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Chapter 1

Introduction

This dissertation is about electronic transport in nanoscale conductors. Nanotech-

nology and nanophysics are contemporary and emerging areas and that is because

of the ineteresting features that emerge as one explores smaller and smaller length

scales. These are subfields of condensed matter physics with a focus on electrical

transport phenomena occurring at nanoscale dimensions, and, hence quantum me-

chanics plays an important role.

Nanoscience deals with the study of systems whose size in atleast one of the

dimensions is less than 100 nm(1 nm= 10−9 m): for example a carbon nanotube

device has its radius of the order of 5 nm while length of the order of 0.5 µm. Depend-

ing on the temperature, interaction etc., nano dimensions can incorporate different

effects. Especially, quantum effects become inevitable in these systems. Depending

on the operational length scales different effects become dominant. Figure (1.1) is

a concise image showing the relevant length scales with examples of micro-, meso-,

and macrosystems.
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Introduction

Figure 1.1: Zone of micro-, meso-, and macrosystems.

1.1 Nanoscale Conductors

Nanoscale conductors exhibit subtle and sophisticated phenomena which are deeply

rooted in quantum mechanics. Figure (1.2) shows typical nanoscale systems of

present interest. These include nanotubes or long atomic wires in contact with

metal electrodes [2, 12] (figure (1.2), left panel) and a narrow channel or electron

waveguides [1] sandwiched between bulk metals (figure (1.2), right panel).

The main classification of system dimension is achieved by the comparison between

the physical length and the Fermi wavelength. Fermi wavelength, λF , is defined

as the wavelength of the carriers at the Fermi level; λF = 2π/kF ; kF being the

Fermi momentum. Conduction in any system is dominated by electrons at the

Fermi level; λF , therefore represents the wavelength of the major carriers. λF in

metals is typically of atomic dimension (∼Å), whereas in semiconductors it is of

about 10− 100 nm. Suppose Lx, Ly, Lz represent the physical length of a system

satisfying Lx < Ly < Lz. Table (1.1) represents the condition of each dimension
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Introduction

Figure 1.2: Recent experimental set ups consisting of a nanowire (left) and a 2DEG quan-
tum dot (right). Credit: (Left)Image courtesy of Delft University of Technol-
ogy [2]; credit: (right)image courtesy Slinker et. al. of University of Wisconsin
[1].

relevant to different length scales.

Table 1.1: Dimensions according to length scales in mesoscopic systems.

Dimension Condition

One Lx, Ly < λF < Lz

Two λF ∼ Lx << Ly, Lz

Three λF << Lx, Ly Lz

An important observation in nanoscale systems is the quantization of conduc-

tance. Early experiments [4, 5, 6, 7, 8] show this feature which was first predicted

theoretically by Landauer [3]. Figure (1.3) shows the experimental verification of

quantized conductance in 2DEG [4]. This quantization is due to the presence of

discrete channels for the transport of electrons and is a result of the nanoscale ge-

ometry.
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Introduction

Figure 1.3: Quantization of conductance. This figure has been taken from [4].

Another important issue in mesoscopic transport is the consequence of high elec-

tron current density in nanoscale junctions. If a typical current of 1 µA is set to

flow across the system, then, considering a cross-section of 10 Å2, a current den-

sity of about 109 A/cm2 is expected! These current densities are typically orders

of magnitude larger than those found in macroscopic systems. The important con-

sequence of this large current density is the phenomena of electron heating [9, 46].

Thus local electron or ionic heating in nanojunctions is also an important aspect in

nanoscale transport that needs to be addressed by taking care of electron-electron

and electron-phonon scattering. In this context I would again mention that subse-

quent chapters in this dissertation is motivated by these interesting phenomena that

occur in such systems [10, 11, 54].
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1.2 Overview of the thesis

The central topic of this thesis is an extensive study of transport in nanoscale

systems. This dissertation is hence primarily devoted to understand the underlying

formalisms that can be used to describe transport in low dimensional systems.

Chapter 2 is mainly an in-depth study of the Landauer-Büttiker formalism.

A framework to connect the concepts of conductance, current and transmission in

nanoscale systems is set up first. Subsequently, we focus on the transport properties

of devices having transmission functions that depend on energy. The Sommerfeld

expansion is used to obtain closed form expressions. We supplement the analytical

results with numerical results. This chapter thereby provides a parameter regime

in which the analytical expressions, obtained using this approximation, will work.

In this chapter, I also try to address the question of asymmetric temperature in the

leads that might arise in two situations, namely (a) when an explicit temperature

difference is applied, or, (b) when the junction region might get heated up. Addi-

tionally, due to increasing attention towards the understanding of intrinsic noise in

mesoscopic conductors, we also discuss about the importance and subtleties involved

in the calculation of current noise power, again in the presence of a non-zero temper-

ature gradient. We observe nonlinearity and asymmetry in current and noise power

through these calculations. Our calculations also provide an insight into the form of

the energy dependent transmission function. Analytical expressions of current noise

power in the linear response regime, obtained in this chapter can help experimental-

ists, extract non-zero temperature differences in the leads. In the later part of the

chapter, we discuss about the drawbacks of the Landauer-Büttiker formalism; one

of the prime drawbacks being treating the impurity scatterer as a black-box.
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Chapter 3 attempts to open the black-box in Chapter 2. In this chapter, I

explicitly try to calculate the transmission function within the scattering region,

using a model Hamiltonian. In a broader sense, this chapter may serve as a first

step towards trying to explore the effect of the impurity scatterers present at the

nanojunctions. The energy dependence of the transmission function may be obtained

explicitly with the scheme used in this chapter. This calculation, however, is at

its minimal level, in the sense that it is done for a 1-D chain of atoms with a

very few number of atoms in the scattering region. The results obtained in this

chapter depict important features that can develop in the transmission function

if our system consists of onsite impurities. These features are important because

Chapter 1 tells us that non-trivial energy dependence of the transmission function

can give rise to asymmetric features in current across these systems in combination

with the asymmetry induced by a finite temperature difference. Our goal is to try

and implement this method for other kind of quantum systems like quantum point

contacts or nanotubes.

Chapter 4 is more like a literature survey or a case study trying to relate the

questions addressed in this thesis, to the ongoing study of ‘Joule heating in nanoscale

junctions’.
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Chapter 2

Landauer Approach

This chapter focuses on the understanding of transport in mesoscopic and nanoscale

systems within the Landauer-Büttiker approach [13, 14].

This chapter is divided into the following sections:

Section 1: Formalism

• Introduction

• Foundations of the Landauer Approach

• Derivation of the equations for current and noise using the scattering matrix

approach.

Following this would be a simple yet non-trivial application of the above approach

to derive certain analytical expressions for charge current and charge current fluc-

tuations. It is worth mentioning at this point that analyses motivated on similar
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grounds have been reported more than once in different forms [15, 16, 24], for the

energy current and energy current fluctuations. Being independently motivated,

we focused on charge current and its fluctuations only to predict some interesting

features in the quantities that are experimentally determined quite regularly in this

field. So the later part of this chapter would consist of the following:

Section 2: Application to our problem

• Setting up the problem

• Discussion of the results

• Applicability of the results

Finally, I would like to conclude the chapter by a brief discussion about the

drawbacks of the Landauer approach. So, the last part would consist of:

Section 3: Conclusion

• Drawbacks of the Landauer approach

Section 4: Summary and open questions

2.1 Formalism

2.1.1 Introduction

The Landauer [20] approach treats a non-equilibrium transport problem in the

steady state as a scattering problem. It is based on certain physical assumptions

16
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that will be discussed soon. It is to be noted that the physical assumptions on

which the present approach is rooted may not be realized in all kinds of physical or

experimental realizations, some of which shall be discussed towards the end of the

chapter.

Figure 2.1: Mapping a closed quantum system onto an open quantum system via the
introduction of reservoir of electrons

2.1.2 Foundations

We discuss the underlying assumptions of the Landauer-Büttiker formalism below:

[a] Visualizing a non-equilibrium closed system as an open quantum

17
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system in steady state

Before I proceed with the explanation of the above statement, let me describe the

structure of our system . Our system consists of a region which is the device region

through which we pass current by attaching a voltage source or a current source

via electrodes. Physically, an experimentalist would like to probe the electron flow

across the electrode-conductor-electrode system which is actually a closed system.

But theoreticians find it easier to describe the battery or the electrodes as reservoirs

of electrons. So the system is now mapped onto a region sandwiched between two

large chunks of material that act as the environment. So the device now becomes

open to two reservoirs with incoming electrons and outgoing electrons not talking

to each other. This mapping is shown in figure (2.1).

Summary:

• System is open to reservoirs which act as source and sink for elec-

trons.

• For the reservoirs to behave as source or sink demands a difference

in their chemical potentials and this difference is equal to the applied

voltage gradient required to make the electrons flow.

eV = µL − µR

• The problem then is to try and understand how such a system in-

teracting with two reservoirs would evolve dynamically.

[b] Existence of a steady state

18
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Figure 2.2: Fluctuations in average current

The Landauer approach presumes the existence of a steady state. Any analytic ex-

pression derived within this approach is only valid once the steady state has reached.

By this statement we claim that if we wait long enough we will definitely reach a

steady state when the density matrix of the system becomes time independent and

one obtains a dc value for current at every instant of time, although there may be

fluctuations about this dc value, like that shown in figure (2.2).

[c] Scattering takes place only at the junction

In figure (2.1), which describes our system, the region where the device makes

contact with the electrodes or the leads will be termed as ‘nanojunction’. The

Landauer approach assumes that scattering takes place only at the junction and

otherwise the flow is ballistic [14].

• The unique feature of the dimensions of the junction manifests itself

in the scattering at the junction.

• This phenomenon cannot be neglected unlike bulk junctions. This

form of scattering will always be present even if electron-phonon or

electron-electron scattering is absent.
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Figure 2.3: Presence of several discrete transverse channels for a continuum of longitudinal
modes

[d] Use of appropriate boundary conditions to map the open quantum

system to a closed one

With the foundation underlined in [b] we can realize that the role of the reservoirs

is to prepare the state of the electrons in the distant past or in the distant future.

Also, the electrons in the reservoirs are assumed to be free and so we have the

following asymptotic conditions:

lim
x→−∞

HS = HL =− ~
2

2m
∇2 + VL(r⊥); S : System; L : Left,

lim
x→∞

HS = HR =− ~
2

2m
∇2 + VR(r⊥); R : Right.

where, HL(R) is the Hamiltonian of the left(right) lead and VL(R) is the confinement

potential in the same. The electrons are free in the x-direction and have extended

states but do experience a transverse confinement. So, the energy eigenvalues consist

20
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of a longitudinal part and a transverse part independent of each other,

En(k) = ǫn +
~
2k2

2m
, (2.1)

and the wave functions are given by a product of the transverse and longitudinal

parts,

ψnk(~r) =

√
1

Lx

χn( ~r⊥)e
ikx (2.2)

n: Different modes corresponding to the quantized states obtained by

solving the Schrödinger equation in the transverse direction.

k: Motion along x-direction is obtained by solving a free electron

Schrödinger equation and so it represents a free electron state.

• Several transverse modes or channels of energy ǫn with discrete en-

ergies exist for a given continuum of longitudinal modes. These

transverse modes are called channels [19, 26].

• The number of channels Nc(E) for a particular energy is fixed so

that,

En(k)− ǫn =
~
2k2

2m
> 0

so,

Nc(En(k)) =
∑

n

Θ(En(k)− ǫn)

21
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[e] Channels are independent of each other

The final approximation is that the channels do not interact with each other. The

state of an electron moving through one channel is orthogonal to the state described

by another channel.

2.1.3 Derivations of the equations for current and noise

power within the Landauer formalism: The Scattering

matrix Approach

The beauty of the Landauer approach lies in the possibility of mapping the en-

tire problem of quantum transport in mesoscopic conductors to a simple scattering

problem. It was first introduced by Landauer and further developed by Imry and

Büttiker [14, 17, 25]. In the subsequent parts I will formulate the scattering problem

and derive the famous Landauer formulae. We follow the notations in reference to

[14, 26] in the following.

2.1.3.1 Scattering states

We visualize our system, (figure (2.4)) as a scattering system where the junctions

behave as scatterers and the central device region is ballistic. This means the elec-

tron’s state does not change until it encounters the other junction. So the central

region is replaced by a black box and the junctions by a scatterer that changes the

state of the incoming electrons. All of these features are put together in the figure

(2.4).

Let us consider for simplicity that the electrons do not interact with each other.

There are no inelastic processes taking place in the leads. The only equilibration
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happening is in the reservoirs. Under such a situation, the electronic wave functions

and energies can be written as equations (2.1) and (2.2).

At this point I would switch to the second quantized notation, wherein I will

define field operators in terms of creation and annihilation operators in the respec-

tive leads. So I define the field operators,

Figure 2.4: Schematic of the system as a scatterer with the ballistic leads consisting of
incoming and outgoing scattered states
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ψ̂L(R)(~r): Annihilates an electron in the (L) left ((R) right) lead at position

~r.

ψ̂†
L(R)(~r): Creates an electron in the (L) left ((R) right) lead at position ~r.

âL(R)n,k: Annihilates an electron in the incoming state corresponding to

channel n with wave-vector k, in the left(right) lead.

b̂L(R)n,k: Annihilates an electron in the outgoing state corresponding to chan-

nel n with wave-vector k, in the left(right) lead.

â†L(R)n,k: Creates an electron in the incoming state with the respective char-

acteristics.

b̂†L(R)n,k: Creates an electron in the outgoing state with the respective char-

acteristics.

So,

ψ̂L(~r, t) =
1√
Lx

∫

dǫ e−iǫt/~

NL∑

n=1

(

âLn(k)e
ikx + b̂Ln(k)e

−ikx
) χLn( ~r⊥ Lx

2π~ vLn(ǫ)

ψ̂†
L(~r, t) =

1√
Lx

∫

dǫ eiǫt/~
NL∑

n=1

(

â†Ln(k)e
−ikx + b̂†Ln(k)e

ikx
) χ∗

Ln( ~r⊥) Lx

2π~ vLn(ǫ)

A more elaborate discussion is provided in Appendix A.

2.1.3.2 Scattering Matrix

Now that we have formulated our problem as a scattering problem that can be

defined in terms of incoming and outgoing scattering state operators, we move on to

defining the relation between them. The outgoing state operators and the incoming
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state operators are related via the scattering matrix, S, as follows,

b̂ = Sâ (2.3)

For an M terminal device,

S =















S11 S12 . . . S1M

S21 S22 . . . S2M

. . . . . . . . . . . .

...
...

...
...

SM1 SM2 . . . SMM















where, each of these blocks Sαβ is a matrix of dimension (Nα x Nβ); Nα being the

number of channels in the αth lead.

Hence,

b̂αn(ǫ) =
∑

γ

Nγ∑

k=1

Sαn,γkâγk(ǫ)

More compactly,

b̂†αn(ǫ) =
∑

γ

Nγ∑

k=1

â†γk(ǫ)
(
S†
αγ

)

kn
(2.4)

b̂αn(ǫ) =
∑

γ

Nγ∑

k=1

(Sαγ)nk âγk(ǫ) (2.5)

with,
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(Sαα)ij = rij Responsible for reflection of a carrier in the incoming state in lead 1

channel i, to an outgoing state in lead 2, channel j.

(Sαβ)ij = tij Responsible for transmission of a carrier in the incoming state in lead 1,

channel i, to an outgoing state in lead 2, channel j.

(Sβα)ij = t′ij Responsible for transmission of a carrier in the incoming state in lead 2,

channel i, to an outgoing state in lead 1, channel j.

(Sββ)ij = r′ij Responsible for reflection of a carrier in the incoming state in lead 2,

channel i, to an outgoing state in lead 2, channel j.

[a] Average Current

The current operator for lead α is given as the probability current operator (times

the charge carrier), in terms of the field operators,

Îα(x, t) =
~e

2im

∫

d~r⊥

[

ψ̂†
α(~r, t)

∂

∂x
ψ̂α(~r, t)

]

−
(
∂

∂x
ψ̂†
α(~r, t)

)

ψ̂α(~r, t)

We can now substitute the explicit forms of the incoming and outgoing state

operators. Based on the following assumptions, we converge to a closed expression

for the current in the lead α. The assumptions are :

1. For all observable quantities, ǫ and ǫ′ either coincide or are close to each other.

This means that the eigen spectrum is very closely spaced for the energies

relevant to transport, i.e. in a window around the Fermi energy, ǫF .

2. The velocities are almost constant and scale with the Fermi velocity.
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In this limit, we get,

Îα(t) =
e

2π~

∑

n

∫ ∫

dǫ dǫ′ ei(ǫ−ǫ′)t/~
[

â†αn(ǫ)âαn(ǫ
′)− b̂†αn(ǫ)b̂αn(ǫ

′)
]

. (2.6)

Equation (2.6) is general for anyM terminal device. Here we consider a two terminal

device for our further calculations1. Substituting for the outgoing state operators in

the above equation we get, for a two terminal device2,

〈

Îα

〉

=
e

2π~

∞∫

0

dǫ
∑

n

Tn(ǫ)

[

fα(ǫ)− fβ(ǫ)

]

(2.7)

where,

Tn(ǫ) are the eigenvalues of the matrix t†t,

and, fα, fβ are the Fermi distribution functions with µα − µβ = eV . From the

above equation we can readily realize that flux conservation demands,

Tr(tt†) = Tr(t′t′†)

[b] Current Noise Power

In this part we proceed to understand another experimentally observed quantity

namely the power spectrum of the current noise which is just the fourier transform

of the autocorrelation function of the temporal fluctuations in current.

1The details can be obtained from Appendix A.
2α, β ≡ L,R, respectively, globally
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Unlike average current, the current-current correlation function or equivalently

the fluctuations are more sensitive to the microscopic details of the system. Hence,

the effects that are washed out in the case of average current are not necessarily sup-

pressed in the case of fluctuations. Thereby, they serve as a probe to the microscopic

phenomena occurring in our system.

Current noise can be intrinsic or extrinsic in nature. Among extrinsic sources we

have the 1/f noise [27] which can be reduced by tuning the external conditions such

as pressure or synthesis. The intrinsic noise is inherent to the system and is present

even if the sample is completely pure. It cannot be avoided. There are two types of

intrinsic noise, namely, thermal and shot noise.

[i] Thermal Noise

This type of noise arises because of the random fluctuations in the electron distri-

bution at a finite temperature through the coupling to the reservoir. It provides in-

formation about the conductance of the system. Since these fluctuations are present

in equilibrium conditions as well, the thermal noise power may be obtained directly

from the fluctuation-dissipation theorem. It is also called the Johnson-Nyquist noise

[21, 22].

[ii] Shot Noise

Shot noise on the other hand is a non-equilibrium phenomenon and arises due to

quantization of charge in the case of electrons or energy in the case of photons. The

shot noise in electrical current thus reflects on the randomness associated with the

transmission of discrete charge quanta across the conductor.
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Noise in nanoscale conductors

Noise becomes more perceptible and significant in nanoscale dimensions. To ex-

plain why it is so, I would like to cite the following example, in reference to figure

(2.5):

Figure 2.5: The figure on the left shows the arrival of water as droplets
unlike the figure on the right which represents bulk flow
or an average flow. Courtesy : Google Images

Imagine hearing the droplets of water fall. When the flow of water is not very large,

the arrival of water droplets as discrete quanta is still realizable. However, we fail to

recognize the discreteness when the water flow starts becoming very large. This is

the same situation as in bulk conductors where the granularity of charge is lost and

one is only able to perceive an average current. In other words, the fluctuations that

are of the order of 1/
√
N and are small for N in the thermodynamic limit would be

much larger for nano objects simply because of the smaller N .
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Mathematical Details

The noise power corresponding to leads α, β(L,R) in Fourier space is given by,

Pαβ(ω) = 2

∞∫

−∞

[

〈Iα(t)Iβ(t′)〉 − 〈Iα(t)〉 〈Iβ(t′)〉
]

eiω(t−t′)d(t− t′)

For static bias and in steady state,

P̃αβ(t, t
′) = P̃αβ(t− t′)

Use of the scattering matrix formalism along with the properties of the scattering

matrix yields the following in the static limit [14, 23, 18],

Pαβ(ω = 0) =(−1)ζ
∞∫

0

(

Tr
{(
tt†

)2
}

fβ (1− fβ) + Tr
{(
t′t′†

)2
}

fα (1− fα)

+ Tr
{
tt†

(
1α − tt†

)}
[fα + fβ − 2fαfβ]

)

dǫ (2.8)

where,

ζ = δαβ + 1

The details can be obtained from the derivation given in Appendix C. We note

that the transmission function would in general be a function of energy.
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Equilibrium Noise

This would be defined as the noise with zero thermal and voltage bias i.e.,

V = 0 and TL = TR = T,

fα = fβ,

∴ Pαβ(0) = 4kBT
e2

h
Tr

{
tt†

}

or Pαβ(0) = 4kBT
e2

h

∑

n

Tn(ǫ)

Pαβ(0) = 4kBTG : Fluctuation−Dissipation theorem[21, 22]

Here lies the origin of conductance quantization as observed in several nano devices

[4] and illustrated in figure (1.3). By tuning an external parameter, if one can ac-

cess a varying number of perfectly transmitting channels, then one would see the

conductance developing plateaus.

Shot Noise as mentioned before is a purely non-equilibrium phenomenon and at

zero temperature can be derived easily.

T = 0

fα(1− fα) = fβ(1− fβ) = 0

µα − µβ = eV
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thus,

Pαβ(0) =
2e2

h

(
∑

n

Tn(1− Tn)

)

eV

So the shot noise power at T = 0 K, is just proportional to the applied voltage bias,

V .

2.2 Application of the Landauer-Büttiker formal-

ism to our problem

2.2.1 Setting up the problem

We try to visualize a situation in which the nano device is subjected to an asym-

metry. Let us imagine a scenario where both voltage and temperature gradients are

present across the electrodes. Such a situation is very likely to arise at least in two

cases (i) the two electrodes heat up to different extents due to current flow (Joule

heating), (ii) an explicit thermal gradient is applied. But it is to be noted that we

also assume, for our present calculations that the interactions (e-ph scattering, e-e

scattering, etc.) that drive this kind of heating are fast enough to equilibrate the

electron to the temperature of the leads.

We also assume that the temperature gradient created in the leads extend across

the lead in the true thermodynamic sense, so that equilibrium thermodynamic dis-

tribution functions can be defined with respect to it. I tried to justify our motivation

in doing the above, in Chapter 4, wherein I have given recent examples that validates
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our assumption.

2.2.2 Results

In this part I will present the features that we got because of the asymmetric

situation discussed above. First I will discuss about current and then give the

results on noise analysis.

In order to utilize the asymmetric situation (namely the presence of thermal bias)

we have applied a time varying symmetric potential (square wave potential). The

time period of the signal is much greater than the time scales in the system and

hence a steady state analysis is always valid. It turns out that even for such a

simplified situation we observe some non-trivial features which I will summarize,

after each of the relevant figures.

2.2.2.1 Current

The steady state current in one of the leads (say, the left (L) lead) is given by,3

IL(V ) =
e

h

∞∫

0

t(ǫ)(fL − fR)dǫ .

By usual notation, β1(2) =
1

kBT1(2)
, where, T1 is the temperature of lead 1(L) and T2

is the temperature of lead 2(R); T1 6= T2 and T1 − T2 = Θ. I call this situation to

be asymmetric because, when,

3From now onwards I will denote transmission probability as t(ǫ) and not T (ǫ) to distinguish
it from temperature
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• V > 0, µ1 > µ2,

IL(V ) =
e

h

∞∫

0

t(ǫ) dǫ

[
1

1 + eβ1(ǫ−µ1)
− 1

1 + eβ2(ǫ−µ2)

]

=
e

2h

∞∫

0

t(ǫ) dǫ
sinh

{
(β2 − β1)

ǭ
2
+ β1

eV
2

}

cosh
{

β1

2
(ǭ− eV )

}
cosh

{
β2

2
ǭ
} · (2.9)

• V < 0, µ2 > µ1 (Source and drain interchanged),

IL(V ) =
e

2h

∞∫

0

t(ǫ) dǫ
sinh

{

(β2 − β1)
ǭ
2
− β2

e|V |
2

}

cosh
{

β1

2
ǭ
}
cosh

{
β2

2
(ǭ− e|V |)

} · (2.10)

The origin is chosen as the following:4

V = 0 −→ µ1 = µ2 = µ.

V > 0 −→ µ1 = µ+ eV, ǫ0 = µ+ x.

V < 0 −→ µ2 = µ+ eV, ǫ0 = µ+ x.

and, ǭ = ǫ− µ.

So,

IL(V, T1, T2) 6= −IL(−V, T1, T2).

If β1 = β2, we can easily see that, IL(V ) = −IL(−V ).

4We have not considered any bias dependence in the transmission function.
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I now take up specific forms of t(ǫ) to do further calculations.

• Case 1 ⇒ t(ǫ) : flat function of energy

In the limit (kBT << µ1(µ2)), IL(V ) is same as in the symmetric case.

• Case 2 ⇒ t(ǫ) : Lorentzian

t(ǫ) =
wα

π

1

{(ǫ− ǫ0)2 + w2} (2.11)

w : width of the Lorentzian;

ǫ0 : centre of the Lorentzian (chosen to be around the equilibrium Fermi energy µ).

If t(ǫ) varies slowly around the chemical potential µ1 and µ2 then we can use the

Sommerfeld expansion [28]; the steps are outlined in Appendix E. We then get,

IL(+V ) + IL(−V ) = ∆IL(V ) =
wαπ

3
k2B A(V )

[
T 2
1 − T 2

2

] e

h
(2.12)

where, A(V ) = x
(x2+a2)2

− eV−x
{(eV−x)2+a2}2

.

The above equation gives the directed current because of the presence of an asym-

metric situation induced by a non zero temperature gradient.To check the validity

of the Sommerfeld expansion we numerically integrated equations (2.9) and (2.10)

with t(ǫ) as given by (2.11). Figure (2.6) shows the agreement of the analytical

expression according to (2.12) and numerical integration of (2.9) and (2.10). A pa-

rameterization is shown in figure (2.8) where one can find out the temperature and

voltages where the Sommerfeld expressions can be used.

The parameters used for figures (2.6 - 2.8) are given by x = 0, w = 1 eV, µ =

5 eV, Θ = 400 K.
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Figure 2.6: Current calculated using both Sommerfeld expansion (analytical solution) and
numerical integration. The transmission function is shown in the inset as t(ǫ).

Figure 2.7: Net current calculated using both Sommerfeld expansion (analytical solution)
and numerical integration.
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Figure 2.8: Parameter space in V and Θ where the Sommerfeld expansion is valid.

• Case 3 ⇒ t(ǫ) : Sharp function of energy

For this case we again consider a Lorentzian but the parameter w ∼ kBT .

• For such a situation we cannot use any approximation as can be seen from

figure(2.9). So, we have to integrate (2.13) numerically.

• The net (directed) current is plotted in fig.(2.10) for three different peak posi-

tions of the transmission function. The parameters used are: x = (0, 0.05,−0.05) eV

w = 50 meV, µ = 5 eV, Θ = 400 K. It is observed that the net current

possesses a flat minima that changes its position with a change in the position

of the sharp maxima of the transmission function in the energy space. The

direction of this shift is the same as the direction of the shift in the peak

position.
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Figure 2.9: This figure plots current as a function of the applied bias and shows the inva-
lidity of the Sommerfeld expansion for the transmission function shown in the
inset. This is general for any transmission function with the w ∼ kBT .

• Another important feature is noticed in figure(2.11) where the net current

is plotted as a function of applied voltage but for different Θ. There exists a

universal voltage for a particular x (here x = 0.05eV) at which there is current

reversal. This voltage is independent of the temperature gradient Θ.

2.2.2.2 Summary

• We observe a rectification of current on application of a slowly varying square

wave potential. This is due to the presence of both voltage and temperature

gradient. The sign of the current depends on the competition between both

these effects to move the electron (figures (2.7 and 2.10)).

• The amount of rectified current is ∼ nA for relatively flatter functions (figure

2.7) and ∼ µA for very sharp transmission functions (figure 2.10).
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Figure 2.10: Net directional current is plotted as a function of the applied bias. V0 is the
amplitude of the applied square wave potential. In the equations V0 is the
same as V . The above is plotted for three different x′s or peak positions of the
transmission function shown in the inset of figure(2.9), (i) shifted slightly to
the right of the chemical potential, (ii) at the chemical potential, (iii) shifted
slightly to the right of the chemical potential.

• Thus the amount of the directional current can inform us about the qualitative

features of the transmission funcion. However we have considered only one

open channel for all our calculations.

• Also the value of the bias voltage at which a reversal of net current (change

in sign) occurs varies with the peak position of the transmission function. So,

that again informs us about the transmission function.This dependence of V

on x is found out to be a straight line. This is shown in figure (2.12).

• We have done a parameterization for the directed current with V and x. A

parameterization with other parameters of the transmission function is also

necessary to get a better insight.
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Figure 2.11: Net directional current is plotted as a function of the (amplitude of the)
applied bias as in figure (2.10), but for different Θ. The above is plotted for
a transmission function, (shown in the inset) that is slightly shifted to the
right of the chemical potential.

• The following question needs to be addressed:

Are there any special features in the noise power spectrum on changing the

applied bias volatge and temperature gradient?

While the last point is addressed in the next section, the penultimate one could

not be answered in this thesis. We are hopeful to come up with a more plausible

explanation and analysis soon.

2.2.2.3 Current Noise

The current noise power is given by (2.8). When the transmission function is

an approximately flat function of energy, one can solve (2.8) exactly to obtain the
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Figure 2.12: Voltage at which current reversal occurs is plotted as a function of the position
of the peak of the transmission function (w.r.t the chemical potential. The
above is plotted for values of x which are slightly shifted to the right of the
chemical potential. of the chemical potential. It depicts a perfect straight
line behaviour with slope =2.

following relation:

P (V, T ) =
2e2

h

∑

n

[

2kBT T 2
n − Tn

(

1− Tn

)

eV coth
eV

2kBT

]

, (2.13)

where, I have removed the lead indices because by flux conservation and time

reversal symmetry, Pαα = Pββ = −Pαβ = −Pβα. Let α denote the left (L) lead and

β denote the right (R) lead. The noise power is represented by the above equation

when T1 = T2. But, similar to what has been done for current let us now consider

the asymmetric situation of T1 6= T2.
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• Case 1 ⇒ t(ǫ) : flat function of energy

Using the steps detailed in Appendix D, we can arrive at the following closed

form expression in this case5:

•

P (V, T,Θ) = P0(V, T,Θ) + kB
∑

n

(

Θ T 2
n +Θ Tn(1− Tn)

)(
V̄

2 sinh(V̄ /2)

)2

,

(2.14)

where, P0(V, T,Θ) is given by (2.13). Here we have considered the ambient

temperature, T , to be that of the right lead. Looking at the above expression

we can realize that it is an even function of V . Hence, interchange of the source

and drain electrodes is not going to give us anything interesting, although

we would see shortly that, this is not the case with an energy dependent

transmission function.

• Figure(2.13) and figure(2.14) is a comparison between the analytical and the

numerical result. The latter refers to the numerical integration of (2.8). Fig-

ure(2.13) is for a very low temperature difference (∼ 50 K), while figure(2.14)

is for a relatively high Θ ∼ 400 K. As can be seen from figure(2.15), there

is a linear increase in the error between the numerical and the analytical ex-

pression, with increase in the value of Θ. This is because we have limited our

analysis to linear order in Θ, when we expanded fL in a Taylor series. This

can be clearly understood from Appendix D.

5The expressions are in units of 2e
2

h
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Figure 2.13: Current noise power in presence of a finite temperature difference (Θ = 50
K) in the leads. It also shows a comparison between the numerical and
analytical calculation ((2.15)). The error becomes less as one approaches
higher voltages.

• The important thing to note is that the error is very small, especially for high

bias (∼ 0.1 V), low Θ, which means the analytical expression can be used in

this regime with minimal error. This is shown in figure (2.15).

• Also, since the error is very small for low Θ, one can use it to predict the Θ

using the expression for the linear response regime in voltage, namely6,

lim
V→0

∆P =
∑

n

TnkBΘ. (2.15)

As can be seen from figure(2.16), when Θ is 50 K, the enhancement in noise is

∼ 25 K, while the enhancement predicted by (2.15) is also 25 K. So (2.15) can

be used reliably to get an idea about low temperature changes in the leads, if

6The following expression is in unit of 2e
2

h
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Figure 2.14: Current noise power in presence of a finite temperature difference (θ = 400
K) in the leads. The error is much more than Θ = 50 K, because of the
consideration of linear order in Θ to do the calculation.

Figure 2.15: This figure shows a linear increase in the error with increase in the value of
Θ. It is to be noted that the error decreases with increase in the bias.
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Figure 2.16: This figure shows the increase in noise due to a non-zero value of Θ. At
V = 0, this increase is to be related to the thermal noise. This can therefore
be used to extract the value of Θ.

any.

• Case 2 ⇒ t(ǫ) : function of energy (Lorentzian)

Now let us consider the transmission function to be dependent on energy in the

form of a Lorentzian given by (2.11). Here, I present the numerical results wherein

(2.8) is evaluated numerically. The parameters used for t(ǫ) is again the same as

used for current; figures (2.17) and (2.18) are plotted using the parameter x in t(ǫ)

as 0 eV.

• Figure (2.17) again shows the enhancement of noise power due to a nozero

temperature difference in the leads. The other important thing to note is the

change in the shape of the curve from the Θ = 0 stuation. For Θ = 0, the

minima occurs at V = 0, but now this minima shifts towards higher applied

bias voltages with increase in the value of Θ.
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Figure 2.17: This figure plots the current noise power as a function of V for different
Θ. Apart from an enhancement, now the minima shifts from V = 0, with
increase in Θ.

• In figure (2.18) we plot the change in noise power due to change in voltage

polarity. ∆P here is equal to P (+V ) − P (−V ). Here, again, we notice a

minima like the one observed for ∆I. This minima shifts towards higher V

with increase in the value of Θ.

• Now we consider a different value of x(=0.05 eV). For ∆I we observed a

universal crossing point at 0.1 V. Here also we notice the same crossing voltage,

where ∆P changes sign. There is a crossing at 0 V also, but that is because at

V = 0 it is only thermal noise in action. This observation is shown in figure

(2.19).

• Case 3 ⇒ t(ǫ): Lorentzian (Analytical solution)

The analytical solution could not be a part of this thesis, however, the scheme

is outlined in Appendix E. We can again use the Sommerfeld expansion [28] to for
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Figure 2.18: ∆P plotted as a function of V ; x = 0 eV.

Figure 2.19: ∆P plotted as a function of V ; x = 0.05 eV.

this case, keeping in mind of the situations where it can be applied.
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2.3 Drawbacks of the Landauer Approach

• The problem with this approach is that there is no way to obtain information

about the past within this theory. We are only able to access the long time

solution. The steady state approximation described before deliberately loses

all initial correlations.

• Dealing with the interactions and inelastic effects seems to be difficult within

this approach. Non-equilibrium Green’s functions approach seems to be more

transparent, in this regard.

• There is an inherent assumption that any kind of dephasing and relaxation of

the electronic state takes place only in the reservoirs. Interaction of electrons

with the lattice degrees of freedom giving rise to Joule heating can therefore

be not handled within this approach unless this assumption is relaxed.

• The scatterer is treated like a black-box and all its effects are dumped into the

scattering matrix.

2.4 Open Questions

• Is it obvious that a steady state will be reached and the electron will equilibrate

only at the reservoirs? Can there be no fluctuations in these non-equilibrium

steady states?

• How do we deal with interacting electrons or interactions between electrons

and phonons?
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Chapter 3

Calculating the Transmission

Functions

In this chapter I intend to calculate the transmission probabilities of the electronic

wavefunctions as functions of its energy. The method we adopt was proposed by T.

Ando [29, 15]. It is based upon wave function matching at the boundaries. In this

regard I would like to mention that, transmission through an atomic wire consist-

ing of a finite scattering region have been attempted to be solved by semiemperical

methods [32, 33, 34, 35]. However in these approaches there exists approximations

regarding the atomic structure of the leads. Generally jellium electrodes are consid-

ered and wave functions are calculated by the transfer matrix method [36, 37] or by

the Lippman-Shwinger method [38, 39, 40]. Alternatively one can use the Green’s

function approach [41]. However, the scheme of wave function matching proposed

by Ando [29], neither requires the explicit calculation of wave functions nor does it

require the calculation of the Green’s functions. Besides as it will turn out that this

approach is only an O(N) technique, computationally, where N is the number of
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Figure 3.1: The system consists of a chain of atoms. The different kinds are represented
by different colours and different values of the hopping parameters.

atoms in the scatterer.

The scatterer is treated explicitly by a recursive technique. In this chapter I

will demonstrate the use of the above technique for the simplest case of a chain of

atoms comprising of one or more than one impurity scatterer(s).

3.1 Introduction

Let us consider a perfectly 1-D chain of atoms comprising of monoatomic unit cells,

as shown in 3.1. One can understand from the figure that I have considered two

atoms of the respective leads to form a part of the scatterer. The wave function of

an electron passing through this system, in the site basis, is,

|ψ〉 =
∞∑

j=−∞

Cj|j〉 (3.1)

where, Cj is the amplitude of the electronic wave function at the jth site. The time

independent Schrödinger equation reads as,

H|ψ〉 = E|ψ〉

⇒ H
∑

j

Cj|j〉 = E
∑

j

Cj|j〉
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where, H is the Hamiltonian of the electronic system in the site representation.

∴ [Eδjj′ −Hjj′ ]Cj = 0 (3.2)

(3.2) is for a particular site j′. Likewise we are supposed to get an infinite set of

equations for j′ ∈ [−∞,∞]. However apart from these infinite set of equations we

also have the constraint equations for the leads. These are nothing but the Bloch

conditions, assuming the leads to ideally periodic. This helps us in eliminating most

of the above set of equations and define the effect of the electronic wavefunctions,

in the leads as boundary conditions, exactly the way the Landauer approach does.

3.2 Recursion Relations

In order to obtain the recursion relations I shall first deal with the leads which

are ideal to set up the boundary conditions for the electronic wavefunction inside

the scatterer.

3.2.1 Ideal Wires

Use of Bloch condition An ideal wire is defined by the presence of a perfectly

periodic potential along the length of the wire. In such a periodic system the wave

functions in the adjacent cells (which are the atomic sites in my case) is related by

the Bloch condition,

Cj = λCj−1 (3.3)

Also (3.2) gives us,

(E − ǫj)Cj − tCj−1 − tCj+1 = 0 (3.4)
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where, ǫj is the onsite energy at the jth site. So, for the ideal leads, we have

two equations, (3.3) and (3.4). These two equations can give us the value of λ for

different values of energy E. On substituting for Cj−1 and Cj+1 in (3.4), we get,

λ =
(E − ǫj)±

√

(E − ǫj)2 − 4t2

2t
(3.5)

This is also equivalent to solving the following eigenvalue equation,

λ






Cj

Cj−1




 =






E−ǫj
t

−1

1 0











Cj

Cj−1




 (3.6)

The eigenvectors of the 2x2 matrix on the R.H.S of (3.6) will give the solution of

Cj for the value of λ given by (3.5). Also it should be noted that for our system the

above method is applicable only upto j ≦ −1, because, λC0 6= C1.

We need the incident wave at the boundaries of the scatterer. The boundaries

are formed by the 0th cell/site on the left and the 6th cell/site on the right. A wave

going from the 0th site to the 1st site is supposed to get scattered off the 1st site

and hence, the amplitudes of the electronic wavefunctions at the sites j ≦ 0 should

consist of a right going (+) (incident) and a left going (-) (reflected) amplitude. So,

Cj = Cj(+) + Cj(−)

So, the solution we get for Cj from (3.6) should consist of a left going and a right

going part. Indeed reference [31] tells us that the eigenvalues λ corresponding to

left and right going solutions come in pairs.
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Suppose the solutions are u(+) and u(−) respectively, then we have for our simple

case, C−1 = u(+) + u(−) and by the Bloch condition, C0(±) = λ(±)C−1(±). So,

C0 = λ(+)u(+) + λ(−)u(−) (3.7)

Also the wave incident at the right junction between the scatterer and the ideal lead

gets reflected into the scattering system and only right going waves can be found

in the right lead. Hence, CN+1 = CN+1(+) where N is the number of atoms in the

scatterer. Similar to the solution of (3.6) for the left lead, we need to find out the

λ for the right lead. Let us call it λ′.

3.2.2 Scattering Region

In the scattering we no longer have the Bloch condition and hence require to solve

(3.2) via the following recursion relations:

E − ǫ0C0 − t1C1 − t1C−1 = 0 (3.8)















E − ǫ1 −t1 0 0 0

−t1 E − ǫ2 −V1 0 0

0 −V1 E − ǫ3 −V2 0

0 0 −V2 E − ǫ4 −V1
0 0 0 −t2 E − ǫ5





























C1

C2

C3

C4

C5















=















t1C0

0

0

0

t2C6















(3.9)

E − ǫ6C6 − t2C7 − t2C5 = 0 (3.10)

We are interested in finding out the transmission probability. So, we should be con-

cerned with the propagation of C0(+) across the scatterer. Also, C7 = λ′(+)C6(+)
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and C6(+) = C6 = TC0(+). Solving the above set of equations would then give us

T .

3.3 Method

The above scheme is implemented numerically as will be described in this section.

It should be mentioned that this implementation is just in its infancy stage. We

have done calculations for a perfectly one dimensional atomic chain. The scattering

region consists of afew number of atoms. The idea was to see if it is possible to get a

transmission function that might resemble the lorentzian form used in the previous

chapter.

So we tuned the onsite energies of the atoms in the chain to mimic the effect of

scattering in the most minimal level. In order to implement the scheme numerically

I performed the following steps:

1. The first step involved calculation of eigenvalues and eigenvectors correspond-

ing to equation (3.6). The represents the situation in ideal wires or ideal leads,

between which the impurity region is sandwiched. The expressions were found

out analytically (for a 2x2 matrix) and were implemented in a Fortran 90 code.

2. As a first check the Bloch wave vectors were obtained and plotted as a function

of energy representing travelling waves, i.e. kx values were plotted from 0 to

π/a. They indeed turned out to be like the ones obtained from a tight-binding

Hamiltonian. We need to consider only the imaginary eigenvalues of (3.6).

These eigenvalues represent the travelling waves that are transmitted across

the impurity region. Figure(3.2) shows the classification of travelling and
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Figure 3.2: This figure shows the four types of waves that correspond to the eigenvalue λ

in (3.6).

evanescent waves, used in this scheme. The wave vectors obtained by solving

(3.6) is shown in figure(3.3).

3. Let us suppose that the atoms 1-5 shown in figure (3.1) are the impurity

atoms. Then, we know that the electron on atom 6 will only have a right

going component. So, I used the wavefunction at site 7, i.e. C7 = u(+),

the eigenvectors obtained from the first step. Thus C6 was found out by the

Bloch condition and supplied to the recursion relation obtained in the previous

section. This relation was used to get the wavevectors until C−1.
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Figure 3.3: Bloch wave vectors are plotted as a function of energy. These are obtained by
solving the eigenvalue equation in (3.6).

4. C0(+) was calculated using the relation,

C0(+) =
C−1 − eik

e−ik − eik
,

to finally get, T (ǫ) = |C6|
|C0(+)|

.

3.4 Results

In order to do the calculations we have set the following parametric situation:

• We have used a finite number of atoms inside the impurity scatterer.

56



Calculating the Transmission Functions

Figure 3.4: Transmission function calculated for a 1−D chain of atoms. This is the case
of a single impurity where the onsite scattering potential of the atom 3 in the
impurity region is varied.

• For an ideal wire the onsite energies on all the sites was set to ǫj = 0 eV, where

j is the atomic site. This is basically to represent a scattering free region. That

is why as expected we get,

T (ǫ) = 1.

• Single impurity: To see the effect of presence of impurities I have first set

the atom number 3 in figure(3.1) to have an onsite energy equal to something

different from 0 eV. So, we did calculations for ǫ3 =0 eV, 2 eV, 4 eV. As can be

seen from the figures, the transmission is approximately flat for any impurity
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onsite energy. The only effect of the impurity was to change the value of T (ǫ).

The higher the site energy, lower is the value of T (ǫ), which is as expected.

• The above two observations are presented in figure(3.4).

• Now, we change the situation by treating all the 5 atoms as impurity, i.e.

now I have a 5-atom scattering region. We see non-trivial features in the

transmission function for this situation, and that is again expected because

now the effect of scattering has increased. The transmission function develops

a peak around a certain energy value. This indeed represents the peak like

feature we are motivated for. This is shown in figure(3.5).

Figure 3.5: Transmission function calculated for a 1−D chain of atoms. In this case, we
have considered a 5 atom impurity region. All the 5 atoms have the same
effect of scattering.

• In order to further play with the transmission function we associated different

scattering effects on different atoms in the 5-atom scattering region. The

transmission function is now high in some energy range and also goes to a
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Figure 3.6: Transmission function calculated for a 1−D chain of atoms. In this case,
we have associated different effects of scattering in the impurity region by
associating different onsite potential energies.

minima in some other energy range. This suggests that the transmission can be

a non-trivial function of energy and it depends on how the impurity scatterers

are situated. This is depicted in figure(3.6). Hence it is not always relevant to

use flat transmission functions for such one dimensional nanowire geometries.

3.5 Conclusion

• We learnt from Chapter 1 that in the Landauer-Büttiker formalism all infor-

mation about the scattering region is buried inside the transmission function.

• However, the Landauer-Büttiker formalism does not provide us with any scheme

to calculate the transmission function.
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• So, in this chapter, we tried to calculate the transmission function as a function

of energy using a real space wave function matching technique.

• We observed that presence of impurity defects in the scattering region can

greatly alter the form of the transmission function. This is of particular im-

portance in systems like carbon nanotubes. These systems have a high con-

centration of defects and hence a flat transmission function is not desired to

be used for calculation of the transport calculations.

• Here, we have only seen the effect of onsite disorder. Effect of bond disorder

is not analysed. Bond disorder would imply tuning the hopping parameter tj

in the tight binding Hamiltonian.

• We intend to go beyond a 1−D chain of atoms and utilize the scheme men-

tioned in this chapter for calculating transmission functions for different kinds

of geometries like quantum point contacts or nanotubes and use them for our

future calculations.
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Chapter 4

Joule Heating in nanoscale

junctions: A Discussion of

experiments and theory

This chapter attempts to briefly survey the state of art in theory and experiments

relevant to the issue of local heating in atomic scale contacts. The development of

theory for a description of Joule heating is one of the main objectives of my project.

This project is motivated by the fact that an understanding of local heating or hot

spots and how to mitigate them is very important in modeling a realistic nanoscale

device. Experiments on nanoscale junctions [42, 43] suggest local heating with

increasing electrical current. At a first glance this seems to be surprising because

the size of the contacts is much smaller than the electron mean free path and so

scattering is not expected. However as Todorov [9, 45, 58, 57] and Di Ventra [46]

argue that this is not surprising if one considers the huge electron current density

that appears at the junctions.
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It is now established that large current densities in nanosystems can lead to sub-

stantial heating compared to their bulk counterparts. These observations can be

found in [47, 48, 49]. According to Todorov[9], this phenomena of self heating hap-

pens even if the contacts are ideal. The contacts may be ballistic for the electrons

but not for the phonons, and, also the electrons are highly energetic compared to

the phonons. Let us frame the argument in the following way: When a high density

non-equilibrium electron gas (liquid) flows across a nanoscale junction, most natu-

rally it interacts with the atomic oscillators at the junction simply because of the

difference in energy. So the steady state oscillator temperature (so that there is no

energy flow between the oscillator and the electrons) is different from the ambient

temperature. It should be noted that Todorov considered a one way transfer of

energy, namely from the electrons to the phonons.

But as Di Ventra argues in [46], large electron current will also lead to increased

Coulomb interactions and if that is the case then the electrons are expected to

equilibrate at a different effective temperature. This is because electrons do not

always behave as an electron gas. If the electrons are treated as a viscous liquid[51],

then increase in electron density will give rise to an increase in electron-electron

Coulomb repulsion. Besides if we consider two way transfer of energy then the

temperature of the oscillator (Tosc) should be equal to the electronic temperature

(Te). Hence the temperature that should enter the Fermi-Dirac distribution of the

electrons should be different from the ambient temperature. This is exactly what is

done in the calculations of Chapter 2. Also, the local electronic temperature is going

to affect the electron-phonon scattering. An approximate argument shows that Tion

is proportional to V 1/2, where V is the applied bias[9, 47, 48, 49, 50].
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These considerations may be further augmented by a recent experiment conducted

by Daniel R. Ward et. al. of Rice University [55]. By surface enhanced Raman

emission they determined effective temperatures for both the oscillator vibrational

modes and the electrons, pertaining to a biased metallic nanoscale junction.

Figure 4.1: Schematic of a nanogap used in the experiment by Ward et. al.. Ref: Nature
Nanotechnology, Vol. 6 (33).

They mention that the electronic distribution rethermalizes on a scale set by

inelastic electron-electron interactions. As I have mentioned in Chapter 2, the

Landauer-Büttiker approach assumes that the thermalization of the electrons take

place far away from the junctions, in the reservoirs; so the source and drain elec-

trodes have identical temperatures. But this experiment shows that this is not the

necessary case. Electron-phonon scattering also comes into action to transfer energy

to the lattice, such that the lattice develops a temperature over a thermodynamic

extent, and, the electrons can rethermalize in the electrodes itself. Hence, it is not

necessary to incorporate the same temperature for the electrons that enter the scat-
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Figure 4.2: This figure is again taken from Nature Nanotechnology, Vol. 6 (33), with
respect to the experiment conducted by Ward et. al.. It shows the effective
temperature of the electron and the dissipated power as a function of the bias
voltage. Inset shows the IV characteristic and a nonlinearity and asymmetric
current can be observed with respect to voltage polarity.

terer from the left and the right reservoir. Figure(4.2) shows the experimental result

that indicates electron rethermalization.
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Figure 4.3: This figure is taken from the experiment conducted by Sayer et. al. IEEE
Transactions on Components and Packaging Technologies, Vol. 33, No. 1. It
shows a schematic of the experimental set up that was used. The nanotubes
were 400 nm long and 10 nm in diameter.

It should also be remarked that the junction heating also depends strongly on the

transmittivity of the junctions for both charge and energy current. In this regard,

study of thermal transport at nanoscale becomes important. Also, regarding the

structure of the junction, the experimental set up that first caught our attention

was of Sayer et.al. at Purdue University [56]. This experimental set up consisted

of single walled carbon nanotube devices grown from within porous anodic alumina

substrate. Figure(4.3) shows the set up and it is clear that the junctions are highly

asymmetric. Thereby, one requires to properly model the junctions keeping in mind

that the presence of impurity can highly alter the energy dependence of the trans-

mission function (as shown in Chapter 3). Another consequence of junction heating

is embrittlement of wires[57]. The combined effect of all these phenomena can lead

to unexpected observations. In fact, experimentally it has been observed that Au-

single atom contacts and chains break at applied voltages of 1 to 2V [60, 61, 62, 63].
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This implies the onset of bond disorder due to heating. And hence, in such situa-

tions another issue comes into action, namely the efficiency of thermal transport in

nanoscale junctions[53, 64, 54].

In this chapter, I have attempted to highlight the subtle issues that one should

keep in mind to model self heating in nanoscale junctions. By discussing the experi-

ment in [55], I tried to justify the relevance of considering two different temperatures

for the left and right leads.

Di Ventra suggests in [46] that the local increase of electronic temperature in a

nanojunction can be extracted from Johnson-Nyquist noise[52]. And if that is the

case, then the Te entering in the Fermi-Dirac distribution function of the electron

is definitely not the temperature of the reservoir. An extensive theoretical model

taking care of both electron-electron interactions and electron-phonon interactions

still remains a challenge in this field. A proper correlation between experiments and

existing theory also needs to be done. We intend to look into these aspects as far

as possible, in our future projects.
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Appendix A

Current operator using second

quantized notation

Use of second quantization particularly organizes our task in formulation of the

scattering problem by inherently taking care of the quantum statistics of the current

carriers. many electrons can populate the transverse modes in the leads and the

effect of Pauli Exclusion principle is easily taken care of by the anticommutation

relations of the incoming and outgoing state operators. The strategy involves writing

the equations in terms of ceratin field operators. These operators, operate in space

and time and physically represent the presence or absence of a paticle in position

~r. They can be written in terms of the incoming and outgoing channel operators as

the following:

ψ̂in(~r, t) =
∑

nk

φin
kn(~r, t) âkn

ψ̂out(~r, t) =
∑

nk

φout
kn (~r, t) b̂kn

φ
in(out)
kn (~r, t) : Incoming (outgoing) states with wave vector ~k in channel n.

âkn(b̂kn) : Annihilation operator for an incoming(outgoing) state.
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∑

k :
∫

dk D(~k)

Hence, I can write the field operator in the left lead (α) as,

ψ̂α(~r, t) =
1√
Lx

∫

dǫ e−iǫt/~

Nα∑

n=1

(

âαn(k)e
ikx + b̂αn(k)e

−ikx
) χαn( ~r⊥) Lx

2π~ vαn(ǫ)

Let us write,

âαn(ǫ) =
âαn(k)√

Lx

√
2π~ vαn

b̂αn(ǫ) =
b̂αn(k)√

Lx

√
2π~ vαn

After substitution of the above opeartors in the field operator forms for the left(α)

and the right(β) leads, we get,

ψ̂α(~r, t) =
Nα∑

n=1

∫

dǫ
Lx

√

2π~ vαn(ǫ)

(

âαn(ǫ)e
ikx + b̂αn(ǫ)e

−ikx
)

χαn( ~r⊥)

ψ̂β(~r, t) =

Nβ∑

n=1

∫

dǫ
Lx

√

2π~ vβn(ǫ)

(

âβn(ǫ)e
ikx + b̂βn(ǫ)e

−ikx
)

χβn( ~r⊥)

Now, the current operator in the left lead is given as,

Îα(x, t) =
~e

2im

∫

d~r⊥

[

ψ̂†
α(~r, t)

(
∂

∂x
ψ̂α(~r, t)

)

−
(
∂

∂x
ψ̂†
α(~r, t)

)

ψ̂α(~r, t)

]

(A.1)

Substitution of the forms of ψ̂α(~r, t) into Îα(x, t) and assuming that v, k, are

independent of energy and scales of the order of the Fermi energy, we get,

Îα(t) =
e

2π~

∑

n

∫

dǫ dǫ′ ei(ǫ−ǫ′)t/~
[

â†αn(ǫ)âαn(ǫ
′)− b̂†αn(ǫ)b̂αn(ǫ

′)
]

(A.2)
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The operators âαn(ǫ) and b̂αn(ǫ) are related via the scattering matrix ,



















b̂α1

b̂α2
...

b̂αNα

...

b̂βNβ



















= S



















âα1

âα2
...

âαNα

...

âβNβ



















where, the scattering matrix for a 2 terminal device is represented in terms of

block matrices, (Sγδ), (γ, δ can be α or β), as the following:






Sαα Sαβ

Sβα Sββ




 (A.3)

(Sαα)ij Responsible for reflection of a carrier in the incoming state in lead 1

channel i, to an outgoing state in lead 2, channel j.

(Sαβ)ij Responsible for transmission of a carrier in the incoming state in lead 1,

channel i, to an outgoing state in lead 2, channel j.

(Sβα)ij Responsible for transmission of a carrier in the incoming state in lead 2,

channel i, to an outgoing state in lead 1, channel j.

(Sββ)ij Responsible for reflection of a carrier in the incoming state in lead 2,

channel i, to an outgoing state in lead 2, channel j.
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Based on the above I can write,

∑

n

b̂†αn(ǫ)b̂αn(ǫ
′) =

∑

γδ
kp

â†γk(ǫ)
(
S†
αγSαδ

)

kp
âδp(ǫ

′) (A.4)

∑

n

â†αn(ǫ)âαn(ǫ
′) =

∑

γδ
kp

â†γk(ǫ)âδp(ǫ
′)δαγδβδδkp (A.5)

Therefore,

Îα(t) =
e

2π~

∑

γδ
kp

∫

dǫ dǫ′ ei(ǫ−ǫ′)t/~

〈

â†γk(ǫ)A
kp
γδ(α; ǫ, ǫ

′)âδp(ǫ
′)

〉

where,

Akp
γδ(α; ǫ, ǫ

′) = δαγδαδδkp −
(
S†
αγSαδ

)

kp

For a non-interacting system,

〈

â†γk(ǫ)âδp(ǫ
′)
〉

= δαγδkpδ(ǫ− ǫ′)fγ(ǫ)

Hence,
〈

ˆIα(t)
〉

=
e

2π~

∫

dǫ
∑

γk

Akk
γγ(α; ǫ, ǫ) fγ(ǫ) (A.6)

Now,

Akk
γγ(α; ǫ, ǫ) = Nα −

∑

γ

Tr
(
S†
αγSαγ

)
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So, for a 2-terminal device,

[

Nα −
∑

γ

Tr
(
S†
αγSαγ

)
]

fγ(ǫ)

=

[

Nα − Tr
(
S†
ααSαα

)
]

fα(ǫ)− Tr
(

S†
αβSαβ

)

fβ(ǫ)

= Tr
(

S†
αβSαβ

)[

fα(ǫ)− fβ(ǫ)

]

=
∑

n

Tn(ǫ)

[

fα(ǫ)− fβ(ǫ)

]

Therefore,

〈

Îα(t)
〉

=
e

2π~

∫ ∞

0

dǫ
∑

n

Tn(ǫ)

[

fα(ǫ)− fβ(ǫ)

]

(A.7)
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Appendix B

Properties of the Scattering

Matrix

Here I demonstrate the two properties of the scattering matrix of a two terminal

device. A slight thought would tell us that this is general for an N terminal device

also. Let us refer back to (A.3), (A.4), (A.5).

Flux conservation demands,

〈
nout
α + nout

β

〉
=

〈
nin
α + nin

β

〉

or, 〈
∑

γδ
kp

â†γk

(

S†
αγSαδ + S†

βγSβδ

)

kp
âδp

〉

=
∑

γδ
kp

δγδδkp

〈

â†γkâδp

〉

(B.1)

So, only for γ = δ and k = p, there corresponds a non-zero term on the R.H.S. of

(B.1) and it is equal to fδ.
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So, we have,

S†
ααSαα + S†

βαSβα = 1α

S†
αβSαβ + S†

ββSββ = 1β

S†
ααSαα + S†

βαSβα = 0

S†
ααSαβ + S†

βαSββ = 0

This is the same as,

S†S = 1 : Unitary (B.2)

Time reversal symmetry demands,

S = ST : Symmetric (B.3)
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Appendix C

Mathematical Steps Involved in

obtaining Pαβ(0)

The noise power is represented as,

Pαβ(ω) = 2

∫ ∞

−∞

[

〈Iα(t)Iβ(t′)〉
︸ ︷︷ ︸

1

−〈Iα(t)〉 〈Iβ(t′)〉
︸ ︷︷ ︸

2

]

eiω(t−t′)d(t− t′) (C.1)

C.1 Step 1

Term(1) will involve the following:

∑

γδ
kp

∑

λν
mn

〈

â†γk(ǫ1) A
kp
γδ(α; ǫ1, ǫ2) âδp(ǫ2) â

†
λm(ǫ3) A

mn
λν (β; ǫ3, ǫ4) âνn(ǫ4)

〉

=
∑

γδ
kp

∑

λν
mn

Akp
γδ(α; ǫ1, ǫ2) A

mn
λν (β; ǫ3, ǫ4)

〈

â†γk(ǫ1) âδp(ǫ2) â
†
λm(ǫ3) âνn(ǫ4)

〉

For a non-interacting system,
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〈

â†1â2â
†
3â4

〉

=

〈

â†1â2

〉〈

â†3â4

〉

+ δ14δ23f1 (1− f2)

1 : γ, k, ǫ1 ; 2 : δ, p, ǫ2

3 : λ,m, ǫ3 ; 4 : ν, n, ǫ4

On substituting (A.1), Term(2) gets cancelled and we are left with,

Pαβ(ω) =
2e2

h2

∫ ∞

0

(∫ ∞

−∞

∑

γδ
mn

Amn
γδ (α; ǫ, ǫ

′) Anm
δγ (β; ǫ′, ǫ)

fγ(ǫ)
(
1− fδ(ǫ

′)
)
e

i(ǫ−ǫ′)(t−t′)
~ eiω(t−t′) d(t− t′)

)

dǫ

or,

Pαβ(ω) =
2e2

h2

∫ ∞

0

(
∑

γδ
mn

Amn
γδ (α; ǫ, ǫ

′) Anm
δγ (β; ǫ′, ǫ)

fγ(ǫ)
[
1− fδ(ǫ

′)
]
δ
(
(ǫ− ǫ′)/~+ ω

)
)

dǫ

or,

Pαβ(ω) =
2e2

h2

∫ ∞

0

(
∑

γδ
mn

Amn
γδ (α; ǫ, ǫ+ ~ω) Anm

δγ (β; ǫ+ ~ω, ǫ)

fγ(ǫ)
[
1− fδ(ǫ+ ~ω)

]
)

dǫ (C.2)
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C.2 Step 2

This step involves evaluation of the term:

∑

γδ
mn

Amn
γδ (α; ǫ, ǫ+ ~ω) Anm

δγ (β; ǫ+ ~ω, ǫ) fγ(ǫ)
[
1− fδ(ǫ+ ~ω)

]

In the ω −→ 0(static limit), this is,

∑

γδ
mn

Amn
γδ (α; ǫ, ǫ) A

nm
δγ (β; ǫ, ǫ) fγ(ǫ)

[
1− fδ(ǫ)

]

I shall omit the energy arguments from now. All energy arguments are, ǫ, unless

otherwise specified. Let me define,

I =
∑

γδ
mn

[

δmnδαγδαδ −
(
S†
αγSαδ

)

mn

] [

δnmδβδδβγ −
(

S†
βδSβγ

)

nm

]

fγ (1− fδ)

=
∑

γδ
mn

[

δmnδαγδαδδβδδβγ − δmnδαγδαδ

(

S†
βδSβγ

)

nm

− δnmδβδδβγ
(
S†
αγSαδ

)

mn
+
(
S†
αγSαδ

)

mn

(

S†
βδSβγ

)

nm

]

fγ [1− fδ] (C.3)

C.2.1 Case I : α = β = α (say)

Let,

Term(i) =
∑

γδ
mn

δmnδαγδαδfγ [1− fδ]

=Nα fα [1− fα]
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Term(ii) + Term(iii) =− 2 Tr (S†
ααSαα) fα [1− fα]

=− 2 fα [1− fα]
[
Nα − Tr (tt†)

]

where, I have used,

S†S = 1

and, I have defined,

Sαβ = t and Sβα = t′

where, 1 : Identity matrix of dimension ((Nα +Nβ) X (Nα +Nβ))

Term(iv) =
∑

γδ
mn

(
S†
αγSαδ

)

mn

(

S†
βδSβγ

)

nm
fγ [1− fδ]

=Tr
{(
S†
ααSαα

)2
}

fα [1− fα]

+Tr

{(

S†
αβSαβ

)2
}

fβ [1− fβ]

+Tr
(

S†
ααSαβS

†
αβSαα

)

fα [1− fβ]
︸ ︷︷ ︸

a

+Tr
(

S†
αβSααS

†
ααSαβ

)

fβ [1− fα]
︸ ︷︷ ︸

b

Now,

Tr
{(
S†
ααSαα

)2
}

+ Term(ii) + Term(iii) = Tr

{(

S†
βαSβα

)2
}

fα [1− fα]
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and, in Term(iv), Term(a) + Term(b)

= Tr
{(

1α − SαβS
†
αβ

)

SαβS
†
αβ

}[

fα(1− fβ) + fβ(1− fα)

]

Collecting all the above results, we finally converge to the following result,

Pαα(ω = 0) =

∞∫

0

(

Tr
{(
tt†

)2
}

fβ (1− fβ) + Tr
{(
t′t′†

)2
}

fα (1− fα)

+Tr
{
tt†

(
1α − tt†

)}
[fα + fβ − 2fαfβ]

)

dǫ (C.4)

Pαα(ω = 0) =
2e2

h

∫ ∞

0

dǫ

{

Tr
(
tt†

)
[fα(1− fα) + fβ(1− fβ)]

+Tr
{
tt†(1α − tt†)

}
[fα(1− fβ) + fβ(1− fα)]

}

(C.5)
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C.2.2 Case II : α 6= β

We refer to (A.3) and realize that now,

Term(i) =0

Term(ii) + Term(iii) =− Tr
(
tt†

) [
fα(1− fα) + fβ(1− fβ)

]

Term(iv) =fα(1− fβ) Tr
(

S†
ααSαβS

†
ββSβα

)

+fβ(1− fα) Tr
(

S†
αβSααS

†
βαSββ

)

+ fα(1− fα) Tr
(

S†
ααSααS

†
βαSβα

)

︸ ︷︷ ︸

a

+ fβ(1− fβ) Tr
(

S†
αβSαβS

†
ββSββ

)

︸ ︷︷ ︸

b

A close analysis of Term(iv) tells us that, expansion of (Term(iva) +Term(ivb)),

cancels with (Term(ii) + Term(iii)), thus finally giving us,

Pαβ(ω = 0) = −
∞∫

0

(

Tr
{(
tt†

)2
}

fβ (1− fβ) + Tr
{(
t′t′†

)2
}

fα (1− fα)

+Tr
{
t′t′†

(
1β − t′t′†

)}
[fα + fβ − 2fαfβ]

)

dǫ (C.6)

Now, only in presence of time reversal symmetry, we can obtain the following by

comparing (C.4) and (C.6),

Pαβ(ω = 0) = −Pαα(ω = 0) (C.7)
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Appendix D

Analysing noise in presence of a

temperature difference (Θ 6= 0)

As derived in Appendix C,

Pαα(ω = 0) =

∞∫

0

(

Tr
{(
tt†

)2
}

fβ (1− fβ) + Tr
{(
t′t′†

)2
}

fα (1− fα)

+Tr
{
tt†

(
1α − tt†

)}
[fα + fβ − 2fαfβ]

)

dǫ (D.1)

Pαβ(ω = 0) = −
∞∫

0

(

Tr
{(
tt†

)2
}

fβ (1− fβ) + Tr
{(
t′t′†

)2
}

fα (1− fα)

+Tr
{
t′t′†

(
1β − t′t′†

)}
[fα + fβ − 2fαfβ]

)

dǫ (D.2)
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Let me define,

Tr
{(
tt†

)2
}

= h1(ǫ) andTr
{(
t′t′†

)2
}

= h2(ǫ)

Tr
{
tt†

(
1α − tt†

)}
= (g1(ǫ)− h1(ǫ))

Tr
{
t′t′†

(
1β − t′t′†

)}
= (g2(ǫ)− h2(ǫ))

Let me write 1 for the αth lead and 2 for the βth lead. Under time reversal symmetry,

we can drop the lead indices and write,

When Θ = 0, the current noise power is given by,

P =
2e2

h

∑

n

∞∫

0

dǫ

[(

f1 + f2

)

Tn − 2Tn

(

1− Tn

)

f1f2 −
(

f 2
1 + f 2

2

)

T 2
n

]

, (D.3)

where,

f1, f2: Fermi distribution functions of electrons in leads 1 (left) or 2(R) (right),

respectively.

f1(2) =
1

eβ1(2)(ǫ−µ1(2)) + 1
.

Tn: Transmission function of the nth channel; in general it is a function of energy

(ǫ).

Let us assume that the transmission function is a flat function of energy, so that,

Tn(ǫ) = Tn(ǫF ), and can be taken out of the energy integral.
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P (V, T ) =
2e2

h

∑

n

[

Tn

∞∫

0

dǫ

(

f1 + f2

)

︸ ︷︷ ︸

I1

−2Tn

(

1−Tn
) ∞∫

0

dǫ f1f2

︸ ︷︷ ︸

I2

−T 2
n

∞∫

0

dǫ

(

f 2
1 + f 2

2

)

︸ ︷︷ ︸

I3

]

.

(D.4)

The above equation can be exactly solved to get a closed form expression, as a

function of the applied bias voltage (V ) and ambient temperature (T ). Hence (D.3),

in the limit when eβµ1 and eβµ1 >> 1 becomes,

P (V, T ) = I1 − I2 − I3, (D.5)

with,

I1 = µ1 + µ2,

I2 =
µ1e

−βµ1 − µ2e
−βµ2

e−βµ1 − e−βµ2
,

I3 = (µ1 + µ2)−
2

β
,

which can be substituted in (D.3) to get,

P (V, T ) =
2e2

h

∑

n

[

2kBT T 2
n − Tn

(

1− Tn

)

eV coth
eV

2kBT

]

. (D.6)

Now let us consider the case when Θ 6= 0. Let, T2 = T and T1 = T + Θ; µ2 = µ,

and µ1 = eV + µ. In order to be able to solve (D.3) exactly we have to do the

following,

f1(ǫ, µ1, T1) = f̄1(ǫ, µ1, T ) + Θ
∂f̄(ǫ, µ1, T )

∂T
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or,

f1(ǫ, µ1, T1) = f̄1(ǫ, µ1, T ) +
Θ

kBT 2

(ǫ− µ1)e
β(ǫ−µ1)

[1 + eβ(ǫ−µ1)]2
(D.7)

where,

f̄1(ǫ, µ1, T ) =
1

[1 + eβ(ǫ−µ1)]
,

and, β = 1/kBT . If we substitute the above in (D.3) we get,

P (V, T,Θ) = P0(V, T ) + ∆P (V, T,Θ),

where,

P0(V, T ) =
2e2

h

∑

n

[

2kBT T 2
n − Tn

(

1− Tn

)

eV coth
eV

2kBT

]

,

∆P (V, T,Θ) =I ′

=
Θ

kBT 2

∞∫

0

(ǫ− µ1)e
β(ǫ−µ1)dǫ

[1 + eβ(ǫ−µ1)]2[1 + eβ(ǫ−µ2)]
.

Let us cosider the integral I ′:1

I ′ =
Θ

T 2

[ ∞∫

0

(ǫ− µ)e(ǫ−µ−V )/Tdǫ

[1 + e−V/T e(ǫ−µ)/T ]2[1 + e(ǫ−µ)/T ]
︸ ︷︷ ︸

I′(1)

−eV
∞∫

0

e(ǫ−µ−V )/Tdǫ

[1 + e(ǫ−µ)/T e−V/T ]2[1 + e(ǫ−µ)/T ]
︸ ︷︷ ︸

I′(2)

]

1I have wriiten eV as V
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where, everything has written in units of kB.

Let, ǫ− µ = x,

I ′ =
Θ

T 2

[ ∞∫

−µ

(x− V )e(x−V )/Tdx

[1 + e−V/T ex/T ]2[1 + ex/T ]

]

≈ Θ

T 2

[ ∞∫

−∞

(x− V )e(x−V )/Tdx

[1 + e−V/T ex/T ]2[1 + ex/T ]

]

.

Let, x/T = y, then,

I ′ =

∞∫

−∞

(y − V̄ )e(y−V̄ )/Tdy

[1 + e−V̄ /T ey/T ]2[1 + ey/T ]
,

where, V̄ = V/T .

∴

I ′1 = γ

∞∫

−∞

yey dy

[γ + ey]2[1 + ey]
, (D.8)

and,

I ′2 = V̄ γ

∞∫

−∞

ey dy

[γ + ey]2[1 + ey]
, (D.9)

where, γ = eV̄ .

The above integrals can be solved exactly by the help of the following two integrals:

∞∫

−∞

y dy

[γ + ey][1 + ey]
=

(ln γ)2

2(γ − 1)
,
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∞∫

−∞

dy

[γ + ey][1 + ey]
=

ln γ

γ − 1
.

I ′1 =− γ
∂

∂γ

∞∫

−∞

y dy

[γ + ey][1 + ey]

=
eV̄

2

[(
V̄

eV̄ − 1

)2

− 2V̄

eV̄ (eV̄ − 1)

]

. (D.10)

I ′2 =− V̄ eV̄
∂

∂γ

∞∫

−∞

dy

[γ + ey][1 + ey]

= V̄ eV̄
[

− 1

eV̄ (eV̄ − 1)
+

V̄

(eV̄ − 1)

]

. (D.11)

∴

I ′ = − 1

2

(
V̄

2 sinh(V̄ /2)

)2

. (D.12)

∴

∆P (V, T,Θ) = P0(V, T,Θ) + kB
∑

n

(

Θ T 2
n +Θ Tn(1− Tn)

)(
V̄

2 sinh(V̄ /2)

)2

.

(D.13)

In the linear response regime,

lim
V→0

∆P =
∑

n

TnkBΘ. (D.14)
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However, if time reversal symmetry does not hold, then the scattering matrix is not

symmetric and hence, t′ 6= t. In that case, Pαα 6= Pαβ will be given by,

Pαα =
2e2

h

[

kBT (h1 + h2) + kBθ h2 + (g1 − h1)

(

eV coth

(
eV

kBT

)

+ I ′
)]

(D.15)

Pαβ =
2e2

h

[

kBT (h1 + h2) + kBθ h2 + (g2 − h2)

(

eV coth

(
eV

kBT

)

+ I ′
)]

(D.16)

where, the functions h1, h2, g1, g2, are calculated at the Fermi energy.
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Appendix E

Mathematical tools to implement

the Sommerfeld Expansion

E.1 List of Integrals used

∫
dx

1 + e−x
= ln(1 + ex) (E.1)

∫
dx

1 + ex
= − ln(1 + e−x) (E.2)

∫
dx

(1 + e−x)2
=

( −1

1 + e−x

)

+ ln(1 + ex) (E.3)

∫
dx

(1 + ex)2
=

(
1

1 + ex

)

− ln(1 + e−x) (E.4)

∫

ln(1 + ex)dx = −Li2(−ex) (E.5)
∫

ln(1 + e−x)dx = Li2(−e−x) (E.6)

∫ (∫

ln(1 + ex)dx

)

dx = −Li3(−ex) (E.7)

∫ (∫

ln(1 + e−x)dx

)

dx = −Li3(−e−x) (E.8)

∞∫

0

ln(1 + e−x)dx =
π2

12
(E.9)
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E.2 Functional identities and particular values of

the Polylogarithm function

Li2(−1) = − π2

12
(E.10)

Li3(−1) = − 3

4
ζ(3) (E.11)

Li2(0) = 0 (E.12)

Li3(0) = 0 (E.13)

Li2(z) =− Li2

(
z

z − 1

)

− 1

2
ln2(1− z) /; z /∈ (1,∞) (E.14)

Li3(z) =− Li3

(
z

z − 1

)

− Li3

(
1

1− z

)

(E.15)

+
1

3
ln3(1− z)− 1

2
ln(−z) ln2(1− z)

− 1

6
π2 ln(1− z) + ζ(3) /; z /∈ (1,∞)

E.3 Relationship between Fermi-Dirac Integrals

and Polylogarithm

The complete Fermi Dirac integral for an index j is given by,

Fn(x) =
1

Γ(n+ 1)

∞∫

0

tn

1 + exp[t− x]
dt (E.16)

where,

Γ(j + 1) is the Gamma function.
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∵ Fn(x) =

∫

Fn−1 dx

∴ F1(x) =

∫

ln(1 + ex) dx

Again, by definition of the polylogarithm function,

Lin(η) =
1

Γ(η)

∞∫

0

t(n−1)

1 + exp[t]η−1
dt (E.17)

If, η = − exp[x], then,

Lin(−ex) = −Fn−1(x) (E.18)

E.4 Integrals appearing in the Sommerfeld Ex-

pansion

The following integrals are evaluated in the limit βµ >> 1.

∞∫

−βµ

xex

(1 + ex)2
dx =−

[
x

1 + ex

]∞

−βµ

+

∞∫

−βµ

dx

1 + ex

=−
[

x

1 + ex
+ ln(1 + e−x)

]∞

−βµ

= [−βµ+ βµ]

=0

I1 =

∞∫

−βµ

xex

(1 + ex)2
dx = 0 (E.19)

I2 =

∞∫

−∞

x2ex

(1 + ex)2
dx = 2ζ(2) =

π2

3
(E.20)
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∞∫

−βµ

xex

(1 + ex)3
dx =−

βµ∫

0

xe−x

(1 + e−x)3
dx+

∞∫

0

xex

(1 + ex)3
dx

=− 1

2





[
x

(1 + e−x)2

]βµ

0

−
βµ∫

0

dx

(1 + ex)2





+
1

2



− x

(1 + ex)2
+

∞∫

0

dx

(1 + ex)2





=− 1

2

[
x

(1 + e−x)2
+

1

1 + e−x
− ln(1 + ex)

]βµ

0

+
1

2

[ −x
(1 + ex)2

+
1

1 + ex
− ln(1 + e−x)

]∞

0

=− 1

2

∴ I3 =

∞∫

−βµ

xex

(1 + ex)3
dx = −1

2
(E.21)

∞∫

−βµ

x2ex

(1 + ex)3
dx =

βµ∫

0

x2e−x

(1 + e−x)3
dx+

∞∫

0

x2ex

(1 + ex)3
dx

=
1

2

[
x2

(1 + e−x)2

]βµ

0

−
βµ∫

0

x

(1 + e−x)2
dx

+
1

2

[

− x2

(1 + ex)2

]∞

0

+

∞∫

0

x

(1 + ex)2
dx

=

[
1

2

x2

(1 + e−x)2
− (x+ 1) ln(1 + ex) +

x

1 + e−x
− Li2(−ex)

]βµ

0

+

[
1

2

x2

(1 + ex)2
+ (1− x) ln(1 + e−x) +

x

1 + ex
+ Li2(−e−x)

]∞

0

=

(
π2

12
+ ln 2

)

+

(
π2

12
− ln 2

)

=
π2

6
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∴ I4 =

∞∫

−βµ

x2ex

(1 + ex)3
dx =

π2

6
(E.22)

∞∫

−βµ

x3ex

(1 + ex)3
dx =−

βµ∫

0

x3e−x

(1 + e−x)3
dx+

∞∫

0

x3ex

(1 + ex)3
dx

=− 1

2

[
x3

(1 + e−x)2

]βµ

0

+
3

2

βµ∫

0

x2

(1 + e−x)2
dx

+
3

2

∞∫

0

x2

(1 + ex)2
dx

= −1

2

[
x3

(1 + e−x)2
+

3x2

1 + e−x
− 3x(x+ 2) ln(1 + ex)

−6(x+ 1)Li2(−ex) + 6Li3(−ex)
]βµ

0

+3

∞∫

0

x ln(1 + e−x)dx− 3

∞∫

0

x

1 + ex
dx

=−
[
π2

2
+

21

8
ζ(3) +

9

4
ζ(3)

]

+

[
9

4
ζ(3)− π2

4

]

=− 3

4

(

π2 +
7

2
ζ(3)

)

∴ I5 =

∞∫

−βµ

x3ex

(1 + ex)3
dx = − 3

4

(

π2 +
7

2
ζ(3)

)

= C

E.5 Use of Sommerfeld Expansion:

We need to evaluate an expression that looks like the following:

S =

∞∫

0

g(ǫ)

[

f1(ǫ)+f2(ǫ)

]

dǫ−2

∞∫

0

[

g(ǫ)−h(ǫ)
]

f1(ǫ)f2(ǫ)dǫ−
∞∫

0

h(ǫ)

[

f 2
1 (ǫ)+f

2
2 (ǫ)

]

dǫ

(E.23)
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where,

∫

k(ǫ)dǫ = K(ǫ)

I will also use the fact that,

• eV << µ1 or µ2

• T1 = T2 + θ but θ << T

Now let us proceed towards evaluating the following integrals using Sommerfeld

expansion,

1.
∞∫

0

k(ǫ) [f1(ǫ) + f2(ǫ)] dǫ

∞∫

0

k(ǫ)f1(ǫ)dǫ =−K(0) +

∞∫

0

(

−∂f
∂ǫ

)

K(ǫ)dǫ

=−K(0) +K(µ1) +
k′(µ1)

2β2
1

I2

=−K(0) +K(µ1) +
k′(µ1)

β2
1

π2

6

=−K(0) +K(µ) + eV g(µ) +
π2

6

[
k′(µ)

β2
+
eV k′′

β2

](

1 +
2θ

T

)

∞∫

0

k(ǫ)f2(ǫ) =−K(0) +K(µ2) +
k′(µ2)

β2
2

π2

6

∞∫

0

k(ǫ) [f1(ǫ) + f2(ǫ)] =− 2K(0) + 2

(

K +
k′π2

6β2

)

+ eV

(

k +
k′′π2

6β2

)

+
k′π2

3β2

θ

T
+
k′′π2

3β2

eV θ

T
(E.24)
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2.

∞∫

0

k(ǫ)f 2
1 (ǫ)dǫ =−K(0) +K(µ1) +

2k(µ1)

β1
I3 +

k′(µ1)

β2
1

I4

=−K(0) +K(µ1)−
k(µ1)

β1
+
k′(µ1)

β2
1

π2

6

=−K(0) +

(

K − k

β
+
k′

β2

π2

6

)

+ eV

(

k − k′

β
+

k

β2

π2

6

)

+
θ

T

(
k′

β2

π2

3
− k

β

)

+
eV θ

T

(
k′′

β2

π2

3
− k′

β

)

∴

∞∫

0

k(ǫ)
(
f1(ǫ)− f 2

1 (ǫ)
)
dǫ =

k(µ1)

β1
(E.25)

=

(
k(µ) + eV k′(µ)

β

)(

1 +
θ

T

)

(E.26)

∞∫

0

k(ǫ)
(
f2(ǫ)− f 2

2 (ǫ)
)
dǫ =

k(µ)

β
(E.27)

3. 2
∞∫

0

k(ǫ)f1(ǫ)f2(ǫ)dǫ

In order to be able to evaluate this integral analytically I used,

f1(ǫ) = f(ǫ) + eV

(

−∂f
∂ǫ

)

+
θ

T
(ǫ− µ)

(

−∂f
∂ǫ

)

Now,

∞∫

0

k(ǫ)f1(ǫ)f2(ǫ)dǫ =

∞∫

0

k(ǫ)f 2(ǫ)dǫ+
eV

2

∞∫

0

k(ǫ)

(

−∂f
2

∂ǫ

)

dǫ

+
θ

2T

∞∫

0

(ǫ− µ)

(

−∂f
2

∂ǫ

)

k(ǫ)dǫ
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A similar treatment as before gives us,

∞∫

0

k(ǫ)f 2(ǫ)dǫ = K − k

β
+
k′

β2

π2

6
−K(0) (E.28)

eV

2

∞∫

0

k(ǫ)

(

−∂f
2

∂ǫ

)

dǫ =
eV

2

[

k − k′

β
+
k′′

β2

π2

6

]

(E.29)

θ

2T

∞∫

0

(ǫ− µ)

(

−∂f
2

∂ǫ

)

k(ǫ)dǫ =
θ

2T

[

−k
β
+
k′

β2

π2

3
+
k′′

β3
C

]

(E.30)

Collecting all the terms,

2

∞∫

0

k(ǫ)f1(ǫ)f2(ǫ)dǫ = 2

(

K − k

β
+
k′

β2

π2

6

)

+ eV

(

k − k′

β
+
k′′

β2

π2

6

)

+
θ

T

(

−k
β
+
k′

β2

π2

3
+
k′′

β3
C

)

− 2K(0) (E.31)

∞∫

0

k(ǫ) (f1 + f2) dǫ =− 2K(0) + 2

(

K +
k′π2

6β2

)

+ eV

(

k +
k′′π2

6β2

)

+
k′π2

3β2

θ

T
+
k′′π2

3β2

eV θ

T
(E.32)

Subtracting (E.31) from (E.32), I get,

term1 = 2
k

β
+ eV

k′

β
+
θ

T

(
k

β
− k′′

β3
C

)

+
eV θ

T

k′′π2

3β2
(E.33)
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