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Synopsis

Quantum theory of solids predicts myriad quantum states of matter e.g., superconduc-

tivity, charge density waves, ferro-magnetism, etc. Each of these phases arises as a result

of spontaneously broken symmetries in a material. Hence, each phase can be associated

with an order parameter with consequences to observables that acquire finite values in

those states of matter. Discovery of quantum Hall effect in 1980 revealed a fascinating

quantum state of matter that does not require any explicit symmetry breaking and yet

exhibits some new fundamental properties like quantized Hall conductance that is insensi-

tive to small perturbations. It was shown that there exists a topological order in quantum

mechanical many-body wave functions of its ground state that protects and is responsible

for the quantized conductance.

Though the concept of topological order have been existing in condensed matter

physics for a long time, research in this area has revived significantly after the recent

discovery of quantum spin Hall (QSH) effect in HgTe/CdTe quantum wells in 2006. QSH

systems are 2D topological insulators which host robust conducting edge states that re-

main protected by time-reversal symmetry, and physics of such systems can be adequately

described in terms of single-particle quantum mechanics. Discovery of robust topological

phases in non-interacting and real materials gave an immense boost to the research in

topological physics.

The work in my Ph.D. dissertation is focused on the prediction of new materials

with nontrivial electronic topology using first-principles calculations based on density

functional theory (DFT), which have proven to be very useful and effective in studying

electronic topology of materials. In addition to first-principles analysis, we have developed

model Hamiltonians using group theoretical analysis and provided qualitative mechanism

of the vibrational anomalies observed at electronic topological transition (ETT), which

would otherwise be difficult to obtain within DFT. Model Hamiltonian based analysis

also allowed us to go beyond the adiabatic Born-Oppenheimer approximations in order to

capture the dynamical corrections due to electron-phonon coupling at the ETT. During my

vii



thesis, we have actively collaborated with experimentalists in India and have successfully

explained their experiments.

As many good thermoelectric materials are shown to possess non-trivial electronic

topology (e.g., Bi2Te3), another important aspect of my thesis involves determination and

analysis of thermoelectric properties of topologically non-trivial and related materials. We

have attempted to understand the link between thermoelectricity and topology. Based on

the information obtained from this analysis, we suggest ways to improve thermoelectric

efficiency of materials.

The work in the thesis is broadly divided into four parts dealing with materials be-

longing to different symmetry and topological classes. First part (Chapter 3-4) of the

thesis deals with strong Z2 topological insulators in three dimensions. In Chapter 3, we

investigated pressure/strain induced electronic topological transition (ETT) in rhombo-

hedral Sb2Se3, β-As2Te3 and Bi2Se3 in the low pressure regime (< 8 GPa). In Chapter

4, we have uncovered the mechanism that explains the origin of anomalous temperature

dependence of electronic and vibrational properties of strong topological insulator Sb2Te3.

Learning from the physics and the concurrent transient Dirac semimetallic state at

an ETT in Chapter 3, we have provided detail theoretical recipes to achieve topological

Dirac semimetallic state in non-centrosymmetric ternary half-Heuslers (e.g., LiMgBi) as

well as centrosymmetric Zintl family of compounds Bi2Mg2X (X=Mg, Ca, Sr, Ba) in the

second part of the thesis (Chapter 5-6).

Like strong Z2 topological insulator, weak topological insulator is also a fascinating

quantum states of matter that exhibits exotic quantum phenomena e.g., one dimensional

helical modes along dislocation lines, half quantum spin Hall effect. In the third part

(Chapter 7), we have predicted emergence of weak topological insulating phase in BiSe,

whose crystal structure consists of a Bi bilayer sandwiched between two Bi2Se3 quintuple

layers.

In the fourth and final part of my thesis, we have calculated the electronic (Chapter

8) and vibrational (Chapter 9) contributions to thermoelectric properties of topologically

non-trivial and related materials. Based on our calculations, we predicted that TaAs,

a Weyl semimetal, would be a good thermoelectric material. Our calculations also un-

covered that rattling vibrations of the In+ atoms in InTe and Tl+ atoms in TlInTe2 are

mainly responsible for reducing their lattice thermal conductivity to an ultralow value.
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Chapter 1

Introduction

Science is the belief in the ignorance of experts.

Richard P. Feynman

Electronic structure calculations based on Kohn-Sham density functional theory (DFT)

are thus far proved to be a widely popular and highly successful theory in condensed mat-

ter physics and materials science. DFT has shown unprecedented accuracy in predicting

and explaining the macroscopic as well as microscopic properties of materials in the bulk

form, surfaces and interfaces, which are quantitatively comparable to the experimental

measurements. With the predictive capability of DFT along with advances in supercom-

puting resources, a large number materials can be screened to find the required proper-

ties, thereby reducing the efforts of experimentalists and making research and scientific

exploration of materials cost-effective. Novel materials and their exotic properties can

be predicted within DFT. While some of the predictions can be readily realized within

the laboratory, some of them may not be feasible in immediate experimental realization

within the existing experimental capabilities. This confidence, flexibility and success of

DFT stem from its ability to compute properties of materials with no adjustable parame-

ters. Properties of condensed phases of matters are characterized by arrangements of the

electrons, their interaction among themselves and with ions. Theoretically, the behavior

1
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of electrons and ions can be described exactly by the many body quantum mechanics.

However, due to interactions between electrons and ions, the many body Schrödinger

equation practically becomes impossible to solve. In order to circumvent this problem,

and solve the electronic structure of the condensed phase of a material, Kohn-Sham DFT

uses (a) classical nuclei and (b) Born-Oppenheimer approximations, where the many

body Schrödinger equation is mapped onto a set of self-consistent one-electron equations

assuming that the non-interacting electrons move in an effective field generated by elec-

trons and ions. Such one-particle Hamiltonian is known as the Kohn-Sham Hamiltonian

(KSH). All many body effects (e.g., electron-electron interactions) are lumped into the

exchange-correlation energy term which is a universal functional of the electronic density

and included in the non-interacting Kohn-Sham Hamiltonian. The KS-DFT works quite

well for describing electronic and vibrational properties of those systems which have weak

electronic correlations.

One of the main tasks in condensed matter physics has been to classify phases of

matter. For example, quantum theory of solids predicts different quantum states of matter

like ferro-magnetism, superconductivity, charge density waves etc. Each of these phases

arises as a result of spontaneously broken symmetry in a material [1, 2]. For example,

a ferromagnetic material breaks the time reversal symmetry, a superconductor breaks

subtle gauge symmetry, and a crystalline solid breaks continuous translational symmetry.

In each of these states, we can define an order parameter which acquires a nonzero value in

that ordered phase with consequences to observables. The physics of such phases near the

phase transition can be adequately captured using an effective mean field theory namely

the Landau theory [3], which expresses the free energy of a system in terms of its order

parameter taking into account the dimensionality and symmetry. Thus, Landau theory

provides universal and phenomenological explanation of these quantum phases of matter

arising from broken symmetries, though it is appropriate close to the phase transition,

where fluctuations are strong.
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Discovery of certain quantum states of matter in the last few decades e.g., the frac-

tional quantum Hall effect (FQHE) [4,5] has challenged the existing classification scheme

of states of matter based on spontaneously broken symmetry. In FQHE, we observe fun-

damental properties like robust quantized conductivity even when no explicit symmetry is

broken. It was shown that FQHE is associated with a robust topological order parameter

which is highly non-local in nature, and such a quantum state can not be phenomeno-

logically described by Landau’s theory. Generally, states of materials that possess robust

order parameters are called topologically ordered materials and the phases associated with

them are called topological phases whose low energy effective physics can be described by

topological field theory. Although, the concept of topologically ordered phases of matter

existed in condensed matter physics for many years, most examples involve somewhat

complicated states of matter like FQHE, which have strong electron-electron correlations

and hence description of its physics requires an inherently many-body treatment.

After the discovery of integer quantum Hall (IQH) effect [6] in 1980, it was realized for

the first time that a non-interacting system can also host robust topologically nontrivial

electronic phase. The IQH state possesses robust edge states and exhibits quantized Hall

conductivity which are insensitive to the smooth adiabatic changes in the material pa-

rameters and hence can not be destroyed without a quantum phase transition. The IQH

effect requires an external magnetic field, which explicitly breaks time reversal (TR) sym-

metry. Later, TR invariant systems with robust edge/surface states were proposed e.g.,

in Haldane model [7] and quantum spin Hall (QSH) insulator [8] which possess nontrivial

band topology. It was realized that the strong spin-orbit interaction in non-interacting

fermionic systems can give rise to topologically nontrivial phases in the electronic struc-

ture. The term ‘topology’ is attached to any electronic state of matter which ensures the

existence of bulk topological invariants that are used to distinguish trivial and nontrivial

phases of a material with same symmetry.

The extended branch of band theory of solids that describes the topological physics of

non-interacting electronic systems is known as the topological band theory. The crucial
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elements of topological band theory are Berry connection, Berry phase, Chern number

which can be easily formulated and computed within single particle quantum mechanics.

For these reasons, DFT proves to be a very useful theoretical tool in dealing with materials

with nontrivial electronic topology as it can accurately treat a material within single

particle approximation and include the effect of spin-orbit coupling (SOC) in the KS

Hamiltonian, which is one of the most crucial ingredients in known nontrivial topological

material.

The first remarkable success of DFT in the area of topological physics came when

Bi2Se3, Bi2Te3 and Sb2Te3 were predicted to be the strong Z2 topological insulators in

three dimensions with only a single Dirac cone in the electronic structure of their (001)

surfaces [9]. These predictions were subsequently confirmed by experiments [10]. Thallium

based ternary chalcogenides (TlBiSe2, TlBiTe2, TlSbSe2) were also first predicted theoret-

ically [11] to be strong topological insulators, and their topological properties verified by

angle resolved photoemission spectroscopy (ARPES) experiments [12]. After the discov-

ery of insulating phases in materials with Z2 topological order, materials belonging to the

different symmetry and topological classes have been predicted mostly by first-principles

calculations based on DFT, and some of which have even verified experimentally.

For decades, electronic structure and properties of semiconductors are being investi-

gated by k.p or tight binding model Hamiltonians which accurately describe the electronic

dispersions around the Fermi energy with the same level of accuracy as of first-principles

DFT calculations. These model Hamiltonians have been important theoretical tools to

understand and analyze the topological nature of the electronic structure of a material.

Linearly dispersed gapless surface or edge states are one of the unique features in identi-

fying the nontrivial topology of a topological insulators. Calculation of these nontrivial

surface or edge states with model Hamiltonian can be a bit tricky as the complex inter-

action on the surface of a material (e.g., polarity of the surface, dangling bonds, surface

reconstruction etc.) are not included in a model Hamiltonian. For these reasons and also

for the fact that DFT can accurately calculate the electronic structure and properties of



1.1 Distinct topological phases of matter 5

materials of large sizes with any structural and chemical complexities, it has gained huge

popularity and success in dealing with specific materials with nontrivial electronic topol-

ogy. Moreover, DFT offers numerous possibilities like checking the stability of a topolog-

ically nontrivial material with respect to a substrate, its interaction with other materials,

behavior under extreme conditions like high pressures, external electric, magnetic field,

etc. Using DFT calculated results, we can construct tight binding model Hamiltonian

using maximally localized Wannier functions (MLWFs) [13] which are molecular orbital

analogue of a crystal, and thus are easy to use in analysis of electronic structure and

bonding. Using this MLWFs, Chern number, topological Z2 invariants can be calculated

with ease [14].

The foundations of modern topological phenomena in physics were laid by David

J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz, who in the early 1970s

and 1980s theoretically [7, 15,16] explained the physics associated with quantum Hall ef-

fect [17], superfluid phase transition [18] using the mathematical tools of topology. Their

theory not only unraveled new exotic and unusual quantum states of matter but also

sparked a flurry of research activity in topological materials that could be used in future

fault-tolerant fast electronics, superconductors or even quantum computers. For these

pioneering works, David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz

were awarded the Nobel prize in physics in 2016 “for theoretical discoveries of topologi-

cal phase transitions and topological phases of matter∗”. Now recognized as fundamental

mechanism in condensed matter physics, topological nontrivial phases have been discov-

ered in materials ranging from systems in 1D [19] to 2D materials to even materials in

three dimensions.

1.1 Distinct topological phases of matter

A unifying concept of these novel and exotic quantum states of matter is the existence

of bulk-boundary correspondence principle which relates the nontrivial electronic topology

∗citation from https://www.nobelprize.org/nobel prizes/physics/laureates/2016/
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of the bulk to the presence of robust conducting surface or edge states. Although most

of the materials having nontrivial topology host gapless surface/edge states, it has been

theoretically shown that nontrivial topological phase may exist even without exhibiting

gapless edge modes [20].

Initially, it was thought that the topological band theory can only be applied to gapped

phases e.g., to insulators and semiconductors, as smooth adiabatic deformation can not

change the topology of the bulk of a system as long as the ground state and the excited

states are separated by a band gap [21]. In order to change a topological insulator into

a band insulator, a quantum phase transition must take place and the system must pass

through a gapless electronic state. However, recent advances in topological research have

altered this concept and the existence of topologically nontrivial phases are theoretically

predicted and experimentally observed in semimetals with vanishing band gaps. Moreover,

topological phase transition is shown to occur without passing through a gapless state [22].

Examples of semimetals with nontrivial electronic topology are topological semimetal

[23,24], Dirac semimetal [25], Weyl semimetal [26]. Most of these topologically nontrivial

semimetals are more exciting than their insulating counterparts as they exhibit exotic

phenomena like open Fermi arcs in the surface states, giant negative magneto-resistance

[27], ultrahigh mobility [28], chiral anomaly [29].

Study of topologically exotic phases in the context of real materials is expanding enor-

mously because of their rich physics and potential for applications in electronic devices.

For example, Majorana fermions are shown to exist at the edge of a topological super-

conductor [30], which are the heart of quantum computers. Highly spin-polarized and

robust conducting surface states or edge channels in topological insulators can be used in

spintronics which are fault tolerant and thus can minimize loss of informations. After the

discovery of quantum Hall effects [7, 31, 32], an array of research activity in this area has

spurred that has uncovered different topological phases of matter. A list of such systems

exhibiting electronic topology is given below.
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1.1.1 Quantum Hall effects

Quantum Hall effect

The modern research in the field of topological phases of matter kick-started with the dis-

covery of quantum Hall (QH) effect [31] in 1980, which was observed in a two-dimensional

electron gas system subjected to a strong magnetic field at low temperature. A quan-

tum Hall system exhibits quantized hall conductance (σxy=ν
e2

h
), which originates from

the Berry curvature of the filled magnetic Blöch bands (or Landau level). The integra-

tion of the Berry curvature associated with these bands in the Brillouin zone gives rise

to a topological invariant quantity (ν) known as the Thouless-Khomoto-Nightingle-den

Nijs (TKNN) number [33]. The conducting edge states in a QH system are robust and

their conduction is dissipation-less. Hence, they can be used in fault-tolerant high speed

electronic devices.

Quantum anomalous Hall effect

Since QH effect requires strong magnetic field and generation of strong magnetic field at

low temperature is quite unfeasible for widespread application of QH effect in devices, it is

highly desirable to realize QH effect in materials without applying the external magnetic

field. In 1982, Haldane proposed an analogous model (known as the Haldane mode [7])

to realize the quantum Hall effect in a 2D honeycomb lattice which does not require

an external magnetic field and yet exhibits quantized conductance (σxy=ν
e2

h
, with ν=1).

In this model, the time-reversal (TR) symmetry of the honeycomb lattice is broken by

applying a periodic magnetic field in such a way that the net magnetic flux in a unit

cell becomes zero. The broken TR symmetry lifts the degeneracy of Dirac cone in the

electronic structure of the honeycomb lattice and opens up a gap at the Dirac point. In

this gapped state, the Chern number of the system is unity. This type of Hall effect,

which does not require any net magnetic field, is known as quantum anomalous Hall

effect (QAHE), and an insulating material exhibiting such property is called quantum
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anomalous Hall insulator or Chern insulator. Although Haldane provided a simple route

to realize the QH effect without applying any magnetic field, no real material system was

proposed for its experimental verification. For this reason, after the prediction of QAHE,

it was not initially accepted unanimously within the scientific community partly because

(a) 2D systems were considered to be unstable and (b) Haldane’s proposal of applying

alternating magnetic flux in a single unit cell was not feasible in experiments. But after the

discovery of graphene [34], the wonder material in two dimensions, the work by Haldane

renewed the attention and increased the significance of the Quantum anomalous Hall

effect. Experimentally QAHE was realized both in the context of graphene [35] and

ferromagnetic topological insulator [36].

Quantum spin Hall effect

As the quantized Hall conductivity in QH effect or QAHE is odd under time-reversal sym-

metry, the robust conducting edge channels (which are topologically nontrivial because of

their non-zero Chern number) in them can only be realized in systems where time reversal

symmetry is broken either by external magnetic field or by magnetic order. However, the

presence of spin-orbit coupling (SOC) in a material allows a different topological classifi-

cation of insulators which are invariant under time-reversal symmetry and exhibit robust

gapless topologically nontrivial edge/surface states. These insulators where TR symme-

try is preserved are called Z2 topological insulators [37], and their associated topological

invariants are characterized by Z2 indices.

The possibility of having a time-reversal invariant topological insulator in two-dimension

was first proposed in the Kane-Mele model [32] which is considered to be composed of

two copies of the Haldane model with both up and down spin electrons. Addition of

spin-orbit interaction term in the Kane-Mele model gives rise to topological insulating

state in it. This 2D topological insulator is also known as quantum spin Hall (QSH)

insulator that exhibits quantized spin Hall conductance, but with a vanishing charge Hall

conductance. After the theoretical prediction of the QSH effect, it was experimentally
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realized in HgTe/CdTe quantum well heterostructure [38].

1.1.2 Z2 topological insulators

Strong topological insulator

The concept of topological insulating phase in 2D systems (or QSH insulators) can be

extended to three dimensions. In a 3D topological insulator, the electronic structure of a

material remains gapped in the bulk but on its surface it hosts gapless robust conducting

states which are protected by time-reversal symmetry (in Z2 topological class). In three

dimensions, topological insulators are divided into two classes (a) strong topological in-

sulator (STI) and (b) weak topological insulator (WTI). In a seminal work, Zhang et al.

theoretically predicted the first three dimensional STI in Bi2Se3 materials class [9], which

hosts a single Dirac cone in the electronic structure of (001) surface. These states are ro-

bust and show spin-momentum locking. Their theoretical prediction was experimentally

verified with angle resolved photo-emission spectroscopy (ARPES) experiments [10]. In

three-dimension, there are four Z2 invariants (ν0; ν1, ν2, ν3) for a time-reversal invariant

system. For a STI, ν0 must be 1 and the rest of the indices may or may not take non-zero

values.

Weak topological insulator

On the other hand, if ν0 is zero, but at least one of the other three indices (ν1, ν2, ν3)

becomes 1, then the TR-invariant material belongs to weak topological insulating phase.

For a weak topological insulator (WTI), the appearance of the topological surface states

depend on surface termination. A WTI consists of stacked layers of 2D topological in-

sulators and topological surface sates only appear on its side surfaces [39]. Nevertheless,

WTIs are very interesting as they exhibit several intriguing quantum phenomena like one

dimensional helical modes along dislocation lines [40], weak anti-localization effect [41]

and half quantum spin Hall effect [42].
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Topological crystalline insulator

Topological crystalline insulators (TCIs) are novel states of quantum matter where the

topologically nontrivial phase in their electronic structure is induced by the crystalline

symmetry of the materials [43]. Presence of topologically nontrivial crystalline insulating

phase was first theoretically predicted in SnTe family of materials [44]. These TCIs were

shown to possess non-zero mirror Chern number (a topological invariant quantity) in the

bulk, and exhibit gapless metallic surface states with even number of Dirac cones on their

high symmetry crystal surfaces [44]. Soon after its theoretical prediction, TCI phase was

experimentally verified in Pb1−xSnxSe using ARPES experiments [45].

1.1.3 Topologically nontrivial semimetals

Topological semimetal

Studies of topologically nontrivial electronic states in metallic and semi-metallic systems

have revealed many exotic topological phenomena like giant magneto-resistance, ultrahigh

mobility [28], chiral magnetic effect [29]. Two pioneering theoretical studies [23, 24] pre-

dicting the existence of topologically nontrivial semi-metallic state in ternary half-Heusler

(HH) compounds added a new dimension to the research in topological phases of matter.

These HH compounds are shown to possess nontrivial Z2 order in their bulk form and

can be driven into distinct topological phases under mechanical strain. One characteristic

feature of this TSM phase is that, the valence and conduction bands touch each other

quadratically at Γ near the Fermi level [23, 24].

Dirac semimetal

Dirac semimetal (DSM) is a novel quantum state of matter where doubly degenerate

bands cross linearly near the Fermi level. The crossing point is called Dirac point which

is quadruply-degenerate. The low energy physics of a Dirac semiemtal is described by the

Dirac Hamiltonian. BiO2 is the first theoretically Dirac semimetal in three dimensions,
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where the Dirac points in its electronic structure appear due to the non-symmorphic

symmetry or space group of the crystal lattice [46]. Wang et al. [25] predicted topological

Dirac semi-metallic (TDSM) state in A3Bi (A=Na, Rb, Cs) class of compounds which

are both inversion symmetric and invariant under time-reversal symmetry. These TDSMs

host a pair of Dirac points in their bulk Brillouin zone. This theoretical prediction of

TDSM state in Na3Bi has been experimentally verified by ARPES measurements [47].

Weyl semimetal

In a Weyl semimetal (WSM), non-degenerate bands cross linearly near the Fermi level and

give rise to a Weyl point which is doubly degenerate. The low energy physics of a WSM

can be effectively described with the Weyl Hamiltonian H(k) = ±vk.σ, where k is the

wavevector, v is electron’s velocity and σ are the Pauli matrices. By breaking either the

spatial inversion symmetry or time reversal symmetry, we can turn a DSM into a WSM.

The WSM state was first theoretically predicted in A2Ir2O7 (A=Y or Ln) pyrochlore

iridates [48]. The most prominent examples of WSMs are transition-metal monopnictides

(TaAs, TaP, NbAs, NbP) which were first theoretically predicted [49] using first-principles

calculations based on DFT. Later, these compounds were experimentally verified to be

WSMs using ARPES technique [26,50–52].

1.2 Elements of topological band theory

1.2.1 Bulk-boundary correspondence principle

According to the bulk-boundary correspondence principle, at the interface between two

materials belonging to same symmetry but different topological classes, topological edge

or surface states appear. For example, if the two materials have bulk topological in-

variants n and m, then at their interface there will be precisely |n-m| number of edge

states [53]. Basically, this principle establishes the relation between edge/surface states

to topological properties of the bulk wave functions. This principle in general holds true
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for non-interacting fermionic systems [20].

1.2.2 Berry curvature and Berry phase

When an electronic state undergoes a cyclic adiabatic evolution in a closed path in the

Brillouin zone, it may acquire a phase which is known as the Berry’s phase (γ). If there

are M non-degenerate bands present in a material, then for each band n, Berry’s phase is

given by γn =
∮

c
dk.An(k), where An(k) is the Berry connection of the n-th band and is

analogous to magnetic vector potential in the reciprocal space. Berry connection is given

by An(k) = i 〈un(k)| ∂
∂k

|un(k)〉. Berry curvature is defined as the field associated with the

Berry potential An(k) and can be obtained as: Ωn(k) = ∇k ×An(k). In the case of non-

degenerate bands, Berry curvature is Abelian. But when degeneracy is present within the

band manifold of interest, the conventional adiabatic theorem needs to be generalized, and

Berry curvature becomes non-Abelian which is represented by a tensor. This extension of

the Berry curvature to the tensor framework was done in analogy with the non-Abelian

gauge theories by Wilczek and Zee [54] in 1984. In the case of degenerate bands, the

Berry connection is given by, Amn(k) = i 〈um(k)| ∂
∂k

|un(k)〉, where m,n indicate the

band indices (m,n ∈ ∑

) within the degenerate subspace (
∑

= 1, ..., N). In this case, the

non-Abelian Berry curvature is given by [55],

Ωmn(k) = i 〈∂um(k)
∂k

| × |∂un(k)
∂k

〉+ i
∑

l∈
∑

〈um(k)|
∂ul(k)

∂k
〉 × 〈ul(k)|

∂un(k)

∂k
〉 (1.1)

1.2.3 Chern number

Chern number is a topological invariant quantity which is obtained as an integration of

the Berry curvature in a closed surface in the Brillouin zone. Using the definition of Berry

curvature for the non-degenerate case above, the Chern number for the n-th band is given

by,

Cn =
1

2π

∫

Ωn(k)d
2k, (1.2)
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where the integration is taken over the two-dimensional Brillouin zone.

1.2.4 Z2 invariants

Presence of robust edge states in two-dimensional topological insulator or quantum Spin

Hall (QSH) insulator suggests that there must exist a topological distinction between

quantum spin Hall insulator and ordinary insulator for which there are no topological edge

states present. For a time reversal invariant system, Z2 topological invariants differentiate

a QSH phase form an ordinary insulating phase, In two dimensions, there is a single Z2

invariant ν (which can be either 0 and 1). In three dimensions, there are four Z2 topological

indices (ν0; ν1, ν2, ν3) [56], where ν0 is the strong topological index and the rest (ν1, ν2, ν3)

are called weak topological indices. According to Fu & Kane, a Z2 invariant quantity can

be described as an obstruction to finding a smooth gauge for the Blöch wavefunction in

the half-Brillouin zone (BZ) and is given by [57,58],

∆ =
1

2π
(

∮

∂τ 1
2

a.dl−
∫

Ωxyd
2k) mod 2, (1.3)

where τ 1
2
and ∂τ 1

2
denote half-BZ and its boundary respectively. aj = i

∑

n 〈un(k)| ∂
∂kj

|un(k)〉

is the the Berry connection and Ωxy is the Berry curvature.

In a centrosymmetric material, the Z2 topological invariants can be computed straight-

forwardly using the parity of the wave functions of the occupied bands at the time-

reversal invariant momenta (TRIM) in the Brillouin zone [56]. In three dimensions,

there are eight TRIM which form a parallelepiped in the BZ, which are given by Γi =

1
2
(n1b1+n2b2+n3b3), where b1,b2,b3 are primitive reciprocal lattice vectors and n1, n2, n3

can take values of 1 and 0. In this method, the strong topological index is given by,

(−1)ν0 =
∏8

i=1 σi, where σi =
∏

m ξ
(i)
2m is the product of parity of the occupied bands at

i-th time reversal invariant momentum, and m indicates a band from each doubly de-

generate Kramer’s pairs. The other three weak topological indices (νk, k = 1, 2, 3) are

determined based on the parity of the occupied states at four different combinations of
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TRIM in the BZ which form a surface of the parallelepiped excluding the Γ point (in the

kxky-, kykz- and kxkz- planes) through the relation [59] (−1)νk =
∏4

i=1 σi.

1.3 Spin-orbit coupling

Spin-orbit coupling (SOC) is one of the most important relativistic effects of electrons in a

solid which arises from the interaction of angular momentum of electrons with the internal

magnetic field originating from the spin-angular momentum. Strength of SOC is also a

crucial ingredient for a material to be topologically nontrivial. In general, relativistic

effects in a solid can be quite spectacular which can affect its electronic, vibrational,

spectroscopic properties. From elementary quantum mechanics we know that velocity of

an electron is proportional to Z (atomic number) of an atom. Thus, the relativistic effects

(particularly SOC) become more prominent for heavy elements (i.e. high Z value).

One of the greatest triumphs of the twentieth century’s physics was to successfully

combine special theory relativity and quantum mechanics to unravel many mysteries in

physics. After the initial efforts of Gordon & Klein, it was the British physicist P. A.

M. Dirac who was able to give a successful and elegant theory of relativistic quantum

mechanics. Here, we show how spin-orbit coupling term naturally arises in the relativistic

equation of Dirac. The relativistic Dirac Hamiltonian for a free particle is given by,

H = cα.p + βmc2, where p = −i~∇ is the momentum operator and c is the speed of

light in vacuum. It was shown that the minimum dimension of α and β matrices in the

solution of the Dirac Hamiltonian is four [60]. Among many number of possible choices,

the standard form of α and β are

α =







0 σ

σ 0






β =







I2×2 0

0 −I2×2






(1.4)

where σ are the Pauli spin matrices and I is identity matrix of order 2. The Pauli spin



1.3 Spin-orbit coupling 15

matrices σ are given by,

σ1 =







0 1

1 0






σ2 =







0 −i

i 0






σ3 =







1 0

0 −1






(1.5)

The Dirac Hamiltonian for a particle with charge q in the presence of electromagnetic field

(A, φ) is [61], H = cα.(p − qA) + qφ + βmc2, where A is the magnetic vector potential

and φ is the scalar electrostatic potential. This equation can be put into the form as,

[(E − qφ)− cα.(p− qA)− βmc2]ψ(r) = 0, (1.6)

where ψ(r) is a four component spinor wave function of the Dirac equation. The four

component spinor wave function can be written in terms of two component spinors φ(r)

and η(r) as follows,

ψ(r) =







φ(r)

η(r)






(1.7)

In the above equation (i.e. Eq. (1.7)), φ(r) and η(r) are called large and small component

spinor wave functions, respectively.

For a central field (Coulomb potential near the nucleus), A = 0 and qφ = −eφ = V (r).

Substituting Eq. (1.7) in Eq. (1.6) we get,

Eφ(r) = c(−i~∇− qA).ση(r) + (qφ+mc2)φ(r)

Eη(r) = c(−i~∇− qA).σφ(r) + (qφ−mc2)η(r).

(1.8)

In the Coulomb field of a nucleus and in the non-relativistic limit of the Dirac equation,

from Eq. (1.8), we can write,

η(r) =
1

E ′ + 2mc2 − V (r)
c(−i~σ.∇)φ(r), (1.9)

where E = E ′+mc2. In the above Eq. (1.9), |E ′| and |qφ| = V (r) are much smaller than
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mc2 term.

We solve for φ(r) by substituting Eq. (1.9) in the first equation of Eq. (1.8). Expand-

ing [E ′ + 2mc2 − V (r)]−1 to lowest order we get,

E ′φ(r) =

[

− ~
2

2m
∇

2 + V (r) +
~
2

2m

E ′ − V (r)

2mc2
∇

2 +
1

2m2c2
1

r

dV

dr
L.S

− ~
2

4m2c2
dV

dr

∂

∂r

]

φ(r),

(1.10)

where the fourth term represents the spin-orbit coupling Hamiltonian, commonly denoted

by HSO.

HSO =
1

2m2c2
1

r

dV

dr
L.S. (1.11)

While arriving at Eq. (1.10), we have used the following approximations and relations,































[E ′ + 2mc2 − V (r)]−1 ≃ 1
2mc2

[1− E′−V (r)
2mc2

]

L = r× p = r× (−i~∇)

S = i~σ/2

(1.12)

Here, L and S represent total orbital angular momentum and spin angular momentum

of an atom respectively. The strength of spin-orbit interaction is roughly proportional to

Z4. The physical reasoning behind this is that as Z increases, the number of electrons

increase. Therefore, the electrons experience stronger internal magnetic field, and the

interaction energy also becomes larger. In crystalline solids, the spin-orbit interaction

is k-dependent. For example, at L-point in the Brillouin zone of a cubic material, the

spin-orbit splitting is typically 2/3 order of magnitude smaller than at Γ-point [62].

1.4 Overview of the thesis

The work in this thesis involves first-principles theoretical prediction and analysis of

topologically nontrivial materials belonging to different symmetry classes (Chapter 3-7)
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and investigations of the electronic (Chapter 8) and vibrational (Chapter 9) contributions

to thermoelectric properties of topologically nontrivial and related materials. After a

brief introduction to the work here, I give an overview of the computational methods in

Chapter 2, and summarize the thesis in Chapter 10.

The content of the thesis has been broadly divided into four parts. In the first part

(Chapter 3 & Chapter 4), we focus on Sb2Se3, β-As2Te3, Bi2Se3, materials belonging to

the same crystal family and topological class (strong topological insulators) at ambient

or perturbed conditions. In Chapter 3, we describe the physics of binary chalcogenides

(Sb2Se3, β-As2Te3, Bi2Se3) at the electronic topological transition as a function of pressure

or strain. In Chapter 4, we investigate the microscopic mechanism responsible for the

anomalous temperature dependence of electronic and vibrational properties of Sb2Te3 in

200-250 K temperature range. This is relevant to other layered chalcogenides (e.g., Bi2Se3,

Bi2Te3) as well.

The second part (Chapter 5 & Chapter 6) of the thesis is related to the materials that

are Dirac semi-metals (DSMs). DSM is a quantum state of matter that exhibits exotic

chiral, transport and superconducting properties and also acts as a parent state to other

topological states (e.g., topological insulator). In Chapter 5, we predict the existence

of topological Dirac semi-metallic state in the strained structure of non-centrosymmetric

ternary half-Heusler (HH) compounds, where a pair of Dirac points is protected by the

three-fold crystal symmetry. Taking LiMgBi as a model system, we determine its topo-

logical phase diagram, and discover that topological insulating, Dirac semi-metallic and

band insulating states are common to the strained structure of the HH compounds. We

also uncover a gapped band insulator to topological insulator transition in LiMgBi, and

explain it with symmetry arguments. In Chapter 6, we predict nontrivial topological

states in a Zintl family of Bi2Mg2X (X=Mg, Ca, Sr, Ba) compounds. While Bi2Mg2Ba

exhibits a Dirac semi-metallic state at ambient conditions, Bi2Mg2Ca and Bi2Mg2Sr are

narrow band gap topological semiconductors in their native states that can be driven into

DSM phase by applying three-fold symmetry preserving strains.
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In the third part of my thesis (Chapter 7), we predict yet another exotic quantum

state of matter known as weak topological insulator (WTI) in BiSe. The unit cell of

BiSe consists of a Bi2 layer, sandwiched between two Bi2Se3 quintuple layers along the

c-direction (layered direction of the crystal). We showed that even number of band in-

versions in its Brillouin zone make this material a WTI. We established its WTI states

by calculating the Z2 topological invariants, which are (0;001). Through calculation of its

surface electronic structure, we show that there exists an even number of gapless Dirac

cones on its side surface, further confirming the WTI phase.

In the fourth part (Chapter 8 & Chapter 9) of my thesis, we present thermoelectric

(TE) properties of topologically nontrivial (Chapter 8) and related chalcogenide materi-

als (Chapter 9). In Chapter 8, we present our work on the electronic contributions to

thermoelectric properties of materials belonging to different symmetry and topological

classes. We find that multiple sub-band structure, small band gap of topological insu-

lators, and their vicinity to a metallic state associated with an ETT are responsible for

their superior TE performance. In Chapter 9, we focus on vibrational properties relevant

to thermoelectric performance of InTe (In1+In3+Te2−2 ) and TlInTe2 compounds, both of

which are shown to exhibit ultralow lattice thermal conductivity (κl). These compounds

share similar crystal structures consisting of a rigid anionic and loosely bound cationic

sub-structures showing the characteristics of part-crystalline part-liquid-like materials.

With the help of first-principles calculations based on density functional theory, we show

that the ultralow κl of these compounds arises from (a) very low sound velocities, and

(b) the rattling vibrations of In1+ and Tl atoms along z-directions in InTe and TlInTe2

respectively, which scatter the heat carrying acoustic phonons through strong anharmonic

phonon-phonon interactions. The lattice anharmonicity in these compounds is evident in

their anomalously high Grüneisen parameters.
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Methods and Formalism

In this chapter, we briefly discuss the theoretical background and the computational

methods that we employed in our calculations within the framework of density functional

theory.

First, we show in section 2.1 how calculation of electronic structure of a material can

be carried out within certain approximations e.g., Born-Oppenheimer [63] and classical

nuclei approximations. Using these, many body Schrödinger equation can be reduced to a

set of coupled one electron equations of Kohn-Sham, which then can be practically solved

(see section 2.2). The total energy obtained after solving the Kohn-Sham Hamiltonians

can be used further to calculate many physical quantities. For example, first order deriva-

tives of total energy with respect to the electric, magnetic field, atomic displacement give

polarization, magnetization and forces, respectively. Similarly, dielectric constant, mag-

netic susceptibility, elastic moduli can be obtained by taking the second order derivatives

of the total energy with respect to electric, magnetic fields and strain, respectively.

Phonons are quanta of lattice vibrations in a material. In section 2.5, we have dis-

cussed the theoretical approach within the adiabatic density functional perturbation the-

ory (DFPT) [64] used to calculate the phonon frequencies and related properties. In

section 2.6, we describe how maximally localized Wannier function (MLWF) [13] can be

used efficiently to calculate Berry phase, Berry curvature, Chern number of a material.

19
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Using MLWF and employing the idea of time reversal polarization [14,65], we review how

Z2 topological invariants can be obtained. In the final section (2.7) of this chapter, we

have presented a semi-classical Boltzmann transport equation which is used to calculate

electronic contributions to thermoelectric properties e.g., electrical conductivity, Seebeck

coefficients, thermoelectric power factor.

2.1 Electronic structure

The total quantum mechanical Hamiltonian of a material consisting of electrons and ions

is written as,

H =
∑

I

P2
I

2MI

+ V (RI) +
∑

i

p2
i

2m
+
∑

i,I

u(ri,RI) +
1

2

∑

i 6=j

e2

|ri − rj|
, (2.1)

where PI and MI are the momentum and mass of I-th ion. pi and m are the momentum

and mass of the i-th electron. V (RI) =
e2

2

∑

I

∑

J 6=I
ZIZJ

|RI−RJ |
and e2

|ri−rj |
are inter-nuclear

and inter-electronic Coulomb interactions, respectively. u(ri,RI) = −e2
∑

I=1

∑

i=1
ZI

|RI−ri|

is the electron-ion interaction potential. Here ZI is the atomic number of the I-th ion.

Many properties of a material can in principle be derived from the above Hamiltonian,

if we can solve Eq. (2.1). As a material consists of large number electrons and ions and

their degree of freedoms are coupled to each other, this is a rather hard problem, which is

almost impossible to solve. Hence, we need to use some reasonably good approximations

in order to make the solution of Eq. (2.1) practically feasible.

2.1.1 Born-Oppenheimer approximation

The adiabatic or Born-Oppenheimer approximation [63] is one of the most commonly used

approximations involved in the calculation of electronic structure of a material. This as-

sumption has been made observing the fact that time-scales associated with the motion of

the nuclei (ions) are much slower than those associated with electronic motion. Therefore,
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electrons instantaneously follow the motion of the ions, remaining in the same stationary

(adiabatic) state (ground or excited) without causing non-radiative transition by the nu-

clear dynamics. If this condition is satisfied in a material, then dynamics of the electrons

is said to be adiabatic. Non-adiabatic effects in a system are inversely proportional to

energy difference between the adiabatic electronic eigenstates (i.e. band gap) and hence

can be safely ignored if the energy gap of a material is large. Hence, Born-Oppenheimer

approximation holds good in semiconductors and insulators. But in materials with zero

band gaps (e.g., metals, semimetals), the Born-Oppenheimer approximation may break

down. One example of such systems is graphene [66] which has a zero band gap. We

will show interesting consequences of broken adiabaticity on the vibrational properties of

rhombohedral Sb2Se3 in the third chapter of this thesis.

Within the Born-Oppenheimer approximation, we can decouple the electronic and

ionic degrees of freedom, and hence Eq. (2.1) can be written as,

HΞ(RI , ri) = EΞ(RI , ri), (2.2)

where Ξ(RI , ri) = Ψ(RI)ΦRI
(ri) is the total wave function of a material constituting the

electronic part (ΦRI
(ri)) and the ionic part (Ψ(RI)). The total energy of the electrons

thus can be obtained through solving

HeΨ(RI) = Ee(RI)Ψ(RI), (2.3)

where He = Te +Uee + u(ri,RI) is the electronic Hamiltonian. Te is the kinetic energy of

the electrons. Uee = 1
2

∑

i 6=j
e2

|ri−rj |
is inter-electron interaction potential and u(ri,RI) is

the electron-ion interaction potential between the electrons and ions.

2.1.2 Classical nuclei approximation

The masses of the ions (nuclei) are much larger than the electronic mass. Therefore one

can safely assume that quantum phase coherence of the nuclear wave functions is very less
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or doest not exist at all and hence, we can safely treat nuclei as classical particles. This is

known as classical nuclei approximation which is the second most important assumption

made in simplifying the electronic structure of a matter. Within this approximation, we

can write the total nuclear wave function as the product of all individual nuclear wave

function and therefore we can neglect the exchange and correlation energy arising from

their interactions.

The dynamics of the mean values of position and momentum operators can be obtained

through Ehrenfest’s theorem

i~
d〈R〉
dt

= 〈[H,R]〉 = i~
〈P〉
M

⇒M
d〈R〉
dt

= 〈P〉 (2.4)

i~
d〈P〉
dt

= 〈[H,P]〉 = −i~〈∇Ee(R)〉, (2.5)

where R and P are position and momentum operators respectively. Ee is the total energy

corresponding to the electronic Hamiltonian of Eq. (2.3). Combining Eq. (2.4) and Eq.

(2.5), we can arrive at the very familiar Newton’s equation of motion,

M
d2〈R〉
dt2

= −〈∇Ee(R)〉 (2.6)

From the Hellmann-Feynman theorem [67], we know that the variation of the electronic

energy with respect to any external parameter, λ, coupled to the electrons, can be obtained

as,

∂Ee(λ)

∂λ
=

〈

φRI
(r)

∣

∣

∣

∣

∣

∂He(λ)

∂λ

∣

∣

∣

∣

∣

φRI
(r)

〉

, (2.7)

where φRI
(r) is the electronic wave function for the nuclear configuration {RI}. If

EPES(RI) = Ee(RI)+V (RI) can be defined as the potential energy surface (PES) of any

system for some ionic configurations {RI}, then together with the help of Eq. (2.6) and

Eq. (2.7), we can write for λ = RI ,

MI
d2〈RI〉
dt2

= −
〈

φRI
(r)

∣

∣

∣

∣

∣

∂He(λ)

∂λ

∣

∣

∣

∣

∣

φRI
(r)

〉

− ∂V (RI)

∂RI

. (2.8)
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The solution of the stationary problem i.e. ∇EPES(RI) = 0 to find the minimum

force on each ion through Eq. (2.7) is known as geometry optimization of a material. In

order to achieve this, we have to first determine the total electronic energy Ee(RI) of the

system. Solving the time independent Schrödinger equation Eq. (2.3) to get Ee(RI) is

known by the name of electronic structure calculation [68].

2.2 Density functional theory

Among all the existing methods which can calculate the electronic structure and proper-

ties of materials, density functional theory (DFT) is the most popular and widely used

by physicists, chemists as well as materials scientists. The main idea behind density

functional theory is that it casts the interacting many-body problem into a set of single

particle problems via the charge density of the electrons, where many-body effects are

included through the exchange-correlation energy functional. The foundation of DFT lies

on the basis of two powerful theorems given by Hohenberg & Kohn [69] in 1964, followed

by their practical implementation by Kohn & Sham [70] in 1965.

The modern electronic structure calculation began with the idea of L. H. Thomas [71]

and E. Fermi [72], who around the same time of Hartree, thought that the full electronic

density can be used as a fundamental variable in many body problems rather than the

complicated many-body wave function itself. Their approximation is known as Thomas-

Fermi approximation.

2.2.1 Thomas-Fermi model

Thomas and Fermi wrote the total electronic energy of an inhomogeneous system as a

functional of electron density ρ as given below,

Eα[ρ] =

∫

ρ(r)ǫα[ρ(r)]dr, (2.9)
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where ǫα[ρ(r)] is the energy density which consists of the contributions coming from the

kinetic, exchange and correlation energies of a homogeneous electron gas for which good

approximations already exist. This energy density is calculated locally in terms of ρ(r) at

every point and integrated over whole space to get the total energy. This is known as local

density approximation (LDA). The above expression in the square bracket of Eq. (2.9) is

called a functional as it is a function of another function (i.e. electron density ρ(r)).

The exchange and correlation effects were introduced in the same local spirit by Dirac

[73] and Wigner [74] respectively and are given by,

EX [ρ] = −CX

∫

ρ(r)4/3dr (2.10)

EC [ρ] = −a
∫

ρ(r)4/3dr

b+ ρ(r)1/3
, (2.11)

where CX = 3
4
(3/π)1/3. a, b are numerical constants. When exchange interaction is

included, the theory is called Thomas-Fermi-Dirac approximation. Finally the total elec-

tronic energy according to the Thomas-Fermi-Dirac theory as a functional of electron

density can be written as,

ETFD[ρ] = Ck

∫

ρ(r)5/3dr+

∫

ρ(r)νext(r)dr

+
1

2

∫∫

ρ(r)ρ(r’)

|r− r’| − CX

∫

ρ(r)4/3dr+ EC [ρ],

(2.12)

where
∫

ρ(r)νext(r)dr = Vext is the external field arising from the electron-ion interactions

and Ck =
3
10
(3π2)2/3.

2.2.2 Hohenberg-Kohn theorems

The modern density functional theory stands upon two powerful theorems given by Hohen-

berg & Kohn [69] who formulated DFT as an exact ground state theory of a many-electron

system. This formulation of DFT applies to any interacting system where electrons are

assumed to move in an external potential Vext(r). The Hamiltonian of such systems can
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be written as,

He = Te + Vext(r) + Uee(r) (2.13)

• 1st Hohenberg-Kohn theorem - For any system of interacting particles in an external

potential Vext(r), the potential Vext(r) is uniquely determined by the ground state

electronic density ρ0(r) of the system within the ambiguity of an additive constant.

• 2nd Hohenberg-Kohn theorem - A universal functional of energy E[ρ] can be defined

for any external potential Vext(r). The ground state energy of a system is the

global minimum of this functional. The electronic density ρ(r) which minimizes the

functional is called ground state density ρ0(r) of the system.

ρ (r)
Ini�al guess

Calculate effec�ve poten�al

ρ (r) = ρ   (r)
old

V (r) = V   (r) + V  (ρ) + µ   (ρ)
R ext H xc

Solve Kohn-Sham Hamiltonian

∆2+ V (r)
R

1

2
[ ]φ (r) = ε φ (r)

i i i

Calculate electron density 

ρ  (r) = 2Σφ  (r)
new i

2

Self consistent ?
|ρ  (r) − ρ   (r)| < δ

YES

Calculate properties

Energy, forces, stress,...

NO

new old

ρ   (r) = ρ   (r)
 old new

Figure 2.1: Flow chart of a typical DFT calculation.
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2.2.3 Kohn-Sham approach to DFT

Having established the basic formulas, the problem arises in casting the many-body theory

in a tractable scheme based on the Hohenberg-Kohn theorems where the total energy as

a functional of electron density is not known. The problem, however, was made easy by

Kohn & Sham [70] who described systems consisting of non-interacting electrons having

same ρ(r) moving in a mean filed of external potential arising from the complex electron-

ion and electron-electron interactions. This is the central theme of Kohn-Sham approach

to density functional theory. The idea of Kohn-Sham is that if one can find any non-

interacting electronic system that produces the same electronic density as that of the

interacting system, then the kinetic energy of the electrons can be approximated through

one electron orbitals. The kinetic energy calculated in this way is not exactly the same

as that of the kinetic energy obtained from the many-body wave functions. The missing

fraction in the energy comes due to the correlation among the electrons which can be

included in correlation effects in the exchange-correlation energy functional. The ground

state density matrix can be written as (in terms one electron orbitals),

ρ(r, r’) =
∑

i

fiφi(r)φ
∗
i (r’), (2.14)

where fi are the occupations of the one electron orbitals φi(r). The kinetic energy of a

non-interacting is

T = − ~
2

2m

∑

i

fi 〈φi| ∇2 |φi〉 (2.15)

Let us assume that the reference potential for a non-interacting system be νR(r). The

electron density of this system becomes ρ(r) =
∑

i fi|φi(r)|2, while the kinetic energy is

TR[ρ] = − ~
2

2m

∑

i

〈φi| ∇2 |φi〉 , (2.16)
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where φi(r)’s are the solutions of the one electron Kohn-Sham (KS) Hamiltonian,

He = − ~
2

2m
∇2 + νR(r). (2.17)

νR(r) is the potential for the reference system and will be defined shortly. With the above

equations for the non-interacting reference system, the Kohn-Sham energy functional can

be written as,

EKS[ρ] = TR[ρ] +

∫

ρ(r)νext(r)dr+
1

2

∫∫

ρ(r)ρ(r’)

|r− r’| drdr’+ EXC [ρ], (2.18)

where TR[ρ] is the kinetic energy of the electrons in the non-interacting reference system.

The minimization of the Eq. (2.18) with respect to density ρ, subject to the constraint

that electron density integrates out to the total number of electrons in the system, will

lead to ground state energy of the system.

The reference potential energy can be written as,

νR(r) = νext(r) +

∫∫

ρ(r’)

|r− r’|dr’+ µXC [ρ(r)]

with, µXC [ρ(r)] =
dEXC [ρ]

dρ(r)

(2.19)

This equation has to be solved self-consistently making sure that the density used to

construct the reference potential matches (i.e. self-consistent) that obtained from φi(r)’s

that are solutions of Kohn-Sham Hamiltonian Eq. (2.17) via ρ(r) =
∑

i fi|φi(r)|2.

2.2.4 Pseudopotential-based calculations

Wave functions of the free electrons can be written in terms of plane waves. These plane

waves are the exact solutions to the Schrödinger equation. But the situation in a real

crystal is far from the case of free electrons. Due to presence of nuclear potential, wave

functions of the electrons in an atom show oscillatory behavior in their core regions.

Due to orthogonality between core and the valence states, the valence wave function
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in the core region become more oscillatory with many number of nodes. To represent

the electronic wave functions of a real material with plane waves, one needs in principle

an infinite number of plane waves in the expansion. This makes the diagonalization of

the KS Hamiltonian quite demanding. To overcome this problem, a number of recipes

were proposed like augmented plane wave (APW) [75] method where the plane wave

expansion was augmented with the solutions of the atomic problem in a spherical core

region around the atoms and the potential outside this sphere is assumed to be zero.

Another approach, called orthogonalized plane wave (OPW) method was proposed by

Herring [76] who expanded the valence states as a linear combination of plane waves and

choose the expansion coefficients so as to make the resultant wave function orthogonal to

the core states.

Figure 2.2: Schematic representation of a pseudopotential. rc is the cut-off radius above
which the pseudo wave function matches the all-electron wave function. This figure is
taken from https://en.wikipedia.org/wiki/Pseudopotential.

Pseudopotential approximation derives its idea from the OPW method. Noting the

fact that it is the valence electrons which take part in bonding and other chemical activity

and core electrons mostly are inert in a material, one can replace the interaction between

the core region (which consists of nuclei and core electrons) and the valence electrons

with a smooth effective potential which has the same scattering properties as those of the

true potential. With this smooth potential, one can construct a node-less wave function
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(pseudo wave function), which needs a small number of plane waves in its expansion and

thus rendering the diagonalization of the Hamiltonian feasible in practical calculation.

The original pseudopotential theory is due to Philips & Kleinman [77], who showed

that one can construct a smooth valence wave function φ̃v which is not orthogonal to the

core wave states (φc) by combining the core and true valence wave function (φv) in the

following way,

|φ̃v〉 = |φv〉+
∑

c

αcv |φc〉 , (2.20)

where αcv = 〈φc|φ̃v〉 6= 0. This pseudo wave function satisfies the following pseudo

Hamiltonian which has same eigenvalue as the original Hamiltonian.

[

H +
∑

c

(ǫv − ǫc) |φc〉 〈φc|
]

|φ̃v〉 = ǫv |φ̃v〉 , (2.21)

where H = T + V , V = (−ZC/r) is the bare Coulomb potential. Now we can define the

pseudopotential as,

VPS = −Zc

r
+
∑

c

(ǫv − ǫc) |φc〉 〈φc| (2.22)

This pseudopotential acts differently on quantum states of different angular momentum.

The most general form of a pseudopotential is thus given by,

VPS(r) =
∞
∑

l=0

l
∑

m=−l

vlPS(r) |lm〉 〈lm| , (2.23)

where 〈r|lm〉 = Ylm(θ, φ) are spherical harmonics and vlPS is the pseudopotential corre-

sponding to the angular momentum l.

Traditionally, a pseudopotential is divided into local and non-local parts, where the

former is long-ranged and the later is typically short-ranged. In the Eq. (2.22), the first

and the second terms are local and non-local parts of a pseudopotential, respectively.

Using the notation of spherical harmonics, the non-local part of a pseudopotential can be
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written as,

VNL(r) =
∑

lm

vlPS(r)δ(r − r′)Ylm(r̂)Y
∗
lm(r̂

′) (2.24)

2.2.5 All-electron method

I

I

s

Figure 2.3: Schematic representation of a LAPW basis set. The unit cell is divided into
atom centered region (red color) and interstitial region (blue color).

Results of all-electron (core and valence electrons are treated explicitly) calculations

have higher accuracy but are computationally more expensive than pseudopotential-based

(valence electrons only) electronic structure calculations. In addition to pseudopotential-

based methods, we have used here an all-electron linearized augmented plane wave (LAPW)

method to calculate electronic structure and related properties of some of the materials

studied in this thesis. LAPW method [78] derives its idea from Slater’s augmented plane

wave (APW) [75, 79] method which includes core electronic states and does not need

a pseudpotential. To obtain total energies and eigenvalues of the electrons in a solid

using the LAPW method, we use a basis set achieved by dividing the unit cell into

non-overlapping spherical regions centered at each atom and the interstitial region. Two

different types of basis sets are used in these two regions: plane wave basis set is used

in expansion of the electronic wave functions inside the interstitial region, and it is aug-

mented by atomic like wave functions (linear combination of the solutions of the radial

Schrödinger equation and spherical harmonics) in the space inside every atomic sphere.

These atomic-like wave functions form the basis set inside each non-overlapping atomic
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sphere. In the LAPW formalism, the basis wave function thus can be written as,

φ(r) =















Ω− 1
2

∑

GCGe
i(k+G).r for r ∈ S,

∑

lm(Almulm(r) + Blmu
′
l(r))Ylm(r) for r ∈ I

(2.25)

Here Ω, I and S denote the unit cell volume, atom centered and interstitial regions,

respectively. u′l(r) =
∂ul

∂E
, and ul(r) are the radial solution of the Schrödinger equation for

an atom. CG, Alm and Blm are expansion coefficients, and the subscripts l and m denote

angular and magnetic quantum numbers, respectively. Ylm are spherical harmonics.

2.3 Exchange & correlation energy functional

The main approximation in density functional theory is in the formulation of a correct

exchange-correlation energy functional. Among all the existing functionals, local den-

sity approximation (LDA) and generalized gradient approximation (GGA) are the most

commonly and widely used, due to their simplicity and reasonable accuracy.

In LDA, the effect of exchange and correlation functionals are considered to be local

in nature as it was assumed by Kohn & Sham in their seminal paper [70]. In this ap-

proach, the inhomogeneous electronic system is thought to be locally homogeneous and

exchange-correlation energy is obtained simply by integrating the exchange-correlation

energy density at each point in the space. This energy density is known accurately for

homogeneous electron gas [73] as a function of density, which is used in the LDA exchange-

correlation energy functional:

ELDA
xc [ρ] =

∫

d3rρ(r)ǫhomo
xc [ρ(r)] (2.26)

The LDA approximation has been quite successful for many systems especially for those

whose electron density is relatively uniform such, as bulk metals, ionic crystals etc. But, it

is somewhat limited in certain properties of semiconductors, strongly correlated systems
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due to fact that the excitation spectrum of homogeneous electron gas is gap-less and

exchange-correlation energy is regular [68]. LDA also fails to capture weak inter-molecular

bonds, hydrogen bonds etc.

The improvement over LDA leads to the development of generalized gradient approx-

imation (GGA). In general, the exchange-correlation energy in GGA is written as [80],

EGGA
xc [ρ] =

∫

d3rρ(r)ǫxc[ρ(r), |∇ρ|] (2.27)

The GGA method turns out to be better than LDA in the sense that it improves binding

energies and sometimes bond lengths. For these reasons, we have used GGA exchange-

correlation functional in all the ab-initio calculations described in this thesis.

2.4 Inclusion of spin-orbit coupling

The effects of spin-orbit coupling (SOC) are quite significant for materials consisting of

heavy elements. Most importantly, while dealing with materials with non-trivial electronic

topology, inclusion of SOC in calculations of electronic structure becomes inevitable. Here,

we briefly discuss how the effect of SOC is included in pseudopotential-based calculations

as well as all-electron LAPW method.

To include the effect of SOC, we need to construct the pseudopotentials from the

large components of the spinor solution of the Dirac equation, which give projectors

(βl,j) and pseudopotential coefficients for each value of l, j, the orbital and total angular

momentum (j = l + s, with s being the spin angular momentum). The non-local part of

a pseudopotential includes both scalar relativistic effects and spin-orbit coupling [81],

VNL =
∑

I

∑

l,j,mj

EI
l,j |βI

l,jY
I,j,mj

l, 1
2

〉 〈βI
l,jY

I,j,mj

l, 1
2

| , (2.28)

where Y
I,j,mj

l, 1
2

are the two-components spin-angle functions which appear in the solution

of the Dirac equation in a spherically symmetric potential.
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In an all-electron electronic structure calculation (e.g., LAPW method), the effect of

SOC is taken into account through a second variational procedure [82, 83].

Hψ(r) = εψ(r) +HSOψ(r), (2.29)

where ψ is the four-component spinor of the Dirac equation as given in Eq. (1.7), and

HSO is the spin-orbit coupling Hamiltonian as given in Eq. (1.11), which operates on the

large component of the four-component spinor wave functions.

2.5 Phonons

In condensed matter physics, properties of a material typically arise from collective ex-

citations. For example, to explain the electrical conductivity of a material we describe

a material consisting of Fermi liquid or an electron gas. The thermal conductivity of a

material is explained through collective excitations of lattice vibrations and so on. In fact,

to explain any physical phenomena occurring over a time scale, we need to consider col-

lective behavior arising from all particles inside a matter instead dealing with individual

particle.

Phonons are quanta of lattice vibrations in a crystal. To calculate any property of

a material arising from the lattice vibrations, we have to treat the collective oscillations

of all the atoms. Phonon dispersion of a crystal reveals very interesting physics and

insightful dynamical information of a system. Now-a-days, with availability of powerful

computers, efficient and optimized algorithms, phonon dispersion of a material is routinely

calculated and used for further post-processing analysis e.g., calculation of the vibrational

contribution to free energy at finite temperature.

2.5.1 Density functional perturbation theory

Lattice-dynamical properties of a system are not only related to the lattice vibrations,

but also it has some profound electronic connections. A combination of density functional
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theory and linear response theory gives rise to what is known as the density functional

perturbation theory [84, 85]. Now we will discuss the basic mathematical formulation of

this theory. Born-Oppenheimer approximation helps in decoupling the electronic degrees

of freedom from that of the vibrational one. The equation of ions which arises from this

approximation can be written following Eq. (2.1) as,

[

−
∑

I

~
2

2MI

∂2

∂R2
I

+ V (RI) + EeRI

]

Ψ(RI) = EΨ(RI), (2.30)

The lattice-dynamical properties of any system is given by the eigenvalue E and eigen-

function Ψ(RI) of this equation. Thus, the energy EeRI
is the ground state energy of the

interacting electrons moving in the field of nuclei fixed at RI . The equilibrium geometry

of the system or geometry optimization is given by the condition that force acting on each

atom should be minimum and this is written mathematically as,

FI = −∂EeRI

∂RI

− ∂V (RI)

∂RI

(2.31)

The vibrational frequencies (ω) of a system is obtained from the Hessian of E after being

scaled properly by the nuclear masses by solving the following equation.

det

∣

∣

∣

∣

∣

1√
MIMJ

∂2E

∂RI∂RJ

− ω2

∣

∣

∣

∣

∣

= 0 (2.32)

The forces on the atoms or the first order derivative of energy can be obtained accurately

using Hellman-Feynman theorem with the help of Eq. (2.7) and Eq. (2.8). The electronic

Hamiltonian depends on the nuclear coordinates through the electron-nuclear interaction

and it couples to the electrons through electronic charge density. In terms of electronic

charge density, Eq. (2.31) can be written as,

FI = −
∫

ρRI
(r)

∂u(ri,RI)

∂RI

dr− ∂V (RI)

∂RI

, (2.33)
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where ρRI
(r) is the ground state electronic density corresponding to nuclear configuration

{RI}. The second derivative of E yields,

∂2E

∂RI∂RJ

= − ∂FI

∂RJ

=

∫

∂ρRI
(r)

∂RJ

∂u(ri,RI)

∂RI

dr+

∫

ρRI
(r)

∂2u(ri,RI)

∂RI∂RJ

dr+
∂2V (RI)

∂RI∂RJ

,

(2.34)

where u(ri,RI) and V (RI) are the electron-ions and ion-ions interaction potentials, re-

spectively. From Eq. (2.34) it can be seen that the Hessian matrix or the force constant

matrix requires ground state electronic charge density ρRI
(r) as well the linear response

of it under the perturbation of nuclear geometry. Hence the name density functional

perturbation theory.

2.6 Wannier function

Wannier function (WF) is a localized wavefunction, obtained through a unitary transfor-

mation of the extended Blöch functions [86–88]. Given an isolated set of J Blöch bands

which are the eigenstates of a Hamiltonian, it is always possible to find another set of J

bands through a unitary transformation, that might not be the Hamiltonian eigenstates

but span the same Hilbert space as the original set of Blöch bands. Thus, one trades

off localization in energy for localization in space [13]. Although the concept of Wannier

function has been prevalent in solid state theory for a long time, practical calculations

involving WFs were rarely performed due to (a) the phase indeterminacy (i.e. arbitrary

gauge freedom) of the Blöch functions (ψnk) at each wave vector (k), which imposes non-

uniqueness in carrying out arbitrary unitary transformation to a set of occupied Blöch

function and (b) presence of degeneracy in the electronic band structure at certain high

symmetric points in the Brillouin zone (BZ), which makes it difficult to separate the bands

and apply “wannierization”. Therefore, it is important to choose first a proper subset of

bands in a given material before determining its WFs.

One of the most important developments in this regard came from the work of Marzari
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and Vanderbilt [89], who introduced a “maximal localization” criterion for identifying

a unique set of WFs in a given crystalline insulating material. The procedure of the

maximal localization was later extended to the case of metals in which some of the bands

have partial occupations.

The WF centered in the R-th unit cell and corresponding to n-th band is given by [89],

|Rn〉 = V

(2π)3

∫

dke−k.R |ψnk〉 , (2.35)

where R is the real space lattice vector and V is the volume of the unit cell.

Wannier functions are useful for a number of reasons. For example, WFs can provide

better insight into the nature of chemical bonding, otherwise missing from the calculation

based on an extended Blöch functions. Using WF basis, accurate model Hamiltonian can

be constructed which can be used to analyze the physics and chemistry of a particular

group of bands in the electronic structure. Thus, WFs have become an established tool to

post-processing electronic structure calculation based on modern state-of-the-art density

functional theory, to obtain useful information. More interestingly, the evolution of the

charge centres of the WFs are formally linked to the Berry phase of the Blöch function.

This is clarified in the context of modern theory polarization [90,91] and more recently it

has gained significant attention in the research of topological physics as Berry curvature,

Chern number, and topological invariants [14] can be computed easily in the framework

of maximally localized Wannier function (MLWF). In the following we will discuss how

to calculate Z2 topological invariants using MLWFs.

2.6.1 Maximally localized Wannier function (MLWF)

The above formula of the Wannier function involves only a single Blöch band, n. In

general, we can consider a manifold of J Blöch bands which are separated from any

higher or lower bands outside the manifold. Within this manifold, these bands may cross

each other as a function of k and degeneracies may be present. In the multi-band case
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the above formula is generalized to

|Rn〉 = V

(2π)3

∫

dke−k.R

J
∑

m=1

U (k)
nm |ψmk〉 , (2.36)

where U
(k)
nm is the unitary transformation or gauge transformation that performs a rotation

of the original Blöch functions which are the eigenstates of the Hamiltonian i.e.

|ψ̃nk〉 =
J
∑

m=1

U (k)
nm |ψmk〉 (2.37)

In general, the eigenstates of a Hamiltonian may not be smooth functions of k. So, to get

the well-localized WFs in the real space, we need to cancel out the discontinuity of the

Blöch bands using this unitary transformation and restore the smooth-ness. Even if this

unitary gauge transformation might not be necessary in the wannierization procedure if

the bands in the manifold do not touch each other within the BZ, this unitary rotation

becomes necessary [89] to get well-localized WFs.

A very general and widely used procedure to generate maximally localized Wannier

functions was given by Marzari and Vanderbilt [89], who enforce localization by introduc-

ing a localization criterion and refining the unitary transformation U
(k)
nm that minimizes

the localization function defined by,

Ω =
J
∑

n

[〈0n| r2 |0n〉 − 〈0n| r |0n〉2] =
∑

n

[〈r2〉 − r2n], (2.38)

which measures the sum of the quadratic spreads of the J WFs in the home unit cell. To

minimize this function with respect to U
(k)
nm, the above expression is cast as function of

k. There are many finite difference formulas available in literature which give the above

expression as a function of k. The form given by Marzari and Vanderbilt is:















rn = − 1
N

∑

k,bwbbIm lnM
(k,b)
nn

〈r2〉 = 1
N
wb[1− |M (k,b)

nn |2] + [Im lnM
(k,b)
nn ]2

(2.39)
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In the above expressions, M
(k,b)
nn = 〈umk|un,k+b〉 is the overlap matrix element between

Blöch functions at two neighboring k points in the mesh of k-points considered for the

evaluation of Eq. (2.39). b is a vector that connects a k point to one of its neighbors

and wb is an appropriate weight factor that depends on number of k-points in the shells

in the k-mesh and its geometry [89]. N is the number of k-points in the mesh. Thus,

procedure of obtaining MLWF gives us the expectation values 〈r2〉 and rn; the latter,

known as the Wannier charge centres (WCCs), in particular are the primary ingredients

needed to determine Chern number and Z2 topological invariants [14].

2.6.2 Calculation of Z2 invariants via WCC

Wannier charge centre (WCC) is the average position of the charge of Wannier function

in the home unit cell i.e.,

rn = 〈0n| r |0n〉 (2.40)

Due to ambiguity in choosing the home unit cell, WCCs are only defined modulo a lattice

vector. Moreover, when there are multiple bands present in the chosen band manifold, the

individual WCC is not gauge-invariant, only the sum of all the WCCs is gauge-invariant

modulo a lattice vector.

As the unitary transformation i.e. the gauge choice is not unique, the resultant WFs

will show change in shape and their localization in real space if different gauge choices are

taken in the “wannierization”. To have an exponentially localized WF, we need a smooth

gauge, which is hard to find. Mathematically it was proven that it is always possible

to find a smooth gauge in 1D [87], ensuring the maximal localization of 1D Wannier

function. Moreover, 1D maximally localized Wannier function satisfy the required gauge

criteria needed to define Z2 topological invariants i.e. the gauge be time-reversal invariant

and continuous in the half-torus (i.e. half of the Brillouin zone) [14].
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In 1D, the Wannier charge centre can be written in terms of Berry connection as,















x̄n = i
2π

∫ π

−π
〈unk| ∂k |unk〉

= 1
2π

∫ π

−π
An(k).dk,

(2.41)

where An(k) = i 〈unk| ∂k |unk〉 is the Berry connection which was already introduced in

subsection (1.2.2). of the first chapter.

Z2 topological invariants can be defined using the notion of time reversal polariza-

tion [14, 65] derived in terms of 1D Wannier charge centres (WCCs). In a time-reversal

invariant system, electronic bands always come in time-reversed pairs (let’s assume I

& II denote two bands within such a time-reversed pair). Then, the Z2 invariant in a

time-reversal invariant plane is given by [14],

(
∑

n

[x̄In(T/2)− x̄IIn (T/2)]−
∑

n

[x̄In(0)− x̄IIn (0)]) mod 2, (2.42)

where x̄
I(II)
n = i

2π

∫ π

−π
dk 〈uI(II)nk | ∂

∂k
|uI(II)nk 〉 is the Wannier charge centres calculated at

t=0 and t=T/2 planes which are invariant under time reversal (TR) symmetry, and T

represents the period of a full cyclic adiabatic evolution. In the Brillouin zone of a periodic

crystal, T is equivalent to a reciprocal lattice vector which defines the periodicity in the

reciprocal space. The topological invariant of a TR-invariant plane is non-zero if the

WCCs switch pairs under a cyclic adiabatic evolution which can be easily tracked by

seeing evolution of the mid-point of the largest gap between two adjacent WCCs at any

t ∈ [0, T/2] in the half-cycle [14]. In this case, the largest gap in WCCs exhibits abrupt

jumps in their cyclic evolution [14] with k. We have calculated the strong topological

index (ν0) by taking the sum (modulo 2) of the topological invariants calculated at kz=0

and kz=0.5 planes (positions are in crystal coordinate and the chosen planes are TR-

invariant) in the Brillouin zone. At each of these planes, WCCs, calculated along kx

direction, evolve along the ky direction which is parameterized with time, t.
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2.7 Semi-classical Boltzmann transport equation

We use the density functional theory based electronic structure within a semi-classical

Boltzmann theory under a constant scattering time approximation to calculate electri-

cal conductivity, Seebeck coefficient and thermoelectric power factor of materials as a

function of Fermi energy (EF ) and temperature (T ). Electrical conductivity (σαβ) and

Seebeck coefficient (Sαβ) which are tensor quantities are obtained using [92, 93] the fol-

lowing equations,

σαβ(T,EF ) =
1

Ω

∫

Σαβ(ε)[−
∂f0(T, ε, EF )

∂ε
]dε (2.43)

and

Sαβ(T,EF ) =
1

eTσαβ(T,EF )

∫

(ε− EF )Σαβ(ε)[−
∂f0(T, ε, EF )

∂ε
]dε, (2.44)

where α, β are Cartesian indices, Ω, f0 are volume of unit cell, and Fermi-Dirac distri-

bution function of the carriers respectively. Central to these relations is the transport

distribution function (Σαβ),

Σαβ(ε) =
e2

N

∑

i,k

τvα(i,k)vβ(i,k)δ(ε− εi,k), (2.45)

where k and i are wave vector and band index, and N in the total number of k-

points used in sampling the Brillouin zone, τ is the relaxation time, and vα(i,k) =
1
~

∂εi,k
∂kα

is the group velocity. The derivative of the energy εi,k is determined through Fourier

expansion of band energies (ε̄i,k) using the star functions of the space group symmetry [94]:

ε̄i(k) =
∑

R
cRiSR(k) and SR(k) =

1
n

∑

{∧} e
ik.∧R, where R is a direct lattice vector, {∧}

are the n point group symmetry operations, and cRi are the expansion coefficients. Σ is

determined typically using a fine mesh of k-points (i.e. large N).
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Chapter 3

Electronic Topological Transition in

Binary Chalcogenides

3.1 Pressure Induced Electronic Topological Transi-

tion in Sb2Se3
∗

3.1.1 Introduction

Topological insulators (TIs) are a new class of quantum materials which exhibit an elec-

tronic band gap and a topologically nontrivial electronic structure in their bulk form

[9, 96, 97]. The nontrivial topology of the bulk electronic wave function gives rise to ex-

otic electronic states on the surface as a consequence of bulk-boundary correspondence

principle, for example, one-dimensional edge spin states in two-dimensional quantum spin

Hall systems. A three-dimensional TI with time-reversal symmetry [9, 56] exhibits gap-

less surface states. While the transport properties of a TI are theoretically predicted to

be influenced by the topology of its electronic structure [98], much of its experimental

confirmation comes from studies of the surface electronic structure [97], specifically from

the linearly dispersing Dirac cones on its surface. The nontrivial topology of electronic

∗This work has been published in Phys. Rev. Lett. 110, 107401 (2013) [95]. Reproduced with
permission from the American Physical Society.
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structure of a topological insulator results in magneto-electric coupling [99,100], yet to be

explored experimentally. Although the signatures of the electronic topology in the bulk

properties may be subtle, they are expected to be more readily detectable when there is a

sharp change in the electronic topology, i.e., at an electronic topological transition from

a band insulator to topological insulator.

The electronic structure of a TI is characterized by topological invariants [56, 101],

which are determined from geometric properties of electronic states as a function of the

Blöch vector. Similar ideas are involved in the theory of electric polarization [90], which

is determined as a geometric phase of Blöch states. An integer quantum of change in

polarization has been shown to arise from a cyclic evolution (adiabatic pumping) of the

insulator along a path that encloses a metallic state [102]. Similarly, a bulk state with

vanishing electronic gap in the vicinity of a TI influences the geometric properties of

electronic states and is relevant to an electronic topological transition (ETT). Hence, It

will be interesting to probe effects of the resulting slow dynamics of electrons at the ETT,

particularly on phonons which would require going beyond the adiabatic approximation.

An occurrence of broken adiabaticity has been seen in graphene, also characterized by

a vanishing band gap due to the presence of gapless Dirac cones at K and K ′ points. Ex-

planation of vibrational signatures of doping in graphene probed by Raman spectroscopy

required going beyond the Born-Oppenheimer (adiabatic) approximation [66, 103]. Simi-

lar nonadiabatic effects arising from the vicinity of a TI to a metallic state prompt us to

carefully look for subtle reflections in Raman spectra of materials undergoing an ETT.

Since the discovery [9,104] of time-reversal invariant TI in three dimensions in Bi2Se3,

Bi2Te3 and Sb2Te3, these materials have been extensively studied [105–107] both theo-

retically and experimentally. In this family of compounds, the spin-orbit coupling (SOC)

competes with crystal-field splitting and chemical bonding (hybridization) between cation

and chalcogen, and is strong enough to give rise to band inversion of the valence band

maximum (VBM) and conduction band minimum (CBM). This inversion of bands of op-

posite parity leads to ETT making a ordinary band insulator to a topological insulator
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characterized by an overall odd parity of the valence band manifold [9]. Vilaplana et

al. [107] examined an ETT in Bi2Se3 as a function of pressure using Raman spectroscopy

and calculations, though the nature of changes in electronic structure or topology needs

further clarification. Interestingly, a close cousin of these compounds, Sb2Se3 having the

same [9,108] crystal symmetry (i.e. rhombohedral) as that of Bi2Se3, is a band insulator

at ambient conditions with an overall even parity of the valence band manifold, in contrast

to an overall odd parity exhibited by the TIs (e.g., Bi2Te3) [9]. Under uniaxial strain,

rhombohedral Sb2Se3 was shown theoretically to undergo a transition to a TI state [109].

Thus, Sb2Se3 is an ideal host system for exploration of a possible ETT and its reflections

in bulk properties. Competition between the spin-orbit coupling and hybridization can

be tuned to introduce an ETT either by substitution of Bi at the Sb site or by application

of pressure. While the former would alter the spin-orbit coupling, the latter would tune

the crystal field splitting and hybridization between Sb and Se.

In this work, using first-principles calculations based on density functional theory, we

predict a pressure induced electronic topological transition in the rhombohedral crystal

structure of Sb2Se3 at Pc= 2 GPa. We establish the nontrivial topology of its bulk

electronic structure by calculating the Z2 topological invariant across Pc. The ETT is

accompanied with reversal of bands of opposite parity at the Γ point and passes through

a gapless metallic state with linear dispersion of bands (i.e. a Dirac semi-metallic state)

at Γ. As our calculations do not capture the phonon anomalies as observed in Raman

spectroscopy experiment [95] at the ETT, we derive symmetry-invariant forms of electron-

phonon coupling, and go beyond the adiabatic approximation using a model Hamiltonian

in our analysis, uncovering mechanisms responsible for the anomalies in Raman spectra

of Sb2Se3 signifying the change in electronic topology at its ETT. In particular, the

asymmetry in observed phonon anomalies at the ETT arises from reversal of parities of

electronic states across the gap.
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Figure 3.1: Experimental Raman spectra of Sb2Se3, FWHM of the M1 mode and calcu-
lated electronic bands near the Fermi level as a function of pressure. (a) Raman shift
versus pressure plot. Solids lines are linear fit to the observed frequencies. The numbers
next to the solids are slopes of each fitted straight lines. The errors bar, if not seen, are
less than the size of the symbol. (b) FWHM of the M1 mode (solid points) as a function
of pressure and dashed line is drawn as guide to the eyes. (c) First-principles calcula-
tions of electronic structure near the gap as a function of pressure in the neighborhood of
transition (Pc= 2 GPa).

3.1.2 Experimental observations

High pressure Raman experiments on the rhombohedral crystal of Sb2Se3 were carried

out at room temperature by Achintya Bera from Prof. A. K. Sood’s group [95] at the

Indian Institute of Science, Bangalore. Group theoretical analysis for the centrosymmetric

rhombohedral structure of Sb2Se3 (point group: D5
3d) predicts 12 optical phonons at the

Γ point in the Brillouin zone: 2A1g + 2Eg + 2A2u + 2Eu, where g and u refer to Raman

and infrared active modes, respectively [107]. Raman spectroscopy has been used to study

electronic transition in Bi2Te3 [106], Bi2Se3 [107], and Sb2Te3 [110] compounds at high
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pressure. As this transition involves reconstruction of Fermi surface topology, it is often

called as electronic topological transition. Probing of ETT with pressure has been done

either by observing changes in slope and FWHM (full width at half maximum) of the

Raman active modes.

Raman spectra on the single crystal of Sb2Se3 was studied up to 24.6 GPa, which

shows an ETT at Pc=2.5 GPa marked by (a) a large softening ∼ 25 cm−1 of the low

frequency Raman mode (M1) and together with an anomalous increase of its linewidth

by 200% within a narrow pressure range of 0 to 2.5 GPa and relatively less softening by

two other (M2 and M3) modes and (b) change in sign of slope of the M1 Raman active

mode above 2.5 GPa (see Fig. 3.1). The nominal frequencies of the modes (e.g., at 0.7

GPa) are: M1 (166 cm−1), M2 (192 cm−1), and M3 ( 214 cm−1 ) The mode M1 is assigned

as E2g, M2 as A21g, and M3 as a combination mode.

 (a) (b)

(c)

(d)

z F

LΓ

Figure 3.2: (a) Conventional hexagonal and (b) primitive rhombohedral unit cells of the
Sb2Se3 and (c) its Brillouin zone with high symmetry points. In the hexagonal crystal
structure of Sb2Se3, the atomic planes arrange themselves in A(Se1)-B(Sb)-C(Se2)-A(Sb)-
B(Se1)-C(Se1)... order along the z-direction, where, Se2 atom acts as the inversion center
in the lattice. Grey and orange colors represent Sb and Se atoms, respectively. (d) Phonon
frequencies at Γ point as a function of pressure, calculated within the adiabatic density
functional perturbation theory. Phonon frequencies of all the modes vary linearly with
pressure near Pc(=2 GPa) showing no anomaly.
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P (= 0 GPa) < Pc

(a)

HOMO    LUMO

(b)

HOMO LUMO

P (= 4 GPa) > Pc

Figure 3.3: Band inversion of Sb2Se3 across the critical pressure (Pc=2 GPa). Iso-surfaces
of charge densities associated with the top of the valence (HOMO) and bottom of the
conduction (LUMO) band at a pressure (a) before (P=0 GPa) and (b) after(P=4 GPa)
the critical pressure Pc.

It is worth mentioning that a low pressure transition around 3 GPa was reported in

Bi2Te3 [106], Bi2Se3 [107] and Sb2Te3 [110], which manifest change in slope and FWHM

of their Raman active modes. But these changes are not as drastic and anomalous as the

case of Sb2Se3. This transition was later verified to be an iso-structural transition [111].

The large softening of phonons up to 2.5 GPa and anomalous linewidth maximum of the

M1 mode as seen in the Raman spectra (Fig. 3.1) is unique to Sb2Se3 which involves

ETT, characterized by change in Z2 topological invariant of Sb2Se3 across Pc.

3.1.3 Crystal structure and computational details

Materials belonging to the A2B3 (A = Sb, Bi; B = Se, Te) crystal family have layered

crystal structures in their bulk with space group R3̄m (No. 166) [9,108,109]. The primitive

unit cell has a rhombohedral crystal structure with five atoms, whereas the conventional

hexagonal unit cell has 15 atomic planes in which quintuple layers of the formula units

are stacked along the c-direction (see Fig. 3.2).

We use first-principles calculations based on density functional theory as implemented

in theQuantum ESPRESSO (QE) code [112] to calculate electronic structure of Sb2Se3.
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We adopt fully relativistic norm-conserving pseudopotentials to represent the interaction

between the frozen core and the valence electrons of an atom facilitating the inclusion

of spin-orbit coupling in the calculations. We use generalized-gradient approximation

(GGA) [113] to the exchange-correlation energy functional as parametrized by Perdew,

Burke and Ernzerhof (PBE) [114] while constructing the pseudopotentials within fully

relativistic analysis. Expansion of the electronic wave functions and charge density in

plane wave basis were truncated with cut-off values of 45 Ry and 180 Ry, respectively.

The integrations over the the Brillouin zone are sampled in a dense grid of 9 × 9 × 9

k-points. The discontinuity in the occupation numbers of the electrons are smeared with

a broadening of 0.003 Ry across the gap of the Fermi level. At each value of the applied

hydrostatic pressure, the bulk unit cell is fully relaxed while keeping the c/a ratio fixed

at the experimental value and varying the lattice constant a. Phonon frequencies are

determined using density functional perturbation theory as implemented in PH [64] code

of the QE distribution.

3.1.4 Electronic structure and phonons

We now present results of first-principles density functional theory-based calculations of

electronic structure and phonons for the rhombohedral structure of Sb2Se3 as a function

of pressure. Our theoretical estimate of the lattice constant is a= 4.09 Å, at which a

direct energy gap at the Γ point separates valence band states with odd parity from the

conduction band states with even parity (see Fig. 3.4(a)), as was shown by Zhang et al.

for a band insulator [9]. The odd parity of the state at the top of the valence band is

evident in the involvement of the p orbitals of Se atoms present at the inversion center. A

strong hybridization between p states of Sb and Se is evident in the electronic eigenstates

across the gap (Fig. 3.3). Band gap vanishes precisely at Pc= 2 GPa passing through a

Dirac metallic state and opens up for P > Pc (see Fig. 3.1(c)). This involves inversion of

valence band maximum (VBM) and conduction band minimum (CBM) at Γ point (see

Fig. 3.3) and reversal of their parity across Pc marking a transition from a band insulator
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Figure 3.4: Evolution of electronic structure and the bulk band gap around the critical
pressure Pc (= 2 GPa). Electronic band structure of Sb2Se3 at (a) P (= 0 GPa) < Pc (b)
P = Pc and (c) P (= 4 GPa) > Pc. (d) Closing and reopening of bulk band gap across
the critical pressure causing the inversion of bands across Pc.

to a topological insulator.

Frequencies of all phonons at the Γ point, calculated within the adiabatic density

functional perturbation theory, vary linearly with pressure, and exhibit no anomaly at

the transition at Pc (Fig. 3.2(d)), leaving us puzzled about the mechanism of the sharp

Raman anomalies as seen in experiment (Fig. 3.1(a)). The Nominal frequencies of Sb2Se3

are given and compared with other topological insulators in Table 3.1. From this table,

we can see that the frequencies for Sb2Se3 are higher than other compounds because of

the lighter masses of Sb and Se atoms as compared to Bi and Te atomic masses.
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A2
1g A1

1g E2
g E1

g A2
2u A1

2u E2
u E1

u
aSb2Se3 211.5 78 138.3 53.2 190.9 149.8 131.4 94.6

[18],bSb2Te3 169 67 117 49 146 109 100 77
[19],cSb2Te3 165 69 112 67
[20],bBi2Se3 166.3 63.8 123.9 38.8 155.4 136.7 126.8 64.7
[21],cBi2Se3 175.3 73.3 132.6 39.9 159.9 128.9 124.9 67.9
[20],bBi2Te3 127.2 53.8 95.9 35.4 118.6 95 91.2 48.4
[22],cBi2Te3 134.1 62.0 101.7 34.3

a this work, b theoretical calculation and c experiment.

Table 3.1: Vibrational frequencies of twelve optical modes 2(A1g + Eg + A2u + Eu) of
topological insulator materials having D5

3d point group symmetry. All frequencies are in
the unit of cm−1. The vibrational frequencies of Sb2Se3 are given here at P = 3.5 GPa i.e.

in its topological insulating phase. For other materials which are already TIs at ambient
pressure, the above frequencies are at equilibrium lattice constant i.e. at zero pressure. g
and u denote Raman (R) and Infrared (IR) active modes respectively.

3.1.5 Going beyond the adiabatic approximation

We now present theoretical analysis beyond the adiabatic approximation and determine

dynamical corrections [66, 103] to phonon frequencies. We use the universal four-band

model developed by Zhang and co-workers [9,115] written in terms of Dirac matrices and

note that states at the top of the valence and bottom of the conduction bands are doubly

degenerate, and their energies are given by C0 ±M0 , where C0 and M0 are the parameters

of the model Hamiltonian [115], and M0 < 0 for a topological insulator. Treating M0 =-κ

(P-Pc) with a positive κ, we reproduce the electronic structure near the Γ point close to

the transition from a band insulator to a topological insulator as reflected in the reversal

of bands of opposite parity.

Electron-phonon coupling is needed to estimate dynamical corrections to vibrational

frequencies, and we now derive their form at the lowest order within the four-band model,

expressing them in terms of Dirac matrices. Symmetry properties of the Dirac matrices

[irreducible representations (irreps) for the symmetry group of Sb2Se3] have been derived

by Liu et al. [115]. We note that Raman-active and IR-active modes have even and

odd parity, all of them are invariant under time reversal symmetry. An electron-phonon
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Figure 3.5: Electronic bands of Sb2Se3 at Pc near the Γ point for the undistorted crystal
structure. First-principles evidence of electron-phonon coupling obtained by distorting
the crystal structure along the direction of displacement of atoms for (a) E2

g (b) A2
1g, (c)

A2
2u and (d) E1

u modes. The form of electron phonon coupling for A2u mode (see text)
yields splitting of bands near the gap obtained within the 4-band model, which has been
verified using first-principles calculations.

coupling term in the Hamiltonian can be expressed as a product of phonon degree of

freedom and a Dirac matrix (or its commutator).

To derive symmetry invariant form of electron-phonon coupling (EPC) Hamiltonian

for each of the phonon modes, we introduce the projection operator (P̂Γ̃±
n
) [62],

P̂Γ̃±
n
=

1

g

∑

R

AΓ̃±
n
(R)P̂R, (3.1)

where P̂R is the symmetry operator corresponding to symmetry operation R and AΓ̃±
n
(R)

is the character of Γ̃±
n irreducible representation (irrep) of the symmetry group. The

summation in Eq. (3.1) is over all the symmetry operations of the group (D5
3d) and g is

its order. ± sign represent even and odd parity respectively of the irreps. The phonon

eigenmodes A1g, A2u and Eg have the symmetries of the irreducible representations given
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by Γ̃+
1 , Γ̃

−
2 and Γ̃+

3 [62], respectively. We first considered direct product representation

obtained from a multiplication of an irrep of a phonon mode and each irrep of D5
3d. From

these, we pick the ones that contain identity representation of D5
3d. We write the electron-

phonon coupling term by projecting the product of the suitable Dirac matrix and u mode

displacement onto identity representations [116].

For A1g mode, picking only the leading terms which give significant change in the

electronic structure, the EPC Hamiltonian can be written as,

HA1g = P̂(Γ̃+
1 ≡A1g)

.[uA1gΓ5] ≃ AA1guA1gΓ5 (3.2)

Similarly for A2u mode the EPC Hamiltonian is given by the following expression,

HA2u = P̂(Γ̃−

2 ≡A2u)
.[uA2uΓ5] ≃ AA2uuA2uΓ45, (3.3)

where we note that each of uA2u and Γ45 belongs to Γ̃−
2 irrep. Here Γm is a Dirac matrix

and uA1g , uA2u are the displacements of the A1g and A2u phonon modes respectively. Γij

is a Dirac matrix commutator [Γi,Γj ]/2i.

For Eg mode,

P̂(Γ̃+
1 ).[{uxEg

, uyEg
} ⊗ {Γ15,Γ25}].Γ35 ≃ AEg

(uxEg
Γ15 + uyEg

Γ25)Γ35 (3.4)

uxEg
and uyEg

are the x and y component of the displacement of the doubly Eg phonon

mode. In this equation, each of matrix Γ35 and (uxEg
Γ15+u

y
Eg
Γ25) transforms according to

Γ−
1 irrep and is even under time-reversal, hence their product is symmetry invariant. Since

the product of two noncommuting Hermitian operators is not Hermitian, we construct a

symmetry-invariant Hermitian form as,

HEg
≃ AEg

(uxEg
Γ15 + uyEg

Γ25)Γ35 −H.c.

2i
, (3.5)

where H.c. means Hermitian conjugation.
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Similarly other symmetry allowed lowest order terms for EPC Hamiltonian of HEg

mode are,

BEg

(uxEg
Γ24 − uyEg

Γ14)Γ34 −H.c.

2i
+ B

′

Eg

(uxEg
Γ24 − uyEg

Γ14)Γ12 −H.c.

2i

+CEg
(kxu

x
Eg

− kyu
y
Eg
)Γ4 (3.6)

We validate the form of electron-phonon coupling by comparing the electronic structure

of the model with that obtained from first-principles calculations for the lattice distorted

with each mode of Sb2Se3 (see Fig. 3.5). For a frozen A2
1g mode at P = Pc , the band

gap opens up in a way similar to how it opens up at infinitesimally small deviation in

pressure or strain. For a frozen A2
2u mode, band splitting is more interesting: each of

the doubly degenerate valence and conduction bands of definite parity split up as this

mode breaks the parity symmetry. The minima or maxima of bands shift away from

the Γ point. However, the splitting or changes in the model band structure associated

with the electron-phonon coupling of the E2
g mode are not captured within first-principles

calculations, suggesting that the physics of this coupling is beyond the formal mean-field

description of density functional theory used here. Thus, in the analysis below, we use

the symmetry-invariant form with A coupling as a free parameter as the other terms are

not needed to capture the essential aspects of the observed phonon anomalies.

We obtain the dynamical corrections to phonon frequencies as a function of pressure

using these forms of electron-phonon couplings (keeping the strength of the coupling as

free parameters) in first-order time dependent perturbation analysis [66] of the four-band

model of Bi2Se3 derived by Zhang et al. [9] with pressure-dependent M0 (see Fig. 3.6).

To simplify our analysis, we make use of the layered nature of Sb2Se3 and carry out

Brillouin zone integrations only in the xy-plane. It is evident that dynamical corrections

to frequencies of Raman active modes change sharply below Pc and asymmetrically around

Pc. Indeed, the sharp drop (Fig. 3.6) in frequencies of E2
g and A2

1g modes just below Pc ,

and a gradual increase in their frequencies for P > Pc , are consistent with the pressure
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Figure 3.6: Dynamical corrections to frequencies of phonon modes (a) A2
1g, (c) E

2
g and (c)

A2
2u as a function of -M0 (i.e. ∝ (P-Pc)). The corrections are negative and make the modes

softer near the transition; their asymmetry allows differentiation between the trivial and
the nontrivial topology of electronic structure on the two sides of the transition. (d) The
calculated linewidth (FWHM) of the mode E2

g as a function of M0 i.e. pressure.

dependent behavior of modes M1, M2, and M3 in the experimentally measured Raman

spectra (see Fig. 3.1(a)). In contrast, dynamical corrections to the IR-active mode exhibit

a sharp jump above Pc . Noting the calculated frequencies, we assign mode M1 to E2
g

and mode M2 to A2
1g irreps. The mode M3 is the highest in frequency, and is most likely

associated with the sum of two E2
g modes (a second order Raman mode).

We now calculate the linewidth of the M1 Raman active mode. Following the proce-

dure Lazzeri et al. [116] and Pisana et al. [66] used in their work on graphene, self energy

of phonon with wavevector q and frequency ων is given by,

∑

(q, ων + iδ) =
2

Nk

∑

kij

|gνki,(k+q)j|2(fki − f(k+q)j)

ǫki − ǫ(k+q)j − (~ων + iδ)
, (3.7)
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where k is the Blöch wave vector of the electronic state, Nk is the total number of k

vectors, fki is the Fermi-Dirac distribution function and i, j denote band indices. gki,(k+q)j

is the matrix element of electron-phonon coupling between states ψki & ψ(k+q)j and δ is

a small real number. At q = 0 the real part of the
∑

gives the dynamical correction to

phonon frequency ~∆ω [66]. In our analysis, we treat a single layer of Sb2Se3 and carry

out integration over k in the Brillouin Zone in 2-D plane. For a phonon ν at Γ point and

four-band Hamiltonian, [117]

∆ωΓν
= Re[

∑

(0, ων)] =
2A

(2π)2
P
∫ ∞

−∞

d2k

4
∑

i,j=1

|gνki,kj|2(fki − fkj)

ǫki − ǫkj − ~ων

(3.8)

where P is the principle part of the integral.

Here, gki,kj is given by 〈ki|HA1g |kj〉, 〈ki|HA2u |kj〉 and 〈ki|HEg
|kj〉 respectively for

A1g, A2u and Eg phonon modes. |ki〉 & |kj〉 are the eigenvectors of the effective four-band

Hamiltonian H(k) with energies ǫki and ǫkj respectively, as given by by Zhang et al. [9] .

At the Γ point the effective four-band Hamiltonian is given by the following expression,

HΓ =





















C0 +M0 0 0 0

0 C0 −M0 0 0

0 0 C0 +M0 0

0 0 0 C0 −M0





















(3.9)

To model the electronic structure across the electronic transition seen in the DFT calcu-

lations, we treat M0 is function of pressure M0 = -k(P-Pc), where k is a positive number

and Pc is the critical pressure.

The linewidth of a phonon mode in a crystal having strong electron phonon interaction

is mainly determined by electron-phonon coupling (EPC) term in the Hamiltonian. The

EPC contribution to FWHM (γν) of a phonon mode ν is given by the following expression

[117],

γν =
4π

Nk

∑

k,i,j

|gνki,(k+q)j|2(fki − f(k+q)j)× δ(ǫki − ǫ(k+q)j + ~ων), (3.10)
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where δ is the Dirac delta function. Other terms in this expression have been explained

in the previous sections.

The linewidth of the E2
g mode estimated from our analysis (see Fig. 3.6(d)) peaks

asymmetrically near the transition pressure, quite consistent with the observed linewidth

anomaly seen in Raman experiments (see Fig. 3.1(b)). This further corroborates our the-

oretical analysis, and allows us to determine the origin of asymmetry in phonon anomalies

to the parity reversal of occupied and unoccupied bands in the immediate vicinity of the

ETT. The similar analysis predicts the asymmetry in anomaly of the IR-active mode

contrasting that in the Raman mode-with a jump in frequency above Pc.

3.1.6 Conclusions

In conclusion, we reveal a pressure-induced electronic topological transition (ETT) from

band to topological insulating phase in the rhombohedral crystal structure of Sb2Se3.

A combination of first-principles calculations and theoretical model-based analysis pre-

sented here show a breakdown of adiabatic approximation at the ETT. We established

that electron-phonon coupling of nontrivial forms leads to anomalies as observed in the

experimental Raman spectra [95]. These ideas are applicable to electronic transitions

in other topological insulators too, and expected to stimulate experiments for exploring

anomalies in Raman and IR vibrational spectra, and guide materials scientists in trans-

forming a normal insulating material to a topological insulator.
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3.2 Strain Induced Z2 Topological Insulating Phase

in β-As2Te3
†

3.2.1 Introduction

Discovery of the nontrivial electronic topology in the layered semiconductors (Bi2Se3,

Bi2Te3, Sb2Te3) [9, 119] with tetradymite crystal structure (space group: R3̄m, No: 166)

have stimulated enormous research activity in exploration of exotic states like supercon-

ductivity, anomalous quantum Hall, and magneto-electric effects that have been predicted

theoretically [99, 100, 120]. These materials, commonly known as topological insulators

(TIs), are insulators in their bulk form, but exhibit a metallic electronic spectrum at

their surfaces. The nontrivial topology of the bulk electronic states of Bi2Te3 type TI’s

arises from strong spin-orbit interactions [9]. The metallic state of the surface of a topo-

logical insulator is protected by the time reversal symmetry, and is robust against any

non-magnetic perturbations. Berry phases of electronic states at the surface of a strong

topological insulator prevent back scattering of electrons from impurities resulting in a

dissipation-less conduction of current on its surface [97].

Arsenic telluride has a monoclinic structure with space group C2/m (α-As2Te3) at the

ambient pressure, and has been investigated as a thermoelectric material in earlier works

[121–124] showing that it has a lower thermoelectric figure of merit than Bi2Te3. There

is room for improving the thermoelectric performance of As2Te3 by applying pressure or

with epitaxial strain. The high pressure study of α-As2Te3 by Scheidemantel et al. [124]

revealed a pressure induced structural phase transition from monoclinic (α-As2Te3) to

rhombohedral structure (β-As2Te3) near 7 GPa, leading to dramatic enhancement in its

thermoelectric power. The β-As2Te3 phase can also be synthesized by rapid quenching

from high temperature or by compressing monoclinic α-As2Te3 crystals [125].

The β-phase of As2Te3 is iso-structural to Bi2Se3 family of compounds with R3̄m

†This work has been published in App. Phys. Lett. 105, 062105 (2014) [118]. Reproduced with
permission from the AIP Publishing.
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symmetry (space group No:166) having 5 atoms in the bulk unit cell. Electronic struc-

ture of β-As2Te3 has been determined within a non-relativistic description i.e. without

including the spin-orbit coupling (SOC) [126], and it is found to be similar to that of

Bi2Te3 (also determined without SOC) [126] with a direct band gap of 0.12 eV at the Γ

point. As2Te3 contains a relatively light element As and hence relatively weaker SOC,

which can however be tuned with strain or pressure modifying its electronic properties.

For example, a number of materials belonging to different crystal symmetries (at ambient

conditions) have been predicted theoretically from the quantum materials repository by

using a search model based on the strain-dependent electronic structure [127]. Motivated

by this, we determine electronic structure of β-As2Te3 as a function of uniaxial strain

along the c-axis including SOC, and show that it undergoes a quantum phase transition

on application of a modest uniaxial stress of σzz = 1.77 GPa to an interesting topological

insulating state with a small gap, a property which can be exploited to make devices.

3.2.2 Computational details

We use a combination of two different implementations of density functional theoreti-

cal (DFT) methods (a) the WIEN2K [128] code which is an all-electron full potential

linearized augmented plane wave (FP-LAPW) based technique and (b) the Quantum

ESPRESSO (QE) [112] code which treats only valence electrons replacing the potential

of ionic core with a smooth pseudopotential. To obtain total energies and eigenvalues

of the electrons in a solid using the FP-LAPW methods, we use a basis set achieved by

dividing the unit cell into non-overlapping spherical regions centered at each atom and

the interstitial region. Two different types of basis sets are used in these two regions.

Plane wave basis set is used in the expansion of the electronic wave functions inside

the interstitial region. It is augmented by atomic like wave functions (linear combina-

tion of the solutions of the radial Schrödinger equation and spherical harmonics) in the

space inside every atomic sphere. These atomic-like wave functions form the basis set

inside each non-overlapping atomic sphere. We use Perdew, Burke and Ernzerhof (PBE)
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parametrization [114] of the exchange-correlation energy functional derived with a gen-

eralized gradient approximation (GGA) [113]. Spin-orbit interaction has been included

through a second variational procedure [82, 83]. Truncation of the plane wave expansion

of electronic wave functions inside the interstitial region is specified by a cut-off value of

Rmt*Kmax = 7 , where Rmt is the radius of the smallest atomic sphere (muffin-tin), Kmax

= 2.8 a.u−1 is the plane wave cut-off vector, and charge density is Fourier expanded up

to by Gmax = 12 Ry1/2, where Gmax represents the maximum value of G vector in the

Fourier expansion. We adopt the tetrahedron method for sampling integrations over the

Brillouin zone with a 9× 9× 9 uniform mesh of k-vectors.

Lattice-dynamical properties are determined within the framework of self-consistent

density functional perturbation theory (DFPT) as implemented within the QE code [64].

Since the effect of SOC is negligible on phonon frequencies and character of the vibrational

modes is unchanged without the SOC, we determine vibrational frequencies of β-As2Te3

within a non-relativistic description. We use norm-conserving pseudopotentials and plane

wave basis truncated with cut-off energies of 60 Ry and 240 Ry in representing of wave

functions and charge density respectively. In order to calculate the phonon dispersion,

force constant matrices are obtained on a 2×2×2 q-point mesh. The dynamical matrices

at arbitrary wave vectors are then obtained using Fourier interpolations.

3.2.3 Results and discussion

Lattice parameters of β-As2Te3 are taken from the Materials Project repository [129]

with ahex=4.089 Å and chex= 30.306 Å. We keep ahex fixed and apply uniaxial strain

along the c-axis, relaxing the atomic positions at each value of the uniaxial strain until

the forces on atoms become less than 1 mRy/bohr. In contrast to the earlier all-electron

calculation [126], we include the SOC in determining electronic structure of β-As2Te3 as

a function of ǫzz. From the electronic structure of β-As2Te3 (see Fig. 3.7) at vanishing

strain, it is clear that the valence band maximum and the conduction band minimum are

located at points along different directions in the Brillouin zone (i.e. band gap is indirect).
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Figure 3.7: Electronic structure of β-As2Te3 (space group: R3̄m) at vanishing strain.
Spin-orbit coupling is included in the electronic structure calculation. The overall product
of parities of the occupied bands is positive which signifies that it is a band insulator when
ǫzz = 0

However, the direct band gap at Γ point is 0.35 eV, higher than the earlier estimate (0.12

eV), obtained without the SOC [126].

ǫzz = -0.04 + - + - + + - + - - + - - - ; + (+)

ǫzz = -0.06 + - + - + + - + - - + - - + ; - (-)

Table 3.2: Parities of the fourteen occupied bands below the Fermi level and the lowest
unoccupied band above the Fermi level across the transition point (ǫzz = -0.05) for β-
As2Te3. The product of parities of the valence band manifold are given in the rightmost
column and are indicated within the brackets. Positive and negative signs within the
brackets mean that for ǫzz > -0.05, β-As2Te3 is a band insulator which undergoes a
quantum phase transition and becomes a topological insulator upon increasing the strain
beyond it.

Electronic states near the Fermi level of β-As2Te3 are contributed largely by the p-

orbitals of As and Te atoms. In Bi2Se3-type layered materials, compressive strain (ǫzz)

was found to tune the strength of the SOC by reducing the inter quintuple-layer distance

[109, 130]. As β-As2Te3 shares similar layered crystal structure, ǫzz is expected to alter

the strength of SOC and crystal field of β-As2Te3. At the compressive strain of ǫzz =

-0.05, it exhibits a Dirac semi-metallic state (see Fig. 3.8(b)), where a Dirac cone with

linear dispersion (in 3-D) of the electronic bands appears at the Γ point. Upon further
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compression of the crystal along c-axis, repulsion between the electronic bands due to a

strong SOC leads to reopening of the bulk band gap, accompanied by the inversion of

the top of the valence and bottom of the conduction bands at the Γ point. Naturally,

parities of the bands also change their sign through the band inversion. Band inversion

and parity reversal of bulk electronic bands are characteristics of an electronic topological

phase transition which has been observed in Bi2Se3 (a strong Z2 topological insulator)

as a function of strain with ǫzz = 0.06 being its critical value [109]. Here, we show that

β-As2Te3 undergoes an electronic topological transition at the ǫzz= -0.05, with a uniaxial

stress σzz = 1.77 GPa.

We now determine the Z2 topological invariant quantity ν0 of β-As2Te3 below and

above the critical value of the strain using the technique of Fu and Kane [56] that equates

the product of parities of states in the valence band manifold (see Table 3.2) to (−1)ν0 .

We find that the ν0 is 0 and 1 for ǫzz > -0.05 and ǫzz < -0.05 (the critical strain ǫzz= -0.05)

respectively, signifying that β-As2Te3 becomes a strong Z2 topological insulator for ǫzz

< -0.05. Similar to Bi2Se3, Bi2Te3 and Sb2Te3 which are strong Z2 topological insulators

at the ambient pressure [9], the top of valence and the bottom of conduction bands of

β-As2Te3 have even and odd parities respectively in its topological insulating phase.

As shown in Fig. 3.8(d), the band gap at the Γ point increases with strain beyond the

transition point (ǫzz < -0.05), which is expected of a topological insulator, but with higher

value of compressive strain (e.g. at ǫzz ∼ -0.06 ), there is anti-crossing (see Fig. 3.8(c) &

Fig. 3.9(a)) of these bands along the Γ-Z direction. This anti-crossing behavior can be

explained with group theoretical analysis of their symmetries (see the next paragraphs).

While the top-most valence band touches the Fermi level along Z-F direction, As2Te3

remains semiconducting at all ǫzz 6= -0.06, as evident in the electronic density of states

(e-DOS) in Fig. 3.9(b).

β-As2Te3 has both spatial inversion and time reversal symmetries. Inversion centre

in the crystal ensures the degeneracy of the electronic bands at k and -k i.e. εnα(k) =

εnα(-k), where εnα(k) represents the electron energy for the n-th band with spin index α at



62 Chapter 3.

Γ Z           F           Γ L   
-2

-1

0

1

2

E
n

e
rg

y
 (

e
V

)

E

Γ Z           F           Γ L           
-2

-1

0

1

2

E
n

e
rg

y
 (

e
V

)

E

Γ Z           F           Γ L  
-2

-1

0

1

2

E
n

e
rg

y
 (

e
V

)

E

(a) (b)

(c) (d)

-10 -8 -6 -4 -2 0
Strain (%)

-0.4

-0.2

0

0.2

0.4

B
a

n
d

 g
a

p
 (

e
V

) Band insulatorTopological insulator

Figure 3.8: Evolution of electronic bands and bulk band gap of β-As2Te3 as a function of
uniaxial strain (ǫzz). Electronic structure of bulk β-As2Te3 when the uniaxial strain are
(a) ǫzz= -0.04, (b) ǫzz= -0.05, and (c) ǫzz= -0.06 showing the closing and reopening of the
bulk band gap at the Γ point as a function of ǫzz. (d) Variation of the direct band gap at
the Γ point as a function of uniaxial strain ǫzz. The electronic topological transition in
β-As2Te3 passes through a metallic state at ǫzz = -0.05, where a linearly dispersing Dirac
cone appears at the Γ point.

k wave vector in the Brillouin zone. On the other hand, the time reversal symmetry implies

εnα(k) = εnᾱ(-k), where ᾱ represents the spin opposite to α. When both symmetries are

present, εnα(k) = εnᾱ(k), i.e. electronic bands acquire Kramers’ double degeneracy at

each k vector. As each electronic band in a Z2 topological insulator (having both time-

reversal and inversion symmetries) is doubly degenerate, the irreducible representation for

each band is two dimensional (i.e. E, according to Mulliken’s symbol). In the Hamiltonian

with SOC, the point group at any k vector is a double group due to inclusion of time
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reversal symmetry. The irreducible representations of bands are hence determined by the

character table of the corresponding double group of a spin-orbit coupled system [62]. At

Γ point (i.e. null k vector) in the Brillouin zone, the group of the k-vector is D3d, and

electronic bands are labeled with representations (also known as small representations) of

the double group of D3d. The top of the valence and bottom of conduction bands in the

topological insulating state have E1/2g(=Γ4+) and E1/2u(=Γ4−) symmetries respectively

(see Fig. 3.9(a), where the scale of electronic structure has been zoomed along the Γ-

Z direction) at Γ. For k along z-direction (Γ-Z), the group of k lacks the inversion

symmetry, and therefore its subgroup is C3v, and bands along Γ-Z direction are labeled

with irreducible representations of the double group of C3v.

When two bands belong to the same irreducible representation, a coupling between

them is allowed by symmetry. As a result, they avoid crossing each other and lead to an

“anti-crossing” [131]. Electronic bands just above and below the Fermi level along the Γ-Z

direction anti-cross each other, because they belong to the same irreducible representation

(E1/2=Γ4) of C3v. This analysis establishes that there can be no band crossing and closure

of gap along Γ-Z direction, and hence the electronic structure (see DOS in Fig. 3.9(b)) of

β-As2Te3 remains semiconducting as a function of ǫzz (including ǫzz=-0.06).

As the bandgap vanishes at the electronic topological transition in β-As2Te3, we expect

a breakdown of the adiabatic approximation in the vicinity of the critical point. This

broken adiabaticity would lead to Raman anomalies in a narrow range of stress near

Pc through a strong coupling between the electrons and phonons near the transition [95].

Thus, it is of fundamental importance to measure the electronic and vibrational spectra of

β-As2Te3 as a function of uniaxial strain, and confirm the presence of electronic topological

transition and associated spectroscopic anomalies in β-As2Te3.

Since topological insulators typically exhibit good thermoelectric properties [132,133],

we expect β-As2Te3 to be a better thermoelectric than its ambient pressure monoclinic

phase, consistent with the finding of Ref. [124]. Thin films of topological insulators like

Bi2Te3, Bi2Se3 are better thermoelectric materials [132] than their bulk counterpart due to
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the high mobility of the electrons on the metallic surface and low lattice thermal conduc-

tivity [133]. Strain engineering of thin films of Bi2Se3 was shown to be an effective way to

optimize its thermoelectric figure of merit (zT ) [134], given by zT = σS2T
κ

, where σ, S and,

κ are electrical conductivity, Seebeck coefficient and thermal conductivity respectively.
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Figure 3.9: (a) Electronic structure of β-As2Te3 at ǫzz= -0.06 with spin-orbit coupling
zoomed along the Γ-Z direction. The electronic states near the Fermi level having the
same irreducible representations lead to an anti-crossing situation as discussed in the
text. (b) The total electronic density of states (DOS) of β-As2Te3 at ǫzz= -0.06 show
semiconducting nature of the material in its topological insulating state.

Low κ is key to thermoelectric performance of a material. As acoustic phonon bands

of β-As2Te3 are limited to range of frequencies less than 50 cm−1 (see Fig. 3.10), and

κ depends quadratically on slope of the acoustic band, we expect a rather low thermal

conductivity of β-As2Te3 in all the three directions. The narrow gap of β-As2Te3 will

facilitate high electrical conductivity at room temperature, and the asymmetry in its DOS

(Fig. 3.9(b)) across the gap is expected to yield a high S (e.g. at ǫzz = -0.06, band gap is

0.06 eV). Since its narrow band-gap and the symmetry of its frontier states are sensitive

to uniaxial stress, β-As2Te3 has the promise of a good thermoelectric whose properties

are tunable with stress field. Thus, β phase of As2Te3 has the potential candidate for

devices based on stressed thermoelectric.

With frequencies of all its phonons less than 200 cm−1, vibrational entropy gives greater

stability to β-As2Te3 with increasing temperature. As the quintuple layers of β-As2Te3
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are held together by the weak van der Waals forces, it can be readily prepared in the form

of an ultra-thin film. Surface of a topological insulator exhibits a robust two dimensional

electron gas (2DEG) with a high carrier mobility, while that of a band insulator shows

none. This property can be used to create a charge pump based on As2Te3 that is driven

by mechanical stress field.
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Figure 3.10: Phonon dispersion of β-As2Te3 at ǫzz= -0.06 calculated within a non-
relativistic description.

3.2.4 Conclusions

In conclusion, we predict a uniaxial strain induced transition from band to topological

insulating state in β-As2Te3 using first-principles density functional theory based calcula-

tions, highlighting the importance of spin-orbit coupling. It exhibits a direct band gap of

0.35 eV at the Γ point at ambient conditions, and passes through a Dirac semi-metallic

state with linearly dispersing bands typical of a Dirac cone at ǫzz = -0.05 with non-zero

gaps on the two sides of the transition. The ETT in the rhombohedral phase of As2Te3

has been demonstrated through the band inversion and parity reversal of the top of the va-

lence and bottom of conduction bands across the critical strain, accompanied by a change

in the Z2 topological invariant. Finally, uniaxial stress can be used to tune electronic

gap and thermoelectric performance of thin films of β-As2Te3, which augurs well for its

applications.



66 Chapter 3.

3.3 Pressure Induced Phase Transition in Bi2Se3 at 3

GPa: Electronic Topological or Not?‡

3.3.1 Introduction

Topological insulators (TIs) have gained immense attention [21, 97] due to the novel

physics associated with their gapless surface states which are protected either by dis-

crete (e.g., time-reversal symmetry in Z2 TI) or spatial (e.g., point group symmetry in

topological crystalline insulator [43]) symmetries of the crystal. Among all the materi-

als that are shown to exhibit topological nontrivial electronic phases, Bi2Se3 is the first

material to be discovered as Z2 TI in three-dimensions which shows exotic properties like

quantum magneto-resistance [135], highly spin-polarized currents [136].

Bi2Se3 belongs to the simplest topological class which hosts only a single Dirac cone

in the electronic structure of its (001) surface [9]. But these topological surface states

are not easy to probe experimentally, since it is masked by the bulk contributions due to

impurities, high carrier density. Transport measurements have been performed on Bi2Se3

to explore the surface states [137, 138] by observing V-shaped conductance, ambipolar

behavior and the enhancement in thermopower [139] due to Dirac electrons.

Spin-orbit coupling (SOC) plays an important role in inducing the nontrivial topology

in the electronic structure of Bi2Se3, Bi2Te3 and Sb2Te3 compounds [104]. By calculating

the parities of the occupied bands of Bi2Se3 class of materials from electronic structure

calculations obtained within fully-relativistic analysis, Zhang et al. showed [9] how SOC

leads to the inversion of valence and conduction bands of opposite parity and induces

electronic topological phases in these compounds with Z2 invariants (1;000) at ambient

conditions. Mechanical strain was also shown to modify the strength of SOC relative to

the crystal field strength and induce electronic topological transition in materials [109].

For example, it was shown in section 3.1 that how the application of hydrostatic pressure

‡This work has been published in Journal of Physics:Condensed Matter 28, 105401 (2016) [111].
Reproduced with permission from the IOP Publishing.
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turns the band insulating phase of rhombohedral Sb2Se3 into a topological insulator by

modifying the relative strength of SOC [95].

Since the discovery of Bi2Se3 family of strong topological insulators, many theoretical

and experimental works have been done on these compounds. For example, it was shown

that Bi2Te3 undergoes a superconductivity transition [140,141] with pressure around P =

4 GPa (at low temperature), making itself a platform to probe Majorana [142] fermions at

the superconductor/TI interface [143]. The enhancement of thermoelectric power [144] of

Bi2Te3, increase in resistivity [145] and monotonous decrease in mobility [145] for Bi2Se3

have also been reported in ∼ 3-5 GPa pressure range, which lies below the pressure (∼

8 GPa) at which the first structural transition occurs in this crystal family [106, 107]. A

change in the elastic modulus parallel to the layered direction (and a minima of the c/a

ratio) in the 3-5 GPa pressure range have also been observed for all three stoichiometric

TIs Bi2Se3 [107], Bi2Te3 [106] and Sb2Te3 [110]. This low pressure transition is often

termed as electronic topological transition (ETT) or Lifschitz transition [146].

Here, it is worth defining ETT which can have two implications: (a) the van Hove

singularity associated with the band extrema passes through the Fermi level, and thereby

the distribution of carriers and Fermi surface topology changes. This is also known as

Lifshitz [146] transition assigned for all the aforementioned TIs in the range of 3-5 GPa;

(b) another type of ETT is characterized by the Z2 topological index, when the reversal of

valence band and the conduction band with opposite parities occurs and as a result, odd

number of surface Dirac cones appear. We revisit this low pressure transition of Bi2Se3

in this work and investigate the nature of this transition. We do not find any change in

the electronic topology of both the types as mentioned above as a function of pressure (P

≤ 8 GPa) by examining the density of states at Fermi level, Z2 invariants, and gapless

Dirac cones in its surface electronic structure.

As presence of ETT (which involves change in Z2 invariants) can be captured effectively

by Raman spectroscopy experiments [95], our experimental collaborators (Achintya Bera

and Prof. A. K. Sood, Indian Institute of Science, Bangalore) measured the Raman
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spectra of Bi2Se3 as a function of hydrostatic pressure. Although, the pressure derivatives

of Raman modes show a clear change at 2.4 GPa, no new modes appear at that pressure,

ruling out any structural phase transition at 2.4 GPa. The angle of the rhombohedral unit

cell increases sharply upto ∼3 GPa followed by a slow increase. We term this transition

near 3 GPa as iso-structural transition (IST), instead of ETT, as there is no change in

the Z2 topological invariants of the bulk in 0-8 GPa range of pressure.

Se(1)
Bi
Se(2)
Bi
Se(1)

Se(1)
Bi
Se(2)
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Se(1)

Se(2)
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Se(1)

Se(1)
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Se(2)
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Figure 3.11: Experimental Raman shift of Bi2Se3 as function of pressure and hexagonal
crystal structure of Bi2Se3. (a) Frequency as a function of pressure for various Raman
active modes of Bi2Se3. The solid lines are linear fits to the observed frequencies (solid
symbols). Error bars (obtained from the fitting procedure) are also shown. The inset
represents the observed frequencies in the return pressure run. The vertical (dashed
and solid) lines indicate the phase transition pressures. (b) Layered hexagonal crystal
structure of Bi2Se3.

3.3.2 Experimental observations

The pressure dependence of various Raman active modes is shown in Fig. 3.11, from

which the following observations can be made: (a) the decrease in pressure coefficient
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(i.e. slope of the frequency vs pressure graph) of both E2
g and A2

1g modes occurs at 2.4

GPa; (b) from 2.4 GPa to around 8.2 GPa these two modes harden linearly; (c) above 8.2

GPa these two phonons soften slowly upto around 12.8 GPa; (d) a new mode assigned

as N appears around 12.8 GPa which hardens with pressure and both E2
g and A2

1g modes

show a change in the slope of pressure coefficient around 12.8 GPa. Here we focus only

in the low pressure range (i.e. P < 10 GPa) We associate the first transition at P∼ 2.4

GPa to an iso-structural transition (IST) which is consistent with high pressure X-ray

study on Bi2Se3 [107], where no jump in unit cell volume was observed. Our observations

about change in the slope of high frequency mode A2
1g around IST is quite contrary to

all earlier results of high pressure Raman investigations on Bi2Te3 [106], Bi2Se3 [107] and

Sb2Te3 [147], where A
2
1g showed no change. The change in pressure coefficient of E2

g mode

at the IST (P∼ 2.4 GPa) is larger than that of A2
1g, which is in agreement with the studies

of Vilaplana et al. on Bi2Se3 [107].

3.3.3 Crystal structure and computational details

Bi2Se3 has a rhombohedral crystal structure having space group R3̄m (No. 166) with

lattice parameters ahex=4.143 Å and chex=28.636 Å [148]. The crystal structure of Bi2Se3

consists of quintuple layers (QLs) stacked along c-direction, where in one QL the atomic

plane arrangement along c-axis becomes Se(1)-Bi-Se(2)-Bi-Se(1). Se(1) and Se(2) indicate

the two different types of selenium atoms in the crystal (see Fig. 3.11(b)). Our calcu-

lated band gap (0.33 eV) is in good agreement with the experimentally reported [122]

band gap of 0.35 eV. Group theoretical analysis for the centrosymmetric rhombohe-

dral crystal structure of Bi2Se3 predicts 12 optical zone center phonons represented by

2A1g+2Eg+2A2u+2Eu [149,150].

We employ the Quantum ESPRESSO (QE) code [112] for first-principles calcula-

tions based on density functional theory and both fully relativistic and scalar-relativistic

pseudopotentials. While the spin-orbit coupling (SOC) has profound effect in modifying

the electronic properties of a material containing heavy elements, it has only weak effects
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on vibrational frequencies due to disparate energy scales associated with spin-orbit cou-

pling and vibrational energy of the ions. As a consequence, the magnitude of the phonon

frequencies does not change significantly and the character of the vibrational modes also

remains unchanged with omission of the SOC. Effect of spin-orbit coupling is included in

our first-principles calculations by constructing relativistic pseudopotential from the so-

lution of the relativistic Dirac equation instead of non-relativistic Schrödinger equation.

We have used relativistic pseudopotentials in determination of the electronic structure

of Bi2Se3 and scalar-relativistic pseudopotentials for calculating its vibrational proper-

ties. We adopt the self-consistent density functional perturbation theory (DFPT) [64]

available within the QE distribution in calculation of vibrational frequencies. We approx-

imate the exchange-correlation energy functional with a generalized-gradient approxima-

tion (GGA) [113] as parametrized by Perdew, Burke and Ernzerhof (PBE) [114]. The

kinetic energy cut-offs on the plane wave basis for the wave function and charge density

are kept at be 60 Ry and 240 Ry respectively. Integrations over the Brillouin zone are

performed with a dense mesh of 9 × 9 × 9 k-points. Occupation numbers are treated

according to the Fermi-Dirac distribution function with a broadening width of 0.04 Ry.

We allowed the relaxation of the cell parameters as well as the atomic positions in the

bulk unit cell at each target pressure (hydrostatic) until the magnitude of forces on atoms

at each pressure are less than 1 mRy/bohr.

The surface electronic structure of Bi2Se3 is calculated with a 10×10×1 mesh of k-

points using a slab model whose unitcell has a hexagonal structure with QLs stacked

along the z-direction. While constructing the slab for the surface calculations, we use the

relaxed coordinates of the bulk with and use 6 QLs above which a vacuum of 15 Å was

added to keep the electrostatic interaction between the periodic images low.

3.3.4 Theoretical analysis

Bi2Se3 exhibits several structural phase transitions as a function of pressure. At ambient

condition it has rhombohedral crystal structure (α phase) and at higher pressures it
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Figure 3.12: Enthalpy differences between the three different structures of Bi2Se3 which
reveal the first structural phase transition from α to β phase at 12 GPa and second
structural phase transition from β to γ at 28 GPa. H(α), H(β) and H(γ) are enthalpy of
the α, β and γ phases of Bi2Se3 respectively. Here, f.u. stands for formula unit.

adopts two monoclinic structures with space group C2/m (β phase) and C2/c (γ phase).

We have carried out total energy calculations for these three structures of Bi2Se3 (α, β

and γ) as a function of pressure. Enthalpies H(P) of these structures reveal that α to

β phase transition occurs at 12 GPa in agreement with the experimental results of our

collaborators as well as others [107, 151, 152] and β to γ phase transition takes place at

28 GPa (see Fig. 3.12). The difference between the experimentally reported transition

pressure from β to γ phase at 16 GPa and our calculated transition pressure of ∼ 28 GPa

may be related to some non-hydrostatic component in the experiments, as also mentioned

by Vilaplana et al. [106] while explaining their results.

We now analyze the nature of the phase transition at 2.4 GPa in details through first-

principles calculations. Our calculations show an unusual change in the internal angle

(α) of the rhombohedral unit cell near 3 GPa (see Fig. 3.13(a)). This anomalous change

is also reflected in an anomaly in the c/a ratio of Bi2Se3 (see inset of Fig. 3.13(a)) near

that pressure. To find the origin of this change in α (or c/a ratio) we examine the intra

and inter QL distances between atomic planes (see Fig. 3.13(b)), and we find that it is

the inter-quintuple layer (QL) distance (aQL) which is responsible for the anomaly in the

c/a ratio near 3 GPa. There is a distinct change in the daQL/dP around 3 GPa (see Fig.



72 Chapter 3.

0 2 4 6 8 10

1.5

1.8

2.1

2.4

2.7

Pressure (GPa)

 
 
 
 
 
 

D
ist

an
ce

 

0 2 4 6 8 10 12

24.0

24.1

24.2

24.3

24.4

24.5

24.6

24.7

0 2 4 6 8 10 12
6.80

6.85

6.90

6.95

7.00

Pressure (GPa)

c/
a 

ra
tio

 

Pressure (GPa)

an
gl

e 
(

)

(Å
) Linear fit above 3 GPa

Linear fit below 3 GPa
Inter QL distance
Se2-Bi1 bondlength
Se1-Bi1 bondlength

(a)
(b)

Figure 3.13: Anomaly in the structural parameters of Bi2Se3 near P ∼ 3 GPa as de-
termined from first-principles calculations. (a) Angle (α) of the rhombohedral unit cell
increases sharply upto 3 GPa and slowly above it, which is also reflected in the c/a ratio
(inset figure). The unusual behavior of the α or c/a ratio appears due to the sharp decease
of the inter quintuple layer (QL) distances below 3 GPa as evident in figure (b). Change
in slope in the graph is marked with vertical dashed lines.

3.13(b)), which can be responsible for the observed changes in the slope of E2
g and A2

1g

experimental Raman frequencies at this pressure (Fig. 3.11(a)).

It is clear from all the earlier experiments that anomalies in phonon spectrum are

present around ∼ 3 GPa. To relate its relevance to ETT, we have performed detailed

calculations on the bulk band gap as well as surface electronic structure below and above

the transition region (∼ 3 GPa). The direct band gap of the bulk of Bi2Se3 at Γ point

increases with pressure and a change in the slope of the band gap appears near 3 GPa

(see Fig. 3.14(a)). Though the direct band gap at Γ point increases monotonically with

pressure, the smallest band gap of the bulk first increases upto 6 GPa and decreases above

it (see Fig. 3.14(b)). With increasing pressure, the valence band maxima (VBM) and

conduction band minima (CBM) change their positions in the momentum space making

Bi2Se3 an indirect [9] to direct band gap material above P > 4 GPa [153]. Electronic

density of states (see Fig. 3.14(c)) reveal a small change in the band gap of Bi2Se3 as

shown for a few typical pressures of 2 GPa, 4 GPa and 6 GPa. The electronic structure

of the bulk calculated by including spin-orbit coupling shows a gap of 0.28 eV at ambient

conditions.
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Figure 3.15: Electronic structure of the (001) surface of Bi2Se3 for (a) 0 GPa and (b)
5 GPa which reveal of a single Dirac cone (highlighted with green dots) at the Γ point
showing no change in robust bulk electronic topology (which gives rise to gapless surface
Dirac cone) as a function of pressure.
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We compare the electronic structure of the bulk at different pressures near this tran-

sition (see Fig. 3.14(d)) and we do not find any significant changes in the electronic band

dispersions. As Bi2Se3 is a strong Z2 topological insulator with topological invariant ν0=1,

we determined the Z2 invariant ν0 of Bi2Se3 at pressures upto 8 GPa following the method

developed by Fu and Kane [56] for a centrosymmetric material. In this method, we find

the parity of the occupied bands at eight time reversal invariant momenta (TRIM), and

use the relation (-1)ν0 = Π8
i=1 δi, where i runs over eight TRIM and δi=Πm ξi2m, ξ2m

being the parity of the occupied bands indexed with 2m at each TRIM (i). We find that

ν0 remains 1 at all pressures upto 8 GPa (see Table 3.3). This signifies that there is no

electronic topological transition occurring in the above pressure range and Bi2Se3 remains

a topological insulator before it undergoes a structural transition to monoclinic structure

at higher pressure.

As gapless Dirac cone in the surface electronic structure is characteristic of a strong

topological insulator, we calculate the electronic structure of the (001) surface of Bi2Se3

as a function of pressure to see any topological change, as it is the nontrivial topology of

the bulk electronic wave function which gives rise to symmetry protected Dirac cone on

the surface. At ambient pressure, we find a gapless Dirac cone (Fig. 3.15(a)) as expected

of a strong Z2 TI. Our first-principles calculation of the slab of Bi2Se3 reveals that, on

the other side of the transition (e.g., at P=5 GPa), band gap does not open up at Γ in

its surface electronic spectrum maintaining its topological insulating nature intact (see

Fig. 3.15(b)), in agreement with the observed angle-resolved photoemission spectroscopy

(ARPES) [154]. Thus, there is clearly no change in the Z2 topological invariant of the

electronic structure of Bi2Se3 through the transition at P∼ 3 GPa.

In the light of recent results of Forster et al. [155], we note that we have determined

the topological invariants of Bi2Se3 from calculations of its bulk form. Errors in the band

gap in a density functional theoretical (DFT) calculations may result in some errors in

the pressure of transition from band to topological insulating states. On the other hand,

closure of a gap in the surface electronic structure is sensitive to the error in the DFT
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Figure 3.16: Calculated Raman and IR active modes as a function of pressure. The change
of slope of the phonon modes as measured by the Raman experiment is also captured
through our first-principles calculations. Change in slope (expressed in cm−1/GPa) for
Raman active modes A1

1g, A
2
1g, E

2
g are shown in (a), (d) and (b) respectively. Infrared

active mode A1
2u also displays a change in slope near 3 GPa shown in (c). Vertical dashed

lines are placed at the positions where the change in slope is observed.

band gap, but it is a finite size effect. Topological character can always be ascertained by

using a thicker film or slab in the calculations.

Now, we discuss the calculated vibrational frequencies of Bi2Se3 as a function of pres-

sure which, do reveal a change in their slopes (see Fig. 3.16) near the transition (i.e. in

2-5 GPa range of pressure) where the rhombohedral angle (α), c/a ratio and inter QL

distance exhibit anomalous behavior (see Fig. 3.13). The most significant changes occur

in the Raman active E2
g and A1

1g modes and also in the IR active A1
2u mode. The change in

slope of the A2
1g mode is not captured in the calculation due to the anharmonic coupling

between the A2
1g and all other modes and hence pressure dependence of this mode origi-

nating from strong anharmonicity is not captured within the harmonic analysis presented
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P (0 GPa) + - + - + - + + - + - - - + ; - (-1)

Bi2Se3 P(4 GPa) + - + - + - + + - + - - - + ; - (-1)

P (8 GPa) + - + - + - + + - + - - - + ; - (-1)

Table 3.3: Parities of the fourteen occupied bands and the lowest energy unoccupied band
of Bi2Se3 at pressures in the range of 0-8 GPa. The product of parities of the valence band
manifold are -1 as indicated within the brackets, which gives the value of Z2-invariant ν0
to be 1.

here.

3.3.5 Conclusions

In conclusion, our calculations clearly show that the low pressure transition at ∼ 3 GPa is

not related to any change in the electronic topology, as there is no change in the Z2 index,

and the gapless Dirac cone in the surface electronic structure remains intact below and

above the transition. Hence, the lowest pressure transition should be better termed as an

iso-structural transition, and not an ETT. While our theoretical calculations captured the

change in slope of E2
g mode correctly, the change in slope of A2

1g mode at the iso-structural

transition needs further understanding.





Chapter 4

Anomalous Temperature

Dependence of Electronic and

Vibrational Properties of Sb2Te3

4.1 Introduction

Sb2Te3 is a time-reversal invariant strong topological insulator in three dimensions be-

longing to same symmetry and topological class (characterized by Z2 invariant ) as that of

Bi2Se3 and Bi2Te3, which hosts only a single Dirac in the electronic structure of (001) sur-

face [9,104]. Topologically protected surface states of these insulators hold many promises

for applications in spintronics [156], quantum computation [120]. These materials have

layered structures where quintuple layers of the formula unit are stacked along c-axis

which are held together by weak van der Waals forces.

While most experimental measurements on topological insulators have focused on in-

vestigations of their robust surface electronic structure [136, 157], measurements of the

properties of their bulk have remained relatively scarce. Recent x-ray diffraction and

dilatometry experiments have shown an intriguing anomaly in the thermal expansion co-

efficients of bulk Sb2Te3 [158] and Bi2Se3 [159], without any accompanying structural or

77
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electronic phase transition. The coefficient of linear thermal expansion along the hexago-

nal c-axis of Sb2Te3 deviates significantly from the Debye law in the temperature region of

200-250 K. It decreases sharply within range showing a minimum at 225 K (even crosses

zero and becomes negative) and then increases abruptly in the 225-236 K temperature

region [158]. More importantly, the specific heat measurements of Sb2Te3 do not show

any anomaly in this temperature range. Similar anomalous behavior of thermal expansion

has also been seen for Bi2Se3 [157] and Bi2Te3 [160].

As no other physical property has been shown to display anomalous temperature

dependence in the above temperature range (200-250 K) so far, the origin of the observed

anomaly in thermal expansion coefficient is unclear. In this work, we seek to find an

explanation of anomalous temperature dependence of electronic and vibrational properties

of Sb2Te3 though first-principles theoretical analysis.

4.2 Experimental observations

Ultrafast time-resolved pump probe experiments were done by Gyan Prakash from Prof.

A. K. Sood’s group at the Indian Institute of Science on the single crystal of Sb2Te3 to

investigate the dynamics of electrons and phonons in 3-300 K temperature range which

includes the anomalous temperature regime as reported in earlier works [158]. Refractive

index (n), extinction coefficient (k), longitudinal sound velocity (v
LA

= λν
LA
/2n) and

Young’s modulus (YLA) related to LA modes along the c-axis as obtained from the exper-

iments, are shown in Fig. 4.1. Near anomalous temperature (Ta=225 K), a significant

decrease is observed in n and k, while the sound velocity (v
LA
) and Young’s modulus Y

LA

show a significant increase near Ta.

4.3 Crystal structure

Sb2Te3 has a layered crystal structure (space group R3̄m, No 166), which consists of

closed-packed atomic layers which are periodically stacked along the c-axis in units of five
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Figure 4.1: Experimentally measured temperature dependent (a) refractive index (n),
(b) extinction coefficient (k), (c) sound velocity (v

LA
) and (d) Young’s modulus of (Y

LA
)

obtained using strain pulse propagation model. Dotted lines joining through data points
are guide to eye. The dotted vertical line is drawn to match Ta=225 K.

atomic planes (Te(1)-Sb-Te(2)-Sb-Te(1)) known as quintuple layer (QL). These QLs are

bonded by weak van der Waals force [147,149]. There are five atoms in the rhombohedral

unit cell, whereas the conventional hexagonal unit cell has 15 atoms [147, 149]. The

hexagonal unit cell of Sb2Te3 is shown in Fig. 4.2. Group theoretical analysis of the

symmetry point group (D5
3d) of Sb2Te3 crystal predicts 12 optical phonons at the Γ point:

2A1g(R)+2Eg(R)+2A2u(IR)+2Eu(IR) [147], where R and IR refer to Raman and infrared

active modes, respectively.
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Figure 4.2: Hexagonal unit cell of the pristine and faulted structures of Sb2Te3. (a)
Hexagonal crystal structure of pristine Sb2Te3, and (b) its side view. (c) Stacking faulted
configuration of Sb2Te3 as seen from a side view.

4.4 Computational details

To uncover the origin of anomalous temperature dependence of the experimentally ob-

served quantities e.g., refractive index (n), Young modulus (Y
LA
), we analyzed the struc-

tural, electronic and vibrational properties of Sb2Te3 as a function of temperature using

first-principles calculations based on density functional theory (DFT). As Kohn-Sham

DFT is a ground state theory and it can not directly (without molecular dynamics)

take into account the effect of temperature, we incorporated temperature dependence in

our calculations through using experimental lattice constants (a(T) and c(T)) measured

as a function of temperature. We used the Quantum ESPRESSO (QE) [112] code

which treats only the valence electrons, replacing the potential of ionic cores with smooth

pseudopotentials. We used both fully relativistic (which includes spin-orbit coupling)

and non-relativistic (which does not include spin-orbit coupling) norm-conserving pseu-

dopotentials treating exchange-correlation energy functional with a generalized gradient

approximation (GGA) [114]. Since a strong spin-orbit coupling (SOC) is responsible for

nontrivial electronic topology [95,118], we have included SOC while calculating electronic

structure of Sb2Te3. Our calculation of phonons at a fixed lattice constant both with and
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without SOC reveals that change in frequencies is quite small (∼ 1cm−1). As calcula-

tions of phonons with SOC are computationally quite expensive, we calculated phonon

frequencies of Sb2Te3 without including SOC i.e. using non-relativistic pseudopotentials.

We truncated the plane wave basis used in expansion of the Kohn-Sham wave functions

and the charge density with energy cut-offs of 60 Ry and 240 Ry, respectively. We used

9×9×9 and 12×12×2 uniform grids of k-points for sampling the Brillouin zone integra-

tions of the rhombohedral and hexagonal unit cells, respectively, in self-consistent field

(SCF) calculations along with the occupation number of electrons smeared with Fermi-

Dirac distribution function. We used the DFT linear response with PH package [64],

available within QE, to determine the phonon frequencies. High frequency dielectric con-

stant (ǫ∞) (and hence refractive index n =
√
ǫ∞) is calculated first without SOC using

the linear response theory keeping the occupation numbers of the electrons fixed, and

was scissor-corrected to take into account the effect of SOC through the band gap using

n = nNSOC
ESOC

g

ENSOC
g

, where Eg is the band gap. SOC and NSOC indicate when the band gap

is calculated with and without including SOC respectively. Young’s modulus is calculated

as the second derivative of total energy (calculated with SOC) with respect to uniaxial

strain (ǫzz) in the hexagonal structures. We used nudged elastic band (NEB)-climbing

image (CI) procedure without taking into account the effect of SOC to search for the

occurrences of iso-structural phase transition in Sb2Te3.

4.5 Possibility of iso-structural transition

Taking temperature dependent experimental lattice constants of Sb2Te3 [158, 161], we

fully relaxed atomic positions in the rhombohedral unit cell and determined its electronic

structure and phonon frequencies as a function of temperature. We find that the electronic

bands and the phonon frequencies show negligible change as function of temperature.

We next explored if the observed changes in the experiments can be associated with

an iso-structural phase transition. In order to find the presence of another local minimum
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of Sb2Te3 within the anomalous temperature range (200-250 K) of Sb2Te3, we picked the

rhombohedral crystal structure of Sb2Te3 at a representative temperature of 215 K from

the range of temperature (200-250 K) related to the anomaly and varied the position of

one of the two Te layers (which sits at the point of centrosymmetry) within the unit cell

keeping the symmetry of the crystal unchanged. We do find an iso-structural metastable

state of Sb2Te3 which is 0.65 eV/f.u. higher in energy than the ground state minimum at

215 K, where f.u. stands for formula unit. The transition path connecting the stable and

metastable structures of Sb2Te3 at 215 K determined with nudged elastic band climbing

image (NEB-CI) method reveals that the barrier height for the transition path is too high

(5.4 eV) for the phase transition to occur. Thus, the possibility of an iso-structural phase

transition between the two local minima of Sb2Te3 as the origin of observed anomalies is

ruled out.

4.6 Origin of anomalous temperature dependence
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Figure 4.3: Free energy difference between the pristine and faulted structure of Sb2Te3.
Free energy of both the structures are calculated taking into account their vibrational
contributions as a function of temperature. The energy difference (∆F ) becomes negative
at 165K which implies that a phase transition occurs from pristine to faulted structure at
T = 165K.

As formation of stacking faults (SFs) are expected to be energetically inexpensive in
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layered materials [162], we next explored formation of SFs as a possible mechanism of the

anomalies in the physical properties of layered Sb2Te3. We introduce stacking faults in

the basal plane of hexagonal structure (equivalent to rhombohedral one) of Sb2Te3 and

constructed the pristine (~a0, ~b0, ~c0) and faulted configuration (~aSF = ~a0, ~bSF = ~b0,~cSF =

~c0 +
1
3
~a0 +

2
3
~b0) of Sb2Te3, where ~a, ~b, and ~c denote the lattice vectors of the hexagonal

unit cell of Sb2Te3 (Fig. 4.2). We calculated the free energy F = Etot + Fvib of these

structures as a function of temperature within harmonic approximation, where Etot is

the total energy at 0 K and Fvib is the vibrational contribution to the free energy at

finite temperature given by Fvib = kBT
Nq

∑

iq log[2sinh(
~ωiq

2kBT
)]. Here Nq is the total number

of wave vectors q in the Brillouin zone, ωiq is the frequency of i-th phonon with wave

vector q obtained using DFT linear response calculations. After optimization of the cell

parameters of pristine and faulted structures, we find that the free energy difference (∆F)

decreases with temperature and becomes negative at 165 K (see Fig. 4.3.). This means

that a structure with infinitely extensive SF will stabilize above Ta =165 K.

Thus, our first-principles theoretical analysis shows that the observed anomalies in the

experiment very likely arises from the formation of stacking faults in the layered structure

of Sb2Te3 above Ta. Keeping in mind all the approximations, we do not expect the

calculated Ta (Fig. 4.3) to match quantitatively the temperature of experimental anomaly

(∼225 K). To further examine the effects of formation of stacking faults on the properties

of Sb2Te3, we considered intermediate deformed states along the path connecting the

pristine (P) structure to the faulted (F) one. Such a path can be parameterized with λ to

induce variation in c vector of the hexagonal cell c = c0+
1
3
λa0+

2
3
λb0 with 0 < λ ≤ 1 (c0,

a0 and b0 are pristine hexagonal unit cell lattice parameters). λ = 0 and λ = 1 correspond

to pristine and faulted structures, respectively. We estimated the refractive index and

the Young’s modulus of each of the intermediate structures. The Young’s modulus and

refractive index (see Fig. 4.4) vary significantly along the path (as a function of λ).

Refractive index (n), obtained as
√
ǫ∞ exhibits a dip followed by a sharp rise along the

path, qualitatively in agreement with experimental observation close to T=225 K. The
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Figure 4.4: Calculated Young’s modulus and refractive index for different structures of
Sb2Te3. (a) Young’s modulus (Y) is calculated for different structures of Sb2Te3 using
the formula Y= 1

V
∂2Etot

∂ǫ2zz
|ǫzz=0, where V is volume of the unit cell, Etot is the total energy

obtained with SOC and ǫzz is the uniaxial strain. (b) Refractive index, calculated for the
pristine, faulted structures and their intermediate configurations, are scissor corrected

with n = nNSOC
ESOC

g

ENSOC
g

where n is the refractive index, Eg is the band gap, SOC and

NSOC indicate whether a quantity is calculated with (SOC) and without (NSOC) spin-
orbit interaction respectively. (P and F represent the positions of pristine and faulted
configurations respectively along the path parameterized by λ).

rise in n correlates with a minimum in band gap along the path (Fig. 4.5(b)). We note

that the refractive index (n) was estimated using scissor correction based on the band

gap obtained from a calculation performed with including SOC. Thus, the subtle changes

in the electronic structure and the band gap arising from SOC during the formation of a

SF appear responsible for the observed anomalies. Calculated Young’s modulus along the

path exhibits a peak (Fig. 4.4(a)) as the faulted structure forms, also consistent with the

observed behavior (Fig. 4.1(d)). This interpretation assumes that stacking faults start

forming in a narrow range of temperature below Ta.

To check whether the faulted structure of Sb2Te3 has the same electronic topology as

that of its pristine structure, we examined the adiabatic continuity between the pristine

and the faulted structures. For this, we calculated the electronic structures of configu-

rations at the smoothly deformed intermediate states between the pristine and faulted

structures (see Fig. 4.5(a)) to see any band gap closing and reopening. We found that
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Figure 4.5: (a) Electronic structures of the pristine and faulted configurations of Sb2Te3,
calculated with spin orbit coupling (SOC). (b) Band gap (determined with SOC) is plotted
for the pristine, faulted and their intermediate configurations. (P and F represent the
positions of pristine and faulted configurations respectively along the path parameterized
by λ).

the band gap in intermediate configurations does not close (Fig. 4.5(b)), and hence we

do not expect any electronic topological phase transition to occur. This implies that

the electronic topology of the faulted structure remains the same as that of the pristine

structure. Hence, a drop in the calculated band gap close to the faulted configuration is

responsible for the observed anomalies in the refractive index, as well as Young’s modulus.

4.7 Summary

In summary, our first-principles density functional theory calculations show that the tem-

perature dependent anomalies in the electronic and vibrational properties of Sb2Te3 are

associated with formation of stacking faults in the layered structure of Sb2Te3 above 200

K due to vibrational entropy. While electronic structure undergoes a non-monotonous

change across the anomalous temperature Ta, using adiabatic equivalence principle we

showed that electronic topology of Sb2Te3 remains unchanged before and after the for-

mation of stacking faults.
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Chapter 5

Prediction of Robust

Non-centrosymmetric Topological

Dirac Semi-metallic State in Ternary

Half-Heusler Compounds

5.1 Introduction

Dirac semi-metal (DSM) exhibits electronic structure with linearly dispersing conduction

and valence bands crossing at quadrupole degeneracy at momenta or discrete points in

reciprocal space [25]. This point, a Dirac node, is a combination of two doubly degenerate

Weyl points of opposite chirality [29]. As a result, a DSM exhibits interesting chiral

anomalies [29], ultrahigh mobility [28], giant magneto-resistance [163] and unconventional

superconducting properties [164], and it is also a parent state to various electronic phases

like topological insulator, Weyl semi-metal, topological metal and normal insulator [25].

While a DSM state does occur at a point of transition from a normal to topological

insulator state (for example with pressure) [118], it is not easy to explore. Apart from the

theoretical predictions of DSM states in BiO2 [46], Cd3As2 and Na3Bi are now established

87
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as DSMs experimentally [47, 165]. We note that these DSMs are centrosymmetric, and

metals lacking the centre of inversion are quite rare and fundamentally interesting. For

example, there are contrasting views on the existence of a Weyl or Dirac semi-metallic

state at a transition between non-centrosymmetric topological and normal insulators [166,

167].

Half-Heusler (HH) ternary compounds occur in a non-centrosymmetric structure [168],

and a good number of them have been shown to exhibit electronic states with nontriv-

ial topology that is tunable with structural distortion or strain [23, 24]. Many of them

are topological semi-metals (TSMs), with quadratically dispersed conduction and valence

bands touching at a single point in the Brillouin zone (BZ), and have been shown to

become topological insulators with suitable strain [23, 24]. Thus, strained Heuslers are

attractive for exploration of a non-centrosymmetric DSM state that is either robust or

may occur accidentally at a transition between different topological states [23,24], and re-

solve the controversy on adiabatic connectivity between normal and topological insulators

lacking inversion symmetry [166,167].

As the electronic spin-orbit coupling is large for heavy elements and relevant to elec-

tronic topology, search [23, 24] for topological insulators in ternary HHs has focused on

the compounds containing Bi and other heavy elements such as Yb, Au, Pb, Pt. However,

the bands associated with valence bands of heavy elements crowd up in a small energy

window near the gap or Fermi level, and make engineering of Dirac nodes harder. We

focus here on LiMgBi, an existing stable HH as a model system, because the bands con-

stituted of valence electrons of its lighter elements (Li and Mg) are more dispersed and

can be engineered with strain in a well-controlled manner.

To reduce the six-dimensional space of strains in the HH structure in our exploration,

we use the design principles [169] and classification scheme [170] of Dirac semi-metals. For

a Dirac node to occur in electronic structure, either a quadrupole degeneracy has to occur

at a time reversal invariant momentum (wave vector), or two doubly degenerate bands of

distinct symmetry should cross at a wave-vector along the axis of three, four or six-fold
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structural symmetry [169,170]. For a DSM based on HH compound with Td point-group

symmetry, we thus have a choice of only those structural distortions that preserve the

three-fold rotational symmetry along 〈111〉 direction.
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Figure 5.1: Crystal, electronic structures phonon dispersion and Brillouin zone of LiMgBi.
(a) Conventional cubic unit cell of LiMgBi (space group: F4̄3m), where Li (0,0,0), Mg
(1
2
, 1
2
, 1
2
) and Bi (1

4
, 1
4
, 1
4
) atoms are represented with blue, green and orange spheres respec-

tively and (b) Brillouin zone corresponding to its primitive unit cell. At the equilibrium
lattice constant (ǫc = 0 & ǫa = 0), spin-orbit coupled electronic structure (c) reveals a
topological semi-metallic state, and phonon dispersion (d) exhibits no lattice instabilities.

5.2 Crystal structure and stability of LiMgBi

While LiMgBi is a well-studied compound [171–174], its crystal and electronic structures

both needed to be analysed with care. Its structure involves one formula unit in the

primitive cell of the face centred cubic (FCC) Bravais lattice (Fig. 5.1(a)), in which

sublattices of two of the atoms form a rocksalt structure, and the third atom occupies

the sites of tetrahedral symmetry. In the inset of some of the figures, we have marked
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the atomic positions with a triangle whose vertices denoted by X(0,0,0), Y(1
4
, 1
4
, 1
4
), and

Z(1
2
, 1
2
, 1
2
) mark the position of the atoms (in crystal coordinates) in the unit cell. RS and

ZB inside the triangle stand for rock-salt and zinc blende sub-lattices respectively. Our

analysis shows that the experimental structure (ES) reported in the ICSD database [175]

and Materials project [129] is the lowest energy stable structure of LiMgBi in which Bi

occupies the tetrahedral sites (see Fig. 5.1(d)). The structure considered in a recent

theoretical investigation [174], in which Mg occupies tetrahedral sites, is 0.45 eV/f.u.

higher in energy than the ES, and exhibits lattice instabilities (see Fig. 5.2(a)). While

LiMgBi was screened as a piezoelectric insulator in another theoretical report [172], we

show that a nonzero gap (see Fig. 5.2 (b)) in this work is an artefact of neglect of spin-

orbit coupling (SOC). We find that inclusion of SOC results in semi-metallic electronic

structure of LiMgBi with inversion of its conduction and valence bands (see Fig. 5.1(c)).

Based on this, and the fact that symmetry of its valence and conduction bands is identical

to that of HgTe and topologically nontrivial half-Heuslers [23, 24, 176], we conclude that

LiMgBi is a topological semi-metal (TSM) at ambient conditions. The local stability of

the ES is established from the absence of any unstable modes in its complete phonon

dispersion (Fig. 5.1(d)), and is understandable from the chemical argument that most

electronegative atom Bi has the coordination of electropositive atoms Li and Mg.
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Figure 5.2: (a) Phonon dispersion for the unstable structure of LiMgBi, where Mg atoms
occupy the tetrahedral site, showing imaginary frequency at X point in the Brillouin zone.
(b) Electronic structure for the stable structure of LiMgBi, calculated without including
the spin-orbit coupling (SOC), exhibits non-zero gap of 0.64 eV.
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5.3 Computational methods

Our first-principles calculations are within the framework of density functional theory with

the Quantum ESPRESSO (QE) code [112] in which the interaction between the ionic

core and the valence electrons is replaced with a pseudopotential. To take into account

the effect of spin-orbit coupling in the electronic structure calculations, we use ultrasoft

pseudopotentials constructed from fully relativistic calculations. A generalized gradient

approximation (GGA) is used to describe the exchange-correlation energy functional with

parametrization of Perdew, Burke and Ernzerhof (PBE) [114]. The kinetic energy cut-offs

for truncation of the basis sets used to represent the wave function and charge density

are taken at 60 Ry and 480 Ry respectively. Integrations over the Brillouin zone are

sampled with a uniform dense mesh of 9 × 9 × 9 k-points. Discontinuity in occupation

numbers is smeared with Fermi-Dirac distribution function with a broadening of 0.003

Ry. While calculating electronic structures for undistorted and strained crystal structures

(distorted with different combination of ǫa and ǫc strains), we allowed the atomic positions

of the atoms to relax for all values of ǫa and ǫc, until forces on each atom become less

than 1 mRy/bohr. For electronic structure calculations of LiMgBi, LiMgSb, LiMgAs,

NaGaSn, RbGaSi, YAuPb, and YPtBi, we use their primitive rhombohedral unit cells.

Strains (ǫa and ǫc) are applied on LiMgBi with respect its optimized lattice constants

acubic = 6.85 Å. Lattice dynamical properties are determined within the framework of

density functional perturbation theory (DFPT) as implemented in the QE distribution

[112]. Since effects of spin-orbit interaction on phonon frequencies are weak, we estimate

vibrational frequencies within a non-relativistic description (i.e. without including SOC).

We use norm conserving pseudopotentials with plane wave basis sets truncated with

energy cut-offs of 60 Ry and 240 Ry respectively for representing wave functions and

charge density. To determine phonon dispersion, we use Fourier interpolation of dynamical

matirces calculated at wave vectors on 3×3×3 mesh of q-points. We determine the Z2

invariants of these half-Heuslers in strained states represented with points on n×m mesh

in (ǫc, ǫa) plane to confirm the nature of electronic topology of each of the distinct states
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reported in this work using the Z2Pack code [177], which is based on the concept of time

reversal polarization formulated in terms of Wannier charge centers [14]. We determine

Berry curvature with the inclusion of SOC using the wannier90 code [178].

5.4 Electronic topological phase diagram of LiMgBi

Using first-principles quantum density functional theoretical calculations, we determine

electronic topological phase diagram of LiMgBi as a function of two strains that main-

tain a three-fold symmetry of the structure, and establish (a) robust Dirac semi-metallic

state over a wide domain of strains and (b) that a transition from normal to topological

insulating state of LiMgBi is possible without closing its gap, and this is because another

band of the same symmetry takes part in the band-inversion. We demonstrate the gen-

erality of the robust DSM state in other HH compounds (e.g., YAuPb, YPtBi, NaGaSn

and RbGaSi) [179, 180], and predict specific hetero topological structures that should be

experimentally achievable with epitaxial growth.

For strained structures of LiMgBi, we use its rhombohedral unit cell (see Fig. 5.3(a)) as

the reference, and introduce structural distortions that preserve the three-fold rotational

symmetry of the structure: strain ǫc that changes the unit cell’s size only along c-axis

(diagonal of rhombohedral cell), and ǫa that changes the unit cell isotropically in the plane

perpendicular to c-axis (〈111〉 axis of the cubic structure). The Brillouin zone is distorted

correspondingly, with direction Z2-Γ-Z1 being the only axis of its three-fold symmetry (Fig.

5.3(b)). In the ǫc − ǫa plane spanning these distortions, electronic structure of LiMgBi

exhibits a rich diversity in its topological character (Fig. 5.3(c)). Along the diagonal

direction (ǫc = ǫa), the strain is isotropic and the tetrahedral symmetry is preserved. As

a result, there is no splitting of any bands, but the energy gap between Γ
(Td)
8 and Γ

(Td)
6

bands reduces with increasing compressive strain and changes its sign (band inversion)

at ǫc = ǫa=-0.011, making LiMgBi a trivial insulator (lower left quadrant of the phase

diagram in Fig. 5.3(c)). Since its conduction band (Γ
(Td)
6 ) (see Fig. 5.4(c)) arises primarily
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Figure 5.3: Primitive unit cells of structures distorted with ǫc and ǫa (a), Brillouin zone
(b) and electronic topological phase diagram (TPD) of LiMgBi (c). A pair of Dirac cones
(highlighted with green colors) appears along the three-fold rotational axis Z2-Γ-Z1 in
the Brillouin zone of distorted structure. Distinct topological phases are marked with
different colors, and electronic structure with symmetry labels for a particular phase is
drawn with the corresponding color. TDSM, TSM, TI, BI stand for topological Dirac
semi-metal, topological semi-metal, topological insulator and band insulator respectively.
Red dotted line marks the boundary between BI and TI phases denoting a topological
phase transition without closing the band gap.

from the s-orbitals of Mg, stronger cationic character of Mg evidently correlates with

trivial topology, as expected from chemistry of an ionic insulator.

An anisotropic strain, corresponding to deviation from the diagonal line of the phase

diagram, lowers the Td symmetry of LiMgBi to C3v, retaining only one axis of three-fold

rotation. The compatibility relations of Γ
(Td)
6 and Γ

(Td)
8 irreducible representations (irreps)

of Td (double group) show that they decompose to Γ
(C3v)
4 and Γ

(C3v)
5 irreps of C3v (double

group) as follows: Γ
(Td)
6 → Γ

(C3v)
4 (we label this as Γ

(C3v)
4∗ here) and Γ

(Td)
8 → Γ

(C3v)
4 +Γ

(C3v)
5 ,

where Γ
(C3v)
4 and Γ

(C3v)
5 have two dimensional irreducible representations. As a result,

Γ
(Td)
8 band splits into two doubly degenerate bands with Γ

(C3v)
5 (6px and 6py orbitals of

Bi) and Γ
(C3v)
4 (6pz orbital of Bi) representations of the double group of C3v, while Γ

(Td)
6

band of Mg s-orbitals remains doubly degenerate Γ
(C3v)
4∗ . At large tensile strains, Mg
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Figure 5.4: Electronic structures of the different topological phases ((a) Topological Dirac
semi-metal (TDSM), (b) topological insulator (TI), (c) trivial band insulator (BI) and (d)
TDSM ) of LiMgBi and generic topological phase diagrams (e) & (f) of half-Heuslers. Two
Dirac points in the TDSM appear along only Γ-L2 (d) and Γ-L5 directions (not shown
here) and not in other Γ-Li (i=1,3,4,6) directions. Topological phase diagrams (drawn
using same color scheme of Fig. 5.3(c)) for the other two classes of half-Heusler compounds
where for example (e) RbGaSi class and (f) LiMgSb class.

s-bands remain rather low in energy (the condition for nontrivial topology), and much

of the interesting changes in electronic structure involve the splitting of Γ
(Td)
8 band. For

tensile strains ǫc < ǫa (upper left of the diagonal ǫc = ǫa), Γ
(C3v)
4 band is higher in energy

than Γ
(C3v)
5 , and LiMgBi is a topological insulator (TI) with Z2 invariant of 1, consistent

with works of Felser and Hasan [23, 24], see its electronic structure in Fig. 5.4(b). On
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the other hand, ordering of Γ
(C3v)
4 and Γ

(C3v)
5 bands is reversed for ǫc > ǫa (upper right of

the diagonal ǫc = ǫa), and LiMgBi becomes a topological Dirac semi-metal (TDSM), see

its electronic structure in Fig. 5.4(a). While the TDSM is the stable phase over a large

domain of ǫc − ǫa plane, it was missed in earlier works [23, 24,181].

In the TDSM state, electronic structure exhibits gap along three of the four cubic 〈111〉

directions (see Fig. 5.4(d)) because the symmetry of momenta (
−→
k ) along these lines is

significantly lowered resulting in avoided crossing of the iso-symmetric branches containing

Γ
(C3v)
4 and Γ

(C3v)
5 states. Along the Z2-Γ-Z1 axis of three-fold symmetry however, these

branches carry different representations of C3v group, and their crossing is allowed. Since

largely unoccupied s-orbitals of Mg contributing to band containing Γ
(C3v)
4 state are higher

in energy at other
−→
k , dispersion of this band is upwards along Γ-Z1 (or L2) giving rise

to its crossing with the Γ
(C3v)
5 band containing Bi-p states. This constitutes a Dirac

point, though the degeneracy of bands splits along directions perpendicular to Γ-Z1 due

to lower symmetry of
−→
k . Thus, the TDSM state presented here arises from (a) the

distinct symmetry of Mg-s and Bi-px bands at momenta with three-fold symmetry, and

(b) opposite slopes of dispersion of these bands due to chemistry.

In the vicinity of the diagonal in lower left quadrant of the phase diagram (Fig. 5.3(c))

characterized by compressive strains, LiMgBi is a trivial insulator (see Fig. 5.4(c)) with a

vanishing Z2 invariant. Physics of this state is nevertheless quite rich because both Γ
(C3v)
4

and Γ
(C3v)
4∗ bands (made of Bi-pz and Mg-s orbitals respectively) are very close in energy.

This is reflected in how this trivial insulating state transforms to TDSM and TI states

with ǫc and ǫa respectively. To understand these transitions, we first examine evolution of

these “frontier” bands with each of the strains ǫc and ǫa (see Fig. 5.5). Energies of Γ
(C3v)
4

and Γ
(C3v)
4∗ bands vary monotonously and similarly (decrease) with strain ǫc, while they

vary in a contrasting manner with ǫa (see Fig. 5.5 (a) and Fig. 5.5 (b)). Secondly, energies

of Γ
(C3v)
4 and Γ

(C3v)
5 bands always vary in opposite manner and they cross at a point on the

diagonal ǫc = ǫa, because both of them arise from splitting of the quadruply-degenerate

Γ
(Td)
8 state. This inversion of Γ

(C3v)
4 and Γ

(C3v)
5 bands nicely explains the transition from
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Figure 5.5: Evolution of the frontier bands (Γ
(C3v)
4∗ , Γ

(C3v)
4 , and Γ

(C3v)
5 ) with strains (ǫc, ǫa)

that illustrates band inversion in topological insulator (TI)-topological Dirac semi-metal
(TDSM) (a), TDSM-TI (b), band insulator (BI)-TDSM (c) and BI-TI (d) transitions. A
gap preserving transition is due to the deeper valence band with the same symmetry as
of the conduction band, as evident in (c). Band crossings are shown schematically in the

insets where blue, red and black lines denote Γ
(C3v)
4∗ , Γ

(C3v)
5 and Γ

(C3v)
4 states respectively

and crossover of bands between the same symmetries (i.e. avoided crossing) is marked
with dotted line. (e) Calculated band gap as a function of strain ǫa (keeping ǫc=-0.025
fixed) along a line in the topological phase diagram crossing the BI-TI boundary.

TDSM to TI states across the diagonal (see Fig. 5.5(a) and Fig. 5.5(b)). Similarly, a

transition from the TDSM to trivial insulator involves inversion of Γ
(C3v)
4∗ and Γ

(C3v)
5 bands,

for example as a function of ǫc (see Fig. 5.5(c)), which is followed by a crossover between

Γ
(C3v)
4 and Γ

(C3v)
4∗ bands (see inset of Fig. 5.5(c)).

The transition from trivial insulator to topological insulator states of LiMgBi is a bit
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intriguing. Normally, one expects closure of the band-gap through a Dirac or Weyl semi-

metallic state at the transition. However, in non-centrosymmetric systems, this has been

a point of argument [166, 167]. Symmetry labels of conduction band (CB), valence band

(VB) and lower valence band (VB-1) of BI are Γ
(C3v)
4∗ , Γ

(C3v)
5 and Γ

(C3v)
4 respectively (i.e.

Γ
(C3v)
4∗ Γ

(C3v)
5 Γ

(C3v)
4 ). During transformation of the normal insulator to TI state as a function

of ǫa, inversion of the two valence bands occurs first, resulting in (Γ
(C3v)
4∗ Γ

(C3v)
4 Γ

(C3v)
5 )

configuration (see inset of Fig. 5.5(d)). In the second step, ordering of CB (Γ
(C3v)
4∗ ) and VB

(Γ
(C3v)
4 ) reverses without closure of the gap resulting in (Γ

(C3v)
4 Γ

(C3v)
4∗ Γ

(C3v)
5 ) configuration

(avoided crossing of the iso-symmetric bands with same symmetry). In the third step,

inversion of the new valence bands occurs and (Γ
(C3v)
4 Γ

(C3v)
5 Γ

(C3v)
4∗ ) configuration of the TI

state emerges. In the overall transformation from BI to TI state, closure of gap occurs

twice but within the valence bands, and the gap between valence and conduction bands is

always nonzero (see inset of Fig. 5.5(d)). Analysis of Vanderbilt [166] and Nagaosa [167]

is based on a model in the subspace of four bands, and we find that a gapped transition

from BI to TI phase is possible provided there is another relevant valence band with the

same symmetry as of the conduction band of BI (necessitating a suitable six band model).

In support of our claim of the gapped topological phase transition, we calculated

electronic structure (and band gap) of LiMgBi as a function of strain ǫa (keeping ǫc=-

0.025 fixed) in very small steps (i.e., ∆ǫa=0.0005) near the band to topological insulator

phase transition. We find that the band gap remains nonzero (see Fig. 5.5(e)) along

the path crossing the boundary between band insulator (BI) and topological insulator

(TI) regions. To search for the occurrence of band crossings, if any, at a generic k-

point, we calculated the electronic band energies on a 30×30×30 mesh of k-points. Our

calculation reveals that the smallest gap (between valence band maximum and conduction

band minimum) occurs at Γ point. We, thus, believe that the band gap does not close

during the electronic topological transition from band to topological insulators in non-

centrosymmetric LiMgBi. We note that finding more accurate value of band gap or band

crossings, if any, may require higher level (e.g., hybrid functional) calculation at even
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[111]

(a) (b)

(c)

(d)

Figure 5.6: (a) Electronic bands making the Dirac cone are plotted in a plane perpendic-
ular to [111] direction. It is clear that the bands are degenerate only along [111] axis and
become non-degenerate elsewhere. (b) Fermi surfaces in the TDSM state of LiMgBi, visu-
alized by shifting the Fermi level upward by 0.3 eV. (c) Density plot of the z-component of
the Berry curvature (Ωz(k)) calculated in a plane perpendicular to [111] axis and passing
through the Dirac point, that exhibits the three-fold crystal symmetry. (d) 3d plot of
Ωz(k) which shows a large nonzero value of Ωz(k) at the Dirac point.

more dense k-point mesh. Hence, more detailed calculations of electronic structure are

warranted in future investigations to look carefully into this subtle gapped topological

transition in LiMgBi.

The Dirac cone in the TDSM state of LiMgBi is visualized (Fig. 5.6(a)) on a 2D

plane perpendicular to [111] axis in the Brillouin zone. It is clear from Fig. 5.6(a), the

valence and conduction bands making the Dirac cone split their degeneracy as they move

away from the [111] direction because of the lack of centre of inversion in the crystal

structure. As a consequence of this non-centrosymmetry, non zero Berry curvature with

opposite signs appear at each of two Dirac points (see plot of Berry curvature for one
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Dirac point in Fig. 5.6(d)). The symmetry of its crystal structure and non-zero Berry

curvature allow a direct control valley Hall current with parallel electric field in LiMgBi.

The color density plot of the z-component of the Berry curvature in Fig. 5.6(c) reveals the

three-fold rotational symmetry of the LiMgBi crystal. The Fermi surface (Fig. 5.6(b))

in the TDSM state of LiMgBi is visualized for a n-doped LiMgBi (i.e. Fermi level of

the undoped LiMgBi has been shifted upward by 0.3 eV), which reveals two ellipsoids

(denoted by red and green colors) that touch each other along [111] axis but split away

from it.

5.5 Generic topological phase diagrams

We now present a generic topological phase diagram of half-Heuslers based on extensive

calculations of electronic structure of several compounds as a function of ǫc and ǫa. There

are two key parameters that govern this phase diagram: (a) the sign of splitting of Γ
(Td)
8

band into Γ
(C3v)
5 and Γ

(C3v)
4 bands, and (b) the critical isotropic strain at which Γ

(Td)
8 and

Γ
(Td)
6 bands cross marking a transition between band insulator and topological semi-metal.

For LiMgBi, NaGaSn, YAuPb and YPtBi, tensile strain ǫc gives a splitting with higher

energy Γ
(C3v)
5 band, and TI and TDSM states are in the left and right of diagonal line of

phase diagram (Fig. 5.3(c)), while this is reversed in RbGaSi (Fig. 5.4(e)). When the

critical isotropic strain is large and positive, as we find in LiMgAs and LiMgSb, these

materials are a band insulator for most part of the phase diagram (Fig. 5.4(f)), though it

is indeed possible to access their TDSM and TI states with large enough tensile strains.

Electronic structures of NaGaSn, RbGaSi, YAuPb and YPtBi for different combinations

applied strains (ǫa, ǫc) are given in Fig. 5.7, Fig. 5.8, Fig. 5.9 and Fig. 5.10 respectively.

Electronic structure of LiMgAs and LiMgSb are shown in Fig. 5.11, which show that

these compounds are band insulators at ambient conditions as E
Γ
(Td)
6

> E
Γ
(Td)
8

at Γ point.

Please not that unlike the Γ5 band of LiMgBi, NaGaSn and RbGaSi, the Γ5 band of

YPtBi and YAuPb splits along Γ-L direction (except at Γ and L TRIM points) in the
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Brillouin zone. Thus, when Γ5 band crosses the doubly degenerate Γ4 band, two crossing

points arise along Γ-L direction each with triple degeneracy. Hence, YPtBi and YAuPb

should be better termed as triple point topological metals [182] instead of topological

Dirac semimetals. We note that the small difference in energies of these triple points is

much less than kBT .
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Figure 5.7: Electronic structure of NaGaSn for different strains. Electronic band struc-
tures of NaGaSn, calculated with spin-orbit coupling, reveal topological semimetallic state
(a) for undistorted lattice, normal semimetallic (b), topological semimetallic (c) and topo-
logical Dirac semimetallic (d) states for strained lattices. Strains are applied with respect
to its optimized lattice constant acubic= 6.4 Å.

5.6 Experimental signature of nontrivial topology

Signatures of trivial and nontrivial electronic topology of the half-Heusler compounds

YPdBi and YPtBi have been identified in nuclear magnetic resonance (NMR) spectroscopy

as the shifts in NMR peaks in opposite directions [183]: p−orbital character of the CB

(Γ
(Td)
8 state) in topologically nontrivial state of YPtBi gives a negative isotopic shift in its

NMR peak, while s−orbital character of the CB (Γ
(Td)
6 ) of YPdBi gives a positive shift

[183]. A recent NMR experiment [173] on LiMgX (X=As, Sb, Bi) revealed a negative shift
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Figure 5.8: Electronic structure of RbGaSi for different strains. Electronic band structures
of RbGaSi, calculated with spin-orbit coupling, reveal topological semi-metallic state (a)
for unstrained lattice, topological semi-metallic state (b) under isotropic strain, topologi-
cal Dirac semi-metallic (c) and topological insulating (d) states under strained conditions.
Strains are applied with respect to its optimized lattice constant acubic= 6.7 Å.

of NMR peak of LiMgBi and a positive one of LiMg(As, Sb), consistent with our analysis

that LiMgBi is a nontrivial topological semi-metal while LiMg(As, Sb) are topologically

trivial band insulators (see Fig. 5.11).

5.7 Heterostructures

Various topological electronic states of the half-Heuslers can be achieved experimen-

tally within epitaxial hetero-structures. For example, a TDSM state can be stabilized

in LiMgBi grown epitaxially on a thick substrate of LiMgSb with 3.4 % smaller lattice

constant. Conversely, a TI state can be stabilized in LiMgBi grown epitaxially on LiMgSb

along 〈111〉 direction and applying a small compressive strain ǫc. Since these states are

stable in a wide domain of the phase diagram of strained structures, they are robust and

insensitive to (a) small structural changes arising extrinsically in experiments, or to (b)

small errors in calculations.



102 Chapter 5.

-2

-1

0

1

2

E
n

e
rg

y
 (

e
V

)

Γ X W Γ L W

-2

-1

0

1

2

E
n

e
rg

y
 (

e
V

)

Γ X W Γ L W
-2

-1

0

1

2

E
n

e
rg

y
 (

e
V

)

Γ X W Γ L W

-2

-1

0

1

2

E
n

e
rg

y
 (

e
V

)

Γ X W Γ L W

()

ε =-0.03
ε =-0.03a

c
ε =0
ε =0a

c

ε =0.01
ε =-0.02a

cε =-0.01
ε =0.02a

c

Topological semimetal Normal semimetal

Topological semimetal Topological Dirac semimetal

ZB

RS

Z
B

Y

Au

Pb

X

Y

Z

(a) (b)

(c) (d)

Figure 5.9: Electronic structure of YAuPb for different strains. Electronic band structures
of YAuPb, calculated with including spin-orbit coupling, show topological semi-metallic
state (a) in unstrained lattice, normal semi-metallic (b), topological semi-metallic (c) and
topological Dirac semi-metallic (d) states under different strains. Strains are applied with
respect to its experimental lattice constant acubic= 6.73 Å.

5.8 Summary

In summary, we have presented generic topological phase diagrams of strained half-Heusler

compounds, and show that they exhibit a robust non-centrosymmetric topological Dirac

semi-metallic state, that is stable in a large domain of strains preserving three-fold rota-

tional symmetry. As a consequence of symmetry of their electronic states, we uncovered

a gap-preserving topological phase transition between TI and BI phases of ternary half-

Heuslers. This will stimulate fundamental studies of electronic topological transition in

HHs. The possibilities of interfaces between TI, TSM, TDSM and normal insulating

states, and associated room temperature phenomena involving chirality, polarity, correla-

tions, will open up a route to exciting science within the platform of epitaxial heterostruc-

tures of ternary half-Heuslers grown in 〈111〉 direction. Adding to the diversity in their

known properties and functionality, our discovery of their TDSM state and properties

of their heterostructures should stimulate efforts in development of novel applications of
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Figure 5.10: Electronic structure of YPtBi for different strains. Electronic band structures
of YPtBi, calculated with including spin-orbit, exhibit topological semi-metallic state (a)
in undistorted lattice, topological semi-metallic state under compressive isotropic strain
(b), topological semi-metallic (c) and topological Dirac semi-metallic (d) states under
mixed strain states. Strains are applied with respect to its experimental lattice constant
acubic= 6.64 Å.
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Figure 5.11: Electronic structures of LiMgAs and LiMgSb calculated at their optimized
lattice constants with including spin-orbit coupling (SOC), show band gaps of 1.62 eV
and 1.6 eV, respectively. At Γ point the ordering of the bands are E
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,

signifying that both LiMgAs and LiMgSb are trivial band insulators at ambient conditions.
The optimized lattice constants of LiMgAs and LiMgSb are a= 6.19 Å and a= 6.62 Å,
respectively.

Heusler materials.





Chapter 6

Theoretical Prediction of

Topologically Nontrivial States in

Zintl Family of Bi2Mg2X (X=Mg,

Ca, Sr, Ba) Compounds

6.1 Introduction

Discovery of topologically nontrivial electronic states of materials marked a paradigm

shift in condensed matter physics [97]. Physics of such topological phases of matter is

described by topological band theory [184] which allows classification of insulators into

topologically trivial and nontrivial categories depending on whether they host gapless

topological electronic states at the surface or not. Since the theoretical prediction [9] of

the first three-dimensional strong topological insulator Bi2Se3 and its subsequent exper-

imental verification [10], many insulators with topologically nontrivial phases have been

theoretically predicted [104, 185, 186] and some of them have been verified experimen-

tally [157,184,187]. Many of the materials which are known to show nontrivial electronic

104
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topology have non-zero band gaps, and the occurrence of topologically nontrivial elec-

tronic phases in metallic and semimetallic systems has remained relatively rare. Recently,

theoretical and experimental studies of topologically nontrivial metallic and semimetallic

systems have revealed many exotic topological phenomena like giant magnetoresistance,

ultrahigh mobility, chiral magnetic effect which have increased the research activity in

finding topological materials with small band gap or no band gap at all [25,28,29,47]. To

this end, two pioneering theoretical studies [23,24] predicting the existence of topological

nontrivial semimetallic state in ternary half-Heusler (HH) compounds added a new di-

mension to the research in topological phases of matter. These HH compounds are shown

to possess nontrivial Z2 topological order [23] in their bulk form and can be driven into

distinct topological states under mechanical strain [23, 24].

Wan et al. [48] predicted a new and distinct topological nontrivial semimetallic state

of matter in pyrochlore iridates A2Ir2O7 (A=Y or Ln) which exhibit several linear band

crossing points (doubly degenerate) at the Fermi level in their bulk electronic structure.

The linear dispersion near the crossing points is described by an effective Weyl Hamilto-

nian H(k) = ±vk.σ, where k is the wave vector, v is the effective velocity of electron and

σ’s are the Pauli matrices. These materials are thus called Weyl semimetals [48] and the

doubly degenerate crossing points are known as Weyl points. Weyl points always come in

pairs and with opposite chiralities by virtue of the fermion doubling theorem [188]. Weyl

semimetals are shown to exhibit intriguing quantum phenomena like chiral anomaly [29]

and unusual transport properties [28].

In another work, Young et al. [46] predicted the existence of symmetry protected 3D

Dirac points in the bulk electronic structure of BiO2 which is a 3D analogue of graphene.

A pair of doubly degenerate bands cross linearly at a quadruply degenerate point (Dirac

point) at the Fermi energy. BiO2 is the first example known from theoretical prediction

of a Dirac semimetal in three dimensions. In BiO2, the Dirac point is supported as a

quadruply degenerate bands at the zone boundary [46]. Wang et al. [25] predicted topo-

logical Dirac semimetallic (TDSM) phases in A3Bi (A=Na, K, Rb) compounds which host
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a pair of Dirac points inside its Brillouin zone. As the low energy physics of the linearly

crossing bands can be effectively described by four component Dirac Hamiltonian, this

exotic quantum states of matter is known as the Dirac semi-metallic (DSM) state and

the quadruply degenerate crossing point is known as the Dirac point, which consists of

two superimposed Weyl points with opposite chiralities and are protected against annihi-

lation by the three-fold crystal symmetry [170]. Soon after its prediction, angle resolved

photo emission spectroscopy (ARPES) experiments confirmed the existence the 3D Dirac

fermion in Na3Bi [47]. Cd3As2 is another prototypical example of the TDSM which was

first predicted theoretically [189] and was subsequently realized experimentally [165]. In

Cd3As2 too, a pair of Dirac points appear symmetrically around Γ along ±Z directions,

and are protected by the C4 rotational symmetry of the crystal. DSMs are shown to

exhibit fascinating properties like ultrahigh mobility, giant magnetoresistance [25], chiral

magnetic effect under magnetic field [29].

With only few compounds are known experimentally as the DSMs that are not easy to

make, there is need to discover TDSM state possibly in the compounds that already exist.

In our search of new class of materials with small band gaps and nontrivial electronic

topology, we kept in mind the following facts: (a) Bismuth containing compounds are

well known to host topological nontrivial phases of matter mainly due to strong spin-

orbit coupling (SOC) at Bi site. For example, topological insulating state is found in

binary Bi2Se3 family [9], ternary Bi2Te2Se family [190] of layered compounds in which

atomic layers are stacked along c-direction. (b) In the Bi2X2Y (X=Te, Se, Y=Te, Se)

class [190] of topological insulators, Bi has a formal valence charge of 3+ and Te or Se

atoms have formal valence charges of 2-. To have more electrons influenced by SOC, we

explore here the electronic topology of compounds where the valence charge of Bi atom

is 3-.

With these criteria in mind, we came across an interesting family of alkaline earth

based compounds: Bi2Mg2X (X = Mg, Ca, Sr, Ba), where Bi is more electronegative

(hence it has formal valence charge of 3-) than X (X = Mg, Ca, Sr, Ba) atoms with
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2+ valence charge. We have investigated the electronic topological properties of these

compounds here and discovered the presence of topological nontrivial phases in them at

ambient conditions. These compounds have coexisting ionic and covalent bonding and

hence, they belong to a chemically very interesting class of Zintl compounds [191–194].

Nontrivial topological electronic states in Zintl compounds are relatively uncommon, and

only a few compounds like Sr2X (X = Pb, Sn) [195] and Ba2X (X = Si, Ge) [196] in

the Zintl family with orthorhombic structure (space group: Pnma, No. 62) [195,196] are

predicted to host either topological semimetallic or topological insulating phases.

We evaluate the topology of electronic states of Bi2Mg2X (X = Mg, Ca, Sr, Ba) from

their electronic structure determined with fully relativistic calculations. We ascertain

their nontrivial topological character by calculating the Z2 topological invariants. We

demonstrate that this is linked with band inversion at k=(0,0,0), the Γ point in the

Brillouin zone. Their surface electronic structure on (001) plane reveals gapless surface

Dirac cones, further confirming the nontrivial electronic topology of these compounds.

As topologically nontrivial materials often exhibit good thermoelectric properties [197],

we determine their phonon dispersion and analyze the electronic contribution to their

thermoelectric properties within a semi-classical Boltzmann transport theory. In their

phonon dispersion, we find low cut-off frequencies of the acoustic branches, that are

expected to give low thermal conductivity in these compounds. While Bi2Mg3 exhibits

low Seebeck coefficient (S), the other compounds have quite high S, relevant to better

efficiency of thermoelectric energy conversion.

6.2 Crystal structure and computational methods

Bi2Mg2X (X = Mg, Ca, Sr, Ba) compounds crystallize in centrosymmetric hexagonal

structure (space group: P3̄m1, No. 164) with five atoms in the periodic unit cell. X

atom occupies 1a Wyckoff site (0,0,0) whereas Bi and Mg atoms occupy 2d sites (±1
3
,

±2
3
, ±z) [194]. The bonding environment in this class of materials is described with
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Figure 6.1: Crystal structure and bonding environment in Zintl family of Bi2Mg2X (X
= Mg, Ca, Sr, Ba) compounds. (a) The hexagonal crystal structure consisting of a
covalently bonded [Bi2Mg2]

2− layers and intercalating cationic X2+ layers that bind weakly
through a charge transfer mechanism. (b) A view of the crystal structure from the top
(c-axis). [Bi2Mg2]

2− layer basically consists of two buckled hexagonal layers stacked along
c-direction. Within the [Bi2Mg2]

2− layer each of the Mg and Bi atoms has four fold
coordination numbers. Mg atoms (c) have slightly distorted tetrahedral coordination
environment with l′ > l whereas the Bi atoms (d) have unusual flipped tetrahedral or
”umbrella” coordination.

Zintl formalism where covalently bonded layer of [Bi2Mg2]
2− is separated by relatively

loosely bound layers of X2+ ions (see Fig. 6.1(a)). Within the covalent layers, Mg atom

has a weakly distorted tetrahedral coordination (see Fig. 6.1(c)) whereas Bi atom has a

rather unusual flipped tetrahedral environment or ”umbrella” coordination [193] (see Fig.

6.1(d)). X atom occupying the 1a site in the crystal has a slightly distorted octahedral

coordination [193]. Charge transfer between [Bi2Mg2]
2− layer and intercalating X2+ layers

stabilize the structure through ionic bonds [194].

Our first-principles calculations are based on density functional theory (DFT) as im-

plemented in the Quantum ESPRESSO (QE) [112] code with a generalized gradient
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approximation (GGA) [113] to the exchange-correlation energy functional as parametrized

by Perdew, Burke and Ernzerhof (PBE) [114]. We replaced the ionic cores with smooth

norm-conserving pseudopotentials derived within fully relativistic analysis [198] to take

into account the effect spin-orbit coupling (SOC). We truncated the plane wave basis with

cut-off energies of 60 Ry and 240 Ry in representations of Kohn-Sham wave functions and

charge density respectively. The discontinuity in occupation numbers at the Fermi level

or across the gap was smeared with a width of 0.003 Ry in the Fermi-Dirac smearing

function. The Brillouin zone integrations were sampled on uniform meshes of 9×9×6

and 10×10×1 k-vectors respectively in the calculations of bulk and surface electronic

structures.

We used experimental lattice constants of these compounds [175] and relaxed the

atomic positions in their unit cell before determining the electronic structure. To de-

termine electronic structure of (001) surfaces, we constructed free standing slabs and

increased the number of layers along c-direction until the gapless surface Dirac states

appear on the (001) surface (45 layers for Bi2Mg3 and Bi2Mg2Ca, 70 layers for Bi2Mg2Sr

and 90 layers for Bi2Mg2Ba), keeping the atomic positions fixed to those in their bulk

structures.

We obtained phonon dispersions of these compounds using calculations that include

the spin-orbit interaction within the framework density functional perturbation theory

(DFPT) as implemented within the QE code [64]. We determined the Z2 invariants of

Bi2Mg2X (X = Mg, Ca, Sr, Ba) Zintl compounds to ascertain their nontrivial electronic

topology using the Z2Pack code [177], which is based on the concept of time reversal

polarization formulated in terms of hybrid Wannier charge centers [14, 65]. We used

input from electronic structure to analyze transport properties within a semi-classical

Boltzmann theory under a constant scattering time approximation as implemented in the

BoltzTrap code [94] and estimated electrical conductivity (σ), Seebeck coefficient (S) and

power factor (S2σ) as a function of temperature.
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Figure 6.2: Band inversion in Bi2Mg3 at Γ point. Electronic bands of Bi2Mg3 (a) and
Sb2Mg3 (c) at Γ are labeled with V1, V0, C and the corresponding charge densities are
given in (b) and (d) for Bi2Mg3 and Sb2Mg3 respectively. It is clear that ordering of
the bands are inverted in Bi2Mg3 compared to that of Sb2Mg3 (see e.g., charge densities
associated with V1 and C in (b) and (d) respectively.

6.3 Electronic structure and topology

6.3.1 Electronic structure of the bulk

Among the four compounds studied here, the host compound Bi2Mg3 is more covalently

bonded, as evident in the dispersion of its electronic bands (see Fig. 6.3(a)), and expected

from the fact that Mg is less electropositive than the other alkaline earth elements. Never-

theless, electronic structure of Bi2Mg3 is quite interesting in the sense that it has inverted

bands at the Γ point in the Brillouin zone compared to a closely related compound Sb2Mg3

having the same crystal structure as that of Bi2Mg3 (see Fig. 6.2). Due to heavier mass

of Bi, the spin-orbit coupling (SOC) in Bi2Mg3 is relatively stronger than that in Sb2Mg3,

and causes inversion of valence and conduction bands at Γ point in Bi2Mg3. As the

inversion of bands of opposite parity is suggestive of topological phase transition in mate-

rials [9,95,118], we were prompted to explore which of Bi2Mg3 or Sb2Mg3 has a nontrivial

electronic topology. As these compounds are invariant under the time-reversal symmetry,
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we determined their Z2 topological invariants [56], and find that Bi2Mg3 is topologically

nontrivial with Z2 invariant ν0 = 1, while Sb2Mg3 is topologically trivial with ν0 = 0.
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Figure 6.3: Electronic structure of Bi2Mg2X (X=Mg, Ca, Sr, Ba) compounds calculated
with spin-orbit coupling. While Bi2Mg3 is a topological semimetal, Bi2Mg2X (X = Ca,
Sr) are narrow band gap topological insulators in their native states (see insets of Fig.
6.3(b) & Fig. 6.3(c) for the small band gaps). Bi2Mg2Ba, on the other hand, exhibits
topological Dirac semimetallic state due to its larger unit cell volume. While Bi2Mg2Ca
and Bi2Mg2Sr with narrow gaps are at the boundary between topological and trivial
states, Bi2Mg3 and Bi2Mg2Ba are quite robust in their respective electronic states. In the
topologically nontrivial phase, the conduction band has either Γ−

4 (topological semimetal
or topological insulator) or Γ−

5 + Γ−
6 (Dirac semimetallic state) symmetries at the zone

centre (Γ point).

We now analyze the symmetry of bands in the vicinity of Fermi level of Bi2Mg3 (Fig.

6.3(a)). As the point symmetry group of the lattice is D3d, the symmetry of the electronic

states at Γ (in the presence of spin-orbit interaction) can be labeled with irreducible

representations of the double group of D3d [199]. In the topological semimetallic state,

its bands near the Fermi energy order as EΓ−

4
> E(Γ−

5 +Γ−

6 ) > EΓ+
4
(marked in Fig. 6.3(a))
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at the Γ point, where E is the energy of the band. These three bands are relevant to the

topology of these materials and hence can be used as a basis to develop an effective six-

band model Hamiltonian for analysis of topological physics in the long wavelength limit

(near Γ). Unlike the topological semimetallic state in ternary half-Heusler compounds

with point group Td [23, 24], the conduction bands in Bi2Mg2X (X=Mg, Ca, Sr, Ba) are

not four-fold degenerate due to lower symmetry of their crystal structure (point group

D3d). As a result, small gaps arise between the bands at Γ from such splitting. In Bi2Mg3,

the highest occupied band dips below the Fermi level along Γ to K, M and A directions,

making it a semimetal. As there exists a gap at all k-points that separate the conduction

and valence bands, it is still possible to assign a topological invariant to the latter. There

are no bands crossing the Fermi level in Bi2Mg2Ca and Bi2Mg2Sr, and they exhibit narrow

band gaps with topologically nontrivial character of electronic structure. Bi2Mg2Ba, on

the other hand, exhibits a pair of Dirac points (placed symmetrically around Γ point along

[001] axis) in its electronic structure (see Fig. 6.3(d)). Thus, Bi2Mg2Ba is a topological

Dirac semimetal similar to Na3Bi [25]. We call this DSM state topological because its Z2

invariant ν0=1. This is understood by the fact that the topological insulating phase can

be strained into the DSM state (see subsection 6.4.1) through inversion of bands of the

same parity (i.e. Γ−
4 and (Γ−

5 + Γ−
6 )).

In Bi2Mg2X (X = Ca, Sr, Ba) compounds, X atom replaces the Mg atom at the 1a

site which is the centre of inversion symmetry of the hexagonal unit cell. As Ca, Sr or Ba

atoms are more electropositive than Mg, these compounds have varied degree of covalent

and ionic bonding as explained earlier. In their native states (i.e. at the experimental

lattice constants), Bi2Mg2Ca and Bi2Mg2Sr are in topologically insulating states with

band gaps of 10 meV and 14 meV respectively (see Fig. 6.3(b) and Fig. 6.3(c)). The

ordering of bands around the Fermi level is the same as that of Bi2Mg3. As the three

bands Γ−
4 , (Γ

−
5 + Γ−

6 ), Γ
+
4 lie in narrow window of energy, a slight compressive strain can

induce band inversion in these compounds and drive the topological insulating state into

band insulating phase (which is demonstrated in subsection 6.4.1). Hence, Bi2Mg2Ca and
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Bi2Mg2Sr are in the critical region of this topological phase transition. Due to almost

linearly dispersing conduction (Γ−
4 ) and valence (Γ+

4 ) bands (see inset of Fig. 6.3(b) &

Fig. 6.3(c)), these materials have the characteristics of a gapped Dirac material.

The DSM state in Bi2Mg2Ba arises from (a) its larger unit cell volume than the other

compounds here and (b) the presence of three-fold rotational symmetry. In the TDSM

state, the ordering of the electronic bands around the Fermi level at Γ is: E(Γ−

5 +Γ−

6 ) >

EΓ−

4
> EΓ+

4
, where Γ−

4 and (Γ−
5 + Γ−

6 ) bands with distinct symmetries cross to make the

Dirac cone in this compound. Bi2Mg2Ba hosts a pair of Dirac points at (0, 0, ±kz) (see Fig.

6.6(a)), which relate to each other by time-reversal symmetry operation. Please note that

DFT calculations are performed here at the GGA level. Use of more accurate methods for

electronic structure calculations (e.g., hybrid functional or GW approximation) may likely

alter the nature of the band gap and the strength of band inversion. Hence, compounds

with small band gaps, which lie in or close to the critical region of topological phase

transition, may become topologically trivial. Nevertheless, topologically nontrivial phases

can be induced in these compounds by applying suitable strain or pressure.

6.3.2 Z2 invariant and surface states

To affirm the electronic topology of Bi2Mg2X (X=Mg, Ca, Sr, Ba) compounds, we deter-

mined their topological invariants and electronic structure of (001) surface. We used two

methods to obtain Z2 invariant: (a) parity criterion of Fu-Kane [56] and (b) k-dependent

of Wannier charge centres using the ideas of time reversal polarization [14, 65]. Both the

methods yield Z2 invariant ν0=1 for all these compounds (in their experimental lattice

structures), establishing the nontrivial electronic topology in their native phases.

Electronic structure of (001) surfaces of Bi2Mg2X (X=Mg, Ca, Sr, Ba) were calculated

using centrosymmetric slabs consisting of (001) atomic planes stacked along c-direction

and a vacuum of 10 Å to keep the interaction between the periodic images low. We

increased the number of layers in the slab of each of these compounds until we got gapless

metallic Dirac surface states. The Dirac cone in the electronic structure of (001) surface
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Figure 6.4: Electronic structures of the (001) surface of Bi2Mg2X (X = Mg, Ca, Sr, Ba)
compounds, calculated within a slab model to show the existence of gap less Dirac surface
states. Due to the topological semi-metallic and narrow band gap insulating natures of
the bulk bands, the gap less Dirac surface states lie very close to the bulk bands. While
the surface states making the Dirac cone in (a) Bi2Mg3 deviates from linearity away from
Γ, they are quite linearly dispersing for (b) Bi2Mg2Ca and (c) Bi2Mg2Sr. (d) Bi2Mg2Ba
being a Dirac semimetal in its native state also hosts linearly crossing gapless surface
states which are mixed with the semimetallic bulk bands with similar energies.

lies in the midst of bulk bands: electronic structure of the (001) surface of Bi2Mg3 (Fig.

6.4(a)), Bi2Mg2Ca (Fig. 6.4(b)) and Bi2Mg2Sr (Fig. 6.4(c)) show gapless surface Dirac

cones that lie in close proximity of the bulk bands. Bi2Mg2Ba, a Dirac semimetal in its

native phase also exhibits gapless metallic surface states on (001) surface (Fig. 6.4(d)), for

which the bulk band gap is zero. Appearance of the gapless Dirac surface states on (001)

surfaces of Sr and Ca compounds further confirms the topologically nontrivial electronic

structure of these alkaline earth based Zintl compounds.
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6.4 Tunability of electronic topology

6.4.1 Effects of strain

Topological semimetallic phase in the ternary half-Heusler compounds is shown to be

tunable with external strain or pressure [23, 24], and these alkaline earth metal based

Zintl compounds are no exception. With the symmetry preserving strain, we can drive the

native topological states of Bi2Mg2X (X=Ca, Sr, Ba) compounds either into topological

Dirac semimetallic or band insulating states. Application of compressive strain on Bi2Mg3

induces a band inversion at Γ point between Γ−
4 and Γ+

4 states making a topological phase

transition to a normal semimetal, whereas application of compressive strain in Bi2Mg2Ca

and Bi2Mg2Sr makes them band insulator with a band inversion of Γ−
4 & Γ+

4 bands at

Γ point. In trivial semimetallic or insulating phases, the ordering of frontier bands at Γ

point is EΓ+
4
> E(Γ−

5 +Γ−

6 ) > EΓ−

4
.

Three-fold symmetry preserving strain is shown to induce topological Dirac semimetal-

lic state in ternary half-Heusler compounds. Here too, DSM state arises with uniaxial

strain along c-axis that preserves the three-fold rotational symmetry of the crystal (Fig.

6.5(b)). Learning from Bi2Mg2Ba with larger unit cell, isotropic expansion (which pre-

serves all the symmetries of the crystal) gives rise to TDSM states in Bi2Mg2X (X = Mg,

Ca, Sr) compounds.

Taking Bi2Mg2Ca as a model system, we demonstrate how strain induces distinct

topological states in bulk of this compound. As Bi2Mg2Ca has a narrow band gap (10

meV), a small compressive strain inverts Γ−
4 and Γ+

4 bands at Γ point inducing an elec-

tronic topological phase transitions and making Bi2Mg2Ca an ordinary band insulator

with topological invariant ν0=0 (see Fig. 6.5(a)). On the other hand, a small tensile

uniaxial strain (∼ 2%) which preserves three-fold symmetry inverts Γ−
4 and (Γ−

5 + Γ−
6 )

bands at Γ point leads to robust crossing of these bands with distinct symmetries along

Γ-A direction, and thus induces a Dirac semimetallic state in Bi2Mg2Ca (see Fig. 6.5(b)).
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Ordinary insulator Dirac semimetal

-2% isoropic strain 2% uniaxial strain along c-axis

(a) (b)

Figure 6.5: Tunable topological states of Bi2Mg2Ca with strain. (a) Normal band insulat-
ing state obtained after the application of an compressive isotropic strain of -2%, and (b)
Dirac semimetallic state obtained with uniaxial strain (ǫc=0.02) along c-axis preserving
the three-fold symmetry.

6.4.2 Model Hamiltonian to capture tunability with strain

To understand the effects of strain on the electronic structure of these Zintl compounds,

we now present a simple k.p model Hamiltonian, which accurately captures the electronic

structure in the neighborhood of Γ (k → 0). We start with the 8-band model Hamiltonian

of Liu et al. [115,185], which was used in analysis of electronic structure in k → 0 limit of

Bi2Se3 family of materials [115,185], which have the same point symmetry group as that

of Bi2Mg2X (X = Mg, Ca, Sr, Ba) compounds i.e. D3d. Noting that the frontier electronic

states (Γ−
4 , Γ

+
4 and Γ−

5 + Γ−
6 ) near EF of bulk of Bi2Mg2X (X = Mg, Ca, Sr, Ba) are the

most important states in description of their topologically nontrivial electronic phases, we

construct an effective Hamiltonian by projecting this 8-band model Hamiltonian into the

subspace of these six bands i.e. Γ−
4 , Γ

+
4 and Γ−

5 + Γ−
6 . The coupling between these and

the remaining Γ−
4 band in the original model results in renormalization of the diagonal

elements of the 6-band model Hamiltonian, given by,
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Figure 6.6: Electronic structure of Bi2Mg2Ba determined in its native Dirac semimetallic
(DSM) state obtained within density functional theory (DFT) agrees qualitatively well
with that obtained with the effective λ→ ∞ model Hamiltonian which includes the strain
dependent terms. The symmetry labels of three bands are marked at Γ using red, green
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H0=
~
2

2m0

















































































































f1(k)−M1 0 2
~
kzQ1

2
~
k−P1

2
~
k+Q2

2
~
k+P2

f1(k)−M1
2
~
k+P

∗
1 −2

~
kzQ

∗
1 −2

~
P ∗
2 k−

2
~
Q∗

2k−

f3(k) +M1 0 g35(k) g36(k)

f3(k) +M1 g∗36(-k) −g∗35(-k)

f5(k) +M2 0

H.c. f5(k) +M2

















































































































with fi(k) = Fik
2
z + Kik

2
‖, gij(k) = Uijkzk+ + Vijk

2
−, k

2
‖ = (k2x + k2y), k± = kx ± iky.

In the above model Hamiltonian, M1,M2 are constant terms which are added to the

diagonal elements. In the expression of fi, the sign and values of the parameters (effective
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masses) F5 and K5 are changed from that of their values in Bi2Se3. We have kept the

values of the other parameters in the model same as that of Bi2Se3 [115] i.e., F1(eV Å
2) =

3.73, K1(eV Å
2) = 6.52, F3(eV Å

2) = −1.12, K3(eV Å
2) = −14.0, P1(eV Å

2) = 3.33,

Q1(eV Å
2) = 2.26, P2(eV Å

2) = 2.84, Q2(eV Å
2) = 2.84, U35 = U∗

36(eV Å
2) = −2.31−7.45i,

V35 = −V ∗
36(eV Å

2) = −1.05−5.98i. We have added strain dependent terms in this model

Hamiltonian using Bir & Pikus’s approach [200] i.e. using kαkβ → ǫαβ, where ǫαβ is the

component of strain tensor and α, β indicate Cartesian directions.

The form of the strain Hamiltonian, which is used to generate Fig. 6.6(b), is given by,
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The total Hamiltonian is thus given by, Htot = H0 + p ∗ Hstrain, p is a scalar number.

While generating Fig. 6.6(b), we have solved Htot with M1 = 0.1, M2 =0.04, p = 0.2,

F5=-3.50 and K5=3.11.

Analysis of the electronic states of Bi2Mg2X (X = Mg, Ca, Sr, Ba) reveals that Γ−
4 and

(Γ−
5 + Γ−

6 ) states contain contributions from Bi 6s and 6p orbitals respectively, whereas

Mg 3s orbitals contribute to Γ+
4 state. Thus, stronger ionicity associated with unoccupied

Γ+
4 states in the conduction band gives rise to trivial topology. To get the correct ordering
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of bands within this 6-band model Hamiltonian and reproduce the dispersion of the Dirac

semimetallic state of Bi2Mg2Ba qualitatively correctly, we (a) used the parameters of

Bi2Se3 [115] with slight modifications (renormalization of diagonal terms with Mi), (b)

changed the effective masses (F5 & K5), and (c) added strain-dependent terms to the

Hamiltonian. From Fig. 6.6, it is clear that the three bands (marked with red, green and

yellow dots at Γ) in the electronic structure described by our model (Fig. 6.6(b)) agree

qualitatively with the three bands obtained from the DFT calculations (see Fig. 6.6(a)).

Thus, effects of large ionic radius of Ba can be captured with the strain-dependent terms.

Effects of ionicity are captured with Mi parameters which influence the ordering of bands

at Γ. The topology of electronic structure here is determined by the symmetry of occupied

bands: if the band Γ+
4 constitute conduction band, the topology is trivial. Our analysis

of this model Hamiltonian helps in uncovering the roles of symmetry, ionicity and ionic

size in determination of electronic topology.

6.5 Vibrational properties

As many of the Zintl phase compounds belonging to the family of Bi2Mg2X (X = Mg, Ca,

Sr, Ba) crystals have been shown to be good thermoelectric materials [194], we determined

their phonon dispersion to assess (a) the structural stability and (b) their thermoelectric

performance.

Phonon dispersion of Bi2Mg3 reveals an imaginary phonon mode (i15cm−1) at the L

point (Fig. 6.7(a)) of the hexagonal Brillouin zone. This instability is associated with

an optic phonon mode involving opposite displacements of two Bi atoms and two Mg

atoms (at 2d site) along x-axis, and that of Mg atom (1a site) along -x direction. This

phonon indicates a very weak local lattice instability in Bi2Mg3. In covalently bonded

Bi2Mg3, the topmost valence band is partially occupied, and the associated energy-cost

causes local lattice instability in Bi2Mg3. The other three Zintl compounds in this family

are locally stable in their native states, with no unstable phonons in their phonon spectra
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Figure 6.7: Atom projected phonon spectra of Bi2Mg2X (X = Mg, Ca, Sr, Ba) com-
pounds. In each phonon spectrum, contributions of each inequivalent atom to the phonon
branches are highlighted with separate colors and thickness of the lines denotes the extent
of the contributions. (a) Bi2Mg3 exhibits an imaginary frequency (i15cm−1) at L point
in the Brillouin zone, whereas the rest of the compounds (b,c,d) do not exhibit any un-
stable phonons in their establishing their structural stability at the ambient conditions.
Phonon branches are divided into three groups depending on the masses and the bonding
environments of the constituent atoms. The three middle branches (highlighted with red
color) originating from the vibrations of the X atom at 1a site, are mostly non-interacting
and hence they are localized and flat.

(see Fig. 6.7). In Bi2Mg3, there are two symmetry inequivalent Mg sites in the crystal

(occupying 1a and 2d sites), and their bond lengths with the surrounding Bi atoms are

different. As a result, phonon branches (Fig. 6.7(a)) are distributed into three groups.

The lowest six phonon branches are dominated by displacements of the heaviest bismuth

atoms (highlighted with green color), the Mg at the 1a site contribute primarily to middle

three branches (marked with red color), and the highest six phonon bands (marked with
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blue color) arise from the Mg atoms occupying 2d sites with shorter Mg-Bi bond lengths.

Frequencies of the middle band in phonon dispersion drop from Bi2Mg2Ca to Bi2Mg2Sr

to Bi2Mg2Ba, as expected from the increasing mass of the constituent atoms at 1a site. It is

seen from the dispersion of these compounds (see Fig. 6.7) that the frequencies of acoustic

branches are rather low, namely below 50 cm−1. As thermal conductivity of a material

depends quadratically on the slope of acoustic branches, we expect these compounds to

exhibit ultra-low thermal conductivity [201] which is an important paradigm in design of

efficient thermoelectric materials.

6.6 Potential applications

6.6.1 Electronic thermoelectric properties

Many alkaline and rare earth based Zintl compounds are known to be good thermo-

electrics [194]. For example, Sb2Zn2A (A = Sr, Ca, Yb, Eu) are shown to exhibit

good thermoelectric transport properties at high temperatures [202]. Solid solution of

Sb2Cd2Yb and Sb2Zn2Yb i.e. Sb2Cd1.6Zn0.4Yb shows a thermoelectric figure of merit

(zT ) of 1.2 at 700 K [203]. Given the fact (a) Bi2Mg2X (X = Mg, Ca, Sr, Ba) com-

pounds have nontrivial electronic topology which is relevant to electronic contribution

to thermoelectric performance of materials [197] and (b) Zintl phase compounds are of

general interest as thermoelectric materials [204, 205], we investigated the thermoelectric

properties of Bi2Mg2X (X = Mg, Ca, Sr, Ba) compounds.

We estimated the electronic thermoelectric properties (Seebeck coefficient (S), and

thermoelectric power factor(P )) of these compounds as a function of temperature un-

der the conditions of electron (n-type) and hole (p-type) doping. We kept the carrier

concentrations low and same for both types of doping to facilitate comparison of their

thermoelectric efficiency. Among the four compounds, Bi2Mg2Ca and Bi2Mg2Sr (which

are small band gap topological insulators) exhibit high Seebeck coefficients for both type

of doping (see Fig. 6.8(a) & Fig. 6.8(b)) due to remarkable asymmetry in their density of
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states. Bi2Mg2Ba which is a Dirac semimetal has a higher Seebeck coefficient with p-type

doping than with n-type doping. On the other hand, the semimetallic phases of Bi2Mg3

has a relatively weaker Seebeck coefficients [197] (Fig. 6.8()a, and Fig. 6.8(b)), similar to

what was seen in the Weyl semimetal TaAs [197]. Our calculations reveal that these ma-

terials generally exhibit better thermoelectric performance for n-type doping as the power

factor of all these compounds are much larger compared to their p-doped counterparts

(see Fig. 6.8(c) & Fig. 6.8(d)).

From the phonon spectra of these compounds (Fig. 6.7), it is clear that the cut-off

frequencies for the acoustic modes are below 50 cm−1 which indicates ultralow sound

velocities in these compounds. Our estimates of average sound velocities of Bi2Mg3,

Bi2Mg2Ca, Bi2Mg2Sr and Bi2Mg2Ba are 2091 m/s, 2562 m/s, 2497 m/s and 2597 m/s,

respectively, which are comparable to the sound velocities of Bi2Te3 based alloys (vs =

2147 m/s), which exhibit very low lattice thermal conductivity (κl=1.5 Wm−1K−1) [206].

Moreover, the X2+ ions in these compounds at the 1a site bind only weakly. Hence,

the phonon branches associated with the X2+ atoms are quite flat and localized. It

is known that flat and localized phonon modes act as rattlers and are very active in

reducing the lattice thermal conductivity of InTe (κl=0.4 Wm−1K−1) by scattering heat

carrying acoustic phonons [201]. Thus, we expect that low sound velocities and flat

localized vibrations of the X2+ atoms would induce ultralow lattice thermal conductivity

in Bi2Mg2X (X=Mg, Ca, Sr, Ba) compounds, which further enhance their thermoelectric

performance measured with zT .

6.6.2 Heterostructures and devices

Heterostructures consisting of ultra-thin layers of two or more compounds stacked together

are playgrounds for exploiting the science of surface and interfacial states. They provide

a platform for excellent control and tunability of these states with respect to strain and

chemical doping. They naturally have the potential for use in devices. Epitaxially grown

heterostructures of Bi2Mg2X (X=Mg, Ca, Sr, Ba) compounds are thus good candidates
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Figure 6.8: Seebeck coefficient (S) and power factor (P=S2σ/t) as a function of tempera-
ture. While the Seebeck coefficient and power factor of both n-type (a,c) and p-type (b,d)
Bi2Mg3 are quite small, S of Bi2Mg2Ca and Bi2Mg2Sr are quite large for the both types of
doping. On the other hand, Bi2Mg2Ba, being a Dirac semimetal, shows quite high value of
S for p-type doping than n-type doping. In contrast, power factor of all these compounds
are high for n-type doping compared to p-type doping. The carrier concentrations are
kept low and same for the both p and n-type doping. Units for Seebeck coefficient (S),
and power factor (S2σ/t) are µV K−1 and 1014Wcm−1K−2s− 1 respectively.

for exploration of topologically nontrivial electronic states at the interfaces between their

distinct topological states.

For example, there is a mismatch of 2.7% in the in-plane lattice constant of Bi2Mg3 and

Bi2Mg2Sr. Thus, an ultra-thin film of Bi2Mg2Sr grown epitaxially on a Bi2Mg3 substrate

along the layered direction (c-axis), will be a Dirac semi-metal due to in-plane epitaxial

strain. Its interface with the substrate may host exotic interfacial states arising from

the interaction between DSM and topological semimetal (TSM) phases. They can be

utilized in high mobility electronics due to the presence of robust Dirac cones both in

the bulk as well as at the interface. As a small compressive strain (isotropic or uniaxial)
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makes Bi2Mg2X (X=Ca, Sr, Ba) compounds band insulators through a topological phase

transition, the Dirac semimetallic state of Bi2Mg2Ba can be used as a resistive strain

sensor.

6.7 Conclusions

Based on first-principles density functional theoretical analysis, we predict that alkaline

earth based Zintl compounds Bi2Mg2X (X = Mg, Ca, Sr, Ba) host topologically nontriv-

ial electronic states. Bi2Mg3, the most covalent compound among these, is a topological

semimetal. Bi2Mg2Ca and Bi2Mg2Sr, on the other hand, are narrow band gap topolog-

ical insulators. Interestingly, Bi2Mg2Ba with relatively larger X ion exhibits a topolog-

ical Dirac semimetallic state. Our analysis of the electronic topology of these materials

through determination of (a) Z2 invariants and (b) surface electronic structures revealed

the relevance of symmetry, ionic size and ionicity. With respect to electronic structure of

related topologically trivial Sb2Mg3, conduction and valence bands of these compounds

have opposite parity and character. We demonstrated that the strain preserving three-

fold rotational symmetry can transform these materials to normal insulating as well as

Dirac semi-metallic states, uncovering the tunablity of electronic structure and topology

of these compounds, that is accessible to experiments via epitaxial growth.

From their phonon dispersion, we surmise that these compounds would exhibit ul-

tralow lattice thermal conductivity. Secondly, asymmetry in the density of states near

the gap of Bi2Mg2Ca and Bi2Mg2Sr results in high Seebeck coefficients. This should

stimulate experiments to measure thermoelectric properties of these compounds, as they

are already known to exist. The relevance of symmetry, ionicity and ionic size identified

here should guide in chemical design of centrosymmetric crystal with nontrivial electronic

topology.
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Weak Topological Insulator





Chapter 7

Emergence of Weak Topological

Insulating Phase in BiSe

7.1 Introduction

The discovery of strong topological insulators (TIs) in three dimensions resulted in an

enormous research activity in condensed matter physics leading to discovery of other topo-

logical phases of matter e.g., topological crystalline insulator (TCI) [43], Dirac semimetals

[25], Weyl semimetals [48]. Unlike an ordinary band insulator, the surface of a topological

insulator hosts robust gapless metallic states that support high spin-polarization [96,97].

These topological surface states arise from the nontrivial topology of the bulk electronic

wave function that remain protected either by discrete (e.g., time-reversal symmetry in a

Z2 TI) or spatial symmetry (e.g, crystalline symmetry in a TCI.)

Bisumth based chalcogenides (e.g., Bi2Se3, Bi2Te2) [9, 104] are strong topological in-

sulators in three dimensions that host an odd number of massless Dirac cones on their

surfaces. A departure from this notion is the idea of a weak topological insulator, wherein

only certain surface terminations host topologically nontrivial surface states characterized

by an even number of Dirac nodes leading to exciting new physics.

126
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Mathematically, TIs are differentiated from ordinary insulators based on global topo-

logical invariants [56,101,207]. In two dimensions, TIs are described by a single topological

invariant (ν, which can be either 0 or 1), whereas in a three dimensional material, there

are four Z2 invariants (ν0; ν1, ν2, ν3). Among these, ν0 is known as strong topological in-

dex, whereas (ν1, ν2, ν3) are known as weak topological indices. Three dimensional TIs

are again classified into strong and weak classes. For a strong topological insulator (STI),

ν0 must be 1, rest of the indices may or may not take a non-zero value, whereas for a

weak topological insulator (WTI), ν0=0, and at least one of the three indices (ν1, ν2, ν3)

should be 1. Contrary to a STI which hosts robust surface states on all its surfaces, a

WTI exhibits gapless topological surface states only on certain specific surface termina-

tions. In this regard, topological surface states in a STI are always manifested, whereas

it is either manifested or hidden in case of a WTI [39, 40, 208]. WTIs are topologically

equivalent to a stack of 2D TI layers showing an even number of Dirac cones on their

side surfaces [39]. The surface states of WTI were initially thought to be unstable to-

wards non-magnetic disorder [39, 209], However, recently it has been shown that WTI

surface states behave robustly under strong time-reversal invariant disorders, similar to

those of STIs [39,41]. These states are further predicted to give rise to several novel topo-

logical quantum effects e.g., one-dimensional helical modes along dislocation lines [40],

weak-anti-localization (WAL) effect [41], half quantum spin Hall effect [42].

There are only few WTIs reported in literature. For example, KHgSb [59] and Bi2Te2I

[210] were theoretically predicted to be WTIs, which are not experimentally verified yet.

The only known experimental realization of a WTI is the bismuth-based layered compound

Bi14Rh3I9 [211]. The intuition for designing a WTI material comes from the idea that

a stack of weakly coupled 2D topological insulators can emerge as a 3D WTI. In fact,

Bi14Rh3I9 is essentially a stacked graphene analogue [211], with each layer exhibiting large

spin-orbit interaction generated by Bi. Another promising route is to stack alternating Bi

bilayers, a 2D topological insulator, with a trivial insulator. Bi2Te2I follows this paradigm

and was theoretically shown to be a WTI [210].
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With the help of first-principles calculations based on density functional theory, we

predict here the emergence of a weak topological insulating phase in BiSe which belongs to

the BixSey crystal family. We borrow the idea essentially from two observations. First, the

fact that stacking of Bi bilayers is known to host a 3D WTI phase, therefore we intuit that

stacking Bismuth bilayers sandwiched on either side by a topological insulator instead of

a trivial insulator could also possibly host the WTI phase. Second, and more importantly,

it is known that the Bismuth chalcogenides exhibit what is known as infinitely adaptive

superlattice phase [212]. Essentially, the stoichiometry of BixSey can be adjusted to a

wide range of values by stacking of Bi2Se3 and Bi2 in the correct ratio. For the simplest

possible ratio with x = 1 and y = 1, one obtains a crystal structure as shown in Fig.

7.1(a) in which a repeating unit is formed by a Bi2 bilayer sandwiched bwtween two

Bi2Se3 quintuple layers on the top and bottom. The hallmark of this structure is that

it consists of quantum spin hall insulators [213–215] that are coupled to 3D topological

insulator. This work has been done in collaboration with experimentalists (Kunjalata

Majhi and Prof. PS Anil Kumar, IISc) who measured magnetotransport properties of

BiSe.

7.2 Crystal structure and Brillouin zone

BiSe has a hexagonal crystal structure with twelve atomic layers in the primitive unit

cell (see Fig. 7.1(a)) with space group P3̄m1 (No. 164) [175] where a bismuth bilayer is

sandwiched between two quintuple layers (QLs) of Bi2Se3 in such a way such that it retains

inversion symmetry. In the crystal structure of BiSe, all the layers are stacked along the

c-direction and are held together by relatively weak bonding compared to the strong

covalent bonding within the Bi2Se3 QLs and bismuth bilayer. This is clearly seen from

Fig. 7.1(b), where electronic charge density clouds are highly localized within bismuth

bilayer and Bi2Se3 QLs, but with very little or no contribution between the layers (see

Fig. 7.1(b)). The Brillouin zone (BZ) of this hexagonal unit cell is shown in Fig. 7.2(a),
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(a) (b) (c) (d)

Figure 7.1: Total electronic charge density plot and different unit cells of BiSe for elec-
tronic structure calculations of the bulk and (001) surface. (a) Primitive hexagonal unit
cell of BiSe consisting of a bismuth bilayer sandwiched between two Bi2Se3 quintuple
layers stacked along c-direction. (b) Iso-surfaces of total electronic charge density (shown
in blue color) shows strong covalent bonding within bismuth bilayer and Bi2Se3 QLs, but
reveals weak interlayer interaction between them. (c) Se and (d) Bi bilayer terminated
surfaces of BiSe used for (001) surface states calculation. Red and green spheres denote
Bi and Se atoms respectively.

inside which a parallelepiped is drawn in red color whose vertices denote the eight time

reversal invariant momenta (TRIM) (Γ,M1,2,3, L1,2,3, A) in that BZ.

7.3 Computational details

We have determined electronic structure of BiSe both without and with including spin-

orbit coupling (SOC) in the calculations using the Quantum ESPRESSO (QE) [112]

code which treats only valence electrons replacing the potential of ionic core with a smooth

pseudopotential. The results from QE code were reproduced by another more accurate

implementations of density functional theoretical (DFT) methods: the WIEN2K [128]

code which is an all-electron full potential linearized augmented plane wave (FP-LAPW)

based technique.

For simulations in QE, we have used both non-relativistic and fully relativistic (which

includes SOC) norm-conserving pseudpotentials with kinetic energy cut-offs of 60 Ry and
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240 Ry chosen respectively for wave function and charge density while truncating their

representations in plane wave basis. Integrations over the Brillouin zone are performed

with a dense mesh of 9×9×3 k-points. Occupation numbers are treated according to the

Fermi-Dirac distribution function with a broadening width of 0.003 Ry. We allowed the

relaxation of the atomic positions in the bulk unit cell until the magnitude of forces on

atoms at each pressure are less than 1 mRy/bohr.

To obtain total energies and eigenvalues of the electrons in a solid using the FP-

LAPW methods, we use a basis set achieved by dividing the unit cell into non-overlapping

spherical regions centered at each atom and the interstitial region. Two different types

of basis sets are used in these two regions. Plane wave basis set is used in the expansion

of the electronic wave functions inside the interstitial region. It is augmented by atomic

like wave functions (linear combination of the solutions of the radial Schrödinger equation

and spherical harmonics) in the space inside every atomic sphere. These atomic-like wave

functions form the basis set inside each non-overlapping atomic sphere. We use Perdew,

Burke and Ernzerhof (PBE) parametrization [114] of the exchange-correlation energy

functional derived with a generalized gradient approximation (GGA) [113]. Spin-orbit

interaction has been included through a second variational procedure [82,83]. Truncation

of the plane wave expansion of electronic wave functions inside the interstitial region is

specified by a cut-off value of Rmt*Kmax = 7 , where Rmt is the radius of the smallest atomic

sphere (muffin-tin), Kmax = 2.8 a.u−1 is the plane wave cut-off vector, and charge density is

Fourier expanded up to by Gmax = 12 Ry1/2, where Gmax represents the maximum value

of G vector in the Fourier expansion. We adopt the tetrahedron method for sampling

integrations over the Brillouin zone with a 12×12×2 mesh of k-points.

Lattice-dynamical properties are determined within the framework of self-consistent

density functional perturbation theory (DFPT) as implemented within the QE code [64].

Since the effect of SOC is negligible on phonon frequencies and character of the vibrational

modes is unchanged without the SOC, we determine vibrational frequencies of BiSe within

a non-relativistic description. In order to calculate the phonon dispersion, force constant
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matrices are obtained on a 4×4×1 q-point mesh. The dynamical matrices at arbitrary

wave vectors are then obtained using Fourier interpolations.
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Figure 7.2: Time reversal invariant momenta (TRIM) in the hexagonal Brillouin zone
(BZ), unit cell and corresponding BZ for side surface states calculation. (a) Vertices of the
parallelepiped (drawn in red color within the hexagonal BZ) correspond to eight TRIM
(Γ, M1,2,3, L1,2,3, A). (b) The rectangle marked with blue color in a 2×2×1 hexagonal
supercell of BiSe form the basal (xy-plane) plane for the orthorhombic unit cell for side-
surface calculations whose dimension is a×

√
3a×c (as shown in c), where a and c are

the lattice constants of the bulk hexagonal unit cell of BiSe. (d) Brillouin zone of the
orthorhombic side surface unit cell where red dots mark the high symmetry points in
the bulk and green dots mark their projections on (100) surface on which the electronic
structure for the (100) side surface of BiSe is calculated. Red and green spheres denote
Bi and Se atoms respectively.

For the calculation of surface states on (001) surface of BiSe, we have taken the

hexagonal unit cell with (a) Se and (b) bismuth bilayer terminations (see Fig. 7.1(c) &

Fig. 7.1(d)) with three different thicknesses (12,24 and 36 layers) of BiSe along c-direction

and used 9×9×1 mesh of k-points for BZ integrations. We have also calculated the surface

electronic structure of a free standing bismuth bilayer for which we have adopted the same

hexagonal unit cell as BiSe, except for a different value of lattice constant along c-axis
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(see Fig. 7.6(a)).

For side surface states calculations, we have constructed an orthorhombic unit cell

with dimension a×
√
3a×c from the hexagonal supercell of BiSe as shown in Fig. 7.2(b),

where blue rectangle shows the basal plane of the orthorhombic unit cell with 24 atoms

(Bi12Se12). a and c are the experimental lattice constants of the hexagonal unit cell of

BiSe. The full orthorhombic unit cell and its BZ are shown in Fig. 7.2(c) and Fig. 7.2(d),

respectively. The high symmetric points in the bulk of the orthorhombic BZ and their

projections on the (100) side surface on which the surface electronic structure has been

calculated are also shown in Fig. 7.2(d). For BZ integrations, we used 1×9×3 mesh of

k-points. To obtain the surface electronic structure of Fig. 7.3(c), we have taken seven

unit cell thick layers of the orthorhombic unit cell (as shown in Fig. 7.2(c)) along x-

direction which is truncated with a vacuum of 15 Å to prevent electrostatic interactions

between the periodic images of the slab along x-direction. On the side surface (yz-plane)

of this semi-infinite slab, bismuth bilayer exhibits an armchair type termination on the

boundary.

7.4 Theoretical analysis

Electronic structure of BiSe, calculated at the experimental lattice constant (a=4.212

Å and c=22.942 Å) [175] without including SOC (see Fig. 7.3(a)), reveals a metallic

character with a flat conduction band along Γ-A line just above the Fermi level (EF ). The

charge density of this band is highly localized and confined within the bismuth bilayer.

Dispersion of this band near the EF (along Γ-A) is similar to that of an unconventional

superconductor MgB2 [216], weak topological insulators like Bi2TeI [210] and KHgSb [59].

This unoccupied conduction band is constituted primarily of σ-bonded px and py orbitals

of Bi in the bismuth bilayer, and becomes dispersion-less due to relatively weaker interlayer

interactions. Such empty covalent bonds cost energy, and this flat band pushes BiSe to

the brink of lattice instability (with imaginary frequency of ∼ i15 cm−1 appearing along
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Y  T ZΓ

(a) (b)

(c) (d)

Figure 7.3: Electronic structure and phonon dispersion of BiSe. Electronic structure
of BiSe calculated without spin-orbit interaction (a) reveals a metallic state. Spin-orbit
interaction opens up a band gap throughout the Brillouin zone (BZ), making BiSe a small
(∼ 42 meV) indirect band gap semiconductor (b). Electronic structure of (100) surface
of BiSe (c) calculated with SOC reveals two Dirac cones(highlighted with blue colors) at
Ȳ and T̄ points in the surface BZ; here, grey shaded regions represent the bands arising
from the bulk. The empty dispersion-less conduction band along Γ-A in (a) makes BiSe
weakly unstable, as evident from its phonon dispersion (d) calculated without including
spin-orbit coupling.

Γ-A direction, the crystallographic direction of stacking in BiSe, see Fig. 7.3 (d)).

7.4.1 Projected electronic structure of the bulk

Layer projected electronic structure (see Fig. 7.4(a) & Fig. 7.4(b)) reveals that the

contributions to the valence band (VB) and conduction band (CB) around the Fermi level

mainly come from the Bi bilayer and Bi2Se3 quintuple layers (QLs) respectively, except

along the Γ-A line where this is reversed, indicating even number of band inversions at

Γ and A points in the Brillouin zone. The inverted band structure together with even
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Figure 7.4: Bi bilayer (a,c) and Bi2Se3 quintuple layer (b,d) projected electronic density
of states along high symmetry directions in Brillouin zone. Electronic density of states
calculated without spin-orbit interaction shows the contribution coming from the bismuth
bilayer (a) and Bi2Se3 quintuple layers (b). As can be seen in (a), the flat bands along
Γ-A comes from the bismuth bilayer which gets split as a result of inclusion of spin-
orbit interaction in (c), and opens up gap along Γ-A and elsewhere in the Brillouin
zone. (d) Contribution coming from the Bi2Se3 QLs in presence of SOC. Hot (yellow)
and cold (black) colors in the color scale signifies maximum and vanishing contributions,
respectively.

number of band inversions hint towards the presence of a topological nontrivial (weak)

phase in BiSe. Further analysis of the electronic structure reveals that the flat band comes

from σ-bonded px and py orbitals of Bi atoms of the Bi2 layer and is highly covalent in

nature, which is evident from high localization of charge density within the bismuth bilayer

(see Fig. 7.1(b)). Inclusion of SOC in the calculation splits the degeneracy of the flat

conduction band along Γ-A (see Fig. 7.3(b) and also Fig. 7.4(c) & Fig. 7.4(d)) and opens

up gaps at all k-points in the BZ which facilitates the calculation of Z2 invariant, as the
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occupied VB and unoccupied CB manifolds are separated by a local gap everywhere in

the BZ [14]. Thus, SOC makes BiSe an indirect band gap semiconductor (band gap ∼

42 meV) with its valence band maximum (VBM) and conduction band minimum (CBM)

appearing respectively along A-L and Γ-K directions.

7.4.2 Calculation of Z2 invariants

As SOC opens up a local gap at every k-point in the Brillouin zone, it facilitates the

calculation of Z2 invariants, which effectively determines the topological nature of any

material. The calculation of Z2 invariants are further simplified by the fact that BiSe

possesses centre of inversion. We determined the four Z2 invariants (ν0, ν1, ν2, ν3) following

Fu and Kane’s parity criteria [56]. In this method, four Z2 invariants in 3D space can

be calculated from the product of the parity eigenvalues (σi, where i indicates a TRIM)

of the occupied states at eight TRIM (Γ,M1,2,3, L1,2,3 and A, see Fig. 7.2(a)) in the

BZ. Among the four topological indices, ν0 is the strong topological index which can be

calculated by taking the product of the parities at all eight TRIM through the relation

(−1)ν0 =
∏8

i=1 σi=σΓσM1σM2σM3σL1σL2σL3σA. The other three weak topological indices

(νk, k = 1, 2, 3) are determined based on the parity of the occupied states at four TRIM

points which form a surface of the parallelepiped (marked in red color in Fig. 7.2(a))

excluding Γ point through the relation [59] (−1)νk =
∏4

i=1 σi. To be more specific, we

used the following relations [59] to get ν1, ν2, ν3: (−1)ν1 = σM1σM2σL1σL2 , (−1)ν2 =

σM2σM3σL2σL3 , (−1)ν3 = σL1σL2σL3σA. At the experimental lattice constant of BiSe, the

product of the parity eigenvalues of BiSe at eight TRIM are σΓ=1, σM1=-1, σM2=-1,

σM3=-1, σL1=1, σL2=1, σL3=1 and σA = -1. Hence, calculation of Z2 invariant using the

above relations reveals that BiSe belongs to Z2 (0;001) class of weak TIs which is same

as the topological class of other weak TIs Bi2TeI [210] and KHgSb [59].
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Figure 7.5: Electronic structure on (001) surface of BiSe for different surface terminations
and thicknesses. (a,c,e) Se-terminated surface of BiSe shows absence of any linearly
dispersing Dirac cone-like crossing, even when the the unit cell contains six quintuple
layers of Bi2Se3. (b,d,f) Bismuth bilayer (Bi2) terminated surface shows presence of a Dirac
cone-like feature on their surface electronic structures, which are actually topologically
trivial Rashba spin split states coming from the Bi2 layers due to the presence of an
internal electric field.
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7.4.3 Surface electronic structure

Govaerts et al. [217] recently questioned the claim that bismuth bilayer terminated Bi2Se3

exhibits a single Dirac cone in the electronic structure of (001) surface [218]. They showed

that the Dirac cone-like features on Bi2 terminated surface actually corresponds to Rashba

split states of the bismuth bilayer. These Rashba states arise from the presence of an

internal electric field associated with polarity and charge transfer from Bi2 layer to Bi2Se3

quintuple layers [217]. To verify their claim, we have calculated surface electronic structure

of BiSe on both the (001) surface (i.e. perpendicular to the layer direction of BiSe) as

well as on the side surface. As it was shown earlier that Bi or Se terminated surfaces of

(Bi2)m(Bi2Se3)m systems are energetically equally preferable [217], for calculation on (001)

surface, we used super cell of bulk hexagonal unit cell and considered both (a) Se and (b)

Bi-bilayer terminations (see Fig. 7.1(c) & Fig. 7.1(d)). Se terminated surface electronic

structures do not show any Dirac cone-like features (see Fig. 7.5(a), Fig. 7.5(c) and Fig.

7.5(e)) but Bi-bilayer terminated surface exhibits linearly crossing bands which resemble

Dirac cones on the (001) surface (see Fig. 7.5(b), Fig. 7.5(d) and Fig. 7.5(f)). The

Dirac cone-like feature on Bi bilayer terminated surface was misinterpreted as topological

surface Dirac cone [218]. However, it was later found to be originating from the Bi2 layer

as a result of an internal electric field due to the charge transfer from the bismuth bilayer

to the Bi2Se3 quintuple layers [217]. As Bi2Se3 requires minimum four QLs to exhibit

nontrivial topological properties (e.g., gapless topological surface Dirac cone) [217], we

have gradually increased the thickness of the hexagonal super cell from 12 layers to 36

layers which accommodates 6 QLs of Bi2Se3 and 3 bismuth bilayers. Our systematic

analysis of the surface electronic structures are given Fig. 7.5. Presence of linearly

dispersing Dirac cone-like features on Bi2 terminated surfaces electronic structures and

absence of it on the Se terminated surfaces clearly prove that observed Dirac cones in Fig.

7.5(b), Fig. 7.5(d) and Fig. 7.5(f) are not topologically nontrivial, in agreement with the

claim of Govaerts et al. [217]. In order to know, whether bismuth bilayer is giving rise

to any Dirac cone on (001) surface, we have calculated surface electronic structure of a
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Figure 7.6: Unit cell and surface electronic structure of a free standing bismuth bilayer.
(a) Hexagonal unit cell of a free standing Bi2 layer and (b) its electronic structure on
(001) surface reveals an insulating phase of the bismuth bilayer.

free standing bismuth bilayer in the same hexagonal unit cell (see Fig. 7.6(a)) as that of

BiSe, which reveals an insulating surface electronic structure (see Fig. 7.6(b)). Thus, our

analysis shows that the composite system BiSe neither shows strong topological properties

of Bi2Se3 [9] nor these of bismuth bilayers [219], instead it exhibits a weak topological

insulating state belonging to (0;001) weak Z2 topological class. To further confirm the

weak topological nature of BiSe, we determined surface electronic structure on the (100)

surface (i.e. yz-plane of the surface unit cell of BiSe, which reveals the presence of an

even (two) number of Dirac nodes at Ȳ and T̄ points of the Brillouin zone (Fig. 7.3(c)).

Similar to the case of another weak TI, Bi2TeI [210], these two Dirac nodes appear on

points (Ȳ and T̄ ) in the surface BZ, that are not the projections of Γ and A points of the

bulk BZ, where band inversions take place.

7.5 Conclusions

With first-principles calculations based on density functional theory, we predict that BiSe

belonging to the richly explored bismuth chalcogenide family is a weak topological insu-

lator. Our calculations reveal that BiSe exhibits a pair of band inversions at the Γ and

A points in its 3D Brillouin zone. Calculations of the Z2 topological invariants which are

(0:001) confirms the WTI phase of BiSe with. We further confirm the WTI phase through

calculation of electronic structure on the side surface, that reveals an even number of Dirac

points.
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Thermoelectric Properties of

Materials with Nontrivial Electronic

Topology ∗

8.1 Introduction

In recent years, thermoelectric (TE) materials have been a subject of significant research

activity [220, 221], as they convert wasted energy in the form of heat into electricity,

and provide an environment friendly all-solid state alternative to cooling technologies

like refrigeration [222, 223]. Thermoelectric power generators have also been used for

long in space missions. The Seebeck coefficient (S), a measure of the thermoelectric

property, relates an electrical potential difference created from a temperature gradient

in a TE material. Materials with large S can be versatile and robust for waste-heat

recovery from various scenarios such as automobile exhaust systems, industrial furnaces,

gas pipes etc. Recently, efficient conversion of solar energy to electrical energy has also

been demonstrated using thermoelectric Seebeck effect [221].

The thermoelectric figure of merit (zT ) is defined as, zT = σ S2 T/κ = P T/κ, where

∗This work has been published in J. Mat. Chem. C 3, 12130 (2015) [197]. Reproduced with permission
from the Royal Society of Chemistry.
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σ is the electrical conductivity, κ is the thermal conductivity and P (= S2σ) is the ther-

moelectric power factor. Unlike many other important functionalities like piezoelectricity,

ferroelectricity and multiferroicity, thermoelectricity is not restricted by any symmetry of

a material. However, materials with efficient thermoelectric conversion ability are hard

to engineer due to conflicting requirements like low thermal conductivity (κ) and high

electrical conductivity (σ), and also competing factors such as carrier concentration and

effective mass [220], which are evident in the expressions of S and σ,

S =
8π2k2BT

3eh2
m∗

( π

3n

) 2
3

(8.1)

and

σ =
ne2τ

m∗
, (8.2)

where kB, T,m
∗, n and τ are Boltzmann constant, temperature, effective mass, carrier

concentration and relaxation time respectively. While both S and σ occur in the numer-

ator of the expression for zT , they show opposite trends with effective mass and carrier

concentration. Moreover, in metal the electronic contribution to thermal conductivity

(κele) is also linked to σ via the Wiedemann-Franz law [224] and effective mass of the

charge carriers.

The dependences of S and σ on the density of states (DOS) at Fermi energy (EF ) are

also, to a certain extent, conflicting. The dependence of S on local DOS at the Fermi

level is captured by the Mott expression which, in general, holds for metals [225], but it

is also applicable for semiconductors for which the Fermi level lies within a narrow region

inside the density of states, where it increases locally [226].

S = −π
2k2BT

3e

{

d[ln(σ(E))]

dE

}

E=EF

= −π
2k2BT

3e

{

1

N

dN(E)

dE
+

1

µ(E)

dµ(E)

dE

}

E=EF

,

(8.3)

where energy dependent conductivity σ(E), which is generally known as the transport
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distribution function is given by,

σ(E) = D(E)f(E)eµ(E) = N(E)eµ(E), (8.4)

whereD(E), f(E), µ(E) denote energy dependent DOS, Fermi-Dirac distribution function

and charge carrier mobility respectively, and N(E) = D(E)f(E) denotes the carrier

concentration. From Eq. (8.3), we see that a large S can be achieved by increasing

[dN(E)
dE

], which in turn is caused by a local enhancement of D(E) [92].

Recently, materials with good thermoelectric properties, such as Bi2Te3 and PbTe,

have been discovered also to exhibit nontrivial electronic topology at ambient [9, 157]

and/or applied pressures [227]. Materials with nontrivial electronic topology are novel

quantum states of matter which exhibit exotic and robust conducting surface states as

a consequence of nontrivial topology of the electronic structure in their bulk form. It

appears that materials exhibiting a nontrivial electronic topology or high thermoelectric

figure of merit often comprise of heavy elements and possess small band gaps [228]. Heavy

atoms have low frequencies of vibration that result in low lattice thermal conductivity

essential for a high thermoelectric figure of merit. They also exhibit large spin orbit

coupling necessary for certain nontrivial topological materials. In addition, topological

insulators (TIs) often have a small electronic band gap as they lie in the vicinity of a

strain dependent electronic topological transition (ETT). This helps in tuning the intrinsic

carrier concentration to optimize the thermoelectric power factor.

Other features of electronic dispersions of a topologically nontrivial material may also

be used favorable to enhance thermoelectric efficiency [229, 230]. For example electronic

structure of SnTe, which is a topological crystalline insulator (TCI), exhibits a heavy

hole band near its light hole valence band maximum (VBM). Energy of the light and

heavy hole bands can be brought closer (a phenomenon known as band convergence [231])

through alloying [230, 232], to optimize carrier mobility and enhance thermopower (S).

Furthermore, zT of TIs is strongly size dependent [233], taking values greater than 1
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in nanoscale regime where the metallic surface states become more relevant to electric

conduction. Clearly, the electronic structure of topologically nontrivial materials seems

to have a great potential for efficient thermoelectric transport, and they may possess a high

P even in the semi-metallic or small band gap regime. Here, we focus on determination

of P of materials belonging to different classes of nontrivial topology, and uncover the

correlation between the two.

We use semi-classical Boltzmann transport theory within a constant scattering time

approximation (see section 2.7) to calculate the transport properties S, σ and P . As

EF is tunable by doping, we calculate S, σ and P of the compounds over a wide energy

window (∼ 1.6 eV) straddling the undoped EF . Our calculations suggest that a high zT

in typical TE materials such as Bi2Te3 does not arise just from the strongly dispersing

valence band (VB) and conduction band (CB) edges associated with the TI phase, but

similar to ordinary band insulators (BIs), the TE properties of TIs too depend strongly on

their density of states close (typically within ∼ 0.5 eV) to the Fermi level. With vicinity

to strain-driven ETT, the TE properties of TIs (or corresponding BIs) are quite sensitive

to strain. We demonstrate this for β-As2Te3, where applied strain not only closes the

band gap but also aides in the band convergence to increase P by as a factor of 3. Our

calculations reveal that PbTe exhibits better TE performance in its TCI phase than its BI

phase. Contrary to naive expectation, our calculations also indicate that n-doped TaAs

could be a promising thermoelectric with a high power factor.

8.2 Materials with nontrivial electronic topology

Nontrivial electronic topology of a material often arises from the spin-orbit coupling (SOC)

that as strong relative to crystal field splitting (e.g., Z2 topological insulator [9]), which

results in reordering or interchange of valence and conduction bands of distinct symmetries

in a phenomenon known as band inversion. Certain crystallographic symmetries give rise

to nontrivial topological phases in which symmetry protected linearly dispersing valence
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Figure 8.1: Crystal structures, space group (S.G.), point group (P.G.) symmetries of the
six materials used in this work. The abbreviations TI, TCI, DSM, TSM, and WSM stand
for topological insulator, topological crystalline insulator, Dirac semimetal, topological
semimetal, and Weyl semimetal respectively. P.U.C stands for primitive unit cell.

and conduction bands cross in the electronic structure of a bulk material (e.g., Dirac

semimetal [47, 165], Weyl semimetal [52]), and gapless conducting states appear on its

surface [43]. Depending on the dispersion of electronic bands near the Fermi level or gap

of the bulk, surface states and their origin, we consider here six categories of topologically

nontrivial materials: (a) Z2 TI (centrosymmetric), (b) Z2 TI (non-centrosymmetric), (c)

TCI, (d) topological semimetal, (e) Dirac semimetal and (f) Weyl semimetal, and identify

the correlation between their electronic topology and thermoelectric performance, if any.

A Z2 TI exhibits a non-zero band gap in its bulk electronic structure, and gapless

surface states with linearly dispersing bands forming a Dirac cone (or in odd numbers)
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that typically falls in the bulk band gap, which are protected by time reversal symmetry.

In the TCI class of materials, crystal symmetry and field play more significant role than

time reversal symmetry and SOC [43]. For example, SnTe (a TCI ) has a mirror symmetry

in its crystal structure, due to which it exhibits even number of band inversions (as

a function strain or pressure which modifies the relative strength of hybridization and

crystal field splitting) in the electronic structure of its bulk. The robust surface states in

this class of materials are protected by the mirror symmetry. In topological semimetals,

VBM and CBM touch each other to give a semimetallic state, and the dispersion of

bands is often quadratic at the touching point. In this class, the electronic structure

possess an inverted band order (as in HgTe) of the VBM and CBM compared to their

band insulator counterpart (as in CdTe) [234]. Materials with C3 , C4 or C6 uniaxial

rotational symmetries can host Dirac semimetallic states [169]. In a Dirac semimetal, a

pair of doubly degenerate and linearly dispersing bands of different symmetries cross each

other giving rise to a robust Dirac cone in their bulk electronic structure. In materials with

broken spatial inversion or time reversal symmetries, the doubly degenerate bands become

non degenerate due to SOC. Despite these broken symmetries, if the non-degenerate bands

make robust linear crossing, the material is a Weyl semimetal in which the point of crossing

is doubly degenerate and is called a Weyl node.

We choose six materials belonging to six different categories as mentioned earlier and

summarize their structural features in Fig. 8.1. Amongst the materials studied here,

β-As2Te3 has a rhomobohedral crystal structure with space group R3̄m (No. 166), which

becomes a Z2 TI at high pressure ( σzz > 1.77 GPa) [118]. PbTe, which has a rocksalt

structure with space group Fm3̄m (No. 225) undergoes electronic topologically transition

with pressure and becomes a TCI (for P> 4 GPa ) [227]. Na3Bi, with space group

P63/mmc (No. 194), is a Dirac semimetal in its native state [165], BiTeCl with space

group P63mc (No. 186) is a large band gap non-centrosymmetric Z2 TI [157], and YPtBi

in Half-Heusler structure with space group F4̄3m (No. 216) is a topological semimetal

with vanishing gap [179]. Non-centrosymmetric TaAs crystal with space group I41md
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(No. 109) is a Weyl semimetal [52] at ambient pressure. Amongst these compounds, to

the best of our knowledge, thermoelectric properties of only β-As2Te3 and PbTe have

been investigated [226, 231, 235], albeit in their ambient pressure band insulating phases.

Here, We determine the transport properties of β-As2Te3 and PbTe in both the BI and TI

phases and other compounds in their topologically nontrivial phases. The thermoelectric

performance of the electronically nontrivial topological phases of β-As2Te3, PbTe, BiTeCl,

YPtBi, Na3Bi and TaAs is assessed by comparing their power factors with that of band

insulating PbTe which is an established high zT TE.

8.3 Computational methods

We employ a full potential linearized augmented plane wave (FPLAPW) based method as

implemented in the WIEN2k code [128] to determine the electronic structure and prop-

erties of all the materials presented here. To obtain the total energy and eigenvalues of

the electrons in a solid using FPLAPW method, we use a basis set achieved by dividing

the unit cell into non overlapping spheres centered around each atom and the interstitial

regions. Plane wave basis set is used to represent wave functions inside the interstitial

region, which is augmented by the atomic-like wave function inside the spherical region

around each atom. We use Perdew, Burke and Ernzerhof parametrization [114] of the

exchange correlation energy functional derived within a gradient generalized approxima-

tion [113]. Truncation of the plane wave expansion of electronic wave functions inside

the interstitial region is specified by Rmt*Kmax, where Rmt is the radius of the smallest

atomic sphere (muffin-tin), Kmax is the plane wave cut-off vector. Charge density cut-off

is specified by Gmax. The cut-off values for the wave functions and charge density are

summarized in Table 8.1. In all the calculations, we have included spin-orbit coupling

through the second variational procedure [82, 83], and electronic structure (see Fig. 8.3)

of the each of the materials is determined at the lattice constants (see Table 8.1) by in-

cluding the SOC in the Kohn-Sham Hamiltonian. We use the density functional theory
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(DFT)-based electronic structure within a semi-classical Boltzmann theory under a con-

stant scattering time approximation as implemented in the BoltzTraP code [94], and

calculate electrical conductivity (σαβ), Seebeck coefficient (Sαβ) and power factor of the

six materials described earlier (also see Fig. 8.1) as a function of Fermi energy (EF ) and

temperature (T ). Band energies are determined on a dense mesh (40,000) of k-points for

sampling the Brillouin zone for each of the materials. The actual calculation uses the

symmetry and k-points only in the irreducible wedge of the corresponding Brillouin zone

(see last column of Table 8.1). To achieve better fit between the Fourier interpolated

energies( ε̄i(k)) and DFT-calculated band energies (εi,k), the original grid of k-points was

interpolated onto a k-mesh five times as dense. We calculate the transport properties

using strained † lattice constants for β-As2Te3 and PbTe (at which they become TI and

TCI respectively) and experimental lattice constants for Na3Bi, BiTeCl, YPtBi and TaAs

(see Table 8.1).

8.4 Results

We determined transport properties namely σ, S, and P (see Fig. 8.2) within a rigid

band approximation (RBA) in which the electronic structure is assumed to be unchanged

with doping. This approximation is reasonably good for low doping concentrations and is

commonly used for theoretical study of TE materials [93, 94, 236–239]. Effects of doping

concentration are thus determined essentially through the corresponding changes in the

Fermi energy. To this end, we show the dependence of density of states on energy and of

S, σ, S2σ on Fermi level (EF ), keeping EF of the undoped compounds fixed at 0 eV. A

positive EF signifies n-type doping, while a negative EF means p-type doping. The type

of doping is also reflected in the sign of the Seebeck coefficient (S). Generally, S peaks at

small doping levels and approaches values close to zero at large concentrations. Electrical

conductivity (σ) depends directly on the DOS, thus behavior of σ(EF ) and DOS (D(E))

†β-As2Te3 and PbTe are band insulators at ambient conditions. Here, we calculate the transport
properties at ǫzz = -0.07 and ǫh= -0.01 for β-As2Te3 and PbTe, respectively, where they are in topologi-
cally nontrivial states
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Material Lattice constants (Å) Eg (eV) Rmt(a.u.) Kmax (a.u.−1) Gmax (Ry
1
2 ) NI

β-As2Te3
a=4.089

c=28.184∗
0

2.5 for As

& Te

2.8 for As

& Te
12.0 1563

PbTe a=6.374∗ 0.10
2.0 for Pb

& Te

3.5 for Pb

& Te
12.0 1059

Na3Bi
a=5.459,

c= 9.675
0

2.0 for Na

& Bi

3.5 for Na

& Bi
12.0 1936

BiTeCl
a=4.2426,

c= 12.397
0.48

2.5 for Bi,

Te, & Cl

2.8 for Bi,

Te, & Cl
12.0 1944

YPtBi a=6.64 0
2.5 for Y,

Pt, & Bi

2.8 for Y,

Pt, & Bi
12.0 1059

TaAs
a=3.437,

c=11.646
0.032

2.48 for Ta

2.36 for As

2.82 for Ta

2.97 for As
12.0 2835

Table 8.1: Structural parameters and cutoffs defining basis sets used in WIEN2k density
functional theory (DFT) calculations of six materials that exhibit electronic structure with
nontrivial topology. We use experimental lattice constants of all the compounds except
for β-As2Te3 and PbTe which are trivial insulators at ambient pressure (marked with ∗ in
the table). We use lattice constants of β-As2Te3 and PbTe obtained with uniaxial strain
ǫzz = -0.07 and isotropic strain (ǫh) = -0.01 respectively. Eg is the smallest band gap,
values of Rmt, Kmax and Gmax are used in defining the basis sets, and NI is the number
of inequivalent k-points in irreducible wedge of the Brillouin zone (IBZ) of each of the
materials when the full Brillouin zone is sampled with 40,000 k-points.

are very similar.

The TE power factor P = S2σ is noticeably large and exhibits multiple peaks in

the energy window chosen. We classify these peaks into three categories (type-I, type-II

and type-III) based on their origin and assess their relevance to applications by their

proximity to the undoped Fermi level (see Table 8.2). The type-I peak occurs for doping

concentrations where D(E) (and correspondingly σ(E)) is large (see Eq. (8.3)). The

maximum of the peaks in the power factor of the materials studied here is invariably

(except for strained PbTe) in the type-I peak. In most cases, the type-II peak in P occurs

in the vicinity of the peak in S which is caused by a sharp energy dependence of D(E) (i.e.

large ∂D(E)
∂E

), and occurs close to the undoped EF (for example in YPtBi). Though these

peaks are smaller in magnitude, they are more relevant to applications as they correspond

to modest doping. The type-III peak in P as a function of Fermi energy appears when

maxima in both [∂D(E)
∂E

] as well as S are close to each other, and arise as a convolution
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Figure 8.2: Dependences of density of state (DOS), electrical conductivity (σ/τ), Seebeck
coefficient (S), power factor (S2σ/τ) on Fermi levels at different temperatures. Units for
DOS, σ/τ , S, S2σ/τ are number of states per eV per unit cell, 1017Ω−1cm−1s−1, µ V K−1

and 1014µ W cm−1K−2s−1 respectively. Type-I, type-II and type-III peaks are marked
respectively with I, II and III either just above or below each peak in the power factor
vs Fermi energy (EF ) graphs. Results for three different temperatures 300 K, 400 K and
500 K are indicated with black (solid line), blue (dashed line) and red (dash dotted line)
colors respectively.

of type-I and type-II peaks. The power factors of all the compounds generally increase

with temperature, though the required doping levels for maximal P depend only slightly

on temperature. We now discuss the transport properties of each of the six compounds
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in detail.

Material Type of doping Type of peak Epeak (eV) Pmax at 300 K

p
I

II

-0.44

-0.2

57

48

β-As2Te3

n
I

II

0.54

0.17

53

35

PbTe p
I

II

-0.56

-0.18

74

87

p II -0.18 7.5

Na3Bi

n I 0.94 10

p
I

II

-0.71

-0.47

4

2.5

BiTeCl

n
I

II

0.72

0.29

8

1.5

YPtBi n
I

II

0.44

0.05

18

8

TaAs n III 0.085 53

Table 8.2: This table summarizes different types of peaks which appear in the power factor
(P ) of the materials with their positions along the Fermi level (Epeak) marked with Roman
numerals I, II, and III for type-I, type-II and type-III peaks respectively. Negative and
positive values of the Epeak mean n and p-type doping. Local maximum in power factor
(Pmax) is given for each of the materials at 300 Kelvin in the unit of 1014µWcm−1K−2s−1.

8.4.1 Band and topological insulators

Strained β-As2Te3 has an electronic structure with a vanishing band gap (see Fig. 8.3(a)).

As a result, it has nonzero DOS throughout the energy window chosen (see Fig. 8.2(a)).

Furthermore, its DOS is symmetric about the Fermi level. As a result, we find that its

power factor is also roughly symmetrical, exhibiting two peaks (type-I and type-II) for the

n-type doping and two peaks (type-I and type-II) for the p-type doping (see Fig. 8.2(a)).

A maximum power factor of 57 ×1014µWcm−1K−2s−1 is observed for p-type doping at

EF = -0.44 eV (see Table 8.2). In contrast, the maximum power factor of unstrained

β-As2Te3 (see Fig. 8.4(b)) is relatively weaker (∼ 40 ×1014µWcm−1K−2s−1) occurring in

the n-type region. The peaks in the p-doped region of unstrained β-As2Te3 are about 2.5
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times weaker than those of strained β-As2Te3, showing the tunability of thermoelectric

properties with strain, as is the tunability of electronic topology.
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Figure 8.3: Electronic structure of the bulk of the six materials under consideration
calculated with spin orbit coupling along the high symmetry directions of their Brillouin
zones. Electronic structures for all these materials are calculated at their experimental
lattice constants except for β-As2Te3 and PbTe for which their native states have trivial
electronic topology (see Table 8.1).

Electronic structure of PbTe at the experimental lattice constant exhibits a zero band

gap, which is far from its experimentally observed band gap of 0.3-0.4 eV. DFT calcula-

tions are known to generally underestimate electronic band gap (Eg), and this is further

complicated here by the fact that gap depends on strain. An Eg is central to the TE

properties of a material, we calculate the electronic structure of PbTe at applied isotropic

strain ǫh = 0.02 and ǫh = -0.01 (strain is applied with respect to the experimental lattice
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constant, aexp). At ǫh=0.02, PbTe is a band insulator (lattice constants; aBI) with a

band gap of 0.11 eV (see Fig. 8.4(c)) and at ǫh=-0.01, PbTe is in the TCI phase (lattice

constant; aTCI) with Eg=0.1 eV (see Fig. 8.3(c)). Remarkably, the dependence of power

factor on doping concentrations is quite similar at both the lattice constants (see Fig.

8.2(c) and Fig. 8.4(d)). While P exhibits no peaks for n-type doping (see Fig. 8.2(c)

and Fig. 8.4(d)), we find two peaks when the Fermi level enters the VB. As can be ex-

pected for PbTe, the peaks have high power factors with rather similar strengths (70-90

×1014µWcm−1K−2s−1) for both the band and topological insulating phases. We find

that only type-II peak occurs around EF= -0.18 eV (see Table 8.2), and therefore this is

more relevant to achieving high performance TE experimentally. We also find that this

peak is marginally stronger for topological insulating phase (∼77 ×1014µWcm−1K−2s−1)

than for band insulating (∼72 ×1014µWcm−1K−2s−1), while their band gaps are sim-

ilar. On applying larger compressive strains (ǫh = -0.014), band gap of PbTe widens

further to 0.23 eV (see Fig. 8.5(a)) leading to enhancement in the type-II peak to ∼90

×1014µWcm−1K−2s−1 with large Seebeck coefficient, S (see Fig. 8.5(b)). This is rather

interesting as the band gap of PbTe for ǫh= -0.014 is closer to the one observed experimen-

tally, which is more appropriate to enhance zT of compounds with electronic structure

similar to that of SnTe [230,232].

BiTeCl is a large band gap (Eg = 0.5 eV) material (see Fig. 8.3(b)). Its conductivity

is essentially zero for Fermi energy lying within the band gap (see Fig. 8.2(b)). Moreover,

its DOS also grows very gradually on entering the VB and CB edges. It exhibits four

peaks in its power factor, similar to β-As2Te3, with both n-type and p-type doping regions

having both type-I and type-II peaks (see Fig. 8.2(b)). Among all the peaks, a maximum

P (type-I) of 8 ×1014µWcm−1K−2s−1 appears at EF=0.72 eV in the n-doped region

(see Table-II). Low value of P in BiTeCl practically rules it out from any thermoelectric

applications.
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8.4.2 Topological, Dirac and Weyl semimetals

Na3Bi exhibits two types of peaks (type-I and type-II) in its power factor as a function

of EF . A maximum power factor (type-I peak) of 10 ×1014µWcm−1K−2s−1 occurs at

EF=0.94 eV (see Table 8.2) for the n-doped region, while in the p-doped region it exhibits

a type-II peak with a maximum power factor of 7.5 ×1014µWcm−1K−2s−1 (see Table 8.2).

Unlike strained β-As2Te3, the variation in its DOS with energy is rather weak, thereby

leading to a relatively small S and P .

YPtBi is a zero band gap material and its DOS increases rather sharply at EF= 0.44

eV due to the lowest conduction band which is flat (see Fig. 8.3(d)). However, due to

its low S and σ, its thermoelectric power is rather small, with both type-I and type-

II peaks in the n-doped region (see Fig. 8.2(d)). YPtBi belongs to the class of group

IIIB-(Ni, Pd, Pt) type half-Heusler (HH) alloys [93], which, based on their n-type power

factors, are expected to perform better as thermoelectric than the widely studied group

IVB-Ni type HHs [240–243]. The maximum power factor (type-I peak) of YPtBi is 18

×1014µWcm−1K−2s−1, close to the maximum n-type power factors among HHs (LaPdBi

with P of 25 ×1014µWcm−1K−2s−1) [93]. Unlike other materials studied here, S of YPtBi

increases with temperature, which could favor its use in high temperature thermoelectric

transport applications.

TaAs has a very small band gap (0.032 eV), and it exhibits only a single type-III

peak (maximum power factor of 53 ×1014µWcm−1K−2s−1) in the power factor. This

peak in P occurs at low concentration of n-type doping around EF=0.085 eV. This single

large peak arises from the coincidence of the maxima of S and [∂D(E)
∂E

]. Maximum of

P of this compound is similar in magnitude to the maximum P of β-As2Te3 (i.e. 57

×1014µWcm−1K−2s−1). Hence, we predict that that TaAs, whose TE properties is yet

to explored experimentally, could be a high performance TE material.
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8.5 Discussion

8.5.1 Multiple band extrema and sub-band structure

While bands associated with s and p-type orbitals are strongly dispersing, bands asso-

ciated with d-orbitals are typically flat. Both types of dispersion play different roles in

enhancing TE properties [244]. For example flat bands increase DOS and contain high

effective mass charge carriers suitable for a large thermopower S (see Eq. (8.1)), whereas

bands with a high curvature on the other hand contain light charge carriers favorable for

electronic conductivity (see Eq. (8.2)). Amongst the compounds considered here, only

YPtBi and TaAs contain transition metal (d-type valence electrons) atoms. Except for

YPtBi however, bands of all other compounds are rather strongly dispersing (see Fig.

8.3). Despite this, we find a strong contrast in the TE properties of these compounds.

For example, among Na3Bi and strained β-As2Te3 with zero band gaps, Na3Bi is a poor

thermoelectric (see Fig. 8.2(e)), while strained β-As2Te3 (see Fig. 8.2(a)) exhibits a high

P for both p and n type doping (see Table 8.2). To understand this, we compare the

electronic structure of the two compounds (see Figs. 8.3(a) & 8.3(e)). We notice that

the electronic structure of strained β-As2Te3 exhibits numerous extrema (peaks) in its

electronic bands close to the Fermi level other than its VBM and CBM (see Fig. 8.3(a)).

For example, it has valence band extrema (VBE) lying along the path Γ-Z-F-Γ-L paths.

These VBE are within 0.3 eV below the Fermi level and enhance the DOS. These VBE

also favor electronic conductivity as they contain light hole carriers, thereby enhancing

P in both the ways. Undoped Na3Bi does not exhibit VBE or conduction band extrema

(CBE) (see Fig. 8.3(e)) around the Fermi level (within ∼ 1eV), and is relatively poorer

TE.

Due to rather similar dispersion of electronic bands of most compounds studied here

(except YPtBi), we identify the presence of these features of extrema in the electronic

structure as the criterion for large power factor in topologically nontrivial materials. This

is manifesting quite clearly in the electronic structure of PbTe and TaAs (see Fig. 8.3(c)
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Figure 8.4: Electronic structure, density of states (DOS) and transport properties (S, σ, P )
for unstrained β-As2Te3 (a, b) and strained (ǫh=0.02, aBI = 6.567 Å, Eg = 0.11 eV) PbTe
(c, d). aBI is the lattice constant of the band insulating phase of PbTe. In (b) and
(d) Type-I, type-II and type-III peaks in the power factors (P ) are marked with Roman
numerals I, II, and III, respectively. Results for three different temperatures 300 K, 400
K and 500 K are indicated with black (solid line), blue (dashed line) and red (dash dotted
line) colors in (b) and (d), respectively.

and 8.3(f)) which exhibit significant P for only one type of doping (see Fig. 8.2(c) and

8.2(f)). This is due to the striking difference in DOS of VB and CB (see Fig. 8.2(c) and

8.2(f)) of these compounds. Similar to strained β-As2Te3 (see Fig. 8.3(a)), TaAs exhibits

CBE along Σ1-Z, Γ-X and VBE along N-Σ1-Z, which enhance the DOS. Moreover, closely

spaced peaks in the spin-split bands of TaAs along Σ-N-Σ1 around the Fermi level could

be controlled favorably towards band convergence, which can enhance TE performance.

Similarly, PbTe exhibits VBE along W-Γ-X which gives rise to a sharp increase in its DOS

(see Fig. 8.2(c)) of its VB. Power factor of YPtBi also exhibits moderate values only for

n-type doping (see Table 8.2), due to large DOS of its CB however arising from a relatively

flat d band just above the undoped Fermi level (see Fig. 8.3(d)). Thus, electronic bands

of topologically nontrivial materials are usually strongly dispersing, and large values of

P are observable mostly when the band structure has other VBE/CBE (or peaks) lying
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close (within 0.5 eV) to the VBM/CBM.
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Figure 8.5: Calculated electronic structure and electronic transport quantities of PbTe
with isotropic strain ǫh= -0.014 (a= 6.348 Å), applied with respect to the experimental
lattice constant. At this value of the strain, PbTe is in the TCI state with band gap of
0.23 eV

8.5.2 Tunability with strain: ETT and convergence of bands

The thermoelectric power factors of TIs and TCIs are found to be quite sensitive to

strain. Applying large enough compressive strains (ǫh=-0.014), thermoelectric power of

PbTe increases from 72 −→ (see Fig. 8.4(d)) to 90 ×1014µWcm−1K−2s−1 (see Fig. 8.5(b))

due to the widening the band gap (Eg) from 0.11 eV (see Fig. 8.4(c)) to 0.23 eV (see Fig.

8.5(a)). Our estimates of Eg at the experimental lattice constants of PbTe is 0 eV which is

far from its experimental value, implying that the actual strains required to obtain larger

band gaps in the TCI phase of PbTe might be a bit larger than the one estimated here

(ǫh=-0.014). However, our results suggest a robust mechanism for enhancement of P in

topologically nontrivial materials in general. Due to the phenomenon of band inversion,

the CB and VB can be inverted and band gap of bulk TIs and TCIs can be closed and

reopened with application of pressure or strain. This provides a unique way of controlling

Eg of those materials which is central to their TE properties. Eg of a material undergoing

an ETT can be increased upon application of appropriate compressive stresses, irrespective

of whether they are in their BI or TI phases. Compressive stresses on TE modulators,

which are typically flat devices, can be achieved readily by applying a mechanical load,
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which is much more practical than application of shear or tensile stresses. Small Eg is a

primary concern in materials such as SnTe (Eg = 0.18 eV at 300 K) which otherwise have

suitable electronic structure for TE applications. As PbTe is in the vicinity of an ETT,

its Eg can be tuned by applying external stresses. Thus, we argue that TE devices based

on small Eg TIs/TCIs can operate more efficiently under mechanical loads.

Change in Eg of β-As2Te3 with strain (see Fig. 8.3(a) and Fig. 8.4(a)) results in

considerable changes in its transport properties. While the maximum Seebeck coefficient

(Smax) in strained β-As2Te3 (see Fig. 8.2(a)) decreases by 45% compared to Smax of

unstrained β-As2Te3 (see Fig. 8.4(b)), its electrical conductivity (σ) increases by a factor

of ∼ 3. While P in the n-doped region remain similar, it increases by a factor of ∼ 3 for

p-type doping on application of uniaxial strain which shifts the maximum of the peaks

in P from n-doped to p-doped region. This asymmetric increase in P is attributed to

the stronger energy dependence of DOS of the VB of strained β-As2Te3. The origin of

this enhanced DOS of strained β-As2Te3 lies in the convergence of valence bands induced

by strain. The VBE like feature along Z-F-Γ paths of ambient β-As2Te3 converge into a

smaller energy range on application of strain (ǫzz =-0.07), thereby increasing DOS near

the VBM. As discussed above, strained β-As2Te3 also exhibits additional VBEs along Γ-

Z-F-Γ-L, and exhibits superior thermoelectric properties. Experimentally synthesized β-

As2Te3 doped with Sn, however, are intrinsically hole doped because of native defects and

shows a maximum zT of 0.65 at 423K [235]. On the other hand, our calculations suggest

that the asymmetric increase in P favoring p-type doping on application of uniaxial stress

could increase zT of β-As2Te3 significantly.

Our analysis of TE performance of topologically nontrivial bulk phases of the materials

does not include the effects of their conducting surface states. Secondly, the stress induced

band convergence observed in β-As2Te3, may not be unique only to topological insulators.

Thus, it would be interesting to identify conditions under which topological nontrivial

phase of a material (e.g., a TI) could outperform the corresponding trivial phase (e.g., a

BI) of the same compound. Based on our results, we believe that the TE performance of
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BI TI

high DOSLow DOS

Figure 8.6: Schematic picture of band inversion between the valence band maximum
(VBM) and conduction band minimum (CBM). Band insulator and topological insulator
are denoted with BI and TI respectively. Due to band inversion, the density of states
(DOS) near the Fermi level is higher in TI phase than that of band insulator.

a TI phases is better than its BI phase due to its electronic structure features associated

with band inversion (see Fig. 8.6 for schematic of band edges associated with BI and TI

phases). Band inversion in a TI phase lead to extra sharp edges in the DOS of its VB

and CB, in addition to the VBM and CBM resulting in a higher DOS of the light carrier

bands. Thus, this is one of the recipes for attaining a high power factors in bulk TIs.

Amongst the new materials investigated here, the maximum power factor of n-doped

TaAs (see Fig. 8.2(f)) is similar ( 53 ×1014µWcm−1K−2s−1) to that of good TE ma-

terials studied recently like β-As2Te3 [235] (which has a maximum power factor of 57

×1014µWcm−1K−2s−1, see Table 8.2). The electronic band gap of TaAs can be increased

through suitable alloying which may enhance its TE power factor considerably. Further-

more, due to the heavy atomic masses of Ta and As and low frequencies of vibration,

a low lattice conductivity is also expected, which would increase the zT of TaAs. Since

the spin orbit coupling is often responsible for nontrivial electronic topology, many of the

compounds with nontrivial topology involve heavy elements, and hence have low elastic

moduli and thermal conductivity which add to their thermoelectric efficiency.

8.6 Summary

Our theoretical analysis of thermoelectric properties of topologically nontrivial materials

reveals that (a) topological insulators with small band gaps are excellent TE, while Dirac
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semimetals may not be quite so, (b) while topological semimetals exhibit relatively poorer

TE power, a Weyl semimetal shows good TE power factor. We identify two mechanisms

for the same: (i) due to band inversion occurring at an electronic topological transition

of a topological nontrivial material, many local extrema appear in their valence and con-

duction bands, which enhance the density of electronic states and its asymmetry near

the Fermi level resulting in enhanced conductivity and Seebeck coefficient, and (ii) ener-

gies of extrema in the VB and CB can be controlled with external strain leading to the

phenomenon of band convergence, which is key to TE properties. Based on these mecha-

nisms, the power factor exhibits multiple peaks (type-I, type-II and type-III) as a function

of Fermi energy or doping, which can be tuned with strain. We demonstrated the phe-

nomenon of band convergence in β-As2Te3 where compressive strains of about 7% result

in enhancement of the power factor by a factor of 3 for p-type doping. Similar enhance-

ment in the power factor of PbTe with compressive stresses suggests that TE modulators

based on such TIs could operate more efficiently under small applied mechanical load.

Among the topological and band insulating states of a compound with the same band

gap, TE performance of the TI state is superior due to features in the electronic structure

associated with band inversion. Finally, we predict that TaAs, a Weyl semimetal, is a

promising TE and needs to be explored experimentally.



Chapter 9

Ultralow Lattice Thermal

Conductivity in Group III Tellurides

9.1 Lone-pair Induced Rattling and Ultralow Lattice

Thermal Conductivity in InTe∗

9.1.1 Introduction

Thermoelectric materials have been a subject of intense research activity as they can

convert wasted energy in the form of heat into useful electricity, providing environment

friendly solutions to efficient energy management. The efficiency of a thermoelectric mate-

rial is quantified by the dimensionless figure of merit, zT = S2σT/(κl+κe), that depends

on electrical conductivity (σ), Seebeck coefficient (S), lattice (κl) and electronic (κe) ther-

mal conductivities, where T is the temperature. Due to the conflicting requirements of σ

and S, one of the fundamental challenges in developing high-performance thermoelectric

materials has been to achieve a simultaneous enhancement in thermoelectric power factor

(S2σ) and reduction in κl [245,246]. Although significant reduction in κl can be achieved

∗This work has been published in Angew. Chem Int. Ed. 55, 7792 (2016) [201]. Reproduced with
permission from the Wiley Online Library.

160



9.1 Lone-pair Induced Rattling and Ultralow Lattice Thermal Conductivity in InTe 161

in a material through all-scale hierarchical architecture [206, 247] and endotaxial nano-

structuring [246,248], finding materials with intrinsically low lattice thermal conductivity

is of high practical interest due to their robustness against grain size and other structural

variations. Intrinsically low κl are generally found in part-crystalline part-liquid-like ma-

terials [249], material having rattling modes [250,251], and soft phonon modes [252].

Lattice anharmonicity and strong phonon-phonon interactions can induce intrinsi-

cally low κl in certain materials while preserving the carrier mobility [253, 254]. The

origin of lattice anharmonicity and the ensuing ultralow κl in the I-V-VI2 chalcogenides

such as AgSbSe2 [255], AgBiSe2 [256, 257], AgBiS2 [258] has been traced to the electro-

static repulsion between the stereo-chemically active ns2 lone-pair of group V cations

and the valence p-orbital of group VI anions. Intrinsically low κl has also been observed

in Cu12Sb4S13 [259] and PbCuSbS3 [260] arising from the bond anharmonicity caused

by stereo-chemically active 5s2 lone-pair of Sb. The deformation of weak multicenter

bonds in an electron-poor CdSb has been recently shown to cause lattice anharmonicity

and thereby giving rise to a low lattice thermal conductivity [261]. Clathrates [262] and

filled skutterudites [263] which bear the characteristics of phonon-glass-electron-crystal

(PGEC) also exhibit very low κl. In these systems, a guest atom rattles within the

over-sized host structural cages and scatters the heat-carrying acoustic phonons thereby

significantly lowering κl. Hence, the exploration of new materials with intrinsically low

lattice thermal conductivity along with a microscopic understanding of the underlying

correlations among bonding, lattice dynamics and phonon transport is fundamentally

important towards designing promising thermoelectric materials.

Our experimental collaborators, Manoj K. Jana and Dr. Kanishka Biswas from Jawa-

harlal Nehru Centre for Advanced Scientific Research, performed thermoelectric mea-

surements [201] on high quality crystalline ingots of InTe, and they found ultralow lattice

thermal conductivity (κl ∼ 0.4 W/mK) in a temperature range of 300-650 K. Using

first-principles calculations based on density functional theory, here, we showed that the

presence of strongly anharmonic phonons originating from the rattling vibrations (along
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the z-axis) of In+ cations couple with the heat-carrying acoustic phonon modes and lead

to an ultralow κl in InTe.

9.1.2 Crystal structure
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Figure 9.1: (a) Crystal structure of InTe showing chains of covalently bound, edge-sharing
In3+Te2−4 tetrahedra (green) alternating with chains of In+ cations sitting at the centre
of the hollow regions i.e. the Thompson cubes along z-axis. (b) Brillouin zone of the
primitive unit cell and its high symmetry points. (c) Iso-surfaces of total charge density
showing covalent bonding within the In3+Te2−4 tetrahedron, and isolated In+ cations at
the body centre of the conventional tetragonal unit cell. (d) Electron localization function
(ELF), plotted at an iso-value of 0.88, reveals a nearly spherical charge density around
In+ cation corresponding to its 5s2 electron lone-pair.

InTe, [i.e. In+In3+Te2−2 ], is a mixed valence compound belonging to tetragonal crystal

family (space group: I4/mcm, No. 140) with a chain-like [264, 265] structure similar to

TlSe [266]. The crystal of InTe has coexistent ionic and covalent substructures, where
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In+ (4a Wyckoff site) and In3+ (4b Wyckoff site) cations occupy distinct crystallographic

sites and possess different bonding environments. The trivalent In3+ cations form covalent

(sp3) In-Te bonds within the In3+Te2−4 tetrahedra (see Fig. 9.1 (a)). These tetrahedra

share their horizontal edges to form covalently bonded anionic substructure with a chain-

like topology along the crystallographic z-axis. On the other hand, each monovalent In+

cation is surrounded by eight Te atoms in a distorted square antiprismatic arrangement

which form skewed Thompson cubes [264,265]. There are weak electrostatic interactions

between the chains of In+ cations and the chains of In3+Te2−4 tetrahedra.

9.1.3 Computational details

Our first-principles calculations are based on density functional theory (DFT) with Quan-

tum espresso (QE) [112] implementation in which wave functions of the valence elec-

trons are expanded in a plane wave basis, and their interaction with core electrons

and nuclei is represented by pseudopotentials (we have employed norm-conserving type).

We have treated electronic correlation energy with a generalized gradient approximated

(GGA) [113] functional parameterized by Perdew, Burke and Ernzerhof [114]. We have

truncated plane wave basis sets used in expansion of wave functions and charge density

at energy cut offs of 60 Ry and 240 Ry, respectively. Integrations over the Brillouin

zone are sampled on 9×9×9 uniform mesh of k-points with the occupation of electronic

states smeared with Fermi-Dirac distribution function and a broadening of 0.003 Ry. We

relaxed atomic positions in the unit cell at the experimental lattice constants (a=8.454

Å, c=7.152 Å) [175] of InTe, while we performed optimization with respect to lattice

constants and atomic positions in simulations at 3 GPa. Lattice dynamical properties

are calculated using a DFT linear response (density function perturbation theory [64]) as

implemented in QE distribution. To determine the phonon dispersion, the force constant

matrices are obtained on a 2×2×2 mesh of q-points, and are Fourier interpolated at an

arbitrary q-vector. We use a primitive unit cell with eight atoms, and determine electronic

structure and phonon dispersion along high symmetry lines in its Brillouin zone. We have
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also calculated the Grüneisen parameters (γ = − dlnω
dlnV

with ω and V being the phonon

frequency and volume of the unit cell, respectively) that characterizes the relationship be-

tween phonon frequency and the volume change using a finite difference formula, giving

an estimate of the strength of anharmonicity in the compound.

9.1.4 Theoretical analysis

Phonon dispersion of InTe calculated at its experimental lattice constant reveals a flat

branch containing modes of imaginary frequencies (around -16 cm−1 at Γ point ) along

Γ-X-M-Γ directions of the Brillouin zone (Fig. 9.2(a)), which involve the displacement of

only In+ cations along z-direction (see Fig. 9.2(d)). Another branch containing imaginary

frequency (-28 cm1) occurs at the Γ point, which involves anti-parallel displacements of

In+ cations along the (±) z-directions and rotation of In3+Te2−4 tetrahedra around zaxis

through displacements of Te anions in the xy-plane (see Fig. 9.2(c)). These unstable

modes necessarily involve collective rattling vibrations of In+ atoms (parallel to z-axis)

within the columnar ionic substructure. The region of these instabilities in the Brillouin

zone implies that (a) rattling motion involves displacement of about six In+ cations along

the chain-direction, and (b) the In+ displacements in adjacent chains are random.

Directions vTA1 (m/s) vTA2 (m/s) vLA (m/s) γTA1 γTA2 γLA

Γ-X 1671 1255 2187 5.2 1.64 1.74

Γ-Z 2111 911 3072 5.8 6 6

Γ-M 1533 1282 2167 0.41 1.7 2.1

Average 1771 1149 2475 3.47 3.11 3.28

Table 9.1: Sound velocities corresponding to the three acoustic branches of InTe along
high symmetry directions in the Brillouin zone and their associated Grüneisen parameters.
LA and TA denote longitudinal and transverse acoustic modes respectively.

The total charge density plot of InTe at the experimental lattice constant (see Fig.

9.1(c)) reveals strongly covalent In-Te bonds within the In3+Te2−4 tetrahedron, as evi-

dent from its directionality between In3+ cation and the surrounding four Te2− anions.
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Figure 9.2: (a) Phonon dispersion of InTe at 0 GPa revealing two negative phonon
branches with frequencies at -28 cm1 and -16 cm1 at Γ point; the associated atomic
vibrations are shown in (c) and (d) respectively in the conventional tetragonal unit cell.
(b) Phonon dispersion of InTe at 3 GPa showing no negative frequency modes.

Whereas, the In+ cation at the centre of the hollow region (i.e. Thompson cube) remains

chemically inactive and is surrounded by a uniform spherical charge density arising from

the 5s2 lone-pair at the body centre of the conventional tetragonal cell. To confirm the

presence of a lone-pair on In+ cation, we calculated the electron localization function

(ELF) of InTe (see Fig. 9.1(d)). ELF measures the degree of electron localization in a

molecule or a solid with information of local influence of the Pauli repulsion. The ELF

analysis shows a spherical electron localization around In+ atoms, which is due to the 5s2

lone-pair of In+, and a lobe-shaped asymmetrically localized electron cloud around Te2−,

which constitutes the 5s2 lone-pair of Te, hybridized partially as permitted by its site

symmetry. The spherical shape of a lone-pair of an ion is known to cause its off-centering

instability in a system [267]. Thus, the instabilities in the phonon spectrum originate

from the 5s2 lone-pair around In+ ions. On the other hand, the lobe-shaped lone-pair on
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Te2− ions causes their movement in the xy-plane (see Fig. 9.2(c)) giving the rotational

instability. By shifting the atoms away from their equilibrium positions (along x- and

z-directions), we find that the energy well of the In+ atom is very flat unlike In3+ and

Te2− atoms which sit in deep potential wells (see Fig. 9.3). The flatness of the potential

well implies that In+ atoms are loosely bound to the lattice, resulting in large rattling vi-

brations along z-axis within the crystal structure, that scatters the heat carrying acoustic

phonons.
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Figure 9.3: Calculated potential energy wells for all the atom types (In+, In3+ and Te2−)
as a function of displacement about their equilibrium positions, along x- and z- directions.

The lattice thermal conductivity (κl) of a material depends on heat capacity (Cv),

sound velocity (v) through the relation, κl = 1
3
Cvvτ , where τ is the relaxation time.

Our calculations of phonons show that the frequencies of acoustic modes are less than

50 cm−1 suggesting soft bonding and low sound velocities in InTe. Calculated sound

velocities of InTe along Γ-X, Γ-Z and Γ-M directions are very low (see Table 9.1) , and

hence their contribution to κl is weak. The ionic substructure with weakly bound In+

atoms results in large mode Grüneisen parameters (γi ). As Umklapp (U) and normal (N)

phonon scattering rates are proportional to γ2, large values of γi reflect strong anharmonic

phonon-phonon interactions [254] in InTe. Moreover the optical phonon instabilities (ω2

< 0) disappear in the phonon dispersion determined at a pressure of 3 GPa (see Fig.

9.2(b)), showing that the rattling optical modes are strongly anharmonic, and can scatter
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the heat carrying acoustic phonons through phonon-phonon interactions to effectively

reduce τ and κl of InTe.

9.1.5 Conclusions

In conclusion, we show that ultralow lattice thermal conductivity in InTe arises from

the bonding asymmetry and lattice anharmonicity; In3+ cations covalently bond to Te

atoms to form rigid substructure whereas weakly bound In+ cations rattle along the

ionic substructure, resulting in large anisotropic atomic displacement parameters. The

collective rattling vibrations of In+ cations manifest as weakly localized branches with

imaginary frequencies in the phonon dispersion; they are strongly anharmonic and scatter

the heat-carrying acoustic phonons to effectively lower κl.

9.2 Intrinsic Rattler-induced Low Lattice Thermal

Conductivity in TlInTe2

9.2.1 Introduction

Reduction of lattice thermal conduction in a crystalline solid without hampering its electri-

cal conductivity by means of external doping is a difficult task in thermoelectric research.

As materials exhibiting ultralow thermal conductivity are centric to the development of

high performance thermoelectrics, which provide environment friendly solutions to cool-

ing technologies [245] and hence, efficient energy-management. Thus, it is of paramount

importance to design and discover materials with ultralow lattice thermal conductivity

(κl). Although extrinsic strategies such as alloying and nanostructuring [247] have been

shown to be very effective in suppressing the lattice thermal conductivity, sometimes they

result in deterioration of electrical conductivity (σ) which is not desirable in designing

materials with increasing thermoelectric efficiency. Hence, solids with intrinsically low

lattice thermal conductivity are practically attractive being capable of offering nearly
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independent control of κl over σ.

Lattice thermal transport in solids can be adequately described by theories based on

scattering of phonons by grain boundaries, mass and strain fluctuations, and anharmonic

phonon-phonon interactions (Umklapp processes). Recent investigations on minimal lat-

tice thermal conductivity in certain thermoelectric solids have unveiled non-traditional

phonon-scattering mechanisms e.g., resonant phonon-scattering in filled-skutterudites [268],

clathrates [269] with randomly rattling guest fillers, thermal damping due to liquid-like

diffusive dynamics of a group of atoms in part-crystalline-part-liquid systems as exempli-

fied by Cu3SbSe3 [249] and Cu2Se [270]. A common characteristic of the above materials

is the crystallographic heterogeneity with coexisting rigid and fluctuating sub-lattices.

On the other hand, an intrinsically low κl in rock-salt I-V-VI chalcogenides [253–255] and

PbCuSbS3 [260] was ascribed to the strong lattice anharmonicity induced by ns2 lone-

pair of group V element. Other intrinsic phenomena leading to low κl include resonant

bonding [271], rattling-modes [272], multicenter bonding [261, 273] and layered structure

with significant anharnmonicity [274]. Hence, a thorough microscopic understanding of

the underlying correlations amongst structure, chemical bonding and lattice dynamics

together with their impact on phonon transport is highly desirable to explore and design

materials with low lattice thermal conduction.

Learning from the results in section 9.1 that, in InTe (i.e. In+In3+Te2−2 ), it is the In+

atoms whose rattling motions along z-direction induce ultralow lattice thermal conductiv-

ity, we are intrigued to examine κl in an iso-structural compound Tl+In3+Te2−2 in which

heavier Tl atoms replace the In+ atoms in the crystal structure. Experimental measure-

ments of lattice thermal conductivity on TlInTe2 by Manoj K. Jana from Dr. Kanishka

Biswas’s group at Jawaharlal Nehru for Advanced Scientific Research, reveals that like

InTe, this compound too exhibit an ultralow κl (< 0.5 W/m.K) in the 300-673 K range,

which remains close to the theoretical minimum limit. Using first-principles calculations

based on density functional theory, we have investigated here the aspects of structure and

lattice dynamics responsible for the low κl in TlInTe2. Our calculations reveal that Tl+
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cations exhibit rattling dynamics driven by lone-pair repulsion and strong phonon-phonon

interactions, which scatter the acoustic phonons, thereby causing low κl in TlInTe2.

9.2.2 Crystal structure
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Figure 9.4: (a) Crystal structure of TlInTe2 showing the anionic chains of covalently
bound (InTe4)n tetrahedra interlocked with cationic chains of Tl atoms. Yellow, violet and
orange atoms denote Tl, In and Te atoms, respectively. (b) Calculated potential energy
vs. displacements along crystallographic x- and z- directions of conventional tetragonal
unit cell. (c) Total charge density and (d) electron localization function (ELF) of TlInTe2.

TlInTe2 has a tetragonal chain-like crystal structure (space group: I4/mcm, No. 140)

(Fig. 9.4(a)) similar to that of InTe [201]. Its crystal structure constitutes anionic (InTe

2)
−n
n chains alternating with chains of Tl+ cations (Fig. 9.4(a)). Each In makes four cova-

lent (sp3) bonds with four Te atoms forming tetrahedrons; the latter share their horizontal

edges to form anionic chains along the crystallographic c-axis. Each Tl is surrounded by
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eight Te atoms (of the anionic substructure) in a distorted square antiprismatic arrange-

ment forming skewed cages referred to as Thompson cubes. The latter share square-faces

along the c-axis forming cationic chains. TlInTe2 can be viewed structurally analogous to

1D Zintl compounds such as Ca3AlSb3, Ca5Al2Sb6 and Sr3GaSb3 constituting 1D anionic

chains. The latter exhibit low thermal conductivities owing to complex unit cells (26-56

atoms per unit cell). It is noted that TlInTe2, with only 16 atoms in its conventional unit

cell, is simple relative to the aforementioned 1D Zintl compounds yet exhibits low κl (∼

0.5 W/m.K at 300 K) owing to its distinct lattice dynamics.

9.2.3 Computational details

Our first-principles calculations are based on density functional theory (DFT) using Quan-

tum espresso (QE) code [112]. It uses plane wave basis to represent wavefunctions and

charge density, and pseudopotentials to capture the effect of potential arising from the

nucleus and core electrons of an atom. We used norm-conserving pseudopotentials in

our calculations. We treated the exchange and correlation energy of the electrons with

a generalized gradient approximated (GGA) [113] functional as parametrized by Perdew,

Burke and Ernzerhof [114]. The expansion of electronic wave function and charge density

in plane wave basis was truncated with cut-off energies of 60 Ry and 240 Ry, respectively.

Brillouin Zone (BZ) integrations were sampled on a uniform mesh of 8×8×8 k-points. The

discontinuity in the occupations number of electronic states near the gap was smeared

with Fermi-Dirac distribution functions with a broadening of kBT = 0.003 Ry. Fully

optimized lattice constants (a=8.44 Å, c=7.14 Å) of TlInTe2 agree quite well with that of

its experimental values (a=8.478 Å, c=7.185 Å). We determined electronic structure and

lattice dynamical properties at the optimized crystal structure of TlInTe2. We used QE

implementation of density functional perturbation theory (DFPT) [64] to obtain phonon

dispersion of TlInTe2. In this, the interatomic force constant matrices were first obtained

on a 2×2×2 mesh of q-points in the BZ, and were Fourier interpolated at an arbitrary

q-vector. Gruneissen parameter (γ) measures the degree of anaharmonicity of phonons in
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a material. We estimated γ of each of the phonon modes using finite difference formula

and taking phonon dispersion calculated at two volumes (V0 and 0.96V0, V0 being the

equilibrium volume at 0 GPa).

9.2.4 Theoretical analysis

(a) (b)

Figure 9.5: Electronic structure and orbital projected density of states of TlInTe2.

Electronic structure of TlInTe2 calculated at its optimized lattice constant reveals a

direct band gap of 0.5 eV at the Z-point and an indirect band gap of 0.12 eV between

the valence band maximum (VBM) and conduction band minimum (CBM) appearing

at M point and along X-P lines respectively in the Brillouin zone (see Fig. 9.5(a)).

As TlInTe2 consists of rigid and weakly bound substructures, we expect the chemical

bonding in TlInTe2 to be different from solids with crystallographic homogeneity. We have

examined the bonding environments in TlInTe2 with the aid of real-space descriptors such

as electronic charge density and electron localization function (ELF) calculated using the

DFT. The calculated total charge density of TlInTe2 reveals overlapping charge densities

of In and Te atoms within the InTe4 tetrahedra signifying a strong covalent bonding

between them (Fig. 9.4(c)). On the other hand, the more electropositive Tl is surrounded

by non-overlapping, nearly spherical charge density due to 6s2 electron lone-pair of Tl

(Fig. 9.4(c)) implying the interaction between Tl and the surrounding Te atoms to be

electrostatic in nature. ELF estimates the degree of electron localization in a molecule
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or solid taking into account, the local influence of the Pauli repulsion. As seen from the

ELF map shown in Fig. 9.4(d), a spherical electron localization around Tl is due to its

6s2 lone-pair, whereas a lobe-shaped asymmetrically distributed electron cloud around Te

arises from the 5s2 lone-pair of Te, partially hybridized as permitted by its site symmetry.

The calculated electronic density of states (DOS) shows the contribution of Tl-6s orbital

to the valence band near the Fermi level (Fig. 9.5(b)). Besides, there is an overlap

between Tl-6s and Te-5p orbitals indicating the interaction between respective electronic

clouds. The hierarchical chemical bonds and lone-pairs in TlInTe2 play an important role

in causing low lattice thermal conductivity as discussed below.

Directions vTA1 (m/s) vTA2 (m/s) vLA (m/s)

Γ-X 1009 1042 2222

Γ-Z 1166 1166 2648

Γ-M 1105 1158 2195

Average 1093 1122 2355

Table 9.2: Sound velocities corresponding to the three acoustic branches of TlInTe2 along
different high symmetry directions in the Brillouin zone. TA and LA stand for transverse
and longitudinal acoustic modes, respectively.

To get an insight into atomic-level dynamics, we have calculated the potential energy

curves by displacing the atoms away from their static equilibrium positions along the x-

and z-directions. It is clearly seen from Fig. 9.4(b) that In and Te atoms are confined

in steep potential wells whereas Tl atom is located in a flat potential well suggesting

that Tl atoms can easily vibrate within hollow Thompson cages with large amplitudes,

especially along the z-axis. The flat potential well of Tl is consistent with its large atomic

displacement parameters (ADPs) measured experimentally by our experimental collab-

orators. Hence, the low-energy optical modes associated with the Tl atoms can scatter

the heat-carrying acoustic phonons, thereby reducing low κl. The electrostatic repulsion

between the localized electron clouds on Tl and the surrounding Te-atoms plausibly drives

large displacements of Tl and hence, large ADPs along the crystallographic z-axis.
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(a)

(d)

(b)

(c)
Figure 9.6: (a) Full phonon dispersion and (b) atom projected phonon dispersion of
TlInTe2 showing contributions coming from Tl atoms (b), In atoms (c) and Te atoms (d).
Vibrations of Tl atoms govern the low frequency modes as well as the rattling motions of
Tl atoms along z-direction. The region within the red box in (a) is zoomed in the inset,
where a large avoided-crossing is clearly evident between the phonon branches highlighted
with red and green colors.

The calculated phonon dispersion in Fig. 9.6(a) exhibits several low-frequency optical

phonon modes starting from 12.4 cm−1 at the Γ-point and dispersing to higher frequencies

along high symmetry directions in the Brillouin zone. A striking feature of the phonon

dispersion of TlInTe2 is the presence of a non-dispersive branch along Γ-X-M-Γ path (Fig.

9.6(a)). The corresponding atomic displacements viewed at the Γ, and along Γ-X, X-M

and M-Γ directions essentially constitute large-amplitude coherent vibration of Tl atoms

along the crystallographic z-axis (see Fig. 9.8). The abrupt shift in the slope of this

branch beyond the Γ-point is a signature of optic-acoustic coupling which is evident from
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the large avoided-crossing feature in the phonon dispersion (see inset of Fig. 9.6(a)).

The cut-off frequencies of acoustic phonons lie below 25 cm−1, hence the average sound

velocities are quite low (see Table 9.2) which helps in inducing an ultralow κl in TlInTe2.

It is clearly seen from the atom-projected phonon DOS (see Fig. 9.6 and also Fig. 9.7(a))

that the dominant contribution to phonon DOS in the low-energy region (< 50 cm−1)

comes from Tl atom further indicating that the low-energy phonons are mainly dictated

by Tl-vibrations. The lowest optical phonon at 12.4 cm−1 is in reasonable agreement with

the lowest Einstein mode (θE = 24.8 K) as measured by our experimental collaborators.

It is also lower than the lowest optical phonon in low-κl α-MgAgSb (=0.6 W m1K1 at 300

K) [273]. In α-MgAgSb, the low-frequency optical phonons arise from weak multicenter

bonding interactions and reduce the lattice thermal conductivity through resonant phonon

scattering. Similar low-frequency optic modes and resonant phonon scattering mecha-

nism have been shown to cause low lattice thermal conductivity in filled-skutterudites,

clathrates and Cu-S based chalcogenides [250,275]. In TlInTe2, the low-frequency optical

modes arising from the rattling vibrations of Tl atoms couple with heat-carrying acoustic

phonons through symmetry-allowed anharmonic interactions as clearly evident from the

avoided-crossing in the phonon dispersion (see inset of Fig. 9.6(a)). Secondly, the non-

dispersive nature of optical branch along Γ-X-M-Γ suggests that the coupling exists over

broad wavelength-range (see inset of Fig. 9.6(a)). It is thus clear from our first-principles

analysis that low-energy optical modes arising from the vibrations of the Tl atoms play

an important role in causing low lattice thermal conductivity of TlInTe2.

Grüneisen parameter (γ) quantifies the strength of anharmonicity in a solid. We

have determined the k-dispersion of mode Grüneisen parameters (γi) for the three lowest

branches using phonon dispersions calculated at two different volumes in a finite-difference

method (Fig. 9.7(b)). The lowest frequency flat phonon branch shows anomalously high γi

of 60 along M-Γ path; this large value of γi possibly arises from (a) large rattling vibration

of Tl atoms and (b) modification of restoring force acting on Tl atoms via electrostatic

repulsion between Tl and the surrounding Te atoms. In the high-temperature regime
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Figure 9.7: (a) Atom projected phonon density of states and (b) Grüneisen parameters
(γi) for the lowest three phonon branches of TlInTe2. The black line in (b) corresponds
to γi of the lowest frequency phonon branch i.e., the flat optic phonon branch (rattling
mode) which shows anomalously large value of γi along M-Γ direction.

where the Umklapp phonon scattering is dominant, κl decays as γ2i . Therefore, such a

high value of γi indeed reflects strong anharmonicity and phonon-phonon interactions in

TlInTe2 [254] and also asserts the dominant role of single-frequency rattling mode of Tl

atoms in the reduction of lattice thermal conductivity of TlInTe2.

9.2.5 Conclusions

In summary, TlInTe2 manifests hierarchical chemical bonding with a rigid covalent frame-

work interlocked with the weakly bound ionic substructure comprising of Tl+ cations. The

latter act as an intrinsic rattlers akin to guest-rattlers in filled-skutterudites. The large

displacement of Tl atom along the z-axis is driven by electrostatic repulsion between local-

ized electron clouds around Tl and surrounding Te-atoms. Phonon dispersion of TlInTe2

reveals large optical-acoustic coupling (avoided-crossing) that results in a strongly an-

harmonic vibration of Tl-cations along the z-axis, which is ineffective of heat-transport.

Thus, anharmonic optical-acoustic coupling together with the low sound velocities lead

to a very low value of κl in TlInTe2.
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Figure 9.8: Atomic displacements pattern of the lowest three optical phonons at Γ point
corresponding to 12.4 cm−1 (a), 19.8 cm−1 (b), and 21.8 cm−1 (c) modes are shown in
the primitive unit cell of TlInTe2. Phonon modes associated with the lowest-frequency
flat phonon branch, visualized at the mid points of Γ-X line (d), X-M line (e), and M-Γ
line (f) showing dominant vibrations of Tl+ cations parallel to z-axis. Yellow, violet and
orange spheres denote Tl, In and Te atoms respectively.





Chapter 10

Summary

The primary focus of this dissertation has been the study of materials with nontrivial

electronic topology and their electronic topological transition (ETT) as a function of

pressure or strain that tunes the relative strength of spin-orbit coupling, a crucial ingredi-

ent for compounds with nontrivial electronic topology. Learning from the physics at the

ETT, its origin and associated anomalies in measurable properties of the bulk, we have

predicted distinct nontrivial phases of matter belonging to different symmetry and topo-

logical classes e.g., strong topological insulator, weak topological insulator, topological

Dirac semimetal. We have proposed useful applications based on their exotic properties

e.g., strain sensor and valley Hall devices. As many good thermoelectrics are found to

be topological insulators, we systematically investigated the thermoelectric properties of

topological nontrivial and related materials, uncovering the connection between thermo-

electricity and electronic topology.

The nontrivial electronic topology of a topological insulator is encoded into its bulk

electronic wavefunctions and it manifests robust metallic state at the surface. Detection

of topological insulating phase relies on mapping these topological surface states though

angle resolved photo emission spectroscopy (ARPES) which is quite sophisticated and

expensive. In part (a) of the 1st chapter of this thesis, we predicted pressure induced

177
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electronic topological transition from band to topological insulating phase in the rhombo-

hedral crystal structure of Sb2Se3. We establish vibrational anomalies in Raman spectra

of the bulk that signify changes in electronic topology, where an E2
g phonon softens un-

usually and its linewidth exhibits an asymmetric peak at the pressure induced ETT in

Sb2Se3. Within a four-band model of topological insulators, we show a breakdown of

adiabatic approximation due to strongly coupled dynamics of phonons and electrons, and

elucidate how nonadiabatic renormalization of phonons constitutes readily measurable

bulk signatures of an ETT. This will facilitate efforts to develop topological insulators by

modifying a band insulator.

Learning about the effect of spin-orbit coupling (SOC) in inducing topologically non-

trivial phase and its tunability with external perturbation such as pressure in part (a)

of Chapter 1, we predicted strain induced Z2 topological insulating phase in β-As2Te3 in

part (b), which shares the same rhombohedral crystal structure as that of Sb2Se3. Using

density functional theory, we showed that ETT in β-As2Te3 occur at the uniaxial strain

ǫzz=0.05 (∼ σzz=1.77 GPa), which passes through a Dirac semi-metallic state with a sin-

gle Dirac cone in its electronic structure at the Γ point. Based on its electronic structure

and phonon dispersion, we proposed ultra-thin films of As2Te3 to be promising for use in

ultra-thin stress sensors, charge pumps, and thermoelectrics.

In part (c) of the 1st chapter, we revisited the low pressure phase transition in Bi2Se3

and clarified that the transition near Pc= 3 GPa is not an electronic topological transition,

as there is no change in Z2 topological invariants of the bulk across Pc. Our first-principles

density functional theory calculations capture anomalous changes in its lattice parameters

(e.g., a minimum in the c/a ratio) and change in the slope of the Raman active modes

at Pc. Hence, we argued that this low pressure transition should better be termed as an

iso-structural transition rather than ETT.

So far, experiments on three dimensional topological insulators have mainly focused on
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their properties and electronic structure of the surfaces. Measurements of their bulk prop-

erties relevant to the electronic topology have remained relatively scarce. Recent experi-

ments on Sb2Te3 have revealed an intriguing anomaly in its thermal expansion coefficient

along the hexagonal c-axis in the temperature range of 200-250K, with no accompany-

ing signatures in the specific heat. In Chapter 4, using first-principles density functional

theoretical analysis, we established that the observed temperature dependent anomalies

can be explained with a mechanism of formation of energetically favorable stacking faults

above 200 K. As similar anomaly in thermal expansion coefficient is also observed in other

chalcogenides (e.g, Bi2Se3, Bi2Te3) in the same crystal family, the proposed mechanism is

applicable for these layered strong topological insulators as well.

Topological Dirac semi-metal (TDSM), a novel quantum state of matter with exotic

transport, magnetic, chiral and superconducting properties, has been a subject of intense

research in recent years. TDSM is a 3-dimensional analogue of graphene, and is also

interesting as a parent to other topological states. Learning from the physics and asso-

ciated phenomena involved at an ETT in Chapter 1, we found that the transient DSM

state is not stable for detailed study and hence, we need to find robust topological Dirac

semimetallic state that can be used in devices for practical applications. Using first-

principles theoretical analysis, we suggest here (in Chapter 5 & 6) new routes to achieve

TDSM state both in centrosymmetric Zintl and non-centrosymmetric half-Heusler com-

pounds through strain engineering. Although half-Heusler (HH) compounds were shown

to exhibit rich topological phases, a robust TDSM phase in them is yet to be discovered.

In Chapter 5, we presented a generic topological phase diagram of a large family of HH

compounds with strained structures maintaining a three-fold symmetry, and discover their

highly robust non-centrosymmetric TDSM state. Using an existing, stable half-Heusler

LiMgBi as a model system in first-principles theoretical analysis we showed that topologi-

cal semi-metal, topological Dirac semi-metal, normal and topological insulating states are

common to strained structures of these materials which can be realized experimentally

through epitaxially grown hetero-structures. Uncovering many half-Heuslers exhibiting
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Dirac semi-metallic and other topological states upon epitaxial constraints, our work

should open up tremendous possibilities and exciting science of interfaces between TDSM

and other topological phases that involve chirality, polarity and topology, and have the

potential for novel technologies.

In Chapter 6, we predicted that alkaline earth based Bi2Mg2X (X = Mg, Ca, Sr, Ba)

Zintl compounds exhibit topologically nontrivial electronic states at ambient conditions.

We showed that Bi2Mg3 is a topological semimetal, whereas Bi2Mg2Ca and Bi2Mg2Sr are

topological insulators with narrow band gaps. With relatively larger ionic radius of Ba2+,

Bi2Mg2Ba is a topological Dirac semimetal with linearly dispersed doubly degenerate

bands of distinct symmetry crossing at wavevectors (0, 0, ±k0) that are invariant under

three-fold rotational symmetry. From the calculated phonon and electronic spectra, we

predicted some of these compounds to exhibit very low lattice thermal conductivity and

high Seebeck coefficients, similar to some of the known topological insulators. We believe

that our work should stimulate experimental work to realize the tunable topological states

in epitaxial films of these Zintl compounds, and guide in exploration of materials with

nontrivial electronic topology.

Topological nontrivial phases in insulators can be divided into strong or weak topology

depending on their (a) topological indices and (b) appearance of surface states. For a

strong topological insulator (STI) (e.g., Bi2Se3), Z2 invariants are (ν0; ν1ν2ν3= 1;000)

and they exhibit gapless metallic states on all surfaces. For a weak topological insulator

(WTI), ν0 = 0 and at least one of the other three indices νi(i = 1, 2, 3) must be 1. The

appearance of topological surface states in a WTI depend on specific surface termination

unlike strong TI. In Chapter 7, we predicted emergence of weak topological insulating

phase in BiSe which consists of a bismuth bilayer (Bi2) sandwiched between two Bi2Se3

quintuple layers. Using first-principles calculations based on density functional theory

we showed that even number of band inversions at Γ and A points drive BiSe into weak

topological insulating phase. we determined the Z2 invariants of BiSe, which are (0;001).

Calculation of surface states on the (100) side surface reveals an even number of Dirac
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points as expected of a WTI, confirming the WTI phase of BiSe.

Materials with good thermoelectric (TE) properties such as Bi2Te3 and SnTe have

recently come to be known as topological insulators (TIs). It is fundamentally interesting

to explore if other materials with nontrivial topology may also exhibit good TE prop-

erties. In this work (Chapter 8), we used first-principles density functional theoretical

calculations to determine and assess the electronic contribution to the thermoelectric per-

formance of topological insulators (β-As2Te3, BiTeCl, PbTe), topological Dirac semimetal

(Na3Bi) and Weyl semimetal (TaAs) and semimetallic YPtBi, belonging to different sym-

metry and topological classes. We found that multiple sub-band structure, small band gap

of a topological insulator, and vicinity to a metallic state associated with an electronic

topological transition are responsible for their superior TE performance. In addition,

sensitivity of their electronic structure to strain makes their thermoelectric properties

highly tunable. Since the spin-orbit coupling is often responsible for nontrivial electronic

topology, many of these compounds involve heavy elements, and hence have low elastic

moduli and thermal conductivity that further enhance their thermoelectric efficiency. We

predicted TaAs to be a promising TE for experimental exploration, and proposed that

the thermoelectric modulators based on TIs such as SnTe and PbTe are expected to be

more efficient under mechanical load.

An important paradigm in design of materials with high thermoelectric efficiency

has been to reduce the lattice thermal conductivity. In Chapter 9, we explained the

microscopic mechanism of ultralow lattice thermal conductivity (κl) in mixed valence

InTe (In+In3+Te2−2 ) and TlInTe2 (Tl
+In3+Te2−2 ) at room temperature. These compounds

share similar crystal structures consisting of rigid anionic and loosely bound cationic sub-

structures showing the characteristics of part-crystalline part-liquid-like materials. We

uncovered that the rattling vibrations of the weakly bound cations In+ and Tl+ in InTe

and TlInTe2, respectively, are mainly responsible in the reduction of κl through a scat-

tering mechanism. The In+ and Tl+ atoms act as intrinsic rattlers which scatter the heat

carrying acoustic phonons through phonon-phonon interactions. We also found significant
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lattice anharmonicity in these compounds, as revealed by the high values of Grüneisen pa-

rameters of the localized flat phonon branch relevant to the rattling vibrations. We believe

that our work will help in designing materials with improved thermoelectric performance.

Finally, we present a thematic summary of the thesis in Fig. 10, that brings out

the commonality and central theme of the topics covered in this dissertation. We have

highlighted how electronic topological transition from band to Z2 topological insulator

led us to uncover a plethora of distinct topological phases of matter, and propose devices

based on their exotic, often unusual and fascinating properties. Thus, our work should

guide experimentalists in the design of these materials in laboratory, tune their properties

and make useful devices based on their novel properties.

There is a tremendous scope to take the ideas forward into future work. As TDSMs are

newly discovered materials, our work should guide in discovery new TDSMs. Secondly, one

can combine topology with other interesting properties like thermoelectricity, and group-

IV chalcogenides are attractive systems for this. Finally, the properties of thermoelectric

and catalytic activity may have correlation with electronic topology, and are worth deeper

investigation.
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