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Synopsis

Density functional theory (DFT) has emerged as one of the most widely used tools to

calculate ground state properties of materials. It has flexibility to explain the underly-

ing physics behind various exotic materials. It can also predict the nature of unknown

compounds which are hard to realize experimentally. In this work we have studied the

effect of pressure on materials. Pressure has remained one of the most widely studied

parameters which can drive a system towards a phase transition or induce anomaly in the

electronic or vibrational properties of materials.

Recently identified topological nodal-line semimetal ZrSiS has emerged as one of ma-

terials where electronic structure is robust to small defect concentrations and provides

the a platform to study relativistic particles in solid state systems. This material shows

a large magnetoresistance, which has applications in device fabrications and also spin-

tronics. We have studied the transport properties of this material by applying various

pressures which is interesting to look at, as pressure can have significant effect on the

properties of the topological materials. The other work in thesis is based on a widely

known thermoelectric material PbTe. In this work I have tried to understand the evolu-

tion of energy bands under pressure. The strain in the system is important to understand

as it helps in the designing of materials by substitution of the different atoms. We have

showed the interactions among different orbitals and how they evolve under pressure.

My thesis is divided into four chapters. The first chapter describes the pressure de-

pendent studies and why they are important and how can this be realized using density

vii
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functional theory. Then briefly I will discuss about the energy bands in solids and how one

can get insight into it by looking at the density of states. Later, I have discussed about

what are semimetals and their difference with the topological semimetals and briefly de-

scribed what are nodal-line semimetals. The second chapter describes the methods and

formalism of the density functional theory. A brief introduction of the semi-classical

Boltzmann transport theory is given which was used to calculate the transport property

of the ZrSiS. The third chapter describes the effect of pressure on the electronic properties

of ZrSiS and the fourth chapter describes the evolution of the energy bands in PbTe under

pressure.



Contents

Acknowledgement v

Synopsis vii

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Effect of pressure on materials . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Topological semimetals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Types of Topological Semimetals . . . . . . . . . . . . . . . . . . . 3

1.3 Methods and Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Thomas-Fermi theory . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Hohenberg-Kohn theorem . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.3 Kohn-Sham approach . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.4 Approximation to exchange and correlation interaction . . . . . . . 12

1.5 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Semi-Classical Boltzmann transport theory . . . . . . . . . . . . . . . . . . 16

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ix



x CONTENTS

2 Pressure induced jump in resistivity in topological nodal-line semimetal

ZrSiS 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Crystal structure and lattice parameters . . . . . . . . . . . . . . . 27

2.2.2 Pressure-dependent resistivity vs temperature . . . . . . . . . . . . 28

2.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 Electronic transport . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Pressure induced evolution of energy bands and their band widths in

PbTe 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



List of Figures

1.1 Schematic of Dirac semimetal which shows linearly dispersed bands around

the point node known as Dirac node. Both time-reversal symmetry and

inversion are present. Figure courtesy of Yang et al. [13] . . . . . . . . . . 3

1.2 Schematic of Weyl semimetal. The two green dots denote the weyl nodes

and the dotted line which connects the two nodes. This scenario is observed

when either time-reversal symmetry or inversion symmetry is broken. Fig-

ure courtesy of Yang et al. [13] . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Schematic of nodal line and nodal ring semimetal. In the momentum space

the bands touch along lines forming a ring or one-dimensional line. The

green circle/line denoted the band crossings. Figure courtesy of Yang et al.

[13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Above plot shows the difference between all-electron potential and pseudopo-

tential. Here, rc is the cutoff radius above which both type of potentials and

wavefunctions overlap. (https://en.wikipedia.org/wiki/Pseudopotential ) . . 14

2.1 Structure of ZrSiS (Space group: P4/nmm. There is weak covalent inter-

action between the layers, so exfoliation is not possible. Crystal can be

compressed easily along c-axis. . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



xii LIST OF FIGURES

2.2 Plots showing the pressure-dependent x-ray scattering data and the varia-

tion of the a- and c-lattice parameter. It was shown that above 3.7 GPa

tetragonal and orthorhombic phase coexist, and above 18.7 GPa the parent

tetragonal phase coexists with orthorhombic and monoclinic phases. Figure

courtesy of Singha et al. Ref. [8] . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Plots indicate the jump in the resistivity at 6 GPa. It can be observed

that at temperatures above 60 K the resistivity is nearly same for all the

pressures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Plots showing the variation of volume, lattice parameters and c/a-ratio.

It can be observed that volume, a and c-lattice parameter decrease linearly

with increase in hydrostatic pressure. c/a ratio remains nearly constant

upto 2 GPa and then starts decreasing. . . . . . . . . . . . . . . . . . . . 31

2.5 Electronic structure of ZrSiS (Space group: P4/nmm) at (a) 0 GPa and

(b) 10 GPa. The parabolic band at Γ-point comes closer to the Fermi level

at 10 GPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Canted view of merged band Fermi surface of ZrSiS at (a) 0 GPa and (b)

10 GPa. The Fermi surface shows tubular nature. . . . . . . . . . . . . . 33

2.7 Total density of states of ZrSiS tetragonal phase at 0 and 10 GPa. There

is a shift in the corresponding peaks. Minima at Fermi level indicates the

presence of pseudogap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Projected density of states of the tetragonal phase of ZrSiS (Space group:

P4/nmm) at (a) 0 GPa and (b) 10 GPa. Minima at Fermi level indicates

the presence of pseudogap. No significant change is observed near Fermi

level at 10 GPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Calculated Hall coeffiecient at 0 and 10 GPa. The sign of the RH remains

negative at both the pressures, which indicates that conduction is mainly

facilitated by electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



LIST OF FIGURES xiii

2.10 Plots showing conductivity normalized with relaxation time with respect to

temperature at 0 and 10 GPa. The conductivity is higher at 10 GPa as

compared to 0 GPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Projected density of states of PbTe. The band width of the energy bands

increase with an increasing pressure. The VBM and CBM have contribution

largely from Te (5p) and Pb (6s) orbitals respectively. . . . . . . . . . . . 44

3.2 Projected density of states of PbTe . The band width of the energy bands

increase with an increasing pressure. It can be observed that energy bands

due to Pb (6s) and Te (5p) start to overlap above 8 GPa. . . . . . . . . . 45

3.3 Projected density of states of PbTe. The valence band maximum (VBM)

and conduction band minimum (CBM) overlap at 18 GPa. There is no level

repulsion observed between Pb (6s) and Te (5p) even at higher pressures. . 47

3.4 Schematic of evolution of energy bands of PbTe under pressure. At 8GPa

the Pb (6s) and Te (5p) orbitals overlap and above 18 GPa the VBM and

CBM start to touch each other and continues upto 25 GPa. . . . . . . . 48



xiv LIST OF FIGURES



List of Tables

2.1 Estimated lattice parameters, c/a ratio and volume of the tetragonal phase

of ZrSiS at various pressures. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Estimated band widths of the Pb (6s) and Te (5p) energy bands for various

pressures. At negative pressure the band width is minimum due to decreased

interactions between the orbitals. As the pressure increases, the band width

also increases for both orbitals. . . . . . . . . . . . . . . . . . . . . . . . . . 46

xv





Chapter 1

Introduction

1.1 Effect of pressure on materials

Pressure has remained one of the important parameters whose effect is widely studied to

gain insight into the various types of phase transitions in solids. The phase transitions

induced by pressure are important as they help in designing new materials which are

of great significance to the electronic industry. It was predicted that, if sufficiently high

pressure is applied to hydrogen, one can get a high-temperature superconducting state [1].

Thus, pressure is also important to understand fundamental laws which govern properties

of various solids. Pressure can induce structural transition [2, 3, 4] or can affect the

electronic, vibrational and transport properties of materials [5, 6, 7]. The application of

pressure on any material increases the interactions and in general increases the scattering

processes as the particles are confined to a smaller volume. To determine these properties,

density functional theory has emerged as widely accepted method to determine the ground

state properties of materials. The density functional theory can predict the properties at

high pressures. The density functional theory provides a way to handle the many-body

problem, which will be discussed in detail in next chapter.

In my thesis, I have studied the effect of pressure on electronic properties of nodal-line

1



2 1.2. TOPOLOGICAL SEMIMETALS

semimetal ZrSiS and widely known thermoelectric material PbTe. First, I will discuss

about topological semimetals (TSMs) and then I will introduce nodal-line semimetals

(NLSMs).

1.2 Topological semimetals

After the recent advancement in the field of materials which showcase electronic structure

with a non-trivial topology, a lot of efforts are put to realize new materials which have

unique band topology and can provide a platform to study the underlying physics. It is

expected that these materials will find applications in advanced devices. In these materi-

als, the charge carriers show characteristics which are different from trivial semimetals or

insulators [8]. After the discovery of topological insulators (TIs) [9], now the focus of sci-

entific community has shifted to the TSMs. In ordinary metals, the properties are unique

to Fermi surface, whereas normal insulators are characterized by a large gap between

valence band maxima and conduction band minima.

Topological semimetal (TSM), as the term says, includes all semimetals which have

some unique characteristic to their electronic structure. The gap-less electronic structure

of semimetals is different from metals, where the charge is balanced i.e. the number

density of electrons and holes in these materials is same. There are large number of

topological semimetals predicted in review by Schoop et al[10].

Upon the discovery of graphene, which set an example that free-standing layered ma-

terials which have a thickness of few atoms can be realized experimentally [11]. Graphene

also showed the way to realize exotic electronic properties [12]. The two doubly-degenerate

linear bands which cross at a point, known as Dirac point, provided the observation of

massless Dirac fermions for first time in a two-dimensional material.. In this scenario, the

expression for the effective mass of electron, which depends on double derivative of E(k)

with respect to wave vector k, is not valid as the double derivative reduces to zero, and
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hence the name massless Dirac fermions was given. Next, I will discuss about types of

TSMs and difference between them.

1.2.1 Types of Topological Semimetals

There are three types of TSMs: Dirac semimetals (DSM), Weyl semimetals (WSMs) and

nodal-line semimetals (NLSMs). Now, I will discuss about what are these materials and

few experimental examples which are reported.

Dirac semimetals

A Dirac semimetal is characterized by two doubly degenerate linear bands which cross

at a point, which is known as Dirac node. This linear band crossing occurs near the

Fermi level. To find these kind of systems, both time-reversal symmetry and inversion

are needed. The Dirac node, as shown in Fig. 1.1, is four-fold degenerate. Due to gapless

nature of electronic structure, the electrons posses very high velocity and they are systems

which provide a platform to study relativistic particles.

Figure 1.1: Schematic of Dirac semimetal which shows linearly dispersed bands around the
point node known as Dirac node. Both time-reversal symmetry and inversion are present.
Figure courtesy of Yang et al. [13]

There are few reports which suggested the presence of three-dimensional Dirac semimet-
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als (3D DSMs). It was first confirmed in Na3Bi [14, 15] and Cd3As2 [16, 17, 18].

Weyl semimetals

The Weyl semimetals are different from the Dirac semimetals in the sense that either

inversion or time-reversal symmetry should be broken, which causes the separation of the

two doubly degenerate bands due to spin-orbit coupling. This forces the condition where

Weyl nodes can appear only in pairs with opposite chirality .

Figure 1.2: Schematic of Weyl semimetal. The two green dots denote the weyl nodes
and the dotted line which connects the two nodes. This scenario is observed when either
time-reversal symmetry or inversion symmetry is broken. Figure courtesy of Yang et al.
[13]

The Weyl nodes exist near the Fermi surface. This leads to some unique features like

Fermi surface arcs on the surface and chiral anomaly in the bulk [1.2]. This is discussed

in the review by Yang et al. [13], with several examples where Weyl-states were observed

in inversion symmetry breaking compounds like TaAs, NbAs and NbP etc [19, 20, 21].

Both Weyl and Dirac semimetals showcase zero-dimensional band crossings.

Nodal-Line semimetals

The DSMs and WSMs have zero-dimensional bands crossings. In nodal-line semimetals,

there are bands crossings along which are along certain lines in the momentum space.
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These lines can be in shape of a ring or a line. These systems are symmetry protected

and the depending on this criteria, nodal line semimetals are of two types i.e. Dirac Nodal

line semimetals and Weyl Nodal Line semimetals.

Figure 1.3: Schematic of nodal line and nodal ring semimetal. In the momentum space
the bands touch along lines forming a ring or one-dimensional line. The green circle/line
denoted the band crossings. Figure courtesy of Yang et al. [13]

The Dirac nodal line semimetals require both inversion and time-reversal symmetry to

be present in the system, and under the presence of weak spin-orbit coupling the four fold

degenerate line, as compared four fold degenerate point in Dirac semimetals, is formed.

The Weyl nodal line semimetals have either time-reversal symmetry or inversion symmetry

which causes the splitting of four fold degenerate nodal lines, and hence, two singly

degenerate nodal lines are obtained. The experimentally verified nodal line semimetals

are PbTaSe2 [22], PtSn4 [23] and ZrSiS [10, 24] and it similar analogues. In the third

chapter, I have discussed about the effect of pressure on electronic transport of ZrSiS. The

electronic conductivity is obtained through semi-classical Boltzmann transport theory. In

ZrSiS, the nodal lines are protected by non-symmorphic symmetry [24].
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1.3 Methods and Formalism

Density functional theory has become one of the major computational methods which is

very helpful in the underlying physics of the condensed matter systems. It provides a

method to determine the ground state properties of various systems. The importance of

total energy calculations lies in the fact that many properties are first and second deriva-

tives of the total ground state energy. Properties which are first order derivatives of total

energy are forces, magnetization and polarization with respect to atomic displacement,

magnetic and electric field respectively. The second order derivatives of total energy with

respect to strain, magnetic and electric field gives elastic moduli, magnetic susceptibility

and dielectric constant respectively. In the next section I will discuss about the funda-

mental aspects of the density functional theory. Later, I will discuss about semi-classical

Boltzman transport equations which are used to determine the electrical conductivity and

Hall coefficient.

1.4 The Density Functional Theory

The interactions between different types of particles have been remained the center of at-

tention to the scientific community. Irrespective of the type of particles, for e.g. colloidal

or subatomic particles, the interactions define the property of the material taken into

consideration. The interactions between the subatomic properties are very interesting as

they cannot be described by the classical laws of physics. The quantum interactions play

a major role in defining properties of material. Understanding of these interactions is very

important as these play important role in defining transport properties, phase transition,

lattice dynamics etc. Regardless of the type of bonding, any solid can be described in

terms of interactions between the electrons and the nuclei, which are coupled together.

The Hamiltonian of any solid is given by,
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Ĥ = −
∑
i

~2

2m
∇2
i −

∑
I

~2

2Mi

∇2
I +

1

2

1

4πε0

∑
i 6=j

e2

|ri − rj|

+
1

2

1

4πε0

∑
i 6=j

e2

|RI −RJ |
− 1

4πε0

∑
iI

ZIe
2

|ri −RI |
(1.1)

where m is the mass of the electron and MI and ZIe are the mass and charge of nucleus, i,

ri and RI denote the positions of the ith electron and the Ith nucleus. The Hamiltonian

in the Equation 1.1 can now be written in the following form, where T̂ is the kinetic

energy operator, ˆVext is the external potential due to the background ions, ˆVint is the

electron-electron interaction and EII is the interaction between the nuclei,

Ĥ = T̂ + ˆVext + V̂in + EII (1.2)

Given the total Hamiltonian we can write the time-independent Schrödinger equation as,

ĤΨ(R, r) = εΨ(R, r) (1.3)

where Ψ(R, r) is total wave function of the system. In principle all the ground state

properties can be derived if we can solve the Eq.1.3. But as in real materials, there

are a large number of ions and electrons. The electrons move very fast as compared to

the nuclei. So, this becomes the first approximation that nuclei are at rest with respect

to the nuclei where we can decouple the motion of the two. This is known as Born-

Oppenheimer approximation or adiabatic approximation [25]. Separating the motion of

the nuclei and electrons is of great help in speeding up the calculations. It should be noted

that there are various kinds of interactions in a material like e−-e− scattering or e−-phonon

scattering etc, i.e. the degrees of motion of the electrons and phonons are coupled to each
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other, which makes it difficullt to determine the exact form of the differential equation

associated with a real system. This is where approximations like Born-Oppenheimer

approximation and effectiveness of pseudopotentials comes into picture, which mainly are

implemented to decouple the degrees of freeedom without greatly affecting the properties

to be determined. The adiabatic approximation works well for semiconductors or materials

with large band gaps but not for metals, superconductors or strongly-correlated systems.

In these types of materials, the motion of electrons and phonons are strongly coupled and

there is anharmonicity present in the system which cannot be treated under the adiabatic

approximation. It is well known that the mass of nucleus much larger than that of an

electron, so in general it can be assumed that the wave functions of nucleus do not overlap

and one can treat the nucleus as classical particles.

1.4.1 Thomas-Fermi theory

Llewellyn Thomas and Enrico Fermi gave a quantum mechanical model which helped in

understanding of electronic structure of many-body sytems comprising of large number of

particles by treating them semi-classicallly, known as Thomas-Fermi model. It takes into

account the electron density alone and is different from the wave function theory. It is

somewhat similar to density functional theory in the sense that it make the use electronic

density. This model gives an insight into form of electron density (ρ) and kinetic energy

density of electrons ( t[ρ] ). It can be easily proved that for a homogeneous electron gas

ρ and t[ρ] have the following form,

ρ =
1

3π2

(
2mεF
~2

) 3
2

,

t[ρ] =
3

5

~2

2m

(
3π2ρ

) 2
3

(1.4)

where εF is the Fermi energy. Now by treating the motion of electron under classical

approximation, it can be shown that,
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T = Ckin

∫
[n(r]

5
3d3r (1.5)

Now, the total energy of the e− moving in a background charge can be given by,

He = Ckin

∫
[n(r]

5
3d3r +

∫
n(r)vext(r)dr +

1

2

∫∫
ρ
(
r
)
ρ
(
r′
)

|r− r′|
d3rd3r′ (1.6)

where, vext is the background potential due to the nuclei and the third term represents the

coulomb interaction between the electrons. Later Dirac [26] and Wigner [27] introduced

the exchange and correlation effects in the electronic Hamiltonian. This we will discuss

in the later section.

1.4.2 Hohenberg-Kohn theorem

The formulation of the modern density functional theory is based upon the the theorems

given by Hohenberg and Kohn in 1964 [28]. They showed a way to handle many-body

problem where there are interacting particles which are moving under the influence of an

external potential vext(r). The electronic Hamiltonian which is an example of interacting

particles, can be written as,

He = Te + vext(r) + Uee(r) (1.7)

where Uee(r) accounts for e−-e− interaction. These theorems make use of the ground

state electron density ρ0(r) of the system.

First Hohenberg-Kohn Theorem : The external potential vext in which a system of

interacting particles is moving, can be uniquely determined by the ground state electron
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density ρ0(r).

Second Hohenberg-Kohn Theorem : Associated with any external potential vext, an

energy functional E[ρ(r)] can be defined, and the ground state energy of a system is the

global minimum of this energy functional.

It should be noted that the electron density ρ(r) , which minimizes E[ρ(r)] is called the

ground state density ρ0(r) of the system.

1.4.3 Kohn-Sham approach

The basic formulation were known till 1960s, but the main problem was to develop a

scheme where one can determine the unknown total energy density functional which can

be further used in the calculations. This problem was solved by Kohn and Sham [29] in

1965, by assuming a system of non-interacting particles in an external potential which was

the central scheme to their approach to density functional theory. Their attempt was to

find a system of non-interacting particles which could produce the same electronic density

as that in a system where all particles are interacting. The unknown energy functional

in the Hohenberg and Kohn theorems was simply the kinetic energy of the electrons in

the Kohn-Sham approach. The main idea behind using a non-interacting system of par-

ticles is to reduce wave of a many-body system to a single particle wave-function. The

kinetic energy calculated using this approximation is not accurate as it is not same as

the kinetic energy derived from a many-body wave function. So, the use of single particle

wave-function remainsthe prime idea behind the Kohn-Sham approach.

Now, since energy density functional make use of the electron density, in terms single

particle wave-function the electron density can be written as,

ρ(r, r′) =
∑
i

fiφi(r)φ∗(r′) (1.8)
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where φi(r) are the one electron orbitals and fi are the occupation numbers of these single

particle wave-functions. Similarily, the kinetic energy of the independent non-interacting

system of the particles can written in the following form,

Te = − ~2

2m

∑
i

〈
φi(r)|∇2|φ∗(r′)

〉
(1.9)

Using the Kohn-Sham approach the energy functional can now be written as,

EKS[ρ(r)] = T [ρ(r)] +

∫
ρ(r)vext(r)dr +

1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
|+ Exc[ρ(r)] (1.10)

The first term is the kinetic energy of the system of non-interacting particles which in are

moving in an external potential vext(r). The second term takes into account the effect of

background potential on e−s. The third term is the coulomb interaction of the electrons

among themselves. The fourth term accounts for the exchange-correlation interaction

between the electrons. The Eq. 1.10 can be represented in a more compact form similar

to Schrödinger equation as,

(
− ~2

2m
∇2
I + VKS(r)

)
Ψi(r) = εiΨi(r) (1.11)

where VKS is the Kohn-Sham potential for the non-interacting system given as,

VKS(r) = vext(r) +

∫
n(r′)

|r− r′|
dr + Vxc[ρ(r)] (1.12)

where vext is the external potential due to background charge, electric or magnetic field,
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the second term is the Hartree potential. The last term is the exchange-correlation po-

tential defined as,

Vxc[ρ(r)] =
δExc[ρ(r)]

δρ(r)
(1.13)

The Eq. 1.10 needs to be minimised with respect to electronic density ρ with a constraint

that the electron density upon integrating gives the total number of the electrons in the

system. This minimum energy obtained is called the ground state electronic energy and

the electron density which leads to it, is called the ground state electronic density ρ0(r).

The Eq. 1.12 should be solved self-consistently making sure that the electron density

used to construct VKS matches to the one obtained from solving Kohn-Sham Hamiltonian

(Eq.1.11).

1.4.4 Approximation to exchange and correlation interaction

The biggest challenge in density functional theory is to correctly treat the exchange-

correlation functional. The most popular ones which are widely used are local density

approximation (LDA) and generalizes gradient approximation.

Local-density approximations (LDA) take into account the local value of electron density

or in other words depend upon the value of ρ(r) at each point in space. Here the real

inhomogeneous system is treated as locally homogeneous system. This approach is very

well known for the homogeneous electron gas [30]. The exchane-correlation energy can be

determined by simply integrating the exchange-correlation energy density at each point

in space. Thus the exchange-correlation energy in LDA is,

ELDA
xc [ρ] =

∫
ρ(r)εxc[ρ]d3r (1.14)
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The local density approximation works well for systems where the electron density is

quite uniform like metallic systems where the free electron model is a fair approximation.

The main drawback of this type of interaction that it fails to estimate band gap of the

materials like semiconductors or materials where there is a large correlation between the

electrons and phonons or any other quasiparticle. For a free electron gas the energy level

are continuous or in other words the excitations are gap-less. LDA is also not suitable for

determining the weak inter-molecular bonds, hydrogen bonds etc.

A better approximation that LDA was generalised gradient approximation (GGA). This

included various aspectswhich were completely ignored in the LDA approximation. This

approximation treats the electrons in a inhomogeneous way. In this way one can upto

some extent take into account the correlations of electrons in a more exact way. This is

the reason why GGA works better in the case of semiconductors or correlated systems.

The exchange-correlation energy in GGA is,

EGGA
xc [ρ] =

∫
ρ(r)εxc[ρ()r, |∇ρ|, |∇2ρ|]d3r (1.15)

In GGA there is presence of non-local exchange correlation effect. These potentials are

generally used to determine electron-phonon coupling constants. These potentials are

more accurate than LDA. We have used GGA approximation in all the work presented in

this thesis.

1.5 Pseudopotentials

In most of the software packages which provide an efficient way of obtaining the electronic

and vibrational properties of the material, through density functional calculations make

use of the pseudopotentials. Here, we will discuss about the widely used pseudopotentials
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method. It can be observed that the band structure we obtained 2.5 is quite similar to

the one calculated by Schoop et al. [31], where they made the use of all-electron poten-

tials. We will discuss about the reasons why pseudopotential are more easy to use than

all-electron potentials.

Figure 1.4: Above plot shows the difference between all-electron potential and pseudopo-
tential. Here, rc is the cutoff radius above which both type of potentials and wavefunctions
overlap. (https://en.wikipedia.org/wiki/Pseudopotential )

To give basic idea about psudopotentials, consider the electronic configuration of Si

atom is 1s22s22p63s23p2. It is well known that properties of a material are determined by

the valence electrons. In solids, there is overlap of the atomic wave-functions. So, it can

be easily understood that valence electrons contribute to the overlap of the orbitals. The

inner 1s, 2s and 2p orbitals form the core of the atoms and do not take part in the bonding,

whereas the outer 3s ans 3p orbitals are partially filled and form bonds with other atoms
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through wave function overlap. In crystalline Si, which has diamond structure, each Si

atom is bonded to its four nearest neighbours through sp3 hybridized orbitals. So, it can

be understood that these valence electrons do not feel the full force of the nuclei and are

nearly free. The wave functions of electron in the core region should be orthogonal to that

of the core electrons. So, the wave functions near the core have strong oscillatory nature

which make it difficult to solve the wave equation. To overcome this difficulty, the true

wave function is divided into two parts i.e. a smooth part ( pseudo-wave function) and

an oscillatory part. In this way, the strong true potential is replaced by a weaker effective

potential or pseudopotential for the valence electrons, which are not much affected by

the shape of wave function near the core [32]. The basic requirement for a pseudopotential

is,

Vpseudo = Vae r ≥ rc

ψpseudo = ψae r ≥ rc

(1.16)

From Fig.1.4, it can be observed that a cutoff radius must be defined to treat the valence

electrons in same manner as that in an all-electron potential, and also it shows that all-

electron potential is oscillatory near the core and smooth after the cutoff radius. The

cutoff radius depends on the size of the atom and the number of outer shells one wants

to include in the calculations. This shows that only by treating the valence electrons one

can still find the various properties like lattice constant, bulk modulus, elastic constants

etc. There are many developed pseudopotential libraries which are readily available. In

the next section we will discuss about the semi-classical Boltzmann tranport theory which

was used to calculate transport properties.
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1.6 Semi-Classical Boltzmann transport theory

The Boltzmann equation or Boltzmann transport equation is widely used to determine the

transport properties of the particles in solid, liquid or gas. It aims at non-equilibrium

systems and is often focused on determining the transport properties of charge, heat or

mass etc., which are further related to electrical conductivity, thermal conductivity or

mass conductivity etc., respectively. It is also the basis of semi-classical theories of trans-

port equation i.e. the motion of quantum particles (i.e. electrons) will be determined by

using the laws which are similar to the Newton’s equation of the motion [33]. Here, we

will discuss about the underlying equation which determine the electrical conductivity.

The out of equilibrium population of electrons is given by,

f =
1

1 + e
E−EF

kT

(1.17)

Now, consider electron moving under electric field. The equation of motion can be written

as,

d(~k)

dt
= −∇E(r) (1.18)

It can be also be shown that group velocity vg of the electrons can be written as,

vg(t) =
1

~
∇kE(k) (1.19)

The group velocity of the electrons in a electronic band is also related to the effective

mass. If particles have higher group velocity, the effective mass will be lower. Let the

probability of a particle moving along x-direction in phase space is f(x, px, t). After ∆t
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time, the probability of the particle is f(x − vgdt, p− Fedt, t− dt). For a slowly varying

energy level,

f(x, px, t) = f(x, px, t)

df

dt
= 0

(1.20)

This is collisionless Boltzmann transport equation, where the transport of the electrons is

ballistic. In deriving the above expression the scattering time is not taken into account.

There are various scattering processes like electron-electron scattering, electron-phonon

scattering and scattering from defects, vacancies or other impurities etc. In the presence

of these interactions, the momenta of electrons is not conserved and hence the distribu-

tion function f(r, p, t) is no longer conserved, which means that df/dt 6= 0. So, there is a

need of introduction of scattering processes into the transport equation. This is done by

incorporating the collision integral C[f ], which is a functional of the distribution function.

The transport equation can be written as,

df(r,p, t)

dt
= C[f ] (1.21)

Apart from scattering processes, in semiconductors there is generation and recombination

processes of electrons and holes are also present. For certain temperature ranges there

can be difference in the rate of generation and recombination of the electrons and holes,

which affects the population of the charge carriers. In simple terms, the collision integral

can be written as,

C[f ] =
∑
p′

(Wp′−p −Wp−p′) (1.22)
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where Wp′−p is the probabilty per unit time that an electron will undergo scattering pro-

cess and during this its momenta changes from p′ to p. Defining the collision integral in

this way incorporates the microscopic probabilities associated with quantum transitions.

For most of the cases the equations are solved for the case where the relaxation time τ

is direction independent. Due to this approximation, Seebeck and Hall coefficients are

independent of τ . The expression for electrical conductivity and the Hall coefficient im-

plemented in the Boltztrap code [34], which works under these approximations are,

σαβ(T ;µ) =
1

Ω

∫
σαβ(ε)

[
− ∂fµ(T ; ε)

∂ε

]
dε (1.23)

Rijk =
Eind
j

jappli Bappl
k

(1.24)

where σαβ(ε) is given by,

σαβ(ε) =
e2

N

∑
i,k

τvα(i,k)vβ(i,k)δ(ε− εi,k) (1.25)

where k and i are wave vectors and band index. In Eq.1.25, N denotes the total number

of the k-points used to sample the Brillouin zone. In general, the number of k-points

used for calculations should be very large to obtain reasonable values of the transport

coefficients. Here, α and β denote the cartesian coordinates and, vα is the group velocity

given by,

vα =
1

~
∂εi,k
∂kα

(1.26)
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Above equations are implemented in the Bolztrap code. All our calculations are done

under these approximations. In chapter 3, we have showed calculated results of temper-

ature dependent electrical conductivity and Hall coefficient. The electrical conductivity

obtained is normalised with respect to relaxation time.
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Chapter 2

Pressure induced jump in resistivity

in topological nodal-line semimetal

ZrSiS

2.1 Introduction

Topological semimetals provide a platform where the underlying fundamental physical

phenomena of relativistic particles can be explored. These particles showing unique prop-

erties offer a great possibility of technological applications. These materials find appli-

cations in various fields of electronics due to their novel transport properties. To find

these exotic states of materials, there was a lot of effort to look for robust systems which

show large range of linearly dispersed bands. It was desirable that small concentrations

of impurity or defects should not affect the nontrivial band topology of the materials.

Discovery of Topological Insulators (TIs) [1] and Weyl semimetals [2, 3] provided the

platform to study relativistic fermions and to explore their practical applications. The

unique electronic structure of these materials was considered as one of the major break-

throughs in recent times.

25
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The advancement in the computational methods to determine electronic properties led to

an enormous contribution to condensed matter physics. This helped the scientific commu-

nity to understand the underlying physics behind these type of materials. The theoretical

methods also paved the way in design of new topological phases of matter. Since the

discovery of graphene, there were many efforts to find massless fermions in the bulk. In

the electronic structure of graphene, electronic bands are linear in k-space where general

expression of effective mass breaks down. In this work, we have tried to understand the

transport properties of nodal-line semimetal ZrSiS at various pressures. In this class of

material the bands cross along a one-dimensional line instead of discrete points. This

material is interesting because it shows several linear-band crossings near the Fermi level

in the range 0-2 eV [4]. However, the spin-orbit coupling introduces a small gap of 20

meV. It paves the way for different interesting properties and phenomena. As shown

earlier by Singha et. al, this material shows large magnetoresistance. So, it is interesting

to study the behaviour of electronic transport under pressure. Pressure can have unique

consequences, like the phase transition, or anomaly in scattering processes. In this work,

our aim is to understand the effect of a pressure-induced jump in the resistivity at low

temperature in nodal line semimetal ZrSiS. In the next section I have discussed about the

experimental results, which was the main motivation behind this work.

2.2 Experimental results

Pressure causes a change in the electronic properties of materials and in general affects

the scattering processes such as e−-e− scattering or e−-phonon scattering. Most of the

topological materials are quite sensitive to the application of pressure because in most

cases the nontrivial topology of the electronic structure is protected by the symmetries

of the system. The scattering processes in the material are also affected by the changes

in the lattice parameter and determine the transport properties of electrons and other
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quasiparticles. It is an important parameter which is capable of driving the system towards

a structural or topological transition. This work was motivated by the pressure-dependent

resistivity measurements on nodal-line semimetal ZrSiS, where an anomaly in the low-

temperature resistivity was observed under pressure.

2.2.1 Crystal structure and lattice parameters

Earlier studies have reported that the structure of ZrSiS is layered and resembles PbFCl-

type structure and crystallizes in tetragonal P4/nmm space group [5, 6], where Si-atoms

in the ab-plane form a square mesh and Zr ans S atoms are sandwiched between the

between this mesh of Si-atoms. There is weak covalent interaction between the layers and

the layers cannot be exfoliated [7].

Figure 2.1: Structure of ZrSiS (Space group: P4/nmm. There is weak covalent interaction
between the layers, so exfoliation is not possible. Crystal can be compressed easily along
c-axis.

In earlier work, Singha et al. showed the presence of an orthorhombic phase coexisting

with tetragonal phase above 3.7 GPa, and above 18.7 GPa, the tetragonal phase coexists

with both monoclinic and orthorhombic phases [8]. The refinement of lattice parameters
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was done without considering the refinement for atomic positions and it was assumed that

orthorhombic phase crystallizes in the BaBr2-type structure (Space group: Pnma) with

lattice parameters of a = 4.235 Å, b = 4.987 Å and c = 8.313 Å at 3.7 GPa. The accurate

atomic positions for the orthorhombic phase are not known.

Figure 2.2: Plots showing the pressure-dependent x-ray scattering data and the variation
of the a- and c-lattice parameter. It was shown that above 3.7 GPa tetragonal and or-
thorhombic phase coexist, and above 18.7 GPa the parent tetragonal phase coexists with
orthorhombic and monoclinic phases. Figure courtesy of Singha et al. Ref. [8]

In this thesis, I have studied the effect of pressure on the tetragonal phase. Later, I

will discuss its electronic structure and transport properties.

2.2.2 Pressure-dependent resistivity vs temperature

Earlier experimental results showed that resistivity (ρ) of ZrSiS has a metallic character

and ρ continuously decreases with decrease in the temperature [9].



2.3. COMPUTATIONAL DETAILS 29

Figure 2.3: Plots indicate the jump in the resistivity at 6 GPa. It can be observed that at
temperatures above 60 K the resistivity is nearly same for all the pressures.

Our work is motivated by experimental results (Experiments were performed by

Prof. Prabhat Mandal and his group 1) which show that as the pressure increases

there is a jump in the low-temperature resistivity, whereas at higher temperatures there

is no significant effect of pressure. It was observed that jump in the resistivity occurs

above 6 GPa and results in a metal to non-metal like transition at low temperature.

It can also be observed that above 60 K, the nature of the resistivity remains same

at all reported pressures without major difference in the values of resistivity at various

pressures. The anomaly in the resistivity is only observed at low temperatures which

indicates that temperature plays a major role in determining the phase transition and

transport properties.

2.3 Computational details

In this work we have tried to understand the low-temperature resistivity using first-

principles density functional theory (DFT) calculations as implemented in QUANTUM

1Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
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ESPRESSO [10] software package. Here, the potentials used are used are ultrasoft pseu-

dopotentials [11]. The exchange-correlation energy of electrons was treated under gen-

eralized gradient approximation (GGA) [12] and the functional form was used as pa-

rameterized by Perdew−Burke−Ernzherof [13]. The energy cutoff of wave functions in

plane-wave basis set used was 50 Ry and charge density in the planewave basis set was

truncated with energy cutoff of 400 Ry. A uniform k−point mesh of 24 × 24 × 16 was

used for integrations in Brillouin zone with Fermi-Dirac smearing-width of 0.003 Ry. The

transport properties were calculated using BoltzTraP code [14] using a very dense k -point

mesh which is implemented under a constant scattering time approximation.

2.4 Results and Discussion

Here, first we have estimated the lattice parameters.

Pressure (GPa) a (Å) c (Å) c/a Volume (Å3)

0 3.555 8.148 2.292 103.019

1 3.546 8.128 2.292 102.235

2 3.538 8.108 2.291 101.495

3 3.530 8.081 2.288 100.751

4 3.523 8.059 2.287 100.052

5 3.516 8.038 2.286 99.378

6 3.509 8.017 2.284 98.727

7 3.502 7.997 2.283 98.098

8 3.495 7.978 2.282 97.489

9 3.489 7.960 2.281 96.900

10 3.482 7.941 2.280 96.329

Table 2.1: Estimated lattice parameters, c/a ratio and volume of the tetragonal phase of
ZrSiS at various pressures.

The calculated lattice parameters often don’t match with the experimentally deter-
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mined parameters due to the implementation of generalized-gradient approximation and

taking into account only the valence electrons in pseudopotentials. A minimum require-

ment where the results can be trusted, is that estimated lattice parameters in general

should not differ from the experimentally determined parameters by more than 2%.

Figure 2.4: Plots showing the variation of volume, lattice parameters and c/a-ratio. It
can be observed that volume, a and c-lattice parameter decrease linearly with increase
in hydrostatic pressure. c/a ratio remains nearly constant upto 2 GPa and then starts
decreasing.

It can be observed that volume, a and c-lattice parameter decrease linearly with in-

crease in pressure. The c/a-ratio remains nearly constant upto 2 GPa, then starts de-

creasing linearly as the pressure decreases.
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2.4.1 Electronic structure

The electronic structure of topological materials are sensitive to change in their lattice

parameters and the symmetries of the crystal structure, which can be tuned by applying

pressure. Pressure can drive the system towards a structural phase transition and in some

cases a topological transition [15]. Here, in this work first we investigated the pressure

dependence of the electronic structure of the tetragonal phase. The electrical transport

of a material depends on the electrons near the Fermi level. If there is a change in

the electronic structure near the Fermi level it will affect the transport properties of the

material.

(a)

(b)

Figure 2.5: Electronic structure of ZrSiS (Space group: P4/nmm) at (a) 0 GPa and (b)
10 GPa. The parabolic band at Γ-point comes closer to the Fermi level at 10 GPa.
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In the case of ZrSiS, there are multiple Dirac crossings near the Fermi level in the

range of 0-2 eV and the Dirac crossings closest to the Fermi level are between ΓX- , MΓ-

and AZ-paths in the brillouin zone. This material is one of the many examples of systems

where massless fermions can be found in the bulk. Figure 2.5 showcases the the band

structure of the tetragonal phase of ZrSiS, along high-symmetry path in brillouin zone at

0 and 10 GPa. Earlier it was also shown that cones at X and R point are not influenced by

spin-orbit coupling [4]. From the band structure at 10 GPa, it can be observed that there is

no significant change in the electronic structure near the Fermi level which could indicate

towards the anomaly in low-temperature resistivity. At 10 GPa, it can be observed that

parabolic bands at Γ-point came closer to the Fermi level. This suggests that there is a

possibility of increase in conductivity due to the tetragonal phase.

Figure 2.6: Canted view of merged band Fermi surface of ZrSiS at (a) 0 GPa and (b) 10
GPa. The Fermi surface shows tubular nature.

In Fig. 2.6, the calculated Fermi surface is shown. At 0 GPa, a hole pocket can be

observed (violet colored), which fills up at 10 GPa. This is because, the rise in pressure

causes more electronic states to contribute to the Fermi surface. This also indicates an
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increase in the electronic conductivity of tetragonal phase at 10 GPa.

2.4.2 Density of states

In this section, we will describe the effect of pressure observed on the density of states

(DOS) of ZrSiS. This helps in understanding the changes in electronic structure from a

different point of view.

Figure 2.7: Total density of states of ZrSiS tetragonal phase at 0 and 10 GPa. There
is a shift in the corresponding peaks. Minima at Fermi level indicates the presence of
pseudogap.

In Fig.2.7, we can observed that density of states (DOS) at 10 GPa is lower than that

of 0 GPa near −1 eV and above 0.5 eV. It can also be observed that DOS near Fermi

level is nearly same for both pressures. It is known that the transport properties are

determined by the electrons near the Fermi level. There is no significant change in the

number of states at Fermi level. Also above 2eV, there is a significant decrease in the DOS

at 10 GPa. A minima at Fermi level can also be observed, which indicates the presence

of a pseudogap. A pseudogap occurs when certain points in brillouin zone are gapped

but there are some points which are gapless. Next, we will discuss the contribution of

different orbitals to DOS.
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(a)

(b)

Figure 2.8: Projected density of states of the tetragonal phase of ZrSiS (Space group:
P4/nmm) at (a) 0 GPa and (b) 10 GPa. Minima at Fermi level indicates the presence of
pseudogap. No significant change is observed near Fermi level at 10 GPa.

The Fig. 2.8 shows orbital-projected density of states at 0 and 10 GPa. At Fermi level,

Zr-d states contribute maximum electronic states at both pressures. Also, Zr-p states

do not contribute electronic states near Fermi level. Above Fermi level, the the states

are mostly comprised of vacant Zr-d states. So, it can be understood that Zr atoms are

responsible for the high electrical conductivity in ZrSiS. The Si-p and Zr-d states around

-2 eV have nearly the same energy, which indicates the strong interaction between the
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two. The S-p states have significant contribution near -4 eV, but negligible contribution

near Fermi level. Above Fermi level, From Fig. 2.7 and 2.8 it can be observed that drop

in DOS above 0.5 eV is due to Zr-d states, as Si and S have very small contribution Fermi

level.

2.4.3 Electronic transport

To calculate electronic transport properties we have used the density functional theory

based electronic structure and using semi-classical Boltzmann theory which works under

the approximation of constant scattering time as implemented in the BoltzTraP code [14].

Figure 2.9: Calculated Hall coeffiecient at 0 and 10 GPa. The sign of the RH remains
negative at both the pressures, which indicates that conduction is mainly facilitated by
electrons.

The calculated value of Hall coefficient, Fig. 2.9, shows negative values at both pres-

sure, which confirms that the electron are major charge carriers. It can also be observed

that at both pressures upto 7 K, the RH decreases sharply and above it becomes nearly

constant. The Hall coefficient in the Drude model accounts only for the free electron gas.

It does not considers the effect of background potential in the material, such as effect
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of the atomic centers or any other applied field. In ZrSiS the value of Hall coefficient is

negative unlike other metals such as tungsten, beryllium and cadmium [16] which have a

positive hall coefficient. This implies that the electrons are free enough to move around

and indicates the normal metallic character in ZrSiS, where the conduction is mainly fa-

cilitated by the electrons. However, it was earlier shown by Singha et. al by using the

classic two-band model, that both types of carriers i.e. e− and holes, contribute to the

transport. But, at low temperatures the hole mobility is very low as compared to the

mobility of electrons.

Figure 2.10: Plots showing conductivity normalized with relaxation time with respect to
temperature at 0 and 10 GPa. The conductivity is higher at 10 GPa as compared to 0
GPa.

In Fig.2.10, the conductivity plots are shown. It can be observed that at low temper-

atures the conductivity at 10 GPa is high with respect to 0 GPa. This implies that the

tetragonal phase is not responsible for the jump in the resistivity. The plot with respect

to Fermi level can understood in a way that left side corresponds to p-type and right side

to n-type doping. It can be observed that minima is at E = EF . This is obvious because

introduction of more charge carriers in the system leads to the increase in conductivity.
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2.5 Conclusions

Finally to conclude, in this work I have tried to understand the origin of pressure-induced

jump in the resistivity. It can be observed that there is no significant change in the

electronic structure of tetragonal phase of ZrSiS under pressure which would have resulted

in the unique behaviour of the resistivity. Further, from our conductivity calculations

under semi-classical Boltzman transport theory, we have showed that there is an increase

in the conductivity of the tetragonal phase. Thus, we can say that the tetragonal phase

is not responsible for the observed behaviour of the electronic transport. It is known

that there is a structural phase transition from tetragonal to orthorhombic phase under

pressure. Singha et al. showed that through the raman scattering measurements that

under pressure, an siotropic structure is formed [8]. It is also discussed in the review

by Yang et al., that square lattice protects the band crossings [17]. So, it is expected

that orthorhombic phase is responsible for the observed jump in the resistivity where

the symmetry breaking of the Si-square mesh might be responsible for the anomalous

behaviour of the resistivity.
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Chapter 3

Pressure induced evolution of energy

bands and their band widths in PbTe

3.1 Introduction

The energy levels of materials have remained one of the most interesting things to look

at as they give insight about how electrons behave. At atomic scale, discrete energy lev-

els are present, whereas in solids these energy levels merge to form energy bands. The

interaction between the energy levels depend upon the which orbitals are close in energy,

bond angles, interatomic distance, number of valence electrons etc. The space between

the atoms is filled by the electrons which act as glue and hold all the atoms together.

The electrons which do not take part in bonding, i.e. the electrons in inner completely

filled orbitals, generally do not affect the electronic properties of the material. The va-

lence electrons and the unfilled orbitals of atoms determine the electronic band gap of

the material. So, any perturbation to the material which affects the energy levels of the

material (impurity atoms, defects, temperature, pressure, defects, electric field etc.), is

very interesting. These perturbations affect the way in which wave functions overlap and

thus affect the electronic properties. This work is motivated by the these concepts. Here,

41
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we tried to understand the effect of pressure on the band width of the electronic energy

bands in PbTe. The crystal structure of PbTe at room temperature has rock-salt type

structure ( Space group: Fm3̄m ), which has two atoms in the primitive unit cell where

each atom has a coordination number of six [1]. It is a promising thermoelectric material

with a band gap of 0.32 eV [2].

The properties of materials largely depend on the energy bands and there interactions.

The energy bands in solids are forms by the overlap of orbitals. The energy bands due to

core states are lower in energy whereas energy bands responsible for the transport prop-

erties of the materials are higher in energy. The core states can be tuned by application

of the pressure which deforms the energy bands. In this work we have to understand the

effect of pressure in the evolution of energy bands in this material. In an earlier work,

PbS, PbSe and PbTe were studied and band structure was studied, and they showed the

level repulsion between Pb-p and X-s( X = S, Se and Te) orbitals [3, 4], which was found

to be maximum in the case of PbS. All three materials have rock-salt structure with a

decreasing lattice constant as the size of the chalocogen (X = S, Se and Te) decreases.

Thus, to look for any signatures of level repulsion of PbTe under pressure by continuously

applying hydrostatic pressure on the system is interesting and fundamentally important.

It was also showed that band gap has a negative deformation potential, which means

that band gap decreases with respect to increasing hydrostatic pressure. We have tried

to understand these aspects in our work under the application of continuous hydrostatic

pressure.

3.2 Computational Details

The calculations at various pressures was done using density functional theory as imple-

mented in the Quantum ESPRESSO software package [5]. The ultrasoft pseudopotentials

were implemented in our calculations [6]. The exchange-correlation was treated under
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generalized gradient approximation (GGA) [7] and the functional form as parameterized

by Perdew-Burke-Ernzherof [8]. The energy cutoff for the basis of the plane waves used

was 65 Ry and with a cutoff of 650 Ry for charge density. A uniform k -point grid of

24× 24× 24 was used for integrations over the Brillouin zone width a smearing width of

0.003 Ry. The structures were optimised at pressures upto 25 GPa under BFGS algorithm

untill the forces on all atoms are minimum.

3.3 Results and discussion

The evolution of energy bands can be tracked through the density of states calculations.

The density of states helps to understand the nature of the orbitals which are interacting.

It also helps to determine which orbitals are forming valence band maxima (VBM) or

conduction band minima (CBM). In this work studied the evolution of the energy bands

through projected density of states calculations at various pressures. The pressure causes

a decrease in the volume and increases the interaction between various energy bands in

the material. We have done calculations starting from -2 GPa upto 25 GPa. The negative

pressure was applied to check if band widths decrease if volume is increased. The decrease

in volume is related to decoupling of interactions between the electronic wave functions.

This causes the energy bands to get separated and eventually if we have isolated atoms,

the energy bands turn into discrete energy levels.

In the structure of PbTe, the atoms form an octahedra with Pb at the center of octahe-

dra. The increase in pressure causes a decrease in the volume of the octahedra and thus

increases the coupling between the p-p orbitals, which is the main reason of the decrease

in the band gap of PbTe at higher pressures. In Fig. 3.3, projected density of states

are showed. The electronic configuration of Pb is [Xe]4f 145d106s26p2 and that of Te is

[Kr]4d105d106s26p2.
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Figure 3.1: Projected density of states of PbTe. The band width of the energy bands
increase with an increasing pressure. The VBM and CBM have contribution largely from
Te (5p) and Pb (6s) orbitals respectively.
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It can be observed that contribution to VBM and CBM mainly comes from the Te

(5p) filled states and Pb (6p) vacant states . The partially filled Pb (6p) orbitals also

contribute slightly to valence band, which can be observed as a broad band below Te

(5p) in red color. Also, a small peak due to Te (5p), below Pb (6s), is observed. This

shows that there is an interaction between these orbitals. It can also be observed that

broadening of the peaks is related to the band width of the energy bands.

Figure 3.2: Projected density of states of PbTe . The band width of the energy bands
increase with an increasing pressure. It can be observed that energy bands due to Pb (6s)
and Te (5p) start to overlap above 8 GPa.
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Above 8 GPa(Fig. 3.3), it was observed that energy bands which have major contri-

butions from Pb (6s) and Te (5p) start to overlap. There was no level repulsion observed

between Pb (6s) and Te (5p), upon applying a positive pressure.

In Table. 3.1, we have estimated the band widths at various pressures. At -2 GPa, i.e.

volume expansion, the band width is minimum for both the cases,. This indicates that

upon applying negative pressure, the decoupling between the orbitals is responsible for

the decrease of the band width.

Band width of Pb (6s) and Te (5p) energy bands

Pressure (GPa) -2 0 2 4 6

Te (5p) (eV) 4.04 4.43 4.82 5.07 5.34

Pb (6s) (eV) 2.65 2.95 3.24 3.50 3.79

Table 3.1: Estimated band widths of the Pb (6s) and Te (5p) energy bands for various
pressures. At negative pressure the band width is minimum due to decreased interactions
between the orbitals. As the pressure increases, the band width also increases for both
orbitals.

Next we tried to understand the behavior at higher much higher pressures. At 18 GPa,

the VBM and CBM start to overlap. This corresponds to strong p-p orbital interactions,

due to decrease in volume of the octahedra as the Te atoms come closer to the Pb atom.

At 18 GPa, there is significant overlap between Pb (6s) and Te (5p) orbital, which is

clearly visible in Fig. 3.3. It should be noted that, the effect of spin-orbit coupling is

not included in the calculations which has significant effect on the electronic properties

of materials which have heavy elements. When a system is subjected to high pressures,

the orbitals come closer to each other and thus, effect of spin-orbit coupling becomes very

important.
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Figure 3.3: Projected density of states of PbTe. The valence band maximum (VBM) and
conduction band minimum (CBM) overlap at 18 GPa. There is no level repulsion observed
between Pb (6s) and Te (5p) even at higher pressures.

It should also be noted that band width continuously increases with pressure. The

broadening can be related to the delocalization of the electronic states due to increased

scattering processes at high pressures. In Fig. 3.3, a schematic is shown for the calcula-

tions done in this work. It can observed that Pb (6p) does not interacts with the Te (5p)

even at high pressures. But at high pressures, the vacant Pb (6p) in CBM start to overlap

with Te (5p) and thus band gap decreases to zero. The Te (5s) states are very low in

energy, but even then the pressure causes an increase in the band width of these states.

The band width of the Te (5s) increases with pressure but it does not interacts with the
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Pb (6s) orbital. The energy gap between these two orbitals decreases with pressure but

they do not overlap even at 25 GPa.

Figure 3.4: Schematic of evolution of energy bands of PbTe under pressure. At 8GPa the
Pb (6s) and Te (5p) orbitals overlap and above 18 GPa the VBM and CBM start to touch
each other and continues upto 25 GPa.

Fig.3.3 shows the schematic of evolution of the energy bands of PbTe under pressure.

The effect of pressure causes the bands to merge. The VBM and CBM start to merge

around 18 GPa, whereas Te (5p) and Pb (6s) bands merge at 8 GPa.
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3.4 Conclusion

In this work I have tried to study the role of pressure on energy bands of PbTe. It was

clearly demonstrated that band width of each energy bands increases with as the value of

hydrostatic pressure applied on the system increases. This causes the closing of band gap

as well as merging of Pb (6s) and Te (5p) states. It was also observed that band width of

Te (5s) energy band also increases but the the gap between Te (5s) and Pb (6s) sustains

upto 25 GPa. The effect of spin-orbit coupling is not included which is interesting to look

at as the pressure increases.
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