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1
Introduction

Low dimensional systems have got tremendous impetus in last few decades due

to their interesting and exotic properties. These properties arise when one or

more spatial dimensions are reduced to less than a nanometre.This is because,

the motion of electrons become contstrained along the reduced dimensions, when

quantum confinement effects [1–7] begin to dominate. In fact, due to such effects, we

have two-dimensional, one-dimensional and zero-dimensional systems which give

rise to exotic properties [8–12]. Examples of such systems are many, including some

of the famous ones being, fullerene, nanotubes, graphene etc. Nowadays, with the

advent of synthesis and characterization techniques, there are realization of newer

and newer low-dimensional systems almost in everyday basis.

Low dimensional systems are unique, in the sense that, in these systems, there

is no long range order. In fact, there are several celebrated theorems which dictate

the physics of low-dimensional systems. Most often, these systems are insulators,

for many reasons, including lattice vibrations and electron correlations, leading

to Peierls insulators and Mott insulators, respectively.The correlation functions

decay exponentially with distance, which in turn induces a finite electronic gap in

the low energy spectrun of these systems.

Quite often, in these systems, the electron electron interactions are very
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strong; such systems then are called strongly correlated systems. These systems

show some exotic properties due to strong correlations. The absence of long range

order is mainly due to quantum fluctuations. And if the quantum fluctulations

are quite strong, it can induce spin-charge separation in low-dimensional systems.

Most often, we find electronic system, where magnetic interactions dominate, while

the system is a charge insulator. We have systems, like antiferromagnetic insu-

lator and ferromagnetic metal. Interestingly, there are many broken symmetry

phases, like spin density wave (SDW), charge density wave (CDW), bond order

wave (BOW), superconductivity, superfluidity etc. which are often seen in low-

dimensional systems.

With aplication of electric field, low dimensional systems give rise to a host

of linear and non-linear optical properties, which are of importance in all optical

computing to optical memory devices and fibers [13]. In general, a system shows

Stark effect, which is non-linear, when electric field is applied, while it shows Zee-

man splitting, which is linear, when subjected to a magnetic field. There have

been enormous studies in the literature on linear and non-linear optical absorp-

tions and emissions on a large number of systems with differing dimensionality.

There are also many studies on modulating magnetic phenomena for applications

in magnetic switches to magnetic recording with application of magnetic field.

Thus, there exists a host of systems whose properties can be modulated for var-

ious application purposes by applying external electric field and magnetic fields.

However, there have been almost no study on the effect of electric and magnetic

field simultaneously on low dimensional correlated systems. This is because, such

an effect will depend independently on the strength and direction of both electric

and magnetic fields. Experimentally also there is hardly any work in this direction,

as the setup would involve Z-scan method which is quite complicated.
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1.1 Lattice Hamiltonians

In quantum mechanics, the Schrödinger equation can be written in general as

HΨ = EΨ

For a system with n electrons and N nuclei, the complete Hamiltonian H can be

written as

H =
}2

2me

n∑
i=1

∇̂i
2

+ }2

N∑
I=1

∇̂I
2

2MI

−
n∑
i=1

N∑
I=1

ZIe
2

|~ri − ~RI |
+

n∑
i=1

n∑
j=i+1

e2

|~ri − ~rj|

+
N∑
I=1

N∑
J=I+1

e2

| ~RI − ~RJ |
(1.1)

where i, j are the indices for the electrons and I, J are those for the nuclei. Simi-

larly, ri, rj and RI , RJ correspond to the coordinates of the electrons and nuclei

respectively. The first 2 terms are the kinetic energies of the electrons and the

nuclei. The others are respectively the electron-nucleus, electron-electron and the

nucleus-nucleus interaction terms.

Born-Oppenheimer approximation allows us to separate the motion of the electrons

and the nuclei, as the mass of the nuclei, MI are very heavy compared to the me,

the mass of the electrons and hence their configurational change can be considered

negligible compared to the motion of the electrons.

Moreover, the nucleus-nucleus interaction terms do not affect the motion of the

electrons. Hence their interaction energy can be directly added to the resulting

energy eigenvalues of the electronic Hamiltonian. So we can omit those 2 terms

from the total Hamiltonian. Finally, we omit the electron-nucleus interaction also,

as it is a single-electron term and can be obtained after solving the electronic

Hamiltonian, for fixed coordinates of the nuclei. Assuming only the electonic

degrees of freedom with fixed nuclear coordinates, we can write the Hamiltonian
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terms involving the kinetic energy and the electron-electron interacton terms as,

H =
}2

2me

n∑
i=1

∇̂i
2

+
n∑
i=1

n∑
j=i+1

e2

|~ri − ~rj|
(1.2)

Fock Space

To treat the systems quantum mechanically, we need to start with a basis set. Due

to the correlation between the electrons, we cannot take single electron wave func-

tions as basis states. We have to treat the full system with certain configurations

as basis states. the space of configurations is called the Fock space. For example,

if we have a system of 2 sites (2 orbitals) with 2 electrons (half-filling), the Fock

Space consists of the 6 possible configurations:

↑ ↑ ↑ ↓ ↓ ↑

0 ↑↓ ↑↓ 0 ↓ ↓

It is convinient to write the many-electron system in second-quantized notation as

H = −t
∑
〈ij,〉σ

{
ciσ
†cjσ + h.c.

}
+ U

∑
i

ni↑ni↓ +
∑
ijkl

Vijklciσ
†cjσ

†ckσclσ(1.3)

c†iσ and ciσ are respectively the creation and annihilation operators for an electron

of spin σ=↑ or ↓ at site i.

niσ = c†iσciσ is the number operator for site i.

In the Zero Differential Overlap approximation, there exist interaction terms only

when their charge density of a electron is completely localized in one site or the

other. Thus we have

Vijklciσ
†cjσ

†ckσclσ −→ δijδklVijklciσ
†cjσ

†ckσclσ

that is, the terms having i 6=  and k 6= l are not considered. The Hamiltonian

then boils down to the well known Pariser-Parr-Pople Hamiltonian [14,15]:
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H = −t
∑
〈ij,〉σ

{
ciσ
†cjσ + h.c.

}
+ U

∑
i

ni↑ni↓ +
∑
i>j

Vij(ni − zi)(nj − zj) (1.4)

The Vijs are obtained by the Ohno parametrization [16]

Vij =
U√

1.0 + 0.6117r2
ij

where rij is the distance between 2 sites.

If the last term in Eq.1.4 is omitted, the Hamiltonian is the celebrated Hubbard

Hamiltonian [17–19] , where electronic correlations is considered only at rij = 0.

H = −t
∑
〈ij,〉σ

{
ciσ
†cjσ + h.c.

}
+ U

∑
i

ni↑ni↓ (1.5)

However, the Eq.1.4 has complete long range Coulomb interactions, which is

bridged between Hubbard U at r=0 and zero when r → ∞, the truly ab-initio

Hamiltonian. The Hamiltonians (Eq. 1.4 and 1.5) are too complicated to solve

analytically. So there exist a number of computational methods to solve these

Hamiltonians.

1.2 Computational Methods to Solve Many Body

Hamiltonians

1.2.1 Exact Diagonalization

The Hamiltonian matrix is set up using the Fock basis states. The Hamiltonian

matrix is diagonalized to obatain the eigenvalues and eigenvectors. There is no

approximation involved in this method. It has been successfully applied to study

properties of small low dimensional correlated systems [20–22].

Though it gives exact value of energies, large systems cannot be treated by this
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method as the Fock space grows exponentially with the number of sites. So there

are some approximation methods which truncate the Fock basis set in such a way

that the accuracy is maintained upto a good limit.

1.2.2 Variatinal Monte Carlo (VMC)

The Variational Monte Carlo is a stochastic method to calculate expectation values

of Hamiltonians, developed by David M. Ceperley [23] in 1980. In this metod, a

variational trial wave function is taken and the expectation values of the operators

with respect to the wave function are obtained by Monte Carlo Integration, hence

the name. It involves truncation of the basis set, as mentioned earlier. It can deal

with large systems of any dimensions giving quite accurate values.

Variational Principle

If we have trial wave function |Ψ ({αi})〉, {αi} being the set of parameters,

then, according to the Variational Principle,

〈Ψ (α) |Ĥ|Ψ (α)〉
〈Ψ (α) |Ψ (α)〉

> E0 (1.6)

where E0 is the exact ground state energy of the Hamiltonian.

The parameters {αi} are called Variatinal parameters . They can be optimized to

minimize the Variational energy expectation value so that it becomes as close to

E0 as possible.

The expectation value of an operator is given by
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〈Â〉 =
〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

=

∑
x

〈Ψ|x〉〈x|Â|Ψ〉∑
x

〈Ψ|x〉〈x|Ψ〉

=

∑
x

〈x|Â|Ψ〉
〈x|Ψ〉

|〈x|Ψ〉|2∑
x

|〈x|Ψ〉|2

=
∑
x

w (x)
〈x|Â|Ψ〉
〈x|Ψ〉

(1.7)

Where w (x) =
|〈x|Ψ〉|2∑
x

|〈x|Ψ〉|2

The terms
〈x|Â|Ψ〉
〈x|Ψ〉 are called the local values of the observables. Let us denote

them by Aloc.

The w (x) are the weight on the basis of which the local values of the observables

Aloc are sampled using the Metropolis algorithm.

So the expectation value of the operator can be approximately written as

〈Â〉 ≈ 1

M

∑
p

(Aloc)p (1.8)

where M is the total number of sampling steps and p is the index for the sampled

out terms ( p may have repititions, so total p is equal to M ).

Let us make the notation 〈x|Â|Ψ〉 = Aψ (x) and 〈x|Ψ〉 = ψ (x)

Then we can write
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〈Â〉 ≈ 1

M

∑
M

Aψ (xp)

ψ (xp)
(1.9)

The implementation of VMC for the Hubbard Hamiltonian has been given in detail

in chapter 3.

1.2.3 Density Matrix Renormalization Group (DMRG)

Method

DMRG method was developed by Steven R. White in 1992 [24]. This is a very ac-

curate method to calculate the eigenvalues and eigenvectors of strongly correlated

lattice model Hamiltonians. This can treat large low dimensional systems (gen-

erally 1-dimensional and quasi 1-dimensional) which exact diagonalization cannot

handle. In this method also, like QMC, there is truncation of the basis set, but the

basis set here is different. Here, we start with a small system (generally 4 sites),

and increase the number of sites by 2 in each iteration upto our desired size system

or till the energy converges. The basis set is renormalized at every iteration.

Suppose we have a system and we divide it into 2 equal parts, which we call as

subsystem and the environment [25]. If we wish to repesent the state of the system

by the eigenvectors of the 2 smaller systems, then

the most general way to write the wavefunction of the total system |Ψ〉 as

|Ψ〉 =
∑
i,j

Cij|φi〉|θj〉

which is written in terms of a mixed basis containing the direct product of eigen-

states of both the systems or the subsystem and the environment.

Suppose we have an operator Â which acts only on one of the basis sets, say, |φi〉.

So, assuming |Ψ〉 to be a state of the total system, the density matrix is written

as

16



ρ̂ = |Ψ〉〈Ψ〉

So one of the elements of the density matrix is

ρij,kl = 〈θl|〈φk|Ψ〉〈Ψ|φi〉|θj〉

= C∗klCij
We ‘trace out’ 2 of the indices and get the reduced density matrix

ρ′ij =
∑
ll′

C∗ilCjl′δll′

The expectation value of the operator Â is

〈Ψ|Â|Ψ〉 =
∑
ij

ρ′ij〈φi|Â|φj〉 (1.10)

In the above equation we see that, if we take |φi〉 as the eigenvectors of the density

matrix |wi〉 , then only the diagonal terms in this equation willl remain [25]. The

expectation value of Â in the density matrix eigenvector basis is

〈Â〉 =

NC∑
i

wi〈wi|Â|wi〉

where NC is the total number of states in Fock basis of the system

I Truncation of the basis set

The reduced density matrix has been brought into this picture because its eigen-

vectors represent the low energy of the whole system very well. We take only the

first M highest eigenvalues and the corresponding eigenvectors. This is because

lower the eigenvalues of the density matrix, lower is the probability density of that

configuration.

So we have,

〈Âapprox〉 ≈
M∑
i

wi〈wi|Â|wi〉

17



This is extremely accurate. In fact, White and Huse(1993) [26] have calculated

the ground state energy of a spin-1 isotropic Heisenberg chain accurately upto 12

decimal places.

Figure 1.1: An iteration of DMRG method :the the full system is divided equally into a system
and an environment .1 site is added to each of them, thus increasing the Hilbert space (the image
is taken from J. Phys. Soc. Jpn. 70 8(2001) [27]

The algorithm for DMRG method is given in the following flowchart.
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Contruct the Hamiltonian matrix for 4 sites

Compute the Eigenvalues and eigenvectors of the Hamiltonian matrix

Divide the system into 2 halves. Calculate the density matrix for

each half-bolck using the eigenvectors obtained in the previous step

Construct the Ô matrix (M × NC) with the density matrix eigen-

vectors corresponding to the M highest eigenvalues as columns

Make a similarity transformation of the operators from real space

basis to density matrix basis

Add 2 sites in the middle of the system

Construct the Hamiltonian for the total system with 2 added sites

in the mixed basis |µσµ′σ′〉 of the density matrix eigenvectors and

the real space basis states of the two new sites (σ and σ′)

Compute the eigenvalues and eigenvectors of the Hamiltonian ma-

trix in the new basis

19



We have used DMRG to calculate the non-linear magnetoelectric coefficients in

correlated oligo acene systems. The results are given in Section 2.4.2.

• Drawbacks of DMRG

DMRG can only deal with 1D and quasi 1D systems. It has not been re-

ported to be very accurate for 2 or higher dimensional systems (although 2D

algorithms have been constructed [28]).

1.2.4 Path Integral Renormalization Group(PIRG) Method

This method was developed by Imada’s group in 2000 [27] [29].

It has been named so because here, the Hubbard Stratonovich transformation has

been used, which is used to write 2-body operators in terms of 1-body operators

in quantum field theory.

In this method, a trial wave function is evolved in imaginary time, which after

sufficiently large ‘time’ τ , give the ground state.

|Ψg〉 = lim
τ→∞

exp{−τH}|Ψt〉

Similar to Feynman’s path integral formalism, the above projection is performed

in n steps of ∆τ and then this ∆τ is considered to be sufficiently small and n → ∞

so that,

|Ψg〉 = lim
∆τ→0

(
lim
n→∞

exp{−∆τH}
)
|Ψt〉

But, at every iteration of ∆τ , new basis states are generated. This increases the

number of basis sets. The basis set is thus truncated at each iteration and thus we

get a renormalized basis set which is small enough to be handled computationally.

At every iteration the the enegry is computed with the new basis set. If the energy

is lower than the previous one, the basis set is accepted, otherwise it is rejected.

This is how the basis set is renormalized at each iteration.
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The implementation of the PIRG method has been given in detail in chapter 3.
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2
Magnetoelectric Effect in

Quantum Many Body Systems

2.1 Introduction

There are systems in which a static magnetic field may induce an electric polar-

ization and vice versa, i.e., a static electric field can induce a magnetization. Such

systems are termed as Magnetoelectrics [1]. It was shown by Laudau and Lifshitz [2]

that there exists a linear relationship between electric field and magnetization (or

magnetic field and polarization) in some magnetic crystals in which time-reversal

symmetry is broken. This phenomenon was predicted in Cr2O3 by Dzyaloshin-

skii [3] in 1959 and experimentally shown by Astrov [4] in the same year. Extensive

reseach began when a class of materials called Multiferroics emerged out of ex-

periments. These are materials in which both ferroelectricity and ferromagnetism

can coexist. In recent years, large magnetoelectricity has been experimentally

observed in many multiferroics like BiFeO3, TbMnO3 etc.
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2.2 Magnetoelectricity : A Classical Approach

The Landau free energy of a system can be expressed as [1]

F ( ~E, ~H) = F0−
∑
i

P S
i Ei−

∑
i

MS
i Hi−

1

2

∑
i

∑
j

ε0εijEiEj−
1

2

∑
i

∑
j

µ0µijHiHj

−
∑
i

∑
j

αijEiHj −
1

2

∑
i

∑
j

∑
k

βijkEiHjHk −
∑
i

∑
j

∑
k

γijkHiEjEk − ...

(2.1)

where P S and MS are spontaneous polarization and magnetization respectively.

The first derivatives of the free energy are the total Polarization and Magnetiza-

tion, given by

Pi( ~E, ~H) = − ∂F
∂Ei

∣∣∣∣
~H

= P S
i +

∑
j

ε0εijEj +
∑
j

αijHj +
1

2

∑
j

∑
k

βijkHjHk

+
∑
j

∑
k

γijkHjEk − ... (2.2)

and

Mi( ~E, ~H) = − ∂F
∂Hi

∣∣∣∣
~E

= MS
i +

∑
j

µ0µijHj +
∑
j

αijEj +
1

2

∑
j

∑
k

βijkEjHk

+
∑
j

∑
k

γijkEjEk − ... (2.3)

Time reversal symmetry breaking for linear magnetoelectrics

For linear magnetoelectrics, the polarization ~P = ¯̄α ~H .

Suppose the system has time reversal symmetry. We apply the time reversal

operator R on both sides. R changes ~H to - ~H.

So,
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R{~P = ¯̄α ~H} =⇒ ~P = ¯̄α(− ~H) ≡ ~P = ¯̄α( ~H)

So ¯̄α should be zero. Hence there should be broken time reversal symmetry.

I The spatial inversion symmetry should also be broken for linear magneto-

electricity. Suppose, we operate by the inversion symmetry operator I , ~P

transforms to −~P with all others unchanged, resulting in ¯̄α to be zero.

I For nonlinear magnetoelectrics, this is not a necessary condition.

2.2.1 Magnetization by External Electric Field

Magnetoelectricity has been experimentally reported mostly in materials which

are antiferromagnetic in nature. The structure of antiferromagnets like Cr2O3 are

such that there is a magnetic cation (Cr3+) and a non-magnetic anion (O2−),

which remain in pairs. When there is no electric field, the net polarization and

magnetization are zero. Upon application of an electric field parallel to the direc-

tion of the ’chain’ of magnetic ions (as shown in figure 1.2), the cations and the

anions move closer. This affects the orbital overlap of the electrons, thus changing

their orbital motion and hence their net magnetic moment [5]. This produces a

non-zero magnetization in the crystal i.e. we get a non-zero ~M = α~E
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Figure 2.1: Cr2O3 unit cell structure [6]. Black : O2−, white atoms: Cr3+

Figure 2.2: One dimensional description of how an external electric field produces a non-zero
magnetization(taken from pg. 142 of the book Properties of Materials Anisotropy, Symmetry,
Strucutre [7])
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2.2.2 Polarization by External Magnetic Field

Spiral Magnets

Neutron Diffraction studies suggest that multiferroic materials such as TbMnO3and

Ni3V2O8 have a spiral magnetic ordered phase. That is, the spin vectors are aligned

in such a way that their directions vary periodically along some arbitrary direction

forming a spiral pattern. These type of systems have spin-spin interactions of the

type ~D.~Si × ~Si (Dzyaloshinskii-Moriya interactions [8,9]) or ~D× ~S1 × ~S2, which

gives rise to both linear and non-linear magnetoelectric coefficients [10–12]

2.3 Magnetoelectricity : A quantum mechanical

approach

2.3.1 Calculation of ME coefficients from Many Body Elec-

tronic Hamiltonians (Our Approach)

The ME coefficient study in the literature has been limited to mostly atomic sys-

tems and its formalism also is developed for atomic (one body) systems only. Here,

however, we consider a low dimensional strongly correlated conjugated carbon sys-

tems and describe these by considering the PPP Hamiltonian.

H = −t
∑
〈ij,〉σ

{
ciσ
†cjσ + h.c.

}
+ U

∑
i

ni↑ni↓ +
∑
i>j

Vij(ni − zi)(nj − zj) (2.4)

where niσ = c†iσciσ is the number operator for site i and spin σ (↑ or ↓)

and ni = ni↑ + ni↓

Vij is the long range coulomb interaction [13]

Vij = U√
1.0+0.6117r2

ij

where rij is the distance between 2 sites in Å
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Some of the results are given in section 2.4 From Eqn.2.1, the 2nd order non-linear

ME coefficient tensors γijk and βijk can be written as

γijk =
∂3F

∂Ei∂Ej∂Hk

involving 2 electric fields and 1 magnetic field, and

βijk =
∂3F

∂Ei∂Hj∂Hk

involving 2 magnetic fields and 1 electric field .

which are actually the 3rd order derivatives of energy with respect to the fields.

To calculate them computationally, we have to discretize these terms.

2.3.1.1 Explicit Electric and Magnetic field terms in the Hamiltonian

We include the electric field terms explicitly in the Hamiltonian :∑
i

ni ~E.~ri where ni = ni↑ + ni↓

i.e., the electric field interacts with the total charge at each site thus having a

potential energy term (ni ~E).~ri

The Magnetic field term is introduced explicitly as∑
i

~B.~Si

where irrespective of the dimensions of the system, the spin has 3 degrees of

freedom. Sz is mostly used in analysis as it is diagonal and thus easy to handle.

But have no idea about the values of Sx and Sy. We cannot determine all 3 at the

same time as they do not commute. Hence for many body systems, we will always

have to consider all the 3 components of ~B.~Si .
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2.3.1.2 Calculation of γijk involving 2 Electric field and 1 Magnetic

field terms

We include 2 electric and 1 magnetic field terms in the Hamiltonian :

∑
i

ni ~E1.~ri ,
∑
i

ni ~E2.~ri and
∑
i

~B.~Si

Let us calculate γijk first. It is easy to see that

∑
ijk

γijkEiEjHk = F ( ~E1, ~E2, ~H1)− F (− ~E1, ~E2, ~H1)− F ( ~E1,− ~E2, ~H1)

− F ( ~E1, ~E2,− ~H1) + F (− ~E1,− ~E2, ~H1) + F ( ~E1,− ~E2,− ~H1)

+ F (− ~E1, ~E2,− ~H1) + F (− ~E1,− ~E2,− ~H1) (2.5)

We assume that |EiEjHk| = constant = C for all i,j,k

We define
∑
ijk

γijk = γeff , then ,

γeff can be written in a discrete form

γeff =
1

8C

[
Ftot( ~E1, ~E2, ~H1)− Ftot(− ~E1, ~E2, ~H1)− Ftot( ~E1,− ~E2, ~H1)

− Ftot( ~E1, ~E2,− ~H1) + Ftot(− ~E1,− ~E2, ~H1) + Ftot( ~E1,− ~E2,− ~H1)

+ Ftot(− ~E1, ~E2,− ~H1) + Ftot(− ~E1,− ~E2,− ~H1)

]
(2.6)

Where, for instance Ftot( ~E1, ~E2, ~H1) is the sum of all the energies obtained for all

positive componets of the electric and magnetic field vectors. That is,

Ftot( ~E1, ~E2, ~H1) =
∑
ijk

F (E1i, E2j, H1k) , i, j, k being the components of the elec-

tric and magnetic field vectors. This sum will run over 27 terms for a 3-dimensional

system.
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Similar is the case for the other 7 Ftot terms.

2.3.1.3 Calculation of βijk involving 2 Magnetic field and 1 Electric

field terms

Similarly, as in the previous case, here |EiHjHk| = constant = C ′ for all i,j,k

We define
∑

ijk βijk = βeff . So, βeff can be discretized as

βeff =
1

8C ′

[
Ftot( ~E1, ~H1, ~H2)− Ftot(− ~E1, ~H1, ~H2)− Ftot( ~E1,− ~H1, ~H2)

− Ftot( ~E1, ~H1,− ~H2) + Ftot(− ~E1,− ~H1, ~H2) + Ftot( ~E1,− ~H1,− ~H2)

+ Ftot(− ~E1, ~H1,− ~H2) + Ftot(− ~E1,− ~H1,− ~H2)

]
(2.7)

Here also each Ftot will have 27 terms, if all the field vectors have non-zero com-

ponents in all 3 directions.

2.3.2 Quantum mechanical Origin of ME Coefficients from

Electronic motion only

From eq. 2.6, it is clear that the discretized form of ME coeffecient γeff consists

of terms obtained by reversing the direction of electric and mangnetic fields.

, i.e., for instance,

Ftot

(
~E1, ~H1, ~H2

)
6= Ftot

(
− ~E1, ~H1, ~H2

)
(2.8)

To obtain non-zero ME coeffecients, it is necessary that at least one term in Eq.

2.7 should obey Eq. 2.8

In fact, we argue that, one particle physics will not be able to give ME coefficients

when only electronic motion is considered. Here is how is is explained. Suppose
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we have a ’free’ particle of charge q. We add an electric field q ~E.~r. If we try to

find the 1st order perturbation correction of energy it is zero.∫ +∞

−∞
e−i

~k.~rxei
~k.~rd3r = 0

So the energy is the same for both +E and −E.

Now, turning to many electron systems, if we consider only tight binding terms,

the electrons are completely delocalized, so 1st order energy change due to electric

field (which, in this case, is proportional to 〈n̂iri〉, n̂i being the number operator)

is zero.

As soon as we introduce the Hubbard term (or other terms which localize the

electrons), 〈n̂i〉 becomes non-zero.

In fact, for large U , 〈xi〉 is 1 for all sites i. Hence, we get a linear energy correction

term, and so the energy will differ when the electric field direction is reversed.

This gives the nonzero ME coefficients.

In case of magnetic field, since Ŝz commutes with the Hamiltonian, the terms

HxŜx and HyŜy changes the Stotalz value but they have linear contribution (and

they appear in ± pairs in the eigenvalues ) to the energies, which will be shown

in the follwing section.
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2.4 Results and Discussions

2.4.1 Behaviour of Many body systems in presence of ~E

and ~H fields : A study with a simple 2-site model

Let us consider a system of of 2 sites and 2 electrons and total Sz = 0 The basis

set then consists of 4 configurations:

↑ ↓ ↓ ↑ 0 ↑↓ ↑↓ 0

The last 2 configurations have a Hubbard U term.

Figure 2.3

The Hubbard Hamiltionian for this system can be written as

H = −t
∑
σ=↑,↓

{
c1σ
†c2σ + c2σ

†c1σ

}
+ U

{
n1↑n1↓ + n2↑n2↓

}
The matrix of the Hamiltonian constructed from the above basis states is

0 0 −t −t

0 0 −t −t

−t −t U 0

−t −t 0 U


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I Linear Electric Field term in the Hamiltonian generates

Non-linear terms in the Energy

We define a coordinate system with the two atoms at two points x = 1 and x = 2

(as in fig. 2.3) Now we put an electric field term parallel to the line joining the 2

atoms.

So there will be an extra term in the Hamiltonian : n1Ex1 + n2Ex2

Putting t = 1 (So that the analytical expression looks simpler) The resultant

matrix will be 
3E 0 −1 −1

0 3E −1 −1

−1 −1 2E + U 0

−1 −1 0 4E + U


The eigenvalues of this matrix (solved partly in Mathematica) are :

λ1 = 3E

λ2 = (3E+
2

3
U)−2

√
12 + 3E2 + U2

9
cos

{
1

3
arccos

(
U(−18 + 9E2 − U2)
√

3(12 + 3E2 + U2)
3
2

)}

= (3E + 2
3
U)− g (E2,U)

λ3 = (3E +
2

3
U) − 2

√
12 + 3E2 + U2

9
cos

{
1

3
arccos

(
U(−18 + 9E2 − U2)
√

3(12 + 3E2 + U2)
3
2

)

− 2π

3

}

= (3E + 2
3
U)− g′ (E2,U)
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λ4 = (3E +
2

3
U) − 2

√
12 + 3E2 + U2

9
cos

{
1

3
arccos

(
U(−18 + 9E2 − U2)
√

3(12 + 3E2 + U2)
3
2

)

− 4π

3

}

= (3E + 2
3
U)− g′′ (E2,U)

These functions g, g′, and g′′ are functions of E2.

So, clearly,the expressions have a linear E term which will change when E is

changed to −E.

We see that only a electric linear electric field term in the generates non-linear

terms in the energy eigenvalues.

I Linear Magnetic Field Term has only Linear Contribu-

tion to the Energy

Now we put a magnetic field ~H in the system.

Though the system is 1-dimensional, the spin ~s has components along all 3 direc-

tions.

For this, there will be another term in the Hamiltionian : HxSx +HySy +HzSz.

As total Sz = 0, there will be no contribution from Hz.

The other 2 components can be written as Sx = S++S−
2

and Sy = S+−S−
2i

,

where S+ and S− are the spin raising and lowering opertors respectively.

Now,

S+| 0 ↑↓ 〉 = (S1+ + S2+) | 0 ↑↓ 〉 = 0 and also
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S+| ↑↓ 0 〉 = 0

Simlarly, S−| ↑↓ 0 〉 = 0 and S−| ↑↓ 0 〉 = 0

S+ and S− acting on | ↑ ↓ 〉 and | ↓ ↑ 〉 will generate 2 new states: | ↑ ↑ 〉 and

| ↓ ↓ 〉 which are not in the basis set of the 4 states.

Hence the magnetic field will have no terms in the matrix. Thus, as we found, if

we consider that total spin is conserved (totalSz = 0 in the above example), there

is non effect of the magnetic field.

Now we increase the basis set by adding the above mentioned 2 new states. So

the states are :

↑ ↑ ↑ ↓ ↓ ↑ 0 ↑↓ ↑↓ 0 ↓ ↓

In this basis set, the total Sz is not conserved

In this case, the matrix will be 6×6 one

3E +Hz
1
2
(Hx + iHy)

1
2
(Hx + iHy) 0 0 0

1
2
(Hx − iHy) 3E 0 −1 −1 1

2
(Hx + iHy)

1
2
(Hx − iHy) 0 3E −1 −1 1

2
(Hx + iHy)

0 −1 −1 2E + U 0 0

0 −1 −1 0 4E + U 0

0 1
2
(Hx − iHy)

1
2
(Hx − iHy) 0 0 3E −Hz


This is a very complicated matrix to handle analytically.

To obtain the eigenvalues, we need to solve a 6th degree polynomial equation which,

in general, have no algeraic form.
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First, we notice that 2 of the basis states , 0 ↑↓ and ↑↓ 0 have no effect when

the magnetic field is turned on. So for the ME coefficient, we consider the 4 × 4

matrix formed by the rest 4 basis states.

M =


3e+Hz

1
2

(Hx + iHy)
1
2

(Hx + iHy) 0

1
2

(Hx − iHy) 3e 0 1
2

(Hx + iHy)

1
2

(Hx − iHy) 0 3e 1
2

(Hx + iHy)

0 1
2

(Hx − iHy)
1
2

(Hx − iHy) 3e−Hz

 (2.9)

Algebraic expression for γeff and βeff for 2 sites

The terms for the electric and magnetic field present here are ~E1 = {E1x} ,

~E2 = {E2x} and ~H1 = {H1x, H1y, H1z}

So, to calculate γeff we calculate the energies each time with the following field

terms:

1. E1x, E2x H1x

2. E1x, E2x H1y

3. E1x, E2x H1y

The eigenvalues in the 1st case are:

3(E1x + E2x), 3(E1x + E2x), 3(E1x + E2x) +H1x, and 3(E1x + E2x)−H1x

The eigenvalues in the 2nd case are:
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3(E1x + E2x), 3(E1x + E2x), 3(E1x + E2x) +H1y, and 3(E1x + E2x)−H1y

The eigenvalues in the 3rd case are:

3(E1x + E2x), 3(E1x + E2x), 3(E1x + E2x) +H1z, and 3(E1x + E2x)−H1z

In all the cases, the eigenvalues have the same form.

If all H1x, H1z and H1z are positive, the ground state would be (3(E1x+E2x)−H1x),

or (3(E1x + E2x)−H1y) or (3(E1x + E2x)−H1z)

Clearly, (3(E1x +E2x) ± H1i) (i = 1, 2, 3) come in pairs. So, if the H1i =⇒ −H1i,

then the ground state will be {3(E1x +E2x) + (−H1i)}, i.e. {3(E1x +E2x) +H1i}

That is, the ground state does not change.

The 2nd order ME coefficient will not have no any non-zero term from the mag-

netic field.

In this case γeff =
15(E1x + E2x)

4C
, (C = constant)

In fact, the eigenvalues of the matrix M(eqn. 2.9) with E = (E1x + E2x) and

~H = ~H1 are

λ1 = 3(E1x + E2x) λ2 = 3(E1x + E2x)

λ3 = 3(E1x+E2x)−
√
H2
x +H2

y +H2
z λ4 = 3(E1x+E2x)+

√
H2
x +H2

y +H2
z

The ground state is clearly λ3.

Since there is no cross terms (EiHj, EiEjHk, EiHjHk etc. terms), the ME coeffi-

cients
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γijk =
∂3F

∂Ei∂Ej∂Hk

= 0 and

βijk =
∂3F

∂Ei∂Ej∂Hk

= 0

2.4.2 Second order ME coefficients in acenes : A DMRG

Study

The 2nd order nonlinear ME coeffecients γeff and βeff have been calculated from

the PPP Hamiltionian with electric and magnetic field terms explicitly added, as

mentioned in 2.3.1.1.

The systems which we targetted first, are two leg ladder systems with alternate

rung interaction missing (there are real conjugated carbon systems with this struc-

ture, named as oligo acenes). These are low dimensional systems for which the

Hamiltonian can be solved with great accuracy with the DMRG method (Chapter

1).

These acenes are correlated systems. The ground state of each of these systems is

a singlet. (cite the reference). In fact, we have calculated the spin density of these

38



systems upto 15 rings (62 atoms).

2.4.2.1 Calculations for 2 electric and 1 magnetic fields

The electric field terms only along the plane of the acene(taken as the x-y plane)

molecule will have non-zero contributions (the component along z axis will have

~Ez.~ri = 0)

On the other hand, since the spins ~Si are 3-dimensional, hence there will be con-

tributions from all 3 directions.

So, ~E1 = {E1x, E1y} , ~E2 = {E2x, E2y} and ~H1 = {H1x, H1y, H1z}

Figure 2.4: Direction of applied fields

So each Ftot will consist of 12 terms (4 electric field and 3 magnetic field).

Hence Eq.2.6 will have 96 energy terms. Each of these terms are obtained by

solving the Hamiltonian 96 times with their directions changed (i.e. the signs of

the components reversed).

For example, a few initial conditions are given below

~E1 : 0.100 0.000 0.000

~E2 : 0.100 0.000 0.000

~H1 : 0.000 0.000 0.001

~E1 : -0.100 0.000 0.000

~E2 : 0.000 0.100 0.000

~H1 : 0.000 0.000 -0.001

~E1 : 0.000 -0.001 0.000

~E2 : -0.100 0.000 0.000

~H1 : 0.000 -0.001 0.000
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Figure 2.5: Variation of ground state with the number of atoms

Thus there are 96 such initial inputs.

In all the calculations we have assumed that |EiEjHk| to be constant .

The hopping parameter t, Hubbard term U and the distance between atoms, rij

are taken as 2.4 eV, 11.26 eV and 1.4 Å respectively (These are the parameters

for conjugated carbon systems, as reported in literature).

The DMRG calculations show that the groud state energies vary linearly with the

numer of atoms (or the number of rings). For instance, here is the variation of

energy vs the number of atoms for following field values : E1x = −0.1, E2x =

0.1, H1z = 0.001
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The variation of magnetoelectric coefficients γeff vs no. of atoms is given in the

figure below.

Figure 2.6: Variation of γeff with the number of atoms

And below are individual contributions obtained by switching the signs of the fields
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(a) (b)

(c) (d)

Figure 2.7: Contributions to the ME coefficient βeff in case of (a)all positive(b) 2 negative 1
positive (c)2 negative and 1 positive (d) all negative field terms(along with linear fit)

Since the increase in energies vs the number of atoms is linear, it is obvious that

the ME coefficients, being a linear function of the energies will also vary linearly

with the number of atoms.

2.4.2.2 Calculations for 2 magnetic and 1 electric fields

In this case, the fields are

~E1 = {E1x, E1y} , ~H1 = {H1x, H1y, H1z} and ~H2 = {H2x, H2y, H2z}
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Figure 2.8: Variation of βeff with the number of atoms
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And these are individual contributions obtained by switching the signs of the fields

(a) (b)

(c) (d)

Figure 2.9: Contributions to the ME coefficient βeff in case of (a)all positive(b) 2 negative 1
positive (c)2 negative and 1 positive (d) all negative field terms(along with linear fit)

In this case also, the variations are linear, as expected. Although the indiviadual

term contributions are large, they result in a small ME coefficient, as many of the

terms get cancelled out. This is because there are 2 magnetic field terms, which

affect the energies much lesser compared to the previous case with two electric field

terms. The coefficient computed for two magnetic and one electric field has lower

magnitude in comparison to the coeffecients which are obtained with two electric

and one magnetic field term. This is because as we have seen in case of 2 sites case,
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the magnetic field terms do not contribute at all. Since in these systems, there is

no spin-flip or spin fluctuation terms, the magnetic field term can not change the

energy of the system.
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3
Implementation of Variational

Monte Carlo and Path Integral

Renormalization Group

Methods

In this chapter, we discuss two computational methods for quantum many body

problem, which we have implemented for the Hubbard Hamiltonian. We will

discuss below the details on each method and how we have implemented each of

the methods in computational code. We have checked the methods by calculating

energies for some small systems and verified the accuracy by calculating the same

from exact diagonalization method.
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3.1 Variational Monte Carlo Method for the Hub-

bard Hamiltonian

The Hubbard Hamiltonian [1] for a lattice is written as

H = −t
∑
〈ij,〉σ

{
ciσ
†cjσ + h.c.

}
+ U

∑
i

ni↑ni↓ (3.1)

The Variational Monte Carlo [2,3], as introduced in Chapter 1, is a very powerful

method to treat large systems with or without correlation. We take a Variational

trial wave function. It uses Monte Carlo sampling to calculate the expectation

values of the energy and other operators. In Eq. 1.9, we see that the expectation

value of an operator is given by

〈Â〉 =
〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

≈ 1

M

∑
M

Aψ (xp)

ψ (xp)

(3.2)

where Aψ (x) = 〈x|Â|Ψ〉 and
Aψ(xp)
ψ(xp)

are local energies.

3.1.1 Lattice VMC

For many-body Hamiltonians, we have a basis of configurations, that is, the Fock

space basis. With increase in the number of atoms, the basis set grows exponen-

tially. So Monte Carlo sampling is used to truncate this basis set. In case of lattice

VMC, the states |ψ (xp)〉 become the configurations |φi〉 of the Fock space basis.

The trial wave function would then be
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|Ψ〉 =
∑
j

cj|φj〉

The weights of these configurations cjs are determined by the Gutzwillwer param-

eter [4].

Slater Determinants to Represent Many Body Wave Functions

The configurations are represented by Slater determinants. A Slater Determinant

is written in the form

D =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1 (~x1) χ2 (~x1) . . . χN (~x1)

χ1 (~x2) . . .
. . .

. . .

χ2 (~xN) χ2 (~xN) . . . χN (~xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.3)

where χi (~rj) are the single electron functions. The electrons obey the Pauli ex-

clusion principle and so they are anti-symmetric in nature. This antisymmetry is

accounted for in the Slater Determinants. Let us denote the matrix of the Slater

Determinant corresponding to the state |φ〉 by [φ] .

In general, a configuration |φ〉 can be written as a direct product of the configu-

ration with only ↑ electrons and that of only ↓ electrons

|φ〉 = |φ↑〉 ⊗ |φ↓〉

So that the corresponding Slater determinants can be written as

[φ] = [φ↑]⊗ [φ↓]

But in VMC method, instead of taking the direct product we normally multiply
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the Slater Determinants in the RHS of the above equation to get the determinant

for the full configuration, that is,

[φ] = [φ↑] [φ↓]

Weights of the configurations: Gutzwiller parameter

This is a variational parameter which reduces the weights of those configurations

having ‘double occupancies’.

The Gutzwiller wave functions are given by

|φ′〉 =
∏
i

{1− (1− g)ni↑ni↓}|φ〉

= g〈ni↑ni↓〉|φ〉

(3.4)

Thus Eq. 3.2 can be written as

〈Â〉 ≈ 1

M

∑
i

Aφ′i
φ′i

(3.5)

where φ′i = 〈φ′i|Ψi〉

The gutzwiller parameter g has to be optimized to get the expectation value of

the energy nearest to the ground state.

3.1.1.1 The Trial Wave Function

The ground state of the tight binding Hamiltonian (one without the Hubbard U

term) is Fermi sea |ΨFS〉, which is actually the linear combination of all the pos-

sible configurations with equal weights .
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|ΨFS〉 =
1√
N

∑
j=N

|φj〉 (3.6)

The trial wave function is taken to be the Fermi Sea wave function with double

occupancies having reduced weights due to the Gutzwiller operator

|φ′〉 =
∏
i

(1− 1− g)ni↑ni↓) |ΨFS〉 (3.7)

So the following flowchart describes the steps.
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Choose a random initial configuration |φi〉. Calculate the double

occupancies di (if any) of the configuration.

Allow hopping of one electron to a position where hopping is al-

lowed, to get a new configuration |φf〉

Calculate the ratio

η = g(df−di) [φf ]

[φi]

Apply Metropolis Algorithm:

I if η > a uniformly distributed random number, ω , accept the

configuration, i.e. |φi〉 = |φf〉 for the next iteration.

I if η < ω, reject |φf〉 and keep |φi〉.

Calculate the local values of the observables using the sampled

configurations.
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3.1.1.2 Expression for the Local Energies

The expressions for the local energy for each configuration is given by [3]

Eloc = −t
∑
j

∑
σ

∑
a

gδd
det [φ (. . . , rj + a, . . . )]

det [φ (. . . , rj, . . . )]
+ Ud (3.8)

where δd is the change in the number of doubly occupied sites when the jth electron

at rj hops to the position rj+a. d is the total number of double occupancies.

3.1.2 Results

We have tried to develop a VMC code in FORTRAN for finite periodic as well as

non-periodic systems and compared the accuracy of energy values with the exact

diagonalization method. We are currently developing the VMC code for periodic

system in momentum space.

3.2 Path Integral Renormalization Group (PIRG)

Method

In this method [5,6], as discussed in the introduction, the imaginary time evolution

operator exp{−τH} is operated upon a trial wave function and after sufficiently

large time, this is expected to give the ground state.

Similar to Feynman’s path integral formalism, the above projection is performed

in n steps of ∆τ and then this ∆τ is considered to be sufficiently small and n → ∞

so that,

|Ψg〉 = lim
∆τ→0

(
lim
n→∞

exp{−∆τH}
)
|Ψt〉

But, at every iteration of ∆τ , new basis states are generated. This increases the

total number of basis states in each time step. This basis set is, however, truncated

at each iteration, so that we get a renormalized basis set which is small enough to
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be handled computationally.

Suppose we take the Hubbard Hamiltonian.

H = −t
∑
〈ij,〉σ

{
ciσ
†cjσ + h.c.

}
+ U

∑
i

ni↑ni↓

= Hk + HU

The 1st term, Hk, contains 1-body operators ciσ
†cjσ and the 2nd term, HU , which

is the Hubbard term, has ni↑ni↓, where each term is a 2-body operator.

We can write the imaginary time evolution operator as

exp{−τH} = exp{−τ (Hk +HU)}

= exp{−τHk}exp{−τHU}+O
((

∆τ 2
)) (3.9)

The error O
((

∆τ 2
))

comes because Hk and HU do not commute.

We represent the wave functions as a linear combination of Slater determinants

|φ〉 as done in VMC.

D =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1 (~x1) χ2 (~x1) . . . χN (~x1)

χ1 (~x2) . . .
. . .

. . .

χ2 (~xN) χ2 (~xN) . . . χN (~xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.10)

3.2.1 Effect of the hopping operator on Slater Determi-

nants

Let us denote the matrix of the Slater Determinant corresponding to the state

|φ〉 by [φ] . The matrix for the hopping operator can be obtained in the site

basis without even considering the Fock basis. In general, the hopping matrix is
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a tridiagonal matrix, written as,

[K] =



0 −t 0 . . . 0

−t 0 −t . . . 0
. . .

. . .

−t

. . . −t 0 −t

0 0 . . . −t 0


(3.11)

So the Slater Determinant can be modified directly by operating the hopping

matrix [K]

[φ′] = [K] [φ′]

which generates a single Slater determinant.

Similarly the operator exp ([K]) will generate a single Slater determinant

[φ′] = [M ] [φ′]

where [M ] = exp ([K])

3.2.2 Effect of one-body and two-body operators on Slater

Determinants

Suppose there is a 2-body operator,
∑
ij

Ôij , acting on the the Slater determi-

nants.

Let us take the ‘diagonal term’ of the Slater determinant.

t1 = χ1 (~r1)χ2 (~r2) . . . χi (~ri) . . . χj (~rj) . . . χN (~rN)

There is another term in this deteminant

t2 = − χ1 (~r1)χ2 (~r2) . . . χi (~rj) . . . χj (~ri) . . . χN (~rN)
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where the indices, i and j, are interchanged.

When Ôij acts on (t1 + t2), it gives

Ôij (t1 + t2) = χ1 (~r1)χ2 (~r2) . . . Ôij

∣∣∣∣∣∣ χi (~ri) χj (~ri)

χi (~rj) χj (~rj)

∣∣∣∣∣∣ . . . χN (~rN) (3.12)

Thus each such pair of terms of indices i and j of the Slater Determinant give rise

to a new Slater determinant when acted upon by the two body operator, Ôij .

This means that
∑
ij

Ôij, when acted on the Slater determinant, D, will give rise

to many slater Determinants.

As we want to renormalize the basis set of Slater Determinants, we have to keep

control over the number of Slater Determinants generated at each step.

For this we apply the Hubbard Stratonovich Transformation [7], on the two-body

operator present in the Hamiltonian.

3.2.3 Applying the Hubbard-Stratonovich Transformation

The Hubbard Stratonovich transformation converts the fermionic interaction terms

to non-interacting fermionic terms coupled to a fluctuating electric field [8]. The

transformation formula is written as

exp{1

2
A2} =

∫
exp

(
1

2
x2 − xA

)
dx (3.13)

where x is the fluctuating field.

The Hubbard term, can be written as

ni↑ni↓ =
1

2
(ni↑ − ni↓)2 − 1

2
(ni↑ + ni↓) (3.14)
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If we define the auxillary field to be an Ising variable s, then it can be shown using

Eq. 3.13 that,

exp{∆τUni↑ni↓} =
1

2

∑
s=±1

exp{α (s)ni↑} exp{α (−s)ni↓} (3.15)

where

α (s) = 2as− ∆τU

2

a = tanh−1

√
tanh

(
∆τU

4

)
The right hand side of Eq. 3.15 has 2 terms. So, this operator acting on a Slater

determinant will generate 2 more Slater determinants.That is,

exp{∆τUni↑ni↓}|φ〉 =
1

2

(
|φi+〉+ |φi−〉

)
(3.16)

So,

exp{∆τHU}|φ〉 =
1

2N

∏
i

(
|φi+〉+ |φi−〉

)
=
∑
j

|φj〉
(3.17)

Thus this term would generate 2N Slater Determinants at each time step, ∆τ .

So this basis has to be truncated at every iteration. The truncation is performed

by solving expectation values of the energies calculated with the old and the new

basis sets. The one which gives the lower expectation value is considered for further

calculation.

So the steps for the PIRG calculation are as follows

I STEP-1: Choose an Initial Trial Wave Function

We choose the trial wavefunction almost similarly as we do for Quantum Monte
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Carlo Methods. We can also start with any random single Slater Determinant.

After a number of iterations, we get a set of basis states {|φi〉} of size L (say) with

which we construct trial wave function.

The trial wave function can then be written as

|Ψtrial〉 =
L∑
i=1

ci|φi〉 (3.18)

The cis are taken as the Gutzwiller or Jastrow terms.

For example, if we consider the Gutzwiller parameter, g, each Slater Determinant

[φi] (corresponding to the state |φi〉) will become g〈ni↑ni↓〉 [φi].

So we can calculate the expectation value
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 and minimize with respect to

g .

I STEP-2: Operate by exp{∆τHk} on one of the Basis States

Suppose the operator exp{∆τHk} acts on the state |φj〉. This will produce a single

Slater Determinant |φ′j〉 . So we have 2 basis sets: the old one is,

{|φ1〉, |φ2〉 . . . , |φj〉 . . . , |φL〉}

.

And the new one is

{|φ1〉, |φ2〉 . . . , |φ′j〉 . . . , |φL〉} .

We calculate the expectation values

∑
mn

c∗mcn〈φm|Ĥ|φn〉∑
mn

c∗mcn〈φm|φn〉
with both the basis sets

and accept the one which gives the lower energy.

I STEP-3: Operate by exp{∆τHU} and Renormalize
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This itself is done in N steps, where N is the number of sites of the system.

exp (∆τni↑ni↓) will generate 2 Slater Determinants.

So there will be 3 basis sets to compare:

1. {|φ1〉, |φ2〉 . . . , |φj〉 . . . , |φL〉}

2. {|φ1〉, |φ2〉 . . . , |φi+j 〉 . . . , |φL〉}

3. {|φ1〉, |φ2〉 . . . , |φi−j 〉 . . . , |φL〉}

Now, the one which gives the lowest energy will be taken as the next basis set.

The basis states |φj〉, |φi+j 〉 and |φi−j 〉 from whichever basis set is chosen, is taken

as the next state to operate on.

This step is repeated for i = 1 to n and every time the above comparison in made.

I STEP-4: Repeat the above 3 steps till target energy con-

verges

Upto STEP-3 it was for one time step of ∆τ . The above steps are repeated till

convergence ( |Ej+1 − Ej| is less than some accuracy value of the order of 10−6 ).

Using our PIRG code in FORTRAN, which is, in a stage of development, we plan

to study accurately more correlated systems, which cannot be simulated using the

DMRG method.
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