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Preface

This thesis is divided into three chapters.

The first chapter gives a brief overview to glass transition and glasses and the

role of colloids in understanding these phenomena. We have also discussed our

motivation for studying the reentrant glass dynamics of short colloidal ellipsoids.

The second chapter contains a detailed discussion on material and methods.

In the last chapter, we have discussed the glass transition dynamics in quasi-2

dimensional suspensions of colloidal ellipsoids, aspect ratio α = 2.1, with repulsive

as well as attractive interactions. For the purely repulsive case, we found that the

orientational and translational glass transitions occur at the same area fraction.

The reentrant glass dynamics which is well understood for spherical particles with

symmetric interaction, has been explored for the colloidal ellipsoids with anisotropic

short-range attraction. Strikingly, for intermediate attraction strengths, we found

that the orientational glass transition precedes the translational one. We have quan-

tified the structure and dynamics to rationalize our observations. We show that

quasi-long range ordering is promoted at intermediate attraction strengths which

subsequently results in a two-step glass transition. Most interestingly, within ex-

perimental certainty, we observe reentrant glass dynamics only in the translational

degrees of freedom.
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Chapter 1

Introduction

1.1 Glass Transition and Glasses

The microscopic underpinnings of glasses and the glass transition continue to remain

one of the grand challenges in condensed matter physics.1–3 It is well known that

when a liquid is cooled slowly, at its freezing temperature, Tf , it transforms to a

crystalline state (Figure 1.1). However, if the same liquid is cooled rapidly, crystal-

lization can be bypassed at Tf and the liquid can be supercooled and with further

supercooling, at glass transition temperature, Tg, the liquid falls out of equilibrium

(Figure 1.1). Associated with this transition, there is onset of an elastic modulus

with almost no discernible change in structure. The system below Tg is called glass.

These experimental observations raise a few interesting questions,

1. Is this a phase transition?

2. What leads to slowing down of relaxation with almost no change in structure?

3. It is well known that particle dynamics in supercooled liquids and glasses are

heterogeneous. What is the origin of dynamical heterogeneity?

4. Does particle shape and interaction potential have any role in the physics of

the glass transition?

In-spite of continued efforts to address these questions, there is no consensus on

1



2 Chapter 1.

Figure 1.1: Different ways a liquid (red curve) can be transformed to a solid is shown
in (V, T ) plane at a constant pressure. If the liquid is cooled slowly, it crystallizes
below the freezing point (the green curve). If the same liquid is cooled rapidly (blue
curve), it bypasses crystallization and passes through a glass transition regime and
falls out of equilibrium below Tg. The dependence of Tg on rate of cooling is also
shown. Adopted from.4

the physics of the glass transition. Interestingly, Tg depends on the rate of cooling

itself (Figure 1.1).2,4 Conventionally, Tg is defined as the temperature at which the

viscosity, η, of the system reaches to the order of 1013 Poise.

There are many competing theories to explain this phase transition. The free

volume theory5,6 by Cohen and Turnbull (1959) attributes the glass transition to the

drastic decrease in free volume vf which ceases the diffusive motion of particles. The

thermodynamic theory7,8 by Adams and Gibbs (1965) predicts the glass transition

as a second order phase transition and associates it with decrease in configurational

entropy of the system. There are kinetic theories9,10 which do not consider Tg to be

a thermodynamic variable and are mainly concerned with rate of approach to the

glass transition. Another theory which is more appealing to an experimentalist is

the mode coupling theory (MCT) whose predictions can be tested in experiments.

Here, we will briefly discuss the predictions of MCT.



1.2 Mode Coupling Theory (MCT) and Glass Transition 3

1.2 Mode Coupling Theory (MCT) and Glass Tran-

sition

MCT was proposed by Bengtzelius, Gotze and Sjolander11 and independently by

Leutheeusser12 in 1984. It aims to understand the slowing down of the dynamics

from the liquid side and describes the glass transition as a dynamical crossover

to a structurally arrested state at the temperature Tc. Using, the mode coupling

approximations, equations of motion of a dense liquid were described in terms of

density fluctuations of the system. The solutions to these equations predicted the

cage-effect, a given particle is trapped in the cage formed by its nearest neighbours

and it takes a finite time for the particle to escape, as the primary mechanism for

the motion of particle in supercooled liquids. As Tc is approached, the strength of

caging increases and the structural relaxation time τα diverges. The MCT predicted

Tc is typically greater than Tg due to unaccounted hopping processes near the glass

transition in the MCT formalism.13

The dynamic evolution of density fluctuations ρ(q, t) for a given wave vector q

in a liquid is described by the self intermediate structure factor Fs(q, t) which can

be measured in scattering experiments or computer simulations.

Fs(q, t) =
〈δρ∗(q,t)δρ(q,t)〉

N

ρ(q, t) =
∑N

j=1 exp[iq · rj(t)]

Here, N is the total number of particles, rj(t) is the position of jth particle at time

t and 〈〉 denotes the time averaging. The static measurement of Fs(q, t) gives the

structure factor S(q) which is the Fourier transform of particles’ position in real

space,

S(q) = Fs(q, 0) =
〈
∑

jk exp[iq·(rj−rk)]〉

N

where the sum is done over the pair of particles j and k of the system, rj and rk

are coordinates of jth and kth particles. A typical relaxation curve for Fs(q, t) is



4 Chapter 1.

shown in Figure 1.2 below. The decay is exponential at high temperature where

Figure 1.2: Self intermediate scattering function Fs(q, t) at various temperatures T .
The β and α-relaxation regimes are shown. Adopted from.14

the motion of particles is diffusive. At low T, T > Tc, i.e. for supercooled liquids,

a two-step relaxation is observed. While the first step corresponds to rattling of

particles inside the cages formed by neighbouring particles (the β-relaxation), the

second one corresponds to the cage rearrangements and escape of the particles from

their respective cages (the α-relaxation).15,16 MCT predicts the behaviours of these

relaxations and estimates Tc, from relaxation times. The three major predictions of

MCT,11,15–18 for T → Tc from liquid side, are given below.

1.2.1 Prediction 1

The relaxation in early β regime follows the critical power law behaviour,

Fs(q, t) = fq + hq(
t
tσ
)

where fq is the plateau height, hq is the amplitude and tσ is given by,

tσ = t0
|σ|1/2a
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where t0 is a system universal constant, a is the power law exponent and σ is the

separation parameter given by,

σ = C(T − Tc)

where as discussed Tc is the mode coupling dynamical glass transition temperature.

Hence, the intercept on T axis in the plot of tσ
−2a vs. T yields Tc.

1.2.2 Prediction 2

The relaxation in late β and early α regime follows the von Schweilder law i.e.

Fs(q, t) = fq − hqt
b

where fq is the plateau height, hq is the amplitude and b is a universal exponent called

Schweilder exponent. The long time decay of Fs(q, t) follows stretched exponential

and yields structural relaxation time, τα,

Fs(q, t) = fexp[−(t/τα)
β]

Here β is an exponent. The structural relaxation time τα diverges as power law on

approaching Tc,

τα(T ) ∝ (T − Tc)
−γ

where γ is a scaling exponent given by,

γ = 1
2a

+ 1
2b

Here a and b are power law and Schweilder exponent, respectively. Further, a and

b are system universal parameter and are related as,

Γ(1−a)2

Γ(1−2a)
= Γ(1+b)2

Γ(1+2b)

Hence, intercept on T axis in the plot of τα
−1/γ vs. T yields Tc.
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1.2.3 Prediction 3

Fs(q, t) at different temperatures when scaled by their respective τα, collapse on a

master curve in the α-relaxation regime (Figure 1.3). This is called as the time-

temperature superposition principle (TTSP).

Figure 1.3: The collapse of Fs(q, t) on a master curve (dashed line) in the α-
relaxation regime obtained from von Schweilder law for a Lennard-Jones binary
system. The time axis has been rescaled with τα. The temperature in K (from left
to right): 5.0, 4.0, 3.0, 2.0, 1.0, 0.8, 0.6, 0.55, 0.5, 0.475 and 0.466. Adopted from.17

The parameters discussed in MCT predictions are easily accessible in scattering

and optical experiments and hence, its validity can be tested. For hard spheres

MCT predicts the glass transition at Φ = 0.52, where Φ is the volume fraction.

1.3 Hard Particle Models

The interaction potential between colloidal particles is modelled as hard particle

interaction i.e. for the spherical particles the potential UHS is given as,

UHS = ∞ if 0 < r < σ

UHS = 0 if r > σ
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where σ is the diameter of the colloidal particle and r is the centre-to-centre dis-

tance between two particles. The hard sphere potential is schematically shown in

Figure 1.4. From thermodynamics, the free energy F can be expressed in terms of

Figure 1.4: Hard sphere interaction potential (red color) as a function of r.

partition function, Z, summed over all configurations of the system.

F = U − TS = −kBT lnZ

Z =
∑

config. exp(−
∑

i,jbonds
Uij

kBT
)

exp(−
∑

i,jbonds
Uij

kBT
) = 0 if r ≤ σ

exp(−
∑

i,jbonds
Uij

kBT
) = 1 if r ≥ σ

where kB is Boltzmann constant, T is temperature, U and S are the internal energy

and the entropy of the system, respectively. Hence, only entropy governs the phase

behaviour of hard sphere model. Entropy, for monodisperse hard spheres of radius

a, depends on volume fraction, Φ. Thus, for hard spheres Φ acts like an inverse of

temperature.

Φ = 4
3
πa3N

V



8 Chapter 1.

where N is the total numbers of particles in a given volume V . The hard spheres

phase diagram is shown in Figure 1.5.

Figure 1.5: Hard sphere phase diagram as a function of volume fraction Φ. Adopted
from.19

Before moving on to colloidal glasses and glass transition, it is important to

note that colloidal systems differ from their atomic counterparts in many ways.20,21

While the short time dynamics are ballistic in atomic systems, they are diffusive

for colloidal systems. Further, the role of hydrodynamic couplings in dense colloidal

suspensions are not well understood.22 However, recent simulations have shown that

these two effects are unimportant for glass transition physics.23–26 The third differ-

ence being the polydispersity of the samples which eventually frustrates the system

from crystallization and shifts the phase transition points to a higher Φs.27–29 In

addition, recent observations of spontaneous crystallization of colloidal glass in mi-

crogravity30 has led to some controversy about the effect of gravity on colloidal

glass transition phenomena. However, given the fact that predictions from gravity

free simulations are in excellent agreement with colloidal experiments, it is plausible

that gravity does not have any role in the the observations of colloidal glasses. It is

worthwhile to mention that whether or not hard sphere show a glass transition, there

is clearly a change in the nucleation mechanism in the vicinity of glass transition.31
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1.4 Colloids as Model Systems to Study Glass

Transition

1.4.1 Colloidal Suspensions

The word colloid is derived from the Greek word “kolla” (glue) and “eidos” (appear-

ance) and was coined by Thomas Graham, a Scottish chemist in 1861. According

to Britannica Online Encyclopedia, “A colloid is a substance microscopically dis-

persed throughout another substance”. Depending upon the state of the dispersed

phase/first substance and dispersed media/second substance, colloids are classified

into various categories like, suspension/dispersion - solid particles in a liquid, foams

- gas bubbles in liquid/solid medium, emulsion - liquid droplets in an immiscible liq-

uid and so on. The main focus here would be on colloidal suspensions (Figure 1.6)

where the size of the particles suspended in the liquid is of the order of microns.

Examples of colloidal suspensions are, fat particles suspended in water (milk), metal

particles (lead etc.) suspended in motor oil, coloured pigments suspended in paints

etc. Colloidal particles are stabilized by electrostatic or steric repulsion. In the for-

Figure 1.6: (a) Colloidal suspension (b) Spherical colloidal particles in a refractive
index matched solvent. Hence they are not visible in isotropic phase but they show
Bragg scattering in the crystalline phase at the bottom. Adopted from.33

mer case, the electric charges on the surface of particles stabilize it e.g. polystyrene



10 Chapter 1.

(PS) particles in water. Stability of these colloids are described by DLVO (Der-

jaguin and Landau, Verwey and Overbeek) theory32 which takes into account the

double layer formation of counter-ions around colloidal particles. In the latter case,

polymeric molecules either chemically attached or adsorbed on particles stabilize

it32 e.g. polymethyl methaacrylate (PMMA) particles in oil. Here, the polymer

chain dimensions are larger than the van der Waals attraction range.32 The size of

colloidal particles are big enough that their dynamics can be studied using the laws

of classical mechanics. However, they are small enough that thermal fluctuations of

the suspensions give Brownian motion to the particles (Figure 1.6). The diffusion

time, τD, of the these micron sized particles is of the order 1 ms to 1 s and they can

be seen using an optical microscope and hence are good models (Figure 1.6) to study

phenomena inaccessible in atomic experiments such as nucleation and growth,34–36

grain boundary dynamics in polycrystals,37,38 packing of particles in micron sized

confined geometries,39,40 superheating,41 self assembly42,43 etc. Colloids have numer-

ous applications in everyday life and industrial processes e.g tooth paste, shaving

cream, milk, liquid and mineral purification, oil recovery and processing etc.

Historically, it was in late 1970s, experiments demonstrated the resemblance of

structure in colloids and atomic systems.44,45 This heralded the use of colloids as a

model system to study phase transitions. It was Lindsay and Chaikin in 1982 who

observed a glassy phase in a binary system which was later confirmed by simula-

tions.46 In 1986-87, Pusey and van Megen showed the glass transition in sterically

stabilized, hard-sphere PMMA colloidal particles.47–49

1.4.2 Colloidal Glass Transition and Glasses

In a seminal work, Pusey et. al.47,48 used 305 nm of sterically stabilized PMMA

spherical colloidal particles and realized phases as function of Φ as shown in Fig-

ure 1.7. For the first time, using dynamic light scattering (DLS) techniques, they
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Figure 1.7: Nearly hard spheres colloidal suspension, 4 days after tumbling. States
of the suspensions from left, first - fluid; next three - liquid-crystal coexistence;
next two - homogeneous crystal; 7th - heterogeneous crystal; last two - glass. Bragg
scattering can be observed in crystalline samples. The last sample did not crystallize
even after several months. Adopted from.47

showed that the glass transition at Φg = 0.565.48 In DLS, the temporal fluctuations

of scattered light, at a given wave vector q, have information about the dynamics

of the system. The normalized time correlation of the scattered light for given q,

g(2)(q, t) yields the Fs(q, t),

g(2)(q, t) = 1 + [ cFs(q,t)
S(q)

]
2

where c is an instrument constant. The typical decay behaviour of Fs(q, t) adopted

from Pusey et. al.48is shown in Figure 1.8. While at low Φs, the decay is exponential;

for intermediate Φs, the decay is non-exponential (Figure 1.8). For high Φs, Φ >

0.565, only partial decay is observed in Fs(q, t) (Figure 1.8) and the systems were

found to be glassy. The Φ at which Fs(q, t) decayed only partially was termed as

glass transition volume fraction Φg = 0.565.48

In a major breakthrough experiment, Weeks et al 50 and Kegel et al.51 used

micron sized colloidal particles to investigate the structure and dynamics of super-

cooled liquid and glasses at single particle resolution. The particle dynamics was

quantified using the mean squared displacements (MSD).
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Figure 1.8: Semilogarithmic plot of Fs(q, t) with delay time τ for different samples.
A - fluid; C∗ - fluid-fluid coexistence; B, C, D - fluid-crystal coexistence; E, F -
crystals; G, H, I, J - glass. Adopted from.48

〈∆r2〉 = 1
N
〈
∑N

j=1[(xj(t+ t0)− xj(t))
2 + (yj(t+ t0)− yj(t))

2]〉

Here N is the total number of particles, xj(t) and yj(t) are the coordinates of jth

particle, t0 is the lag time, 〈〉 indicates average over all particles and all initial time

t for a particular t0. MSD as a function of Φ is shown in Figure 1.9 A. At low Φ,

the dynamics is diffusive (Figure 1.9 A).

〈∆r2〉 = 4D∆t

where D is the diffusion coefficient of particles. D of particles depends upon the

solvent’s η and T through the Stokes-Einstein-Sutherland equation52,53 as,

D = kBT
6πηr

As Φ increases, MSD starts developing a plateau at intermediate time and the

dynamics becomes sub-diffusive,50

〈∆r2〉 = 4D(∆t)ν where ν < 1.
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Figure 1.9: (A) 〈∆r2〉 at various volume fraction Φ as indicated in the plot. The
solid line has slope 1. (B) The non-Gaussian parameter α2(t) and (C) the particle
avergared cluster size of fast particles, 〈Nc〉 with time. The Φs in (B) and (C)
are color coded as in (A). The dashed line shows the expected result for random
distribution of fast particles. Adopted from.50
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Here, ν is the diffusion exponent. This plateau region indicates caging of particles by

their neighbours which become stronger with Φ. These observations are in agreement

with MCT.15,17 At the characteristic time t = t∗, an upturn in MSD is observed

which indicates cage relaxation. The upturn in MSD signifies non-Gaussian particle

displacements and are best quantified using the non-Gaussian parameter, α2(t),
50

α2(t) =
〈∆r(t)4〉
2〈∆r(t)2〉

− 1

where ∆r(t) is the displacements of particles over t. Since for any Gaussian process

all higher order moments can be expressed in terms of 〈∆r2(t)〉, α2(t) = 0 for

diffusive dynamics. However, for supercooled liquids, α2(t) show a maximum in the

vicinity of t∗ due to cage rearrangements (Figure 1.9 B). For Φ ≥ 0.58, the peaks

were broader and not as high as observed at lower Φs50 (Figure 1.9 B). This sharp

change in behaviour of α2(t) was identified as glass transition with Φg = 0.58±0.0150

which was in agreement with the previous works.47,48,54

The non-Gaussian particle dynamics at t∗ are best reflected in the probability

distribution of displacements, (P (∆r(t))), over t∗ as shown in Figure 1.10. The

tail of the distribution is non-Gaussian signifying that a fraction of total particles

have higher nobilities as compared to their neighbours (Figure 1.10). The dynamics

over t∗ are thus heterogeneous (Figure 1.11). It was also observed that these most-

mobile particles were spatially clustered and varied with time.50 For the first time,

these dynamical heterogeneities, believed to be pathways of structural relaxations

in supercooled liquid,8 were observed in an experiment50 (Figure 1.11). Further, the

particle averaged cluster size of fast particles, 〈Nc〉, defined as,55

〈Nc〉 =
∑

n n2P (n)
∑

n nP (n)

followed the same trend with time as α2(t) (Figure 1.9 C). Here P (n), is the probabil-

ity of finding a cluster of size n. 〈Nc〉 was observed to be highest at t∗ 50 (Figure 1.9

C). Further, 〈Nc〉 increases on approaching Φg and decreases drastically beyond
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Figure 1.10: The probability distribution of displacements, (P (∆r(t))), over t∗ for
Φ = 0.56. The dashed line is best fit Gaussian, the solid line is a stretched exponen-
tial fit to the tails of the distribution. The particles within dotted lines are slowest
95%. Adopted from.50

Figure 1.11: Spatial distribution of clusters fastest particles (large spheres). For
clarity, the slowest (95% of the particles are shown as small spheres in the back-
ground. (A) Supercooled liquid at Φ = 0.56. (B) Glass at Φ = 0.61. Particles
belonging to the same clusters are shown in same color. Adopted from.50
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Figure 1.12: The variation of 〈Nc〉 with Φ. The dashed horizontal line indicates
〈Nc〉 for random distribution of fast particles. The vertical dashed line represents
Φg. Adopted from.50

Φ ≈ 0.58 = Φg (Figure 1.12).50 The dramatic change in the behaviour of 〈Nc〉,

further confirmed that Φg = 0.58 ± 0.01. The decrease in 〈Nc〉 beyond Φg was

attributed to much slower relaxation i.e. t∗ in the vicinity of Φg corresponds to

β-relaxation and not to cage relaxation.50

So far, we have seen that spherical colloids with purely repulsive interactions give

a microscopic insight into the physics of glass transitions. Now, we will discuss on

the change in particle interaction potentials and its influence on the glass transition

physics.31,56–65

1.5 Attractive Glasses

When the interaction potential between the particles is changed from repulsive

to attractive, MCT predicted the existence of yet another glass - the attractive

glass.61,66,67 The typical phase diagram, in (T,Φ) plane, as predicted by MCT,66 is

shown in Figure 1.13. MCT predicted two lines of transition from liquid to glass.

While one of them extended to high temperature and asymptotically approached
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Figure 1.13: Phase diagram for a square-well system with square well of relative
width ε = 0.03. The inset shows the phase diagram, where AGL and RGL are
shown at various ε. Adopted from.66

the repulsive glass transition Φ, the other line originated at some finite value of

attractive potential and was almost parallel to the Φ- axis at lower temperature61,66

(Figure 1.13). While the former was called as repulsive glass line (RGL), the lat-

ter was called as attractive glass line (AGL). As we move down the T -axis at a

fixed Φ, the transition line moves towards higher Φ (RGL) and comes back to a

lower Φ (AGL) with increasing attraction strengths (Figure 1.13). This is termed as

reentrant in glassy dynamics i.e. at a fixed temperature greater than the repulsive

glass transition temperature (RG Tg), a repulsive glass (RG) melts to an ergodic

fluid and forms a novel glass - attractive glass (AG) - at even higher interaction

strengths (Figure 1.13).61,66 The reasons for emergence of different glasses was at-

tributed to two competing length scales set by attractive and repulsive potential.

While the dynamics in RG is dominated by cage relaxations, in AG, bonding be-

tween the particles dictates the dynamics. Further, the shift of RGL to higher Φ

depends on the relative width of attractive potential to repulsive potential, ε, (inset
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to Figure 1.13).61,66 The endpoint of the AGL is a higher order glass transition point

(called A3 point), beyond which the distinction between AG and RG vanishes.61,66

This implies that the length scale set by the range of the interaction potential is

comparable to how much a particle can move within a cage.

The above MCT predictions were realized experimentally by, Pham et. al.31

and Eckert et. al.57 who independently used short-range depletion interaction68 to

introduce an attraction between the colloidal particles. The sizes of the depletant

particles (rg) are smaller than colloidal particles (R) i.e. rg
R

= ε < 1. As shown

in Figure 1.14, the centres of the small polymer particles cannot enter within an

excluded volume (determined by rg) around large spherical colloid.

Udep = − R
rg
φpolykBT

where symbols have usual meaning. When the big colloidal particles come together,

their excluded volume overlaps and subsequently free up an equivalent volume for

the small polymer particles. This increases the entropy of the depletant particles

and hence induces an effective attraction between the large colloids (Figure 1.14).

The strength and range of this attractive interaction can be tuned by changing the

concentration, φpoly and rg, respectively.

Hence, for a narrow range of Φs with Φ > Φg as function of increasing attraction

strength, a RG (sample A in Figure 1.15) melts to an ergodic fluid (sample B in

Figure 1.15) at intermediate cps and forms a AG (sample C, D and E in Figure 1.15)

at higher cp which is reflected in decay behaviour of Fs(q, t) (Figure 1.15).
31 At low

and high attraction strengths, Fs(q, t) showed a two-step relaxation and only a

partial decay even at long times. Whereas, at intermediate attraction strengths,

Fs(q, t) decayed completely with a shift in Φg to higher Φs.31,57 The larger plateau

value at long times for samples C, D and E implies a relatively stronger freezing-

in of long-wavelength collective density fluctuations (Figure 1.15).31 Though the

short-time dynamics in attractive glasses is dominated by bond breaking, recent
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Figure 1.14: Depletion attraction. Left - Schematic of colloid-polymer suspension.
Excluded volume (light gray) around each colloidal particle, polymer molecules with
radius of gyration, rg and red region represent the overlap of excluded volume leading
to attraction between particles. Right - Schematic of depletion induced attractive
potential. Adopted from.69

Figure 1.15: Fs(q, t) as a function of time, t, at various depletion concentration at
a fixed Φ. sample A - repulsive glass, sample B - ergodic fluid, sample C, D and E
- attractive glass. Adopted from.31
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simulations have shown that analogous to repulsive glasses, structural relaxation

at long times is still governed by cage rearrangements.70 Further, based on the

decay behaviour of Fs(q, t∞), complete phase diagram has been been shown below

(Figure 1.16).31 Here t∞, represents experimental time duration.

Figure 1.16: Phase diagram of colloid-polymer mixture in (cp,Φ) plane. Open sym-
bols represent thermally equilibrated samples: fluids (triangles), fluid-crystal coex-
istence (diamonds), fully crystalline (inverted triangles). Solid symbols represents
non-equilibrated samples: repulsion driven glass (circles), attraction driven glass
(squares). dashed curves are guide to the eye for observed glass transition. Solid
lines are MCT predicted glass transition lines. Adopted from.31

1.6 Shape Anisotropy and the Glass Transition

Anisotropy in shape and/or interactions is a feature of many molecular systems.71

In the recent past, there have been significant efforts by the colloid community

to synthesize colloids of different shapes i.e. ellipsoids,72 rods,73 polygons (tetra-

hedrons, pentagons),74,75 cuboids76etc. Further, particle shape strongly influences
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their packing4 as Donev et. al.77 have shown that oblate ellipsoids with aspect ra-

tio, α, close to M&M candies can pack beyond the random closed packing (RCP)

of spheres (ΦRCP = 0.64). They attribute the attainment of the higher packing to

the extra degree of freedom (DOF) available to ellipsoids as compared to spheres.

Inspite of the fact that packing and glass transition physics are closely related, it

is only recently that the role of shape anisotropy in the physics of glass transitions

has been probed. The first tentative phase diagram for ellipsoids, the simplest devi-

ation from a spherical particles, as function of aspect ratio (α = l/w) was proposed

by Frenkel et. al.78 in 1984. Here l and w are major and minor axes of ellip-

soid. Later, using molecular mode coupling theory (MMCT)79–81 and Monte-Carlo

simulations,82 a rich and complex phase diagram has been proposed for ellipsoids

(Figure 1.17). MMCT predicts that with increasing α, the glass transition for pro-

late ellipsoids is primarily driven by the orientational degree of freedom (DOF).80

Further, it predicts a two-step glass transition for α ≥ 2.5, with formation of ne-

matic domains where interdomain orientational freezing precedes the intradomain

translational freezing and a single conventional glass transition for short α (α ≤ 2.5)

with isotropic structure.80 In 2003, Cang et al.84 showed that the 5-CB liquid crys-

talline molecule has two glass transition temperatures. As predicted by MMCT,80

they alluded the first glass transition temperature TCH to the freezing of the local

nematic order associated with the psuedonematic domains and the second TCL to the

freezing of intradomain dynamics of psuedonematic domains. Later, using micron

sized prolate colloidal ellipsoids of α = 6 in quasi 2-dimension (2D), Zheng et. al.85

showed psuedonematic ordering with branch like structures. The translational and

orientational dynamics were quantified using Fs(q, t) and orientational correlation

function, Ln(t), respectively where

Ln(t) =
1
N
〈
∑N

j=1 Pn(cos(θj(t+ t0)− θj(t)))〉
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Figure 1.17: Phase diagram of uniaxial hard ellipsoids in (Φ, α) plane. Solid symbols
corresponds to fluid-solid transition, hollow symbol corresponds to isotropic-nematic
transition. The black (dark) line is maximum achievable density.83 Cyan (light gray)
dashed lines and blue (dark) dashed lines are guides to the eye which join the fluid-
solid and isotropic-nematic transitions, respectively. The cyan (light gray) solid lines
indicate fcc-SM2 transitions.79 Black (dark) plus symbols (isotropic-nematic) and
asterisks (nematic-solid) are taken from the.78 The inserted snapshots are placed
according to the phase diagram region. Particles are colored according to their
orientations by setting red, blue, and green to given orthogonal directions, and
using a linear combination for intermediate cases. Adopted from.82
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Here, N is the total number of particles, θj(t) is the orientation of the jth ellip-

soid at time t, t0 is the lag time, Pn(cos(θ)) is the nth order Legendre polynomial

and 〈〉 denotes the time averaging. The glass transition area fraction φg for both

translational and orientational degree of freedom (DOF) was estimated using MCT

scaling arguments.85 Consistent with MCT predictions, τα
−1/γ was found to be lin-

ear in φ for both translational and orientational DOF (Figure 1.18) and yielded

orientational glass transition area fraction φR
g = 0.72± 0.01 and translational glass

transition area fraction φT
g = 0.79 ± 0.01 (Figure 1.18) which was in qualitative

agreement with experiments on liquid crystals,84 molecular mode coupling theory

(MMCT) predictions and computer simulations80,86,87 Further, in excellent agree-

Figure 1.18: τα
−1/γ vs φ. Open and solid symbols correspond to orientational and

translational DOF, respectively. Dashed and solid lines are linear fits to the data.
Adopted from.85

ment with Cang et. al.,84 most of translationally most-mobile particles were within

the psuedonematic domains and most of rotationally most-mobile particles were at

the domain boundaries (Figure 1.19).85 In addition, they showed that the inter-

mediate orientational glass regime which lies between φR
g and φT

g increases as α of
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Figure 1.19: The spatial distribution of rotational (b, d, f) and translational (a, c,
e) most-mobile particles of the system. (a), (b) at φ = 0.70 (supercooled liquid);
(c), (d) at φ = 0.77 (orientational glass); (e), (f) at φ = 0.81 (glass). ellipsoids in
same cluster have same color. Adopted from.85
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ellipsoids increase.85

1.7 Motivation for the Present Work

As discussed, colloidal ellipsoids of α = 6 in 2D yielded a two-step glass transition.85

Further, in concordance with the fact that packing of the ellipsoids strongly depends

on their α,4 molecular mode coupling theory (MMCT) predicts that ellipsoids with

α < 2.5 in 3D should show a single glass transition.80 Nevertheless, so far, even in

2D there is no experimental evidence for the same. Hence, it would be interesting

to investigate the self-assembly and structural relaxation in supercooled liquid and

glasses of short colloidal ellipsoids.

Most importantly, due to the presence of two radii of curvatures, the depletion

interactions in ellipsoids lead to anisotropic interactions88 where lateral alignment

of ellipsoids would be preferred as compared to tip-to-tip alignment (Figure 1.20).

However, the role of interaction anisotropy in the physics of glass transition is yet

Figure 1.20: Two radii of curvature for the ellipsoids; Rbig and Rsmall. When de-
pletion attraction is turned on, due to anisotropy configuration 1 is preferred over
2.

to be probed by experiments, simulations and theory. Hence, it would also be fasci-

nating to investigate the influence of asymmetric interaction potential on reentrant

glass dynamics. We have, in the present work, explored the complete phase dia-

gram of colloidal ellipsoids of α = 2.1 in (U, φ) plane where U is the angle averaged
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interaction potential for a given cp.
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Chapter 2

Experimental

As discussed in the previous chapter, our aim was to investigate the self-assembly

and dynamics of colloidal ellipsoids of aspect ratio, α = 2.1 in quasi 2-dimensions

(2D). This chapter covers the synthesis of spherical as well as ellipsoidal polysterene

(PS) particles following the protocols reported by Ho et al. in 1993.1

2.1 Synthesis of PS Spheres

Uncrosslinked PS particles were synthesized via a free-radical polymerisation tech-

nique.1 Presence of oxygen inhibits polymerisation and hence the reaction was car-

ried out in nitrogen atmosphere. 167.5 ml of 25 mM sodium chloride (NaCl) was

taken in a 3-necked round bottom flask which was placed in an oil bath and stirred

at 350 rpm. The system was left to stabilize at 80◦C for 15 minutes. Then 20 ml

of distilled styrene (Sigma Aldrich) was added to the reaction pot. After equilibra-

tion, 38 mg of initiator (here potassium persulfate) dissolved in 7.5 ml of water, was

added to the reaction pot. The solution slowly turned turbid signifying the onset of

polymerisation. The reaction continued for 24 hours. The system was then cooled

and filtered using glass wool to remove large aggregates. The particles were cleaned
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by repeated centrifugation at 3000 rpm and redispersal in water (Milli Q). To es-

timate the particle size, the particles were allowed to crystallize using a depletion

interaction and the lattice constant estimated from optical microscopy was found to

be 1.4 µm.

2.2 Synthesis of PVA

Since uncrosslinked PS particles are thermoplastic, they could be deformed to a

desired shape when heated beyond their glass transition temperature Tg (for PS

Tg = 100◦C). To stretch these PS spherical particles, we need a film forming material

like PVA that acts as a matrix in which the spherical particles can be embedded.

For the synthesis of PVA, we followed the protocol by Ho et al .1 15 g of polyvinyl

acetate, PVAc, (Sigma Aldrich, Mol. wt. 5,00,000) was dissolved in 250 ml of

methanol and water solution (1:4 v/v). The solution was stirred for 2-3 days which

allowed most of the PVAc to dissolve. To this system, 2.25 g of sodium hydroxide

(NaOH) was added and refluxed for 4 hours at 105◦ C. The solution was neutralized

using concentrated hydrochloric acid (HCl) and ∼ 200 ml of isopropanol was added

till a saturated white gel was obtained. We discarded the supernatant carefully and

soaked the gel in water and washed it repeatedly for 24 hours at an interval of 2-3

hours. Then, 165 ml of isopropanol:methanol:water solution (6:1:4 v/v) was added

to the gel and heated it gradually from 35◦C to 80◦C with continuous stirring at 200

rpm. The gel dissolved completely in this solution within 2-3 hours. The viscous

solution of PVA was dialysed using a dialysis membrane in water environment and

water was changed ∼ 10 times, after every 2-3 hours.
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2.3 Film Formation and Ellipsoid Synthesis

We used a perspex tray of size 13 cm x 9 cm to make the films. 500 µl of PS spherical

colloidal suspension (20-30% volume fraction) was dissolved in 50 ml of PVA. The

above solution was poured slowly into the perspex tray and then placed inside the

vacuum oven. The solution was allowed to stabilize at 28◦C and 0.1 atm. After 2

days, the temperature was ramped to 45 ◦C in steps of 2.5 ◦C every 12 hours to

avoid any bubble formation during the drying process. The film takes 4-5 days to

get dry. For uniform stretching, the smooth film was cut into strips of dimension

4 cm x 6 cm. To achieve a better control on uniformity of stretched PS particles,

square grids of dimension 0.5 cm x 0.5 cm were marked on the strips as shown in

Figure 2.1. The film was clamped to a home made film-stretching apparatus as

Figure 2.1: Unstretched PVA film with PS spherical particles embedded in it. The
red lines marks the square grids of size 0.5 cm x 0.5 cm.

shown in Figure 2.2.

The film-stretching apparatus was dipped into an oil-bath maintained at 180◦C.

We manually stretched the film uniaxially to a draw ratio of 3 (Figure 2.3). The

apparatus was taken out and allowed to cool down to room temperature. Only

rectangular grids of same aspect ratio were taken for recovery of the ellipsoidal par-

ticles (Figure 2.3). The oil on the film was cleaned thoroughly using soap solution
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Figure 2.2: Stretching apparatus built in our lab. The film is clamped in between
two steel blocks as shown and stretching is done manually.

Figure 2.3: Stretched film. The square grids prior to stretching have changed to
rectangles depending on the draw ratio.
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(labolin) and rinsed with an excess of distilled water. To extract the ellipsoidal par-

ticles, the film was soaked in a solution of isopropanol:water (3:7 v/v) overnight and

then refluxed at 80◦C for 4-5 hours. The film completely dissolved and the resulting

turbid suspension was centrifuged at ∼3000 rpm to allow the colloidal particles to

settle to the bottom of the centrifuge tube. The supernatant was discarded and the

particles were redispersed in isopropanol-water solution and again refluxed at 80◦C

for 5 hours to remove any traces of PVA. The suspension was cleaned repeatedly

using milli Q water (TKA, 18.2MΩ). FESEM measurements were done to obtain

the aspect ratio of our ellipsoids (Figure 2.4). From the analysis of over 100 ellip-

soids we found that the major and minor axes are l = 2.1 µm and w = 1.0 µm with

polydispersity of 11% and 8% respectively.

Figure 2.4: FESEM images of the ellipsoids. The scale bar is 5 µm.

We have used sodium carboxyl methyl cellulose (NaCMC, Fischer-Scientific, Mol.

wt. 700000) as the depletant. Using Kramer’s equation2 the overlap concentration c∗

of the depletant, from rheological measurements, was found to be c∗ = 0.11 mg/ml.

The highest depletant concentration cp studied in our work was cp = 0.05 mg/ml

which is less than c∗. Using well established the scaling arguments,2 we estimated

the radius of gyration of the depletant to be 60 nm.
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2.4 Experimental Cell and Imaging

The suspension of ellipsoids at suitable depletant concentration cp was loaded in a

wedge-shaped cell (Figure 2.5). The cells were left standing for sedimentation of

Figure 2.5: Schematic of the wedge cell with ellipsoids (blue color) loaded in it. The
thin regions of the cell are quasi 2-dimensional (not to scale).

particles to the thin regions of the cell. Video microscopy was done using a 100X

oil immersion objective (Leica, Plan-Apochromat, N.A. 1.4) at a frame rate of 5

fps for a typical duration of 20 minutes. The data for φ = 0.84, for the purely

repulsive case, was taken at frame rate of 1 fps for 2 hours. To ensure that the

viewing region was quasi 2-dimensional (2D), we analysed the change in major, ∆l,

and minor, ∆w, axes of each ellipsoid in successive frames. A thick cell can support

out of plane fluctuations of an ellipsoid which can result in an effective change in

its aspect ratio, α, in the imaging plane as shown in Figure 2.6a. We find that the

distributions of ∆l and ∆w are Gaussian with standard deviation of 0.03 µ m and

0.06 µm respectively as shown in Figure 2.6b and c. The small standard deviations

along with the small depth of field of the microscope objective (∼ 200 nm) show

that the cells were indeed quasi 2D. The experiment was done in a typical viewing

region of size 65 µm x 47 µm at six φs ranging from 0.23 < φ < 0.84.

The images were pre-processed using Image-J which yielded the coordinates of

centre-of-mass and the orientations of each ellipsoid as shown in the Figure 2.7.

The data was analysed using standard as well as custom developed Matlab codes.3,4

To obtain the spatial and orientational tracking resolution in our experiments, we
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Figure 2.6: (a) Out-of-plane orientations of ellipsoid in a thick cell and their projec-
tions in the imaging plane. Distribution of the change in major axis ∆l (b) minor
axis ∆w (c) of the ellipsoids between successive frames. The solid lines represents
Gaussian fits to the distribution.

Figure 2.7: The image shows the tracking of the ellipsoid at φ = 0.79. The red lines
are the boundaries of the ellipsoids which have been drawn with the information
obtained from Image-J
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analysed the mean squared displacements 〈∆r2〉 and mean squared orientational

displacements 〈∆θ2〉 of the ellipsoids in very dilute regime (φ = 0.04). The dynamics

were observed to be diffusive for both translational and orientational degrees of

freedom (Figure 2.8). The intercepts of 〈∆r2〉 and 〈∆θ2〉 on the y-axes yielded the

spatial and angular resolutions to be 60 nm and 1◦, respectively.

Figure 2.8: (a) 〈∆r2〉 vs. t at φ = 0.04 and (b) 〈∆θ2〉 vs. t at φ = 0.04 for estimating
the spatial and orientational resolution.
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Chapter 3

Depletion Attraction Induced

Two-Step Glass Transition in

Short Colloidal Ellipsoids

In chapter 1 we have discussed that the simplest possible deviation from a spherical

shape gives rise to novel glass transition phenomena. In particular, ellipsoids with

aspect ratio, α = 6, showed a two-step freezing of dynamics.1 The first corresponding

to orientational freezing which is followed by translational freezing of dynamics at

a higher area fraction, φ.1 However, theory predicts a single glass transition for

α ≤ 2.5,2 due to strong coupling between translational and orientational degrees of

freedom (DOF). Nevertheless, even in 2D, experiments are yet to observe a single

glass transition for ellipsoids of α = 2.1. Further, tuning the interaction potential in

the spherical colloids from repulsive to attractive led to the observation of a novel

glassy state viz. attractive glasses and reentrant glass dynamics.3–11 The role of an

anisotropic interaction potential on reentrant glass phenomena is yet to be explored

by theory, simulations or experiments. This chapter presents a study on colloidal

ellipsoid of α = 2.1 in quasi 2-dimensions (2D) with an aim to explore reentrant
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glass transition phenomena.

3.1 Ellipsoids with Purely Repulsive Interactions

Unlike observations on ellipsoids with α = 6,1 in our experiments, even after months,

we did not observe the formation of pseudonematic domains even at the highest φ =

0.84 studied (Figure 3.1). We have quantified the dynamics using translational and

Figure 3.1: Representative image of colloidal ellipsoids at φ = 0.79.

orientational correlation functions Fs(q, t) and Ln(t), respectively. Glass transition

area fraction(s) φg(s) were estimated using mode coupling theory (MCT) predictions.

The translational dynamics was quantified using the self-intermediate scattering

function Fs(q, t) defined as:

Fs(q, t) =
1
N
〈
∑N

j=1 exp[iq · (rj(t+ t0)− rj(t))]〉

Here, N is the total number of particles, rj(t) is the position of the jth ellipsoid

at time t, t0 is the lag time, q is the wave vector and the 〈〉 denotes the time

averaging. The magnitude of q was chosen to be the first maximum in radial pair

correlation function g(r). The variation of Fs(q, t) as a function of φ is shown in

Figure 3.2. At low φs, the system is fluid like as shown by the exponential decay of

Fs(q, t). With increasing φ, particles become caged by their neighbours and this is
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Figure 3.2: Self intermediate scattering function Fs(q = 5.6µm−1, t) at various area
fractions φ.

reflected as a non-exponential decay in Fs(q, t). For φ ≥ 0.73, the relaxation showed

a two-step relaxation (Figure 3.2), a characteristic feature of supercooled liquids.

While the first step corresponds to rattling of particles inside the cages formed by

the neighbouring particles, the second corresponds to its subsequent escape from

the cage. The first relaxation is termed as β-relaxation and the second one as α-

relaxation.12,13 While, for φ = 0.79 Fs(q, t) decayed almost completely over 700 s,

for φ = 0.83 it decayed only partially over an experimental time duration of 4000 s.

This clearly indicates an ergodic to non-ergodic transition with 0.79 < φg
T < 0.84,

where φg
T is the translational glass transition area fraction.

The orientational dynamics was quantified using the dynamic orientational cor-

relation function Ln(t) defined as,

Ln(t) =
1
N
〈
∑N

j=1 Pn(cos(θj(t+ t0)− θj(t)))〉

Here, N is the total number of particles, θj(t) is the orientation of the jth ellipsoid

at time t, t0 is the lag time, Pn(cos(θ)) is the n
th order Legendre polynomial and 〈〉

denotes the time averaging. We have used the following three Legendre’s polynomial,

P3(x) =
1
2
(3x2 − 3x)

P4(x) =
1
8
(35x4 − 30x2 + 3)

P5(x) =
1
8
(63x5 − 70x3 + 15x)
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As observed for Fs(q, t), Ln(t) also showed exponential behaviour at low φs and

onset of two-step relaxation and orientational caging beyond φ = 0.73 (Figure 3.3).

The decay in Ln(t) was slower as compared to Fs(q, t), signifying stronger caging

effect on the rotational dynamics of particles in comparison to their translation

motion. Similar to Fs(q, t), while at φ = 0.79, L5(t) decayed by ≈ 20% over 700

s, for φ = 0.84, it decayed by only 3% over 4000 s. This clearly indicated an

ergodic to non-ergodic transition with orientational glass transition area fraction,

with 0.79 < φg
R < 0.84. Hence, φg for both translational and orientational DOF

lies in between 0.79 < φg
R,T < 0.84.

Figure 3.3: Dynamic orientational correlation function L5(t) at various area fractions
φ.

We estimated the glass transitions for both the DOFs using MCT scaling analy-

sis1,12–14 mentioned in chapter 1. As per MCT, as φg is approached, relaxation time

τα diverges as τα(φ) ∝ (φg − φ)−γ where γ = 1
2a

+ 1
2b
. Here, a and b are exponents

in the critical decay law and the von-Schweilder law, respectively.1,15 In cases where

Fs(q, t) and Ln(t) showed complete decay, τα was taken to be time where correlation

decayed to 1/e.14,15 In cases where correlation functions showed only a partial decay

but more than 70%, τα was calculated by fitting stretched exponential to long time

decay of Fs(q, t) and Ln(t).
1 Further, it was verified that the two procedures yielded
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the same τα. In our experiments, we obtained b from power-law fits to the cross-

over regime from β to α-relaxation in Fs(q, t) and Ln(t). Owing to poor temporal

resolution in the early β regime, we obtained a using the relation.12

Γ(1−a)2

Γ(1−2a)
= Γ(1+b)2

Γ(1+2b)

Consistent with MCT predictions, we found that τα
−1/γ was linear in φ (Fig-

ure 3.4) for all q’s and n’s studied. Strikingly, this scaling yielded the same φg =

0.80± 0.01 for both translational and orientational degrees of freedom (DoF) (Fig-

ure 3.4).

Figure 3.4: τα
−1/γ vs φ. Here, γT = 1.93 and γR = 2.04. Dashed and solid lines are

power law fits to the data, respectively.

To show that φg was indeed at 0.80 ± 0.01, we have quantified the size distri-

bution and scaling of the most-mobile particle clusters. These clusters, believed

to be pathways for structural relaxation in supercooled liquids and glasses,16 show

qualitative trends with φ across φg.
1,17 To quantify dynamical heterogeneities, we
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first obtained the translational and rotational mean squared displacements (MSD)

of the particles. The mean squared displacements (〈∆r2〉) in 2D is defined as:

〈∆r2〉 = 1
N
〈
∑N

j=1[(xj(t+ t0)− xj(t))
2 + (yj(t+ t0)− yj(t))

2]〉

Here N is the total number of particles, xj(t) and yj(t) are the coordinates of jth

ellipsoid, t0 is the lag time and ∆r is the displacement of the particles over time t.

The particle dynamics is diffusive at lower φs Figure 3.5. For φ ≥ 0.73, at short
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Figure 3.5: 〈∆r2〉 at various φ. The solid line has slope 1 and the dashed horizontal
line represents the minimum tracking resolution in our experiments.

time, the dynamics is subdiffusive which signifies rattling of particles inside the

cages (Figure 3.5). At characteristic relaxation time t∗, which is less than τα, 〈∆r2〉

showed an upturn which reflected the escape of particles from their respective cages

(Figure 3.5). The long time dynamics after t∗ approaches the diffusive limit.

The rotational dynamics, 〈∆θ2〉, was quantified using :

〈∆θ2〉 = 1
N
〈
∑N

j=1[(θj(t+ t0)− θj(t))
2]〉
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Here, N is the total number of particles, θj(t) is the orientation of jth ellipsoid, t0

is the lag time and ∆θ is the change in orientation of the particles over t. As shown

in Figure 3.6, all the trends seen in 〈∆r2〉 (Figure 3.5) are also present in 〈∆θ2〉.
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Figure 3.6: 〈∆θ2〉 at various φ. The solid line represent the line of slope 1.

At t∗ , the dynamics is highly non-Gaussian and this was quantified using the

non-Gaussian parameter, α2(t),
17 which is defined as,

αT
2 (t) =

〈∆r(t)4〉
2〈∆r(t)2〉

− 1 and αR
2 (t) =

〈∆θ(t)4〉
3〈∆θ(t)2〉

− 1

where ∆r(t) and ∆θ(t) are the particle displacements and change in orientations over

time t, respectively. Since for any Gaussian process all the higher order moments

can be expressed in terms of 〈∆r2(t)〉, αT,R
2 (t) = 0 for diffusive dynamics. However

for supercooled liquids αT,R
2 (t) shows a maximum in the vicinity of t∗ due to cage

rearrangements (Figure 3.7)17 (Figure 3.7). Both t∗ and the peak amplitude α2(t
∗)

increases as the glass transition is approached (Figure 3.7). In the vicinity of φg and

beyond, the particle dynamics slow down as is evident from the plot of probability

distribution of displacements of particles, P (∆(r)) over t∗ (Figure 3.8). Thus, for φs
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Figure 3.7: Non-Gaussian parameter αT
2 (t) (a) and αR

2 (t) (b) at various φ.

Figure 3.8: P (∆r) vs ∆r over t∗ at three φ’s in the vicinity of φg. Here t
∗ corresponds

to the cage breaking time.
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close to but less than φg, the absence of large cooperative cage rearrangements lead

to a decrease in t∗ 1,17 and was consistent with our observations of t∗φ=0.79 < t∗φ=0.76.

However, beyond φg, absence of large cooperative cage rearrangements should result

in a decrease in both t∗ and α2(t
∗). Unlike at low φs, t∗ in the vicinity of φg

and beyond is thought to represent the β-relaxation time.17 Since α2(t) is fairly

sensitive to noise, the increase in t∗ at φ = 0.84, in our case, was probably due to

particle tracking errors from negligible particle displacements that were comparable

to the spatial resolution in our experiments.18 It is important to note that the

coupling between rotational and translational DOF can lead to non-Gaussian effects

in the lab frame for ellipsoids even in the dilute limit.19 We have verified that all

trends reported here were preserved in the body frame of ellipsoids also, where this

coupling is absent. The particle dynamics were heterogeneous over t∗ as shown in

the Figure 3.9. The top 10% most-mobile particles over t∗ were found to be spatially

clustered Figure 3.9. Two most-mobile particles belong to the same cluster if one

Figure 3.9: Top 10 % translationally most-mobile (open blue circles) and orienta-
tionally most-mobile (solid red circles) particles at φ = 0.79.

ellipsoid when expanded 1.4 times, maintaining its orientation, encompasses the

other’s centre, subject to the condition that there is no immobile ellipsoid between
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them. We found that a significant fraction of orientationally most-mobile particles

were also translationally most-mobile and was consistent with the absence of pseudo-

nematic domains (Figure 3.9).

To quantify these clusters at a given φ, we have used average cluster size 〈Nc〉
20

as:

〈Nc
T,R〉 =

∑
n n2P (n)

∑
n nP (n)

where P (n) is the cluster size distribution. Analogous to observations in glasses

of spherical colloids,17 〈Nc
T,R〉 increases as φg is approached and shows a sudden

decrease beyond φg for both translational and orientational DOF (Figure 3.10).

These observations confirm that 0.79 < φg
T , φg

R < 0.84 and is consistent with

Figure 3.10: Average cluster size, 〈Nc〉 at different φ’s. The vertical dashed line
represents the glass transition area fraction φg

φg = 0.80± 0.01 estimated from MCT scaling analysis. Further, 〈Nc
T,R〉 diverges as

a power law as φg is approached (Figure 3.11).

〈Nc
T,R〉 ∝ (φg − φ)−η

where η is scaling exponent. Though the physical origin of such a scaling is not

clear, similar behaviour has also been observed for glasses of colloidal ellipsoids of

α = 61 and a binary Lennard-Jones glass forming liquid.21 This further validates
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our observation of a single φg for both translational and orientational DOF at φ =

0.80± 0.01.

Figure 3.11: Divergence of average cluster size: 〈Nc〉 vs (φg − φ).

Using the Vogel-Tammann-Fulcher (VTF) equation,18,22,23 we have estimated

the ideal glass transition area fraction φ0 at which diffusive motion ceases,

τα(φ) = τ∞ exp A
(1−φ/φ0)

Here, A and φ0 are adjustable parameters. To determine φ0, we have plotted the

variation of residuals of linear fits as a function of φ0 (inset to Figure 3.12). The

minimum in the residuals for a given wave vector q corresponds to the best fit to the

VTF equation. The average value of φ0 obtained from two different values of q yields

φ0 = 0.89 ± 0.02 (Figure 3.12). As seen in previous studies,18,22 the dynamic cross

over area fraction φg determined from MCT scaling lies between the area fraction

that corresponds to the onset of caging φ = 0.73 and φ0. Though there are no

theoretical or computational predictions of φ0 for ellipsoids of α = 2.1, the value of

φ0 was in the vicinity of the predicted value (φ0 ≈ 0.88) for bi-disperse ellipsoids,

α ≈ 2.2, in 2D.24

In summary, colloidal ellipsoid of α = 2.1 showed a single glass transition for

both translational and orientational DOF at φg = 0.80± 0.01.
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Figure 3.12: The scaling of relaxation time, τα with (1 − (φ/φ0)). The inset shows
the residuals of the linear fits as a function of the fitting parameter φ0. The dashed
vertical line corresponds to φg for purely repulsive ellipsoids. The solid vertical line
represents the average value of φ0.

3.2 Hard Ellipsoids with Depletion Induced At-

tractive Interactions

While depletion induced attractions for spherical particles are isotropic,25 it leads to

an anisotriopic interaction for ellipsoidal particles.26 Figure 3.13 clearly shows that

ellipsoids prefer lateral alignment as compared to tip-to-tip alignment in presence

of depletion induced attraction.

Here, our focus was on exploring the change in dynamics of colloidal ellipsoids

as a function of particle pair potential, U . In 2D, the relationship between depletion

concentration, cp , and attraction strength U is not well-understood.27 Therefore,

for all cps investigated here, we directly measured the change in depth of the scaled

depletion potential ∆u = − ∆U
kBT

, averaged over all orientations, with respect to

cp = 0, from dimer life time measurements.28 Here, kB is the Boltzmann constant and

T is the temperature. To evaluate the change in the depth of attractive potential,

∆u, we measured the monomer diffusion constant, D, and the dimer lifetime, τ ,
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Figure 3.13: Image shows lateral alignment being promoted with turning on short-
range depletion attraction

averaged over all orientations, at φ ≈ 0.25 for the various depletion concentrations,

cp, studied. The distributions of τ were observed to be exponential (Figure 3.14

b and c) and the decay constant yielded τ0. However, for cp = 10 µgml−1, as the

values of τ are small (Figure 3.14 a), τ0 was taken to be the peak of the distribution.

Following Savage et. al.,28 we evaluated ∆u using the τ0 calculated above.

τ0 ∝ D−1exp(U/kBT )

−∆(U1−U2)
kBT

= ∆u = ln(
τ2
0
D2

τ1
0
D1

)

where 1 and 2 denote the two systems at different interaction strengths and all the

other symbols have the usual meaning as introduced before. τ0D with cp showed

an exponential dependence (Figure 3.14 d), although the origin of this is unclear.

Since, we could not collect data at φ ≈ 0.25 for cp = 30 µgml−1, the value of τ0D

was obtained from fits to the data shown in the Figure 3.14 d.

Now, we will briefly show the dynamics, 〈∆r2〉 and 〈∆θ2〉, of these ellipsoids at

different ∆us and a comparative study for reentrant glass dynamics will be presented

in the next section. With the onset of depletion interactions, while the free volume

enhances the dynamics till intermediate attractive strengths, the stronger bonding

between particles slows the dynamics at higher attraction strengths as is clear from
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Figure 3.14: Distribution of dimer lifetimes for (a) cp = 10 µgml−1 (b) cp = 40
µgml−1 (c) cp = 50 µgml−1. The solid line in (b) and (c) shows exponential fits to
the data. (d) Log-Linear plot of τ0D vs cp. The solid line is linear fit to the data
from which τ0D at cp = 30 µgml−1 was obtained.
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the plots of 〈∆r2〉 (Figure 3.15) and 〈∆θ2〉 (Figure 3.16) at different ∆u.
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Figure 3.15: 〈∆r2〉 at different φ’s and for ∆u = 0.44 (a) ∆u = 1.16 (b) ∆u = 1.47
(c) ∆u = 1.95 (d) The 〈∆r2〉 at φ = 0.67 and φ = 0.72 in (c) were observed to
be same. The faster dynamics at φ = 0.72 is attributed to thicker cell area in the
viewing region.The solid lines in all sub-plots represent line of slope 1.
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Figure 3.16: 〈∆θ2〉 at different φ’s and for ∆u = 0.44 (a) ∆u = 1.16 (b) ∆u = 1.47
(c) ∆u = 1.95 (d) The 〈∆θ2〉 at φ = 0.67 and φ = 0.72 in (c) were observed to
be same. The faster dynamics at φ = 0.72 is attributed to thicker cell area in the
viewing region. The solid lines in all sub-plots represent line of slope 1.
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3.3 Reentrant Glass Dynamics in Hard Ellipsoids

In this section, we will discuss the change in translational and orientational dynam-

ics of the colloidal ellipsoids as a function of particle interaction potential ∆u at a

φ ∼ RG φg = 0.80. We begin with the correlation functions Fs(q, t) and Ln(t). Fig-

ure 3.17a and b, shows Fs(q = 5.6µm−1, t) and L3(t) for φ ≈ 0.79 ≈ φg for different

∆us respectively. For ∆u = 0 and ∆u = 1.47, both Fs(q, t) and L3(t) showed a two-

step decay (inset to Figure 3.17 a and b). The larger plateau value at long times for

Figure 3.17: Fs(q = 5.6µm−1, t) and (b) L3(t) for ∆u = 0 at φ = 0.79 (black
squares), ∆u = 1.16 at φ = 0.81 (red circles), ∆u = 1.47 at φ = 0.81 (green
triangles). Inset to (a) and (b) - with expanded y-axis show two-step relaxation.
Solid and open symbols correspond to orientational and translational scaling of τα,
respectively.

∆u = 1.47 (Figure 3.17) implied a relatively stronger freezing-in of long-wavelength

collective density fluctuations.3,4 However, for an intermediate value ∆u = 1.16,

while Fs(q, t) decayed completely (Figure 3.17a), only a partial decay was observed

in Ln(t) (Figure 3.17b). This indicates that the dynamics in translational and ori-

entational DOF might be different. To ascertain if φg at intermediate attraction

strength had indeed shifted to a φ > RG φg, we have performed the aforementioned

MCT scaling for all ∆us studied. In line with theoretical predictions,8,9 τα
−1/γ was
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Figure 3.18: MCT scaling of τα for ∆u = 0.44 (a), ∆u = 1.16 (b), ∆u = 1.47
(c) and ∆u = 1.95 (d). Solid and open symbols correspond to orientational and
translational scaling of τα, respectively. The lines are linear fits to the data. The
solid and dashed vertical lines in (c) and (d) denote φg

R and φg
T respectively.
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linear in φ for attractive glasses too and allowed us to extract φg
R and φg

T (Fig-

ure 3.18). Strikingly, for ∆u = 1.16, we observed a two-step glass transition with

φg
R = 0.81 ± 0.01 and φg

T = 0.84 ± 0.01 (Figure 3.18b). For ∆u = 1.47, φg
T

reverted to a lower φ with φg
T = 0.81± 0.01 and φg

R = 0.80± 0.02 (Figure 3.18c).

Due to strong hindrance in rotation of the particles for ∆u = 1.95, Ln(t)’s did not

decay over the experimental time duration. Hence, we could not estimate the φR
g

for ∆u = 1.95.

To further validate the above observations, we explored the complete phase dia-

gram in the (φ,∆u) plane with αT,R
2 (t = t∗), Fs(q, t∞) and L3(t∞) as the quantifiers

of particle dynamics. Here, t∞ denotes the experimental time duration. Figure 3.19

shows the translational and orientational phase diagrams, along with MCT predicted

glass transitions. Since, sedimentation to the 2D regions of the cell was extremely

slow for ellipsoids with attractive interactions, we were unable to collect data beyond

φ ≈ 0.81. Overall, αT
2 (t

∗) < αR
2 (t

∗) indicating that the orientational relaxations were

relatively more hindered as compared to the translational ones (Figure 3.19). While

at low φ and at small ∆us, an ergodic phase was observed, for large ∆us, we found

percolating networks of ellipsoids which we identified as a gel phase (Figure 3.20).3,4

Most remarkably, at a fixed φ ≥ RG φg and with increasing ∆u, while we ob-

served a minimum in αT
2 (t

∗) (Figure 3.19 a) at intermediate attraction strengths,

we did not see this for αR
2 (t

∗) (Figure 3.19 b). This clearly implies a melting of the

glass only in the translational DoF and is consistent with our observations that in

contrast to Fs(q, t∞) (Figure 3.17 a), Ln(t∞) (Figure 3.17 b) shows only a partial

decay. Lending further credit to these observations, while the MCT predicted φg
T

shows systematic reentrant behavior (Figure 3.19 a), within experimental certainty,

φg
R (Figure 3.19 b) does not. Thus, inspite of having a single glass transition in

the purely repulsive limit, reentrant behavior in translational and orientational DoF
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Figure 3.19: Phase diagram in (∆u, φ) plane. The circles represent the ∆u and φ at
which experiments were performed. (a) Translational DoF. (b) Orientational DoF.
The black circles denote Fs(q, t∞) and L3(t∞) that decayed completely. The white
circles denote Fs(q, t∞) and L3(t∞) that decayed partially. The color bar indicates
the value of α2(t = t∗). αT,R

2 (t∗) for φ’s in between experimental data points were
obtained from linear interpolation. Note the break in φ-axis at φ ≈ 0.53. φg

T

and φg
R, obtained from MCT scaling analysis, are shown by squares in (a) and (b)

respectively.
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Figure 3.20: Representative image of the gel phase at φ = 0.47 and ∆u = 1.95.

were clearly different.

3.4 Rationalising Our Observations

Why do we see a two-step glass transition for intermediate ∆u? To address this

question, we quantified the structure and dynamics in the body frame of ellipsoids for

φ ≈ RG φg with increasing ∆u. The structure was isotropic for ∆u = 0 (Figure 3.21

a). While, for ∆u = 1.16, depletion enhanced lateral alignment of ellipsoids resulting

in quasi-long range ordering (Figure 3.21 b); for ∆u = 1.47, the longer bond lifetime

precluded the ellipsoids from sampling various configurations and led to smaller

domain sizes (Figure 3.21 c). These variations in structure with increasing attraction

strengths have been quantified using the pair correlation function, g(r) (Figure 3.22).

The absence of peak at r
2w

= 1.7, confirms that perpendicular alignment of the

ellipsoids are absent for ∆u = 1.16 (Figure 3.22). Further, we have also quantified

the static orientational correlation function, g2(r)
29 defined as:

g2(r) = 〈cos(2[θ(0)− θ(r)])〉
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Figure 3.21: Representative images showing structure at (a) ∆u = 0 at φ = 0.79,
(b) ∆u = 1.16 at φ = 0.81 and (c) ∆u = 1.47 at φ = 0.81.
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Figure 3.22: Pair correlation function g(r) for ∆u = 0 at φ = 0.79 by black squares,
∆u = 1.16 at φ = 0.81 by red circles, and ∆u = 1.47 at φ = 0.81 by cyan triangles.



66 Chapter 3.

where θ is the orientation of the ellipsoid and r is centre-to-centre distance between

two ellipsoids and 〈〉 denotes the ensemble averaged over all pairs of ellipsoids located

at distance r. The higher value of g2(r) at
r
2w

= 1.7 was a clear indication of quasi-

long range ordering (QLRO) at intermediate ∆u = 1.16 (Figure 3.23).

Figure 3.23: Static orientational correlation function g2(r) for ∆u = 0 at φ = 0.79
by black squares, ∆u = 1.16 at φ = 0.81 by red circles, and ∆u = 1.47 at φ = 0.81
by cyan triangles.

Apart from the analysis of g(r) and g2(r), our arguments of QLRO at inter-

mediate ∆u was also supported by the analysis of dynamics in the bodyframe

of ellipsoids. We have followed Han et. al.19 to construct the trajectories in the

bodyframe. Briefly, displacements of particles between two successive frames in the

labframe were resolved along the major and minor axes of the ellipsoids. These

displacements along the major and minor axes were summed to obtain the complete

trajectory for a given ellipsoid. From these constructed trajectories, we have evalu-

ated the MSD along major (〈∆r2〉l) and minor (〈∆r2〉w) axes of ellipsoids. As shown

in Figure 3.24, the anisotropy in diffusion (
〈∆r2〉l
〈∆r2〉w

) is enhanced at ∆u = 1.16 due to

the relatively unhindered motion of the ellipsoids along their major axes within the

domains. The time at which
〈∆r2〉l
〈∆r2〉w

peaks in Figure 3.24 is the cage realaxation time

t∗, as discussed in earlier sections. Since the diffusion was anisotropic, especially at
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Figure 3.24: Ratio of mean-squared displacements along major and minor axis of
ellipsoids for ∆u = 0 at φ = 0.79 by black squares, ∆u = 1.16 at φ = 0.81 by red
circles, and ∆u = 1.47 at φ = 0.81 by cyan triangles.

intermediate attraction strengths, the cage relaxations were predominantly due to

relaxation along the major axes of ellipsoids. Thus, while inter-particle attractions

free up volume and shift φg
T to a higher φ = 0.84± 0.01, quasi-long range ordering

hinders rotational relaxation and results only in a marginal shift in φg
R = 0.81±0.01.

Further, we find that the orientationally most-mobile particles are predominantly

at inter-domain boundaries and the transnationally most-mobile particles are in the

ordered regions as observed for colloidal ellipsoids of α = 6 (Figure 3.25).1

In conclusion, our experiments highlight for the first time, the crucial role of par-

ticle shape and interaction anisotropy in reentrant glass phenomena. We have shown

that 2D suspensions of colloidal ellipsoids (α = 2.1) with purely repulsive interac-

tions show a single glass transition. This is in qualitative agreement with MMCT

predictions in 3D.2 Owing to the lack of pseudonematic ordering, we find that an

appreciable fraction of orientationally most-mobile particles are also transnation-

ally most-mobile. Confirming theoretical predictions,8,9 we found that MCT scaling
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Figure 3.25: Top 10 % orientationally (solid) and translationally (hollow) most-
mobile particles at ∆u = 1.16 and φ = 0.81.

laws can be readily extended to systems with short-range attraction as well. Inter-

estingly, quasi-long ranged ordering is promoted at intermediate ∆u’s and results in

a two-step glass transition with an intervening orientational glass regime. Although

our experiments showed clear reentrant behaviour only in the translational DoF, it

would be worthwhile to investigate the role of α on reentrant glass dynamics. Fur-

ther, it would be of immense interest to quantify dynamics in the vicinity of the A3

singularity8–10 in glasses of colloidal ellipsoids.
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