylene chain from ZINDO-MRDCI calculations. The units
are in a.u. ’n’ is the number of -CH = CH- units.

Molecule µG ᾱ β̄ γ̄

Al4Li4 0.000 5.5× 103 0.000 5.33× 108

Al4Na4 0.000 8.7× 103 0.000 2.00× 108

C4H4 0.000 2.9× 102 0.000 4.76× 103

C6H6 0.000 5.4× 102 0.000 8.44× 103

(CH=CH)n, n=1 0.000 136.3 0.000 2.78× 104

(CH=CH)n, n=2 0.000 421.0 0.000 4.15× 104

(CH=CH)n, n=3 0.000 852.4 0.000 6.17× 105

(CH=CH)n, n=4 0.000 1455.2 0.000 2.82× 106

(CH=CH)n, n=5 0.000 2203.2 0.000 8.41× 106

(CH=CH)n, n=6 0.000 3074.9 0.000 2.07× 107

For a clear understanding of energy levels statistics and their character-

istics, we look at the MO energies and the corresponding wavefunctions. In

Figure 6.2, the frontier molecular orbital levels are plotted for (a) C4H4, (b)

Al4Li4, (c) C4H4 and (d) Al4Na4. Both C4H4 and C6H6 have very large

gaps and the optical transition occurs from the π to π∗ levels which are

well-separated from the σ levels. This explains the small γ̄ for these organic

π-conjugated molecule. However, for Al4Li4 and Al4Na4, the energy levels

are very close to each other. In between the π and π∗ levels, there are σ

levels which effectively reduces the optical gap in these all-metal clusters and

thereby results in a large γ̄. This is also qualitatively understood from the
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Figure 6.2: Ordering of the molecular orbitals energies within the cutoff of
-10 eV to 10 eV for (a) C4H4, (b) Al4Li4, (c) C6H6 and (d) Al4Na4.
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plots of the frontier molecular orbital levels. For Al4Li4, the π and the π∗

levels correspond to the HOMO-3 and LUMO-3 levels. However, the optical

transitions occur within the HOMO-LUMO gaps which are admixtures of π

and σ symmetries. Thus, such a poor π-σ separation facilitates to reduce the

optical gap for these systems and enhance the NLO responses. The molec-

ular orbital plots as shown in Figure 6.3 indicate the strong π-σ mixing for

the frontier orbitals.

To compare and contrast these clusters with their organic counterparts,

we calculate the NLO properties of the well-known π-conjugated systems, the

trans-polyacetylene chain, (-CH=CH-)n, by varying the number of spacers,

n, from n=1 to 6, and thereby extending the length of conjugation from

1.35 Å to 13.75 Å. The geometries are optimized by the AM1 parameterized

Hamiltonian. The linear and nonlinear polarizations are calculated at the

same frequency (0.001 au) with MRDCI implementation of ZINDO and for

an electric field (0.001 au). Our calculated values for the optical properties

compare fairly well in trends with the experimental results that the linear (α)

and nonlinear (γ) optical properties increase steadily with the increase in the

conjugation-length of the chain (see Table 6.2). For example, for ethylene,

γexpt= 1504.9 au, for butadiene (n=2), γexpt= 4566.4 au and for hexatriene

(n=3), γexpt= 14950.1 au [98]. Note that, our calculations are performed

at a much higher frequency compared to the laser frequency used in the

experiment. However, the magnitudes of all the polarization quantities are

much larger for the charge-transfer complex, Al4M4 clusters, compared to the

conventional π conjugated chains with comparable conjugation length. Only

when there are very large number of spacers (n=5-6), that the magnitudes
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Figure 6.3: Frontier orbitals for Al4Li4 (HOMO-4 to LUMO+4).
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become comparable to the much smaller Al4-clusters.

6.4 Conclusions

To conclude, our theoretical study shows that the small four membered Al4-

clusters functionalized with various metal cations provide an innovative route

for selection of materials with very high nonlinear optical properties. Such

large NLO coefficients for the metal-clusters arise particularly due to:

1. Charge transfer from the highly electro-positive metal atoms (Li and

Na) to the Al4 ring which become effectively 4π-electron systems.

2. Poor σ-π separation for Al4M4 introduces hybrid σ-levels within the π

and π∗ levels due to intermixing. This effectively reduces the optical gap for

these systems.

Thus, these inorganic materials may compete for the next generation NLO

materials. Device integration from these all-metal clusters will, however, re-

quire further stabilization in the solid-state. This issue of stabilization of

all-metal clusters has been addressed in details in the eighth chapter wherein

methodologies are proposed to stabilize such all-metal clusters through com-

plexations with transition metals.



Chapter 7

A Model for σ-π separation:

Critical examination of the role

of σ and π electron

delocalizations

7.1 Introduction

The polarization responses in π-conjugated organic molecules are mainly due

to the delocalization of the π-electrons. However, for metallic clusters, both

the σ and π electrons can be easily deformed due to external field. This

is primarily because, in these clusters, the σ and π electronic energies are

closely spaced. As discussed in the previous chapter, the very large third

harmonic coefficients in the all-metal clusters like Al4Li4 arise specifically
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due to such poor σ-π separation. Based on only the π-electron Hückel pic-

ture, it should be antiaromatic as it has 4π-electrons in its frontier orbitals.

However, the core σ electrons also contribute to the frontier orbitals to a

significant amount. Thus, we believe that it will be incorrect to neglect the

contributions from the σ-electrons, while discussing the low-energy property

of such systems.

There exist various direct and indirect methods in quantum chemistry

literature for qualitatively predicting the nature of electronic delocalizations.

For example, the NMR criteria based on the nucleus independent chemical

shifts (NICS) [99], charge density analysis based on atoms in molecules (AIM)

theory and electron localization functions (ELF) [100], aromatic fluctuation

index (FLU) [101] and calculation of paratropic and diatropic ring currents

[102], to name a few have been utilized to their fullest extent in describing

the delocalization characteristics. However, a direct probe that measures

the extent of both σ and π delocalizations together with their individual

contributions is clearly missing.

In this chapter, a theoretical tool is provided for determining the domi-

nant contributions of the σ and π electron delocalizations to the ground state

geometry of these all-metal molecules. The delocalization tool is utilized

to assign overall aromaticity/antiaromaticity together with σ/π aromatic-

ity/antiaromaticity for these systems.

A set of metal clusters (Lin) where only σ-electrons are present is also

considered. The role of these electrons in stabilizing these clusters in terms

of their binding energies are discussed. The variations in the binding energies
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are traced back to exchange coupling between these σ-electrons 1.

7.2 σ-π electron separation scheme

A very accurate estimation of the nature of σ and π delocalizations can

be obtained through a direct σ-π separation in terms of energies along the

distortion coordinates of the molecular system. Theoretical advancements

in such methods have been reviewed extensively in the literature [103–106].

The basic idea for all the methods is to distort the molecules both in the

ground state (GS, singlet) geometry and in their highest spin state (HS) by

freezing the π-electrons in a parallel orientation [107, 108]. The distortion

in the HS state thus exclusively involves the σ-distortions. Similarly, if one

distorts the ground state, ones derives the contributions from both the σ and

π distortions. Subtraction of the distortion energies of the ground state and

the highest spin state thus provides a reliable estimate of the π- distortion

energies.

To demonstrate the superiority of such a method, a variety of metal

clusters are considered: Al4Li4, Al4Li4
2−, Ga4Li4, Al4

2−. These systems

are compared with C4H4 and similar organic analogues at each step of σ-π

analysis. These systems have either 4π, 6π or 2π electrons in their frontier

orbitals and provide a diverse set for studying aromaticity or antiaromaticity.

All the molecular geometries are optimized at the B3LYP/6-311G++ (d,p)

level. The structures are shown in Fig. 7.1. As can be seen, the ground

state geometry for both Al4Li4 and Ga4Li4 have planar rectangular geometry

1Papers based on the work reported in this chapter have appeared in (1). J. Chem.
Theory and Compt. 1, 824 (2005). (2). Computing Letters 1(4), 271 (2006).



7.3 Results for the all-metal clusters 128

for the ring with the Li ions occupying positions so as to maintain a C2h

architecture. The bond-length alteration (BLA) for Al4Li4 and Ga4Li4 are

0.12 and 0.14 Å respectively. Note that, the same for C4H4 is 0.24 Å. The

fact that the BLA for Ga4Li4 is more than that in Al4Li4 suggests that Ga4Li4

should be more antiaromatic than Al4Li4, in analogy with C4H4. A σ-π would

thus be ideal for quantifying it.

The geometry optimized structures are distorted by ∆R (where ∆R is

the difference between the long M-M and short M-M bond in the M4 ring)

so that that the distortion keeps the sum of two adjacent M-M bonds con-

stant [Figure 7.2 (Scheme (a))]. The energy associated with the distortion is

partitioned into σ and π components as ∆Eπ= ∆EGS-∆Eσ. The σ-backbone

for a M4 ring with 4π electrons can be modeled as M4
4− with a H.S config-

uration (S=2) with all the 4π electrons being parallel [Figure 7.2 (Scheme

(b))]. Similarly, for the 2π electron systems like C4H4
2+ and Al4

2−, S=1

corresponds to the H.S state. For the 6πe Al4Li4
2−, however, there are only

four π-orbitals and thus a H.S configuration with S=3 is not feasible, rather

two parallel spins with S=1 state in Al4Li4
2− corresponds to the H.S state.

∆EHS is thus defined as ∆Eπ. For the H.S systems, UB3LYP calculations

are performed at the same basis set level together with the annihilation of

the first spin-contaminant.

7.3 Results for the all-metal clusters

In Fig. 7.3, the σ-energy and the π-energy as a function of the distortion pa-

rameter, ∆R, are plotted. In the inset, the core energy, Vcore (sum of kinetic
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Figure 7.1: Ground State optimized structure of (A). C4H4 (B). Al4Li4 (C).
Ga4Li4 (D). Al4

2− (E). Al4Li4
2− from Al4Li4Fe(CO)3 (F). C4H4

2+ (planar
structure).
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Figure 7.2: Scheme (a) The distortion mode for the M4 rings (M=C, Al, Ga)
in the ground state. Li atoms not shown for the sake of clarity. (b) The
distortion in the σ-electrons involving the distortion in a high spin configu-
ration.
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energy and nuclear-electron (ne) interactions), electron-electron interactions

(Vee) and the nuclear-nuclear interactions (Vnn) energies are plotted. For

all the systems, it is found that the π-electrons have a general tendency of

forming distorted structure (π-energy is most stable at large ∆R) while the

σ-framework oppose the distortion and tends to equalize the bonds. The

final structure and thus the aromatic/antiaromatic features will, however,

crucially depend on the predomination of either of the forces. In Fig. 7.3(a),

the result for the well-known C4H4 system is shown. In C4H4, the insta-

bility associated with the σ-backbone distortion is very little (4 kcal/mol

for ∆R=0.1) while the stability for π- distortion is quite substantial (22

kcal/mol for ∆R=0.1), clearly overwhelming the tendency for σ-backbone

equalization. Thus the C4H4 has a rectangular structure and is overall π-

antiaromatic with a minor σ-aromatic component. Both Vee and Vnn are

destabilized with distortion while the Vcore component is stabilized. Further

analysis shows that it is the Vne term in the Vcore that favors the distorted

structure. This is easy to understand as the Vne component is associated

with the electron-lattice interactions and leads to Jahn-Teller stabilization

in the distorted structure. However, components like Vee and Vnn stabilize

the ∆R=0 structure associated with the delocalized π-electrons (for nonzero

∆R, the electron density is localized in shorter bonds).

For the all-metal system, however, the σ-π separation energy play a

crucial role. For example, in Al4Li4, the distortion in the σ-framework

leads to a destabilization of 2.5 kcal/mol while the π-framework gains en-

ergy of 3.5 kcal/mol (Fig. 7.3(b)). The ground state energy is thus sta-

bilized by the distortion along the ring. Accordingly, Al4Li4 is assigned
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Figure 7.3: Variation of the σ-energy (square) and the π- energy (circles),
both in kcal/mol as a function of the distortion axis, ∆R for (a) C4H4 (b)
Al4Li4 (c) Ga4Li4 and (d) Al4Li4

2−. The insets show Vcore (green), Vee (black)
and Vnn (red) components in the ground state structures. All the energies
are scaled to make the most stable geometry zero in energy and positive
values in Energy-axis correspond to destabilization.
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as π-antiaromatic although the σ-aromatic component is also substantial.

However, as a whole, Al4Li4 is antiaromatic because the π-antiaromaticity

exceeds the σ-aromaticity by 1 kcal/mol. The energy components also follow

very similar trends like that for C4H4 (Fig. 7.3(b), inset). Similar conclu-

sion is also derived for the Ga4Li4 where the π-stabilization associated with

the distortion is 4 kcal/mol while σ-destabilization is 2.5 kcal/mol (seen in

Fig. 7.3(c)). The distorted π-antiaromatic structure is thus stabilized by an

amount of 1.5 kcal/mol, 0.5 kcal/mol more than that for Al4Li4. Thus the

π-antiaromaticity follows the order: C4H4 > Ga4Li4 > Al4Li4.

The fact that this simple σ-π separation gives a very clear picture for

the nature of aromaticity/antiaromaticity is evident from Fig. 7.3 (d). For,

the 6π-electron system, Al4Li4
2−, a similar σ-π separation analysis is per-

formed. Contrary to the previous cases, in Al4Li4
2−, the stabilization asso-

ciated with the equalization of the σ-backbone overwhelms the instability

due to π-electron localization by 0.5 kcal/mol and forces the system to be

aromatic. This is of course true for C6H6 where σ-delocalization exceeds the

π-localization by 6 kcal/mol. In Fig. 7.4(a), the energy profile is plotted

for C4H4
2+ which shows an overwhelming π-delocalization compared to the

smaller σ-localization. Similarly, for the all-metal system, Al4
2−, the ground

state corresponds to a square geometry with Al-Al bond length, 2.54 Å.

This is readily understood from the plot as the π-destabilization associated

with the distortion exceeds the stability in the σ- backbone due to distortion

(Fig. 7.4(b)) although again, the energy scales for the σ and π distortion

are comparable. Also, as a general rule, it is found that the Vne term favors

distortion.
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Figure 7.4: Same variation (including the inset) as in Fig. 7.3 for (a) C4H4
2+

and (b) Al4
2−.
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7.4 Case study for the alkali-metal clusters:

(Li)n

Clusters composed of atoms like the Li-atom involve bonding interactions

through the σ-bonds only. However, all the single electrons in the Li-atoms

([He]2s1) can be bonded only if there are even number of atoms in the clusters.

For clusters composed with an odd-number of Li-atoms, one electron always

remains unpaired. Also, for such clusters the geometry of the cluster may

induce frustrations. Thus, one expects that the odd-membered clusters will

behave very differently from their even-membered congeners. However, such

effects can be observed only for small clusters where the interaction length

scales differ from their bulk behavior.

The ground state geometries for (Li)n, n=1-8, are fully optimized using

the hybrid Becke 3 Lee-Yang-Parr (B3LYP) gradient corrected approximate

density functional theory at the 6-31G+(d) basis set level. The basis set is

further increased to 6-311G+(d,p) level to ensure the basis set convergence.

Corresponding to each minimum energy structure, it is found that there are

several geometrical isomers very close in energy. Several initial guess struc-

tures with different symmetries are thus investigated. Additional frequency

calculations are performed on these clusters to confirm the ground state ge-

ometry and removal of vibrational instabilities. The ground state geometry

optimized structures in (Li)n are shown in Fig. 7.5.

With the increase in the size of the clusters, these structures become

progressively distorted and non-planar. The rhombus geometry in (Li)4, cor-

responds to the largest planar structure. Further increase in the cluster size
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Figure 7.5: The ground state structures of Lin, n=1-8 clusters.
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leads to formation of closed structures with (Li)6 and (Li)7 being octahedral

and pentagonal bi-pyramidal respectively. (Li)8 on the otherhand, maintains

a pyramidal structure. The structure of the (Li)6 cluster is of particular

interest. The planar D6h, benzene like structure exists as a local minimal

structure and its binding energy is 73.7 kcal/mol compared to the octahedral

ground state structure that has a binding energy of 102 kcal/mol.

The ground state for all the systems with n=odd (n=1,3,5 and 7) is an

S=1/2 state while for n=even, the stable geometry is associated with S=0

suggesting pairing of the single unpaired electron in each Li atom for the

even numbered clusters. However, for the odd clusters, such a spin pairing

is geometrically forbidden and the ground state structures have frustrated

spin-degeneracy since the unpaired spin can be in any Li or delocalized over

the entire cluster.

To account for such a spin degenaracy, we consider the binding energy

and later a spin Hamiltonian. The binding energies are defined for the odd-

membered clusters as: (B.E)odd=[nE(M1)-E(Mn)] and the binding energies

for the even-membered clusters as: (B.E)even=[(n/2)E(M2)-E(Mn)]. In Fig.

7.6, the binding energies for the Lin clusters are shown (solid line, circles).

One clearly observes a remarkable odd-even phenomenon in the binding en-

ergies with the odd-membered clusters being more stable than their even-

membered congeners.

For a proper understanding of such an odd-even oscillation in the binding

energies for these clusters, the highest spin configurations in these systems

are also considered. For such a configuration the H.S geometry does not

have any component of σ-delocalization and the stability of such clusters
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Figure 7.6: Variation in the binding energies for Li clusters in low-spin
(ground state) configuration (solid line, circles) and the same in high spin
configuration (dotted lines, squares). The binding energies for odd-membered
clusters are defined as ∆En(odd)=nE1-En and for the even-membered rings
as ∆En(even)=(n/2)E2-En with the increase in the cluster size.
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involve only the core electrons, as the σ-electrons are already frozen in a H.S

configuration. Therefore, the interactions in these clusters can be formally

called as ferromagnetic bonding. [109,110].

Also in Fig. 7.6, the binding energies for these H.S structures are plotted

(dotted line, squares). This is calculated using the simplistic dissociation

scheme discussed above (∆En=nE1-En) with the energy of Lin now corre-

sponding to all parallel spin configuration. Note that the H.S configuration

corresponds to the same geometries and only the spin state is changed. The

binding energies for these H.S clusters also show a similar odd-even effect

with larger binding energy slope for the odd membered rings compared to

that for the even membered rings. This is quite understandable since for the

odd membered systems, the ground state has a doublet spin configuration

(S=1/2) with finite magnetization. Thus, the ferromagnetic state involves

less destabilization as compared to that for the even membered systems where

the ground state is anti-ferromagnetic. One can also notice that for the small

dimer, Li2, with H.S configuration (S=3/2), the structure is unstable by 4.6

kcal/mol, however, with the increase in the cluster size, the ferromagnetic

structures become progressively stabilized and for the H.S Li8 configuration

(S=4), the stabilization energy is 28.6 kcal/mol. Although in comparison to

the L.S structures, the binding energies in these ferromagnetic structures are

smaller, the moderate binding energies for these ferromagnetic systems sug-

gest that under suitable stabilizing conditions, these H.S clusters can possibly

be realized.

These clusters are stabilized through both σ and core electron delocal-

izations. The σ-electron contributions to the stability of the structures is
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analyzed by performing a σ-core separation analysis. The σ electronic ener-

gies are calculated as, Eσ=EGS- Ecore, where EGS corresponds to the ground

state energies for these structures. Ecore actually corresponds to the EHS

energies as each Li atom has 1 valence electron and a HS configuration for

these electrons suggests that these electrons are in all-parallel orientations

and so are not involved in delocalization. In Fig. 7.7, the σ-electron energies

are plotted as the cluster size increases. One again observes a clear odd-even

phenomenon with the energies being larger for the even-membered structures

compared to the odd-ones.

The advantage of separating out the σ-contribution from [He] backbone is

that one can then consider simple spin- spin interaction models to critically

analyze the odd-even effects in these clusters. The well-known Heisenberg

model [111] with localized σ-electronic spin is used to calculate the interaction

between the paramagnetic Li-centers. The interactions for an N site system

can be written as:

Hspin−spin = J
∑
ij

SiSj (7.1)

where the sum runs over all pairs. Since, the ground state geometry for

these systems are LS configuration, anti-ferromagnetic interaction between

the electronic spins (positive J) is considered. Note that, for the odd-clusters,

Stotal=1/2 while for the even-clusters, Stotal=0. Thus, the interaction energy

for a N site system can be written as:

Espin−spin = (J/2)[Stotal(Stotal + 1)−NS1(S1 + 1)] (7.2)
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Figure 7.7: Variation in the σ-energies (solid line, circles) as a function of
increase in the cluster size (n). The inset shows the variation of the exchange
energy (in J units) with n.
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where S1=1/2 (spin of a single Li atom). One can further simplify the above

equation as:

Espin−spin = (J/2)[Stotal(Stotal + 1)− 3N/4)] (7.3)

It is assumed that that these are isotropic and the interaction between each

pair is same. Thus the exchange integral, J is kept constant. Although this is

a drastic approximation, it certainly provides an insight for the phenomenon.

In Fig. 7.7 (inset), the exchange energy is plotted with the increase in the

cluster size. The odd-even oscillation is evident though the magnitude of

exchange for the nth and (n-1)th (where n is odd) are same.

7.5 Conclusions

In this chapter, a simple scheme is provided to separate out the σ and π elec-

tron contributions for all-metal clusters and core and σ electron contributions

in case of alkali metal.

It is shown that all-metal molecular clusters like Al4Li4 and Ga4Li4 are

predominately π-antiaromatic although there is a significant contribution

from σ-aromaticity as well, due to the close proximity in σ/π energy levels

in these metal clusters compared to the analogous organic systems.

It is also shown that for systems like the Lin clusters, which possess only σ-

electrons, there is a clear manifestation of odd-even oscillations in the binding

energies. Such oscillations specifically arise due to frustrated and spin-paired

configurations in the odd and even membered clusters respectively.



Chapter 8

Strategies to stabilize all-metal

antiaromatic molecules:

Complexation with

3d-transition metals

8.1 Introduction

From the discussion in the sixth chapter, it is clear that all-metal charge-

transfer clusters are excellent materials for large third harmonic generation.

Such large NLO effects arise specifically due to the smaller optical gap as

the frontier orbitals have admixtures of π and σ electrons. In the previous

chapter, a method has been developed through which the extent of the de-

localizations in the π and σ levels can be explicitly and separately assigned.

Based on this method, Al4M4 (M=Li, Na and K) are assigned as antiaromatic

143
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species.

However, since Al4M4 (M=Li, Na and K) are antiaromatic, it should be

difficult to isolate and synthesize. Cyclobutadiene, (C4H4), a 4π electron

system remained non-isolated for a longtime before H. C. Longuet-Higgins

and Orgel proposed in a landmark paper, the concept of stabilization of

antiaromatic molecules through complexation with a transition metal to form

an organometallic compound [112]. The compound was synthesized soon

after [113]. In the following, we show that such a simplistic model is justified

even for the small Al4-clusters. We also propose a few other stable complexes

for these all-metal species. Additionally, these compounds are compared and

contrasted with their organic analogues (corresponding C4H4 complexes)1.

8.2 Optimized structures for the ligands

The closed shell calculations are performed for the singlet states whereas

open shell calculations are performed for the triplet state at the 6-311G(d,p)

basis set level. Electron correlation has been included according to the DFT

method using Becke’s three parameter hybrid formalism and the Lee-Yang-

Parr functionals (B3LYP) available in the Gaussian electronic structure set

of codes [114].

Simple Hückel π-electron theory predicts a square geometry (triplet spin

state) for C4H4 with equal C-C bond lengths [115]. However, inclusion of

interaction with the underlying σ backbone stabilizes the C4H4 molecule in

a singlet state with rectangular geometry. This is in-fact a classic example

1Papers based on the work reported in this chapter have appeared in (1). J. Am.
Chem. Soc. 127, 3496 (2005). (2). Chemical Communications, 5032 (2005).
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of Jahn-Teller distortion in low-dimensional systems which allows stabiliza-

tions through bond length alternation (C4H4 has a BLA of 0.24 Å). Within

this picture, the square geometry actually corresponds to a transition state

between two degenerate rectangular ground state structures. The rectangu-

lar C4H4 is more stable than the square geometry by 6.2 kcal/mol. Thus, a

triplet square geometry is expected to be the transition state for processes

such as ring whizzing, where one rectangular form is converted into the other

(an in-plane rotation of 900), in harmony with time-resolved transition state

studies for the tub-inversion in 1,3,5,7-cyclooctatetraene [116].

Since in Al4M4, the σ-π separation is poor, the Hückel π-electron picture

becomes highly error-prone. The π electrons in this case interacts more

strongly with the σ backbone because of their close proximity in energies and

a distorted structure is expected as the ground state for the Al4 rings. There

are some remarkable similarities in the structures of Al4M4 with variation

in the alkali metal ions. The ground state minimum energy form for all

the molecules possess a C2h symmetry and have a substantial bond length

alteration (BLA) [0.124 Å for Al4Li4, 0.11 Å for Al4Na4 and 0.10 Å for Al4K4].

Similar to C4H4, the structural distortion in Al4M4 leading to a magnetic

triplet state with D4h symmetry is found to lie ∼ 60 kcal/mole above the

ground state singlet. There also exist a low-energy triplet structure with

the same geometry as the ground state (C2h symmetry) at an energy only 5

kcal/mole above the ground state. This triplet geometry for Al4M4, however

does not have a counterpart in C4H4. This clearly demonstrates that due

to poor σ-π separation in Al4M4, there exist low-energy metallic states to

accommodate the parallel arrangement of the electronic spins.
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Existence of a very stable rectangular ground state structure together

with a high energy square geometry as the transition state for the Al4-ring

similar to those for C4H4 suggests that the Al4Li4 cluster is a 4π electron

system with the π-HOMO (highest occupied molecular orbital) being a non-

bonding molecular orbital like C4H4. In the context of C4H4, H. C. Longuet-

Higgins suggested that such a system can be stabilized if the non-bonding

electrons form bonding molecular orbitals with suitable low energy d-orbitals

of a transition metal. For this to happen, however, the energies of the d-

orbitals should lie close to the low-energy levels of the molecule alone.

8.3 Fe(CO)3 complex

A molecular complex, η4(C4H4)-Fe(CO)3, has been recognized through the

formation of such bonding molecular orbitals and this complex has been re-

ported to be quite stable [117]. In fact, oxidation of this complex releases the

C4H4 ligand which is a stable source for the highly reactive cyclobutadiene

molecule in organic synthesis [118]. For the Al4M4 systems, we have per-

formed the ground state energy analysis on the similar systems, η4(Al4M4)-

Fe(CO)3, using the same level of theory mentioned above. Both η4(Al4M4)-

Fe(CO)3 and their organic analogue are found to have substantial stability

(see Fig. 8.1 for structures). Al4M4 indeed form stable η4 complexes with

Fe(CO)3. The stability of the complexes are investigated using the following

fragmentation scheme:

η4(C4H4)-Fe(CO)3 = C4H4 + Fe(CO)3

η4(Al4M4)-Fe(CO)3 = Al4M4 + Fe(CO)3
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The binding energies [defined as Ecomplex-Efragments] in (Al4Li4)-Fe(CO)3,

(Al4Na4)-Fe(CO)3 and (Al4K4)- Fe(CO)3 are -118.85 kcal/mol, -122.92 kcal/mol

and -126.28 kcal/mol, respectively. For comparison, the binding energies in

(C4H4)-Fe(CO)3 is also calculated, which is -78.44 kcal/mol. The comparable

binding energies for the all-metal sandwich complexes and the organometal-

lic complexes suggest that Al4M4 are very well stabilized in the complex,

in-fact, even more stabilized than C4H4. Note that, compared to the ground

state structures for the Al4M4, where the M ions are in interaction with the

Al4 ring, the structure for Al4M4 in the complex gets deformed losing all

interactions with the alkali ions. This amounts to a destabilization of ∼

25-30 kcal/mol (calculated as the energy difference between the ground state

structure of Al4M4 and the single point energy for the same in the η4(Al4M4)-

Fe(CO)3 complex). However, the interaction of the Al4 ring with the Fe(CO)3

overwhelms the loss of interaction of Al4 ring with the alkali-ions, stabilizing

the overall structure of the complex. The magnitudes for the HOMO-LUMO

gaps for the(Al4Li4)-Fe(CO)3, (Al4Na4)-Fe(CO)3 and (Al4K4)-Fe(CO)3 com-

plexes decrease in the order: 3.34 eV, 2.31 eV and 1.85 eV respectively,

suggesting the softer nature of the Al4K4 ligand.

The BLA (∆r) for both C4H4 and Al4M4 in the free geometry and when

they are complexed with the transition metal have been computed. For C4H4,

the ∆r is 0.24 Å in the free state. In the complex, η4(C4H4)-Fe(CO)3, the

∆r for the C4H4 ring is only 0.005 Å. Thus, C4H4 when complexed, is a

square rather than a rectangle and as expected from the π-only interaction,

it behaves as aromatic C4H4
2−.
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Figure 8.1: Equilibrium minimum energy geometries for (i) η4(C4H4) -
Fe(CO)3 and (ii) η4(Al4Li4)-Fe(CO)3. Bond lengths are in Å. Ball color:
Red=O, Violet=Fe, Black=C, Pink=Li, White=H and Light brown=Al.
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In the complexes, (Al4M4)-Fe(CO)3, the BLA are very small [0.028 Å,

0.0345 Å and 0.041 Å in (Al4Li4)Fe(CO)3, (Al4Na4)Fe(CO)3 and (Al4K4)Fe(CO)3

respectively]. Such a large decrease in ∆r clearly supports that the Al4M4 lig-

ands have been converted into a 6π Al4M4
2−, accounting for their substantial

stability due to aromaticity. The complexation induced metalloaromaticity

in Al4M4 is schematically shown in Fig. 8.2. While a square (triplet) Al4M4

is much higher in energy than the rectangular (singlet) Al4M4, this square

form with a singlet configuration is stabilized on complexation to a tran-

sition metal. Same is the case for C4H4, where the square form becomes

stabilized upon complexation. This is similar to the origin of aromaticity

in benzene, where the π-delocalized D6h structure corresponds to a energy

minima between two bond-altered Kekule forms with D3h symmetry.

An even more clear picture is derived by performing a calculation for

the nucleus-independent chemical shift (NICS) at the GIAO-B3LYP /6-

311+G(d,p) level. The NICS is calculated at the center of the Al4 ring

before and after complexation with the Fe(CO)3. For comparison, the same

values are also calculated for C4H4. In C4H4, NICS values before (isolated

C4H4) and after complexation (C4H4
2−) are 23.55 ppm and -15.37 ppm, re-

spectively. The change in sign clearly shows the transition from antiaromatic

to aromatic nature upon complexation. In the Al4M4 ligands, the NICS val-

ues are -11.55 ppm, -7.91 ppm and -7.72 ppm for Al4Li4, Al4Na4 and Al4K4

respectively. However, on complexation with Fe(CO)3, the NICS changes to

-25.44 ppm, -26.41 ppm and -26.12 ppm for Al4Li4, Al4Na4 and Al4K4 re-

spectively. Although the NICS calculations tend to suggest that free Al4Li4

should be aromatic, based on σ-π separation analysis as reported in chapter
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Figure 8.2: Schematic representation of (i) change in geometry for ring
whizzing and complexation to transition metal center for A=Al in Al4Li4
(∆E1=55 kcal/mol, ∆E2=100 kcal/mol); A=C in C4H4 (∆E1=6.2 kcal/mol,
∆E2=78.4 kcal/mol). Similar mechanism is also valid for Al4Na4 and Al4K4.
(ii) Ring whizzing in benzene.
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7, it is concluded that the Al4M4 molecules should be antiaromatic. However,

the increase in NICS values with same negative sign suggests that aromaticity

is induced within these clusters upon complexation, which is also expected

from the π only picture of the conversion of Al4M4 to Al4M4
2−. Thus, com-

plexation with Fe(CO)3 induces metalloaromaticity in Al4M4 and thereby

stabilizes the complexes, η4(Al4M4)-Fe(CO)3.

8.4 Metal sandwich complex

Another well known methodology in stabilizing a molecule is to form a sand-

wich geometry where the two molecular species can share interaction with a

transition metal: cyclopentadiene is stabilized in such a geometry resulting

in the ferrocene structure [119]. For C4H4, a simple effective electron num-

ber (EAN) counting shows that the metal in between the two ligands should

have 10 valence electrons in stabilizing a sandwich of the type:(C4H4)2M.

The simplest metal with 10 electrons in the valence shell is Nickel(0). Ele-

ments in the same group like Pd or Pt have a strong spin-orbit coupling and

prefer square-planar geometry (16 electron geometry). Thus a coordination

number of 8 as required in a sandwich complex is not possible with Pd or

Pt. After performing the geometry optimization at the same level of the-

ory discussed above, it is found that the structure for (C4H4)2Ni is indeed a

sandwich geometry with the two C4H4 rings above and below the Ni atom

(see Fig. 8.3 (i)). In this complex, the Ni atom sits symmetrically inside the

cavity of the two C4H4 rings with a distance of 1.99Å from each C4H4 ring.

The two C4H4 are however, staggered to each other.
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Similarly, we have stabilized the Al4M4 clusters by introducing them in

a sandwiches of the types: (Al4M4)2Ni. The geometry for the (Al4Li4)2Ni is

shown in Fig. 8.3 (ii) (the optimization and energy calculation at B3LYP/6-

311G(d,p) level). The central Ni atom sits asymmetrically in the cavity

of the two Al4Li4 rings. A very recent theoretical study by Mercero et al.

on its aromatic analogue, Al4
2−, support our claim [120]. Interestingly, the

Al atoms in the rings bend towards the Ni atom and the planarity of the

Al4 ring is thereby lost. This is understood from the fact that when the 4π

electrons of each of the two Al4M4 rings interact with the central Ni atom, the

requirement of the Al atoms to be in interaction with the Li atom is no longer

important. Instead, the sandwich like structure with 18 electrons provides an

stabilization keeping the whole system electrically neutral. The stability of

these complexes are investigated using the following fragmentation scheme:

(C4H4)2Ni = 2 C4H4 + Ni(0)

(Al4M4)2Ni = 2 Al4M4 + Ni(0)

where Ni(0) is in a 3F state. The binding energies for (Al4Li4)2Ni, (Al4Na4)2Ni

and (Al4K4)2Ni are -146.054 kcal/mol, -147.12 kcal/mol and -103.12 kcal/mol

respectively. For C4H4, this binding energy is -150.819 kcal/mol. Note that,

very similar to that for the η4(Al4M4)-Fe(CO)3 discussed above, metalloaro-

maticity is introduced for these sandwich complexes too. The HOMO-LUMO

gaps are 1.623 eV, 1.323 eV and 0.954 eV for (Al4Li4)2Ni, (Al4Na4)2Ni and

(Al4K4)2Ni respectively.
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Figure 8.3: Equilibrium minimum energy geometries for (i) (C4H4)2Ni and
(ii) (Al4Li4)2Ni. Distances are in Å.
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8.5 All-metal sandwich complexes: Substitu-

tion of C4H4 by Al4M4

In the previous section, the role of metal complexations in stabilization

of all-metal antiaromatic molecules is discussed. In this section, the sub-

stitution methodologies to produce these all-metal half-sandwich and full-

sandwich complexes from their conventional organometallic counterparts are

highlighted. Also, a critical analysis is performed on the hybrid organic-

inorganic sandwich complexes.

In Fig. 8.4, we show the substitution reactions in (C4H4)Fe(CO)3 by

Al4M4 to produce (Al4M4)Fe(CO)3. The enthalpies for the reactions are

highly exotherimic with ∆H=-48.8 kcal/mol, -53 kcal/mol and -56.3 kcal/mol

for M=Li, Na and K respectively.

For the full-sandwich complexes, (Al4M4)2Ni, the lowest binding energy is

for (Al4K4)2Ni. This arises from the distortion in the sandwich architecture

due to the presence of the bulky K+ ions (see structure in Fig. 8.5) as a result

of which the average K+ ion distance to the Al4
4− ring is very large (3.5 Å).

For (Al4Li4)2Ni and (Al4Na4)2Ni, the average M+ distance from the Al4
4−

ring is 3.0 Å. The binding energy for (C4H4)2Ni (as mentioned in the previous

section) is -150.819 kcal/mol and thus unlike the cases for (Al4M4)-Fe(CO)3,

direct substitution of C4H4 with Al4M4 will be highly endothermic for the

full-sandwich complexes and thus quite unfavorable. For a detailed under-

standing of the highly exothermic formation of (Al4M4)-Fe(CO)3 compared

to the endothermic substitution product (Al4M4)2Ni, the HOMO orbitals

for both the systems have been analyzed. The HOMO for (Al4M4)-Fe(CO)3
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Figure 8.4: Substitution reactions in (C4H4)Fe(CO)3 by Al4Li4, Al4Na4 and
Al4K4 to produce (Al4Li4)Fe(CO)3, (Al4Na4)Fe(CO)3 and (Al4K4)Fe(CO)3

respectively. Note that all these substitutions are highly exothermic.

shows substantially more intermixing between the d-orbitals of the Fe(CO)3

fragment and the π-orbitals of Al4M4, leading to stronger complexation in

the case of (Al4M4)-Fe(CO)3. The presence of three strong π-acceptor CO

ligands in the Fe(CO)3 fragment leads to quenching of d-orbitals on the Fe-

atom and thereby facilitates stronger binding between the Al4M4 ligand and

the Fe(CO)3 fragment.

We consider here a substitution reaction of the type: (C4H4)2Ni + Al4M4

= (C4H4)Ni(Al4M4) + C4H4. As has already been mentioned in the pre-

vious section, the Al4M4 (M=Li, Na and K) binds quite strongly to the

metal center. Therefore, one expects that it is possible to synthesize a

hybrid organic-inorganic sandwich complex. These hybrid complexes are

very interesting, because, while for the C4H4 ligand, the interaction with
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Figure 8.5: Stepwise synthesis for all-metal sandwich complexes from
organometallic precursor (C4H4)2Ni. The energy for (C4H4)2Ni has been
scaled to zero to show the endothermic substitution reactions.
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the transition metal atom involves only the π electrons, for the Al4M4 lig-

and, the interaction are through both the σ and π orbitals. Interestingly,

the extent of the involvement of the σ and π orbitals in the interaction

also depend on the nature of the counter ions present. The structures of

these hybrid complexes are found to be quite stable. The heat of formation

for (C4H4)Ni(Al4Li4), (C4H4)Ni(Al4Na4) and (C4H4)Ni(Al4K4) are -153.93

kcal/mol, -158.82 kcal/mol and -151.80 respectively. The HOMO-LUMO

gaps in the hybrid complexes are: 2.01 eV [(C4H4)Ni(Al4Li4)], 1.96 eV

[(C4H4)Ni(Al4Na4)] and 1.35 eV [(C4H4)Ni(Al4K4)]. The BLA for C4H4 and

Al4M4 are 0.0092Å and 0.0386Å in (C4H4)Ni(Al4Li4), 0.0106Å and 0.0168Å

in (C4H4)Ni(Al4Na4) and 0.0033Å and 0.10459Å in (C4H4)Ni(Al4K4) respec-

tively. Note that, for M=K, the Al4K4 unit has a substantial BLA with a

magnitude close to that of uncoordinated Al4K4 (∆r=0.10 Å). This explains

smaller binding energy in the hybrid complex with K+ as the counter-ion

compared to (C4H4)Ni(Al4Li4) and(C4H4)Ni(Al4Na4). However, compared

to the Fe(CO)3 complexes, these complexes are softer as the HOMO-LUMO

gaps are comparatively smaller.

Thus, the synthesis of these sandwich complexes are rationalized in a 3

step reaction of the type: (C4H4)Ni(C4H4) to (C4H4)Ni(Al4M4) and finally

to (Al4M4)Ni(Al4M4) [shown in Fig. 8.5].

As we have mentioned, the intermediate complexes, (C4H4)Ni(Al4M4),

are quite stable and can thus be isolated. However, these substitution reac-

tions are mildly endothermic. In this series, the heat of formation is least

endothermic for both (Al4Na4)Ni(C4H4) and (Al4Na4)2Ni. So, it is proposed

that (Al4Na4)Ni(C4H4) and (Al4Na4)2Ni are the best candidates for isolation.
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8.6 Conclusions

In conclusion, it has been demonstrated that all-metal species like Al4M4 can

be stabilized by complexation with 3d-transition metals, very similar to its

organic counterpart, C4H4. The initial poor σ-π separation in Al4M4 is lifted

on complexation with 3d-transition metals and Al4M4, within the complexes,

behaves like a pure π-conjugated molecule. Such a mode of stabilization of

otherwise unstable and antiaromatic molecules may provide innovative means

to crystallize these compounds and utilize for novel molecular-materials ap-

plications.

It has also been shown that the all-metal sandwich complexes like: (Al4M4)-

Fe(CO)3 can be synthesized readily from their organometallic analogue: (C4H4)-

Fe(CO)3 by direct substitution of C4H4 by Al4M4. For the full-sandwich

complexes, however, (C4H4)2Ni → (Al4M4)2Ni conversion is endothermic

and cannot be attained in the gas-phase by direct substitution of 2C4H4

by 2Al4M4. The hybrid organic-inorganic intermediate, (C4H4)Ni(Al4M4) is

quite stable and in the presence of additional stabilization factors like solva-

tion, such an intermediate could be isolated.
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