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Synopsis

Low-dimensional systems are of great interest due to their fascinating properties,

which arise due to the quantum confinement (less coordination number) in these

systems. In recent years, one of the low-dimensional systems which has got tremen-

dous impetus is the graphene. Apart from graphene, its inorganic analogues and

low-dimensional counterparts, namely, nanotubes, nanoribbons and quantum dots

have found various applications in advanced devices and energy research. They also

display interesting properties such as half-metallicity without magnetic atoms, broad

range of optical absorption and emission profiles, large surface area for catalytic

activities etc. with applications including photodetectors, broadband modulators,

spintronics and so on. In this thesis, we have studied structural, electronic, magnetic

and optical properties of various low-dimensional systems including nanoribbons of

graphene and boron nitride, nanotubes of carbon and molybdenum disulphide, pure

and substituted graphene quantum dots (GQDs), polyaromatic hydrocarbons (PAHs)

and chlorophylls. As the properties of these systems will be largely dictated by their

edge nature and the surrounding environment, we have considered different external

stimuli, such as, electric field, substitution, introduction of defects etc. to tune

the properties. Throughout the thesis, we have primarily used density functional

theory (DFT) and time dependent DFT (TDDFT). However, we also have used

semi-empirical methods such as Zerner’s intermediate neglect of differential overlap

(ZINDO), density functional tight binding (DFTB) etc. when the number of atoms

ix



exceeds thousand and for cases where consideration of configuration interaction (CI)

becomes important. Also, we have implemented semi-empirical complete active space

configuration interaction (CAS-CI) method to study the optical and ground state

spin properties of a few PAH systems within lattice Hubbard and Pariser-Parr-Pople

(PPP) Hamiltonians. This thesis is divided into 7 chapters.

In chapter 1, we briefly introduce the materials considered in this thesis along

with various methodologies which we have used including DFT, TDDFT, and DFTB.

We also give a brief introduction to some of the properties which we explored in the

subsequent chapters.

In chapter 2, we gave a microscopic reason for the huge red shift (54 nm) found

in the QY band of the chlorophyll-f (Chl f) compared to its structural isomer Chl

b, experimentally. Chl f is the latest addition to the list of chlorophylls which can

perform oxygenic photosynthesis, however, Chl f can perform photosynthesis even

in low-light conditions (IR-region). Based on TDDFT calculations, we show that

the red-shift in Chl f is due to the stabilization of its LUMO which in turn is due to

the extended conjugation contribution from its -CHO group towards LUMO. Chl b,

a structural isomer of Chl f, have a blue shift due to the absence of such extended

conjugation contribution to its LUMO. Also, as chlorophylls exists in nature with

axial ligands, through our DFT/TDDFT calculations with various axial ligands,

we conjecture that Chl f would act as an electron acceptor (donor) upon the axial

ligation with CH3COOH (imidazole).

Hybrid materials of graphene and boron nitride are known to exhibit interesting

properties, such as intrinsic half-metallicity, high carrier mobility etc. In chapter 3,

we have studied the effect of edge substitutions on the graphene and boron nitride

quantum dots. Using both DFT and TDDFT calculations, we demonstrate that

partial-edge BN substituted graphene quantum dots (GQDs) with rectangular shape

possess interesting properties such as spin-polarized density of states and broad



band absorption spectra. We will prove (by excluding several possibilities) that the

observed spin-polarized density of states is mainly due to the spin-polarized charge

transfer among B, N and C atoms, and in particular B atom being Lewis-acid. We will

also present a method to understand the shifts in the molecular orbital energy levels

by plotting the electron density difference maps under the presence of an external

electric field. Also, we show that substituting the edges of BNQDs, either partially

or fully, will change their electronic nature from insulating to semi-conducting, with

gaps reaching the semi-conducting gaps of the corresponding GQDs.

In chapter 4, we have explored the optical and nonlinear optical properties of ∼

400 GQDs (they are actually polyaromatic hydrocarbons (PAHs)) to understand

the structure and optical property relationship in these systems. Experiments have

shown that modified GQDs have broadband absorption and emission profiles with

applications involving broadband modulators, photodetectors, solar cells etc. Based

on both semiempirical and ab initio calculations, we show that among the random

shaped GQDs, those with inequivalent sublattice atoms show quite rich optical

and nonlinear optical properties, such as IR absorption and large nonlinear optical

coefficients. Among the regular shaped GQDs, zigzag edged GQDs are less stable

and have smaller HOMO-LUMO gaps compared to the GQDs with armchair edges.

Such less stability of zigzag edged GQDs is explained using Clar’s sextet rule. Finally,

using Hubbard model calculations, we will show that both Kekulé and non-Kekulé

isomers of C28H16 obey Lieb’s theorem but they don’t obey Nagaoka theorem in

their charged states.

Through DFT calculations, in chapter 5, we will prove that thermodynamically

less stable but catalytically active planar conformer of Au20 cluster can be stabilized

on a nitrogen-doped graphene quantum dot over the thermodynamically stable but

catalytically less active tetrahedral conformer of Au20 cluster. Through this result,

we will show the non-necessity of the traditional metal-oxide substrates in stabilizing



xii

the planar conformer of Au20 cluster. Also, based on the charge transfer plots, we

conjecture that due to the availability of more number of corner sites, with low

coordination number, planar conformer would more likely be catalytically active

than the tetrahedral conformer.

In chapter 6, we have examined the boron nitride nanoribbons with even and

odd-line stone-wales defects. Various experiments have shown that the edges of GNRs

are reconstructed to form lines of stone-wales defects, to attain stability. Using DFT

calculations, we prove that boron-nitride nanoribbons show half-metallic behavior

only when both of their edges are non-passivated and zigzag. Necessity of zigzag

edges for the observation of half-metallicity will be demonstrated by substituting the

edges of zigzag-BNNRs with even-line (retains zigzag edges) and odd-line (creates

armchair edges) stone-wales defects. We will also show that passivation destroys the

observed half-metallicity.

In the last chapter, based on DFT calculations, we have proposed the unzipping

mechanism for both carbon and MoS2 nanotubes under the laser irradiation in

dimethylformamide (DMF) solvent. The proposed mechanism includes the formation

of vacancies and the generation of induced dipole-moment across the nanotube

under the influence of external electric-field due to the charge accumulation near the

vacancies. DMF molecules align themselves along the tube axis near the vacancies

with their dipoles being parallel to the induced dipoles to minimize their interaction

with the external field. This leads to the accumulation of further charge near the

vacancies and supports longitudinal unzipping of nanotubes.
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Chapter 1

Introduction

The term, “low dimensional systems”, refers to those materials which are finite

along at least one dimension. Due to their low-dimensionality, motion of microscopic

degrees of freedom, such as electrons, phonons etc. is constrained in these systems.

This constraint to move in three dimensions makes them as hosts for quantum

confinement effects. [1–7] Although one would not, traditionally, consider the natural

low-dimensional entities such as atoms and molecules as low-dimensional systems,

but some of the most exciting recent developments in the field have involved the use

of molecules and even biologically important materials, such as DNA, chlorophylls

etc. and had blurred the boundaries between the subject and other physical and life

sciences. [8]

Mono-layers, thin films, surfaces like graphene, boron-nitride are the examples of

two-dimensional systems. One-dimensional systems include nanotubes, and nanorods.

Nanaoribbons, due to their finite width, are generally considered as quasi-one-

dimensional systems. Also, clusters of atoms, molecules and quantum dots are the

examples of zero-dimensional systems. In all these systems, there is a reduction in

the coordination number at the surface and the surface to volume ratio becomes very

large for these systems which leads to new properties that are different from bulk. A

few examples of such exotic quantum phenomena include Klein-paradox, spin-charge

1
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separation, quantum Hall-effect, Luttinger liquid etc. [9–21] Such phenomena arise

in these systems out of disorder, strong electron-electron interactions and restricted

boundary conditions. Low-dimensional systems do not generally have true long range

order unlike the three-dimensional materials. Prominent examples are spin- and

charge-density waves in quasi-one-dimensional systems and spontaneous circulating

currents in ring systems, for which one sees chemical shift in NMR. [22]

The physics of low-dimensional and bulk systems are often different. A full

quantum mechanical treatment of the confined degrees of freedom is required to

study these systems. Emergence of experimental techniques such as scanning tunnel-

ing microscopy, transmission electron microscopy (TEM), molecular beam epitaxial

growth of thin-films, chemical vapor deposition, atomic-force microscopy, ion-beam

sputtering, x-ray photoelectron spectroscopy, Auger electron spectroscopy, electron

energy loss spectroscopy, magnetic force microscopy, high-resolved TEM, high tem-

perature XRD etc. [23–38] provided the path for characterization and fabrication of

several novel low-dimensional materials.

In this chapter, we will discuss briefly about the low-dimensional materials that

we have studied in this thesis. Also we will give the computational and theoretical

methods which we have used to study these materials. Mainly, we are interested in

understanding the electronic, magnetic, optical and charge transfer properties of these

materials. These systems have potential applications in future optoelectronic devices

and our studies give the mechanism of charge transfer and its consequences in some of

these systems. In sections 1.1.1 – 1.1.4., we will first give a brief overview of graphene,

nanoribbons of graphene and boron-nitride, carbon nanotubes and graphene quantum

dots, which are two-dimensional, quasi one-dimensional, one-dimensional and zero

dimensional systems, respectively. In section 1.1.5, we introduce the zero-dimensional

chlorophyll molecule, and we will discuss its importance in photosystems. Numerical

methods which we have used to perform different calculations are outlined in section
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1.2, followed by an outline of this thesis in section 1.3.

1.1 Low-dimensional systems

1.1.1 Graphene

Apart from the well known allotropes of carbon viz., graphite, amorphous carbon

and diamond, scientists have discovered, its other exotic allotropes which include

zero-dimensional fullerenes (1985), one-dimensional nanotubes (1991) and recently

graphene (2004) – the two dimensional allotrope of carbon. Among the exotic

allotropes of carbon, the discovery of graphene was unprecedented in that there

were established theoretical concepts precluding its existence. Theoretical argument

by Landau and Peirels says that, in low-dimensional crystals, thermal fluctuations

lead to atomic displacements in the order of inter-atomic distances, and hence,

two-dimensional crystals are thermodynamically unstable and could not exist. This

argument was latter supported by Mermin and others. [39–43]

Despite of these arguments, there have been several attempts to isolate graphene

using chemical exfoliation but they resulted in new 3D materials [44] and there

are cases in which scientists have grown single and few-layer graphene [45, 46] but

their quality and continuity are not known. For the first time, in 2004, physicists

from Manchester university extracted high quality graphene crystallites by the micro

mechanical cleavage of bulk graphite, for which they were awarded the 2010 Nobel

prize in physics. [47, 48] Experimental discovery of graphene didn’t violate the above

theoretical arguments and is justified by the observation of the ripples in the so-called

2D graphene, which affect its properties. [49] Indeed, it can be argued that, thermal

fluctuations and other crystal defects cannot occur in these 2D-crystals because of

their small size (� 1 mm) and strong inter-atomic bonds. [40, 41]

Graphene has become a great sensation because of its wonderful properties.
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Many groups have been investigating chemically derived graphene as a transparent

conductive electrode. [50] For rechargeable lithium batteries, graphene has shown

to be a potential candidate with high lithium storage capacity and this capacity

can further be increased by adding other nanocarbons like CNTs and C60. [51]

Single-layer graphene is theoretically predicted to have a large surface area of 2600

m2/g, and experimental findings shows an uptake of 3 wt % for H2 at 100 bar and

300 K and 35 wt % for CO2 at 1 atm and 195 K for a few-layer graphene. [52]

Elastic modulus and hardness of polyvinyl alcohol and poly (methyl methacrylate)

composites have been shown to increase significantly when they are reinforced with

small quantities of a few-layer graphene. [53]

Interestingly, exotic electronic properties of graphene, reflects its structural

flexibility. [54] Single layer graphene is a 2D zero-gap semiconductor with a linear

dispersion relation near the K-point of the Brillouin zone resembling the Dirac

spectrum for massless fermions. [55, 56] This linear dispersion relation can easily be

derived using the tight binding approximation including the nearest neighbors. [57]

Graphene also displays several exotic phenomena, like, ballistic electron transport,

anomalous integer quantum Hall effect at room temperature and fractional quantum

Hall effect at low temperature, [58] Klein-paradox [59] etc.

1.1.2 Graphene Nanoribbons (GNRs)

GNRs are the quasi-one-dimensional materials obtained by the finite termination

of graphene along one direction, the other direction being periodic. Depending on

their edge geometry, GNRs can be divided into two major classes, namely, zigzag

GNRs (ZGNRs) and armchair GNRs (AGNRs) (see Figure 1.1). Because of their

contrasting boundary conditions, which in turn arise because of their different

edge geometries, these nanoribbons show different electronic structure properties.

GNRs can be prepared experimentally either through “top-down approaches”, which
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includes techniques like etching graphene with a STM tip, lithographic patterning

on epitaxially grown graphene, unzipping and unrolling of carbon nanotubes by

epoxidation of CNTs etc., or through “bottom-up approaches”, which includes

combining small organic molecules to build up various graphitic structures using

elegant synthetic methods.

Figure 1.1: GNRs with armchair (zigzag) edges are extended along horizontal (vertical) direction.
Shaded area represents the unit cell of graphene. General numbering scheme used to denote the
widths of zigzag and armchair nanoribbons are depicted here with M and N indices, respectively.

Among the GNRs, ZGNRs exhibit interesting electronic properties due to the

presence of localized electronic states, known as edge states, which are absent in

the case of AGNRs. [60] Edge states allow fine tuning of the electronic structure

and band-gap of ZGNRs through structural or chemical modifications along with

doping and external perturbations. Metal free magnetism can be achieved using

semiconducting ZGNRs as they show semi-metallic behavior under external pertur-

bations. [60] By selective doping, ZGNRs can be tuned to use as spin filters and spin

transistors. [61–63] Similar to ZGNRs, their inorganic and iso-electronic analogues,

zigzag boron-nitride nanoribbons (ZBNNRs) have also attracted huge attention

because of their intrinsic spin-polarization and also because of their several other

interesting applications. [64–70] The exciting electronic and spintronic properties of

ZBNNRs are also due to their edge states, [64–70] and mainly, when these edge states



6 Chapter 1.

have been tuned by external factors like application of electric-field, [64] doping,[71]

passivation etc. [65–67, 70]

Although, majority of the studies have concentrated on GNRs and BNNRs with

zigzag edges, it is important to notice that achieving precisely the zigzag edges,

experimentally, is hard. [72, 73] General experimental procedures like etching,[74]

chemical vapor deposition etc. [72, 73] will generally produce defects in the otherwise

perfect ribbons. Among the several kinds of defects, point defects and Stone-Wales

defects are found to be ubiquitous in both graphene and boron-nitride sheets. [72–74]

In chapter 6, we present our understanding on the effect of Stone-Wales line-defects

(also generally called as pentagon-heptagon line-defects) and passivation of edges

(both pristine and defect containing) on the electronic and magnetic properties of

BNNRs.

1.1.3 Carbon Nanotubes (CNTs)

CNTs are the one-dimensional allotropes of carbon and can be visualized as a

graphene sheet rolled into a cylinder. Their discovery [75] marks a major event in

the area of carbon materials and more so in one dimensional materials. CNTs are

characterized by a pair of chiral indices (n, m), with n and m being two integers,

which specify the CNT uniquely. [76] The integers n and m denote the number

of unit vectors along two directions in the honeycomb crystal lattice of graphene.

Nanotubes are called zigzag if m=0 and are called armchair if n=m. Otherwise, they

are called chiral. Their electronic structure is either metallic or semi-conducting

depending on (n, m). In general, (n,m) nanotubes are metallic, either when n=m

or when n-m is a multiple of 3, and they are semiconducting otherwise and if m=0.

[51, 77]

Electronic band structure of SWNTs can be derived easily from a graphene

sheet while neglecting hybridization effects due to the finite curvature of the tube
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structure. Because of their electronic structure, CNTs act as ideal test beds for

studies of quantum confinement effects like ballistic conductance,[78] Kondo effect

and spin-injection, [79, 80] Luttinger liquid behavior,[81] and single and double

quantum dots states. [82] Electronic and molecular properties of CNTs can be tuned

by doping or through molecular charge transfer.

1.1.4 Graphene Quantum Dots (GQDs)

GQDs are the zero-dimensional counterparts of graphene. Reducing the dimensions

of graphene is one of the ways to understand the quantum confinement effects

on graphene related systems. In this regard, GQDs are the natural successors to

GNRs. Unlike graphene, which is a zero band-gap semi-conductor, GNRs and GQDs

have finite gap. Because of their band-gap, GNRs and GQDs have applications in

semi-conductor industry and in optoelectronic applications. Unlike GNRs, which are

confined in two-dimensions, GQDs are confined in all the three dimensions. Thus,

GQDs could be considered as the bridge between small polyaromatic hydrocarbon

(PAH) molecules and GNRs or they themselves can be considered as the PAHs.

GQDs are found to possess unique electronic, [83, 84] magnetic [84] and optical

properties. [85–87] Because of their tunable energy gap, GQDs have been used

in solar cells [88] and LEDs. [89] Additionally, GQDs are being emerged as the

new carbon based graphitic fluorescent materials, which, depending upon their size

and/or passivation can emit light of different wavelengths. [85, 87, 90] Along with

their interesting optical properties, GQDs have also been used as bio-markers [91]

because of their chemical inertness, bio-compatibility and low toxicity. In vitro

studies have already been performed using GQDs for bio-imaging cells. [92–94]

Furthermore, similar to GNRs, GQDs’ properties are also shown to be dependent

on their size and shape. [95–100] For example, smaller quantum dots have discrete

energy levels, whereas, considerably larger nano-flakes have continuous energy bands
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[96] and triangular nano-flakes have finite magnetic moments. [98–100] Similarly,

properties of BNQDs have also been shown to vary with their shape and size. [97]

In this thesis, we have studied both GQDs, BNQDs and their hybrids to explore

their electronic, magnetic and optical properties. Hybrid BNC sheets have already

been prepared experimentally with precise control over (a) the ratio of C:BN [101]

and (b) domain shape of BN on C or vice-versa. [102] In addition, recent techniques

like nanotomy [103] have shown to produce GQDs of desired geometries from graphite

itself. Thus, combining these ideas, hybrid quantum dots of required shape, size and

doping ratio could be prepared. In chapter 3, we have studied their properties with

a change in size, substitution and electric field and in chapter 4, we have studied

their optical and nonlinear optical properties. Additionally, in chapter 5, we have

studied the effects of nitrogen doping on these GQDs, while studying the stability of

gold clusters over GQD surface.

1.1.5 Chlorophylls

Availability and function

Chlorophyll is an essential and abundant pigment present in the plants, algae and

cyanobacteria. [104] Chlorophyll is vital for photosynthesis, a process in which solar

energy is converted into chemical energy. Chlorophyll molecules are presented in

and around photosystems which in turn are present in the thylakoid membranes

of chloroplasts (see Figure 1.2). Chloroplasts are organelles found in plant cells

and other eukaryotic organisms. It consists of a material called as “stroma”. The

sub-organelles, thylakoids, are presented as stacks within the stroma. [105] Empty

area inside the thylakoid is called as thylakoid space or “lumen”. The membrane

separating the stroma from lumen is called as thylakoid membrane and photosynthesis

takes place at this membrane. Light harvesting complexes (LHC), also present in

thylakoid membranes and each LHC consists of light-absorbing pigments, including
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chlorophylls, carotenoids and proteins, which funnel the incident solar energy to

reaction center (RC) through resonance energy transfer. In photosystem II (PSII) of

higher plants, a special pair of chlorophylls, named as P680, (here P denotes pair

of chlorophylls and the number 680 denotes the absorption maximum of the pair),

present at the reaction center and receives the funneled energy and utilizes it for

charge separation and charge transfer followed by several other processes to finally

reduce the absorbed CO2 from atmosphere to sugars. Thus, chlorophyll functions in

photosystems both as a light harvesting pigment in LHC and as a charge separator at

RC.

Figure 1.2: Thylakoid (green) inside a chloroplast (source: Wikipedia)

[106]

Structural properties

Structure of a chlorophyll mainly consists of a substituted chlorin ring with a Mg

atom at the center of the ring and a phytol chain (see Figure 1.3). Chlorin ring is a

reduced porphyrin ring, which consists of four pyrrole units connected to each other

through methane bridges (see Figure 1.4). If the porphyrin ring is doubly reduced

then it is called as bacteriochlorin ring. A chlorophyll molecule without an Mg atom

at its center is called as pheophytin.

To date there are 5 kinds of chlorophylls known, which can perform oxygenic

photosynthesis, viz. chl a, chl b, chl c, chl d and chl f. Chlorophylls are generally
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Figure 1.3: Schematic representation of chlorophylls.

penta-coordinated in nature and there is a strong effect of this 5th coordination

on the structure and functions of chlorophyll. Major structural changes include

Mg-N bond distances and out of plane distance of Mg i.e., distance of Mg from the

plane of the chlorin ring. Penta-coordination also affects the redox potential of the

chlorophyll molecule. Across the electron transport chain in PSI, the 5th coordination

to chlorophylls is arranged in such a manner that overall it maintains a forward

electron transfer. [107]

Figure 1.4: Schematic representation of a) Porphyrin (D4h) b) Chlorin (C2v) c) Bacteriochlorin
(D2h). Symmetry of the compound is given in braces.
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Optical properties

Chlorophylls with different absorption maximum are arranged in an energy hierarchy

to transfer the light to the reaction center, as mentioned earlier. Absorption spectrum

of a chlorophyll is very sensitive to the changes occurring on the chlorin ring. [108]

A typical absorption spectrum of a chlorophyll consists of high energy B(Soret)–

bands and low energy Q–bands. Goutermann has proposed his four-orbital model

to explain the absorption spectra of porphyrins, substituted porphyrins and its

derivatives (chlorin and bacteriochlorin). [109, 110] According to this model, the

absorption bands in porphyrin systems arises from the transition between the a1u →

eg and a2u → eg (here HOMO and HOMO – 1 orbitals possess a1u and a2u symmetries,

respectively and both the orbitals, LUMO and LUMO + 1 possess eg symmetry).

Relative energies of these transitions are affected by the substituents on the ring

and the metals present at the center of the ring. It should be emphasized that,

four-orbital description is generally accurate for Q-bands but not for B-bands.

In porphyrin, HOMOs with a1u and a2u symmetry are nearly degenerate and

LUMOs with eg symmetry are degenerate. Excitations between these four orbitals

will lead to two transitions with y-symmetry (i.e., transition dipole moment in the

‘y’–direction) and two transitions with x-symmetry (i.e., transition dipole moment

in the ‘x’–direction). Among these four transitions, the two transitions with lower

energy are termed as Q-bands (Qy and Qx) and the transitions with higher energy are

termed as B-bands (By and Bx). A transition dipole moment which passes through

the two opposite pyrrole rings along the y-axis of the porphyrin characterizes a Qy

band. [108] In the case of porphyrin, as both the transitions, a1u → eg and a2u → eg

of 1Eu character are nearly degenerate, mixing of these transitions leads to a lower

intense Q-band and a higher intense Soret-band. [108]

In the case of chlorin, reduction in symmetry lifts the degeneracy of the LUMOs

which causes a decrement in the mixing of excitations. As excitations are not
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mixed much, intensities of both the Q and B-bands remain high. Once there are

substitutions on the chlorin ring, symmetries of the ring will be completely destroyed

and this leads to an increment in the intensity of Q-band. Increase in the intensity

of Q-band reflects the fact that, there is a greater absorption probability and this

helps for efficient energy transfer between the component chromophores, which is

important for photosynthetic systems. [108]

In chapter 2, we have studied the recently isolated chlorophyll, named as, chloro-

phyll f. Chl f can perform oxygenic photosynthesis and its Qy absorption maximum

is in the infrared region. This shows that, in low light conditions also chl f can

perform oxygenic photosynthesis. As mentioned in reference [111], this ability of

chl f can be used for the design of photovoltaic cells. [111] This is because, over

half of the light from the sun comes in at infrared wavelengths and the makers of

photovoltaic panels have been working on ways to extend the section of the spectrum

that solar cells can absorb to beyond red. By the discovery of chl f, now, we can

use it to absorb the infrared region of solar spectrum. Chl f can also be used for

the artificial photosynthesis technology. [111] Considering these facts, we studied

the effects of axial ligation and the reason for the red-shift in the Qy absorption

maximum of chl f.

1.2 Computational methods

1.2.1 Schrödinger equation for solving electronic structure

One of the main aims of quantum chemical computations is to find approximate

solutions for the non-relativistic time-independent Schrödinger equation (SH-eqn).

ĤΨ = EΨ (1.1)
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where Ĥ is the Hamiltonian operator and Ψ is the many-body wave-function, con-

taining all the necessary information about the system. In practice, SH-eqn is exactly

solvable only for one electron systems and we employ approximations either in the

Hamiltonian or in Ψ to solve SH-eqn for a system of our interest (generally, a molecule

or a solid). Approximate methods to solve SH-eqn can mainly be categorized into

two forms, namely, wave-function based methods and density based methods. In

both of these methods, original complicated many-body problem is replaced with

numerically solvable single-particle equations. However, these methods differ from

each other in dealing with the level of correlations between electrons.

For a system with Ne electrons and Nn nuclei, the Hamiltonian operator (Ĥ) can

be written as: [112–114]

Ĥ = −
Ne∑
i=1

~2

2m
∇2
i −

Nn∑
I=1

~2

2MI

∇2
I −

Ne∑
i=1

Nn∑
I=1

ZIe
2

|ri −RI |

+
Ne−1∑
i=1

Ne∑
j>i

e2

|ri − rj|
+

Nn−1∑
I=1

Nn∑
J>I

ZIZJe
2

|RI −RJ |
(1.2)

where, m is the mass of an electron and MI is the mass of I-th nucleus. The Laplacian

operators, ∇2
i and ∇2

I represent the second order differentiation with respect to the

coordinates of i-th electron and I-th nucleus, respectively. e is the charge of an

electron and ZI is the charge of the I-th nucleus. ri and RI represent the spatial

coordinates of i-th electron and I-th nucleus, respectively. In equation 1.2, the first

two terms represents the kinetic energy of electrons and nuclei, respectively. The

third term represents the Coulomb attraction between electrons and nuclei. The

fourth and fifth terms represent the Coulomb repulsion between electron–electron

and electron–nuclei, respectively.
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1.2.2 Approximations we use while solving the equation

Born-Oppenheimer approximation: Nuclei are heavier than electrons

The first approximation to the above Hamiltonian (equation 1.2) arises by realizing

the fact that the nuclei are much heavier than the electrons (for example, carbon

atom is ∼ 20,000 times heavier than an electron). So, the nuclei kinetic energy will

be negligible compared to the electrons kinetic energy. Hence, one can approximate

that the nuclei are static and the interactions between the nuclei remain constant.

With this approximation, famously known as the Born-Oppenheimer approximation,

the full Hamiltonian Ĥ of the equation 1.2 reduces to the electronic Hamiltonian

Ĥelec, given by

Ĥelec = −
Ne∑
i=1

~2

2m
∇2
i −

Ne∑
i=1

Nn∑
I=1

ZIe
2

|ri −RI |
+

Ne−1∑
i=1

Ne∑
j>i

e2

|ri − rj|
(1.3)

Solution of the above partial differential equation (equation 1.3) gives us the electronic

wave-function, ψelec (hereafter, represented as ψ). Once ψ is known, all interesting

properties of the system can be known by operating ψ with the corresponding

quantum mechanical operators. For example, Laplacian operator is used to get the

kinetic energy of the system. It is important to mention that, although one gets

all the properties of a system from ψ, it is not a physical observable. Its modulus

square, that is, |ψ2| (= ψ∗ψ = |ψ(x1, x2, . . . , xN)|2) is a physical observable and is

interpreted as the simultaneous probability to find electrons 1, 2, . . . , N in volumes

dx1, dx2, . . . , dxN .

From molecule to molecule, the only changes one need to incorporate in the

Hamiltonian (equation 1.3) are the number of electrons Ne, the positions (RI) and

charges (ZI) of the nuclei. After these changes, all one need to do is to solve Ĥelec

for ψ. Although, it sounds simple, there is no general strategy to solve Ĥelec and

one relies on the variational principle to attain the ground state (i.e., the state with
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lowest energy), ψ0, where, variational principle says that the energy of any guess

wave-function is greater than the energy of the true ground state wave-function.

Thus, the recipe to get ψ0 is to guess all the wave-functions and choose that wave-

function as ψ0 whose energy is the lowest while solving for Ĥelec. As it can be noticed,

considering all the possible wave-functions is not manageable and one needs suitable

subset of wave-functions which can give physically reasonable approximation to the

many electron wave-function, ψ0.

Slater determinant: An approximation to wave-function

Slater determinant is the simplest and widely used approximation to the many

body wave-function. It consists of an anti-symmetrized product of N one-electron

wave-functions, χi(xi), as given in the equation 1.4

ψ0(x1,x2, . . . ,xN) ≈ ψSD =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χN(x1)

...
...

. . .
...

χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣∣
(1.4)

where, χi(xi) are the spin-orbitals formed by the linear combination of the atomic

orbitals (such as 1s atomic orbitals of hydrogen which may be either in the slater

orbital form or in guassian orbital form). The best Slater determinant, ψSD, is

the one which gives the lowest energy. Different guess wave-functions (here, Slater

determinants) can be generated by varying the χi(xi)’s. Thus, best χi(xi)’s give the

best Slater determinant, and hence, the best approximation for the ψ0. Flexibility

in χi(xi)’s is offered by the expansion coefficients of the atomic orbitals. So, once

we have decided to use ψSD as an approximation for ψ0, all we need to do is to

determine a set of χi(xi)’s that gives energy of the system minimum.

However, variation in atomic orbital’s coefficients must be carried out in such a

way that χi(xi)’s remain orthonormal. Such constrained optimizations, are generally
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handled by means of Lagrange multipliers. Operating, Ĥelec on ψSD, one obtains the

Hartree-Fock (HF) equations, solving which gives approximate ground state energy.

HF is a mean-field method, where the potential felt by the ith electron due to the

left N-1 electrons is only considered in an average manner. Thus, some amount

of correlation is neglected in HF method leading to an error in predicted ground

state energy. Finally, it is important to notice that, the error in the ground state

energy calculated according to HF equations is mainly due to the consideration of

single-slater determinant as an approximation to the many body wave-function and

the only correlations considered in HF are the exchange and Coulomb interaction

between electrons.

Considering HF as starting point, one can include correlations in a system by

increasing the number of Slater determinants used to approximate the many body

wave-function and all such methods are called as post-HF methods. On the other

hand, one may start with a completely different approach, namely, using electron

density as the central quantity instead of the wave function and introduce correlation

quite significantly. This method, which is known as density functional theory (DFT),

is widely used in this thesis.

1.2.3 Density Function Theory

Density functional theory (DFT) is a ground state quantum mechanical modeling

method used in physics and chemistry for treating a system of interacting electrons.

In brief, DFT, in its Kohn-Sham formalism, helps us to map the non-tractable

interacting many-body problem into a solvable non-interacting single-body problem.

It is one of the most successful methods to investigate the electronic structure of

many-body systems, in particular, atoms, molecules and the extended solids, showing

satisfactory agreement with the experimental observations. Despite its success, it

should always be remembered that DFT is a ground state method and any properties
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predicted by DFT related to excited states, for example, using ∆ methods (described

latter) should be carefully examined. Also, DFT has strong limitations in dealing

with strongly correlated systems.

Within DFT, the Hamiltonian (Ĥ) of an N electron system, in the presence of

an external field, Vext(r), is expressed as:

Ĥ = T̂ + Û + V̂ext = − ~2

2m

N∑
i=1

∇i
2 +

N−1∑
i=1

N∑
j>i

e2

|ri − rj|
+ V̂ext(r) (1.5)

Clearly, equations 1.5 and 1.3 are same, except for the fact that, now, apart from

electron-nuclei interaction we have also included any external fields (like electric-field

etc.) in Vext term and T̂ , Û are used to represent the kinetic energy of electrons

and the electron-electron repulsion terms. Unlike HF-method, where one starts

with an approximate wave-function (typically ψSD) as a solution to Ĥelec, in DFT,

we rely on the ground state density of the many-body system without any prior

approximation. However, in DFT also, one needs to introduce approximations while

solving for the many-body ground state density. As will be discussed, in DFT,

the major approximation lies in the Hamiltonian (mainly, in exchange-corrleation

functional), but not in the density or wave function. Also, DFT is formally an exact

theory, unlike HF theory (where, approximation is in wave function).

Formal foundations of DFT lies in the Hohenberg-Kohn (HK) theorems[115–117],

where the first theorem proves one to one correspondence between the external

potential (Vext) and the ground state density. Thus, if we know the electron density,

we uniquely know the Hamiltonian, and hence, all the properties of the system. In

other words, as Hamiltonian gives us ψ0, first theorem proves that ground state

wave-function, ψ0, is a unique functional of density (ρ0(r)), i.e.,

Ψ0(r) = Ψ0[ρ0(r)] (1.6)



18 Chapter 1.

Now, because of equation 1.6, expectation value of any observable, Â, in it’s ground

state will be a functional of ρ0

A[ρ0] = 〈Ψ0[ρ0]|Â|Ψ0[ρ0]〉 (1.7)

Hence, the ground state energy(E0) will also be a functional of ρ0.

E0 = E[ρ0] = 〈Ψ0[ρ0]|T̂ + Û + V̂ext|Ψ0[ρ0]〉 (1.8)

Thus, through the first HK-theroem, we have shown that any ground state

property is a functional of ρ0, but we didn’t establish a way to know whether any

arbitrary ρ(r) is indeed ρ0. Second HK-theorem bridges this gap. It is similar to

variational principle and it proves that the energy obtained by any guess density is

always greater than or equal (only when it is equal to the ground state density) to

the energy obtained by the ground state density. So, the ground state density can be

calculated after the minimization of the energy function, E[ρ], with respect to ρ(r)

and all other ground-state observables can be calculated from ρ0(r). The external

potential, 〈Ψ0[ρ0]|V̂ext|Ψ0[ρ0]〉, in equation 1.8, can be written as,

Vext = Vext[ρ0] =

∫
V̂ext(r)ρ0(r)dr (1.9)

More generally, the expectation values of T̂ , Û and V̂ext with respect to any arbitrary

density, ρ(r), can be written explicitly as:

T [ρ] = 〈Ψ[ρ]|T̂ |Ψ[ρ]〉 (1.10)

U [ρ] = 〈Ψ[ρ]|Û |Ψ[ρ]〉 (1.11)

Vext[ρ] = 〈Ψ[ρ]|V̂ext|Ψ[ρ]〉 (1.12)
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T [ρ] and U [ρ] together are called universal functional, as they do not depend on the

system of interest. On the other hand, Vext[ρ] depends on systems under study, and

hence, it is termed as a non-universal functional of electron density, ρ0(r). Once the

exact form of T [ρ] and U [ρ] are known, we can always get exact results using DFT.

Unfortunately, the exact form for the universal functional is not known, and all the

approximations in DFT (leading to different exchange correlational functionals) are

because of the non-availability of universal functional.

In general, one solves the DFT Hamiltonian, using the Kohn-Sham (KS) formalism.

In KS-formalism, energy functional can be considered such that it doesn’t have any

explicit electron-electron interaction energy term,

Es[ρ] = 〈Ψs[ρ]|T̂ + V̂s|Ψs[ρ]〉 (1.13)

where, V̂s is an effective single-particle potential in which particles are moving so

that ρs(r) = ρ(r) and Vs can be expanded as:

Vs(r) = Vext(r) +

∫
ρs(r

′)

|r− r′|
dr′ + Vxc(ρs(r)) (1.14)

The KS equations of this auxiliary non-interacting system are defined as,

[
− ~2

2m
∇2
i + V̂s

]
φi(r) = εiφi(r) (1.15)

where, {φi(r)} are the Kohn-Sham orbitals which reproduce the density of the original

many-body system.

ρ(r) = ρs(r) =
N∑
i=1

|φi(r)|2 (1.16)
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Finally, the total energy of the system can be written as:

E[ρ(r)] = Ts[ρ(r)] +
1

2

∫
ρ(r)ρ(r′)

|ri − r′i|
drdr′ + Exc[ρ(r)]

+

∫
ρ(r)Vext(r)dr (1.17)

where, Ts[ρ(r)] = − ~2
2m

∑N
i=1

∫
φ∗i (r)∇2φi(r)dr, is the non-interacting kinetic energy

and Vxc = δExc[ρ(r)]
δρ(r)

, is the exchange-correlation potential. There are some important

terms in equation 1.17. Firstly, the second and the last terms represents the classical

Couloumb interactions between the electron-electron (also, known as the Hartree

energy) and electron-nuclei, respectively. Last part of the equation also contains

the external fields effects, other than the nuclei potential. Importantly, exact form

of these two terms are known, and hence, can be computed in principle. More

importantly, the unknown form of the kinetic energy is computed with KS-orbitals

of the non-interacting system. Though Ts is not exactly equal to the kinetic energy

of the original many-body system, it accounts for a great amount. Cleverly, the

rest of the contribution to kinetic energy is added as a part of exchange-corrleation

term (Exc). Similarly, several other unknown parts are added to this Exc. Thus, Exc,

which may be misleading by its name, not only includes the non-classical exchange

and correlation contributions to the potential energy, but also the self-interaction

correction and a portion of kinetic energy. As exact functional form of Vxc is not

known, it has to be approximated to calculate Exc, and hence, E[ρ(r)]. The problem

of solving the Kohn-Sham equation is done in a self-consistent manner. First, an

initial guess for ρ(r) is considered and then the corresponding Vs is calculated. After

that, {φi(r)} can be calculated by solving the Kohn-Sham equations. From these

{φi(r)}, one can calculate a new density and the process starts all over again. This

procedure is then continued until a convergence is reached.
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Exchange and Correlation Functionals

There are a variety of approximations for exchange and correlation energy functionals.

Some of the Exc’s, which have been used extensively in scientific research are discussed

below.

Local Density Approximation (LDA) The most simplest approximation to the

exchange-correlation energy functional, Exc[ρ(r)], is the Local Density Approximation

(LDA)[118] which is defined as:

ELDA
xc [ρ] =

∫
drεxc(ρ(r)) · ρ(r) (1.18)

where εxc(ρ(r)) is the exchange and correlation energy per electron of the homogeneous

electron gas with density ρ(r). In this approach, it is considered that the electronic

density, ρ(r), is a smooth and homogeneous function in space. Then, any region in

space can be treated as a homogeneous electron gas. For spin polarized calculation,

the generalization of the LDA is called local spin-density approximation (LSDA)

which is defined as,

ELSDA
xc [ρ↑, ρ↓] =

∫
drεxc(ρ↑, ρ↓) · ρ(r) (1.19)

Generalized Gradient Approximation (GGA) It is an extended and improved

version of LDA functional to systems with inhomogeneous charge densities. For

nonuniform charge densities, the exchange-correlation energy can deviate significantly

from the uniform result and this deviation can be expressed in terms of the gradient

and higher spatial derivatives of the total charge density. As the exchange and

correlation energy, in GGA approximation, depend on the gradients of charge density

(apart from the local electron densities) it has proved to be an improvement over

LDA for systems where the charge density is slowly varying. There are a variety of
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formalism for GGA approximation. [119–124]. The exchange and correlation energy

is defined as,

EGGA
xc [ρ, ~5ρ] =

∫
drεxc(ρ, ~5ρ) · ρ(r) (1.20)

while, for spin polarized systems, the exchange and correlation energy is defined as,

EGSGA
xc [ρ↑, ρ↓, ~5ρ↑, ~5ρ↓] =

∫
drεxc(ρ↑, ρ↓, ~5ρ↑, ~5ρ↓) · ρ(r) (1.21)

Hybrid Functionals In hybrid functionals, the exchange and correlation energy

includes a mixture of Hartree-Fock exchange with exchange and correlation from

different sources, often including various forms of LDA and GGA. For example, for

the case of B3LYP (stands for Becke, 3-parameter, Lee-Yang-Parr), [125] one mixes

the Hatree-Fock exchange with both LDA (VWN exchange) and GGA (Becke88

exchange) exchange and employs LYP correlation functional. B3LYP exchange-

correlation functional is given by:

EB3LY P
xc = ELDA

x + a0[E
HF
x − ELDA

x ] + ax[E
GGA
x − ELDA

x ] + (1.22)

ac[E
GGA
c − ELDA

c ] + ELDA
c

where, a0 = 0.20, ax = 0.72 and ac = 0.81.

Long range corrected functionals The non-Coulomb part of exchange func-

tionals typically dies off very rapidly and becomes less accurate at large distances.

Therefore, it is not accurate for modeling processes such as electron excitations to

higher energy orbitals. Various types of formalisms have been adopted to handle

the systems with significant dispersive interactions. Among the many, CAM-B3LYP

[126] and ωb97xd [127] are the most commonly used long range corrected functionals.
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Pseudopotentials and Numerical Orbitals

In computational physics and chemistry, pseudopotentials are used as an approxima-

tion for the simplified description of solving the systems. Pseudopotential approxi-

mation is used for (a) reduction of basis set size, (b) reduction of effective number of

electrons for explicit consideration and (c) inclusion of relativistic and other effects.

Generally it is known that, the core electrons do not participate in chemical bonding

and are unaffected by changes in their chemical environment. Therefore, it is a

good approximation to consider that all the core electrons of an atom are frozen and

an effective external potential is experienced only by valence electrons in the atom.

Pseudopotentials are obtained by constructing smoother wave functions in which the

oscillations of the valence wave function in the core region are removed. [128, 129]

The pseudo wave function and all electron wave function becomes well comparable

with each other beyond a particular value of radial distance, which is chosen to be

outside of the last node in the all electron wave function; this is called the cutoff

radius, rc. If we can use the same pseudopotential to describe different chemical

environments, the pseudopotential is termed as transferable. A good pseudopotential

needs to fulfill the following conditions:

• The lowest pseudo wave function generated by the pseudopotential generaliza-

tion method should not contain any nodes.

• The normalized atomic radial pseudo wave function with an angular momentum

l should be equal to the normalized radial all electron (AE) wave function

outside a given cut-off radius, rc (Fig. 1.5):

RPP
i (r) = RAE

i (r) (r > rc) (1.23)

• Norm conservation: The charge inside of rc has to be the same for both wave
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Figure 1.5: Comparison of a wave function in the Coulomb potential of the nucleus (dashed line)
to the one in the pseudopotential (continuous line). [130] The real and the pseudo wave function
and potentials match above a certain cutoff radius rc.

functions,

∫ rc

0

|RPP
i (r)|2r2dr =

∫ rc

0

|RAE
i (r)|2r2dr (1.24)

• The eigenvalues of both wave functions should be the same.

There are many packages for the self-consistent calculations of electronic structure

using Hartree-Fock and DFT methods. Some of these packages which have been used

to study atoms, molecules or nanomaterials are Gaussian, [131] General Atomic and

Molecular Electronic Structure System (GAMESS) [132] and Amsterdam Density

Functional (ADF) [133] etc. However, since these packages use atom centered basis

functions, one cannot handle larger systems. A combination of atom centered basis

functions with pseudopotentials make an ideal choice for studying large systems.

This has been implemented in the Spanish Initiative for Electronic Simulations

with Thousands of Atoms (SIESTA) package, [134] making it an ideal choice for

studying realistic systems of large sizes. Other than these, one may adopt CP2K
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[135] and Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB)

[136] methods to study electronic structure and properties for larger systems. For

plane wave basis set, one may use Quantum ESPRESSO [137] or VASP. [138]

1.2.4 Density-Functional Tight-Binding (DFTB)

DFTB is a semi-empirical method based on DFT and it is a very useful method

(i) to predict the ground state properties of very large systems (typically, > 1000

atoms) or (ii) to obtain trends from large number of systems belonging to structural

families, where calculations with DFT will be quite expensive. Also, DFTB can be

used as a supporting tool to run DFT calculations, where one first screen several

compounds using DFTB and subsequent calculations will be performed by DFT.

DFTB is better than traditional TB, because in DFTB parameters are transferable,

though absolute transferability can never be achieved. Because of its tight-binding

nature, it yields good results with covalent systems, but not better than DFT. [139]

Depending on the level of truncation involved in the Taylor series expansion of

total energy functional, E[ρ(r)], with respect to a reference density, ρ0(r), under a

small fluctuation, δρ, DFTB can be divided into three levels, namely, DFTB (or

non-self consistent charge (non-SCC) DFTB), SCC-DFTB and DFTB3. [140, 141]

The density ρ0(r) (generally, composed of atomic densities), doesn’t minimize the

KS energy functional, E[ρ(r)], but, it is near to the ground state density ρ(r), such

that the exact ground state density ρ(r) = ρ0(r) + δρ(r).

Following earlier works, [136, 141, 142] one can rewrite the total energy corrected
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till the third order in the density fluctuations as below:

E[ρ0(r) + δρ(r)] =
N∑
i=1

εi − EH [ρ0(r)] + Exc[ρ0(r)]−
∫
Vxc[ρ0(r)]ρ0(r)dr +

1

2

∫ ′ ∫ (
1

|r − r′|
+
δ2Exc[ρ]

δρδρ′

∣∣∣∣
ρ0

)
δρδρ′drdr′ +

1

6

∫ ′′ ∫ ′ ∫
δ3Exc[ρ]

δρδρ′δρ′′

∣∣∣∣∣
ρ0

δρδρ′δρ′′drdr′dr′′ (1.25)

where, the εi’s are the eigenvalues of non-self consistent Schrödinger equation, with

V(r) being similar to effective KS-potential

Ĥψi(r) = [−1

2
∇2 + V (r)]ψi(r) = εiψi(r) (1.26)

and EH and Exc are the Hartree and exchange-correlation energies, respectively.

Derivation of the equation 1.25 is not straight forward. It mainly depends on the

stationary principle in DFT. A detailed explanation of stationary principle and the

complete derivation of equation 1.25 (till second-order) are given in the section II of

Ref. [142].

In the traditional non-SCC DFTB, the last two terms on the right hand side of

the Eqn. 1.25 are neglected. This leaves us with the terms which only depend on the

reference density ρ0. So, we enter the non-self consistent scheme i.e., we diagonalize

the generalized eigenvalue problem only once. Approximations involved in the DFTB

method include: (i) densities and potentials are written as superpositions of atomic

densities (so there will not be any charge transfer) and potentials. (ii) terms involving

more than two centers (i.e., all the terms other than
∑N

i=1 εi in the first line), together

with nuclear repulsion energy terms are written as a sum of pairwise repulsive terms.

(iii) Kohn-Sham orbitals are expanded using a minimal basis of optimized atomic

orbitals. [143] Thus, non-SCC DFTB will act as a good approximation when the
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original many-atom density can be represented as a sum of atom-like densities, but,

fails when bonding in the system is dictated by a delicate charge balance between its

atoms (as in polar molecules/semiconductors). [136]

In SCC-DFTB, both 1st and 2nd terms of Eqn. 1.25 are considered. Thus, the

fluctuations in the charge density are also incorporated while calculating the total

energy of the system. Here, the 2nd term is approximated by decomposing the δρ

into atomic centered contributions, where, an atom centered contribution is given by

δρα ≈ ∆qαF
α
00(|~r − ~Rα|)Y00, (1.27)

with Fα
ml denoting the normalized radial dependence of density fluctuation on atom

α for the corresponding angular momentum and ∆qα is the net charge of atom α.

With further approximations, [136] final form of the 2nd term of Eqn. 1.25 is given

by:

E2nd =
1

2

∑
ab

∆qα∆qβγαβ, (1.28)

where, γαβ accounts for the electron-electron interactions and γαβ has a dual role:

[136, 141] (i) at large inter-atomic distances, XC contributions becomes negligible.

Here, E2nd describes pure Coulomb interactions between the two point charges ∆qα

and ∆qβ. Thus, for large distances, γαβ = 1/rαβ. (ii) For α = β, γαα is approximated

as the difference between the ionization energy (IE) and electron affinity (EA) of

the atom α, similar to the quantum chemistry semi-empirical methods. Thus, at

negligible inter-atomic distances, γαα ≈ IAα - EAα ≈ Uα (≈ twice the chemical

hardness), describes the Hubbard on-site self-repulsion. Uα is calculated as the

second derivative of the total energy of the highest occupied orbital of atom α with

respect to its occupation number. As these calculations involve self-consistent DFT,

they include the effect of second-order contributions to EXC through γαβ. Analytical

form of γαβ, satisfying both of the above roles, is given by the integral over a product
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of two normalized Slater-type spherical charge densities [see Ref [136] for further

details].

In SCC-DFTB, Hubbard parameter is a constant for an atom irrespective of its

charged state and hence, it doesn’t distinguish cations/anions from the corresponding

neutral species. But, we already know that anions (cations) will have low (high)

chemical hardness compared to neutral species. In DFTB3, these shortcomings are

addressed by considering all the terms in Eqn. 1.25. Thus, one can use DFTB3 even

for highly charged systems [see Ref [141] for further details].

1.2.5 Time Dependent Density-Functional Theory (TDDFT)

Till now, we have gone through the methods, which gives good approximations for

the ground state wave-function, energy and related properties. But, these methods

are not sufficient enough to tackle the excited states. One may use the ground

state methods, like DFT, to calculate the excited state energies in certain scenarios

such as when the interested excited state is of different spin-multiplicity (like triplet

etc.) or it belongs to a different space group when compared to the ground state.

These methods are called ∆ methods and their use is very limited. For example,

one can’t calculate the excited state energy if both the ground and excited states

belong to the same symmetry or space-group and this will be the case for general

systems of interest. Naturally, one needs a different formalism to explore excited

states and, similar to the ground state methods, we do have the wave-function based

and density functional based methods to deal with excited states. Wave-function

based methods include configuration interaction (CI), time dependent HF etc. and

density functional based methods include TD-DFT, TD-DFTB etc. CI and TD-HF

are also known as Tamn-Dancoff approximation and random phase approximation

(RPA), in nuclear physics literature. [144]

Time-dependent density-functional theory (TDDFT) extends the basic ideas of
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ground-state density-functional theory (DFT) to the treatment of excitations or more

general time-dependent phenomena. [112] TDDFT can be viewed as an alternative

formulation of time-dependent quantum mechanics, but, in contrast to the normal

approach that relies on wave-functions and on the many-body Schrödinger equation,

its basic variable is the time-dependent electron density, n(r, t). The advantages are

clear: The many-body wave-function, a function in a 3N-dimensional space (where

N is the number of electrons in the system), is a very complex mathematical object,

while the density is a simple function that depends solely on 3 variables, x, y and

z. The standard way to obtain n(r, t) is with the help of a fictitious system of

non-interacting electrons, the Kohn-Sham system. The final equations are simple to

tackle numerically, and are routinely solved for systems with a large number of atoms.

These electrons feel an effective potential, the time-dependent Kohn-Sham potential.

In the time-dependent case, these Kohn-Sham electrons obey the time-dependent

Schrödinger equation

i
∂

∂t
ψi(r, t) =

[
− ~2

2m
∇2
i + V̂KS(r, t)

]
ψi(r, t) (1.29)

The density of the interacting system can be obtained from the time-dependent

Kohn-Sham orbitals

n(r, t) =
occ∑
i

ψi(r, t) (1.30)

1.3 Softwares used

DFT calculations reported in this thesis were carried out using any of Gaussian

[131], SIESTA [134] and CP2K[135] packages. DFTB calculations were performed

using DFTB+ package. [145] Configuration interaction calculations were done

using an in-house code. Xmgrace [146] and gnuplot [147] packages were used for



30 Chapter 1.

plotting. Visualizations and graphical analyses were done using GaussView [148],

Xcrysden [149], jmol [150] and VMD [151] visualization softwares. Many of the

results were analyzed using home developed scripts/codes. The work reported in

this thesis required computational calculations which were performed on dedicated

home clusters as well as from the resources available in central facilities at Center

for Computational Materials Science (CCMS), JNCASR.

1.4 Outline of thesis

Work presented in this thesis is devoted to understand electronic, magnetic and

optical properties of a few low-dimensional systems either when they are pristine

or when there are defects in these systems or when small molecules/clusters are

adsorbed on these low-dimensional systems. All the properties were examined using

computer simulations. Different techniques like DFT, TDDFT, CI, ZINDO and

DFTB+ were employed to study these properties.

In chapter 2, time-dependent density functional theory (TDDFT) calculations

have been used to understand the excited-state properties of modified chlorophyll

f (Chlide f), Chlide a, Chlide b, and axial ligated (with imidazole, H2O, CH3OH,

CH3COOH, C6H5OH) Chlide f molecules. The computed differences among the

QX , QY , BX , and BY band absorbance wavelengths of Chlide a, b, and f molecules

are found to be comparable with experimentally observed shifts for these bands in

chlorophyll a (chl a), chl b, and chl f molecules. Our computations provide evidence

that the red shift in the QY band of chl f is due to the extended delocalization

of macrocycle chlorin ring because of the presence of the –CHO group. The local

contribution from the –CHO substituent to the macrocycle chlorin ring stabilizes the

corresponding molecular orbitals (lowest unoccupied molecular orbital (LUMO) of

the Chlide f and LUMO–1 of the Chlide b). All the absorption bands of Chlide f shift

to higher wavelengths on the addition of axial ligands. Computed redox potentials
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show that, among the axial ligated Chlide f molecules, Chlide f–imidazole acts as a

good electron donor and Chlide f–CH3COOH acts as a good electron acceptor.

In chapter 3, using DFT, we have examined the structural stability, electronic,

magnetic, and optical properties of rectangular and cross-shaped quantum dots (QDs)

of graphene (G), boron nitride (BN), and their hybrids. Different hybrid QDs have

been considered by substituting a GQD (BNQD) with BN-pairs (carbon atoms) at

different positions. Several parameters, like size, amount of substitution, and so forth,

have been varied for all these QDs to monitor the corresponding changes in their

properties. Among the considered parameters, we find that substitution can act as a

powerful tool to attain interesting properties with these QDs. For example, a broad

range of absorption (∼2000 nm) in the near-infrared (NIR) region, spin-polarized

HOMO–LUMO gaps without the application of any external-bias, and so forth, which

are highly required in the preparation of opto-electronic and electronic/spintronic

devices, among others.

Based on both semiempirical and ab initio calculations, in chapter 4, we find that

GQDs with inequivalent sublattice atoms can have rich optical and nonlinear optical

properties. Based on configuration interaction calculations, with in the Hubbard

model, we have predicted the ground state of both Kekulé and non–Kekulé PAHs

and we have shown that both these PAHs obey Lieb’s theorem in their neutral states.

In chapter 5, utilizing the strengths of nitrogen-doped graphene quantum dot

(N-GQD) as a substrate, we have shown that one can stabilize the catalytically more

active planar Au20 (P-Au20) compared with the thermodynamically more stable

tetrahedral structure (T-Au20) on N-GQDs.

In chapter 6, we have presented our spin-polarized DFT calculations on zigzag

boron-nitride nanoribbons (z-BNNRs) with lines of alternating fused pentagon (P)

and heptagon (H) rings (pentagon-heptagon (PH) line defect) at a single edge

as well as at both edges. Among the different spin-configurations that we have
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studied, we find that the spin-configuration with ferromagnetic ordering at each

edge and antiferromagnetic ordering across the edges is quite interesting. For this

spin-configuration, we find that, if the introduced PH line defect is odd-numbered,

the systems behave as spin-polarized semiconductors, but, for even-numbered, all

the systems show interesting antiferromagnetic half-metallic behavior. Robustness of

these results has been cross checked by the variation of line-defect position and also

by the variation of width [from ∼ 1.1 nm (6-zBNNR) to ∼ 3.3 nm (16-zBNNR)] of

the ribbon. The main reason for many of the observed changes was traced back to

the change in edge nature of the BNNR, which indeed dictates the properties of the

systems.

In the last chapter, based on DFT calculations, we have proposed the unzipping

mechanism for both carbon and MoS2 nanotubes under the laser irradiation in liquid

dimethylformamide (DMF). Proposed mechanism includes the formation of vacancies

and the generation of induced dipole–moment across the nanotube under the influence

of external electric–field due to the charge accumulation near the vacancies. DMF

molecules align themselves along the tube axis near the vacancies with their dipoles

being parallel to the induced dipoles to minimize their interaction with external field.

This leads to the accumulation of further charge near the vacancies and supports

longitudinal unzipping of nanotubes.
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Chapter 2

Computational Studies on

Structural and Excited State

Properties of Modified

Chlorophyll f with Various Axial

Ligands ?

2.1 Introduction

Chlorophylls (chls) are the essential light harvesting pigments of photosystems present

in the thylakoid membrane of plants, algae and cyanobacteria. [1, 2] Five chemically

distinct chls, namely, chl a, chl b, chl c, chl d and chl f (see Fig. 1.3) are known to

perform oxygenic photosynthesis and all of them absorb solar radiation at different

wavelengths. [3, 4] All chls contain a chlorin (reduced porphyrin) ring with Mg at its

center (bonded to the nitrogens of the four pyrrole units present in the chlorin ring),

?Work reported in this chapter is published in: Sharma S. R. K. C. Yamijala, Ganga Periyasamy,
and Swapan K Pati, J. Phys. Chem. A, 115, 12298–12306 (2011).
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but they differ from each other by their substituents R, R’, R”, as shown in Fig. 1.3.

These substituents affect the π–electron conjugation of the chlorin ring, and thus

lead to different absorption spectra. [5]

Spectral properties of chls (except chl f) or their models have been studied by

several researchers [4, 6, 7] for many years at different levels of theory, like ZINDO/S-

CIS, [8] SAC-CI, [9] ab initio methods, [10] TDDFT, [11–13] and CASPT2. [14] In

all these studies, four important peaks were observed in the absorption spectra of

chls, which include two low energy bands, namely, QX and QY and two high energy

bands BX and BY . The QY absorption wavelengths of the chls are: chl a (662 nm),

chl b (644 nm), chl d (688 nm) and chl f (706 nm). [3, 10, 15, 16] Among all the

chls, the QY absorption maximum of chl f is red–shifted and it is in the near infrared

(NIR)–region. Chen et. al., [15] discovered chl f from cyanobacteria and reported

preliminary structural and spectroscopic studies. However, the reason behind the

huge red–shift in the QY band in chl f, when compared with other chls has not

been understood. In the present study, we focus our attention on the microscopic

understanding behind the unusual spectroscopic signatures of chl f, and to compare

and contrast various properties of chl f with other chls.

Although all chls are interesting, our study only focuses on chl f and its structural

isomer, chl b. Chl b and chl f structurally differs from each other only by the position

of –CHO group (see Fig. 1.3). This makes these systems interesting to study for their

optical properties, because just by changing the position of a functional group, there

is a huge red-shift in the QY band (∼ 54 nm) of chl f. [15] For a proper microscopic

understanding of the structural and spectroscopic properties of these systems, we

have employed the ab initio methods, density functional theory (DFT) and the time

dependent version of it (TDDFT).

To determine the structure of a chl within the complex protein environment is

quite challenging. In many chl proteins, the Mg–atom exhibits penta-coordination,
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Figure 2.1: TDDFT computed electronic transitions of chl f and Chlide f molecules. Bands are
assigned. Observe the minute changes in the position of bands.

[17, 18] where the fifth coordination will generally be with an amino acid residue

or with a water molecule. There are a few theoretical papers which considered the

effects of axial ligation in chl a. [6, 8, 10, 19–22] The present chapter focuses on

the structural and excited state properties of Chlide f in the presence and absence

of axial ligands (such as imidazole, CH3COOH, CH3OH, C6H5OH and H2O). The

calculated structural changes are well supported by the computed NMR results. We

also have studied the redox properties of these molecules, since chls in photosystem

are involved in electron transfer.

2.2 Computational Details

Initial structures of chl f and chl b are created from the XRD structure of chl a

found at 2.5 Å resolution (1JBO.pdb). [23] The substituent at the 17th carbon

of the chlorin ring (pyrrole ring II) is modeled as –CH3 group in order to reduce
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Table 2.1: Q and B bands of Chl f and Chlide f. Here ‘H’ stands for HOMO and ‘L’ stands for
LUMO. Observe the minute changes in the position and nature of bands.

Molecules Nature Excitation Wavelength (nm) Major molecular orbital contributions

Chl f

Qy 616 H to L (0.72)
Qx 577 H-1 → L (0.72) and H → L + 1 (0.20)
By 395 H–1 → L+1 (0.62)
Bx 351 H → L+1 (0.50)

Chlide f

Qy 615 H → L (0.72)
Qx 579 H-1 → L (0.73) and H → L + 1 (0.19)
By 396 H–1 → L+1 (0.61)
Bx 409 H → L+1 (0.51)

the computational cost (see Fig. 1.3). Removal of phytol chain is considered as a

reasonable approximation from several previous computational studies on chlorophyll

a, which shows negligible changes in the absorption and redox properties of the

chl molecules in the absence of phytol chain. [6, 7, 20–22, 22, 24] We refer this

modified chlorophyll structure (a chlorophyll whose substituent at 17th carbon of the

chlorin ring is modeled with methyl group) as “Chlide”. We also have performed

calculations considering the complete structure of chlorophylls to know the affects

of the substituent at the 17th carbon on the absorption properties of chlorophylls

and, as expected, we find little changes in the absorption spectra (see Fig. 2.1 and

Table 2.1 for comparison).

As there are two conformers possible with respect to the –CHO group for Chlide

f and Chlide b, geometry optimizations were performed to find the conformer with

minimum energy and this minimum energy conformer is considered for further

calculations. Five neutral axial ligands are considered in our study. ‘Histidine’ is

modeled as “imidazole”, ‘Aspartate’ as “CH3COOH”, ‘Serine’ as “CH3OH”, ‘Tyrosine

as “Phenol” and ‘water’ as “H2O”. Considering functional groups instead of complete

amino acids has been proved to mimic the role of amino acids in various axial ligated

chl a molecules. [20, 22] The above mentioned axial ligands occur frequently in

photosystems of cyanobacterium. [20]

All the geometry optimizations and energy calculations were performed with the
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Density Functional Theory (DFT). The three–parameter hybrid functional B3LYP

(Beke exchange with Lee, Yang and Parr correlation) [25–27] with 6–31+G (d) basis

set is used for all the atoms as implemented in the Gaussian 03 program package. [28]

We choose the B3LYP functional, because, it is found to be one of the appropriate

functional [7, 10, 12, 13, 19, 20, 24, 29] for the prediction of electronic structure

for the various oxidation states of chls. We are aware that this functional is not

fully adequate to describe the long–range dispersion forces or stacking interactions,

but, we do not expect them to play an important role in the single unit Chlide

molecules investigated here. The computed energies have been corrected for basis set

superposition error (BSSE) using the counterpoise method. [30, 31] All the molecular

properties were calculated at the same level of theory and using the Gaussian 03

program package. 1H–NMR chemical shielding values were calculated using Gauge

Including Atomic Orbital (GIAO) method. [32–36] Time Dependent DFT (TDDFT)

[37, 38] is used to calculate the absorption properties of the optimized geometries.

In this work, we did not include the implicit solvent effect, since it is already

proved that in the continuum model, solvent effect on the neutral ligated chl a

molecules are negligible [20] and the initial molecular structures are obtained from

1JBO.pdb crystal structure, where all environmental effects have implicitly been

included. In addition, it is known that in protein environment, the inter–molecular

H–bonding interaction between axial ligands and the surrounding environment will

be dominant, which cannot be mimicked using implicit solvent model. To use an

explicit solvent will be expensive and hence, in this work we report only the gas

phase results.

2.3 Results and Discussions

In what follows, we have reported the initial structural differences among Chlide

f, Chlide b and Chlide a along with the structural changes upon axial ligation,
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in section 2.3.1. Bond dissociation energies of axial ligated Chlide f molecules are

reported in section 2.3.2. Redox properties are discussed in section 2.3.3. Section 2.3.4

is devoted to the changes in the absorption spectra among different Chlide molecules,

in particular, the reasons for the red–shift in Chlide f.

Figure 2.2: Optimized geometry of two stable conformers of Chlide f (a) S–cis Chlide f (b) S–trans
Chlide f. Important bond distances are shown in Å. Note that the Mg is present in the plane of
macrocycle.

2.3.1 Structural changes

In this section, we discuss the structural differences among Chlide f, Chlide a and

Chlide b along with the structural comparison between the two conformers of Chlide

f. In addition, structural changes due to axial ligation are also discussed.

Among the many conformers of chl b, the two conformers, S–cis chl b (chl b’)

and S–trans–chl b (chl b) are reported to be more stable and with close ground state

energies. [7] We also found the same, where the S–trans conformer turns out to be

more stable than the S–cis conformer. However, the difference in the energies is only

5 kcal mol−1, and hence, both the conformers can be present in gas phase. On the

other hand, one of the conformer might be stabilized in the protein environment due

to the presence of an inter–molecular hydrogen bonding interaction. In order to find

the conformer present in the nature, the chemical shift values of ‘formyl hydrogen’
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Table 2.2: Computed 1H NMR chemical shift values (ppm) for the Ha, Hb, Hc and formyl hydrogen
atoms of various Chlides studied in this paper and the corresponding shifts in the experimentally
studied chls. Hydrogen labelling schemes are shown in the Fig. 1.3. Tetramethylsilane (TMS) is
used as a reference.

Molecule Method Ha Hb Hc Formyl hydrogen
Chlide a DFT 9.28 9.67 8.51

Chl a Exp [39] 9.29 9.54 8.32
Chlide b DFT 10.93 9.48 8.17 11.35

Chl b Exp [40] 10.04 9.64 8.20 11.22
Chlide f DFT 9.60 9.57 10.17 11.51

Chl f Exp [15] 9.79 9.86 9.77 11.35
Chlide b’ DFT 9.73 9.71 8.31 11.83
Chlide f ’ DFT 9.84 9.64 8.95 11.71

H2O DFT 9.57 9.54 10.20 11.55
imidazole DFT 9.60 9.48 10.15 11.49
CH3OH DFT 9.59 9.63 10.09 11.45

CH3COOH DFT 9.44 9.66 10.21 11.16
C6H5OH DFT 9.43 9.77 10.15 11.17

for both conformers are computed. Chemical shift value of S–trans Chlide b (11.35

ppm) is comparable with experimental value of chl b (11.25 ppm) (see Table 2.2),

than the S–cis Chlide b (11.85 ppm). In addition, our computed values are also in

good agreement with the already reported values using CAM–B3LYP functional [15]

which validates the functional and basis set used in this study.

Similarly, S–trans conformer of Chlide f is found to be stable by 1 kcal mol−1

than the S–cis conformer and the chemical shift value of formyl group for S–cis (11.71

ppm) and S–trans (11.51 ppm) conformers of Chlide f (see Table 2.2) shows that the

S–trans conformer chemical shift value is more comparable with experimental value,

which is 11.35 ppm. [15] Thus, earlier works and our results on Chlides suggests that

chl b and chl f might be present in the S–trans conformation in protein environment,

and we have considered only these conformers for further studies reported in this

chapter.

In the optimized structure of Chlide f, Mg is in the plane of the chlorin macrocycle,

and is coordinated asymmetrically to the four pyrrole nitrogens. The order of the
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Table 2.3: Computed important bond distances (Å) and Mülliken partial atomic charges (e) for
Chlide a, Chlide b, Chlide b’, Chlide f, Chlide f’, neutral ligand ligated Chlide f and negative charge
ligand ligated Chlide f (Mülliken partial atomic charge on ligated atom in bare ligand are given in
italics within brackets).

Molecules Mg–N1 Mg–N2 Mg–N3 Mg–N4 Mg–ligand dOOP

Mülliken partial atomic
charge (in e)

Mg Ligated atom
Chlide a 2.03 2.15 2.02 2.07 – 0.02 0.84 –
Chlide b 2.03 2.15 2.02 2.08 – 0.03 0.86 –
Chlide b’ 2.03 2.15 2.02 2.08 – 0.02 0.82 –
Chlide f 2.04 2.15 2.02 2.08 – 0.02 0.82 –
Chlide f’ 2.04 2.15 2.02 2.08 – 0.02 0.80 –

H2O 2.06 2.17 2.04 2.11 2.17 0.24 0.42 -0.84 (-0.93)
imidazole 2.08 2.20 2.06 2.12 2.19 0.37 -2.04 -0.27 (-0.31)
CH3OH 2.07 2.18 2.04 2.10 2.14 0.27 -0.51 -0.47 (-0.65)

CH3COOH 2.06 2.17 2.03 2.09 2.25 0.22 -1.23 -0.43 (-0.57)
C6H5OH 2.07 2.17 2.04 2.10 2.19 0.26 -1.39 -0.47 (-0.69)

Negative ligands
CH3O

− 2.11 2.24 2.08 2.14 1.95 0.54 -0.24 -0.08 (-0.82)
CH3COO− 2.12 2.33 2.08 2.16 1.96 0.62 -0.27 -0.22 (-0.63)
C6H5O

− 2.09 2.21 2.07 2.13 2.02 0.48 -1.44 -0.08 (-0.73)

Mg–N distances are Mg–N2 (2.15 Å) > Mg–N4 (2.08 Å) > Mg–N1 (2.04 Å) > Mg–N3

(2.02 Å), (see Table 2.3) which is similar to the order found for other chls obtained

using B3LYP [6, 7, 19–21, 24] and also comparable with the experimental Mg–N

bond distance order obtained for ethyl chlorophyllidine a (where the differences in the

experimental and calculated bond distances are within 0.02 Å). [41] Longer distance

of Mg–N2 is because of the saturation of the corresponding pyrrole ring (ring II).

The effect of the functional groups (R, R’ and R”) on chlorin ring can further

be understood by comparing the structure of Chlide f with those of Chlide a and

Chlide b (see Fig. 1.3). Also, changes in the functional groups have a clear impact

on the Mg–N1, Mg–N4 bond distances and 1H–NMR chemical shift values of Ha and

Hc as shown in the Tables 2.2 and 2.3. The Mg–N1 bond in Chlide f (2.04 Å) is

longer than the Mg–N1 bond in Chlide a (2.03 Å) and Chlide b (2.03 Å), due to

the presence of the electron withdrawing –CHO substituent at the corresponding

pyrrole ring (ring I) of Chlide f (see Table 2.3). Presence of the –CHO substituent

at ring I in Chlide f is also the reason for the down-field shift of Hc by 1.66 (2.00)

ppm when compared to Chlide a (Chlide b). Similarly, the presence of –CHO group
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Figure 2.3: Optimized geometry of (a) Chlide f, axial ligated, (b) H2O, (c) CH3COOH, (d)
CH3OH, (e) C6H5OH and (f) imidazole Chlide f molecules. Important bond distances are shown
in Å. Distances of the respective bonds in the bare ligands are written in italics within brackets.
The displacement of Mg from the plane can be seen for axial ligated Chlide f molecules and the
corresponding distances (dOOP ) are shown in the Table 2.3.

at ring IV in Chlide b results in longer Mg–N4 bond (2.08 Å) than Chlide f (2.08

Å) and Chlide a (2.07 Å) (see Table 2.3). In addition, 1H–NMR chemical shielding

value of the Ha of Chlide b is shifted down-field by 1.33 (1.65) ppm when compared

to the Ha hydrogen of the Chlide f (Chlide a) (see Table 2.2). These results provide

an evidence for the most possible chl f conformer in the gas phase. However, the

Mg atom of chl f could be penta–coordinated in protein environment, as observed

and studied earlier in chl a and chl b. [6, 7, 19–21, 24, 42] As mentioned in the

computational details section, we have considered five neutral ligands for our studies.

Coordination of Mg with neutral ligands does not change the order of Mg–N

bond distances: Mg–N2 > Mg–N4 > Mg–N1 > Mg–N3 (see Table 2.3). However,



54 Chapter 2.

with ligation Mg–N bonds are elongated by 0.01–0.04 Å and Mg atom is displaced

from the plane of the macrocycle by 0.2–0.4 Å (see Fig. 2.3). The amount of the

displacement of Mg atom is shown by computing out of plane distance (dOOP ) (see

Table 2.3) by,

dOOP =

(
cos( θ

2
)
)
× (d1 + d3)

2
(2.1)

where, θ is the N1–Mg–N3 bond angle; d1 = Mg–N1 bond distance; and d3 = Mg–N3

bond distance.

dOOP distances of Mg are in the order: Mg–imidazole [Mg–N] (0.37 Å) > Mg–

CH3OH [Mg–O] (0.27 Å) > Mg–C6H5OH [Mg–O] (0.26 Å) ≈ Mg–CH3COOH [Mg–O]

(0.25 Å) > Mg–H2O [Mg–O] (0.24 Å). The calculated dOOP of Mg in Mg-H2O

is comparable with the experimentally estimated dOOP (0.385 Å) of Mg in ethyl

chlorophyllide a dihydrate. [41] dOOP distance highly depends on the steric class of

interactions of the ligated groups (see Table 2.3). There is one exception from the

trend, CH3OH, for which dOOP distance is larger than C6H5OH and CH3COOH. This

is due to orientation of CH3 group of CH3OH, which is very close to the macrocycle

(see Fig. 2.3d).

The computed Mülliken partial atomic charges on Mg atom (of the Chlides) and

the ligating atom (of the ligands) clearly shows a ligand to metal charge transfer.

Compared with Chlide f Mg atom (0.82 e), the axial ligated Chlide f Mg gains a

negative charge of 0.40 e, 2.86 e, 1.33 e, 2.05 e and 2.21 e from H2O, imidazole,

CH3OH, CH3COOH and C6H5OH, respectively. Among the five neutral ligands,

imidazole donates more charge to the metal atom because of the direct coordination

of the aromatic ring to the Mg-atom of chlorophyll.

Mg–axial ligand distances are in the order: Mg–CH3COOH [Mg–O] (2.244 Å) >

Mg–imidazole [Mg–N] (2.190 Å) ≈ Mg–C6H5OH [Mg–O] (2.190 Å) > Mg–H2O [Mg–

O] (2.168 Å) > Mg–CH3OH [Mg–O] (2.139 Å). The experimental Mg-H2O distance

in ethyl chlorophyllide a dihydrate 46 is 2.035 Å, which is quite comparable with our



2.3 Results and Discussions 55

calculated Mg-H2O bond distance of 2.168 Å. The ligated oxygen atoms of CH3COOH,

C6H5OH molecules are attached to the acidic hydrogen, which increases Mg–O

bond distances compared with Mg–H2O distance. However, the larger electrostatic

repulsion between the axial -OCH3 hydrogen and chlorin macrocycle decreases the

Mg–O bond distance in Chlide f–CH3OH (see Fig. 2.3) by distorting Mg atom from

its plane. The effect of the presence of acidic hydrogen can further be explained by

calculating the Mg–O bond distances for negatively charged C6H5O
−, CH3COO−,

CH3O
− ligands. The Mg–O bond distances are in the order: Mg–C6H5O

− (2.02 Å)>

Mg–CH3COO− (1.96 Å) > Mg–CH3O
− (1.95 Å) (see Table 2.3), which are smaller

than the Mg–H2O (2.17 Å) bond distance.

Computed Mg–N, dOOP , Mg–Ligand bond distances of axial ligated Chlide f

follow the same trend as chl a molecules computed at the B3LYP level of theory, [20]

except that these bond distances are shorter in Chlide f by 0.01–0.03 Å. Thus, these

results show that, axial ligation to Chlide f affects the macrocycle unit similar to

that in chl a.

Additionally, axial ligation to Chlide f follow the similar trend of the chemical

shielding values as in Chlide f, i.e., the formyl hydrogen is always in down-field

when compared to the Ha, Hb and Hc. But, there are small changes in the chemical

shielding values depending upon the orientation of the axial ligands. The presence

of electron donating neutral axial ligands shift the chemical shielding values of Ha,

Hc, formyl hydrogens by 0.02–0.35 ppm towards upfield (see Table 2.2) and Hb by

0.03–0.20 ppm towards down-field. There are three exceptions from this trend (see

Table 2.2).

1. The inter–molecular hydrogen bonding interaction between axial H2O and

substituent formyl group is the reason for the down-field shift in formyl, Hc

and the upfield shift in Hb proton.

2. The orientation of imidazole shifts the Hb chemical shielding value towards
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Table 2.4: Computed reduction potential (RP1, RP2 in eV) and BSSE corrected Mg–ligand bond
dissociation energies (EBDE , KJ mol–1) for Chlide f and axial ligated Chlide f.

Molecules
RP1 = E (N –
1) – E (N) –

4.43 (eV)

RP2 = E (N) –
E (N + 1) –
4.43 (eV)

BSSE
corrected
EBDE (KJ

mol−1)
Chlide f 2.073 –2.199 0.000

H2O 1.910 –2.253 –45.263
imidazole 1.665 –2.471 –70.704
CH3OH 1.856 –2.308 –48.624

CH3COOH 2.019 –2.144 –25.654
C6H5OH 1.883 –2.253 –34.184

upfield and

3. The H-bonding interaction between the acidic hydrogen of CH3COOH and

–CHO is the reason for the down-field shift in the Hc.

2.3.2 Bond Dissociation Energy of axial ligated Chlide f

Mg–ligand bond dissociation energy (EBDE) is a measure of its bond strength, which

is calculated as,

EBDE = E[Chlidef−Ligand] − E[Chlidef ] − E[Ligand] (2.2)

where, E[Chlidef−Ligand] , E[Chlidef ] and E[Ligand] are the BSSE corrected energies of

the corresponding molecules. These are tabulated in Table 2.4. Negative EBDE

values of axial ligated Chlide f molecules, shows their stability. The stability order of

ligands (containing oxygen as ligating atom) bonding to Chlide f is: CH3OH > H2O

> C6H5OH > CH3COOH (see Table 2.4). EBDE values reflect the Mg-ligand bond

distance (see Table 2.3), the shorter the bond, larger is the EBDE. The EBDE values

are in the same order as the Mg–ligand bond distances (see Table 2.3), as expected.

Imidazole (Histidine model) has large EBDE value despite of its longer bond

distance. The similar larger EBDE value was observed earlier also for imidazole
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ligated chl a. [20] Interestingly, the reason for strong binding energy of imidazole

is traced back due to the direct coordination between aromatic ring and Mg. This

direct coordination between imidazole and Mg lead to the large charge transfer (-2.86

e) from imidazole to Mg, which is reflected in the Mülliken partial atomic charge

(see Table 2.3) at the Mg center.

2.3.3 Redox properties of Chlide f and axial ligated Chlide

f molecules

One of the major roles of chls in photosystem is that they are involved in electron

transfer process, which can be defined by computing reduction potentials (RPs).

The reduction potential (RP) is a measure of the ability of a compound to acquire

electrons and get reduced. As a chl can accept/donate an electron during the electron

transfer process in photosystem, herein, we have considered a redox reaction with

three oxidation states, where, N is the number of electrons; RP1 and RP2 are the

Figure 2.4: Schematic definition of redox potentials RP1 and RP2.

reduction potentials for chls (N-1)/chls (N) and chls (N)/chls (N+1) redox pairs,

respectively. RP1 and RP2 values are computed for relaxed geometries of Chlides

using the equations

RP1 = E(N − 1)− E(N)− 4.43 (2.3)

RP2 = E(N)− E(N + 1)− 4.43 (2.4)

where, the factor 4.43 eV is an estimate of the reduction potential of the standard

hydrogen electrode [43] and E is the BSSE corrected energy of the corresponding
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oxidation state. RP1 and RP2 values are tabulated in Table 2.4. In general, all the

highest occupied and lowest unoccupied molecular orbitals of the Chlide f and axial

ligated Chlide f have localized π molecular orbital (see Figs. 2.5 and 2.6) which shows

that the redox process has major contributions from the macrocycle ring rather than

from the axial ligands. However, addition of axial ligands to Chlide f decreases the

RP1 and RP2 values by ∼ 0.05–0.4 eV. Thus, electron donating axial ligands brings

stabilization to oxidized state (see Table 2.4) except CH3COOH, which stabilizes the

corresponding reduced (N+1) state (see RP2 value of CH3COOH).

If one compares two compounds, the compound with more positive RP1 or RP2

would acquire the electrons from the other compound and thus acting as an oxidizing

agent to the other. Our results provide us an evidence that the CH3COOH with

more positive RP1 and RP2 values can act as an electron acceptor and imidazole

with less positive RP1 and RP2 values can act as an electron donor, when compared

with other ligands. In addition, it is clear that the order of RPs is in exactly reverse

to the order of EBDEs in terms of magnitude. The order of magnitudes of RPs are:

CH3COOH > H2O > C6H5OH > CH3OH > imidazole.

2.3.4 Absorption properties

There exist a large number of computational studies on chl a, chl b and the related

model structures to understand their absorption properties. [10, 44–46] The effect

of substituents (on the chlorin macrocycle) on the absorption properties of the chls

have also been studied. [8, 10, 21] TDDFT computed absorption spectra of Chlide a,

Chlide b and Chlide f are shown in Fig. 2.7. The main peaks of the spectrum are

the low energy QX and QY band (600–700 nm), the high energy BX and BY bands

(350–500 nm). In addition to these bands, we also find a few higher energy bands

near the soret region. However, the main emphasis of this work is to understand

the underlying reason for the red–shift of experimentally observed QY band of chl
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Figure 2.5: Orbital excitation plots of Chlide f and Chlide b. Corresponding MO pictures and
MO energies (eV) are shown. The strength of the excitation line reflects its contribution for that
absorbance band. Iso-contour values used for molecular orbital plots is = 0.02 e (Bohr)−3
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Figure 2.6: Orbital excitation plots of Chlide f-imidazole and Chlide f-CH3COOH. Corresponding
MO pictures and MO energies (eV) are shown. The strength of the excitation line reflects its
contribution for that absorbance band. Iso-contour values used for molecular orbital plots is = 0.02
e (Bohr)−3
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Figure 2.7: (a) Computed absorption spectra of Chlides a, b and f, where Full Width Half
Maximum, FWHM= 1000 cm-1. (b) Computed absorption spectra of Chlides a, b and f. Transitions
QY , QX , BX ,BY are assigned.

f compared to chl a and chl b. This can be explained by computing molecular

orbital (MO) energies and the MO contributions to each excitation as shown in the

Table 2.5 and Figs. 2.8 and 2.5. Our computed results for QY bands in Chlide a

(589 nm), Chlide b (577 nm) and Chlide f (615 nm) are lower by ∼ 79-91 nm than

the experimental transition energies of chl a (657 nm), chl b (662 nm) and chl f (706
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Figure 2.8: HOMO–LUMO energy plots of Chlide a, Chlide b, Chlide f, Chlide f-H2O (H2O),
Chlide f-imidazole (imidazole), Chlide f-CH3OH (CH3OH), Chlide f-CH3COOH (CH3COOH) and
Chlide f-C6H5OH (C6H5OH) in eV.

nm) due to the absence of protein environment. However, the transition energies

follow the same trend as in the experiment i.e., Chlide b < Chlide a < Chlide f. Also,

the shift in the QY bands of Chlide b and Chlide f with respect to the QY bands of

Chlide a is –12 nm and +26 nm, which are comparable with the experimental shifts

of –13 nm and +41 nm, respectively. [3, 15] The small differences might be due to

the absence of protein environment in our studies. Inclusion of the substituent at C17

to Chlide f is found to change the absorption peak values by only 1-2 nm. This can

be understood from the molecular orbital plots which show almost no contribution

(not shown here) from the phytol chain to the low energy molecular orbitals (see

Fig. 2.1 and Table 2.1)
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Table 2.5: Computed excitation wavelength (nm) for the Chlide a, Chlide b, Chlide f and axial
ligated Chlide f molecules. Major orbital contributions for the corresponding excitations are also
given. In this table ‘H’ denotes HOMO and ‘L’ denotes LUMO.

Molecules Nature

Excitation

Wave-

length

(nm)

Major molecular orbital contributions

Chlide a

QY 589 H to L (0.71)

QX 545 H-1 to L (0.65) and H to L + 1 (0.31)

BY 379 H–1 to L+1 (0.57)

BX 399 H to L+1 (0.39) and H-3 to L (0.13)

Chlide b

QY 577 H–1 to L+1 (0.27) and H to L (0.65)

QX 552 H-1 to L (0.56) and H to L + 1 (0.40)

BY 419 H–1 to L+1 (0.20) and H to L+1 (0.24 )

BX 441 H–1 to L+1 (0.36) and H to L+1 (0.16 )

Chlide f

QY 615 H to L (0.72)

QX 579 H-1 to L (0.73) and H to L + 1 (0.19)

BY 396 H–1 to L+1 (0.61)

BX 409 H to L+1 (0.51)

H2O

QY 618 H to L (0.71)

QX 596 H-1 to L (0.74) and H to L + 1 (0.16)

BY 408 H–1 to L+1 (0.53)

BX 416 H-2 to L (0.31) and H to L+1 (0.33)

imidazole

QY 622 H to L (0.71)

QX 609 H-1 to L (0.74) and H to L + 1 (0.13)

BY 413 H–1 to L+1 (0.42 ) and H to L+1 (0.24)
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BX 421 H to L+1 (0.38) and H-1 to L+1 (0.22)

CH3OH

QY 617 H to L (0.72)

QX 596 H-1 to L (0.74) and H to L + 1 (0.15)

BY 406 H–1 to L+1 (0.50)

BX 414 H–1 to L+2 (0.15 ) and H to L+1 (0.52)

CH3COOH

QY 619 H to L (0.71)

QX 588 H-1 to L (0.74) and H to L + 1 (0.13)

BY 407 H–1 to L+1 (0.33) and H-4 to L (0.39)

BX 418 H–3 to L (0.28) and H to L+1 (0.23)

C6H5OH

QY 620 H to L (0.72)

QX 593 H-1 to L (0.73) and H to L + 1 (0.17)

BY 403 H–1 to L+1 (0.32 ) and H-4 to L (0.39)

BX 359 H–3 to L (0.17) and H to L+1 (0.44)

From the TDDFT results one can see that the major contributions to the QY

band of all chls involves the excitations from HOMO → LUMO (coefficient value

∼ 0.65) and HOMO–1 → LUMO+1 (coefficient value ∼ 0.2). Among these two,

the HOMO → LUMO excitation has major contribution (coefficient value ∼ 0.7) in

the QY band rather than the HOMO–1 → LUMO+1 (coefficient value ∼ 0.2). We

find that orbital energy differences among these frontier orbitals (see Fig. 2.8) can

explain the position of QY bands in Chlides a, b and f. For the case of Chlide a, it is

clear that due to the absence of electron withdrawing –CHO group, there is a larger

HOMO–LUMO gap leading to larger excitation energy.

Presence of electron withdrawing –CHO group stabilizes the orbital energy of

LUMO for Chlide f and LUMO+1 for Chlide b (see Fig. 2.5). HOMO and HOMO–1

of both Chlide f and Chlide b have the same amount of contribution from the –CHO
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Figure 2.9: Computed absorption spectra of Chlide f with and without axial ligation. Name of
the axial ligand is given in the legend.

group 15–16 % and 3–4 % respectively, and also, they have similar energy values.

However, the LUMO of Chlide f has 31 % contribution from –CHO group, which

stabilizes the LUMO level by 0.3 eV than its corresponding Chlide b LUMO orbital

which has only 3 % –CHO group contribution (see Fig. 2.5). Similarly, LUMO+1

of Chlide f with smaller –CHO contribution (13 %) destabilizes the orbital energy

by 0.1 eV compared to the LUMO+1 of Chlide b, which has larger (46 %) –CHO

contribution. This shows that the MO with more (less) contribution from –CHO

group stabilizes (destabilizes) the corresponding level.

Now, as HOMO → LUMO excitation has major contribution to the QY band
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and as HOMO energy is almost same in both Chlide b and Chlide f, the deciding

factor is the LUMO energy. As LUMO is most stabilized in Chlide f, it is the most

red-shifted chlorophyll (when compared to Chlide b). In addition to the QY band,

the QX bands were observed at 545 nm, 552 nm and 579 nm with lower intensity as

shown in Fig. 2.7 for Chlides a, b and f, respectively. The QX band in all the Chlides

has a major contribution from the HOMO-1 → LUMO transition. The red shift in

QX band in Chlide f is due to the same reason as found in QY band. The changes in

the band position due to the change in the –CHO local contribution to a specific

molecular orbital can also be observed in the higher energy BX (370-400 nm) and BY

(300-350 nm) bands, which have the major contributions from the excitations HOMO

→ LUMO+1 and HOMO–1 → LUMO+1, respectively (see Table 2.5 and Fig. 2.5).

As the LUMO + 1 orbital is more stablilized in Chlide b than in Chlide f (due to

the extra contribution of –CHO in Chlide b), BX (32 nm) and BY (23 nm) bands

of Chlide b are red-shifted compared to Chlide f. Thus, the specific coordination

between the π orbital of macrocycle ring and the –CHO unit is the primary reason

for the red/blue shift of any band in Chlide f when compared with Chlide b.

Note that, all four excitation bands have major contribution from the π orbital

of macrocycle chlorin ring, and are not affected by axial ligation (see Fig. 2.6).

However, all bands of Chlide f are red–shifted on axial ligation (see Fig. 2.9). Our

calculations show a shift of about 5–10 nm in the QY band and 9–30 nm in the QX

band depending on the nature of the fifth ligand, which can be understood, again, by

observing the changes in the energies of HOMOs and LUMOs up on addition of axial

ligand (Table 2.5). All the occupied MOs of axial ligated Chlide f are destabilized

with the addition of axial ligands, which is the reason for a red shift in QX , QY , BX

and BY bands (see Table 2.5 and Fig. 2.8).
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2.4 Conclusions

Density functional theory and time dependent density functional theory computations

have been carried out to understand the different electronic excited state properties

of Chlide f, compared to its structural isomer Chlide b. For Chlide f and Chlide b,

computed 1H-NMR chemical shielding values show a down-field chemical shift for

formyl hydrogen than Ha, Hb and Hc, which compares well with the experimental

values. Axial ligation to Chlide f distorts Mg atom from its plane, however, it follows

the similar trend of the chemical shielding values as in Chlide f, where the formyl

hydrogen is always in down-field when compared to the Ha, Hb and Hc.

In general, low energy QX , QY and high energy BX and BY bands are observed

for all chls, which have a major contribution from π-type molecular orbitals (HOMO,

HOMO-1, LUMO and LUMO+1) localized on the macrocycle chlorin ring. Computed

BX , BY , QX and QY bands’ excitation energies of Chlide a, Chlide b and Chlide f

are in good agreement with available experimental, and in certain cases, with earlier

theoretical reports. We have found that the LUMO of Chlide f is stabilized due to

the larger contribution of –CHO substituent, which is the reason for its red shift of

QX and QY bands of Chlide f when compared with Chlide b. Even in the presence of

axial ligation, the macrocycle chlorin ring plays a major role in the excitation and the

redox processes. Axial ligation shows red–shift in the all bands. Our results provide

the evidence that Chlide f–CH3COOH with more positive reduction potential values

acts as electron acceptor and Chlide f–imidazole with less positive reduction potential

values acts as an electron donor, when compared with other possible ligands.
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Chapter 3

Electronic properties of zigzag,

armchair and their hybrid

quanutm dots of graphene and

boron-nitride with and without

substitution: A first principles

study ?

3.1 Introduction

Complex devices based on graphene nanoribbons (GNRs), like, GNR-FETs, [1]

p-n junctions,[2] spin-filters, [3] etc. have been studied theoretically and some of

them have already been realized experimentally. [4] Recently, researchers have

?Work reported in this chapter is published in: Sharma S. R. K. C. Yamijala, Arkamita
Bandyopadhyay, and Swapan K Pati, J. Phys. Chem. C, 117, 2329523304 (2013), Chem. Phys.
Lett., 603, 28-32 (2014).
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started focusing on various shaped nanoribbon junctions which could be the plausible

building blocks for 2D-nano-networks. Several shaped nanoribbon junctions, namely,

L-shaped, [5] T-shaped, [6] cross-shaped, [7–9] S-shaped, [10] and Z-shaped [11]

have been studied and most of these studies have concentrated on the conduction

properties of these junctions.

A Z-shaped GNR junction has been shown as a promising candidate to confine

the electronic states completely i.e., a quantum dot (QD) can be realized at the

junction. [11] Also, conductance through a Z-shaped nanoribbon junction is highly

dependent on the angle and width of the junction. [12] Not only GNR, but also

boron-nitride nanoribbon (BNNR) junctions have been studied and Z-shaped BNNR

junctions were shown to exhibit spin-filtering as well as rectifying effects at the

nano-junction depending on the nature of the edge passivation. [13] L-shaped GNRs

show low reflectance to the electrons for a large included angle and high reflectance

for low included angle when the L-shaped-junction is made of an armchair GNR

(AGNR) and a zigzag GNR (ZGNR), and, an opposite effect has been observed when

the L-shaped-junction is made of two ZGNRs. [5] Similar spin-polarized calculations

on the in-plane conductance of the GNR-cross points at different angles have shown

large-scattering for quantum transport, except when two ZGNR ribbons meet at 60◦

angle. [14] Studies on the T-shaped junctions showed that, these systems are metallic

and their conduction properties are sensitive to the height of the stem and the doping

position, i.e., whether the doping is on the stem or on the shoulder. [6] Similar

results were reported for the cross-shaped ribbons. [8, 9] Spin-polarized-conductance

calculations on a cross-shaped junction showed a transverse spin current with zero

charge-current. [8]

Motivated by the above mentioned interesting spin-polarized conducting proper-

ties of cross-shaped ribbon networks obtained from the theoretical calculations [7–9]

and by the recent experimental realization of the various QDs,[15] we have performed
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the spin-polarized density functional theory (DFT) calculations to understand the

electronic and magnetic properties of the cross-shaped (+ shaped) graphene (G)

and boron-nitride (BN) QDs. These QDs can be considered as the low-dimensional

siblings of GNRs and can be visualized as the QDs formed by the intersection of a

zigzag GQD (ZGQD) and an armchair GQD (AGQD). Apart from the shape, several

studies have shown that the electronic and magnetic properties of GNRs can be

tuned either by substituting the GNRs’ carbon atoms with B, N or by doping the

GNRs with B/N atoms. [16–18] Inspired by these findings, we have also studied the

substitutional effects on the electronic and magnetic properties of the cross-shaped

GQDs and BNQDs. Also, experimentally hybrid BNC sheets have already been

prepared, where the ratio of C:BN [19] and the shape or size of BN domain on C or

vice versa can be controlled precisely. [20] Thus, these substituted QDs can easily

be prepared experimentally either using the conventional lithography [21–23] or the

more recent nanotomy techniques. [24]

As cross-shaped graphene (G) and boron-nitride (BN) quantum dots (QDs) can be

seen as a hybrid (or combination) of zigzag QDs (ZQDs) and armchair QDs (AQDs)

of equal length and width, first we have performed a series of calculations on both

substituted and pristine zigzag (ZQDs) and armchair QDs (AQDs). Such calculations

are important to understand the electronic properties of cross-shaped (hybrid) QDs

(HQDs). It is already known that, the electronic and magnetic properties of these

types of QDs are highly dependent on the nature of the edges, [16, 17, 25] and hence,

we have considered the substitution of these pristine QDs only at the edges. For a

GQD, edges are substituted with boron and nitrogen (BN) pairs and for a BNQD,

edges are substituted with carbon. Thus, the systems are iso-electronic before and

after the substitution. We have passivated all the systems with H-atoms, because

several previous studies,[26, 27] have shown that H passivation makes the systems

more stable compared to the corresponding pristine QDs. Depending on whether
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all the edge atoms are substituted or only half of them are substituted, we named

these QDs as complete-ed-QDs or partial-ed-QDs, respectively, as shown in the

Figure 3.1. The remaining chapter is arranged as follows. In section 2, we have given

the computational details and in section 3, we have first presented the electronic and

magnetic properties of ZQDs and AQDs followed by the results of HQDs of various

sizes and different levels of substitution. In the last section, we have summarized the

main results of this chapter.

3.2 Computational Details

Spin polarized first-principles calculations have been performed, to obtain all the

electronic and magnetic properties of the systems, using the density unctional theory

(DFT) method as implemented in the SIESTA package. [28] Generalized gradient

approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE) [29] form has been

considered for accounting the exchange-correlation functional. Double–ζ polarized

(DZP) numerical atomic-orbital basis sets have been used for H, B, C, and N atoms.

Norm-conserving pseudopotentials have been considered in Kleinman-Bylander form

[30] with 1, 3, 4 and 5 valence electrons for H, B, C, and N, respectively. A reasonable

mesh cut-off of 400 Ry for the grid integration has been used to represent the charge

density and a vacuum of 20 Å has been maintained, around the quantum-dots, in all

directions to avoid any spurious interactions. Systems are considered to be optimized

if the magnitude of the forces acting on all atoms is less than 0.04 eV/Å. As the

systems are zero-dimensional, all the calculations are performed only at the gamma

(Γ) point of the Brillouin zone. For all the DOS and pDOS plots, a broadening

parameter of 0.025 eV has been used. All the results below have been obtained using

PBE functional. However, for validation, we have cross checked some of our results

with HSE06 functional [31] and found that both the methods predict same trends,

particularly in band gap.
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3.3 Results and Discussions

In this section, first we will present the results of the individual QDs (i.e., both ZQDs

and AQDs of which HQDs are made of) and then we will present the results of HQDs.

As our aim is to study cross-shaped HQDs, our Z/AQDs will be of rectangular shape.

3.3.1 Zigzag QDs

Systems under consideration

To simulate the ZQDs, we have considered rectangular quantum-dots (QDs) of

graphene (G) and boron-nitride (BN) with a zigzag edge along the direction of the

length and an armchair edge along the width direction. Following the convention of

the graphene nanoribbons, [32] we have assigned an ordered pair (n, m) to represent

the length and width of the QDs. Here ‘n’ represents the number of atoms along the

zigzag-edge (length) and ‘m’ represents the number of atoms along the armchair-edge

(width), as shown in Figure 3.1. In the present study, we have considered two values

viz., 21 (∼ 2.2 nm) and 33 (∼ 4.2 nm) for ‘n’ and three values viz., 4 (∼ 1 nm), 6 (∼

1.4 nm) and 8 (1.8 nm) for ‘m’. Thus, for each type of ZQD (i.e., either a GQD or a

BNQD or their substituional derivatives) we have considered six different systems,

each of which can be distinguished by the difference in their length × width.

As noted earlier, edge atoms of all the systems have been passivated with hydrogen

atoms and substitution is mainly considered in two ways viz., full-edge substitution

(full-ed) and partial-edge substitution (partial-ed), as shown in figures Figure 3.1b

and 3.1c, respectively. Information of the substitution has been given first, followed

by the name of the system. For example, a GQD (BNQD) whose edges are completely

(partially) substituted with B and N atoms (C atoms) has been denoted as BN-full-

ed-GQD (C-partial-ed-BNQD).
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Figure 3.1: Structures of all the (21, 8) QDs. (a) GQD, (b) BN-partial-ed-GQD (c) BN-full-ed-
GQD (d) BNQD (e) C-partial-ed-BNQD and (f) C-full-ed-BNQD.

Stability

Based on the previous studies on systems containing BCN, [33, 34] we have calculated

the stability of a system by its formation energy per atom (EForm), where EForm is

defined as

EForm = [Etot − (nCC ∗ µCC)− (nBN ∗ µBN)− (nH ∗ µH)]/ntot (3.1)

Here, Etot is the total energy of the system, µH , µBN and µCC are the chemical

potentials of a H atom (calculated from a hydrogen molecule), BN pair (calculated

from an 8 × 8 h-BN supercell), and a CC pair (calculated from an 8 × 8 graphene

super-cell), respectively and nH , nBN , nCC and ntot are the number of H atoms, BN

pairs, CC pairs and total number of atoms present in the system, respectively. We

have considered the formation energies of graphene and BN-sheets to be zero (i.e.,

they are our reference states). More details of the calculations can be found here.

[33, 34] EForm of the systems (21, 4), (21, 6), (21, 8), (33, 4), (33, 6) and (33, 8) are

listed in Table 3.1. Formation energies of all the systems are negative indicating
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Table 3.1: Formation energies (eV/atom) of all the ZQDs considered in this study.

SystemName (21,4) (21,6) (21,8) (33,4) (33,6) (33,8)

GQD -0.545 -0.442 -0.386 -0.503 -0.393 -0.333

BN-partial-ed-GQD -0.472 -0.389 -0.345 -0.428 -0.339 -0.291

BN-full-ed-GQD -0.386 -0.301 -0.261 -0.349 -0.262 -0.221

C-full-ed-BNQD -0.453 -0.364 -0.315 -0.412 -0.321 -0.268

C-partial-ed-BNQD -0.474 -0.388 -0.340 -0.436 -0.343 -0.292

BNQD -0.502 -0.408 -0.356 -0.466 -0.365 -0.309

that all these systems are energetically feasible. It is important to mention that all

the values reported in Table 3.1 are for the ground state spin-configurations of the

respective ZQDs, which is found to be anti-ferromagnetic, based on our spin-polarized

calculations.

Electronic and magnetic properties

In this section, we will present the electronic (density of states (DOS), projected DOS

(pDOS), HOMO–LUMO gap (H–L gap), charge-transfer and wave-functions) and

magnetic properties of ZQDs. We will first explain the changes in these properties

with the size, then with the substitution, and finally with the application of an

external electric-field.

Effect of Size: Similar to GNRs, [35] GQDs also show a finite H–L gap because

of the quantum confinement effect (here, in all the directions). As shown in the

Table 3.2, for all the QDs, there is a decrement in the H–L gap with an increment

in the length and/or width of the QDs. For example, (21, 4) GQD has a H–L gap

of 0.71 eV for both the spin-channels, but, once the system size has been increased

to (21, 6) and (21, 8), there is a decrement in the H–L gap (from 0.71 eV) to

0.68 and to 0.54 eV, respectively. Lesser H–L gap for greater sizes is due to the

(a) decrement in the energy-level spacing, (b) increment in the delocalization of

the π electrons (due to the increased conjugation length) in the larger QDs. The

H–L gap of 0.54 eV for the (21, 8) or (33, 8) is comparable with the calculated
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Table 3.2: HOMO–LUMO gap (eV) of each system is given in both the spin-configurations (here
after, we call one spin-configuration as spin-α and the other as spin-β).

System Name
(21, 4) (21, 6) (21, 8) (33, 4) (33, 6) (33, 8)

spin-
α

spin-
β

spin-
α

spin-
β

spin-
α

spin-
β

spin-
α

spin-
β

spin-
α

spin-
β

spin-
α

spin-
β

GQD 0.71 0.71 0.68 0.68 0.54 0.54 0.70 0.70 0.60 0.60 0.54 0.54

BN-partial-ed-GQD 0.81 0.16 0.04 0.54 0.04 0.43 0.05 0.51 0.32 0.04 0.01 0.19

BN-full-ed-GQD 0.71 0.71 0.41 0.11 0.09 0.34 0.62 0.62 0.32 0.06 0.22 0.03

C-full-ed-BNQD 0.28 0.28 0.44 0.44 0.48 0.48 0.05 0.23 0.16 0.16 0.19 0.19

C-partial-ed-BNQD 1.35 1.35 1.08 1.08 0.91 0.91 0.79 0.79 0.52 0.52 0.36 0.36

BNQD 4.32 4.32 4.16 4.16 4.03 4.03 4.32 4.32 4.16 4.16 4.06 4.06

band-gap of 0.51 eV for the 8-ZGNR obtained within the LDA-approximation. [25]

Comparable results have also been obtained previously by Philip Shemella et al.,

[36] and Oded Hod et al. [37] Similar to GQDs, all the other QDs (considered in

this study) have shown a decrement in the H–L gap with an increment in their size,

except for the C-full-ed-BNQD. This is because as the width of the ribbon increases,

in C-full-ed-BNQD, the number of carbon atoms present at the edge increases, which

in-turn increases the delocalization of electrons (because B, N atoms are replaced

with carbon-atoms). This delocalization brings in stability mainly to the HOMO

(leaving the LUMO almost unchanged, see Figure 3.2), and hence, the increment in

the H–L gap with an increment in the width of this QD.

Figure 3.2: HOMO and LUMO energies of C-full-ed-BNQDs with different widths.

Figure 3.3(a) shows the density of states (DOS) and projected-DOS (pDOS) of

(21, 8) GQD. Clearly, DOS (green color) near the Fermi-level has a major contribution

from the zigzag-edge atoms (orange colour), and also, both the HOMO and LUMO

of (21, 8) GQD shows that the wave-functions are localized at the zigzag-edges
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(see Figure 3.4(a)). One notable point is HOMO and LUMO are localized at two

different edges for each spin, and also, the edge where the wave-function is localized

for the spin-α’s HOMO is the same as the spin-β’s LUMO and vice-a-versa. Similar

localization behaviour of wave-function has been previously observed in ZGNRs

studied by Zheng et al. [38] When we changed the widths and lengths of GQDs,

we find similar localization behaviour except that the degree of localization of the

wave-function at a particular edge increases with a decrement in the width of the

GQD. This result is in contradiction to Shi et al.,[39] although their findings are

mainly for non-passivated GQDs, ? but our result compares fairly well with the Hod

et al. [37] As the DOS near the Fermi-level is mainly contributed by the zigzag edges

and as substitution at the zigzag edges (with a similar kind of localization behaviour

of wave-function [38] which we find for GQDs) has proven to be useful to attain

several interesting properties like half-metallicity in ZGNRs, [16, 18, 40] we have

substituted these edges with the isoelectronic BN-pairs.

Figure 3.3: pDOS plots of all (21, 8) QDs. (a) GQD, (b) BN-partial-ed-GQD (c) BN-full-ed-GQD
(d) BNQD (e) C-partial-ed-BNQD and (f) C-full-ed-BNQD.

?where, they found that the HOMO of small quantum dots is different to that of the larger QDs
(also referred to as ’nano-flakes’)
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Figure 3.4: HOMO-LUMO plots of (21, 8) QDs. (a) GQD, (b) BN-partial-ed-GQD and (c)
BN-full-ed-GQD.

Effect of Substitution When GQD’s edges were substituted completely with BN,

H–L gap of these system decreases. Interestingly, when the width of the QD is greater

than 4, we find a spin-dependent H–L gap (see Table 3.2 and Figures 3.5(d)-(f)). The

spin-dependency of the H–L gap is because of the intrinsic electric-field present in the

system. In fact, due to the presence of B and N-atoms at two different zigzag-edges

and as B is a Lewis acid, there would be a charge-transfer which generates the

potential gradient across the ribbon. [40] The reason for the spin-independency of

the H–L gap of the BN-full-ed-GQDs with width 4 is solely because of their smaller

width. With a decrease in the width of the QD, the strength of the field which is

required to lift the degeneracy between the two configurations of the spins will also
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increase. Similar explanation regarding the width dependency of the critical electric-

field to break the degeneracy of the two spin configurations for the case of GNRs

has been discussed by Son et al. [25] Additionally, partial BN substitution on GQDs

also produces a spin-dependent H–L gap (see table 1 and Figures 3.5(a)-(c), similar

to complete edge substitution, but, the spin-dependency is there for all the widths.

This result is quite interesting and by bringing the analogy from the previous studies

on the ZGNRs, [25, 38] ZBNNRs [41, 42] and their hybrids, [18] we find that there

are several possible ways to explain the spin-polarization in BN-partial-ed-GQDs,

namely, presence of localized edge-states due to edge carbon-atoms, presence of an

intrinsic electric-field along the diagonal direction, presence of border carbon atoms

which can strongly contribute to the states near the Fermi-level etc.

Figure 3.5: pDOS plots of (a) (21, 8) BN-partial-ed-GQD, (b) (21, 6) BN-partial-ed-GQD, (c)
(21, 4) BN-partial-ed-GQD, (d) (21, 8) BN-full-ed-GQD, (e) (21, 6) BN-full-ed-GQD, (f) (21, 4)
BN-full-ed-GQD.

Among the above, through our calculations, first we find that intrinsic electric-

field is not the reason for the spin-polarization in partial edge substituted GQDs,

unlike full edge substituted GQDs. To prove this, first we have applied an external

electric-field along the diagonal direction of pure (15, 4) and (21, 4) GQDs (see
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the next subsection). From these calculatins, we find that electric-field induces

spin-polarization in GQDs only above a critical width (see Figure 3.6). Based on this

result, we have discarded the intrinsic electric-field as a reason because we observed

spin-polarized pDOS in BN-partial-ed-GQDs irrespective of the width as shown in

Figure 3.7

Figure 3.6: DOS plots of (15, 4) and (21, 4) GQDs at different electric-field strengths.

By omitting other possibilities, we find that the main reason for the spin-dependent

H–L gap is due to the presence of both border and edge carbon atoms in BN-partial-

ed-GQDs. To prove this, we have gradually increased the amount of substitution at

both the zigzag edges of (21, 4)-GQDs, as shown in the top panel of Figure 3.8. From

this, we find that the H–L gap of (21, 4)–GQD is spin-dependent for all substitutions

except for the complete edge substitution (see middle panel of Figure 3.8). To

further prove that this spin-dependency in H–L gap is occurring solely because of the

edge and border carbon atoms, we have also plotted the spin-distributions in these

systems and are shown in the bottom panel of Figure 3.8. These spin-distributions



3.3 Results and Discussions 83

Figure 3.7: Structures of the systems with (a) width less than that of, (c) substitution more
than that of and (e) width and length less than that of (21, 4)-BN-partial-ed-GQD. (b), (d), (f)
represents the corresponding DOS plots manifesting the spin-polarized H-L gaps.

show that there is a high spin-non-degeneracy at the border and the edge-carbon

atoms. Also, to show the effect of width dependency, we have plotted the pDOS of

BN-partial-ed-GQDs at different widths (see Figure 3.5(a)-(c)). From these figures,

it is clear that the DOS near the Fermi-level always has a major contribution from

the border and edge carbon atoms.

To further understand the origin of this spin-dependency, we have performed the

Mülliken population analysis and the results for (21, 4)-GQDs (for both pristine

and substituted) are tabulated in Table 3.3. Clearly, the average amounts of charge

(total charge at each edge, for each spin, divided by 2) present at the edge and at

the 2nd zigzag line of a GQD are same for both the spins, and hence, the H–L gap is

spin-degenerate. [In a GQD, the charge present at each edge is not same for both

the spins but the amount of the charge in up-spin at one-edge will be equal to the

amount of charge in down-spin for the other-edge, very similar to ZGNRs. Same rule

applies for 2nd zigzag line also]. In BN-full-ed-GQD, although the amount of charge

transfer to the border carbon atoms at B-border is different to that of N-border,

there is no difference in amount of the charge transferred through each spin, and
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Figure 3.8: Variation in the spin-dependency of the H–L gap with a variation in the amount of
substitution at the zigzag edges of (21, 4)-GQDs. (a-c) shows structures with different amount
of substitution; (d-f) shows their corresponding DOS and (g-i) are their corresponding spin-
distributions. Structures, DOS plots and spin-distributions for all the other substitution levels
considered in this study were given in figures S6, S7 and S8, respectively.

hence, again the H–L gap is spin-degenerate. But, when it comes to the BN-partial-

ed-GQD, there is an apparent difference also in the amount of the charge-transferred

through each spin at each border. In other words, “In a BN-partial-ed-GQD, there

is an inherent difference in the amount of charge transferred through spin-α to that

of spin-β, whenever there is a charge transfer from a Boron/Nitrogen atom to a

border-carbon atom”. Similar charge transfer behaviour has been observed for other

sizes of BN-partial-ed-GQDs. Thus, the origin of the spin-dependent H–L gap lies in

the spin-dependent charge-transfer to the border carbon atoms and is manifested in

the DOS and pDOS plots. Finally, it is important to mention that in all the above

substitution studies, we have placed boron atoms at one edge and nitrogen atoms

at the other, which leads to two different kinds of edge carbon atoms, and hence,

also to two different kinds of border carbon atoms. This is another important reason

for the observation of the spin-dependent H–L gap in BN-parital-ed-GQDs even for
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Table 3.3: Mülliken population analysis of (21, 4)-GQDs (both pristine and substituted). Amount
of the charge-transfer from (to) the edge or border carbon atoms to (from) the substituted nitrogen
or boron atoms is given in the last row, for each spin, separately.

GQD BN-zigzag-ed-GQD BN-partial-ed-GQD

Avg.
edge

Avg. 2nd

zigzag
line

B-border N-border B-edge N-edge B-border N-border

spin-
α

spin-
β

spin-
α

spin-
β

spin-
α

spin-
β

spin-
α

spin-
β

spin-
α

spin-
β

spin-
α

spin-
β

spin-
α

spin-
β

spin-
α

spin-
β

19.02 19.02 21.48 21.49 20.81 20.81 22.26 22.26 11.99 10.82 10.85 12.01 7.21 7.81 8.38 7.81

Charge transfer
-

0.67
-

0.67
+

0.78
+

0.78
+

0.58
-

0.59
-

0.56
+

0.6
-

0.61
+

0.01
+

0.57
-

0.002

small widths.

In BNQDs, substitution (both full-edge and partial-edge) decreases their H–L

gaps. Surprisingly, H-L gap of C-full-ed-BNQDs is even below the H–L gap of GQDs,

for all widths and lengths. Here also, it occurs solely because of the substituted edge

carbon atoms, as shown in the pDOS plots (see Figures 3.3(e) and (f)).

From all the above results, we can conclude that, one can achieve a spin-polarized

H–L gap in a rectangular GQD if any of the following conditions is satisfied:

1. Complete substitution of the zigzag edges of GQD with BN pairs, for widths

greater than 1 nm.

2. Partial zigzag edge substitution (i.e., irrespective of number and position) of a

GQD with BN pairs, in such a manner that, nitrogen atoms are at one zigzag

edge and boron atoms are at the other.

Above conclusions have been verified up to a size of ∼ 4.2 × 2.2 nm2 and we expect

them to work for higher sizes (than what we have considered here) too.

Effect of external electric field on GQDs: As mentioned in the earlier sub-

section, the reason for the spin-polarization in BN-partial-ed-GQDs, is not due to

the intrinsic electric-field. To prove this, first we have to show that GQDs are spin-

polarized when an external electric-field acts along the diagonal direction (because
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charge-transfer effects are present along the diagonal direction in BN-partial-ed-

GQDs) of the GQDs. Results of these calculations for (21, 4) GQD are given here.

To ensure the stability of the system under the applied electric-field, first we have

calculated the minimum force (when applied between the diagonal edges of GQD) at

which the GQD structure starts destroying. The minimum force, Fmin, is calculated

as,

Fmin = (C-C bond-energy of GQD)/(Distance between the diagonal edges).

For (21, 4)-GQD the distance between the diagonal edges is 27.49 Å and we took

the C-C bond-energy to be 4.9 eV. [43] Substituting these values gives us Fmin ≈

0.18 eV/Å. Thus the minimum strength of the electric-field which can rupture the

GQD structure is Emin ≈ 0.18 V/Å. Considering this Emin value, we have applied

an external electric field, only in the range of 0.01–0.05 V/Å, i.e., well below the

Emin value, across the diagonal of the rectangular (21, 4) GQD. We find that, in the

range of applied electric-field, the H–L gap of (21, 4)-GQD is always spin-dependent

as shown in the inset of Figure 3.9(i). The spin-dependency in the H–L gap of

GQDs can simply be explained from the fact that the applied electric field shifts

the energy levels of the opposite spins in different directions, thus, breaking the

localized edge-state spin-symmetry. A similar phenomenon was also observed when

an external electric field was applied across the zigzag edges (though not along

the diagonal direction) of a ZGQD. [37] To further understand the reason for such

spin-polarized H–L gap, we have presented the individual shifts of the HOMOs and

LUMOs for both the spins in Figure 3.9(i). From the figure it is clear that, energy

of both the HOMOs (LUMOs) is increasing (decreasing) with an increase in the

external electric-filed [as HOMO (LUMO) corresponds to electron (hole) occupied

state]. These increments/decrements in the MO energies are consistent with the

linear stark-effect, where the shift in the energy of a MO is given by ∆E = - ~P . ~E,

where ~P is the polarization and ~E is the applied electric-field.69 From the equation,
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it is clear that the shift in the MO energy is proportional to the polarization and the

shift will be positive or destabilizing (negative or stabilizing) if the direction of the

polarization is opposite (parallel) to the applied electric-field. Thus, the change in

the energy of an MO due to the external electric-field can be understood by knowing

the direction of polarization of that MO.

Figure 3.9: (i) Absolute energies of MOs of (21, 4)-GQD under the influence of an external
electric-field. Inset shows the corresponding variation in the HOMO-LUMO gap. (ii, iii) Electron
density difference maps (EDDMs) of (21, 4)-GQD. The two electric-fields considered for calculating
EDDMs are 0.01 and 0.02 eV/Å for (ii) and 0.04 and 0.05 eV/Å for (iii) [see the text for details].
(a), (b), (c) and (d) in each sub-figure corresponds to spin-α-HOMO, spin-β-HOMO, spin-α-LUMO
and spin-β-LUMO, respectively. For all the plots an isovalue of 0.002 e/(Å)3 is considered. The
direction of polarization is from the orange region to green region.

To get the direction of polarization of MOs, we have generated the cube files of

each MO and took their squares to get the corresponding electron-densities of each

MO. Then, we took the difference between the electron-densities of each MO at two

different electric-fields. These electron-density difference maps (EDDMs) are given

in Figure 3.9(ii, iii), where the green area shows the loss in the electron density and

the orange area shows the gain in the electron density, and hence, the direction of

polarization is always from orange to green. Now, from Figure 3.9(ii, iii), the reason

for the shift in the MO energies is very obvious – a positive (negative) shift if the

direction of polarization is opposite (parallel) to the applied electric-field direction.

Thus, the shifts in the MO energies are consistent with the linear Stark-effect in

the applied range of external electric-field. So, we conclude that, (i) similar to the

ZGNRs, [25]H–L gap of GQDs can be tuned with an external electric-field (ii) these
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changes in the H–L gap are consistent with the linear Stark-effect, (iii) such changes

can be understood from the EDDMs plots, and importantly, (iv) although the H–L

gap of GQDs can be spin-polarized under external electric-field, the spin-dependent

H–L gap of BN-partial-ed-GQDs is not due to the internal electric-field, for the

reasons discussed earlier.

3.3.2 Armchair QDs

Next, we have performed calculations on both substituted and pristine armchair

QDs (AQDs). We have only considered the systems of medium size i.e., (33, 4) (see

Figure 3.10) as changes in the electronic properties with the system size are found to

be negligible for the case of ZQDs. Below the results of AQDs have been compared

and contrasted with the results of ZQDs.

As shown in Table 3.4 and in Figure 3.11, we find that (a) DOS near the Fermi-

level of AQDs is also mainly due to the carbon atoms (whenever carbon atoms are

present in the system) and (b) their HOMO-LUMO gap (H–L gap) can be tuned

through substitution similar to the case of ZQDs. One notable result is the huge

decrement in the H–L gap for both the complete and partial edge substituted BNQDs

when compared to the pristine BNQD. But, all the (33, 4) AQDs are semi-conducting

and, unlike their ZQD counter parts, none of the AQDs are spin-polarized near the

Fermi-level (even after substituting their edges with BN-pairs either partially or

completely). Thus, AQDs’ electronic properties can be considered as more rigid

towards substitution compared to the ZQDs. As real QDs (experimentally obtained

ones), can contain both zigzag and armchair edges/wings, we have also considered a

mixture of armchair and zigzag wings in our study.
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Figure 3.10: Optimized geometries of (i) AGQD, (ii) BN-partial-ed-AGQD, (iii) BN-full-ed-AGQD,
(iv) ABNQD, (v) C-partial-ed-ABNQD and (vi) C-full-ed-ABNQD .

Figure 3.11: DOS and pDOS plots of (i) AGQD, (ii) BN-partial-ed-AGQD, (iii) BN-full-ed-AGQD,
(iv) ABNQD, (v) C-partial-ed-ABNQD and (vi) C-full-ed-ABNQD

3.3.3 Hybrid QDs

There will be several possibilities while mixing the two types of wings. Here, we have

considered a simple case, namely, the joining of a ZQD with an AQD to form a ’+’

shaped QD. In order to see the size effects of the wings on the calculated properties,

we have considered 3 different sizes of the wings. At the same time, to avoid any

confusion in understanding the new findings due to substitution (a) we kept the

central/junction region of all the QDs as same (for all the 3 sizes) [which helped

us to rule out (automatically) the width dependent electronic properties of AGQD

(i.e., 3p, 3p+1 and 3p+2, where ’p’ is an integer) [32]] and (b) in all the 3 sizes,

we have maintained equal numbers of zigzag and armchair edges on both sides of

the junction [which helped us to keep track on the important changes which will
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Table 3.4: Formation energy and HLG values of all the AQDs.

System Name Formation Energy(eV) H–L Gap (eV)
AGQD -0.555 1.62

BN-partial-ed-AGQD -0.475 0.55
BN-full-ed-AGQD -0.401 2.06

ABNQD -0.498 4.41
C-partial-ed-ABNQD -0.443 0.91

C-full-ed-ABNQD -0.462 0.81

occur only because of the substitutional effects rather than the asymmetry across

the junction]. The size of the QD is indicated by (A, Z), where ‘A’ and ‘Z’ are the

lengths of the armchair and zigzag-edged-wings, respectively, in nm and the 3 sizes

considered are (2.65, 2.67), (4.39, 4.16) and (6.12, 5.64). All the six systems of the

medium size, (4.39, 4.16), are shown in Figure 3.12 and all of them have a total

number of 240 atoms (308 atoms by including the hydrogen atoms), among which,

130 atoms are always at the edges of the QD and the remaining 110 atoms at the

center, which makes these systems suitable for studying the edge effects. We believe

that, our results will give the basic and fundamental understanding of these HQDs

(hybrids of ZQDs and AQDs).

Stability

As HQDs have armchair and zigzag wings, all the 3 different spin-configurations,

namely, ferromagnetic (FM), anti-ferromagnetic (AFM) and nonmagnetic (NM)

configurations have been considered in this study. Both the formation energy and

relative energy (with respect to the energy of the most stable spin-configuration) of

all these configurations are given in the Table 3.5. As shown in the Table 3.5, all

the systems are energetically stable (i.e., their formation energy values are negative),

and hence, in principle, they should be experimentally realizable. Indeed, similar

QDs (or more precisely, ribbons as lengths are of ∼10 nm) have already been realized

experimentally in the shapes of X (also can be seen as the HQDs of present study), Y
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Figure 3.12: Optimized geometries of (a) HGQD, (b) BN-partial-ed-HGQD, (c) BN-full-ed-HGQD,
(d) HBNQD, (e) C-partial-ed-HBNQD and (f) C-full-ed-HBNQD

and Z types. [15] Among all the QDs, we find that, only HGQD and BN-partial-ed-

HGQD have an AFM ground state. For all other HQDs, the difference between the

energies among different spin-configurations is either below the room-temperature or

very near the room-temperature, and hence, we considered the ground states of these

systems as non-magnetic only. Thus, our calculations suggest that all the HQDs

can be synthesized experimentally and they will generally be non-magnetic. Next,

we will discuss the electronic properties of these HQDs (in their ground states) and

compare them with the electronic properties of the respective ZQDs and AQDs from

which these HQDs are formed.

Table 3.5: Spin polarization, formation energy, relative energy and H-L gap values for all the
systems in all the 3 spin configurations. First column describes the system names, where the last
two indices represent the no.of atoms in that system and the spin configuration, respectively. Rest
of the name represents the type of system as shown in Figure 3.12 (see figure caption).

System Name
Spin-

polarization

Formation

Energy

(eV/atom)

Relative

Energy (eV)

H-L gap

α-spin β-spin

HGQD-176-AFM 0 -0.509 0 0.92 0.92

HGQD-176-FM 0 -0.509 0 0.92 0.92
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HGQD-176-NM 0 -0.509 0.03 0.92 -NA-

HGQD-308-AFM 0 -0.490 0 0.64 0.64

HGQD-308-FM 4.0 -0.490 0.09 0.76 0.70

HGQD-308-NM 0 -0.490 0.4 0.12 -NA-

HGQD-440-AFM 0 -0.482 0 0.64 0.64

HGQD-440-FM 4.0 -0.481 0.27 0.43 0.34

HGQD-440-NM 0 -0.480 0.713 0.0041 -NA-

BN-partial-ed-HGQD-176-AFM 0 -0.424 0 0.60 0.09

BN-partial-ed-HGQD-176-FM 0.8 -0.424 0.01 0.27 0.30

BN-partial-ed-HGQD-176-NM 0 -0.424 0.028 0.12 -NA-

BN-partial-ed-HGQD-308-AFM 0 -0.408 0 0.42 0.02

BN-partial-ed-HGQD-308-FM 2.2 -0.407 0.051 0.1 0.08

BN-partial-ed-HGQD-308-NM 0 -0.407 0.114 0.05 -NA-

BN-partial-ed-HGQD-440-AFM 0 -0.399 0 0.3 0.03

BN-partial-ed-HGQD-440-FM 3.4 -0.399 0.027 0.14 0.15

BN-partial-ed-HGQD-440-NM 0 -0.399 0.205 0.05 -NA-

BN-full-ed-HGQD-176-AFM 0 -0.357 0.001 1.19 1.19

BN-full-ed-HGQD-176-FM 0 -0.357 0.005 1.19 1.19

BN-full-ed-HGQD-176-NM 0 -0.357 0 1.19 -NA-

BN-full-ed-HGQD-308-AFM 0 -0.340 0.027 0.73 0.73

BN-full-ed-HGQD-308-FM 0 -0.340 0 0.73 0.73

BN-full-ed-HGQD-308-NM 0 -0.340 0.012 0.73 -NA-

BN-full-ed-HGQD-440-AFM 0 -0.332 0.07 0.69 0.69

BN-full-ed-HGQD-440-FM 0 -0.332 0.07 0.69 0.69

BN-full-ed-HGQD-440-NM 0 -0.332 0 0.69 -NA-

HBNQD-176-AFM 0 -0.460 0 4.26 4.26

HBNQD-176-FM 0 -0.460 0.002 4.26 4.26

HBNQD-176-NM 0 -0.460 0.001 4.26 -NA-

HBNQD-308-AFM 0 -0.446 0.005 4.14 4.14

HBNQD-308-FM 0 -0.446 0 4.14 4.14

HBNQD-308-NM 0 -0.446 0.003 4.14 -NA-

HBNQD-440-AFM 0 -0.439 0.003 4.05 4.05

HBNQD-440-FM 0 -0.439 0.002 4.05 4.05

HBNQD-440-NM 0 -0.439 0 4.05 -NA-

C-partial-ed-HBNQD-176-AFM 0 -0.419 0.001 0.008 0.45

C-partial-ed-HBNQD-176-FM 1.1 -0.419 0 0.64 0.60
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C-partial-ed-HBNQD-176-NM 0 -0.419 0.034 0.059 -NA-

C-partial-ed-HBNQD-308-AFM 0 -0.408 0.001 0.26 0.01

C-partial-ed-HBNQD-308-FM 0.9 -0.408 0 0.12 0.14

C-partial-ed-HBNQD-308-NM 0 -0.408 0.005 0.067 -NA-

C-partial-ed-HBNQD-440-AFM 0 -0.403 0.004 0.02 0.21

C-partial-ed-HBNQD-440-FM 0.8 -0.403 0.001 0.11 0.12

C-partial-ed-HBNQD-440-NM 0 -0.403 0 0.072 -NA-

C-full-ed-HBNQD-176-AFM 0 -0.408 0 0.80 0.80

C-full-ed-HBNQD-176-FM 0 -0.408 0.001 0.80 0.80

C-full-ed-HBNQD-176-NM 0 -0.408 0.002 0.80 -NA-

C-full-ed-HBNQD-308-AFM 0 -0.389 0 0.48 0.48

C-full-ed-HBNQD-308-FM 0 -0.389 0.006 0.48 0.48

C-full-ed-HBNQD-308-NM 0 -0.389 0.016 0.48 -NA-

C-full-ed-HBNQD-440-AFM 0 -0.379 0.002 0.25 0.25

C-full-ed-HBNQD-440-NM 0 -0.379 0 0.25 -NA-

Electronic properties

To understand the electronic properties of HQDs, we have calculated the HOMO-

LUMO gaps (H–L gaps) of each of these systems as shown in Table 3.5. Here, we

will discuss only the trends in the H–L gaps of the most stable spin-configurations of

different HQDs. From the H–L gaps, we find that the electronic properties of HQDs

are indeed a mixture of the electronic properties of ZQDs and AQDs. For example,

from Table 3.5, we find that

1. H–L gap of both HGQD and HBNQD decrease with an increase in the system

size as observed in the case of ZQDs. Reason for the decrement is due to both

more bulk like behavior (with an increase in size) and extended conjugation

(for carbon containing systems).

2. For a particular size of HQD, partial substitution at the edges show a drastic

decrement in the H–L gap values for both HGQD and HBNQD. For the case

of HGQD, the decrement in the H–L gap after partial substitution is always
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> 0.2 eV and for HBNQD it is always > 4.0 eV (similar to both AQDs and

ZQDs)

3. Complete edge substitution of HGQDs with BN pairs increased their H–L

gap by a maximum amount of 0.15 eV (this is similar to AQDs, see Table 3.4

but, opposite of ZQDs), but for HBNQDs, complete edge substitution with

carbon atoms decreases its H–L gap by, at least, 3.4 eV (similar to both AQDs

and ZQDs). The reason for the latter is because of the extended conjugation

obtained by ’C’ atom substitutions.

4. BN-partial-ed-HGQDs show a spin-polarized H–L gap in their ground state

spin-configuration (similar to ZQDs, but, opposite of AQDs).

Thus, substitution can help in tuning the H–L gap of HQDs and the change in

HLG is huge when the edges are substituted partially and the changes are highly

prominent when the systems are HBNQDs (than HGQDs). To further understand

these changes in the H–L gaps, we have plotted both the density of states (DOS)

and projected DOS (pDOS) for all the HQDs.

In Figure 3.13, we have given the DOS and pDOS of armchair and zigzag wings

for all the HQDs of medium size [i.e., (4.39, 4.16)] in their respective ground states.

Clearly, all the HQDs, except HBNQD and C-parital-ed-HBNQD, have greater zigzag

edge contribution near the Fermi-level than the armchair edge. As the low-energy

electronic properties are mainly dictated by the levels above and below (i.e., HOMO

and LUMO) the Fermi-level, one should expect HBNQD and C-parital-ed-HBNQD

(others) should have more AQD (ZQD) character than ZQD (AQD). Indeed, this

is what we find in the DOS of the HQDs (compare Figure 3.13 and 3.11). An

interesting example where one can appreciate that “the electronic nature of a HQD

is directly governed by the wing nature of the A/ZQD” is the BN-partial-ed-HGQD.
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Figure 3.13: DOS and pDOS plots of (i) HGQD, (ii) BN-partial-ed-HGQD, (iii) BN-full-ed-HGQD,
(iv) HBNQD, (v) C-partial-ed-HBNQD and (vi) C-full-ed-HBNQD. Green, orange and indigo colors
indicate total DOS, zigzag wing pDOS and armchair wing pDOS, respectively.

As can be seen in Figure 3.13(ii), BN-partial-ed-HGQD is a spin-polarized semi-

conductor and the DOS and pDOS near the Fermi-level also compares exactly with

that of BN-partial-ed-ZGQDs (see Figure 3.14(i)). Figure 3.14(ii-iv) shows the pDOS

plots of the BN-partial-ed-HGQD of all sizes and all of them are spin-polarized

semi-conductors, whose HOMOs and LUMOs are mainly composed of the states

from zigzag wing C atoms. Similarly, C-partial-ed-BNQD’s electronic structure is

mainly dictated by the armchair wing C atoms as shown in Figure 3.13(e).

3.4 Conclusions

In conclusion, we have performed a series of calculations on ZQDs, AQDs and HQDs

with and without substitutions. Also, changes in the properties of the quantum dots

due to effects of size variation have been studied. Such calculations revealed that

substitution can act as a powerful tool to determine the electronic properties of these

QDs. All the systems were found to be thermodynamically stable. Increment in the
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Figure 3.14: pDOS plots of BN-partial-ed (i) (33,4) -ZGQD, (ii) (4.39, 4.16) -HGQD, (iii) (2.65,
2.67) -HGQD and (iv) (6.12, 5.64)-HGQD

sizes of the QDs lead to the decrement of the H–L gap in all the systems except for

C-full-ed-BNQDs (where, the increased delocalization of the π-electrons on the C

atoms made this system’s HOMO more stable leaving its LUMO energy unchanged).

Substituting the pure QDs gave several interesting properties.

In ZQDs, above a critical width, BN-full-ed-GQDs were found to possess spin-

polarized H–L gap due to the presence of an intrinsic electric-field in the system

which can polarize the orbitals. Unlike BN-full-ed-GQDs, BN-partial-ed-GQDs have

shown spin-polarized H–L gaps irrespective of the width of the system. We have

clearly shown that electric-field is not the reason for the spin-polarized H-L gap in

BN-partial-ed-GQDs, although it can create spin-polarized H–L gap in GQDs when

applied along the diagonal direction of the QDs. After performing several studies

by changing the position and the amount of substitution in GQDs, we found that

the reason behind the spin polarized H–L gap in BN-partial-ed-GQDs is the spin
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polarized charge transfer between the border carbon atoms by boron/nitrogen atoms.

As this behaviour is not observed when only one type of edge or border atom is

there in the system, we have concluded that to attain spin-polarized H–L gap in a

system, we must have different types of edge and border C atoms. We also have

shown that an external electric field can induce spin-polarized H–L gap in GQDs and

we explained the energy shifts of the MOs under external electric-field by plotting

the EDDMs proving that our results are consistent with linear Stark-effect.

Similar to ZQDs, in AQDs also we find that the H–L gap can be tuned by

substituting the edge atoms. But, unlike ZQDs, AQDs didn’t show any spin-

polarization irrespective of the nature of the substitution (i.e., whether it is partial

or full). On the other hand, similar to ZQDs, HQDs show spin-polarized DOS near

the Fermi-level when the HGQDs edges are substituted partially with BN-pairs.

Also, we find that, when a system has carbon atoms, then all the states near the

Fermi-level has contribution from carbon atoms, and hence, the major electronic

properties will be governed by the nature of these carbon states. Among HGQDs

and HBNQDs, substitution has huge effects on HOMO-LUMO gap of HBNQDs

compared to HGQDs. Finally, we found that the electronic properties of a HQD are

mainly dictated by the electronic properties of either of its constituents i.e., ZQD or

AQD.
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Chapter 4

Linear and Nonlinear Optical

Properties of Graphene Quantum

Dots: A Computational Study. ?

4.1 Introduction

Materials with broadband absorption (BBA) and emission, that is, covering ul-

traviolet, visible, and near-infrared regions of the solar spectrum, have important

applications in photodetectors, broadband modulators, bioimaging, solar cells etc.

[1–6] Moreover, if the materials with the broadband absorption also shows optical

nonlinearity, they can be very useful in applications involving optical parametric

oscillation, high harmonic generation, [7, 8] Kerr effect [9, 10] and multiphoton

imaging. [11] Thus, finding novel materials with both broadband absorption and

optical nonlinear activity is of great interest.

Group IV-VI quantum dots like CdSe, PbSe, CdS, HgTe, ZnSe, etc. have already

been there in variety of applications involving light emitting diodes, bio-imaging,

?Work reported in this chapter is published in: Sharma S. R. K. C. Yamijala, Madhuri Mukhopad-
hyay, and Swapan K Pati, J. Phys. Chem. C, 119, 12079–12087 (2015); Sharma S. R. K. C. Yamijala,
Madhuri Mukhopadhyay, Bradraj Pandey and Swapan K Pati, manuscript under preparation (2015).
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solar cells, because of their tunable absorption and specific optical nonlinear activity.

[12–17] Materials prepared from high band gap semiconductors like ZnS, ZnSe, GaN,

and AlN possess ultraviolet optical activity whereas CdS, rare earth doped GaN

materials exhibit near IR activities. [18, 19] Although, tuning the size of a quantum

dot can vary its active optical range, it cannot give the whole range altogether (i.e.,

simultaneously UV-VIS and IR range activity). To this end, GQDs and modified

GQDs seems to be promising materials for such optical activities. [20–23] Together

with their higher photostability, bio-compatibility and low cost preparation, GQDs

may act as a substitute for the toxic IV-VI group quantum dots.

GQDs are the confined graphene materials available in various topologies [20–25]

and graphene is a layered sp2-bonded carbon material in honeycomb lattice. Graphene

with its zero band gap has a limitation to its applications in optoelectronics due to

its zero optical emission. On the other hand, GQDs exhibit a broadband absorption

and they have emerged as attractive fluorescence materials in the ultraviolet, visible

and even in infrared regions. [20–23, 26] During recent years, there has been a

lot of research on the broadband activity of GQDs of different sizes, shapes and

functionalities through both experiment and theory. [27–31] Also, there is a progress

in identifying the shape and size dependent nonlinear activity of GQDs. [32–35]

Considering these studies into account, here, we have performed a systematic

computational study on the linear and nonlinear optical (NLO) properties of hydrogen

passivated GQDs (hence, may also be termed as polyaromatic hydrocarbons (PAHs))

of various sizes, shapes, edge structures and so forth. After careful analysis on

these GQDs (∼ 20) with simultaneous BBA and high NLO coefficients, we find that

the necessary and sufficient condition for possessing such multi-functionality is due

to the presence of inequivalent sublattice atoms. Also, we find that majority of

the GQDs with only zigzag edges possess this multifunctionality. Additionally, we

find that some of these GQDs show fascinating 1st hyperpolarizabilities (∼ 103-105
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Figure 4.1: Some random shaped GQDs with 32 carbon atoms (C32)

times larger than the traditional NLO compounds [like p-nitroaniline etc]). In the

following, first we have described how we have modeled our systems and then we have

given the details of our computations. Next, we have compared the results from our

semi-empirical calculations on structural stability and electronic properties with the

earlier studies and then we have presented our results on linear and nonlinear optical

properties. Finally, we have presented the results from first principles calculations

on the systems, followed by the conclusions.

4.2 Modeling and Computational Details

As the number of varieties of GQDs which can be generated from graphene are huge,

following Kuc et al. [25] we have considered ∼ 400 structures, based on their size,

shape, edge etc. As the hydrogen passivated GQDs have been shown to be more

stable than the GQDs with bare edges, we have only considered the former ones
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throughout our study. As in ref [25], we have categorized our GQDs as circular

(F) or triangular (T) or stripes (i.e., nanoribbons) (S) depending on their shape

and zigzag (z) or armchair (a) depending on their edges. Thus, Fa (Tz) represents

circular (triangular) GQDs with armchair (zigzag) edges. All other GQDs which

don’t fit in these categories mainly represent the different possible conformers of a

GQD with particular number of carbon atoms and we refer them as random shaped

GQDs. We identify these random shaped GQDs with their carbon atom numbers

such as C22, C28, C74 etc. In Fig. 4.1, we have shown typical examples of random

shaped GQDs.

All the structural optimizations have been performed using self-consistent charge

(SCC) density functional tight-binding (DFTB) theory [36] within the third order

expansion of the DFT energy functional (i.e., with DFTB3) [37] and with 3ob

parameter set, [38] as implemented in DFTB+ package. [39] DFTB level of theory is

used mainly due to the large number of systems (∼ 400) considered in this study as

well as its ability to give trends in band-gaps, energies etc. which are comparable to

the ones given by DFT, especially for carbon related materials, even with different

edges, defects etc. [40, 41] Geometry optimizations have been performed using

conjugate gradient method and systems are considered to be optimized only when

forces on all the atoms are less than 0.0001 Hartree/Bohr. For those systems whose

energy levels near the Fermi-level are almost degenerate, we have increased the

electronic temperature to 100 K to avoid any convergence issues.

It is important to notice that it is not a trivial task to either predict the exact

ground state spin of PAHs, such as, linear polyacenes using single-determinant

methods like HF, DFT and DFTB3 nor to perform ab initio many-body calculations

with multi-determinants for all the considered GQDs. So, we got compromised

ourselves to assume that the ground state spin for these PAHs is singlet (indeed,

majority of the known PAHs are singlets) and performed optimizations. However,
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Figure 4.2: (a) A plot of EForm per atom versus number of edge atoms to the total number of
atoms (N) of all the GQDs. Straight line shows the linear fit. (b) Energies of HOMO, LUMO and
the HOMO-LUMO gap (HLG) of all the GQDs and (c) Changes in the HLG with size for different
shaped GQDs. Symbols T, F, S represents triangular, circular and striped GQDs. Subscripts a and
z represents armchair and zigzag edges. See the “Modeling” for further details.

for few GQDs, we have performed semi-empirical many-body complete active space

configuration interaction (CAS-CI) calculations, within the Hubbard model, to

predict their ground state.

Linear optical properties of all the compounds have been computed at the semi-

empirical ZINDO/S level of theory as implemented in g09 software package. [42]

ZINDO/S has been proved to be very successful especially in predicting the optical

properties of systems containing C, N, O, H atoms like polyaromatic hydrocarbon

compounds, [43, 44] chlorophylls [45] etc. [46] At semi-empirical level, nonlinear

optical (NLO) properties of all compounds have been calculated using MOPAC 2012

program package. [47, 48] All the first principles calculations for the linear (at time

dependent density functional theory (TDDFT) level) and nonlinear optical properties

have been performed using g09. Long range corrected (CAM-B3LYP) exchange

correlation functional has been used in conjunction with 6-31+g(d) basis set for all

the calculations. A minimum of first 12 lowest excited states have been considered

in all the studies. GaussSum-2.2.6.1 [49] is used to plot the absorption spectra and a

broadening of 0.333 eV has been used.
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4.3 Results and discussion

4.3.1 Energetic stability and electronic properties

All the GQDs considered in this study are found to be energetically stable, that is,

they have negative formation energy, EForm = Etot – NH*EH – NC*EC , where Etot,

EH and EC are the total energy of the system, energy of the hydrogen atom in a

H2 molecule (i.e., EH2/2) and energy of the carbon atom in a graphene lattice (i.e.,

EGraph/NC), respectively. Here, NC and NH are the number of carbon and hydrogen

atoms in the system. At DFTB3 level of theory, we find EH and EC to be -9.123

and -44.291 eV, respectively. A plot of formation energy per atom vs NH/(NH+NC)

of all the systems is given in Fig. 4.2a. Clearly, there is a near linear relationship

between the formation energy per atom and the number of edge atoms in all the

systems (notice the linear fit in Fig. 4.2a), that is, system with lesser number of

edge atoms is easier to form and vice-versa, as expected. [20, 50, 51] Similar results

have been observed in some of the earlier studies on GQDs and PAHs. [25, 52] In

agreement with these previous studies, we also find that among the different GQD

shapes studied here, circular GQDs are the most stable ones and ribbon like GQDs

are the least stable. All other GQDs’ (triangular, random etc.) stability fall in

between these two types of GQDs (see Fig. 4.2a). The reason for such a trend is

again due to the less number of edge atoms in circular GQDs than in other GQDs

considered in this study, as evident from the x-axis of Fig. 4.2a. Recent molecular

dynamics simulations have also shown that among the different GQDs, circular and

triangular GQDs with zigzag edges as the most stable ones till ∼ 4000 K. [24]

Next, the energies of HOMO, LUMO and their difference (i.e., HOMO-LUMO

gap (HLG)) of all the GQDs are plotted in Fig. 4.2b as a function of number of

carbon atoms. The calculated HLG values are mainly in the range of ∼ 0-3 eV. Also,

from Fig. 4.2b and 4.2c, it can be observed that for a particular NC , one can tune
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the HLG from ∼ 0-3 eV depending on the shape and edges of the GQD. Indeed,

tuneability of band-gap between ∼ 0-3 eV has already been reported for armchair

graphene nanoribbons by varying their width [53, 54] and for the case of GQDs by

varying their shape. [22, 23, 55, 56] Interestingly, we find that such tuning is possible

even for the systems with NC between 20 to 50. In fact, synthesis of GQDs (actually,

PAHs) of different sizes have already been carried out. [21] From Fig. 4.2c, it can be

noticed that HLG of the systems with zigzag edges converge rapidly to zero (reaching

the semi-metallicity of graphene) than the armchair ones, irrespective of the shapes

and the calculated trend of convergence is Tz-GQDs > Sz-GQDs > Fz-GQDs >

Ta-GQDs ∼ Fa-GQDs > Sa-GQDs. As HLG reflects the kinetic stability of a system,

the above trends suggest that kinetic stability will be highest for Sa-GQDs and least

for Tz-GQDs and Sz-GQDs. As suggested by the Clar’s rule, [21] higher kinetic

stability of Sa-GQDs, compared to the other structures is due to the presence of

larger number of resonant sextets in these structures. Similar reasons are also known

for the lesser stability of zigzag edged structures compared to the armchair ones.

[25] One may also notice that the HLG of “Sz and Tz”, “Ta and Fa”-GQDs follows

similar trend as NC increases (for NC > 60) as has also been observed in some of

the recent studies. [24] Finally, as the HLG of these GQDs are tunable over a wide

range and as HLG can be used as a rough estimate for the optical gap, [43] one may

immediately expect that the optical properties of these GQDs can also be tuned over

a wide range and the results of the respective calculations are given in the section

4.3.2.

Finally, we have studied three structural isomers of C28 (two kekulé isomers and

one non-Kekulé isomer) using CAS-CI method, within the Hubbard model, using

home developed code, to find their ground state. For the complete active space, we

have considered total eight MOs (4 states above the HOMO and 4 states below the

LUMO) and generated all possible CI configurations (i.e., 4900 (3136) determinants
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for singlet (triplet) ground state) between them. In all our calculations the hopping

parameter is considered as -2.4 eV and Hubbard parameter is considered to be 11.26

eV.

CAS-CI calculations have been performed in various charge states to predict the

ground state and to verify Lieb’s theorem on Hubbard model and Nagaoka theorem.

We find that all the 3 GQDs obey the Lieb’s theorem on Hubbard model but not

the Nagaoka theorem as our Hubbard term is quite small (and not infinite). Lieb’s

theorem says that the ground state spin of a half-filled bipartite lattice is equal to

half of the difference between sublattice atoms, i.e., S = 1
2
|NA −NB|. Here NA/B are

the number of A or B sublattice atoms and S is the total spin of the ground state. As

kekulé isomers have equal number of sublattice atoms (i.e., |NA−NB| = 0), they are

expected to possess a singlet ground state and for non-kekulé isomers |NA−NB| = 2

and hence, a triplet state is expected. This is exactly what we have observed for all

the GQDs at half-filling (charge-zero), where, CK1
28 and CK2

28 have singlet ground states

and CNK
28 has triplet ground state (see Table 4.1). Structures, molecular orbitals and

the nature of the ground state for all the three GQDs are given in the Table 4.2

Nagaoka theorem is a special case of the Hubbard model in which the on-site

interaction U is infinite and there is exactly one hole. It says that the ground state

of such system will have the maximum total spin, i.e., S=(N-1)/2, where N is total

number of lattice sites (here, 28). Clearly, Nagoka theorem is not obeyed in these

systems as the U value considered in our case is quite realistic and not infinite.

Table 4.1: Ground state spin of Kekulé and non-Kekulé PAHs.

Charge CK1
28 CK2

28 CNK
28

-1 1
2

(Doublet) 1
2

(Doublet) 1
2

(Doublet)
0 0 (Singlet) 0 (Singlet) 1 (Triplet)
1 1

2
(Doublet) 1

2
(Doublet) 1

2
(Doublet)
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Table 4.2: Configurations with maximum contributions to the ground state are given for CK1
28 ,

CK2
28 and CNK

28 in their neutral charge states. Our CI configurations consist of eight molecular
orbitals (MOs). Occupation of each of these MOs and the contribution of atomic-orbitals to each
of them are shown for the ground state configuration (determinant).

CK1
28

GS
4900

(84.4)
↑↓ ↑↓ ↑↓ ↑↓ 0 0 0 0

CK2
28

GS
4900

(86.4)
↑↓ ↑↓ ↑↓ ↑↓ 0 0 0 0

CNK
28

GS
3136

(78.0)
↑↓ ↑↓ ↑↓ ↑ ↑ 0 0 0

4.3.2 Optical properties

First, we present the optical absorption of all the systems calculated at the ZINDO/S

level of theory. Here, we have analyzed only the 20 low energy singlet excitations

(i.e., within Sz=0 spin sector) from the ZINDO/S results. Absorption spectra of

PAHs mainly consists of 3 bands, namely, alpha (α), beta (β) and para (p), out of

which the most intense ones being β and p-bands (notations are according to Clar’s

rule [21], where p(β)-bands corresponds to the bands at higher (lower) wavelengths).

Interestingly, in a very recent study, [43] it has been concluded that ZINDO/S

is good at predicting the most intense p and β bands of all C32H16 benzenoid

PAHs. Considering these facts, first we have plotted the histograms of “wavelengths

corresponding to the most intense p-bands (pmax) and β-bands (βmax)”, respectively,

in Figs. 4.3a and 4.3b and the corresponding oscillator strengths (OS) histograms

in Figs. 4.4a and 4.4b. From these figures it can be noticed that, majority of

the systems have their βmax and pmax in the UV-VIS region (200-760 nm) and the

oscillator strength of βmax (pmax) is almost always (for majority of structures) >
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Figure 4.3: Histograms of wavelengths corresponding to (a) βmax, (b) pmax excitation in all
GQDs. pmax excitations above 2500 nm have been omitted for clarity.

0.5 (0.1). Thus, majority of the GQDs considered in this study absorb strongly in

the UV-VIS region (in particular, their βmax (pmax) is located in the region between

250-450 (300-700) nm).

However, interestingly, we find ∼ 70 GQDs whose pmax is in IR-region (> 760

nm). Materials absorbing in IR region are of great interest in the preparation of

solar cells because half of the solar energy received by earth is in IR radiation range

and most of the present day solar cells do not utilize this energy region. [20] Thus,

knowing the reason for the IR-activity of these GQDs will be of great use and for

this we have analyzed their pmax transition. We find that major contributions to

pmax transition are always from excitations involving the frontier orbitals (that is,

HOMO-1, HOMO, LUMO and LUMO+1), especially from HOMO and LUMO. Thus,

the changes in these frontier MOs lead to changes in the pmax transition. Also, some

of the earlier studies on PAHs have found that HLG of these systems is almost equal

to the energy corresponding to the pmax transition (see Ref [43] and references there

in).

For a few of these GQDs, we find HLG to be very small. In general, small HLGs
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Figure 4.4: Histograms of oscillator strengths corresponding to (a) βmax, (b) pmax excitation in
all GQDs.

occur either due to extended delocalization (as in conjugated carbon chains) or if

there exists lesser number of resonant sextets (according to Clar’s rule [21, 25, 43]).

In our case, however, the very small HLGs are seen due to completely different

reasons. If we look at the structures of these GQDs closely, we find that, they don’t

have same number of sublattice atoms (i.e., NA – NB 6= 0). In fact, in all the random

shaped GQDs, we find there exists two additional sublattice atoms of one type (i.e.,

| NA – NB | = 2). pz orbitals of these additional atoms remains as non-bonding

orbitals and appear at the zero of energy (i.e., at the Fermi-level) in the energy level

diagram. If there were no interactions (as in tight-binding calculations), both of

these levels would be degenerate and would appear exactly at the zero of energy.

(similar to what has been observed in triangular GQDs [22, 23, 57–59]). However,

because of interaction terms in ZINDO/S Hamiltonian, we find the two levels to

appear above and below the zero of energy with a very low energy gap (few meV).

Interestingly, these two levels have opposite parity, due to which the transition dipole

moment between the two become non-zero. Thus, these two levels give rise to optical

transition with a finite oscillator strength (OS). Since, the energy gap between these

two levels is too small, the optical absorption appears in IR-region.
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Figure 4.5: Schematic diagrams of four structural isomers of C32H18 GQD are given in (a)-(d)
and their HOMO isosurfaces are given in (e)-(h), respectively. Iso-value of 0.02 e/Å3 is used for all
the plots.

As an example, in Figs. 4.5a–4.5d we have given four structural isomers (here

after, addressed as 4.5a, 4.5b, 4.5c and 4.5d, respectively) of C32H18, where

only 4.5b and 4.5d have the sublattice imbalance. As explained, only for 4.5b

and 4.5d, we find pmax in IR-region (> 2000 nm) but not for 4.5a and 4.5c. In

Fig. 4.5, we have also given the conjugation and isosurface plots of HOMO for these

GQDs. As can be seen, because of sublattice imbalance, the conjugation in 4.5b

and 4.5d GQDs is not continuous and there are “conjugation breaks”, which are

clear demonstration of solitonic structure (conjugated system), domain walls (seen

in ferromagnetic metal blocks). The main point to notice is that, these defect states

are intrinsic in these GQDs and these have not been externally induced.

IR-activity of GQDs which absorb below 2500 nm is mainly due to the zigzag

edge nature of these GQDs, which invokes radical character (similar to edge states

in ZGNRs) and lowers their HLG. For example, it is well known that the polyacenes

have the lowest HLG among the various PAHs [21] and pmax of hexacene (6 fused

benzne rings) itself is 750 nm. Also, Hod et al. [53, 54] have shown that rectangular
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Figure 4.6: Isosurfaces of HOMO of some of the C74 GQDs considered in this study.

GQDs can possess low HLG and through TDDFT calculations, our group has also

shown that pmax of rectangular GQDs is ∼ 1900 nm. [20] Inspecting the structures

of GQDs which absorb in the region of 760-2500 nm, we find that all these GQDs

have either polyacene type structure or rectangular type structure, with some of

their edges being substituted with ethene, propene, cis-1,3-dibutene etc. Also, it is

important to mention that HOMO of all the IR-active structures is different from

that of the non-IR-active structures.

Frontier MOs of IR-active GQDs have larger number of nodes, and hence, look

like the collection of pz orbitals on individual carbon atoms without overlap (for

example, see Figs. 4.5f and 4.5h). The reverse is true for the non-IR-active GQDs

(see Figs. ( 4.5e, 4.5g)). Presence of large number of nodes destabilizes HOMO

compared to its structural isomers with less number of nodes, and hence, lesser HLG

and IR-activity. As an example of the above mentioned observations, we have given

absorption spectra (see Fig. 4.7) and isosurfaces of HOMO (see Fig. 4.6) of C74

GQDs. Finally, as the OS of pmax peak for majority of these GQDs is > 0.5 and

as OS of βmax peak is almost always found to > 0.5, we find that these GQDs can
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Figure 4.7: Absorption spectra corresponding to the GQDs given in the above figure (Fig. 4.5).
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have broad band absorption (BBA), as predicted earlier for triangular GQDs [22, 23]

and rectangular GQDs. [20] BBA of these GQDs can also be seen in Fig. 4.7. To

conclude all the above results, we find that GQDs with inequivalent sublattice atoms

or GQDs with rectangular or stripe shapes can absorb in IR-region and they may be

suitable candidates for BBA.

Comparison of ZINDO/S and TDDFT results:

To put the results obtained from the ZINDO/S method at a solid footing, we have

performed TDDFT calculations at CAMB3LYP/6-31+g(d) level of theory on a few

GQDs. First, we will present our results on GQDs of various shapes. In Figs. 4.8a–

4.8f, we have given the absorption spectra of Sa, Sz, Fa, Fz, Ta and Tz, respectively,

calculated at both ZINDO/S and TDDFT levels of theory along with the iso-surfaces

of their HOMO (only from TDDFT). Clearly, absorption profiles of both the methods

compares farily well, although OS values predicted by ZINDO/S are higher than that

of TDDFT. Also, λmax predicted by ZINDO/S is consistently red-shifted compared

to the TDDFT predicted values. Consistent with the previous arguments on the

isosurface of HOMO (calculated using ZINDO/S), even with TDDFT we find larger

number of nodes (see Fig. 4.8f) in the HOMO if the GQD has IR-activity and it has

more overlapping character if the GQD is not IR-active (see Fig. 4.8a–4.8e). Also,

we find that the character of the pmax excitation (i.e., MOs involved in the excitation)

is predicted to be the same by both the methods. Importantly, we find that GQDs

whose HOMO is mainly localized on the edge atoms (as in Sz and Tz) and whose

pmax excitation has major contribution from HOMO to LUMO, are IR-active. From

Fig. 4.8, one may also infer that the presence of zigzag edges is only a necessary,

but not a sufficient condition (example being the Fz GQDs) for the IR-absorption.

Finally, to see the effect of inequivalent sublattice atoms on the IR-activity, we have

considered five C28-GQDs with NA – NB = 2, and we find all of them to be IR
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Figure 4.8: Absorption profiles of GQDs of various shapes calculated at both ZINDO/S level of
theory and using TDDFT at CAMB3LYP/6-31+g(d) level of theory. Insets in each figure show the
isosurface of the HOMO of that GQD calculated using TDDFT. (a)-(f) represents Sa, Sz, Fa, Fz,
Ta and Tz GQDs, respectively. Iso-value of 0.02 e/Å3 is used for all the plots.
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Table 4.3: System names, wavelength corresponding to “pmax” and ”βmax” excitations of all
C28-GQDs whose pmax is in IR-region are given. Values inside the parenthesis are the ZINDO/S
results and the ones which are outside are the CAM-B3LYP/6-31+g(d) results. Nomenclature is
according to ref [25].

System pmax (nm) βmax (nm)

c28hcc 2966.1085 ( 3158.0065) 436.1311 (460.6820)

c28hj 4125.9014 (10818.7903) 346.5642 (429.1269)

c28hM 3035.8310 ( 4413.7891) 434.3282 (460.0666)

c28hR 3145.1887 ( 6156.0743) 393.7104 (454.2180)

c28hS 2896.1303 ( 4251.8291) 425.8401 (491.0231)

c28hss 3408.0082 ( 6687.3429) 397.7012 (448.3378)

Figure 4.9: Histograms of isotropic average values of (a) polarizability, α and (b) first hyperpolar-
izability, β of all GQDs.

active, again consistent with the ZINDO/S results (see Table 4.3). Thus, we find

that, results of ZINDO/S and TDDFT are consistent and compare well for the GQDs

considered in this study.

4.3.3 Nonlinear optical properties

In this subsection, we present the linear polarizability (α) and first hyperpolarizability

(β) of all the GQDs calculated using the finite field approach as implemented in the

MOPAC and g09 packages. Expressions for the dipole moment and the energy of a
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molecule interacting with an external electric field are given by Eqns. 1 and 2 [60].

µi = µ0i + αijFj +
1

2
βijkFjFk +

1

6
γijklFjFkFl + . . . (4.1)

E(F ) = E(0)− µiFi −
1

2!
αijFiFj −

1

3!
βijkFjFk −

1

4!
γijklFjFkFl − . . . (4.2)

where, µ0 is the permanent dipole moment, αij, βijk and γijkl are the linear polar-

izability, 1st and 2nd hyperpolarizability tensor elements, respectively. Also, for a

molecule, the avergae values of above quantities (µav etc.) are defined as

µav = (µ2
x + µ2

y + µ2
z)

1/2 (4.3)

αav =
1

3
(αxx + αyy + αzz) (4.4)

βav = (β2
x + β2

y + β2
z )

1/2 (4.5)

where,

βi =
3

5
(βiii + βijj + βikk), i, j, k = x, y, z (4.6)

In Figs. 4.9a and 4.9b, we have plotted the distribution of isotropic average α

and β values for all the GQDs at static field. Similar to absorption profiles, majority

of the GQDs’ α and β values are confined to a small region. For these majority

GQDs, we find that the α and β values are in the range of 250−700 a.u. (∼ 40−100

Å3) and 1−200 a.u. (10−32−10−30 esu), respectively. Compared to the α and β

values of para-nitroaniline (16.346 a.u. and 978.21 a.u., respectively), it is nice to

notice that majority of the GQDs already have high polarizability and moderate

hyperpolarizabilities. Importantly, we find that several GQDs possess α and β values

which are orders of magnitude greater than that of para-nitroaniline (see Fig 4.9a

and inset of Fig 4.9b).

In general, both linear polarizability and first order hyperpolarizabilities have
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an inverse relationship with the energy gap between the states involved in the

polarization, and are directly proportional to the transition moment. Thus, we can

expect an increase in α and β if the ground and excited states are closely spaced or

the transition moment between the states is high or both. From the above reasoning,

one can also infer that GQDs with low HLG and whose 1st excited state has major

contribution from HOMO to LUMO transition should give higher α and β values.

Indeed, we find that all the GQDs which are IR-active also have high α and β (except

the GQDs with inversion symmetry) values, that is, above the range of 250−700 a.u.

and 1−200 a.u., respectively. Also, we find that some of the GQDs with zigzag edges,

like Fz, which are not IR-active but have very high oscillator strength for the pmax

(see Fig. 4.8d) excitation also show higher α values. However, due to the presence of

inversion symmetry, such GQDs do not have higher β values. Based on all the above

results, we conjecture that GQDs with very low HLGs can have both broad band

absorption and nonlinear optical activity, and hence, are potential candidates for

optoelectronic devices.

4.4 Conclusions

We have performed a systematic study on the GQDs of various sizes, shapes and

edges to explore their linear and nonlinear optical properties. First, we find the

formation energies of GQDs have a near linear dependence on their number of edge

atoms and HOMO-LUMO gaps of a GQD with a particular number of carbon atoms

can be tuned from ∼ 0-3 eV depending on its shape and edge nature. Trends in the

HLG can be understood based on the Clar’s rule of aromatic sextets for majority of

the sytems. Extremely low HLGs of certain GQDs is due to the presence of unequal

number of sublattice atoms in these GQDs, that is, NA – NB 6= 0. Tunability of HLG

has also been reflected in the tunability of the absorption profiles in these GQDs.

We find that majority of the GQDs absorb strongly in the UV-VIS region with their
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βmax (pmax) being located in the region between 250-450 (300-700) nm) and their α

and β values are in the range of 250−700 a.u. and 1−200 a.u., respectively. However,

∼ 70 GQDs have their pmax in IR-region and have higher α (> 700 a.u.) and β (>

200 a.u.) values. A common feature which we find in all these IR-active GQDs is

the existence of larger number of nodes in the isosurface of HOMO which leads to

an increment in HOMO energy, and hence, decrement in the HLG. Due to their high

oscillator strengths in both UV-VIS and IR-regions these GQDs can possess broad

band absorption. With their high α and β values along with the BBA, we expect

them to be potential candidates for optoelectronic devices.
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Chapter 5

Nitrogen doped graphene

quantum dots as possible

substrates to stabilize planar

conformer of Au20 over its

tetrahedral conformer: A

systematic dft study.?

5.1 Introduction

Properties of gold clusters, such as, stability, ionization potential, and catalytic

activity, depend not only on their size but also on their shape and charge state.[1–4]

Stabilizing a particular conformer among the others, to achieve the desired properties,

is one of the active fields of research. [3, 5–13] When gold clusters are grown on a

?Work reported in this chapter is published in: Sharma S. R. K. C. Yamijala, Arkamita
Bandyopadhyay, and Swapan K Pati, J. Phys. Chem. C, 118, 17890–17894 (2014).
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substrate, the nature of the substrate highly dictates the stability and shape of the

conformer. In the past few years, a large number of studies have been carried out

on several substrates mainly to understand the substrate properties in stabilizing a

particular conformer of the gold cluster. The main theme of majority of these studies

is to stabilize the catalytically active planar conformer of Au20 cluster (P-Au20) over

the thermodynamically stable tetrahedral conformer (T-Au20) [3, 5–12] on various

metal oxides substrates, such as, MgO, [5–8, 10, 12] CaO [3, 11, 12] etc.

All the earlier experimental [14, 15] and theoretical studies [2, 9, 16] have shown

that tetrahedral conformer is the most stable conformer in gas phase. Same trend in

the stability has been found even when Au20 is on pristine MgO, CaO substrates.[3, 5–

12] Also, T-Au20 also has a larger HOMO-LUMO gap (1.77 eV) compared to its

other two-dimensional conformers. [2, 9] because of which T-Au20 is chemically more

stable (or less reactive) and has limited applications in catalysis. Less reactivity of

T-Au20 compared to P-Au20 has already been proven during the catalytic conversion

of CO to CO2 in the presence of O2 on a Mo-doped MgO substrate.[7] Also, through

theoretical calculations, it has been shown that both the electron accepting and

donating capabilities of P-Au20 are more compared to that of T-Au20 and such trend

has been found to be common for planar clusters of gold. [9] Thus, for catalytic

applications, it is required to stabilize “less stable but catalytically more active”

conformers of gold than the “less reactive and thermodynamically more stable”

conformers.

Earlier studies have shown different ways to stabilize the planar conformer of

Au20, [3, 5–12], mainly using metal-oxide substrates. Some of the methods which

were used to tune the morphology of Au20 include (i) depositing thin metal-oxide

films on transition metals [3, 5–7] (ii) application of external field [8] when depositing

bulk metal-oxides on transition metals and (iii) to add external dopants [3, 10–12]

to bulk metal-oxides without depositing them on transition metals etc.
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Unlike these studies, in this chapter we have considered graphene quantum dots

(GQDs), [17–21] the zero-dimensional analogues of graphene, as the substrate. We

have considered different possibilities like external doping by substituting the carbon

atoms of GQD with nitrogen or boron atoms, increasing the doping concentration,

introduction of defects, increasing the number of layers of GQDs etc., to see whether

we can stabilize P-Au20 over T-Au20 on GQDs. We have considered GQDs as our

substrates because of their easy synthesis and due to their ability to stabilize Pd

nanoparticles (NPs) as reported by Li., et al. [22]. The same group (and also several

other groups) has also shown the successful synthesis of N-doped GQDs (NGQDs)

with precise control over the position of the dopant nitrogen. [23, 24] Though, both

experimental and theoretical works exist on the interaction of Au clusters with N-

doped graphene (not GQDs), they were not concentrated on tuning the morphology

of Au clusters. In this chapter, we have shown that, NGQDs can act as alternative

substrates to doped metal-oxide substrates in stabilizing the P-Au20 over T-Au20.

5.2 Computational Details

Previous studies on the interaction between graphene and transition metal clusters

suggests that dispersion forces are important to exactly mimic the interaction between

gold and graphene and these studies have also shown that the empirical dispersion

correction i. e. DFT-D3 is sufficient to reproduce the results obtained with the best

methods (EE+vdW for Au-graphene; EE+vdW, M06-2X and MP2 calculations for

Au-coronene interactions) described in these works for graphene and gold interaction.

[25] We have performed all the calculations using spin-unrestricted density functional

theory with Becke–Lee–Yang–Parr (BLYP) GGA exchange-correlation functional,

[26, 27] along with Grimme’s DFT-D3 dispersion correction,[28] as implemented in

the QUICKSTEP module of the CP2K package [29] (unless otherwise mentioned

explicitly). We have used the norm-conserving Goedecker– Teter– Hutter (GTH)
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pseudopotentials, [30–32] which are optimized in CP2K package to use them along

with the BLYP functional. CP2K uses a hybrid Gaussian and plane wave method

for the electronic representation.[33] In this work, Kohn-Sham valence orbitals have

been expanded using double zeta valence polarized basis sets which are optimized

for the GTH psuedopotentials (DZVP– MOLOPT– SR– GTH). Together with the

NN50 smoothing method, a 320 Ry density cut-off is used for the auxiliary basis set

of plane waves. To avoid any unwanted interaction with the periodic images, we have

considered a 38 × 38 × 38 Å cubic unit cell along with the poisson [34, 35] solver

(to ensure the non existence of wave function after the edges of the simulation box).

Geometry optimizations have been performed using BFGS method and systems are

optimized till the force on each atom is less than 0.0001 Hartree/Bohr. G09 package

[36] has been used to perform all the calculations on isolated gold clusters using

different exchange-correlation functionals, namely, PBE, BLYP, B3LYP and M06-2X

with LANL2DZ basis set and LANL2 pseudopotentials.

5.3 Results and Discussions

As mentioned clearly in all the earlier works, [5, 6, 8–11] the main reason for the

stability of P-Au20 over T-Au20 on a doped metal-oxide substrate is due to the greater

charge transfer from the substrate to P-Au20 than to T-Au20 (and also due to the

greater charge accumulation at the cluster-substrate interface). However, there was

no clear explanation regarding why there is a requirement of an oxide substrate if

charge transfer is the sole reason for the stability of P-Au20. To address this issue,

first we have performed a series of calculations on isolated P and T-Au20 clusters (i.e.

clusters without any substrate) with different charges and we find that the planar

structure can be stabilized over tetrahedral structure when charge on the system is -2

or more. As shown in Figure 5.1, although the amount of charge required varies with

EXC used, it is clear that, above a particular charge dimensionality crossover will
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surely occur. Also, in a previous work, [10] it has been shown that P-Au20 can be

stabilized over T-Au20 on an Al-doped MgO substrate when substrate transfers ∼ 0.9

e or more to the clusters. Thus, these results suggest that, even though a substrate

is not necessary to stabilize P-Au20 over T-Au20, it will help to reduce the required

amount of charge transfer in stabilizing P-Au20. To further prove the non-necessity

of an oxide-substrate to stabilize the planar conformer, we have considered a single

layer graphene quantum dot (GQD) as our substrate and performed the calculations.

Figure 5.1: Energy of isolated Au20 clusters as a function of charge and exchange-correlation
functionals. (a) BLYP (b) B3LYP (c) PBE and (d) M06-2X functionals. P and T in the legends
after the functional name denotes planar and tetra conformers, respectively, of Au20.

In Table 5.1, we have given the energy difference (Ediff = ET - EP ) between the

T-Au20 and P-Au20 clusters when they are isolated and when they are on different

substrates. Firstly, in accordance with several previous studies, we find that the

tetra conformer is more stable (negative value of ET - EP ) than the planar conformer
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Table 5.1: Energy difference between P-Au20 and T-Au20 when they are isolated and when they
are on different substrates along with the energy of substrate cluster interaction (ESCI) is given for
all the systems.

Systems Energy (eV) ET - EP (eV) ESCI (eV)
P-Au20 -17992.686
T-Au20 -17996.651 -3.965
GQD -35840.945

P-Au20@GQD -53840.212 -6.582
T-Au20@GQD -53841.025 -0.813 -3.429

N-GQD -35955.676
P-Au20@N-GQD -53955.573 -7.211
T-Au20@N-GQD -53955.853 -0.280 -3.526

2N-GQD -36070.362
P-Au20@2N-GQD -54070.726 -7.679
T-Au20@2N-GQD -54070.701 0.025 -3.688

3N-GQD -36185.150
P-Au20@3N-GQD -54185.571 -7.736
T-Au20@3N-GQD -54185.454 0.117 -3.653

4N-GQD -36299.796
P-Au20@4N-GQD -54300.703 -8.222
T-Au20@4N-GQD -54300.194 0.509 -3.747

5N-GQD -36414.411
P-Au20@5N-GQD -54415.489 -8.392
T-Au20@5N-GQD -54414.844 0.645 -3.782

6N-GQD -36529.330
P-Au20@6N-GQD -54530.402 -8.386
T-Au20@6N-GQD -54529.753 0.649 -3.773

B-GQD -35762.547
P-Au20@B-GQD -53761.879 -6.646
T-Au20@B-GQD -53762.818 -0.939 -3.620

pyN-GQD -36030.984
P-Au20@pyN-GQD -54030.291 -6.621
T-Au20@pyN-GQD -54031.167 -0.876 -3.532

when the clusters are isolated. We find the same trend even when the clusters are

on a GQD substrate, although the energy difference (Ediff ) has reduced drastically

(by ∼ 3 eV). In fact, the larger substrate-cluster interaction (SCI) for the case of

P-Au20 than for T-Au20 is the reason for this reduced Ediff and larger SCI in P-Au20

is due to the shape of the P-Au20 which allows all of its atoms to interact with

the substrate. We have quantified the energy of SCI (ESCI)as below: ESCI = Etot
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- Esub - EAu, where, Etot is the total energy of the cluster on a substrate; Esub and

EAu are the energies of the isolated substrate and the Au cluster, respectively, and

the values are given in Table 5.1. Clearly, ESCI for P-Au20 is ∼ 3 eV greater than

the T-Au20, when these clusters are on a GQD substrate. Also, we find that (see

Table 5.2) there is ∼ 1 e charge transfer (CT) to P-Au20 from GQD, where as, it

is only ∼ 0.2 e for T-Au20. Thus, we find that, though T-Au20 has acquired lesser

amount of charge from GQD substrate and has lesser ESCI compared with P-Au20,

its stability is still greater than that of P-Au20. This higher stability of T-Au20 on a

GQD substrate is similar to what previously has been observed for the cases of MgO

and CaO substrates [5, 6, 8–11] suggesting that our choice of substrate is correct and

further necessary steps have to be taken in order to acquire the required stability of

P-Au20. Among the several previously implemented techniques, we find that one of

the simple and successful technique for stabilizing P-Au20 over T-Au20 is doping the

substrate with electron rich species [10–12]. Following these studies, we have doped

our GQD substrates with nitrogen (N) atoms.

Doping GQDs with N atoms can be of several ways, for example, pyridinic,

pyrrolic, substitutional [replacing C with N] etc. Experimental studies on gold

clusters stabilized on N-doped graphene have shown that [24] (i) substitutional

and pyrrolic (pyridinic) doping leads to n-type (p-type) graphene and (ii) dopant

nitrogen sites in an n-type graphene serves as electron donors and gold clusters acts

as electron acceptors. To verify these results, we have optimized the gold clusters on

both substitutionally doped N-GQD and pyridinic N-GQD (pyN-GQD). In agreement

with these results, we find a decrease (increase) in the negative “ET - EP” value (i.e.,

greater stabilization of planar clusters), compared to that of pristine GQD, when

doping is substitutional (pyridinic). As our main aim is to stabilize P-Au20, i.e. to

attain a positive “ET - EP” value, we have performed all our further calculations

only with substitutional doping. We have varied the doping concentration from
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Table 5.2: Charges on the individual atoms (Mülliken charges) in the respective systems. Amount
of the charge transferred to the gold clusters from the substrates can be directly identified by seeing
column 3 (GOLD). Gain/loss of electron charge can be seen by comparing the respective systems
with the isolated systems. For example, by comparing P-Au20@GQD with GQD and P-Au20, we
can notice that, carbon has lost ∼ 0.95 e charge and the same has been gained by gold.

Systems CARBON GOLD NITROGEN BORON HYDROGEN
P-Au20 0.00 0.00 0.00 0.00 0.00
T-Au20 0.00 0.00 0.00 0.00 0.00
GQD -1.75 0.00 0.00 0.00 1.75

P-Au20@GQD -0.83 -0.95 0.00 0.00 1.79
T-Au20@GQD -1.58 -0.18 0.00 0.00 1.76

N-GQD -1.71 0.00 -0.03 0.00 1.74
P-Au20@N-GQD -0.75 -1.07 0.04 0.00 1.78
T-Au20@N-GQD -1.59 -0.20 0.04 0.00 1.75

2N-GQD -1.69 0.00 -0.05 0.00 1.73
P-Au20@2N-GQD -0.42 -1.43 0.07 0.00 1.79
T-Au20@2N-GQD -1.45 -0.34 0.04 0.00 1.75

3N-GQD -1.65 0.00 -0.08 0.00 1.73
P-Au20@3N-GQD -0.27 -1.62 0.10 0.00 1.79
T-Au20@3N-GQD -1.01 -0.79 0.05 0.00 1.76

4N-GQD -1.62 0.00 -0.11 0.00 1.72
P-Au20@4N-GQD -0.29 -1.63 0.15 0.00 1.78
T-Au20@4N-GQD -0.99 -0.83 0.07 0.00 1.75

5N-GQD -1.58 0.00 -0.13 0.00 1.71
P-Au20@5N-GQD -0.25 -1.66 0.15 0.00 1.77
T-Au20@5N-GQD -0.93 -0.87 0.05 0.00 1.75

6N-GQD -1.53 0.00 -0.18 0.00 1.71
P-Au20@6N-GQD -0.20 -1.71 0.15 0.00 1.76
T-Au20@6N-GQD -0.90 -0.86 0.02 0.00 1.74

B-GQD -1.63 0.00 0.00 -0.14 1.76
P-Au20@B-GQD -0.77 -0.98 0.00 -0.05 1.80
T-Au20@B-GQD -1.41 -0.35 0.00 -0.02 1.78

pyN-GQD -1.27 0.00 -0.49 0.00 1.76
P-Au20@pyN-GQD -0.50 -1.02 -0.29 0.00 1.80
T-Au20@pyN-GQD -1.07 -0.42 -0.28 0.00 1.77

0.44 % (i. e. one N atom in 228 C atoms) to 2.63 % (6 N atoms in 228 C atoms)

and while doping more than one nitrogen, we have considered the experimental

results of N-doped graphene [37] and doped only the carbon atoms belonging to

same sub-lattice.

In Table 5.1, we have given “ET - EP” values for all the different concentrations
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considered. Clearly, the most stable conformer of Au20 on a GQD substrate has

changed from tetra to planar for all the nitrogen dopant concentrations greater than

∼ 0.88 % (for the present level of theory). Also, we find an increase in the stability of

P-Au20 with the increase in the dopant concentrations. This is an interesting result,

because it proves the non-necessity of an oxide substrate for stabilizing catalytically

active P-Au20 conformer. Many N-doped GQDs and graphene sheets have been

synthesized. [22–24, 37] So, we checked the robustness of our result against (i) the

dopant atoms position (ii) number of GQD layers and (iii) exchange-correlation

functional. Firstly, for 2.63 % concentration, we find that P-Au20 is, at least, ∼

0.26 eV more stable than T-Au20, even when all the dopant atoms are in a single

zigzag line of a GQD (which is not a favorable way of doping [37]). Next, as the

experimentally synthesized GQDs generally contain more than one layer, we have also

considered bi-layered GQDs. With an increase in the number of layers, we find that

the stability of P-Au20 has further increased for the same number of dopant N-atoms.

For example, when substituting with two nitrogen atoms stability of P-Au20 has

increased from ∼ 0.026 eV to ∼ 0.1 eV when moved from monolayer GQD to bi-layer

GQD. Similarly, when substituted with six nitrogen atoms, the stability has raised

by ∼ 0.3 eV for bi-layer GQD. Finally, we have changed the exchange correlation

functional and found that the trend is still maintained, although the amount of

gain in the stability is different. Thus, based on our results and on the available

experimental methods for growing N-GQDs as well as gold clusters on N-doped

graphene, we conjecture that experimentalists would find a dimensionality cross-over

from T-Au20 to P-Au20 on N-GQDs.

Finally, to know the possible catalytically active sites of Au20 clusters, when

supported on a N-GQD, we have plotted the iso-surfaces of charge transfer between

N-GQD and Au20 clusters as shown in Figure 5.2. To plot the iso-surfaces of charge

transfer, total electron density of the composite system (i.e. N-GQD + Au20) has
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been subtracted from the total electron density of the substrate and the cluster with

the same geometry (i.e. without any further optimization). From these plots, it

is clear that, major changes in the charge of the substrate occurred only for the

atoms which are below the Au20 clusters. In the case of clusters, major changes have

occurred for the corner atoms than for the atoms which are in the middle. Among

T-Au20 and P-Au20 clusters, P-Au20 has large number of corner atoms and more

number of atoms directly interacting with the substrate. Also, we notice that the

amount of charge accumulated at the substrate cluster interface is more for P-Au20

than for T-Au20. Finally, for T-Au20, only those atoms which are directly above

the N-GQD substrate have acquired more negative charge compared to the ones in

the upper layers. Thus, based on all these results and earlier reports [5, 8, 10] we

expect that corner atoms of both the clusters will act as active sites for catalytic

applications and between P-Au20 and T-Au20, the former with more active sites

should be catalytically more active than T-Au20.

5.4 Conclusions

In conclusion, motivated by the recent successful synthesis of colloidal GQDs and

N-GQDs with precise control over the number of atoms, position of the dopants

and their application in stabilizing Pd nanoparticles, we have investigated several

possibilities of utilizing these doped/un-doped GQDs to stabilize the catalytically

more useful P-Au20 compared to the thermodynamically more stable T-Au20. Both

single-layer and bi-layer GQDs, with and without nitrogen dopants, have been

considered and we find that binding energy of P-Au20 towards GQD is more (∼ 3 eV)

compared to T-Au20 and it is much more when the GQDs are doped with nitrogen

and is even more when the GQDs are bi-layered. Different concentrations of nitrogen

doping have been considered and according to our findings, P-Au20 can be stabilized

over T-Au20, thermodynamically, by ∼ 1 eV when the N-dopant concentration is
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Figure 5.2: Isosurface contours depecting the charge transfer process from substrate to Au20

clusters. Top, bottom views of P-Au20 are shown in (a), (c) and of T-Au20 in (b), (d). Iso-value of
0.001 e/Å3 is used for all the plots. Cyan color depicts loss in electron density.
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∼ 1.3 % (i.e. 1N-atom for every 76-C atoms) in bi-layer GQDs. Also, from charge

transfer plots, we see that P-Au20 has more active sites for catalysis. Thus, mainly the

stronger interaction of P-Au20 with N-GQD compared to T-Au20 is due to its larger

contact area with N-GQD substrate and also its ability to accept more electrons.
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Chapter 6

Electronic and Magnetic

Properties of Zigzag

Boron–Nitride Nanoribbons with

Even and Odd–Line Stone–Wales

(5–7 Pair) Defects ?

6.1 Introduction

Nanoribbons, in particular graphene nanoribbons (GNRs), boron-nitride nanoribbons

(BNNRs) and their hybrids, have attracted huge attention in recent years, because

of their exciting applications in several fields like optics, electronics, opto-electronics,

spintronics etc. [1–8] Applications of these nanoribbons (NRs) are dictated by their

edges and depending on their edge nature, they are mainly divided into two types,

namely, armchair and zigzag. [5]

?Work reported in this chapter is published in: Sharma S. R. K. C. Yamijala and Swapan K
Pati, J. Phys. Chem. C, 117, 3580–3594 (2013); Indian. J. Phys. 88, 1-8, 2014.
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Between the zigzag (z) and armchair edged NRs, zigzag edged NRs got enormous

interest due to the presence of localized electronic states at their edges. These edge

states enhance local-density of states near the Fermi-level. [1] Also, as proved by the

previous studies on zGNRs [5, 6, 9] and zBNNRs, [2, 10, 11] these edge-states can be

tuned, using different methods like passivation, doping, substitution, and application

of external electric-fields etc., to attain tunable electronic and magnetic properties

in these ribbons. Even, half-metallicity has been predicted in both zGNRs [4, 6, 12]

and zBNNRs [2, 7, 8, 13] under different conditions.

In fact, both GNRs and BNNRs have been successfully synthesized experimentally

either by cutting the corresponding 2D structures viz., graphene [14] and BN sheets

or by unzipping the corresponding nanotubes (NTs) viz., Carbon-NTs [15] and BN-

NTs, [16] respectively. But getting perfect edges through experiments is a difficult

task and researchers often observed the presence of 5–7 reconstructions at the edges.

[17] Huang et al. [18] have shown the presence of 5–7-defect lines across the grain

boundary in graphene. Recently, Pan et al. [19] have also proved the presence of

reconstructed 5–7 edges based on both the theory and experiment, in chiral GNRs.

Apart from the 5–7 edge reconstructions, researchers have also observed the dynamics

of the 5–7 defects inside the graphene. [20, 21] Also, Auwärter et al. have shown the

two h-BN domains can co-exist on Ni (111) surface and they have demonstrated that

linear defects define the boundary between these two domains, which also suggests

the possibility of the presence of the 5–7 defects at these grain boundaries.

All the above experiments suggest that 5–7 (pentagon-heptagon, PH) defects are

ubiquitous in graphene and its BN-analogues, and that the edges are more prone to

these defects. So, it is required to know how the properties of the graphene or GNRs

or BNNRs will change in the presence of these edge reconstructions. Theoretical

studies have been performed on graphene, [22, 23] GNRs [9] and also on BNNRs

[11] to answer this question. The main result of all these studies states “A 5–7 edge
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reconstruction on a nanoribbon with a zigzag-edge will bring stability to the system

and it will destroy the magnetic property of the edge where the reconstruction has

occurred”. On the other hand, most of these studies have considered only one-line-

PH-defect at one of the edges of a nanoribbon. Notable exceptions works exist by Jia

et al., [24] who proposed the possibility of two-line-PH-defect, and a theoretical study

by Sudipta et al., [9] who have considered both one-line and two-line-PH-defects at

the edges of a GNR. In fact, to the best of our knowledge, there is no other study,

in both GNRs and BNNRs, where the effect of the number of PH-line-defects in

nanoribbons has been considered.

In this chapter, we have mainly investigated the structural, electronic and mag-

netic properties of zigzag boron-nitride nanoribbons (zBNNRs) with and without

pentagon-heptagon (PH) line-defects. We have varied the PH-line-defect number

from one to eight and we have shown that, it is possible to tune the properties

of zBNNRs, from insulating to semiconducting to half-metallic, depending on the

PH-line-defect number. We thus find that the behavior of the system is completely

dependent on the nature of the line-defect (i.e. even or odd). Robustness of the

observed properties has been verified by varying the width of the zBNNRs and also

by varying the position of a PH-line-defect from one-edge to the other. The rest of

this chapter is arranged as follows: In section 6.2, we have presented the computa-

tional details. In section 6.3, we describe the different kinds of systems considered

in this study. Section 6.4 is devoted to the discussion of stability, electronic and

magnetic properties of all the considered systems. Finally, in conclusions section ,

we summarize the main findings.

6.2 Computational details

Spin-polarized density functional theory (DFT) calculations have been performed,

for all the considered systems, using the ab initio software package SIESTA. [25, 26]
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Generalized-gradient-approximation (GGA) within the Perdew-Burke-Ernzerhof

(PBE) [27, 28] form is chosen for the exchange-correlation functional. Interaction

between the ionic cores and the valence electrons is accounted by the norm conserving

pseudo-potentials [29] in the fully non-local Kleinman-Bylander form. [30] The

pseudo-potentials are constructed from 1, 3 and 5 valence electrons for the H, B

and N atoms, respectively. To expand the wave-functions, numerical combination

of localized atomic orbitals with double-ζ basis sets are used. To represent the

charge density, a reasonable mesh-cut-off of 300 Ry is used for the grid integration.

Conjugate-gradient (CG) method has been used to optimize the structures. We have

also optimized the lattice parameters by allowing them to change.

As the systems under consideration are quasi-one-dimensional nanoribbons, we

have sampled the Brillouin-zone by 36 × 1 × 1 k-points using the Monkhorst-Pack

scheme, [31] for the full-relaxation of the geometry, and 96 × 1 × 1 k-points, for

all the electronic and magnetic properties calculations. Systems are considered

to be optimized only when the forces acting on all the atoms are less than 0.04

eV/Å. Cubic unit-cells with the initial lattice vectors (4.932, 0, 0); (0, 35, 0) and

(0, 0, 15) Å have been considered for all the systems with ∼ 2 nm width (here,

X-direction is considered as periodic and the width of the ribbon is considered along

the Y-direction). After optimization, all the systems remained flat and a change in

the lattice-vectors along the X-direction from 4.932 to ∼ 5.01 Å has been found. For

the width dependent studies, similar amount of vacuum (15 Å) has been considered

in the non-periodic directions, as in the case of 2 nm ribbons, to avoid any spurious

interactions between the nanoribbons and their periodic images. For all the Density

of States (DOS) and projected-DOS (pDOS) plots, a broadening parameter of 0.05

eV has been used while plotting the energy levels.
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6.3 Systems under consideration

Figure 6.1: Structures of (a) perfect 10-zBNNR (b) De-ed-si-1 N (c) De-ed-bo-1 (d) De-ed-si-2 N
(e) De-ed-bo-2 and (f) 4-D-3 De-mid-2. Shaded area represents the line-defect and the unit cell of a
system is the area inside the two staright lines (green color).

Fig. 6.1 represents a few of various types of systems that we have considered in this

study, where, we have named the systems with 5 indices. First index shows whether

the ribbon is perfect (per) or it contains a defect (De). Second index dictates whether

the defect is at the edge (ed) or at the middle (mid) of the ribbon. Third index tells

whether the defect is at single-edge (si) or at both the edges (bo). Fourth index

informs the number of the PH-line-defect introduced. Fifth index specially represents

those systems which have defect at one edge and are perfect at the other edge (see,

for example, Figs. 6.1(b) and 6.1(d)) and this index distinguishes boron (B) and
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nitrogen (N) atoms at the perfect edge. The other two important types of systems

(not shown in Fig. 6.1) are De-ed-si-1 B and De-ed-si-2 B, and they can be visualized

by swapping the boron and nitrogen atoms of the systems in Figs. 6.1(b) and 6.1(d),

respectively. It is required to mention, here, some important and non-obvious points

regarding the PH-line-defects, which will be very much helpful to understand the

results of the present work.

To generate an n-line-PH-defect, ‘n’ being an odd integer, we need ‘n’ number

of zigzag and ‘n’ number of armchair chains (for example, 1-line-PH-defect can be

visualized as a combination of 1-zigazag and 1-armchair chain. See shaded area in

Fig. 6.1(b)). Importantly, any odd-line-PH-defect will have one edge as armchair-edge

and the other edge will be zigzag (see the shaded area of Fig. 6.1(b)). On the other

hand, an even-line-defect always possesses the same type of edges (either armchair or

zigzag) and generating an n-line-PH-defect, ‘n’ being an even integer, is divided into

two cases: (i) If both-edges of the defect have to be armchair, then, we have to take

(n-1)-zigzag and n-armchair chains and (ii) if both-edges of the defect have to be

zigzag, then, we have to take n-zigzag and (n-1)-armchair chains (see the shaded area

of Fig. 6.1(d) for an example of 2-line-PH-defect with both the edges being zigzag).

Notably, adding a single odd-line-defect at the edge of a nanoribbon will change

the nanoribbon’s edge nature, i.e. the edge will be changed from zigzag to armchair

[compare Figs. 6.1(a) and 6.1(b)] and vice-versa. In contrast, introduction of a

single even-line-PH-defect at the edge will not change the nanoribbon’s edge nature

[compare Figs. 6.1(a) and 6.1(d)]. Hence, we cannot (can) introduce a single odd-

line-PH-defect (even-line-PH-defect) in a ribbon, by keeping both the edges of same

kind. Finally, it should be noted that, any n-line-PH-defect can only be prepared

from a ribbon with (n+1)-chains.

Keeping these facts in mind, we aimed at understanding how even and odd-line-

PH-defects will affect the electronic and magnetic properties of a ribbon. For all
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the width independent studies, we have considered the zigzag-edged Boron-Nitride-

nanoribbons of width ∼ 2 nm, which according to the conventional notation [5] are

equivalent to 10-zBNNRs (see Fig. 6.1(a)). In the 10-zBNNRs, we have varied the

number of the PH-line-defect from one to eight. Also, as the position of a PH-line-

defect can be either at an edge (single-edge or both-edge) or inside the ribbon, we

considered the two-line-PH-defect as a representative system and we have varied its

position in a 10-zBNNR from one edge of the ribbon to the other. Finally, to know

how the width of a nanoribbon will change the defect’s effect on electronic properties,

we have varied the width from ∼ 1.1 nm (6-zBBNR) to ∼ 3.3 nm (16-zBNNR) with a

2-line-PH-defect. Spin-polarized DFT calculations, with different spin-configurations,

have been performed for all these systems. Each spin-configuration is represented

with an ordered pair, in which, the first element represents the spin-configuration at

boron edge and the second element at the nitrogen edge. U and D represents the up

and down-spins, respectively.

It is important to note that, we haven’t considered the systems, where 1-line-PH-

defect is in the middle of the ribbon as similar studies have already been performed

for GNRs [32, 33] and also for BNNRs. [34] Also, systems with different types of

defects at two edges (for example, 3-line at one-edge and 2-line at the other) are not

considered. But, we strongly believe that one can easily expect the corresponding

changes in the properties based on the present work.

6.4 Results and discussions

6.4.1 Perfect, 1-line-PH-defect and 2-line-PH-defect ribbons

Formation-energy (EForm) of all the systems is calculated as:

EForm = Etot − [nB ∗ EB + nN ∗ EN + nH ∗ EH ] (6.1)
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where, Etot is the total energy of the system, EB, EN and EH are the total-energies

per atom of α-boron, N2-molecule and H2-molecule, respectively. nB, nN and nH

are the number of boron, nitrogen and hydrogen atoms in the system, respectively.

EForm value of every system for each spin-configuration is given with respect to (i)

the stable spin-configuration of that particular system and (ii) the perfect 10-zBNNR

[in (UD, UU) spin-configuration], respectively, in columns 3 and 4 of Table 6.1. The

negative formation energy for all the systems found in this work indicates that all

are indeed stable.

Table 6.1: Spin-polarization (Spol) of a system in different spin-configurations is given in column
two. Columns 3 and 4 show the formation-energy of a system with respect to their corresponding
stable spin-configuration and with respect to the perfect 10-zBNNR in (UD, UU) spin-configuration,
respectively. Each spin-configuration is represented with an ordered pair, where, the first element
of the ordered pair represents the spin-configuration at the boron-edge and the second element at
the nitrogen edge. U and D represents up and down-spins, respectively. Energy of the most stable
spin-configuration is scaled to zero.

System name and Spin-configuration Spol

Energy with

respect to the

most stable

conformer

(meV)

Energy of the system

with respect to the

perfect 10-zBNNR in

(UD, UU)

spin-configuration (eV)

Perfect 10-zBNNR, (UD, UU) (see

Fig. 6.1(a))
1.926 0 0.000

Perfect 10-zBNNR, (UU, DD) 0.000 + 16 0.016

Perfect 10-zBNNR, (UU, UU) 3.836 + 16 0.016

De-ed-si-1 B, (UD, UU) 0.000 0 -0.148

De-ed-si-1 B, (UU, DD) 2.000 + 35 -0.113

De-ed-si-1 B, (UU, UU) 2.000 + 36 -0.112

De-ed-si-1 N, (UD, UU) 0.000 0 0.283

De-ed-si-1 N, (UU, DD) 1.982 + 21 -0.262

De-ed-si-1 N, (UU, UU) 1.982 + 21 -0.262

De-ed-bo-1, [(UD, UU), (UU, UU) and (UU,

DD)] (see Fig. 6.1(c))
0.000 0 -0.489

De-ed-si-2 B, (UD, UU) 1.921 0 3.911
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De-ed-si-2 B, (UU, DD) 0.000 + 13 3.924

De-ed-si-2 B, (UU, UU) 3.820 + 13 3.924

De-ed-si-2 N, (DU, UU) (see Fig. 6.1(d)) 2.000 0 4.416

De-ed-si-2 N, (DD, UU) 0.000 + 28 4.444

De-ed-si-2 N, (UU, UU) 3.764 + 28 4.444

De-ed-bo-2, (UD, UU) (see Fig. 6.1(e)) 2.000 0 8.303

De-ed-bo-2, (UU, DD) 0.000 + 39 8.341

De-ed-bo-2, (UU, UU) 3.745 + 42 8.345

4-D-3 De-mid-2, (DU, UU) (see Fig. 6.1(f)) 1.918 0 4.470

4-D-3 De-mid-2, (DD, UU) 0.000 + 22 4.492

4-D-3 De-mid-2, (UU, UU) 3.818 + 17 4.487

From Table 6.1, one can find several interesting things. Firstly, in agreement

with several previous studies on perfect zBNNRs, the spin-configuration with an

anti-ferromagnetic ordering of the spins at the boron-edge and with a ferromagnetic

ordering at the nitrogen edge, (UD, UU), was found to be the most stable spin-

configuration. And, interestingly we find that, the same (UD, UU) spin-configuration

is the most stable one for all the systems which have at least one zigzag edge with

boron-atoms (i.e. irrespective of whether this zigzag edge arises because of a defect

or not). Secondly, we find that the ground-state energy difference between the (UU,

DD) and (UU, UU) spin-configurations, for all the systems, is always less than 5

meV and the energy difference between the (UD, UU) and (UU, DD)/ (UU, UU) is

always large (in the range of 13 – 42 meV). The primary reason for these differences

is the difference in the interaction between the spins of edge atoms. In the former

case, although the edge spin-configuration has been changed from (UU, DD) to

(UU, UU), the interaction between the spins on that edge didn’t change (i.e. in

both the cases the interaction is ferromagnetic), and hence, the change in energy is

negligible. However, in the latter case, the spin-spin interaction at the edge has been
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changed from anti-ferromagnetic to ferromagnetic, and hence, the difference in the

energy between the systems is appreciable. From these results, we can infer that,

change in the system’s energy will be largely dictated by the spin-spin interaction

at the same-edge atoms, (rather than by the spin-spin interaction between different

edge atoms) when the distance between the edges is large (here, ∼ 2 nm), as shown

previously for the case of z-BNNRs. [2, 7]

Thirdly, the stability of the systems decrease in the order of: De-ed-bo-1 >

De-ed-si-1 N > De-ed-si-1 B > perfect-10-zBNNR >> De-ed-si-2 B > De-ed-si-2 N

> 4-D-3 De-mid-2 >> De-ed-bo-2. This order can be explained based on the changes

in the edge nature in these systems. As shown in Fig. 6.1, system’s edge nature

changes from zigzag to armchair when we introduce a 1-line-PH-defect and it turns

back to zigzag when we introduce a 2-line-PH-defect. Also, from the previous studies,

it is known that the bare armchair edges are more stable than the bare zigzag edges,

in both zGNRs,[35] and zBNNRs. [36] Combining these facts, we can see that, the

higher stability of ribbons with 1-line-PH-defect is due to change in edge nature from

zigzag to armchair. This is in agreement with the recent study by Bhowmick et al.,

where they have shown that edge formation energy of the 5–7-edge-reconstructed

z-BNNRs is 0.08 eV/Å less than the perfect z-BNNRs. [11] On the other hand, as

2-line-PH-defect can not bring any change to the edge nature, and as some energy

has to be spent to reconstruct an edge, 2-line-PH-defect ribbons are less stable

than perfect ribbons. The same reason holds for the stability order: De-ed-bo-1 >

De-ed-si-1, and De-ed-si-2 > De-ed-bo-2. In the former case, there are two armchair

edges and hence, defect at both edges is more stable than the defect at a single edge.

In the latter case, opposite is true because two reconstructed zigzag edges further

decrease the stability of the system compared to one reconstructed zigzag edge and

one pure zigzag edge. Also, the reason for 4-D-3 De-mid-2 to have similar energy

as De-ed-si-2 is because both of them have a single-2-line-PH-defect. Next, we will
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consider the spin-polarization of these systems.

Spin-polarization of a system is calculated as: Spol = Qup – Qdown, where, Qup

(Qdown) is the spin-up (spin-down) charge density. If Spol is non-zero (zero), then

the system is spin-polarized (spin-unpolarized) [with a spin magnetic moment, m

= (Spol) * µβ, where µβ is the Bohr-magneton [37]]. Values of the Spol have been

given in the Table 6.1. Based on these results, we propose that, the spin-polarization

value of a BNNR for a particular spin-configuration can easily be estimated, if we

know the edge nature (i.e. zigzag or armchair) of the BNNR. In general, (1) if

both the edges are zigzag, then it will have a finite spin-polarization, only (a) when

both the edges have ferromagnetic spin ordering and both the edges are coupled

ferromagnetically or (b) when one edge have a ferromagnetic spin ordering and the

other has anti-ferromagnetic spin-ordering. In the latter case, both the ferromagnetic

and anti-ferromagnetic coupling across the edges will lead to a finite spin-polarization.

(2) If one edge is armchair and the other edge is zigzag, then the system will have

finite spin-polariztion when the spins are ordered ferromagnetically at the zigzag

edge, irrespective of the spin-ordering at the armchair edge. Finally, (3) if both the

edges are armchair, then the system will have zero-spin polarization, irrespective of

the spin-ordering at the edges. For all the other cases, the systems will not be spin-

polarized. All the above statements will be strictly valid for the bare BNNRs. Also,

when the interaction between the two edges is negligible, the net spin-polarization of

a system will be equivalent to the sum of the total amount of spin present at each

edge. A similar type of conclusion has been drawn by Barone et al. regarding the

formation energy, where they have shown that when the edges are less interacting,

then the formation energy of a particular configuration can be approximated as the

summation of the formation-energies of the other individual spin-configurations. [2]

Finally, it is important to mention that, the above statements are highly dependent

on the passivation, and we found that, the magnetic-moment which would arise from
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a bare zigzag edge gets destroyed when the edge is passivated with hydrogen. Based

on the above points, the calculated Spol value for any system in Table 6.1 can be

easily understood.

Next, we concentrate on the electronic and magnetic properties of these systems.

Although the (UD, UU) is the most stable configuration for the bare z-BNNRs, a

richer spectrum of electronic and magnetic behavior has been proved to be shown by

the spin-configurations (UU, UU) and (UU, DD), both in the presence and absence

of an external electric-field. [1, 2, 8] Following these studies, we have also plotted

the projected-density-of-states (pDOS) for all the three different spin-configurations,

as shown in Figs. 6.2 and 6.3. From both the Figs. 6.2 and 6.3, we find that, either

a change in the spin-configuration or a change in the system leads to a change in the

pDOS plots, primarily near the Fermi-level and these states near the Fermi-level have

a major contribution from the edge-atoms of the nanoribbon. In the following, first

we will describe the changes in the pDOS plots with a change in the spin-configuration

for each system and then we will compare and contrast the pDOS plots of different

systems.

Perfect ribbons

Fig. 6.2(a) shows the pDOS plots of the pristine 10-zBNNR in all the three different

spin-configurations, which compares fairly well with the previous studies, [1, 2] where

the minor changes are mainly due to the difference in the widths of the z-BNNRs

considered. From Fig. 6.2(a), we can notice that, a change in the spin-configuration

of a nanoribbon is clearly reflected in the pDOS plot. We find that, when the

spin-configuration on the nitrogen edge (N-ed) of the ribbon is changed from UU

to DD (i.e. from (UU, UU) to (UU, DD)) the pDOS of the N-ed atoms changes

drastically. Moreover, if we take a mirror image of the N-ed pDOS of the (UU,

UU) configuration across the zero of the Y-axis, the result is the N-ed pDOS of
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the (UU, DD) configuration. This is because, the interaction between the spins at

different edges is negligible, and hence, a change in the spin-configuration from UU

to DD, at the N-ed, could only bring a change in the sign of the pDOS but not

its magnitude. In contrast to the above, if we change the spin-configuration on a

particular edge, we can expect a change also in the magnitude of the pDOS (this is

because the distance between the spins on a single edge (∼ 0.25 nm) is much less

than the distance between the spins on two different edges (∼ 2 nm)), and, this is

what we have observed for the (UD, UU) spin-configuration of the perfect 10-zBNNR,

as shown in the Fig. 6.2(a).

The major difference between the pDOS plots of (UU, UU) and (UD, UU)

spin-configurations is the following (see Fig. 6.2(a)): B-ed pDOS which was spin-

polarized and was broad near the Fermi-level in (UU, UU) configuration changes

to non-spin-polarized and narrowed in (UD, UU) configuration. The change in the

spin-polarization is because of the change in the spin-spin interaction between the

edge-boron atoms [ferromagnetic (anti-ferromagnetic) in the former (latter) case].

The change in the width of the peaks of pDOS can be explained as follows: First, we

should remember that the area under the B-ed pDOS for a particular energy range

will give the number of B edge-states in that range and the number of edge-states

of a system will be constant under any spin-configuration. Now, as we change the

spin-configuration from (UU, DD) to (UD, UU) we bring in spin-symmetry at the

B-edge, and this spin-symmetry urges equal contribution of the pDOS for both up and

down spins. But, as the number of edge-states can’t change with spin-configuration

and as both-spins should have equal contribution, the broad peak has to narrow

down without changing the area under the curve and this is what we have observed.

Finally, it is important to notice that, all the three magnetic-configurations

are spin-polarized near the Fermi-level, and more importantly, among them the

(UU, DD) shows half-metallic behavior, although its total spin-polarization is zero
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Figure 6.2: pDOS plots of each system in three different spin-configurations. (a) Perfect 10-
zBNNR (b) De-ed-si-1 B (c) De-ed-si-1 N (d) De-ed-bo-1. Spin-configuration of a system has been
labeled inside the pDOS plots. Majority and minority spins have been labeled whenever it is
applicable. Solid lines with dark-gray (green) and light-gray (orange) colors show the complete DOS
and the pDOS of all the atoms except the edge atoms, respectively. Dotted light-gray (magenta) and
dark-gray (blue) color lines represent the pDOS of the edge boron and nitrogen atoms, respectively.

(see Table 6.1 and Fig. 6.2(a)). Thus, 10-zBNNR in (UU, DD) spin-configuration

behaves as an anti-ferromagnetic half-metal (AFHMs). Previously, in 1995, Groot et

al. have introduced this concept of AFHM [38] and later several compounds have

been shown to possess this AF-half-metallicity as described by Wang et al. [39]

Among the several applications of an AFHM, its usage as a tip in the spin-polarized

scanning-tunneling-microscope is very interesting. [39, 40] So, AFHM materials are

surely useful in the future spintronics devices and to attain this AFHM property in
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a system without containing any element with d-orbitals, i.e. in 10-zBNNR, is very

much interesting.

One-line-PH-defect ribbons

In the previous sub-section, we have shown the effect of spin-configuration on

electronic and magnetic properties of a system. In this sub-section, we will show how

the introduction of a line-defect can bring in changes to these properties. Figs. 6.2(b)

and 6.2(c) show the pDOS plots of the systems De-ed-si-1 B and De-ed-si-1 N,

respectively. From the pDOS plots, it is clear that systems have transformed from

spin-polarized metals/half-metals to spin-polarized semi-conductors (for (UU, UU)

and (UU, DD) configurations) after the introduction of a one-line-PH-defect at

one-edge of a perfect ribbon. The spin-polarization in these systems is solely due

to the spin alignment at the perfect edge. The zero-contribution of the defect-edge

towards the spin-polarization of the system can be clearly understood by noticing the

pDOS of the edge-atoms. For example, from Fig. 6.2(b), one can notice that, both

the valence band maximum (VBM) and the conduction band minima (CBM) have

a major contribution from the edge boron states which are present at the perfect

edge. The fact that the spin-polarization is only due to the perfect-edge can be

proved by comparing the pDOS plots of (UU, UU) and (UU, DD) configurations,

where, we have changed the spin-configuration on a defect-edge from UU to DD and

we couldn’t find any change in the pDOS plots. Whereas, when we changed the

spin-configuration on the perfect-edge from UU to UD, we can see that the system

has lost its spin-polarization (which is because of the anti-ferromagnetic coupling

between the spins at the perfect (boron)-edge). Finally, when one-line-PH-defect is

introduced at the remaining perfect-edge (i.e. De-ed-bo-1), the system transforms

from a spin-polarized semi-conductor to non-magnetic insulator. This result compares

quite well with the results of Bhowmick et al., [11] where they have shown that 5–7
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reconstruction at both the edges of a zBNNR is detrimental to the magnetic moment

of the ribbon. From the above discussion, we can notice that, one can tune the

system properties from metallic to semiconducting to insulating, by introducing a

1-line-PH-defect at the edge of a zBNNR.

Two-line-PH-defect ribbons

Although, we have proved, in the previous sub-section, that the introduction of a

1-line-PH-defect at a zigzag-edge destroys the magnetic moment, we didn’t show

whether this behavior is universal for any PH-line-defect or not. Indeed, in this

sub-section we will prove that, a z-BNNR will lose (hold) its magnetic moment

if the line-defect which is introduced has both armchair and zigzag-edges (only

zigzag-edges), like 1-line-PH-defect (2-line-PH-defect). Figs. 6.1(d)– 6.1(e) show

some example systems whose edge nature retains even after the introduction of a

PH-line-defect.

Fig. 6.3 shows the pDOS plots of De-ed-si-2 B, De-ed-si-2 N, De-ed-bo-2 and

4-D-3-De-mid-2 systems. All these systems have finite spin-polarization near the

Fermi-level and all of them are metallic at least for one spin, the other spin is

varied depending on the system and spin-configuration. So, unlike 1-line-PH-defects,

2-line-PH-defects will preserve the magnetic nature of the systems. Similar to the

perfect ribbons (see Fig. 6.2(a)), these systems also change their edge-pDOS near

the Fermi-level depending on their spin configuration and the changes are quite

similar to the perfect ribbons. For example, in Fig. 6.3a we find a mirror image

behavior of the N-ed pDOS between the spin-configurations, (UU, UU) and (UU,

DD), which is exactly what we have seen in Fig. 6.2(a). Similarly, if we compare

the (UU, UU) and (UD, UU) configurations of Fig. 6.3(a), we can find the loss

in spin-polarization for the B-ed pDOS in (UD, UU) spin-configuration because of

the expected anti-ferromagnetic coupling between the boron-edge atoms. A similar
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Figure 6.3: pDOS plots of each system in three different spin-configurations. (a) De-ed-si-2 B (b)
De-ed-si-2 N (c) De-ed-bo-2 (d) 4-D-3-De-mid-2. Spin-configuration of a system has been labeled
inside the pDOS plots. Majority and minority spins have been labeled whenever it is applicable.

behavior in the pDOS plots has been found for the other systems (see Fig. 6.3).

An important finding which might not be very much obvious on the first look

at Fig. 6.3 is: “Although the B-ed pDOS is non-spin-polarized in the (UD, UU) [or

(DU, UU)] configuration for the systems, De-ed-si-2 B and 4-D-3-De-mid-2 [here

after we call set-A], it remain spin-polarized for the De-ed-si-2 N and De-ed-bo-2

systems [here after we call set-B]”. The main reason for the above finding is that

boron atoms in the zigzag-edges of the systems in set-A and set-B are different from

each other. Systems in set-A have a zigzag-edge which is made up of only hexagons
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Figure 6.4: pDOS plots of each boron edge atom for the systems (a) De-ed-si-2 N and (b) De-ed-
si-2 B in (UU, DD) spin-configuration. Pentagon [heptagon] B-pDOS means, pDOS of the edge
boron atom which belong to the pentagon [heptagon] ring. B1, B2-pDOS indicates the pDOS from
two different hexagon edge-boron atoms, which we numbered as 1 and 2.

i.e. a perfect-edge (see Fig. 6.1(f)), whereas, systems in set-B have a zigzag edge

which is formed by alternating fused heptagons and pentagons i.e. a defect-edge

(see Figs. 6.1(d) and 6.1(e)). So, in the former case, both edge-boron atoms belong

to hexagon rings of the zigzag-edge, whereas in the latter case, one edge-boron

atom belongs to a pentagon-ring and the other belongs to a heptagon-ring. This

structural difference in the edge-boron atoms between the two sets is the reason for

the difference in the spin-polarization found in the two cases. To prove this further,

we have plotted the pDOS for each boron edge-atom for the systems De-ed-si-2 N

and De-ed-si-2 B in (DD, UU)/ (UU, DD) configuration, as representative candidates

for the defect and perfect edge systems, in Figs. 6.4(a) and 6.4(b), respectively.

Fig. 6.4(b) shows the individual pDOS contributions of each edge-boron atom to

the total B-ed pDOS for De-ed-si-2 B system (a system which has boron atoms at

the perfect-edge) and from the figure, we can notice that all the B-ed pDOS peaks

have equal contribution from both the edge atoms. Firstly, as all the peaks have

a contribution from each edge atom, a change in the spin on any edge-atom will

have an effect on all the peaks. This is the reason to get a change in the peak width

when we change the spin on the boron-edge atoms from UU to UD. Next, as the
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contribution to each peak from each edge atom is same, peaks will have a zero-spin-

polarization (finite spin-polarization) if spin on one edge atom is different (same)

from the spin on the other atom. This is the reason to find a zero-spin-polarization

(finite spin-polarization) for B-ed pDOS in the UD (UU) configuration. Contrary to

the perfect edge systems, each peak in the B-ed pDOS (see Fig. 6.4(a)) of the defect

edge-systems (here, De-ed-si-2 N) has a major contribution either from a pentagon

or from a heptagon edge-boron atom. Now, as all the peaks have contributions

from both the edge atoms (although differ in magnitude), here also, all peaks will

change with a change in spin on an edge atom. This explains the reason for the

changes in the peak widths for a change in spin-configuration from UU to UD. Next,

as the contribution from both the edge-atoms is not same for any peak, each peak

will have a finite spin-polarization, irrespective of the spin on the each edge-boron

atom. This is the reason for the spin-polarization found even after a change in the

spin-configuration on the B-ed atoms from UU to UD in the defect edge system.

This is also the reason for the non-equivalent changes in the peak widths for the up

and down spins of B-ed pDOS.

From all the above discussions, we can conclude that (i) System’s spin-configuration

can change its electronic and magnetic properties (ii) Among the several possible

spin-configurations, perfect zBNNRs in (UU, DD) spin-configuration can act as

potential candidates for anti-ferromagnetic half-metals, and hence, might be useful

in the preparation of spin-polarized STM tips. Also, after comparing Figs. 6.2 and

6.3 we find that, whenever a system’s edges are zigzag (both edges) then the system

shows half-metallicity, only in the (UU, DD) spin-configuration. (iii) Introduction of

a 1-line-PH-defect at an edge would destroy that edge’s magnetic moment, and it is

due to the armchair-edge generated by the 1-line-PH-defect, (iv) Unlike the 1-line-

PH-defect, a 2-line-PH-defect would retain the edge magnetism and spin-polarization

of a zBNNR due to its zigzag edge nature and changes in the electronic and magnetic
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properties of a defective zigzag-edge system. And, (v) By knowing the pDOS of one

spin-configuration, we can easily guess the pDOS of any other spin-configuration,

provided (a) the spin-spin coupling between the atoms at two different edges of the

ribbon is negligible and (b) we know the edge nature of the system (i. e. perfect

edge or defect edge).

To find whether the above conclusions regarding the 1-line and 2-line-PH-defects

are true for all cases, we have varied the number of line-defect from 3 to 8 in a

10-zBNNR. Here after, we will present the results only for the (UU, DD) spin-

configuration as this configuration shows promising properties. The results are

presented below.

6.4.2 Odd and even-line-defect ribbons

Table 6.2 shows the spin-polarization of the 10-zBNNRs with different line-defects

in (UU, DD) spin-configuration. Clearly, all the odd-line-defects are spin-polarized

and all the even-line-defects are not spin-polarized. As explained earlier, the reason

for the finite spin-polarization for all the odd-line-defect ribbons is the presence

of a single zigzag-edge which has spin-polarization, and the reason for zero total

spin-polarization of the even-line-defects is because of the presence of two such zigzag

edges, which carry exactly the same amount of magnetization value but with opposite

sign. Thus, from the results presented in Table 6.2 we infer that the Spol of the

system is mainly due to the zigzag-edge of the system (irrespective of whether it is a

perfect or a defect edge).

Table 6.2 also shows the stability of all these systems [with respect to the perfect-

10-zBNNR in its (UU, DD) spin-configuration]. EForm values of all these systems

prove that, (i) not only the nature of the defect (i.e. odd or even-line) but also the

size of the defect (i.e. 4-line or 8-line) will change the system stability and (ii) for a

ribbon with constant width, greater the number of the line-defect, lesser is its stability.
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We have also verified our statement regarding the gain in stability due to the presence

of an armchair-edge in 1-line-PH-defect ribbon, by comparing the EForm values of

every odd-line-defect ribbon with its immediate lower even-line-defect ribbon [i.e.

for example, we have compared the EForm of 7-line-defect ribbon with the EForm

of the 6-line-defect ribbon] and we find that the EForm values of these systems are

nearly equal (with in the order of an eV). (Note that, comparing a 7-line-defect

with 8-line-defect will not give any new understanding on the armchair-edge nature,

because, 7-line-defect will obviously be more stable than 8-line-defect for its lesser

size. On the other hand, 6-line-defect is expected to be more stable than 7-line-defect

just based on its lesser size. So, a comparable EForm value of 7-line-defect with a

6-line-defect indicates the armchair-edge’s ability to stabilize the system). But, the

amount of the stability acquired by a system through a change in the edge nature

from zigzag to armchair might not be equal to the required amount of energy for

the edge-reconstruction. If the former energy dominates, then the system attains

stability and if latter energy dominates, the system will be unstable. The domination

of the latter energy is the reason for the lesser stability of higher odd-line-defect (i.e.

from 3-line) systems compared to the 1-line-PH-defect systems, even though they

possess an armchair edge.

Table 6.2: Spin-polarization (Spol) of each system is given in column two. Column 3 shows the
stability of a system with respect to the perfect 10-zBNNR in (UU, DD) spin-configuration and is
represented as Eform.

System-name Spol EForm (eV)

Perfect-10-zBNNR 0.000 0.000

Odd-line-PH-defects

De-ed-si-1 B 2.000 -0.129

De-ed-si-1 N 2.000 -0.278

De-ed-si-3 B 2.000 4.261
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De-ed-si-3 N 1.988 4.607

De-ed-si-5 B 2.000 9.350

De-ed-si-5 N 1.978 8.664

De-ed-si-7 B 2.000 13.426

De-ed-si-7 N 1.992 13.193

Even-line-PH-defects

De-ed-si-2 B 0.000 3.908

De-ed-si-2 N 0.000 4.428

De-ed-si-4 B 0.000 8.292

De-ed-si-4 N 0.000 8.836

De-ed-si-6 B 0.000 12.627

De-ed-si-6 N 0.000 13.174

De-ed-si-8 B 0.000 16.933

De-ed-si-8 N 0.000 17.408

Variation in the defect position

0-D-7 De-mid-2 0.000 3.908

1-D-6 De-mid-2 0.000 4.411

2-D-5 De-mid-2 0.000 4.476

3-D-4 De-mid-2 0.000 4.473

4-D-3 De-mid-2 0.000 4.476

5-D-2 De-mid-2 0.000 4.478

6-D-1 De-mid-2 0.000 4.467

7-D-0 De-mid-2 0.000 4.428

Along with the stability and spin-polarization, we have also calculated the changes
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in the band-structure with a change in the defect line-number (n). Figs. 6.5 and

6.6 show the band-structure of all the odd and even-line-defects in (UU, DD) spin-

configuration, respectively. From the band-structure plots, we find that all the

systems with boron atoms at perfect-edge behave in one-kind and with nitrogen

atoms at perfect-edge behave in another kind. This finding is valid for both even

and odd-line-defect systems. For example, near the Fermi-level, all the odd-line-

defect systems with boron atoms at the perfect-edge have nearly similar behaviors

in dispersion, band-gap etc. (see Fig. 6.5). Similar behavior can also be seen for

even-line-defects (see Fig. 6.6). These findings prove that, “it is the edge nature

of the defect which mainly dictates the electronic properties of the system than the

number of the defect-line (n)”.

Variation of the defect-position

In this sub-section, we will discuss how the variation in the position of a defect

affects the system’s property. For this, we have chosen 2-line-PH-defect as our

representative candidate and we have varied its position. We have chosen “2-line-PH-

defect” because: 1) 2-line-PH-defect is an even-line-defect, and hence, irrespective of

its position in the ribbon, it will not change the edge nature of the system, and also

2) according to our studies, 10-zBNNR with 2-line-PH-defect shows half-metallicity

and we want to find whether this half-metallicity is retained even after a change of

the defect position. As we already know that, a 2-line-defect will have 3 zigzag chains

and as the ribbon considered has 10-zigzag chains, we are left with only 7-perfect

zigzag chains after the introduction of a 2-line-PH-defect. These 7 chains can be

arranged across the defect in 8 ways, and hence, there are 8 systems to study. The

nomenclature of these systems is n-D-m De-mid-2, where n, m represents the number

of zigzag chains the defect (D) is away from the nitrogen and boron edge, respectively.

For example, 2-D-5 De-mid-2 means, the defect is 2-chains away from the nitrogen
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Figure 6.5: Band-structure plots of all odd-line-defect ribbons. The number of the line-defect (n)
and atoms at the perfect edge (either B or N) are indicated below each plot, as n-PH B/N. In each
plot up-spin (down-spin) is given on the left-side (right-side). Majority and minority spins have
been labeled whenever it is applicable.

edge and 5-chains away from the boron-edge.

EForm values of all the eight systems are given in the Table 6.2 and except for the

case of 0-D-7 De-mid-si-2-pr there is hardly any change in the formation energy with

change in the defect position. This shows that, unlike the defect nature (i.e. odd-line

or even-line), defect position has less effect on the formation energy, unless it changes

the edge nature. The reason for the “0-D-7” system to be different from others is

because of its nitrogen edge. In 0-D-7, the zigzag-edge with nitrogen atoms has the

defect, whereas, for all the other systems, the nitrogen edge is perfectly zigzag-edged.
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Figure 6.6: Band-structure plots of all even-line-defect ribbons. The number of the line-defect (n)
and atoms at the perfect edge (either B or N) are indicated below each plot, as n-PH B/N.

One interesting point to notice here is that, while translating the defect from B-ed

to N-ed, the maximum energy was consumed only when the edge has changed from

perfect zigzag-N-edge to defect zigzag-N-edge (i.e. from 1-D-6 De-mid-si-2-pr to

0-D-7 De-mid-si-2-pr), which again proves the importance of the edge nature in

stabilizing a structure. As both the edges are zigzag and as the spin-configuration is

(UU, DD), all these systems show zero Spol. Fig. 6.7 shows the band-structure plots

of all the eight systems. Clearly, all the systems are half-metallic irrespective of the

defect position, which again proves that, the reason for the half-metallicity is the
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zigzag-edge nature of these ribbons (which is preserved in all of them even though

the defect is moving from one-end to the other-end of the ribbon).

Figure 6.7: Band-structure plots of 10-zBNNR with a 2-line-PH-defect at different positions
inside the ribbon. The position of the defect is indicated using the index n-D-m (see the text for
nomenclature).

Varying the width of the ribbon:

Next, we have varied the width of the ribbon from 6-zBNNR to 16-zBNNR with

a 2-line-PH-defect to check the robustness of our results. Again, Spol value for all

the systems is zero (and hence, not shown) because of their zigzag edge nature.

Table 6.3 shows the formation energy for all the widths, which we have considered.

As the number of atoms in each system varies, we have given the formation-energy

values per atom, (EForm), for each one of these systems. These values show that,
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Table 6.3: Variation in the formation energy, EForm (eV/ atom), with a variation in the number
of zigzag chains, n, of De-ed-si-2 N systems is given.

n 6 7 8 9 10 11 12 13 14 15 16

EForm
-

0.962
-

1.061
-

1.136
-

1.195
-

1.241
-

1.280
-

1.311
-

1.338
-

1.362
-

1.382
-

1.399

formation of a defect is energetically more favorable in a bigger ribbon than in a

smaller ribbon. Importantly, the change in the EForm energy decreases and reaches

almost a saturation value (less than room-temperature), once the system has more

than 15-chains (> 3.1 nm). For example, the difference in the EForm values between

the ribbons with ‘6 and 7’ or ‘7 and 8’ chains is ∼ 0.1 eV, whereas, between ‘14 and

15’ or ‘15 and 16’ chains is just 0.02 eV.

Figure 6.8: Band-structure plots of (a) 6-zBNNR (b) 11-zBNNR and (c) 16-zBNNR. (d) Variation
of the band-gap with width, for both up and down-spins.

In Figs. 6.8(a)– 6.8(c), we have shown the band-structure plots for three represen-

tative widths, viz., 6, 11 and 16-zBNNRs, respectively. Note that, the band-structure

plots for all the other widths considered in this study show exactly the similar

behavior. From Figs. 6.8(a)– 6.8(c), we find that the half-metallicity in 10-zBNNR
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is in fact robust against the ribbon width. These plots also show that, the dispersive

nature of the states near the Fermi-level hasn’t changed much with the ribbon width.

Finally, in Fig. 6.8(d), we have presented the band-gap variation with a change in

the ribbon width. As shown, with an increase in the width of the ribbon, there is

very small change in the band-gap of the system’s for both up and down-spins. Thus,

this plot also proves the robustness of half-metallicity in 2-line-PH-defect systems.

Effect of passivation

Finally, we have also studied the effect of passivation on the electronic and magnetic

properties of all these systems. For brevity, only the important results are mentioned.

We find that, for (UU, DD) spin-configuration, a system with, (i) both of its edges

as armchair will behave as non-magnetic insulator, irrespective of the passivation,

(ii) one edge as zigzag and other one as armchair will behave as spin-polarized

semiconductor either when both the edges are bare or when the defect-edge is

passivated, and as non-magnetic insulator either when both the edges are passivated

or when the perfect-edge is passivated, (iii) both of its edges as zigzag will behave

as an anti-ferromagnetic half-metal when both the edges are bare; spin-polarized

semiconductor when a single-edge is passivated; and non-magnetic insulator when

both the edges are passivated. Thus, these findings, once again prove the importance

of edge states in predicting the properties of BNNRs. Also, these findings show that

edge states from bare zigzag edge are the reason for the metallic/semiconducting

nature of an otherwise insulating BNNRs.

6.5 Conclusions

In conclusion, we have shown that all the properties of the systems presented in

this work, are dependent mainly on the edge-nature of the ribbon, and we have also

shown that the edge nature of a ribbon can be tuned using PH-line-defect number.
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Among the several spin-configurations which we have considered, we find (UD, UU)

configuration to be the most stable one, and the (UU, DD) configuration to be

interesting one because it displays anti-ferromagnetic half-metallic behavior. We also

find that, in contrast to the presence of a pair of hexagons at the perfect-zigzag-edge,

a defect-zigzag-edge consisting of a pentagon and heptagon pair can cause large

differences in their DOS, when the spin-configuration at these edges are changed.

Within the (UU, DD) spin-configuration, we have shown that, a system with,

(i) one-edge as zigzag and other edge as armchair (odd-line-defects) will behave as

spin-polarized semi-conductor, and (ii) both edges being zigzag (perfect ribbons

or even-line-defect ribbons) will behave as anti-ferromagnetic half-metal. We have

proved the robustness of the half-metallicity of the zigzag-edged systems against

the defect line number, position of the defect and width of the ribbon. We have

also discussed the stability of the ribbons and we have shown that, introduction

of an n-line-defect is energetically more favorable for smaller ‘n’ than for larger ‘n’

and for a particular ‘n’, larger the size of the ribbon, it is energetically easier to

introduce the defect. Finally, we conjecture that, half-metallic nature which we find

for (UU, DD) spin-configuration is quite robust and would be observed for all the

systems (with/without impurities, defects etc.) which have bare zigzag-edge at both

the edges.
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Chapter 7

Computational Investigations on

the Laser-Induced Unzipping of

MoS2 and Carbon Nanotubes in

Dimethylformamide ?

7.1 Introduction

One of the major hurdles in replacing graphene with silicon in electronics industry

is its zero bandgap. However, its low-dimensional analogue, namely, graphene

nanoribbon (GNR) exhibits finite band gap. [1–3] These 1D nano-structures offer

many attributes such as semiconducting nature, [4] high magnetoresostance, [5, 6]

and half-metallicity in the presence of external electric-fields. [7] Moreover, due to

their sp2 carbon lattice and edges states, [8, 9] GNRs find applications in electronic

devices, [10–14] magnetic field sensors, [15] transparent conducting electrodes [6]

?Work reported in this chapter is published in: K. Vasu, Sharma S. R. K. C. Yamijala, Alla Zak,
K. Gopalakrishnan, Swapan K. Pati and C. N. R. Rao, Small, 11, 3916–3920 (2015). Prashant
Kumar, Sharma S. R. K. C. Yamijala, Swapan K. Pati and T. S. Fisher (submitted).
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etc. Also, from the last 2-3 years, there has been great interest in the properties of

transition metal dichalcogenides (TMD) nanosheets. Thus, nanoribbons of TMDs

are the obvious candidates for study, since quantum confinement and edge states

are expected to give rise to new electronic and magnetic properties. Nanoribbons

of MoS2 and WS2 with zigzag edges are expected to be ferromagnetic and metallic,

whereas armchair nanoribbons would be nonmagnetic and semiconducting. [16–19]

GNRs have been prepared by unzipping of carbon nanotubes (CNTs) through

chemical oxidation, a method that has been commonly used by many workers.

[9, 20–22] On the other hand, WS2NRs have been synthesized by means of chemical

unzipping of WS2 nanotubes using lithium intercalation followed by exfoliation in

organic solvents. [23] There are some limitations to these procedures. CNT unzipping

through chemical oxidation often gives rise to oxygen functionalities on the surface

of GNRs and WS2NT has the limitation that diffusivity of solvent molecules controls

the unzipping process. Furthermore, chemical manipulation may not altogether avoid

surface functionalities.

In order to avoid these limitations and to produce clean graphene and TMD

nanoribbons, our experimental collaborators have carried out laser-induced unzipping

of the carbon, MoS2 and WS2 nanotubes dispersed in dimethylformamide (DMF)

medium. Earlier, a few of them have used laser-induced unzipping of CNTs to avoid

surface oxygen functionalities and to produce pure GNRs, [24] but, in that study

CNTs were in solid medium. Soon they have realized that laser-induced unzipping in

solid form requires a quartz substrate for CNT coating (as other substrate materials

would evaporate upon laser irradiation) and transferring the unzipped CNTs (i.e.,

GNRs) onto arbitrary functional substrates (to achieve any functional device) involve

in loss of material. So, they expected to minimize material loss upon transfer by

unzipping NTs in liquid medium and thus they have conducted the experiments in

solvent medium using laser pulse.
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Employing the above procedure, the experimental studies have observed that laser

irradiation unzips carbon, WS2 and MoS2-NTs along the longitudinal axis, yielding

GNRs, WS2NRs and MoS2NRs after 200 laser pulses. [25] Unlike other methods,

[23, 26] laser unzipping is found to be a versatile method for the production of high-

quality NRs with controllable width, edge states, and defects. As laser unzipping

of CNTs in liquid media does not require any additional chemical treatment with

or without external heating, this method turns into a green synthetic approach.

Therefore, it is imperative to understand this emerging procedure and in this chapter

we have tried to present our efforts to understand the mechanism of unzipping in

these NTs.

7.2 Computational Details

To understand the mechanism of unzipping, first we have performed a series of

calculations on single-walled (SW) and multi-walled (MW) carbon nanotubes (NTs)

and on single-walled MoS2NTs. To know whether the unzipping is favored along

the longitudinal or lateral directions of a NT, we have considered a line of vacancies

along these directions. We have used both density functional tight-binding (DFTB)

theory and density functional theory (DFT) in our calculations. For the case of

MoS2NTs, all the calculations are performed using DFT. On the other hand, majority

of the calculations on CNTs have been performed using self-consistent charge DFTB

(SCC-DFTB) [27] within third order expansion of the energy (DFTB3) [3] and with

3ob parameter set, as implemented in DFTB+ package. [28] DFTB level of theory is

used mainly due to the large system sizes (> 1000 atoms) considered. We couldn’t

use DFTB for MoS2NTs due to the unavailability of the Slater-Koster parameters.

While using DFTB, geometry optimizations have been performed using conjugate

gradient method and systems are considered to be optimized only when forces on all

the atoms are less than 0.0001 Hartree/Bohr. A 1 × 1 × 15 k-point grid has been
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considered within the Monkhorst-Pack scheme, for all the SWNTs. For MWNTs, we

were able to afford only the Gamma point calculations. An electronic temperature

of 100 K is kept for all the calculations, to avoid convergence issues for the systems.

VMD [29] and CoNTub [30] are used to generate the coordinates for the single-

walled and multi-walled nanotubes, respectively. VMD is also used to create a few

images. To check the robustness of the results obtained from DFTB3 method, we

have compared them with the results of DFT for (7,7) SW-CNT. The results are

comparable (exact) in the trends and almost the same when the relative energies are

considered (which are only the relevant ones for the present study) as can be seen

from the Tables 7.2 and 7.3.

All the DFT calculations have been performed using Perdew–Burke–Enzerhof

(PBE) [31] exchange and correlation functional and double-ζ-polarized basis set

(DZP) for all atoms as implemented in the SIESTA package. [32] Norm conserving

pseudo potentials in the fully non-local Kleinman-Bylander [33] form with 1, 4, 6

and 6 valence electrons have been considered for H, C, S and Mo atoms, respectively.

A Monkhorst k-point grid of 1 × 1 × 5 and a real space mesh cut off of 300 Ry has

been used. Systems are considered to be relaxed only when the forces acting on all

the atoms are less than 0.04 eV/Å.

7.3 Results and Discussions

In this section, first, we would like to emphasize the most important results from

the experiments on both CNTs and MoS2NTs. The results include: (i) Nanotubes

unzip along longitudinal direction (observed for MoS2NTs) (ii) Lesser laser fluence is

required to unzip thinner nanotubes (observed for CNTs) (iii) Nanotubes unzip to

form nanoribbons in DMF (observed for both CNTs and MoS2NTs).
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Figure 7.1: Optimized structures of (6, 6) MoS2NT (a) with no vacancy (pristine) (b) with a 2-S
vacancy and (c) with a 3-Mo longitudinal vacancy.

7.3.1 Energetics of defect formation

MoS2 nanotubes

To get a microscopic understanding for the above results and to understand the

laser-induced unzipping mechanism, first we have performed DFT calculations on

MoS2NTs. Since the experimental results show unzipping along the tube axis and

zigzag edged nanoribbons, DFT calculations were performed on armchair MoS2NT of

chirality (6, 6) consisting of 36 atoms in the unit cell. We have studied the energetics

of formation of various kinds of vacancies in the nanotubes as strong laser irradiation

ruptures the nanotube. The structure of pristine MoS2NT shown in Fig. 7.1a has

been generated by considering a supercell consisting of 252 atoms. Six types of

possible vacancies were examined, namely, (i) a single Mo-vacancy; (ii) a triple

Mo-vacancy with (a) all vacancies along the longitudinal axis (tube axis), (b) two

along the longitudinal axis and one along lateral axis, (c) all vacancies along the

lateral axis; (iii) dual S-vacancy and (iv) hexa S-vacancy. In Table 7.1, we present

the energetics of defect stability, formation energy, and the defect formation with

respect to 1-Mo vacancy.

From the energetic studies, we see that the formation energy of a Mo-vacancy is

almost equal to the formation energy of a S-vacancy in an armchair MoS2NT. We

find that creation of further Mo-vacancies is energetically feasible if they are created
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Figure 7.2: Optimized structures of (6, 6) MoS2 with (a) 3-Mo longitudinal and lateral vacancy
(b) 3-Mo lateral vacancy and (c) hexa S-vacancy.

Table 7.1: Energetics of formation of different kinds of vacancies in MoS2 nanotubes

System Edefect - Epristine (eV)
EForm = Edefect -

Epristine - n × EMo/S

(eV)

With respect to
1-Mo (eV)

1-Mo 221.922 2.806 0.000
3-Mo longitudinal 650.793 -6.554 -14.973
3-Mo longitudinal

and lateral
664.184 6.837 -1.582

3-Mo lateral 667.268 9.921 1.502
2-S 559.105 (279.552/S) 5.016 (2.508/S) –
6-S 1674.097 11.831 –

along the longitudinal axis than along the diameter of the tube. We also find that

an already created vacancy decreases (increases) the amount of energy required to

create the next vacancy if the new vacancy is along the longitudinal axis (lateral

axis). Figs. 7.1b, 7.1c shows the optimized structures of MoS2NT after creation of

2-S and 3-Mo longitudinal vacancies, respectively. Creation of a 2-S vacancy does not

change the tube structure significantly except the formation of new bonds between

Mo atoms (see circle in Fig. 7.1b). However, creation of 3-Mo longitudinal vacancies

changes the tube structure drastically and initiates the unzipping process along

the tube axis. Unzipping process is not initiated by creating other combinations

of 3-Mo vacancies (namely, 3-Mo-longitudinal and lateral vacancy and 3-Mo-lateral

vacancy. See Fig. 7.2). Thus, these results clearly suggest that longitudinal unzipping

is energetically more favorable than other ways of unzipping the MoS2 nanotubes,

corroborating with the experimental observations.
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Carbon nanotubes (single-walled and multi-walled)

We have performed similar calculations also with CNTs. Apart from considering

various kinds of vacancies, we have also considered CNTs of various diameters and

chiralities as it is well known that the properties of NTs depend on both of these

parameters. [34] Also, multi-walled CNTs have been studied to identify any differences

in the unzipping process compared to their single-walled counterparts. Accordingly,

three CNTs with chiralities (7,7), (15, 15) and (21, 0) have been considered, where,

(7, 7) and (15, 15) are armchair nanotubes (and hence, metallic) with diameters of

approximately 1 nm and 2 nm, respectively and (21, 0) is a semiconducting zigzag

NT with diameter similar to that of (15, 15). For modeling MW-CNT, we have

considered a double walled nanotube, where the inner and outer tubes have the

chirality (7, 7) and (16, 16), respectively and the inter-tube spacing has been kept as

6 Å.

To model defects created in SWNTs by laser pulse, similar to MoS2 nanotubes,

we have created vacancies (only along the direction of the tube axis [34]) by directly

removing the carbon atoms from the hexagonal lattice. To know whether there is

any cumulative effect during the formation of vacancies, we have gradually increased

the vacancy number from 1 to 3 (represented as v1, v2 and v3). Also, to know the

favorable positions of vacancies with respect to each other, in a multi-vacant SWNT,

we have varied the position between the vacancies (See Fig. 7.3). Results of the

calculations from both DFTB and DFT levels of theory are given in Tables 7.2 and

7.3, respectively.

From Table 7.2, we notice that formation of a di-vacancy is much easier than

isolated mono-vacancies. Similarly, tri-vacancies would cost even less energy when

compared to the energy required to form 3 isolated mono-vacancies. Our calculations

on SWNTs and MWNTs establish that the energy required to create a multi-vacancy
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Figure 7.3: Structures of (7, 7) CNT with (a) single vacancy (v1) (b) three single vacancies (v3)
(c) two single vacancies side-by-side (v2a) (d) two single vacancies apart from each other (v2b)

Table 7.2: Energetics of formation of different kinds of vacancies in CNT nanotubes (DFTB
results). Symbols Epristine and Evn denote the energy of a nanotube in its pristine state and when
it has ‘n’ vacancies, respectively. EC is the energy of the single carbon atom. EForm and Ecum are
the formation and cumulative energies.

System
EForm = Edefect -
Epristine - n × EC

(eV)

Ecum (eV) = Edefect –
(n x Ev1)

v1–(7,7) 16.947 0.000
v2a–(7,7) 30.537 -3.356
v2b–(7,7) 31.350 -2.543
v3–(7,7) 42.481 -8.359

v1–(15,15) 20.756 0.000
v2a–(15,15) 34.685 -6.827
v2b–(15,15) 36.655 -4.857
v3–(15,15) 47.087 -15.181
v1–(26,0) 25.592 0.000
v2a–(26,0) 39.966 -11.218
v2b–(26,0) 40.194 -10.990
v3–(26,0) 54.438 -22.339

v1–(7,7), (16,16) 15.614 0.000
v2–(7,7), (16,16) 29.641 -1.586
v3–(7,7), (16,16) 42.112 -4.729
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Table 7.3: Energetics of formation of different kinds of vacancies in CNT nanotubes (DFT results).
Symbols have similar meaning as in Table 7.2.

System
EForm = Edefect -
Epristine - n × EC

(eV)

Ecum (eV) = Edefect –
(n x Ev1)

v1–(7,7) 11.715 0.000
v2a–(7,7) 19.992 -3.438
v2b–(7,7) 20.649 -2.781
v3–(7,7) 26.316 -8.829

(Evn) in a nanotube is not just equal to the energy required to create n such single-

vacancies (Ev1); rather it is always less (i.e., Evn < n × Ev1). This is true even

when the position of the defect changes; for example, see v1 versus v2a and v2b for

any nanotube. Also, our study shows that creating vacancies side-by-side is more

favorable than creating them away from each other. Thus, similar to MoS2NTs, in

CNTs also there is a cumulative effect while creating the vacancies. Even, we got

similar conclusions from DFT results on CNTs (see Table 7.3) and we believe that

this cumulative effect is manifested in the form of crack propagation under laser

exposure.

Interestingly, we have also found that an increase in the nanotube diameter (for

example, see(7,7) ∼ 1 nm and (15, 15) ∼ 2 nm) leads to the increment in the energy

required to create a defect (EForm), once again, corroborating with experimental

results. In general, wider nanotubes have less curvature and greater overlap between

the Pz-orbitals on the adjacent carbon atoms (maximum overlap occurs when the

orbitals are parallel to each other, as in graphene sheet). Greater curvature (as

presented in thinner NTs) leads to the formation of weaker-bonds locally, compared

to a wider nanotube. Thus, compromised orbital overlap in thinner NTs seems to be

the reason for their unzipping at lesser laser fluence.
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7.3.2 Effects of defect annealing

Till now, based on our energetics calculations, we were able to show that (i) the laser

irradiation leads to the unzipping of NTs through the formation of vacancies, (ii)

their formation is favored along longitudinal direction and (iii) a thinner nanotube

will require lesser laser affluence. At this point of discussion, it should be noted

that for the case of a Mo-vacancy in MoS2 nanotubes, the formed vacancy will be

stable and it will also help the neighboring Mo-atoms to break their bonds leading

to the unzipping of NT (see Fig. 7.1c). But, a mono-vacancy or bi-vacancy in a CNT

(similarly, S-vacancy in MoS2NTs) results into chemically active edges inside the

sp2 network. Such vacancy defects are vulnerable to reconfiguration and to form

Stone-Wales like defects if annealed in an equilibrium manner in carbon networks

(see Figs. 7.1b and 7.2c for S-vacancies in MoS2NTs). These results have also been

observed in our calculations, where we have observed the annealing of vacancies to

form 5-9 rings, though not planar, as shown in Figs. 7.4c, 7.4d, 7.4e, for single,

double, triple vacancies, respectively.

On the otherhand, it should be noted that laser irradiation with extreme intensity

gives rise to non-equilibrium processes. Moreover, successive laser irradiation with

each new pulse incident after 1/5 second (as the pulse rate of laser used in the

experiment was 5 Hz), produces periodic local energy bursts that would locally break

C-C bonds. In CNTs, the vacancy migration barrier is only 1 eV, suggesting the

mobility of vacancy at relatively low temperatures. [35] Local heat accumulation in

CNTs due to successive incident laser pulses during laser exposure would catalyze

vacancy migration. Single defects would thus merge with each other and grow into

larger voids, which align along the axial direction, as these are the locations with

equivalent sets of physical and chemical conditions (Also, which is “the” energetically

favorable option based on our calculations).

Also, even if the vacancies reconfigure to form 5-9 defects (though, it may not
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Figure 7.4: (a), (b) Front, side views of MWNT; (c), (d) and (e) top views of MWNT with asingle,
double and triple vacancy, respectively. 5 and 9 membered rings have beenhighlighted with pink
and light green, respectively.

occur due to the non-equilibrium conditions), as observed in our calculations on

MWNTs as well as on SWNTs, they all will align linearly as shown in figures 7.4a,

7.4b and 7.4e. These figures contain front, side and top views, respectively, of the

optimized structure of a MWNT with 3 vacancies. In figures 7.4a and 7.4b, one can

see the formation of crest (out-of-plane structure of atoms to release in-built strain

upon laser exposure) parallel to the axis of MWNT. Such crest formation along with

the result that “energy will be minimal for aligned vacancies” suggests that the crack

should propagate along the line joining the vacancies. Also, this result is in good

agreement with a previous MD study on the unzipping of MWNTs under stress. [34]

The same study also show that among various feasible ways of crack propagation,

the most favorable one will involve the alignment of vacancies parallel to the tube

axis. Combining all these results, we conclude that under favorable conditions, such

linear alignment (of either the vacancies or the annealed defects) along the tube axis

can result in longitudinal unzipping of CNTs to give GNRs.
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Figure 7.5: Charge density difference calculated for CNT+DMF system at (a) 10−5 V/Å and (b)
0.1 V/Å and for CNT+V1+DMF system at (c) 10−5 V/Å and (d) 0.1 V/Å.

7.3.3 Effect of solvent and external field

To gain better understanding of interaction of laser field (electric field) with CNT

alone or CNT+DMF, we have optimized energetically favorable relative configurations

of DMF molecule when adsorbed on CNT. In a system, at a constant field strength

(E), the potential (= -eEr) due to electric field (of laser) will have more impact at

the locations with more charge density than those with less charge density. We have

calculated gains in energy when CNT or CNT+DMF are placed in electric field of

gradually increasing strengths. Upto 10−5 V/Å, we did not observe much change in

energetics. The calculated gains in energies are -1.3195 eV, -2.0489 eV and -2.4099

eV for a CNT, CNT+DMF and for CNT+v1+DMF respectively, when these systems

are placed in extreme electric field considered in our study i.e., 0.1 V/Å.

Also, charge distribution itself changes under application of strong electric field

(due to laser exposure). Charge density difference calculated for CNT+DMF upon

application of electric fields are shown in Figs. 7.5(a) and (b) for 10−5 V/Å and 0.1

V/Å respectively. It is apparent that the influence of electric field is minimal upto
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10−5 V/Å and one can visually observe the clear-cut changes in charge distribution

at field as high as 0.1 V/Å. Thus, under laser exposure, DMF and CNT interact

strongly. This strong interaction with laser (electric field) can create defects in the

nanotubes at adsorbed sites. We further calculated charge density distribution for

CNT+DMF+v1 at 10−5 V/Å and 0.1 V/Å fields (as shown in Fig 7.5(c) and (d)

respectively). Clearly, there is a dramatic influence of just a single vacancy on charge

distribution when CNT+DMF system is placed at 0.1 V/Å field. This enhanced

charge density caused by the formation of a single vacancy visually demonstrates that

formation of vacancies becomes more and more favorable as its number increases as

the process of unzipping progresses. Further propagation of the defect is more favored

along the longitudinal axis (than the lateral direction), as longitudinal unzipping will

not change the alignment of the induced dipole (because of external electric-field) in

the CNT, and hence, it is easy to create defects along longitudinal axis than along

lateral axis.

Effect of DMF

The solvent, dimethylformamide (DMF), also plays a role in the unzipping of NTs.

Since DMF molecules are dipolar, the positive side of their dipoles would be pointing

at the defect sites. In the presence of a high external electric-field, the defect (and

solvent molecules) induced dipoles in the nanotube would align along the direction

of the electric-field to gain stability. Creation of vacancies along the longitudinal

direction promotes induced dipoles to point along the same direction and hence

minimizes their potential energy (which is not favorable in the lateral direction).

Thus, longitudinal unzipping is more favorable and the unzipping occurs through

the creation of vacancies.
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7.4 Conclusions

In conclusion, we have demonstrated the laser-induced unzipping mechanism of NTs

to achieve NRs. We find that thinner CNTs require less laser fluence for unzipping

due to the formation of weaker π-bonding and there is always a cumulative effect while

creating the defects in both MoS2 and carbon NTs. Consistent with experiments, we

find that longitudinal unzipping is always energetically favorable in both NTs.

The proposed mechanism of unzipping includes the formation of vacancies and

the generation of induced dipole-moment across the nanotube under the influence

of external electric-field due to the charge accumulation near the vacancies. DMF

molecules align themselves along the tube axis near the vacancies with their dipoles

being parallel to the induced dipoles to minimize the interaction with external field.

This leads to the accumulation of further charge near the vacancies and supports

longitudinal unzipping of nanotubes.
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