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Synopsis

Machine learning originally a field of computer science, has achieved inter-

disciplinary status these days. Recent advancement in computation has gen-

erated a lot of data in various domains which led to the possibility of imple-

mentation of machine learning. Here, I have implemented machine learning

in materials science problems. My thesis is comprised of three chapters.

In 1st chapter, I have given a short introduction of machine-learning and

dimensional analysis method. Buckingham Pi theorem: A tool of dimensional

analysis has been intoduced and illustrated to derive time period of simple

pendulum.

In 2nd chapter, I have presented a predictive model of intrinsic dielectric

breakdown with the integration of machine learning, dimensional analysis

and existing physical scaling relations.

In 3rd chapter, I have proposed simple descriptors for proton conductivity.

In this ongoing project, my aim is to find a material which shows very high

proton conductivity that can be used for the electrolyte of solid-oxide fuel

cell to enhance the performance. First, I will present a predictive model of
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diffusivity of proton using machine-learning techniques and thereafter will

design/search the desired material using this predictive model.
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Chapter 1

INTRODUCTION

1.1 Machine learning

The success of machine learning approaches to high throughput screening for

drug discovery in the pharmaceutical industry has inspired similar schemes

for materials discovery [8, 13]. One of the challenges in adopting a data-

driven approach to materials discovery is the lack of large experimental data,

especially in the space of inorganic materials. To overcome this problem,

hybrid approaches have been developed in which properties calculated from

crystal structure by ab initio density functional theory are combined with

experimental data [18]. These hybrid approaches have the best of both worlds

in that erroneous DFT property calculations and limited experimental data

compensate for each other.
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Figure 1.1: Fingerprinting the materials with a small set of finger-
print descriptors. The role of a fingerprinting algorithm is to choose a
subset of descriptors that sufficiently describes each material. Depicted in
green are the simple primary descriptors as columns and the materials as
rows of a matrix of order M . When the primary descriptors are augmented
or some compound descriptors (of order N) are derived from them, the algo-
rithm for material fingerprinting must be scalable to the expanded descriptor
set. Furthermore, the model built to predict the KPI from the fingerprint
descriptors must be transferable to other materials not present in the original
dataset.

Based only on the readily available descriptors, machine learning meth-

ods can build linear or nonlinear surrogate models from the hybrid data for

predicting the desired property or the Key Performance Indicator (KPI) [11].
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Basic descriptors can be broadly classified into two categories: elemental rep-

resentations and structural representations. Quantities derived from simple

representations of elements and structures of compounds can also be used as

descriptors. These simple descriptors could be intrinsic quantities like atomic

number and ionization energy, heuristic quantities such as electronegativity

and ionic radius, or physical properties such as melting and boiling points.

Some structural representations may be used include the simple coordination

number, Voronoi polyhedron of a central atom, angular distribution function,

bond-orientational order parameter and radial distribution function. As ex-

plained in [25, 26], material descriptors such as volume, cohesive energy, elas-

tic constants and dielectric constants could be obtained from first-principles.

Currently, the selection of the initial set of “good” descriptors is based on

the intuition of subject matter experts. It depends on what primary features

might have a good correlation with the target property, and the other related

properties.

Conventional machine learning algorithms that are employed to build

surrogate models rely on large volumes of data to get accurate predictions

of KPIs. However, it is often the case in materials data that the number

of primary and compound descriptors is much larger than the number of

materials. The number of available open-source databases in materials sci-

ence is growing fast [1, 16, 8]. For a specific application, the descriptors

and the KPIs may be only available for a few hundred samples. So, the size

of the dataset is a few hundreds, much less than what algorithms such as
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neural networks were originally designed for. New sparsification methods in-

volve down-selecting the features as a prior step to building the model. The

process of building the model involves computing certain compound descrip-

tors obtained as linear or nonlinear combinations of simple descriptors, and

then down-selecting these compound descriptors, based on the ability of the

compound descriptors to predict the KPI [18, 25]. The process of deriving

compound descriptors from all the primary descriptors or a selected subset

of them may involve the subject matter expert’s intuition on the possible

relationships between the descriptors and the KPIs. Therefore, the machine

learning algorithm needs to be precise in pruning the compound descriptors

to one or two fingerprint descriptors that can completely describe the KPI.

Among the challenges in data-driven approaches in materials science, a

crucial one is the feature selection. To represent a material in a useful way to

the machine learning algorithm, it is necessary to extract the right features

or “fingerprints” that capture the property of interest (see Figure 1.1). The

chosen features should not lose too much information (for example, counting

the number of atoms in a molecule instead of their identities), because then

they would not be useful for prediction. On the other hand, the chosen

features should not be too specific to the training data because then it can

become very difficult to predict the KPIs for unseen materials. Moreover,

not all properties for all materials have been calculated or measured through

experimentation. Therefore, the machine learning algorithm must construct

a general-purpose scheme. This is the problem of transferability : creating a

4



model from training data that can then be used for predicting the same KPI

for unseen compounds in that class of materials. So, in order to build the

right model, there needs to be a systematic way to derive relevant features

from the raw data available in databases. A third challenge to tackle is

physical interpretability. Many of the modern machine learning tools (such

as deep neural nets or random forests) result in nonlinear models that are a

black box. They perform well with respect to the training data and some test

data, but it is unclear whether the model captures aspects of the system. In

materials science, this issue is particularly important to reconcile models with

known physics and chemistry. So, it is desirable that the learning models use

properties and invariances derivable from fundamental principles. Here we

integrate dimensional analysis and prior knowledge from scientific literature

with machine learning to yield simple, transferable models that are physically

more transparent.

In this work (see Chapter 2), I have presented a simple model of in-

trinsic dielectric breakdown developed using a combination of Bootstrapped

Projected Gradient Descent (a machine learning algorithm used by Pankajak-

shan et al. [22]), the Buckingham Pi Theorem [6] in dimensional analysis, and

known physical laws or empirical scaling relations between physical proper-

ties data. In another work, I have proposed some simple descriptors (essential

ingredients for machine learning) for proton conductivity in perovskite oxides

(see Chapter 3).
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1.2 Dielectric breakdown

Dielectric breakdown is a primary mode of failure of an insulator subjected

to high electric fields. When the applied electric field exceeds a critical value,

the dielectric becomes conductor and suddenly allows a large current to flow

through it[33]. This phenomenon, called dielectric breakdown, is electrical

analogue of mechanical failure, in which a material loses its load-carrying

capacity when subjected to a stress above a critical value. The theory of

material failure is well established and studied in fracture mechanics [23][3].

In the past, researchers have tried to develop a similar theory of dielec-

tric breakdown called linear dielectric-breakdown electrostatics [10] based on

Griffith-like energy-balance condition[12]. However, the basic assumption in

this model of a conducting crack, inside the dielectric itself has been contro-

versial.

The phenomenon of dielectric breakdown is attributed to several factors

such as defects, temperature, pressure etc. A defect-free dielectric has the

highest breakdown field which depends only on the bonding and structure.

This maximum theoretical breakdown field is called intrinsic dielectric break-

down field .

6



1.3 Fröhlich-von Hippel criterion of dielectric

breakdown

In 1937, Fröhlich[9] and von Hippel [30] proposed the theory of intrinsic di-

electric breakdown phenomenon. von Hippel [30] suggested a energy balance

condition for its occurence. According to this criterion, if the gain in energy

by electrons due to applied electric field exceeds the loss in their energy dur-

ing scattering by phonon, dielectric breakdown takes place and it is termed

Fröhlich-von Hippel criterion of dielectric breakdown. Mathematically, it can

be written as

A(E,F ) > B(E) for all E in {CBM,CBM + Eg} (1.1)

where A(E,F ) is the rate of the energy gain of an electron of enery E at an

electric field F , and B(E) is the rate of energy loss. CBM and Eg are the

conduction band minimum and the band gap of the material, respectively.

Recently, Sun et al. [29] have implemented Fröhlich-von Hippel criterion of

dielectric breakdown within a first-principles density functional framework.

7



1.4 Buckingham Pi Theorem: A Dimensional

Analysis tool

“Buckingham Pi Theorem”[6] is a fundamental theorem for dimensional anal-

ysis: if an equation of a physical law in n arguments is dimensionally homo-

geneous with respect to m fundamental units, it can be expressed as a relation

between n – m independent dimensionless arguements. If a physical law is

expressed with an equation

f(q1, q2, · · · , qn) = 0 (1.2)

where qi’s are the physical variables, which can be expressed in terms of

basic physical dimensions, then the above equation can be rewritten as

F (π1, π2, · · · , πn−m) = 0 (1.3)

where the πi’s are dimensionless variables constructed from qi’s with a

form

πi =

ki≤n∏
j=1

q
αj

j (1.4)

This theorem is extensively used in engineering, applied mathematics,

and physics to study a phenomenon quantitatively. Particularly in fluid

mechanics , it is used to get quantitative results readily such as Stokes’s law

8



to describe the viscous drag acting on a spherical body moving through a

viscous fluid.

1.4.1 Time period of simple pendulum: An illustration

Here, I have shown an illustration of Buckingham Pi Theorem to derive the

analytical expression for the time period of simple pendulum oscillating under

the effect of gravity. We can assume ( or can be taken from experimental

observations) that the time period is the function of the length of rope (L),

mass of the bob (M), and the acceleration due to gravity (g).

Here, there are four variables (n = 4) - time period, mass, length and

acceleration due to gravity having dimensional formulae T, M, L, and LT−2

respectively and these depend on three fundamental units (m = 3) {M, L,

T}. Therefore, there will be only one dimensionless argument (n−m = 4-3

= 1) as Buckingham Pi Theorem says.

f(T,M,L, g) = 0 ⇒ f(π) = 0 (1.5)

The dimensionless variable π is constructed using equation (1.4)

π = Tα1Mα2Lα3gα4 (1.6)

Writing dimensional formulae of each variable in equation (1.6) and compar-
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ing the exponets of corresponding variables on both sides we get

α1 = 2, α2 = 0, α3 = −1, α4 = 1

Substituting these values back into equation (1.6), we get

π =
T 2g

L
⇒ T = A

√
L

g
(1.7)

If A = 2π (= 6.2832) then equation (1.7) is nothing but the time period of

simple pendulum. Equation (1.5) demands that the actual expression should

be

f
(T 2g

L

)
= 0 (1.8)

Although, Buckingham Pi Theorem always gives an analytic expression hav-

ing unknown functional form but it can be inferred from experiment or curve-

fitting.
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Chapter 2

A Predictive Model of

Dielectric Breakdown Field

2.1 Descriptors for dielectric breakdown

Employing machine-learning algorithm, C. Kim et. al [18] have developed

a predictive model for intrinsic dielectric breakdown field for binary and

elemental dielectric compounds. They followed Fröhlich-von Hippel criterion

of dielectric breakdown [30] [9]: when the gain in energy of electrons due

to applied electric field exceeds the loss in energy losses to electron-phonon

scattering, dielectric breakdown takes place. This theory suggests that cut-

off frequency of phonons (ωmax) may be a relevant descriptor to dielectric

breakdown. As the electrons in the conduction band primarily contribute to

electronic current they found that the band gap (Eg) may also be a suitable

11



descriptor for dielectric breakdown. Hence, C. Kim et. al [18] took Eg and

ωmax, as the two primary descriptors in their analysis of dielectric breakdown

in addition to other descriptors such as bulk modulus (B), nearest neighbour

distance (dnn), electronic part of dielectric constant (εe), density (ρ), etc.

Figure 2.1: Schema ball diagram showing pairwise descriptor corre-
lations. Yellow lines denote positive correlations between descriptors and
pink lines denote negative correlations. The brighter the line, the stronger
the correlation. There is a strong positive correlation among the phonon
frequencies (ωmax and ωmean) and the bulk modulus (B), but a strong cor-
relation between these descriptors and the nearest neighbor distance (dnn).
Similarly, there is a negative correlation between the band gap (Eg) and the
electronic part of the dielectric constant (εe).
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2.2 Dataset

The number of materials in the database (see Appendix) is 82, which makes

it a bit too small for conventional machine learning algorithms. Materials in

three crystal structures are represented in the dataset: 36 zinc blende solids,

40 rock-salt, and 6 caesium chloride (Figure 2.2). The data is diverse in terms

of descriptors, but KPI distribution is skewed, with breakdown field being

very high for certain materials such as LiF [5] with high band gap ( 14eV)

and largest known negative electron affinity (-3eV). This may be a rationale

behind Kim et al. working with the logarithm of the KPI rather than the

KPI itself [18]. DFT computations of all materials except the transition

metal oxides were performed at the LDA level of theory. The calculations on

the transition metal oxides (MnO, FeO, CoO, and NiO) were done separately

using LDA+U method, with the effective U parameters of 2.1, 4.3, 7.0, and

7.1eV for Mn, Fe, Co and Ni, respectively.

Mapping the data onto higher dimensions helps visualise the entire dataset

in only two or three dimensions. Linear Principal Component Analysis (Fig-

ure 2.4) was applied for the mapping and points to the outliers LiF, BN and

C. Similarly, plotting the range of breakdown strength values gives four ma-

terials,LiF, BN, C and MgO, as outliers based on their very high breakdown

field values (see Figure 2.3). Here, domain knowledge may be required to

choose specific materials for omission from consideration. The machine learn-

ing algorithm described in the following section was tested on the dataset

13



with multiple combinations of outliers removed. Due to the sparsity of data

in the higher breakdown field domain, we have considered C, BN, MgO and

LiF as outliers when applying dimensional analysis and scaling relations.

Figure 2.2: Distribution of crystal structures of the 82 dielectrics.
Each material in the dataset has one of three different crystal structures:
zinc blende (36), rock-salt (40) and caesium chloride (6).

Figure 2.3: Range of dielectric breakdown field values for the 82
dielectrics in the dataset. Four materials (MgO, BN, C, LiF) have a very
high breakdown strength and may be considered outliers that we can omit
from consideration when building our model.
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Figure 2.4: Scatter plot of the first and second principal components
with outliers on the materials. The compounds LiF, BN and C stand
out as outliers. There is not sufficient reason to include or remove the other
materials because they may yet fit the same pattern as the other materials.
We can see a clear separation of the three different crystal structures: zinc
blende, rock-salt and caesium chloride.

Table 2.1: Descriptors considered in analysis of Fb, their notations
and value ranges.

Descriptor Notation (unit) Value Range

1 Band Gap Eg (eV) 0.2-13.6
2 Phonon cut-off frequency ωmax (THz) 2.914-40.513
3 Average Phonon Frequency ωmean (THz) 1.415-29.674
4 Electronic part of the dielectric constant εe 1.821-26.29
5 Total dielectric constant εtot 4.17-57.213

6 Nearest neighbor distance dnn(Å) 1.523-3.604
7 Mass Density ρ(g/cm3) 2.317-10.251
8 Bulk Modulus B (GPa) 18.317-460.524
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2.3 Dimensional Analysis

As the bulk modulus (B) is known to be correlated with phonon frequency

(longitidinal and optical) [2]. We have considered it as a relevant descrip-

tor in our analysis. We also include electronic dielectric constant(εe), which

contains the dimension of charge essential to the physical expression of the

dielectric breakdown. Thus, we have considered here that dielectric break-

down field(Fb) depends on the physical quantities {Eg, ωmax, B and εe} which

depend on 4 physical units {M, L, T, Q}. Recalling the Buckingham Pi the-

orem, we will have only one (n - m = 5 - 4 = 1) dimensionless variable(π).

Demanding that

π = Fα1
b εα2

e E
α3
g ω

α4
maxB

α5

is dimensionless, we get α3 = α4 = 0, α2 = α1/2, α5 = −α1/2. Resubsti-

tuting back, we find that

Fα1
b εα1/2

e B−α1/2 = (Fb(εe/B)0.5)α1 is dimensionless.

Therefore, the dimensionless parameter π is

π = Fb

√
εe
B
⇒ Fb ∝

√
B

εe
(2.1)
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2.4 Empirical relations

It has been proposed that bulk modulus negatively correlates with the nearest-

neighbour distance in a crystal through a power-law relation (B ∼ d−3.5
nn ) [7].

While Cohen established this relation empirically only for diamond and zinc-

blende solids, we find here that it to be valid for the compounds in rock-salt,

zinc-blende and caesium chloride structures (See Figure 2.5) as well.
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Figure 2.5: Bulk modulus versus the nearest-neighbour distance for 82 di-
electrics. Red line represents the power law fit and black dots are data points,
confirming the relation B ∼ d−3.5

nn .

Secondly, band gap varies inversely with the electronic part of dielectric

constant (Eg ∼ 1/εe) of dielectrics[24][32]. Robertson[24] observed this be-

haviour for oxide dielectrics and the data of Kim et. al also validates this
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relation (See Figure 2.6). We further demonstrate that this behaviour should

be universal after testing it on a large dataset of dielectrics (see Figure 2.7).
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)
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g
 = 22.77/ε

e

Figure 2.6: Band gap versus electronic dielectric constant of 82 dielectrics.
Red line represents the inverse law fit to the data points (black dots), con-
firming the relation Eg ∼ 1/εe.

2.5 Breakdown field predictive model

It is well established that the bulk modulus(B) and electronic dielectric con-

stant (εe) are negatively correlated with nearest-neighbour distance (dnn)

of the crystal and band gap (Eg) respectively through the scaling relations

B ∼ d−3.5
nn and Eg ∼ 1

εe
. The data used in the present analysis follows these

scaling relations (see Figure 2.5 and Figure 2.6) quite well.
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Using these two scaling relations in equation(1), we get

Fb ∼

√
Eg
d3.5
nn

Using Taylor’s series expansion to expand Fb(
√
Eg/d3.5

nn) about E0
g/d

3.5
0 to the

first order term results into

Fb ' F 0
b +

1

2F 0
b

( Eg
d3.5
nn

− F 0
b ∗ F 0

b

)
=

1

2F 0
b

Eg
d3.5
nn

+
F 0
b

2

where F 0
b =

√
E0
g/d

3.5
0

It takes a linear form

Fb = a
( Eg
d3.5
nn

)
+ b

Fitting a and b to Fb versus Eg/d
3.5
nn (Figure 2.8), we get our proposed model

for breakdown field

Fb = 1323(Å3.5/e)
( Eg
d3.5
nn

)
MV/m+ 16.25MV/m. (2.2)

Where Eg is in eV, dnn is in Å, Fb is in MV/m and e is the electronic charge.
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Figure 2.7: Eg vs. εe plot of 3277 dielectrics. Confirmation of relation
Eg ∼ 1/εe on a large dataset. The data have been taken from data repository
http://khazana.uconn.edu.
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Figure 2.8: Fb vs. Eg/d
3.5
nn plot. To fix the parameters a and b , straight-line

fitting has been done and we got our model (equation 2.2).
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2.6 Results & discussions

Our predictive model (Equation 2.2 of dielectric breakdown developed using

dimensional analysis, physical laws and machine-learning performs better

(See Figure 2.9 & Table 2.2) than the model developed by C. Kim et. al

using machine learning alone.

Intrinsic dielectric breakdown is associated with defect-free, ideal crystals

and it depends only on the nature of bonding, constituent elements and types

of structures of dielectrics. As it is an electronic phenomenon, it naturally

depends on the band gap (Eg; a feature of the electronic-structure) and

nearest-neighbour distance(dnn; a feature of the atomic-structure). A large

band gap should give a high dielectric breakdown field, because the energy

required to jump/send an electron from valence band to conduction band is

higher. The nearest-neighbour distance (bond length) is a measure of the

bond-strength. Secondly, a short bond means that atoms are more strongly

bonded to each other and a high electric field is needed to free an electron

as a result of electronic and atomic/ionic polarization.

While our model is obtained from the data on binary and some elemental

dielectrics, it is expected to be valid for other classes of dielectrics too, as

no material specific assumption has been made in its derivation. It can be

argued that constants in my proposed model may differ for different classes of

dielectrics because of small size of dataset used in development of our model,

it appears that the linear behaviour may always hold.
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Figure 2.9: DFT estimates of Fb versus Fb obtained with our model for 78
dielectrics. The coefficient of determination (R squared or R2) is 0.807 in
our model.

Table 2.2: Comparison of the present model with Kim model

No. of dielectrics R2(Our model) R2(Kim model [18])

82 0.8034 0.9076

78(except C,BN,LiF,MgO) 0.807 0.7541

40 rock-salt(RS) 0.8646 0.9779

38 RS(except LiF&MgO) 0.861 0.8638

36 zinc-blende(ZB) 0.9246 0.8938

34 ZB(except C&BN) 0.7785 0.6349

6 caesium chloride 0.66 0.7262
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In Table 2.2, We have compared our model with the Kim model [18]. On

estimation of the coefficent of determination(R2), which is a measure of the

closeness of the predicted data and calculated data, we find that our model

performs slightly better than the Kim model. In our model R2 = 0.807 while

in the Kim model it is only 0.7541 for 78 dielectrics with breakdown field

below 1065 MV/m. We considered the four compounds LiF, MgO, C and

BN as outliers in our model. These four compounds elongate the range of

breakdown field from 1065 MV/m to 5000 MV/m (Figure 2.3) and it leads

to the curve-fitting problem and so overestimates low breakdown fields. On

studying these dielectrics structure-wise, we find that the Kim model works

better for rock-salt structural dielectrics, while it performs poorly for zinc-

blende structural dielectrics. After removal of those four compounds, the Kim

model works on the same footing with our model for rock-salt structural di-

electrics but breakdown field predictability of their model degrades further

for zinc-blende compounds. Due to small number of caesium chloride struc-

tural dielectrics in the present data, we can not make any comment about

the working performance of these models. Even we include all these four

materials R2 remains almost the same(R2 = 0.8034) in our model. Thus, our

model has a transferability built-in, and it is independent of crystal structure

of dielectrics.
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2.7 Conclusion

We have demonstrated a scheme that integrates Buckingham Pi Theorem in

dimensional analysis, empirical scaling laws with machine learning for feature

selection to develop simple, transferable and physically interpretable models

of complex material properties from small datasets. In particular, we derived

a simple and efficient model to predict intrinsic dielectric breakdown field in

terms of dnn and Eg. This property of insulators is of utmost importance

in practical applications of electronic and electrical devices working under

extremely high electric field. The simple descriptors associated with our

model can be calculated more easily than those in available models, which

require time-consuming density functional theory (DFT) calculation of fea-

tures like cut-off frequency (ωmax). We think that it can be modified/gener-

alized to include the effects of defects to deal with the dielectric breakdown

phenomenon in real insulators. Our research underlines the importance of

dimensional analysis along with machine learning to tackle the challenging

task of predicting material properties like dielectric breakdown.
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Chapter 3

Proton Conducting Perovskite

Oxide for SOFC Electrolyte

3.1 Solid oxide fuel cell (SOFC)

Solid oxide fuel cell (SOFC) is an electrochemical device which converts chem-

ical energy directly into electrical energy. It produces electricity by the reac-

tion of fuel (H2, methanol, biodiesel etc.) with an oxidant (O2) via diffusion

of protons (or oxide ions) through an ion-conducting channel, i.e., electrolyte.

It is composed of a dense electrolyte layer sandwiched between two elec-

trodes (i.e; cathode and anode) as shown in Figure 3.1. The fuel is injected

to anode for its oxidation and the generated electron reaches to cathode

(through external circuit) for oxygen reduction and releases H2O as byprod-

uct.
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Figure 3.1: Representation of a H2 fed solid oxide fuel cell based on proton
conduction

3.2 Proton transfer mechanisms

There are two proposed mechanisms for proton transport - (1) Grotthuss

mechanism and (2) Vehicular mechanisms. In the vehicle-type mechanism,

protons migrate through the medium along with a “vehicle” or proton solvent

such as H3O
+, H5O

+
2 , and H9O

+
4 . The overall proton conductivity is strongly

dependent on the vehicle diffusion rate. In the Grotthuss-type mechanism,

protons are transferred from one site to another through the formation and

breaking of hydrogen bonds (proton hopping), so a vehicle or proton solvent is

not needed. In this mechanism, the hydrogen bond rotates itself to direct its

hydrogen towards nearest more electronegativity element and then hydrogen

gets transferred on that. So, this mechanism of proton diffusion is a two-

step process and thus proton conductivity is directly affected by the proton

transfer rate (Γtrans) and reorganization rate (Γreo) in this mechanism.
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Figure 3.2: Scheme of proton transfer mechanisms. Courtesy : Ueki et al.

Most proton conductors show mixed Grotthuss and Vehicle transport

mechanisms for proton migration. In proton exchange membrane fuel cell

(PEMFC), Vehicle mechanism is primary one while in solid-oxide fuel cell

(SOFC), Grotthuss mechanism is the primary mechanism for proton conduc-

tion.

3.3 Proton Conductivity

A proton conductor is an electrolyte in which H+ ions are the primary charge

carriers. Compared to other ionic species, proton is unique in the sense it

gets attached readily to anions due to its sign and lack of electrons. It has

been found that perovskite oxides exhibit a high proton conductivity, and

have the promise for an efficient fuel cell possibility. Cerate and zirconate
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based perovskite materials such as BaCeO3, SrCeO3 and BaZrO3 show very

high proton conductivity.

The conductivity of each ionic species is directly proportional to the den-

sity of mobile ions, n , with a specific charge q and mobility µ ( = drift

velocity/electric field)

σ = nqµ (3.1)

The mobility is described by Nernst-Einstein diffusion equation as

µ =
qD

kBT
(3.2)

where kB is the Boltzmann constant and the diffusivity D for each charge

carrier can be expressed as a function that depends on the average carrier

jump frequency f and the distance of the jump λ

D =
fλ2

6
(3.3)

The frequency f is associated with a thermally activated process and it

would be [28]

f = zw0e
−Ea/kBT (3.4)

where z is the number of directions in which the jump can occur, w0 is

a combination of activation entropy ∆S and lattice vibration frequency ν0,

w0 = ν0e
∆S/kB and Ea is the jump activation energy.
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Combining the above equations we get Arrhenius form for conductivity

expression

σT = Ae−Ea/kBT (3.5)

where

A =
znw0q

2λ2

6kB

The conductivity expression can be written in an another way as

ln(σT ) = − Ea
kBT

+ lnA

3.4 Proton conducting perovskite oxides

The credit of the discovery of proton conductivity in perovskite oxides goes

to Hiroyasu Iwahara when he published a paper titled “Proton Conduction

in Sintered Oxides and its Applications to Steam Electrolysis for Hydrogen

Production” in 1981 [15]. Since then many proton conducting oxides have

been discovered and being used in some applications today.

Perovskite oxides are represented by general formula ABO3. Am+ and Bn+

are metallic ions (m+n = 6) and O2− is oxide ion. In general, the ionic radius

of Am+ is bigger than that of Bn+ to yield different crystal structures. In the

ideal perovskite structure with space group PM-3m, the sites correspondent

to the A-cation are located at the vertices of the unit cell, B-site cations in
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the center, and oxygen ions at the faces, as illustrated in Figure 3.3.

Figure 3.3: ABO3 perovskite structure with A = Ba and B = Zr. Figure
courtesy of de Souza et al. [28].

Grotthuss mechanism is the primary mechanism of proton transfer in

perovskite oxides. Firstly, oxygen vaciencies are created and thereafter water

vapor is introduced into pristine perovskite oxide lattice to generate defects

(H+ or OH•
O). The defect is generated and it satisfies the below equation

H2O(g) + V ••
O +Ox

O ↔ 2OH•
O (3.6)

Where, V ••
O are oxygen ion vacancies, OH•

O is a positively charged pro-

tonic defect, and Ox
O is an oxygen lattice site. The diffusion of proton (defect)

through the lattice is attributed to Grotthuss mechanism and has been shown

schematically in Figure 3.4.

30



.

Figure 3.4: Grotthuss mechanism for proton transport in perovskite
oxide: The Hydrogen of OH•

O reorientates itself such that it directs towards
the nearest oxygen site and then hopps on that. This process repeats itself
to transfer proton through the lattice. Figure courtesy of de Souza et al. [28].

Table 3.1: List of proton conducting perovskite oxides

BaCeO3 BaNbO3

BaTbO3 BaThO3

BaTiO3 BaZrO3

CaMnO3 CaZrO3

CaTiO3 KTaO3

LaErO3 LaGaO3

LaScO3 LaYO3

PbTiO3 PbZrO3

SmNiO3 SrCeO3

SrNbO3 SrTiO3

SrZrO3 LaBO3
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After searching literatures, I found around 22 ABO3 [14] perovskites

which exhibit proton conductivity (see Table 3.1). Out of these listed com-

pounds doped BaCeO3, BaZrO3 and SrCeO3 show very high proton conduc-

tivity.

3.5 Descriptors for proton conductivity

� Activation energy (Ea): In Grotthuss mechansim, proton reorien-

tates and gets transferred to the nearest oxygen site and so the proton

transfer is a two-step process. In turn and hop process, the proton

has to cross corresponding energy barriers called “activation energy

barriers (Ea)”. Therefore, if the barrier will be small then the proton

conduction will be fast and vice-versa.

Figure 3.5: Proton’s rotation and jumping energy barriers: Estimated
using nudged elastic band (NEB) method for SrTiO3 along the minimum
energy path. Figure courtesy of Bork et al. [4].
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� Hydration enthalpy: It measures the extent of solvation of defect

or H+ ions in the electrolyte. So hydration enthalpy is related to the

defect concentration. For proton transport, the system (electrolyte)

should be hydrated. Hydration enthalpy should be large to enhance

defect concentration. It also shows the bond strength between oxygen

and defect (H+ ion).

� Electronegativity difference between cations A & B: Norby et

al. [21] showed the correlation between hydration enthalpy (∆H ) and

electronegativity difference between A and B (XB−A) (see Figure 3.6)

∆H (kJ/mol−1) = 400XB−A − 180 (3.7)

� Tolerance factor: It has been observed that distortions of the per-

ovskite structure influence the activation energy barrier for proton con-

duction. Goldschmidt tolerance factor (t) is introduced to describe the

distortion of the perovskite structure from the ideal configuration (cu-

bic shape). The deviations from the ideal cubic perovskite structure

mainly lead to a higher activation energy. The tolerance factor is given

by

t =
(rA + rO)√
2(rB + rO)

(3.8)

where rA, rB, and rO are the ionic radii of the species A, B, and O

respectively.
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Figure 3.6: Extracted experimental values of standard enthalpy and entropy
of hydration for a number of perovskite-related oxides (ABO3), plotted vs.
the difference in the weighted Allred–Rochow electronegativities for the oc-
cupants of the B and A sites. Figure courtesy of Norby et al. [21].
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� Lattice energy: The lattice energy of a crystal (say AmBn) is defined

as the energy change in the reaction [19]

AmBn(s)→ mAn+(g) + nBm−(g).

Table 3.2 shows that the smallest absolute value of lattice energy are

the best proton conductors. Proton conductivity is increasing from top

to bottom (σCaTiO3 < · · · < σBaCeO3), suggesting that lattice energy is

correlated with proton conductivity.

Table 3.2: Lattice energies of several AIIBIVO3 perovskites estimated by
means of a Born - Haber cycle (N. Bonanos, Solid State Ionics 145 (2001))

Compound Lattice energy

(MJ/mol)

CaTiO3 -15.78

SrTiO3 -15.65

BaTiO3 -15.51

CaZrO3 -14.69

SrZrO3 -14.55

BaZrO3 -14.44

SrCeO3 -13.94

BaCeO3 -13.80

35



� O-H binding energy: N. Bork and N. Bonanos [4] have shown strong

correlation between O-H binding energy (∆EOH form) and the energy

barriers encountered in proton transfer in perovskites.

Figure 3.7: Correlations between Ea,OH rot and ∆EOH form. Ea,OH rot is energy
barrier in rotation. Figure courtesy of N. Bork and N. Bonanos [4].

Figure 3.8: Correlations between EaH jump and ∆EOH form. EaH jump is
energy barrier in transfer. Figure courtesy of N. Bork and N. Bonanos [4].
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Ea,OH rot = −0.064∆EOH form + 0.24 eV

Ea,H jump = −0.46∆EOH form + 1.09 eV

They have also estimated Proton transport frequency, Γ, as a function

of temperature.

Γ(T ) = keff (T )[OHo]

An effective rate constant (keff(T )) for the two-step transport process

is defined as

keff (T ) = [k−1
OH rot(T ) + k−1

H jump(T )]−1

Figure 3.9: Proton transport frequency, Γ, as a function of temperature for
several perovskites. Figure courtesy of N. Bork and N. Bonanos [4].
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� O-O distance: During jump of a proton from one oxygen site to its

nearest oxygen site (to establish OH•
O-O Hydrogen bond), it has to cross

an energy barrier and thus O-O distance modulates this barrier [31].

� Ionic radius of cation B: The large size of cation B leads to the

thermodynamic stability issue whereas the smaller one leads to the low

solvation of proton. Hence, medium size cation is preferred for B site.

� Partial pressure of O2 & H2O: The increased partial pressure of

water (H2O) leads to high proton diffusivity [17]. It has been also

observed that oxygen vacancy concentration decreases due to the in-

creased partial pressure of water vapor [17].

Figure 3.10: Diffusivity of proton vs. oxygen vacancy concentration in Fe-
doped KTaO3. Figure courtesy of Kang et al. [17].
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� Defect concentration: It has been found that

mobility ∝ 1

defect concentration

Therefore, an optimal tradeoff between mobility and concentration is

investigated to optimize the overall proton flow[17, 4].

� Unit cell free volume: It affects the proton mobility [27, 20] and it

is given by

V free
cell = abc−

∑
mi

4

3
πr3

i (3.9)

where a, b and c are the unit cell lattice parameters, mi is the chemical

composition ratio of an ion, and ri is the ionic radius.

3.6 Conclusion & Future work

In conclusion, I have proposed some descriptors which may be relevant to

describe proton conductivity in perovskite oxides. Many of these descriptors

are simple and can be calculated easily (e.g; Unit cell free volume, toler-

ance factor, O-O distance, et.) and some are well known (e.g; Ionic radius

of cations, electronegativity, etc.) but the estimation of activation energy

barrier requires robust computation.

In the ongoing work, my aim is to find an electrolyte which exhibits very

high proton conductivity. Nowdays, many new materials are being designed
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for various applications using Machine Learning (ML) prediction. we think

ML can be implemented even in this problem to find the target electrolyte

for solid oxide fuel cell application.

As we know, there are only few pperovskite oxides which show proton

conductivity, we can not use the ML algorithm which requires a large dataset,

for instance Artificial Neural Network (ANN). Here, we will use LASSO or

BoPGD method which is reliable for the prediction of target property for

small dataset. As the theoretical calculation of proton conductivity is a

difficult task, I have chosen diffusivity of proton as key performance indicator

(KPI). We do feature engineering in which prototype functions are operated

on primary descriptors to construct a large feature space. Thereafter, down-

selection of features (based on correlation between KPI and features) results

into fingerprinting descriptors in terms of which predictive model is given

(see Figure 3.11 and flowchart on next page).

Figure 3.11: Schematic representation of Machine Learning prediction of
KPI. D: primary descriptors, XE: engineered features, X: fingerprinting de-
scriptors (after down-selection) and KPI is the physical quantity ascribed to
represent/indicate target proprty. Figure courtesy of Pankajakshan et al. [22]
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Listed 82 dielectric materials with materials properties: Fb: Computed intrinsic
dielectric breakdown field; Eg: Experimental band gap; ωmax: phonon cut-off 
frequency; ωmean: mean phonon frequency; εe: electronic part of dielectric 
constant; εtot: total (electronic + ionic) dielectric constant; dNN: nearest-
neighbour distance; ρ: density and B: bulk modulus of the material.
_____________________________________________________________________________
Name Fb(MV/m) Eg(eV)  ωmax(THz) ωmean(THz)  εe     εtot        dNN(Å)   ρ(g/cm3) B(GPa)
_____________________________________________________________________________
LiF 4829.6  13.6    19.599  10.435  2.068   7.936   1.943   2.938   86.582
LiCl 679.8   9.4     12.531  6.301   3.15    10.003  2.477   2.317   40.537
LiBr 479.1   7.6     11.188  4.934   3.664   11.287  2.653   3.862   32.869
LiI 381.5   6.1     9.701   4.113   4.465   12.667  2.897   4.569   25.476
NaF 1062.7  11.5    12.275  7.416   1.821   4.17    2.227   3.156   61.943
NaCl 288.9   8.5     7.281   4.46    2.604   5.186   2.721   2.408   31.965
NaBr 179.2   7.1     6.357   3.589   3.003   5.728   2.886   3.554   26.127
NaI 115.6   5.9     5.439   2.92    3.582   6.659   3.125   4.078   20.181
KF 535.1   10.9    11.446  6.984   2.087   5.475   2.458   3.25    64.486
KCl 242.5   8.5     6.938   4.439   2.505   4.646   2.916   2.497   30.805
KBr 188.2   7.4     5.422   3.363   2.758   4.826   3.068   3.423   24.694
KI 278.9   6.2     4.595   2.72    3.121   5.017   3.296   3.848   18.896
RbF 612.1   10.4    10.795  6.025   2.22    5.949   2.537   5.313   67.228
RbCl 274.5   8.2     5.948   3.663   2.513   4.78    3.005   3.701   28.977
RbBr 154.9   7.2     4.218   2.708   2.724   4.798   3.152   4.383   23.829
RbI 109.9   6.1     3.439   2.185   3.03    4.871   3.379   4.572   18.317
CsF 352.5   10      10.611  5.878   2.514   8.271   2.848   5.459   63.041
CsCl 348.2   8.3     6.388   3.771   3.14    7.207   3.253   5.276   41.1  
CsBr 208.9   7.3     4.155   2.62    3.366   6.933   3.388   5.903   32.35 
CsI 101.9   6.2     3.131   2.037   3.698   7.071   3.604   5.986   23.827
CuCl 181.6   3.4     8.465   4.724   5.481   7.202   2.275   4.533   70.639
CuBr 117.4   2.9     5.763   3.819   6.541   8.14    2.401   5.588   60.827
CuI 91.8    3       5.063   3.218   6.69    7.588   2.547   6.214   54.31 
AgF 198.7   5       7.844   3.769   5.253   9.901   2.424   7.398   90.178
AgCl 209.5   5.6     6.282   3.217   5.722   10.764  2.708   5.993   65.7  
AgBr 101.6   4.8     4.345   2.559   6.8     12.397  2.823   6.93    59.375
AgI 92.2    2.8     4.041   2.598   5.827   7.151   2.775   5.927   38.94 
TlCl 255.2   3.4     5.956   2.468   6.293   33.041  3.022   9.374   43.934
TlBr 96.6    3       3.828   1.805   7.146   34.149  3.178   9.556   37.69 
TlI 141.2   2.8     2.914   1.415   8.203   38.088  3.388   9.184   31.069
BeS 479.8   7.4     20.29   12.47   5.412   7.141   2.063   2.522   99.251
BeSe 512.8   5.5     18.632  10.059  6.111   7.607   2.191   4.509   81.905
BeTe 346.2   2.8     16.73   8.844   7.498   8.395   2.384   5.438   62.557
MgO 1609.9  7.8     20.642  12.255  3.09    9.35    2.067   3.79    171.1 
MgS 211.5   2.7     11.852  6.932   5.509   14.013  2.558   2.798   82.086
MgSe 143.6   2.5     10.005  5.069   6.646   16.389  2.693   4.39    67.779
MgTe 141.9   2.3     8.641   4.723   5.622   7.813   2.749   3.942   38.352
CaO 517.5   7.1     16.715  9.7     3.867   14.456  2.39    3.409   129.097
CaS 177.2   4.4     10.191  6.315   5.378   11.294  2.81    2.699   67.376 
CaSe 117.9   3.9     7.968   4.727   6.014   11.677  2.922   3.96    56.621 
CaTe 113.9   4.5     6.833   3.866   7.084   12.18   3.123   4.57    44.118 
SrO 394.5   5.8     15.527  8.51    3.889   18.163  2.487   5.592   125.758
SrS 133.2   4       8.911   5.448   5.004   11.192  2.89    4.118   64.218 
SrSe 115.2   4.6     6.208   3.936   5.558   11.277  2.998   5.131   53.812 
SrTe 35.9    4       5.075   3.177   6.417   11.353  3.197   5.471   41.704 
BaO 291.9   4.4     12.879  6.396   4.376   57.213  2.776   5.953   83.576 
BaS 125.2   3.9     7.568   4.234   5.207   14.119  3.171   4.41    49.372 
BaSe 76.9    3.6     5.031   3.065   5.737   13.333  3.269   5.141   42.702 

DATASET

Note: This dataset has been taken from supplementary information of the corresponding paper 
“Chem. Mater., 2016, 28 (5), pp 1304–1311” by Kim et al.

Appendix



_____________________________________________________________________________
Name Fb(MV/m) Eg(eV)  ωmax(THz) ωmean(THz)  εe     εtot        dNN(Å)   ρ(g/cm3) B(GPa)
_____________________________________________________________________________
BaTe 49.9    3.1     4.044   2.495   6.561   12.622  3.45    5.355   34.071 
MnO 231.2   3.8     13.49   5.458   15.471  17.258  2.243   5.217   156.37 
FeO 187.9   2.4     13.301  5.675   10.367  13.941  2.168   5.853   189.99 
CoO 193.6   2.4     12.666  7.491   20.831  21.547  2.111   6.618   211.027
NiO 327.2   4       13.148  7.064   5.074   13.13   2.062   7.075   233.22 
C 2624    5.5     40.513  29.674  5.765   5.765   1.523   3.661   460.524
Si 84.2    1.1     15.401  9.872   13.225  13.225  2.33    2.394   94.414 
Ge 46.9    0.7     8.953   5.666   26.29   26.29   2.413   5.574   73.1   
SiC 419.5   2.4     28.015  17.998  6.934   10.28   1.864   3.336   222.949
SiGe 52.6    0.9     9.894   6.278   14.827  14.831  2.367   4.092   84.105 
BN 2062.1  6.4     38.333  26.001  4.564   6.725   1.546   3.622   397.099
BP 428.8   2.4     24.772  16.617  9.186   9.34    1.939   3.09    172.929
BAs 242.9   1.5     22.201  13.278  9.643   9.767   2.049   5.375   143.369
AlN 881.7   4.9     25.516  15.834  4.545   8.28    1.863   3.418   205.352
AlP 192.2   2.5     14.109  9.057   8.316   10.443  2.343   2.431   87.781 
AlAs 145.6   2.2     11.668  7.051   9.463   11.403  2.434   3.813   73.032 
AlSb 123.6   1.7     10.28   5.955   11.748  13.008  2.63    4.407   55.785 
GaN 691.7   3.2     23.649  13.767  5.687   9.791   1.866   6.946   228.398
GaP 207.5   2.3     12.116  7.772   10.432  12.474  2.302   4.454   94.496 
GaAs 108.9   1.4     8.503   5.587   13.819  15.753  2.396   5.669   76.592 
GaSb 42.3    0.8     6.983   4.37    17.729  18.842  2.581   6.007   58.246 
InN 45.3    2.1     19.422  10.991  14.855  19.722  2.116   7.337   163.696
InP 43.3    1.4     10.69   6.452   11.469  14.407  2.518   4.927   74.118 
InAs 10.6    0.4     7.008   4.391   18.136  21.03   2.601   5.814   61.556 
InSb 10.6    0.2     5.589   2.714   20.038  22.041  2.775   5.968   47.746 
ZnO 231.5   3.4     16.719  9.577   5.288   9.769   1.963   5.803   154.694
ZnS 237.9   3.7     10.392  6.466   6.106   8.769   2.309   4.271   83.194 
ZnSe 150.2   2.8     7.231   4.709   7.439   10.038  2.426   5.451   68.612 
ZnTe 110.2   2.4     6.066   4.302   9.06    11.253  2.591   5.985   53.992 
CdO 181.9   0.8     13.301  6.724   7.93    19.227  2.347   8.246   155.366
CdS 78.2    2.5     9.09    5.203   6.565   9.702   2.519   4.876   65.201 
CdSe 15.3    1.7     5.953   3.784   8.588   11.662  2.626   5.696   55.323 
CdTe 20.2    1.5     4.786   3.064   9.165   11.712  2.781   6.02    44.747 
HgO 153.9   2.2     12.764  6.035   7.548   10.312  2.25    10.251  101.921
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