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Synopsis

The theoretical and experimental advancements in science have lead to tremendous tech-

nological growth. One of the most significant factors contributing towards it is the dis-

covery of materials exhibiting exotic properties and improved efficiency. With advances

in computational resources first-principles Density functional theory (DFT) based cal-

culations have played significant role in predicting, designing and understanding novel

functional materials and their properties. The central idea involves microscopic investi-

gation of various macroscopic properties of materials.

The work in my M.S. thesis focusses on studying materials with non-trivial electronic

topology using first-principles calculations based on density functional theory (DFT).

DFT calculations have proven to be very useful and effective in studying electronic topol-

ogy of materials and in analysing and predicting pressure induced topological quantum

phase transitions. Another important aspect of this thesis involves determination and

analysis of thermoelectric properties of materials. The motivation of our theoretical

analysis lies in getting a deeper understanding of the experimental strategies employed

by experimentalists to design materials with improved thermoelectric performance. We

have studied the above mentioned properties in a particular class of materials termed as

“Chalcogenides”. These exhibit rich compositional and structural diversity and constitute

one of the most important classes in the field of chemistry.

In chapter 1, we present a brief introduction to the theme of this thesis followed by

methods and formalism used in our calculations in chapter 2. The thesis is broadly divided

into two parts based on the properties we have studied.
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viii

In the first part (chapter 3-4), we focus on thermoelectric properties of materials.

Specifically we have studied the effect of alloying and cationic substitution on two spe-

cific chaclogenides. In chapter 3 we devised an efficient strategy of engineering the local

structural distortions and the associated ferroelectric instability in crystalline solids which

induces soft polar phonons. The strong coupling of these soft polar phonons with acous-

tic phonons carrying heat minimizes lattice thermal conductivity in lead free SnTe. This

strategy opens up a new avenue of achieving high thermoelectric performance as many

materials encompass such a ferroelectric instability. In chapter 4 we have studied the al-

loying of AgBiSe2 with GeSe. Interestingly, cubic (GeSe)1−x(AgBiSe2)x possess n-type

conduction with reasonable high carrier concentration, which is rare in Ge-chalcogenides

based thermoelectrics.

In the second part (chapter 5-6), we focus on the pressure induced topological quan-

tum phase transitions in materials belonging to different symmetry and topological classes.

Chapter 5 deals with pressure induced changes in the electronic topology of T lBiS2 in

the low pressure regime (< 4 GPa) which we confirmed using the Z2 topological invariant

and the mirror chern number nM calculated at various pressures. In chapter 6 we study

the pressure induced phase transitions in a topological crystalline insulator SnTe and a

normal semiconductor SnSe.

Density functional theory simulations have thus proved to be powerful tools in se-

lecting materials for given application based on concerns of cost and performance, in

understanding the confines of materials and also shown ability to engineer new materials

with designer properties.
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Chapter 1

Introduction

The importance of materials has been known and realized for ages. Dating back to 3000

BC the significant contribution of materials in the development of civilization was recog-

nized. Starting from the origin of human life on Earth, the Stone Age to the Bronze Age

and more recently the use of iron and steel around 1850, which enabled the railroads and

helped in the building of the modern infrastructure of the industrial world the central

commonality has been materials. Starting in the 1930s understanding of how materi-

als behave in a certain way, and why they differ in properties was made possible with

the atomistic understanding allowed by quantum mechanics, that first explained atoms

and then solids. The central domain of Materials Science involves the combination of

physics, chemistry, and the focus on the relationship between properties of a material and

its microstructure. The development of this field allowed designing new materials and

provided a knowledge base for engineering applications. Properties are the materials way

of responding to the environment. For example, the mechanical, electrical and magnetic

properties are the responses to mechanical, electrical and magnetic forces, respectively.

Other important properties include thermal (heat capacity, transmission of heat), optical

(absorption, transmission, and scattering of light), and the chemical stability in contact

with the environment. Material science involves selecting materials for a given application

based on concerns of cost and performance, to understand the confines of materials and

1
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the ability to create new materials that will have some desirable properties.

The central theme involves determining properties of materials on the macroscopic

and intermediate length and time scales through a non-empirical description of their

chemistry and microscopic structure. It usually starts with computational solution of

electronic motion treated within a quantum mechanical density functional theory and

identifies the lowest energy degrees of freedom and their interactions. Every material

consists of electrons and ions. Microscopic investigations of various macroscopic properties

of a material reveal that most of the properties arise due to the interaction between the

electrons and the ions and the interaction among themselves. The behavior of these atomic

and subatomic particles can best be described by quantum theory very accurately. Nearly

all physical properties of materials are related to total energies or difference between total

energies [1–4]of the electrons and ions.

To get the total energy of a system containing electrons and ions, the aim is to solve

the Schrödinger equation. But solving the Schrödinger equation is a difficult task as elec-

tronic degrees of freedom are coupled to ionic degrees of freedom giving rise to a coupled

differential equation. Moving towards complex systems that contain many electrons and

ions, solving the Schrödinger equation becomes practically an impossible task. In order

to tackle this problem, and solve the electronic structure of the condensed phase of a ma-

terial, Kohn-Sham DFT uses various approximations, where the many body Schrödinger

equation is mapped onto a set of self-consistent one-electron equations. Such one-particle

Hamiltonian is known as the Kohn-Sham Hamiltonian (KSH). We call this method ab-

initio because it requires only the specification of atomic number and no other parameters.

This thesis contains two applications of ab-initio density functional theory in understand-

ing properties of materials.

Electronic structure calculations based on Kohn-Sham density functional theory (DFT)

are so far proved to be the most popular and highly successful theory in dealing with con-

densed matter and materials science problems. DFT has shown extraordinary accuracy in

forecasting and explaining the macroscopic as well as microscopic properties of materials
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in the bulk form, surfaces and interfaces. This predictive capability of DFT along with

advances in supercomputing resources has helped in screening a large number of materi-

als to find the necessary properties, hence reducing the efforts of experimentalists. While

some of the predictions can be readily realized within the laboratory, some of them may

not be feasible in immediate experimental realization. This confidence, flexibility and suc-

cess of DFT stem from its ability to compute properties of materials with no adjustable

parameters. DFT based calculations are thus helping scientists in making research and

scientific exploration of materials cost-effective.

This thesis mainly contains two applications of ab-initio density functional theory

to gain an understanding of materials at a deeper level. The thesis revolves around a

particular class of materials called ”chalcogenides,” and the properties we chose to study

are thermoelectric properties and electronic topological properties.

1.1 Metal Chalcogenides

Chalcogenides exhibiting rich compositional and structural diversity and constitute one

of the most important classes in the field of chemistry, on par with oxides and organic

compounds. The term “chalcogen” was proposed around 1930 by Werner Fischer [5] to

denote the elements of group 16. It was quickly accepted among German chemists, and

was recommended by Heinrich Remy for its its official use in 1938 to the International

Union of Chemistry (later IUPAC). Following this, it was internationally accepted that

the elements oxygen, sulfur, selenium, and tellurium will be called chalcogens and their

compounds chalcogenides.

Chalcogenides are compounds that contain at least one chalcogen Q atom (Q = S, Se,

Te) in a chemically reduced state compared to its elemental form. One of the most distinct

differences between oxides and chalcogenides is the ability of the chalcogen to form stable

Q-Q bonds: catenation. In general, on moving from sulfides to selenides to tellurides, the

degree of covalent bonding, delocalization of electrons and metallic behaviour increase,
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and the importance of long range Q-Q interactions increases [6].

Metal chalcogenides have enormous application in many research areas. Some ex-

amples include, photovoltaic energy conversion, thermoelectric energy conversion [7, 10],

thin-film electronics [12], spintronics [13], fast-ion conductivity [14], catalysis [16], and

science in two dimensions [8]. Recently, the sensational discoveries pertinent to metal

chalcogenides such as quantum spin Hall Effect [17], topological insulators [18], and many

others which have hugely implicated the fields of spintronics and (Opto) electronics. Most

of the applications and phenomena are associated with chalcogenides of transition metals

and main group p-block metals.

1.1.1 Chalcogenides of p-block elements

The p-block metal chalcogenides exhibit rich structural diversity. In quasi-binary III2-VI3

metal chalcogenides wurtzite and zincblende structures are prevalent. Anisotropic layered

structures are also found in III-VI compounds with covalently bonded layers stacked via

weak van der Waals interactions. Among IV-VI metal chalcogenides, GeQ and SnQ

(Q=S, Se) exhibit orthorhombic puckered layered structure, which are derivatives of three-

dimensional distorted of the rock salt (NaCl) structures. GeTe and SnTe have rocksalt

(NaCl) structures with slight deformations due to phase transitions. For GeTe and SnTe,

above 670 K and 100 K respectively the high-temperature phase stabilises in perfect NaCl-

structure. PbQ (Q=S, Se, Te) crystallizes in cubic rock-salt structure. Among group V-VI

chalcogenides, Sb2S3, Sb2Se3, and Bi2S3 have orthorhombic Sb2S3-type stibnite structure.

Sb2Te3, Bi2Se3, and Bi2Te3 are found in rhombohedral layered structures comprised of

covalently bonded Q-M-Q-M-Q (M=Sb/Bi; Q=Se/Te) quintuple layers stacked via weak

van der Waals interactions along the c-axis.
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1.2 Introduction to Thermoelectrics

Looking at the current global energy crisis the development of technology for capturing

and converting otherwise wasted heat into useful electrical power will be of utmost im-

portance. The class of materials capable of converting thermal gradients into electrical

energy or vice versa by virtue of a unique combination of electrical and thermal properties

are called thermoelectric (TE) materials. With the coming years TE materials are stated

to play a significant role in the energy management [9, 10].

Thermoelectric effect is based on two important transport effects: Seebeck effect and

Peltier effect. According to Seebeck effect, if two dissimilar metals are joined together

with the junctions kept at different temperatures having a temperature difference ∆T ,

then a resulting voltage difference (∆V ) will be generated [23]. The voltage difference is

proportional to ∆T . The ratio of the generated voltage to the temperature difference (∆V

/ ∆T ) is related to intrinsic property of the materials and is termed as Seebeck coefficient

(S) or the thermopower. By establishing a temperature gradient across a material, the

more energetic carriers of hot junction diffuse to a lower potential i.e. cold junction till

an electric field is established and the further flow of carriers is inhibited [24].

S =
∆V

∆T
(1.1)

The inverse Seebeck effect is known as Peltier effect where the metal junctions either

releases or absorb the heat while current is passed in the close circuit [25].

1.2.1 Thermoelectric figure of merit (ZT)

E. Altenkirch introduced the concept of figure of merit in the early 1900s [25]. It was

qualitatively shown that good thermoelectric materials should have high electrical con-

ductivity (σ) (to minimize Joule heating), low thermal conductivity (κ) to prevent heat

transport across the junctions leading to maintenance of a large temperature gradient,

and large Seebeck coefficients (S) for maximum conversion of heat to electrical power or
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Figure 1.1: Generic diagram of a thermoelectric couple made of n-type and p-type ther-
moelectric materials. Power generation or refrigeration modes are possible, depending on
the configuration

vice-versa. These properties define the dimensionless thermoelectric figure of merit, ZT

as

ZT =
σS2

κ
T (1.2)

where T is the temperature in Kelvin [19, 20, 22, 24]. σS2 is called the power factor

and is the key to achieve high performance. A large power factor implies higher current

generation. The thermal conductivity κ has a contribution from lattice vibrations, κlatt,

called the lattice thermal conductivity. Thus, κ = κel+κlatt, where κel is the electronic

thermal conductivity. For power generation, the thermoelectric efficiency (η) is defined

by combining the Carnot efficiency (ηc = ∆T/Thot) and the average figure of merit (ZTav)

as shown in equation.

ηTE = ηc

(√
1 + ZTav − 1

)(√
1 + ZTav + Tcold

Thot

) (1.3)

where Thot and Tcold are the temperature of the hot and cold ends in a thermoelectric

device and ∆T is their difference. Improving the efficiency requires both high ZT values

and a large temperature difference across the thermoelectric materials.
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1.3 Conflicting thermoelectric parameters

A efficient TE material must simultaneously possess, a high σ such that the Joule heating

is low, a large S which will result in large potential difference and low κL corresponding to

a large temperature difference to realize high TE efficiency. One of the most challenging

problems in this field is to design a single TE material that meets all the above criteria;

moreover, the high interdependence of all the above properties poses an inherent limit to

the maximum zT that can be attained in a given material.

1.3.1 Carrier concentration

Large Seebeck coefficient requires only single type of carriers [20]. Mixed n-type and p-type

conduction results in both charge carriers moving to the cold end, and hence cancelling out

the induced Seebeck voltages. Insulators and semiconductors (low carrier concentration)

have very high Seebeck coefficients, and at the same time very low electrical conductivity.

The interrelationship between carrier concentration and Seebeck coefficient can be seen

from the models of electron transport. For metals or degenerate semiconductors (single

parabolic band) the Seebeck coefficient is given by:

S =
8π2k2

B

3eh2
m∗T

( π
3n

)2/3

(1.4)

where n is carrier concentration and m* is effective mass.

Electrical conductivity (σ) is related to n through the following expression.

σ = neµ (1.5)

Here µ is carrier mobility. The peak value of ZT arises in the carrier concentration range

of 1019-1021 cm−3 which falls in between metals and semiconductors that is concentration

found in heavily doped semiconductors (degenerate semiconductor) [20,22].
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1.3.2 Effective mass

The effective mass of the charge carrier offers another conflicting problem, large effective

mass generates high thermopower but at the same time results in low electrical mobility.

The m* in equation 1.4 refers to the density-of-states effective mass, which increases with

flat and narrow bands with high density of states at the Fermi surface. Since the inertial

effective mass is related to m*, heavy carriers move with slower velocities resulting in

small mobility, which in turn leads to low electrical conductivity (equation 1.5).

1.3.3 Electrical thermal conductivity

Another conflict in designing materials comes from the requirement of low thermal con-

ductivity [20]. Thermal conductivity in thermoelectrics appears from two sources: (a)

electrons and holes transporting heat (κel) and (b) transport of phonons through the lat-

tice (κlatt). Here κel is directly related to the electrical conductivity through the Wiede-

mann–Franz law:

κel = LσT (1.6)

where L is the Lorenz factor, 2.4 Ö 10–8 WΩK−2 for free electrons. The Lorenz factor

can vary with carrier concentration. Accurate evaluation of κel is important, as κlatt is

often computed as the difference between κtotal and κel using the experimental electrical

conductivity.

1.3.4 Lattice thermal conductivity

In a glass, rather than rapid transport via phonons, thermal conductivity is considered

as a random walk of energy throughout a lattice leading to the concept of a minimum

thermal conductivity, κmin [20]. The reason actual glasses make poor thermoelectrics is

because of the absence of needed electron-crystal properties, required for enhanced elec-

trical transport property (σ). Comparison with crystalline semiconductors suggests lower
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mobility in glasses is due to increased electron scattering and lower effective masses be-

cause of broader bands. Good thermoelectric materials are therefore crystalline materials

that are able to scatter phonons without significantly interrupting the electrical conduc-

tivity. The heat flow is carried by a spectrum of phonons with widely varying wavelengths

and mean free paths (from less than 1 nm to greater than 10 µm), creating a need for

phonon scattering agents at a variety of length scales [20].

1.3.5 Ways to achieve high performance

Two approaches are employed to boost zT viz. enhancement of power factor (σS2) and

reduction of thermal conductivity. Some strategies to enhance power factor include: a)

engineering of carrier-concentration through chemical doping, b) enhancement of effective

carrier mass (m*) and hence, the Seebeck coefficient either via convergence of multiple

valence/conduction band extrema, or distortion of density of states near Fermi level by

resonant impurity levels, and c) enhancement of carrier mobility by modulation-doping.19

On the other hand thermal conductivity is supressed traditionally through a) point de-

fects, b) endotaxial nanoscale precipitates in the host matrix and c) mesoscale grain

boundaries. Sometimes all the above three are incorporated in what are referred to as

hierarchical architectures where the atomic scale, nanoscale and mesoscale defects would

scatter phonons with a broad range of wavelengths [9, 19]. However, in addition to scat-

tering of phonons, an undesirable scattering of carriers can occur and hence limiting the

overall zT in most other TE materials. Taking this consideration into account, materi-

als with intrinsically low thermal conductivity are, therefore, practically more attractive

being robust to impurities, doping, grain sizes etc.

In chapter 3 and 4 of my thesis, we present thermoelectric (TE) properties of two

chalcogenide materials. In Chapter 3, we present a new strategy to significantly reduce

the κlat without degrading power factor (σS2) by engineering the ferroelectricity instabil-

ity in crystalline solid. We have shown that the high lattice anharmonicity caused by the
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introduction of Ge atom in SnTe crystal is responsible for its notably lower lattice ther-

mal conductivity. In chapter 4, using first-principles calculations within density functional

theory, we reproduce the trend in the evolution of band gap of (GeSe)1−x(AgBiSe2)x with

increasing x. Interestingly, cubic (GeSe)1−x(AgBiSe2)x possess n-type conduction with

reasonable high carrier concentration, which is rare in Ge-chalcogenides based thermo-

electrics.

1.4 Distinct topological phases of matter

In 1980 the discovery of integer quantum Hall (IQH) effect [26], lead to the realization of

robust topologically nontrivial electronic phase in a non-interacting system for the first

time. The IQH state possesses robust edge states and exhibits quantized Hall conductivity

which are unaffected by the smooth adiabatic changes in the material parameters and

hence can not be destroyed without a quantum phase transition. For breaking time

reversal (TR) symmetry in IQH effect an external magnetic field is required. Later, TR

invariant systems with robust edge/surface states were proposed e.g., in Haldane mode [27]

and quantum spin Hall (QSH) insulator [25] which possess nontrivial band topology. It

was realized that the strong spin-orbit interaction in non-interacting fermionic systems

can give rise to topologically nontrivial phases in the electronic structure.

The topological band theory is the extended branch of band theory of solids that de-

scribes the topological physics of non-interacting electronic systems. Berry connection,

Berry phase, Chern number are the crucial elements of topological band theory which can

be easily formulated and computed within single particle quantum mechanics. Therefore,

DFT proves to be a very useful theoretical tool in dealing with materials with nontrivial

electronic topology since it accurately treats a material within single particle approxima-

tion and also includes the effect of spin-orbit coupling (SOC) in the KS Hamiltonian.

David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz laid the foun-

dations of modern topological phenomena in physics, who in the early 1970s and 1980s
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theoretically [27, 29, 30] explained the physics associated with quantum Hall effect [31],

superfluid phase transition [32]. Their theory not only unraveled new exotic and unusual

quantum states of matter but also opened research activity in topological materials that

could be used in future applications of fast electronics, superconductors or even quantum

computers. For these pioneering works, David J. Thouless, F. Duncan M. Haldane and J.

Michael Kosterlitz were awarded the Nobel prize in physics in 2016 “for theoretical dis-

coveries of topologi- cal phase transitions and topological phases of matter”1. Topological

nontrivial phases have been discovered in materials ranging from systems in 1D [33] to

2D materials to even materials in three dimensions.

1.4.1 Quantum Hall effect and Quantum anomalous Hall effect

In 1980 the discovery of quantum Hall (QH) effect [34] in a two-dimensional electron gas

system subjected to a strong magnetic field at low temperature kick started the modern

research in the field of topological phases of matter. A quantum Hall system exhibits

quantized hall conductance
(
σxy = ν e

2

h

)
, which originates from the Berry curvature of the

filled magnetic Bloch bands (or Landau level). Topological invariant quantity (ν) known

as the Thouless-Khomoto-Nightingle-den Nijs (TKNN) number [36] originates from the

integration of the Berry curvature associated with these bands in the Brillouin zone. The

conducting edge states in a QH system are robust and their conduction is dissipation-less.

It was in 1982 that Haldane proposed an analogous model known as the Haldane

model [27] to realize the quantum Hall effect in a 2D honeycomb lattice. The system

did not require an external magnetic field to exhibit quantized conductance
(
σxy = ν e

2

h

)
with ν=1. In this model, the time-reversal (TR) symmetry of the honeycomb lattice was

broken by applying a periodic magnetic field in such a way that the net magnetic flux in

a unit cell became zero. The broken TR symmetry lifts the degeneracy of Dirac cone in

the electronic structure of the honeycomb lattice and opens up a gap at the Dirac point.

In this gapped state, the Chern number of the system is unity. This type of Hall effect,

1citation from https://www.nobelprize.org/nobel prizes/physics/laureates/2016/
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which does not require any net magnetic field, is known as quantum anomalous Hall

effect (QAHE), and an insulating material exhibiting such property is called quantum

anomalous Hall insulator or Chern insulator.

1.4.2 Quantum spin Hall effect

The possibility of having a time-reversal invariant topological insulator in two-dimension

was first proposed in the Kane-Mele model [35] which is considered to be composed of

two copies of the Haldane model with both up and down spin electrons. Addition of

spin-orbit interaction term in the Kane-Mele model gives rise to topological insulating

state in it. This 2D topological insulator is also known as quantum spin Hall (QSH)

insulator that exhibits quantized spin Hall conductance, but with a vanishing charge Hall

conductance. After the theoretical prediction of the QSH effect, it was experimentally

realized in HgTe/CdTe quantum well heterostructure [38].

However, the presence of spin-orbit coupling (SOC) in a material allows a different

topological classification of insulators which are invariant under time-reversal symmetry

and also exhibit robust gapless topologically nontrivial edge/surface states. These insula-

tors where TR symmetry is preserved are called Z2 topological insulators [37], and their

associated topological invariants are characterized by Z2 indices.

1.4.3 Z2 topological insulators

Strong topological insulator

The concept of topological insulating phase in 2D systems (or QSH insulators) can be

extended to three dimensions. In a 3D topological insulator, the electronic structure of

a material remains gapped in the bulk but on its surface it hosts gapless surface states.

These robust gapless surface conducting states are protected by time-reversal symmetry

in the Z2 topological class. In three dimensions, topological insulators are divided into two

classes (a) strong topological insulator (STI) and (b) weak topological insulator (WTI).
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In a seminal work, Zhang et al. theoretically predicted the first three dimensional STI in

Bi2Se3 materials class , which hosts a single Dirac cone in the electronic structure of (001)

surface. These states are robust and show spin-momentum locking. In three-dimension,

there are four Z2 invariants (ν0; ν1, ν2, ν3) for a time-reversal invariant system. For a STI,

ν0 must be 1 and the rest of the indices may or may not take non-zero values.

Weak topological insulator

If ν0 is zero, but at least one of the other three indices (ν1, ν2, ν3) becomes 1, then the

TR-invariant material belongs to weak topological insulating phase. For a weak topolog-

ical insulator (WTI), the appearance of the topological surface states depend on surface

termination. A WTI consists of stacked layers of 2D topological insulators and topo-

logical surface states only appear on its side surfaces [39]. WTIs are very interesting as

they exhibit several intriguing quantum phenomena like one dimensional helical modes

along dislocation lines [40], weak anti-localization effect [41] and half quantum spin Hall

effect [42]. The essential reason why the WTI is considered weak is that its surface modes

may be gapped without breaking TR symmetry or closing the bulk gap.

Topological crystalline insulator

Another interesting class of materials are called as topological crystalline insulators (TCI)

[11, 12], where the gapless surface states are protected by mirror symmetry. These ma-

terials are different from topological insulators (TI) in which the time reversal symmetry

protects the surface states and hence the protection of surface states for TCI perseveres

even when time-reversal symmetry is broken. The presence of mirror symmetry in the

crystal structure of a material results in the presence of planes in the BZ that are mir-

ror symmetric. Therefore, mirror symmetry protected Dirac cones arise in the surface

electronic structure. TCIs are characterized by a non-zero mirror Chern number. The in-

dividual Chern numbers C+i and C−i are defined on a mirror-invariant plane. The mirror

Chern number [11] defined as nM = (C+i −C−i)/2 can be used as a topological invariant
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for TCI. A TCI supports an even number of Dirac cones and band inversions in sharp

contrast to a TI characterized by odd number of band inversions. The first TCI phase

experimental [13] observation was made in SnTe, which were earlier theoretically [14] pre-

dicted. Soon after its theoretical prediction, TCI phase was experimentally verified in

Pb1−xSnxSe using ARPES experiments. [43].

1.5 Elements of topological band theory

1.5.1 Bulk-boundary correspondence principle

The bulk-boundary correspondence principle states that at the interface between two

materials belonging to same symmetry but different topological classes, topological edge

or surface states appear. For example, if n and m are the bulk topological invariants of

two materials, then at their interface there will be precisely |n-m| number of edge states

[44]. This principle in general holds true for non-interacting fermionic systems [45]. This

principle establishes the relation between edge/surface states to topological properties of

the bulk wave functions.

1.5.2 Berry curvature and Berry phase

Berry phase (γ) is a phase that may be acquired by an electronic state when the electronic

state undergoes a cyclic adiabatic evolution in a closed path in the Brillouin zone. If there

are M non-degenerate bands present in a material, then for each band n, Berry’s phase is

given by γn =
∮
c
dk.An(k), where An(k) is the Berry connection of the n-th band and is

analogous to magnetic vector potential in the reciprocal space. Berry connection is given

by An(k) = i 〈un(k)| ∂
∂k
|un(k)〉. Berry curvature is defined as the field associated with the

Berry potential An(k) and can be obtained as: Ωn(k) = ∇k ×An(k). In the case of non-

degenerate bands, Berry curvature is Abelian. But when degeneracy is present within the

band manifold of interest, the conventional adiabatic theorem needs to be generalized, and

Berry curvature becomes non-Abelian which is represented by a tensor. This extension of
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the Berry curvature to the tensor framework was done in analogy with the non-Abelian

gauge theories by Wilczek and Zee [46] in 1984. In the case of degenerate bands, the

Berry connection is given by, Amn(k) = i 〈um(k)| ∂
∂k
|un(k)〉, where m,n indicate the

band indices (m,n ∈
∑

) within the degenerate subspace (
∑

= 1, ..., N). In this case, the

non-Abelian Berry curvature is given by [47],

Ωmn(k) = i 〈∂um(k)

∂k
| × |∂un(k)

∂k
〉+ i

∑
l∈

∑ 〈um(k)|∂ul(k)

∂k
〉 × 〈ul(k)|∂un(k)

∂k
〉 (1.7)

1.5.3 Chern number

Chern number is a topological invariant quantity which is obtained as an integration of

the Berry curvature in a closed surface in the Brillouin zone. Using the definition of Berry

curvature for the non-degenerate case above, the Chern number for the n-th band is given

by,

Cn =
1

2π

∫
Ωn(k)d2k, (1.8)

where the integration is taken over the two-dimensional Brillouin zone.

1.5.4 Z2 invariants

The presence of robust edge states in quantum Spin Hall (QSH) insulator or two-dimensional

topological insulator suggests that there must exist a topological distinction between quan-

tum spin Hall insulator and ordinary insulator for which there are no topological edge

states present. For a time reversal invariant system, Z2 topological invariants differentiate

a QSH phase form an ordinary insulating phase, In two dimensions, there is a single Z2 in-

variant ν (which can be either 0 and 1). In three dimensions, there are four Z2 topological

indices (ν0; ν1, ν2, ν3) [48], where ν0 is the strong topological index and the rest (ν1, ν2, ν3)

are called weak topological indices. According to Fu & Kane, a Z2 invariant quantity can

be described as an obstruction to finding a smooth gauge for the Blöch wavefunction in
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the half-Brillouin zone (BZ) and is given by [49,50],

∆ =
1

2π
(

∮
∂τ 1

2

a.dl−
∫

Ωxyd
2k) mod 2, (1.9)

where τ 1
2

and ∂τ 1
2

denote half-BZ and its boundary respectively. aj = i
∑

n 〈un(k)| ∂
∂kj
|un(k)〉

is the the Berry connection and Ωxy is the Berry curvature.

For a centrosymmetric material, the Z2 topological invariants can be computed straight-

forwardly using the parity of the wave functions of the occupied bands at the time-

reversal invariant momenta (TRIM) in the Brillouin zone [48]. In three dimensions,

there are eight TRIM which form a parallelepiped in the BZ, which are given by Γi =

1
2
(n1b1+n2b2+n3b3), where b1,b2,b3 are primitive reciprocal lattice vectors and n1, n2, n3

can take values of 1 and 0. In this method, the strong topological index is given by,

(−1)ν0 =
∏8

i=1 σi, where σi =
∏

m ξ
(i)
2m is the product of parity of the occupied bands at

i-th time reversal invariant momentum, and m indicates a band from each doubly de-

generate Kramer’s pairs. The other three weak topological indices (νk, k = 1, 2, 3) are

determined based on the parity of the occupied states at four different combinations of

TRIM in the BZ which form a surface of the parallelepiped excluding the Γ point (in the

kxky-, kykz- and kxkz- planes) through the relation [51] (−1)νk =
∏4

i=1 σi.

1.5.5 Mirror Chern Number

The presence of mirror symmetry in the crystal structure of some materials results in the

presence of planes in the BZ that are mirror-symmetric. This implies that the Bloch states

on these planes are eigenstates of a unitary matrix M which describes the action of mirror

symmetry. In the presence and absence of spin-orbit coupling this matrix squares to -1

and 1 respectively. This means that the eigenvalues of M are ±i for spinor Bloch states on

the mirror-symmetric planes. The individual Chern numbers C+i and C−i are then defined

for each of these subspaces. The mirror Chern number is defined as nM = (C+i−C−i)/2.

This number can be used as a Z topological invariant for the systems with TR-symmetry,
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where C+i = -C−i. To compute the individual Chern numbers C+i and C−i, it is first

necessary to classify each Hamiltonian eigenstate according to the mirror eigenvalues +i

or -i. This is done by computing and diagonalizing at each k the matrix.

〈
ψn(k)|M̂ |ψm(k)

〉
(1.10)

where M is the mirror operator, for all occupied states Ψj(k). Using the unitary transfor-

mation U(k) which diagonalizes this matrix, a set of states with definite mirror eigenvalues

is constructed as

|ψ̃m(k)〉 =
∑
m

Umn(k)|ψ̃n(k)〉 (1.11)

These states are then separated into two groups corresponding to the ±i eigenvalues

to compute C [52].

In chapter 5 we study topology of T lBiS2 as a function of pressure. As a consequence of

band inversions there are changes in the electronic topology of the system, confirmed with

Z2 and nM topological invariants calculated at various pressures. Chapter 6 deals with

Raman study of pressure induced phase transitions in a topological crystalline insulator

SnTe and a normal semiconductor SnSe.
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Chapter 2

Methods and Formalism

The aim of this chapter is to briefly discuss the theoretical background and the computa-

tional methods involved in our first-principles calculations within the framework of density

functional theory. The ability of quantum mechanics to predict the total energy of a sys-

tem of electrons and nuclei has been the driving force to perform quantum-mechanical

calculations.

In first section we show how any property exhibited by a material can be described

by the total quantum mechanical Hamiltonian involving the interaction between the

electrons, the ions and the interaction among themselves. We then describe certain

approximations e.g., Born-Oppenheimer and classical nuclei approximations considered

while calculating the electronic structure of a material. Next section involves converting

these many body Schrödinger equation to a set of coupled one electron equations using

Hohenberg-Kohn theorems and Kohn-Sham Ansatz. The Kohn-Sham hamiltonian can

then be practically solved to obtain the total energy of system of electrons and nuclei

which is the essential quantity needed to calculate many physical quantities. The first

order derivatives of total energy give important physical quantities like polarization, mag-

netization and forces while dielectric constant, magnetic susceptibility, force constant can

be obtained by taking the second order derivatives of the total energy.

The next section involves discussing the theoretical approaches within the adiabatic

22



2.1 Basic equations for interacting electrons and nuclei 23

density functional perturbation theory (DFPT) used to describe phonons which are es-

sentially quanta of lattice vibrations in a material.

In the last section, we describe how maximally localized Wannier function (MLWF)

can be used efficiently to calculate Berry phase, Berry curvature, Chern number of a

material. We review how various topological invariants can be obtained using MLWF and

employing the idea of time reversal polarization.

2.1 Basic equations for interacting electrons and nu-

clei

The full Hamiltonian of a material taking into account all possible interactions between

electrons and ions is given in Eq.(2.1) as,

H = −
∑
I

~2

2MI

∇2
I −

∑
i

~2

2m
∇2
i +

e2

2

∑
I

∑
J 6=I

ZIZJ
|RI −RJ |

+
e2

2

∑
i

∑
j 6=i

1

|ri − rj|
− e2

∑
I=1

∑
i=1

ZI
|RI − ri|

(2.1)

Here, electrons are denoted by lowercase subscripts and nuclei by uppercase subscripts.

The first term in the above expression is the kinetic energy of nuclei, the second term

represents the kinetic energy of electrons, the third and fourth terms represent the inter-

action between electrons and the interaction between nuclei respectively. Fifth term also

termed as external potential denotes interaction between electrons and nuclei.

Given this total Hamiltonian of any system, we can write the time-independent Schrödinger

equation as,

HΞ(RI , ri) = EΞ(RI , ri), (2.2)

where Ξ(RI , ri) is the total wave function consisting of electronic and ionic part.

If total energies can be calculated, any physical property that can be related to total



24 Chapter 2.

energy can be determined computationally. The problem in obtaining exact quantum

mechanical total energy is to solve a set of very complicated coupled differential equation.

This is because any material has a very large number of ions and electrons with their

degrees of freedom coupled to each other. The only possible solution is taking into account

reasonably good approximations.

2.1.1 Adiabatic Born-Oppenheimer Approximation

The adiabatic approximation (Born-Oppenheimer approximation [1]) is the first and the

most important assumption made to simplify the grand hamiltonian of a system of in-

teracting electrons and ions. This assumption is based on the fact that the mass of the

nucleus is approximately 1836 times larger than that of an electron hence the time scale

associated with the motion of the nuclei (ions) are much slower than that associated with

electrons. Therefore, kinetic energy of nuclei can be neglected in comparison to that of

electrons. The electrons instantaneously follow the motion of the ions while remaining

in the same stationary (adiabatic) state (ground or excited). If this condition is followed

then the dynamics is said to be adiabatic.

H is the total Hamiltonian of the system

H = Tn + V (RI) +He (2.3)

where the electronic Hamiltonian of a system can be written in a short notation as,

He = Te + Uee + u(ri,RI), (2.4)

where Te, Tn are the kinetic energies of electrons and nuclei respectively. Uee(=∑
i 6=j

e2

|ri−rj |) and V (RI) are electron-electron and nuclear-nuclear interaction potential

respectively. u(ri,RI) is the interaction potential between the electrons and nuclei.
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2.1.2 Classical nuclei approximation

The second most important assumption made in simplifying the electronic structure of a

matter is the classical nuclei approximation. Since the nuclear masses are very heavy as

compared to electrons, the wave functions for nuclei are much more localized and therefore

one can assume that quantum phase coherence of the nuclear wave functions is very less

or doest not exist at all. This led to the safe assumption of treating nuclei as classical

particles. Within this approximation, the total nuclear wave function can be expressed

as the product of all individual nuclear wave function. By doing so we can neglect the

exchange and correlation interactions among them.

The dynamics of the mean values of position and momentum operators can be obtained

through Ehrenfest’s theorem.

2.1.3 Independent electron approximation

Independent electron approximation is the oldest approximation which considers two basic

independent-particle approaches that may be classified into ”non-interacting” or Hartree

method and Hartree-Fock method. In Hartree method, only the classical electrostatic

Coulomb interaction energy is taken into account while neglecting the exchange and cor-

relation effect. Hartree did not consider the asymmetric nature of electronic wavefunc-

tions. But in Hartree-Fock method, in addition to the electrostatic interaction energy,

the exchange effect due to Pauli principle and correlation effect are taken into account.

Antisymmetric nature of electrons was considered in the Hartree-Fock Approximation. In

this framework, asymmetric electronic wavefunction can be written in the form of a Slater

determinant such that the wavefunctions are indistinguishable.

In modern DFT, the electronic Hamiltonian is taken to be non-interacting like in

Hartree approach and electrons are assumed to move in an effective external potential

chosen so as to incorporate the exchange-correlation effect approximately.
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2.2 Density functional theory

In literature there exist many methods for calculating the electronic structure of a system.

The existing most popular ones include density functional theory preferred by physicists

and approaches like Hartree-Fock method which is mostly favored by the chemists owing

to its many computational advantages. Density functional theory is an approach which

treats the ground state of many body system accurately and at the same time is efficient to

apply. It reduces the complexity of many electron problem to a great extent by converting

function of 3N-variables (N is the number of electrons and to each N, 3 spatial variables

are associated) associated with many electron-wave functions with a functional of electron

density which is a function of only 3 spatial variables. The main idea of density functional

theory is that it casts the interacting many-body problem into single particle problem

via the particle density with the many-body effects included in the exchange-correlation

functional. It is based on two powerful theorems given by Hohenberg & Kohn [4] and

Kohn & Sham [5] which will be described in the subsequent sections.

The concept of the full electronic density being a fundamental variable in many body

problems rather than the many-body wave function lead to the development of density

functional theory. The pioneers of this concept were L. H. Thomas, E. Fermi and Hartree

at about the same time. This approximation is known as Thomas-Fermi approximation.

2.2.1 Thomas-Fermi theory

The Thomas-Fermi theory provides a functional form for the kinetic energy of a non-

interacting electron gas in some known external potential V(r) (usually due to impurities)

as a function of the density. It is a local density functional and is based on a semiclassical

approximation. The formulation becomes exact for a uniform electron gas.

For an interacting system, if the form of the interaction potential is known as a function

of the ground state density, such as in the density functional theory, one can also add this

contribution to the external potential V(r), and solve the non-linear equations, now with
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an effective potential Veff = V + VH + Vxc. Here, the newly added terms are respectively

the Coulomb interaction (Hartree potential) and the exchange-correlation potential seen

by an electron.

Thomas and Fermi constructed the total electronic energy of an inhomogeneous system

as a functional of electron density ρ as given below,

Eα[ρ] =

∫
ρ(r)εα[ρ(r)]dr, (2.5)

where εα[ρ(r)] is the energy density which consists of the contributions (α) from kinetic,

exchange and correlation energy of a homogeneous electron gas for which good approxima-

tions already exist. This energy density is calculated locally at every point and integrated

over whole space. The above expression is called a functional which depends on some

function (here it is the electron density ρ(r)).

2.2.2 Hohenberg-Kohn theorem

The Hamiltonian of any interacting system whose particles are assumed to move in an

external potential Vext(r) can be written as,

He = Te + Vext(r) + Uee(r) (2.6)

The formulation of DFT applies to such Hamiltonians. The modern density functional

theory is based upon two powerful theorems given by Hohenberg & Kohn [4] who formu-

lated DFT as an exact many-body theory of a many-body system. Their theorems can

be stated as follows:

First Hohenberg-Kohn theorem - For any system of interacting particles in an

external potential Vext(r), the potential Vext(r) is uniquely determined by the ground state

electronic density ρ0(r) of the system within the ambiguity of an additive constant.

Second Hohenberg-Kohn theorem - A universal functional of energy E[ρ] can be de-

fined corresponding to any external potential Vext(r). The ground state energy of a system
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is the global minimum of this functional. The electronic density ρ(r) which minimizes the

functional is called ground state density ρ0(r) of the system.

The total energy functional, as uniquely determined by n(r), is

EHK [n] = T [n] +

∫
d3rVext(r)n(r) + Eint[n] + EII (2.7)

where EII denotes the energy of electrostatic interaction of nuclei.

A functional FHK [n], which includes kinetic and potential energies of interacting electron

system, can be defined as:

FHK [n] = T [n] + Eint[n] (2.8)

Thus, if the functional FHK [n] is known, minimization of total energy with respect to n(r)

can be used to determine, the exact ground state density and energy.

These Hohenberg and Kohn theorems make a significant contribution towards calculation

of ground state energy by reducing it to the minimization problem with function of 3Ne to

that of 3 variables. The difficulty with the above formulation is that there is no direct way

to extract kinetic energy from the density. This implies that the exact functional varies

in a non-analytic manner as a function of number of electrons. This lead to Kohn and

Sham approach, where kinetic energy is treated in terms of single particle wavefunctions

and interaction terms as functionals of the density.

2.2.3 Kohn-Sham approach

The central theme of Kohn-Sham approach to density functional theory involves assuming

a system of non-interacting electrons in an external potential. In their approach, the

unknown Hohenberg-Kohn functional is nothing but the kinetic energy of the electrons.

The idea of Kohn-Sham [5] was that if one can find any non-interacting electronic system

that produces the same electronic density as that of the interacting system, then the

kinetic energy of the electrons can be calculated through one electron orbitals. Though

the kinetic energy calculated in this way will not be exactly same as that of the kinetic
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energy obtained from a many-body wave function. The missing fraction is due to the

correlation among the electrons which can be approximately included in the exchange-

correlation functional.

Using the Kohn-Sham approach the energy functional can now be written as:

E[n(r)] = Ts[n(r)] +
1

2

∫
n(r)n (r′) d3rd3r′

|r− r′|
+

∫
n(r)Vext(r)dr + Exc[n(r)] (2.9)

The first term is the kinetic energy of electrons, the second term is the electrostatic

interaction energy between electrons, the third term is the interaction energy of elec-

trons with external potential and the fourth term is the exchange-correlation interaction

between electrons.

The electron density is constructed using single-particle states and is expressed as,

n(r) =
∑
i

|Ψi(r)|2 (2.10)

where the summation is over all occupied states.

The Kohn-Sham non-interacting single particle Hamiltonian is,

HKS = Ts[n] + VKS(r) (2.11)

where VKS is Kohn-Sham potential which is defined as,

V = Vext(r) + VHartree(r) + VXC(r) (2.12)

where Vext, VHartree and VXC are external, Hartree and exchange-correlation potentials

respectively.

The exchange-correlation potential defined as:

Vxc[n(r)] =
δExc[n(r)]

δn(r)
(2.13)
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The single particle Kohn-Sham equations are,

(
− ~2

2m
∇2
I + VKS(r)

)
Ψi(r) = εiΨi(r) (2.14)

Since Kohn-Sham equations are non-linear equations (Eq. 2.11), a self-consistent

iterative method is used to solve them as illustrated in Figure 2.1.

Figure 2.1: Flow chart showing the self-consistency loop for the iterative solution of Kohn-
Sham equations.
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2.2.4 Basis Set

In order to numerically solve the Kohn Sham equations one requires to choose a mathe-

matical representation for the one electron orbital. The requirement is a basis to expand

the wave functions Ψn, and then truncating the basis such that the calculation time re-

mains finite. Different classification of basis sets include plane-waves, atomic orbitals and

mixed which is a set of atom centred basis along with plane waves or other basis sets.

The atomic orbital basis is the most commonly used basis set for isolated systems such as

atoms and molecules. A basis set of mutually orthonormal basis is used for representation

of extended periodic systems.

The electronic wave functions are expanded in terms of plane-wave basis set which are

often very large. Considering the infinite system as a repeating array of unit cells allow us

to expand the finite number of electronic wave functions. The potential experienced by

an electron is invariant under crystal lattice translation i.e, Vext(r) = Vext(r+R) where,

R is a lattice vector. Bloch’s theorem states that in periodic solid each electronic wave

functions has two parts and can be written as the product of these i.e. a cell-periodic

part and a wavelike part:

ψjk(r) = ujk(r)eik·r (2.15)

Here, ujk is a cell periodic part, and an exponential term is a plane wave. The

cellperiodic part can be expanded in terms of a discrete set of plane waves whose wave

vectors are reciprocal lattice vectors (G) of the crystal.

ujk =
1√
V

∑
G

Cjk(G)eiG·r (2.16)

Therefore, each electronic Bloch wave function can be written as a sum of plane waves,

ψjk =
1√
V

∑
G

Cj,k+Ge
[i(k+G)·r] (2.17)
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The kinetic energy of plane waves is given by the following relations:

T|k+G| =
~2|k + G|2

2m
(2.18)

For low energy states plane waves basis with smaller kinetic energy are more relevant.

Hence, plane waves are truncated by using an energy cutoff parameter Ecut. The advantage

of the plane wave basis is that they represent all region of space with the same resolution

and are independent of atomic positions. The calculation of energy and its derivative is

analytic and simple and the quality of the basis can be controlled by a single parameter.

The main disadvantage of the plane wave basis being the rapid oscillations of the valence

wavefunctions in the region occupied by the core electrons. This is due to the strong ionic

potential in this region and hence demands a large basis set, making it computationally

expensive.

2.2.5 Approximation to exchange & correlation energy

All the many-body effects in kinetic, exchange and correlation are grouped into the

exchange-correlation energyEXC . The exchange-correlation energy functional Kohn Sham

approach can be defined as:

Exc[n(r)] = T [n(r)]− To[n(r)] + Eee[(r)]− EH [n(r)] (2.19)

The spatial separation between the electrons that have the same spin leads to a reduction

in the Coulomb energy of the electronic system. The reduction in energy due to anti-

symmetric nature of wavefunction is called the exchange energy, this is generally referred

to as the Hartree-Fock approximation. Coulomb energy of the system is also reduced at

the cost of an increase in kinetic energy when the electrons of the same spin are spatially

separated. The difference between the many body energy of an electronic system and

that calculated in the Hartree-Fock approximation is called the correlation energy. It

is quite difficult to determine the exact value of exchange-correlation functional due to
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electron-electron interactions involved. Kohn Sham replaces many electron problem by

single electron equation.

Here, To[n(r)] and Eee[(r)] are exact kinetic and electron-electron interaction energies

respectively. Since, exact value of Exc is not known; so various approximations based on

electron density have been introduced to describe it.

Local density approximation (LDA) and Generalized Gradient Approxima-

tions (GGA)

One of the main difficulties in density functional theory is to formulate a correct exchange-

correlation functional. Among all the existing functionals the most popular and widely

used are local density approximation (LDA) and generalized gradient approximation

(GGA).

In LDA, the effect of exchange and correlation are considered to be local in nature as

it was assumed by Kohn & Sham [5]. In this approach, the inhomogeneous system is

thought to be locally homogeneous. The exchange-correlation energy can be obtained by

integrating the exchange-correlation energy density at each point over whole space. The

LDA approximation proves to be very successful for many systems especially for those

whose electron density is quite uniform such as bulk metals, ionic crystals etc. LDA fails

to produce some properties (e.g. band gap) in semiconductors, strongly correlated sys-

tems due to fact that the excitation spectrum of homogeneous electron gas is gap-less and

exchange-correlation energy is regular [8]. Another failure is its ability to capture weak

inter-molecular bonds, hydrogen bonds etc.

The exchange-correlation energy in LDA is thus given by,

ELDA
xc [ρ] =

∫
d3rρ(r)εhomoxc [ρ(r)] (2.20)
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In LDA several aspects like inhomogeneity of electrons, non-local exchange correlation

effect, complete cancellation of self-energies of electrons were not present. The improve-

ment of LDA resulted in the development of GGA. In general the exchange-correlation

energy in GGA can be written as [9],

EGGA
xc [n(r)] =

∫
d3rεxc(n(r),∇n)n(r) (2.21)

Here, the exchange-correlation energy is expressed as a sum of contributions from

each point in real-space depending only on the density and its gradient at each point

and independent of other points. The GGA method turns out to be better than LDA in

the sense that it improves binding energies, bond lengths. GGA also improves the band

gap of semiconductors over LDA. Semiconductors are also better described in GGA than

LDA.

The Perdew-Zunger (PZ), Perdew-Wang (PW), and Vosko-Wilk-Nusair (VWN) func-

tionals are the LDA functionals used commonly in calculations, which interpolate between

exact results available at high and low densities n. Perdew and Wang (PW91) and Perdew,

Burke and Ernzerhof (PBE) are some of the functional within GGA.

2.2.6 Pseudopotentials

Another approximation in our DFT calculations is that of pseudopotentials. In solids or

molecules, the core electrons are tightly bound to the nucleus and hence are not involved

in bonding. The core electrons are relatively unaffected by the chemical environment of an

atom. The contribution of core electrons to the total binding energy remains unaffected

when isolated atoms are brought together to form a molecule or a crystal. The actual en-

ergy differences of interest involve changes in the valence electron interaction and energies.

The contribution of valence electrons to the total binding energy is a much larger fraction

than that of valence electrons, and makes it easier to calculate accurately. The reason is

the difficulty in numerical representation of highly localized core electron wave-functions
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because of strong nuclear Coulomb potential. So, core electrons are removed from the cal-

Figure 2.2: Schematic representation of all-electron (dashed lines) and pseudoelectron
(solid lines) potentials and their corresponding wavefunctions. The radius at which all
electron and pseudoelectron value matches is designated rc. This figure is taken from
https://en.wikipedia.org/wiki/Pseudopotential.

culation, and the interaction of the valence electrons with the nucleus plus the core states

is replaced by an effective screened potential. Pseudopotentials are constructed using a

cutoff radius (rc) which sort of separates out the the valence region from the core region.

The region beyond rc is treated as a valence region and within rc as the core region. The

value of rc is chosen in such a way that the last node of the all electron wavefunction fall

inside it. Pseudopotential and all electron wavefunction are identical outside the cutoff

radius. Traditionally, a pseudopotential is divided into local and non-local parts, where

the former is long-ranged and the later is typically short-ranged.

In the norm-conserving pseudopotentials, the norm of all electron wavefunction in the

core region (0 to rc) remains conserved. Atoms like 2p, 3d, and 4f have highly localized

charge densities in the valence shell as well as in the core. Another alternative to this is the

ultrasoft pseudopotential. The ultrasoft pseudopotential reduces the size of the required

plane wave basis set, by increasing the value of rc and generates smoother wavefunction.
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2.2.7 Linearized Augmented Plane Wave (LAPW) method

The linearized augmented plane wave (LAPW) method is one of the most accurate meth-

ods for performing electronic structure calculations for crystals. It is based on the density

functional theory for the treatment of exchange and correlation. Results of all-electron

i.e. explicit treatment of core and valence electrons calculations have higher accuracy

but at the same time are computationally more expensive than pseudopotential-based

(valence electrons only) electronic structure calculations. LAPW method [10] derives its

idea from Slater’s augmented plane wave (APW) [11, 12] method which includes core

electronic states and excludes the necessity of a pseudpotential. In LAPW method to

obtain total energies and eigenvalues of the electrons in a solid we use a basis set. This

is achieved by dividing the unit cell into non-overlapping spherical regions centered at

each atom (marked as I) and the interstitial region (marked as II). Two different types of

Figure 2.3: Schematic representation of a LAPW basis set. The unit cell is divided into
atom centered region and interstitial region.

basis sets are used in these two regions: a) Plane wave basis set is used in expansion of

the electronic wave functions inside the interstitial region, and b) Atomic like wave func-

tions (linear combination of the solutions of the radial Schrödinger equation and spherical

harmonics) in the space inside every atomic sphere. Inside each non-overlapping atomic

sphere the atomic-like wave functions form the basis set.
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In this formalism the basis function in the interestial region can be written as:

φ(r) =
1√
V

∑
G

CGe
i(k+G)·r (2.22)

Inside atomic spheres the wave functions can be written as:

φ(r) =
∑
lm

(Almulm(r) +Blmu
′
l(r))Ylm(r) (2.23)

The plane wave nature in the interstitial region allows for highly accurate solutions for

any atomic arrangement: close-packed or open, highsymmetry or low, surfaces or bulk

whereas the atomic-like nature of the LAPW basis in the vicinity of the atoms leads to

an efficient representation.

2.3 Phonons

To understand how heat spreads through a material, consider that heat — as well as

sound — is actually the motion or vibration of atoms and molecules: Low-frequency

vibrations correspond to sound, while higher frequencies correspond to heat. At each

frequency, quantum mechanics principles dictate that the vibrational energy must be

a multiple of a basic amount of energy, called a quantum, that is proportional to the

frequency. Physicists call these basic levels of energy phonons. Phonons are quanta of

lattice vibrations in a crystal. In condensed matter physics, properties of a material

typically arise from collective excitations. For example, a material consisting of Fermi

liquid or an electron gas is used to explain the electrical conductivity of a material. To

calculate any property of a material arising from the lattice vibrations, we have to treat

the collective oscillations of all the atoms. In a crystal, the atoms are neatly arranged in a

uniform, repeating structure; when heated, the atoms can oscillate at specific frequencies.

The bonds between the individual atoms in a crystal behave essentially like springs. When

one of the atoms gets pushed or pulled, it sets off a wave (or phonon) travelling through
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the crystal. In practice, most materials are filled with a chaotic mix of phonons that have

different frequencies and are travelling in different directions, all superimposed on each

other.

Phonon dispersion of a crystal reveals very interesting physics and insightful dynamical

information of a system.

2.3.1 Frozen-phonon approach

Frozen-phonon approach is a computationally inexpensive and practical method to calcu-

late the normal modes of lattice vibrations. This approach involves displacing each atom

in the unit cell of the crystal by some value and then calculating the forces on them with

the help of density functional theoretical calculation using the Hellman-Feynman theo-

rem. The next step involves constructing a force constant matrix by collecting forces from

all the atoms and converting it to dynamical matrix with the help of Fourier transforma-

tion which, then, can be solved at any q point in the Brillouin zone to get the phonon

frequencies.

One drawback of the frozen-phonon method is that it requires large supercells to calculate

the force constant matrix accurately, and hence is computationally expensive. Another

very accurate method, based on the linear response theory exists to calculate the fre-

quencies of lattice vibration, is the density functional perturbation theory which will be

discussed in the next subsection.

2.3.2 Density functional perturbation theory

Within the framework of density functional theory this method involves calculating the

second-order change in the DFT total energy (δ2E). Lattice-dynamical properties of a

system have some profound electronic connections. A combination of density functional

theory and linear response theory gives rise to what is known as the density functional

perturbation theory [17–19]. The perturbation is induced by introducing small displace-

ment δR of ion from its equilibrium positions which results in changes in the external



2.4 Wannier functions in electronic structure calculation 39

potential Vext. The external potential induces changes in the KS equation, and hence the

charge density. The inter-atomic force constants (IFCs) are obtained using second order

derivatives of ground state energy with respect to perturbation, i.e. ionic displacement,

KIJ =
∂2E({R})
∂RI∂RJ

=

∫
∂n(r)

∂RJ

∂V[R](r)

∂RI

dr + δIJ

∫
n(r)

∂2V[R](r)

∂RI∂RJ

dr +
∂2EN({R})
∂RI∂RJ

(2.24)

The IFC depends on ground state charge density and its linear response to displacement

of ion. In the perturbation theory, Kohn-Sham equation is given as:

(
H

(0)
SCF − ε

(0)
i

)
|φ(1)
i 〉+

(
V

(1)
SCF − ε

(1)
i

)
|φ(0)
i 〉 = 0 (2.25)

Here, H
(0)
SCF is unperturbed Kohn-Sham Hamiltonian. ε

(0)
i and φ

(0)
i are the eigenvalues

and eigenvectors of this Hamiltonian. The self-consistent Kohn-Sham effective potential

is given at first order by:

V
(1)
SCF (r) = V

(1)
ext (r) + e2

∫
n(1) (r′) dr′

|r− r′|
+

∫
dr′

dVXC(r)

dn (r′)

∣∣∣∣
n(0)(r)

n(1) (r′) (2.26)

By solving the above equations, the change in charge density can be evaluated using:

∂n(r)

∂RI

= 4Re

N/2∑
n=1

ψ∗n(r)
∂ψn(r)

∂RI

(2.27)

∆n is used to evaluate the second derivative of total energy.

2.4 Wannier functions in electronic structure calcu-

lation

The unitary transformation of the extended Bloch functions to a localized basis set [20–22]

leads to the construction of Wannier function (WF). From an isolated set of J Bloch bands

(eigenstates of a Hamiltonian), it is always possible to find another set J bands though a
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unitary transformation. This set might not be the Hamiltonian eigenstate but can span

the same Hilbert space. Thus, one trades off localization in energy for localization in

space. Although the concept of Wannier function is prevalent in solid state theory for a

long time, practical calculations involving WFs were rarely performed due to the phase

indeterminacy of the Bloch function (ψnk) at each wave vector, which restricts carrying

out arbitrary unitary transformation to a set of occupied Bloch function and presence

of degeneracy in the electronic band structure at certain high symmetric points in the

Brillouin zone (BZ) making it difficult to separate the bands and applying wannierization.

Hence, the important condition before computing WFs being choosing a correct set of

bands in a given material.

WFs can provide better insight into the nature of chemical bonding which is other-

wise missing from the calculations based on an extended basis set and using WF basis,

accurate model Hamiltonian can be constructed. Thus, WFs have become an established

tool to post-processing electronic structure calculation based on modern state-of-the-art

density functional theory. One of the most crucial developments came in 1997 from the

works of Marzari and Vanaderbilt [23], who introduced a ”maximal localization” criterion

for identifying a unique set of WFs in a given crystalline insulating material. For metals

in which some of the bands have partial occupations the procedure of the maximal local-

ization was later extended. Importantly, the evolution of the charge centres of the WFs

are formally linked to the Berry phase of the Bloch function [24,25] and more recently it

has gained significant attention in the research of topological physics as Berry curvature,

Chern number, and topological invariants [26] can be computed easily in the framework

of maximally localized Wannier function (MLWF).

The WF in the R-th unit cell and corresponding to n-th band is given by the following

expression,

|Rn〉 =
V

(2π)3

∫
dke−k.R|ψnk〉, (2.28)

where R is the real space lattice vector, that has the effect of translating the real space
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WF by R. V is the volume of the unit cell. Here the integration is done over the whole

BZ.

Now, we will briefly discuss how to calculate Berry curvature, Chern number and Z2

topological invariants using MLWFs.

2.4.1 Maximally localized Wannier function (MLWF)

The formula of the Wannier function involves only a single Bloch band, n. In general,

we can consider a manifold of J Bloch bands and hence within this manifold, these may

cross each other and degeneracies may be present.

In the multi-band case the formula modifies to,

|Rn〉 =
V

(2π)3

∫
dke−k.R

J∑
m=1

U (k)
nm|ψmk〉, (2.29)

where U
(k)
nm is the unitary rotation or gauge transformation that performs an unitary

rotation of the original Bloch function which are the eigenstate of the Hamiltonian,

|ψ̃nk〉 =
J∑

m=1

U (k)
nm|ψmk〉 (2.30)

In order to restore the smoothness and to get well localized WFs in the real space, we

need to cancel out the discontinuity of the Bloch bands using this unitary transformation.

This is because in general the eigenstates of a Hamiltonian may not be smooth.

Hence, even if this unitary gauge transformation might not be necessary in the wan-

nierization procedure for cases in which the bands in the manifold do not touch each other

within the BZ unitary rotation is necessary to get well localized WFs.

Marzari and Vanderbilt [23] gave a very general and widely used procedure to generate

maximally localize Wannier functions by introducing a localization criterion and refining

the unitary transformation U
(k)
nm that satisfy the criterion. The localization function de-

fined by them is given by,
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Ω =
∑
n

[〈0n|r2|0n〉 − (0n|r|0n〉2] =
∑
n

[〈r2〉 − r2
n], (2.31)

which measures the sum of the quadratic spreads of the J WFs in the home unit cell. The

above expression is cast as function of k to minimize the functional with respect to U
(k)
nm.

The form of finite difference formula given by Marzari and Vanderbilt is,


rn = − 1

N

∑
k,bwbb Im lnM

(k,b)
nn

〈r2〉 = 1
N
wb

[
1−

∣∣∣M (k,b)
nn

∣∣∣2]+
[
Im lnM

(k,b)
n

]2 (2.32)

Here, M
(k,b)
nn = 〈umk|un.k+b〉 is the overlap matrix element between two neighboring

k points in the mesh of k-points considered for the evaluation of Eq. 2.41. b is a vector

that connects a k point to one of its neighbors and wb is an appropriate weight factor

that depends on number of points in the shells in the k-mesh and its geometry. N is

the number of k-points in the mesh. Thus, procedure of obtaining MLWF gives us the

expectaiton values rn and 〈r2〉(Wannier charge centres) which are the primary ingredients

needed to calculate Chern number and Z2 topological invariants.

2.4.2 Calculation of Z2 invariants via WCC

Wannier charge centre is the average position of the charge of Wannier function in the

home unit cell given by the expression,

rn = 〈0n|r|0n〉 (2.33)

WCCs are only defined modulo a lattice vector due to the ambiguity in choosing the

home unit cell. Moreover, when there are multiple bands present in the chosen band

manifold individual WCC are not gauge invariant and only the sum of all the WCCs is

gauge-invariant modulo a lattice vector.

As unitary transformation (gauge choice) is not unique, the resultant WFs will show

change in shape and their localization in real space if different gauge choices are taken
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in the wannierization process. A smooth gauge is needed to have a exponentially local-

ized WF. Mathematically it was proven that it is always possible to find a smooth gauge

in 1D [21] ensuring the maximal localization of 1D Wannier function. The 1D maxi-

mally localized Wannier function satisfies the required gauge criteria needed to define Z2

topological invariant [26].

In 1D, the WCC charge centre can be written in terms of Berry connection by the

following expression, 
x̄n = i

2π

∫ π
−π〈unk|∂k|unk〉

= 1
2π

∫ π
−π A(k).dk,

(2.34)

where A(k) = i〈unk|∂k|unk〉 is the Berry connection.

Z2 topological invariants can be defined using the notion of time reversal polarization

[26, 27] derived in terms of hybrid Wannier charge centres (WCCs) [41]. In a time-

reversal invariant system, electronic bands always come in time-reversed pairs. Then the

Z2 invariant in a time-reversal invariant plane is given by [26],

(
∑
n

[x̄In(T/2)− x̄IIn (T/2)]−
∑
n

[x̄In(0)− x̄IIn (0)]) mod 2, (2.35)

where x̄n = i
2π

∫ π
−π dk〈unk|

∂
∂k
|unk〉 is the Wannier charge centres calculated at t=0 and

t=T/2 planes which are invaraint under time reversal symmetry. T represents the pe-

riod of a full cyclic adiabatic evolution. In the Brillouin zone of a periodic crystal T is

equivalent to a reciprocal lattice vector which defines the periodicity in the reciprocal

space.

If the WCCs switch pairs under a cyclic adiabatic evolution the topological invariant

of a plane is non-zero. This can be easily tracked by seeing evolution of the mid-point

of the largest gap between two adjacent WCCs at any t ∈ [0, T/2] in the half-cycle.

In such a case the largest gap exhibits abrupt jumps in their cyclic evolution [26]. The

procedure to calculate the strong topological index (ν0) involves taking the sum (modulo

2) of the topological invariants calculated at kz=0 and kz=0.5 planes. At each of these
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planes, WCCs are calculated along kx direction, which evolve along the ky direction and

is parametrized with time, t.
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Chapter 3

Engineering ferroelectric instability

to achieve ultralow thermal

conductivity and high thermoelectric

performance in Sn1−xGexTe*

3.1 Introduction

Innovative design of solid state structures and compositions with low thermal conductiv-

ity while maintaining the high electrical transport is the way forward to high performance

thermoelectric (TE) materials, which offer an environment friendly solution for recovery

of waste heat in the form of electricity [1,2]. The crux of improving a material’s thermo-

electric performance involves essentially the optimization of three interdependent material

properties: electrical conductivity (σ), Seebeck coefficient (S) and thermal conductivity

(κtotal = electronic (κel) + lattice (κlat) thermal conductivity) which govern the dimen-

sionless thermoelectric figure of merit, zT = σS2T/(κlat + κel) [3]. The reduction in κlat

by devising an efficient mechanism of scattering heat carrying acoustic phonons is one of

*This work has been published in Energy & Environmental Science 12, 589 (2019). Reproduced with
permission from the Royal Society of Chemistry.

47



48 Chapter 3.

the most effective and widely used avenues for high performance thermoelectrics [4–6].

Innovative material design like broadband phonon scatterings based on extrinsic all-scale

hierarchical nano/meso-architectures [5,7] or intrinsic material properties [8], e.g., complex

crystal structures [9], part-crystalline part-liquid state [10], bonding asymmetry [11, 12],

superionic substructure with liquid-like cation disordering [13–15], lone-pair induced bond

anharmonicity [16] and anisotropic layered crystal structure [17, 18] have been employed

in the past to achieve low κlat. However, in many of these approaches like the introduc-

tion of nano/meso-architectures, the reduction in κlat comes with a steep cost of reduced

charge carrier mobility (µ) and electrical conductivity, resulting in a suboptimal power

factor (σS2).

Here, we present a new strategy to significantly reduce the κlat without degrading

power factor (σS2) by engineering the ferroelectricity instability in crystalline solid. A

ferroelectric phase transitions is typically marked by temperature dependent softening of

polar transverse optical (TO) phonons at the center of the Brillouin zone with its energy

becoming comparable to that of heat transporting acoustic phonons [19]. This results

in a strong acoustic-optical phonon coupling [20, 21], and consequently cause significant

scattering of acoustic phonons [22], and low κlat in solids. The same soft polar optical

phonons cause divergently large dielectric response near the ferroelectric instability, and

hence the screening of the mobile charge carriers from scattering at impurities/defects,

enhancing the charge carrier mobility [23, 24]. Therefore, a successful deployment of the

ferroelectric instability in thermoelectric solid will be an effective approach to achieve low

κlat while retaining the high carrier mobility which is one of the most challenging problem

in thermoelectrics.

We demonstrate that engineering of ferroelectric instability can be used to achieve

high thermoelectric performance in inorganic solids like tin telluride (SnTe). SnTe has

recently emerged as an environment friendly alternative to PbTe for mid-temperature

thermoelectric power generation [25–32]. The global centrosymmetric room temperature

rocksalt structure of SnTe, however, has a lattice instability originating from resonant
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bonding [33–38] and undergoes a temperature dependent paraelectric to ferroelectric tran-

sition with rhombohedral (R-3m) structure below 100 K [39]. Ferroelectricity in its rhom-

bohedral phase originates from relative displacements of the Sn and Te sublattice along

[111] direction [39–43]. In the close proximity of the ferroelectric transition, SnTe ex-

hibits softening of the zone centre (Γ- point) TO phonon modes34,44 and the frequencies

of these TO phonons are in fact lower in the cubic phase compared to that of the rhombo-

hedral phase [43]. This ferroelectric instability associated with soft TO phonons in cubic

SnTe, can be employed to further improve its thermoelectric performance by reducing the

κlat without degrading the electrical transport properties. However, ferroelectric phase

transition and softening of TO phonons in SnTe occur in a temperature regime of ≤ 100

K, making it impractical for use in thermoelectric power generation.

Here, Prof. Kanishka Biswas’s group � performed experiments utilizing the substi-

tution of Ge (0-30 mol) in SnTe to strengthen its ferroelectric instability and achieve

soft phonon modes in a wide range of momenta around ferroelectric instability near room

temperatures. Experiments along with DFT calculations show that this report opens

up a new avenue to inhibit thermal conduction while retaining high carrier mobility in

crystalline solids by employing local distortion associated with ferroelectric instability.

3.2 Computational Details

We use density functional theoretical (DFT) methods as implemented in QUANTUM

ESPRESSO (QE) code [45], taking into account only the valence electrons and replacing

the potential of the ionic core with a pseudopotential. We used a generalised gradient ap-

proximation (GGA) [46] to the exchange-correlation energy functional as parametrized by

Perdew, Burke, and Ernzerhof (PBE) [47]. To describe the interactions between valence

electrons and ions we used Projected Augmented–Wave (PAW) potentials. Valence and

semi-core electronic states of Sn, Te and Ge were considered through the use of pseudopo-

tentials (in 4d10 5s2 5p2, 4d10 5s2 5p4, and 3d10 4s2 4p2 configurations respectively). SnTe

�New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064
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crystallizes in the rocksalt structure belonging to Fm-3m space group, with two atoms in

the primitive unit cell and 8 atoms in the conventional cubic unit cell. Pristine and Ge

substituted SnTe were simulated using conventional cubic unit cell containing 4 SnTe.

Electronic wave functions and charge density were represented in plane wave basis sets

truncated with cut-off energies of 45 Ry and 400 Ry respectively. The Brillouin Zone (BZ)

integrations were sampled on a uniform 20×20×20 mesh of k-points. The discontinuity

in occupation numbers of electronic states was smeared using a Fermi-Dirac distribution

function with broadening of kBT = 0.003 Ry. We determined lattice dynamical properties

of SnTe and Sn3/4Ge1/4Te in their optimized structures obtained after vc-relaxation at

the experimental lattice parameter [48]. The PBE optimized lattice parameters of SnTe

(a=b=c=6.37 Å) and Sn0.75Ge0.25Te (a=b=c= 6.28 Å) were considered for further calcu-

lations. Dynamical matrices were calculated within the Density Functional Perturbation

Theory (DFPT)5 on a 2×2×2 q-points grid in the Brillouin Zone. We Fourier interpo-

lated these dynamical matrices to obtain the phonon dispersion along high symmetry

lines (Γ - X - M - Γ - R - X - M - R) in the Brillouin zone. We estimated the measure of

strain phonon coupling (couplings between acoustic and optical phonons) using a finite

difference formula of ∂ω2
0(ε)/∂ε, having calculated squared phonon frequencies at strained

structures. While we included the effect of spin-orbit coupling (SOC) in calculation of

electronic structure by using fully relativistic pseudopotentials, we used scalar relativistic

pseudopotentials (SOC=0) in DFT-LR calculations of phonons.

3.3 Results and Discussions

At room temperature (T), SnTe is experimentally known to be an efficient thermoelectric

with a cubic structure [50]. As the temperature is lowered, SnTe undergoes a ferroelectric

phase transition at T=TC , transforming from the cubic to rhombohedral structure through

relative displacements of Sn and Te along [111] direction [51, 52]. The soft vibrational

modes whose frequency decreases anomalously near TC govern the dynamics of such a
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transition. As σ the restoring force constant of the mode softens, it is called the “soft-

mode”.

Here, we investigate the origin of ultra-low thermal conductivity and enhanced ferro-

electric TC observed in Ge substituted SnTe. To begin with, we used DFPT calculations

to determine the phonon dispersion of SnTe and Sn0.75Ge0.25Te at their theoretical lattice

parameter, as shown in Figure 3.1a) and 3.1b) respectively. The optical phonons of SnTe

(Fig. 3.1a) exhibit triply degenerate instability at a frequency of 23i cm−1 at Γ point.

Ferroelectricity in SnTe is associated with condensation of all the three unstable modes,

giving a rhombohedral distortion of the high temperature cubic phase, with off- centring

of Sn atoms, seen in the PDF [49] and EXAFS [53] analysis.

The zone centre Γ) optical phonons of Sn3/4Ge1/4Te exhibit much stronger instability

at ω ∼ 91i cm−1 (see Fig. 3.1b). An interesting feature evident in the phonon dispersion

of Sn3/4Ge1/4Te (Fig 3.1b) is the presence of unstable modes at all wave vectors except

near the R point (= (π/a)(1, 1, 1)). This is linked through Fourier analysis with the local

distortions with chain-like short-range order [54], size of the distorted region ∼ 1/qC . The

character of the purely displacive phase transition in SnTe (unstable modes only close to

the zone centre) thus changes to order-disorder like transition in Sn0.75Ge0.25Te.

We now examine the eigen displacements of the unstable phonon modes (those having

imaginary frequencies) at the Γ point of SnTe and Ge doped SnTe to access the relative

roles of Ge and Sn in the phase transition (see Fig. 3.2a and 3.2b). While the structural

instability in SnTe involves displacements of both Sn and Te atoms, Ge displacements

completely dominate the instability in Sn0.75Ge0.25Te (see Fig. 3.2b). This signifies the

presence of a rattler kind of behaviour in Ge doped SnTe, with the dynamical local

displacements of Ge atoms along the chains of Ge – Te - Sn – Te – Ge – Te. Significantly

stronger instability results in higher TC observed in the Ge substituted SnTe than in

SnTe. The off-centred site is favored energetically due to the large ionic size difference

between Sn+2 and Ge2+ (Ge2+:0.87 Å; Sn+2:0.93 Å), higher polarization power of Ge2+

as compared to Sn+2 arising from stronger stereochemical activity of ns2 lone pair in
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Figure 3.1: Phonon dispersion of (a) SnTe and (b) Sn0.75Ge0.25Te in the centrosymmetric
cubic rock salt structure at the theoretical lattice parameter without the inclusion of spin-
orbit coupling (SOC), exhibiting unstable modes frequencies at 23i cm−1 and 93i cm−1

respectively. Vibrational density of states (VDOS) of (a) SnTe and (b) Sn0.75Ge0.25Te,
show significantly larger number of unstable modes in the latter, which also mask notably
stronger instability (c). Dependence of the squared frequencies of unstable phonon at zone
centre on hydrostatic strain where strain is (a − a0)/a0 with a0=6.37 Å for SnTe and
a0 = 6.28Å for Sn0.75Ge0.25Te (d). The slope ∂ω2

0(ε)/∂ε of Sn0.75Ge0.25 is significantly
steeper than that of SnTe, signifying its stronger strain phonon coupling.

Sn0.75Ge0.25Te [55,56]. We calculated the Born effective charges (Z*) which reveals higher

polarization power (significant deviations of Z* from their nominal valence charges) of

Ge2+ as compared to Sn+2 in Sn0.75Ge0.25Te (Sn: Z*xx/yy/zz = 6.63; Ge: Z*xx/yy/zz

= 10.113; Te: Z*xx/yy/zz = -8.28). Significantly stronger instability results in higher

transition temperatures in Sn1−xGexTe than that in SnTe.

We determined the extent of off-centring in SnTe and Sn0.75Ge0.25Te, to confirm

the role of Ge displacements in giving a higher TC of the doped system. We introduced
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Figure 3.2: Visualisation of the atomic displacements of unstable phonons at the zone
centre of (a) SnTe and (b) Sn0.75Ge0.25Te, Sn (Red in colour), Te (Blue in colour), and
Ge (Pink in colour). There are equal and opposite displacements Sn and Te atoms in (a)
SnTe, whereas the displacements of Ge atoms completely dominate the lattice instability
in (b) Sn0.75Ge0.25Te.

displacements of∼ 0.06 Å in<111> direction of all the cations and find that the relaxation

of these distorted structures results in off-centring of 0.06 Å of all the Sn atoms in SnTe

and off-centring of ∼ 0.17 Å of Ge atom alone in Sn0.75Ge0.25Te significantly higher than

Sn displacements, off-centring Te by 0.08 Å along the x, y and z directions in the first,

second and third unstable modes respectively. From the larger negative frequencies, along

with larger off-centring of Ge in Sn0.75Ge0.25Te and the presence of larger polarization in

the Ge:SnTe we conclude that the higher TC of Ge:SnTe is due to strong Ge off-centring

and associated a deeper potential energy well than in SnTe [57]. Γ Phonons of FE state

of Sn0.75Ge0.25Te do not exhibit any unstable modes with the lowest three optical modes

at frequencies of 29 cm−1 , 32 cm−1 and 32 cm−1, (related to the unstable modes of the
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cubic structure with ω = 91.10i cm−1) confirming its stability.

Mode SnTe Sn0.75Ge0.25Te Off-centred Sn0.75Ge0.25Te
cm−1 cm−1 cm−1

1, 2, 3 23.4i 91.1i 29.7, 32.0, 32.0
4, 5 ,6 0.0 0.0 0.0
7, 8, 9 21.1 38.2 35.1, 36.9, 36.9

10, 11, 12 21.4 40.8 42.6, 42.6, 47.2
13, 14, 15 31.2 46.1 61.7, 61.7, 71.1
16, 17, 18 54.1 73.3 75.5, 75.5, 82.4
19, 20, 21 55.5 88.5 88.1, 88.1, 91.2
22, 23, 24 58.1 93.2 91.9, 91.9, 104.7

Table 3.1: Γ Phonons of FE state of Sn0.75Ge0.25Te do not exhibit any unstable modes in
comparison to unstable modes in SnTe and Sn0.75Ge0.25Te

Figure 3.3: Phonon dispersion of (a) off -centred Sn0.75Ge0.25Te in the centrosymmet-
ric cubic rock salt structure without the inclusion of spin-orbit coupling (SOC) and
the corresponding vibrational density of states (VDOS)(b). Γ Phonons of FE state of
Sn0.75Ge0.25Te do not exhibit any unstable modes.

We estimated the strength of lattice anharmonicity as measured by strain-phonon

coupling using ∂ω2
0(ε)/∂ε , where ω0 is the frequency of unstable optical mode and

ε = (a−a0)/a0 is the strain applied in the system, a0 being the theoretical lattice constant.

The value of (∂ω2
0(ε)/∂ε) gives the third order anharmonic coupling and our estimates are

785 cm−1 and 2664 cm−1 for SnTe and Sn0.75Ge0.25Te (see Fig. 3.1d) respectively. Thus,

the unstable optical phonons couple much more strongly with the acoustic phonons in
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Ge:SnTe than in SnTe. It leads to the scattering of heat carrying acoustic phonons (es-

sentially the sound waves) in the crystal structure and hence lower thermal conductivity.

Figure 3.4: Electronic structure of cubic (Fm3m) phase of SnTe and off-centred
Sn0.75Ge0.25Te calculated with the inclusion of effects of spin-orbit coupling (a) and the
corresponding electronic density of states (b).

Finally, the substantial role of Ge off-centring in supressing thermal conductivity at

higher Ge concentrations in comparison to lower Ge concentration was studied .The reduc-

tion of total energy (with respect to no off-centring) for only Ge off-centred Sn0.75Ge0.25Te

is -3.29 meV in comparison to -0.49 meV for Sn0.875Ge0.125Te signifying the role of Ge

off-centring in stabilising Sn0.75Ge0.25Te. The reduction of total energy for all cation

off-centred Sn0.75Ge0.25Te is -0.87 meV in comparison to -1.97 meV for Sn0.875Ge0.125Te

demonstrating the importance of Sn cation off-centring in reduction of total energy in

Sn0.875Ge0.125Te. The prominent difference on moving from Sn0.875Ge0.125Te (higher Ge

concentration) to Sn0.75Ge0.25Te being the reversal in the role of cations which are respon-

sible for reduction in energy. This implies the significant involvement of Ge off-centring in

reduction of energy for Sn0.75Ge0.25Te and of Sn cations off-centring in Sn0.875Ge0.125Te

for lowering the energy. This establishes the substantial role of Ge off-centring in su-

pressing thermal conductivity at higher Ge concentrations in comparison to lower Ge

concentration.
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(a) (b)

Figure 3.5: Total energies of Ge off-centred, all cations off-centred and without any
off-centred Sn1−xGexTe systems with (a) x = 0.125 and (b) x = 0.25.

3.4 Conclusion

In summary, we have shown that the high lattice anharmonicity caused by the introduction

of Ge atom in SnTe crystal is responsible for its notably lower lattice thermal conductivity.

Our analysis suggests that Ge exhibits rattler kind of behaviour i.e. the presence of

dynamical local distortions in the doped system. The strategy of improving thermoelectric

performance by tuning ferroelectric instability and associated local structural distortion

as demonstrated here opens up a new avenue to achieve high performance thermoelectrics.

This new strategy is engaging, particularly, because it can be readily applied to further

boost the thermoelectric performance of materials like SnSe, GeTe, which are close to

ferroelectric instabilities.
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Chapter 4

Stabilizing n-Type Cubic GeSe by

Entropy-Driven Alloying of AgBiSe2:

Ultralow Thermal Conductivity and

Promising Thermoelectric

Performance*

4.1 Introduction

Thermoelectric materials can convert waste heat into electricity, which offers an important

alternative to the solution of increasing global energy demand. The efficiency of a ther-

moelectric material depends on the dimensionless figure of merit, zT = σS2T/κ, where σ,

S, κ, and T are the electrical conductivity, Seebeck coefficient, thermal conductivity, and

the temperature, respectively. [1,2] Most of the high performance thermoelectric materials

are based on metal tellurides [1, 2]. However, the abundance of Te is scarce in the Earth

crust, which leads to the quest for the design and discovery of new thermoelectric materials

*This work has been published in Angewandte Chemie 130, 15387 (2018). Reproduced with permission
from John Wiley and Sons.
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comprising earth abundant elements with less toxicity, such as Se. Importantly, although

both p-type and n-type materials are required to construct a thermoelectric device, re-

ports of n-type thermoelectric materials with ultralow thermal conductivity are very rare.

Germanium chalcogenides (especially GeTe) are one of the most efficient thermoelectric

materials in the Group IV–VI family and have been used for power generation in the

mid-temperature range (600–800 K) since the 1960s [2, 3]. However, these germanium

chalcogenide based thermoelectric materials are all p-type, limited by their intrinsic Ge

vacancies [2,3]. Thus, a speedy development of promising n-type germanium chalcogenide

based thermoelectric materials is a forthwith requirement.

GeSe crystallizes in three different structures: orthorhombic (Pnma), rhombohedral

(R3m), and cubic phases (Fm3̄m; Figure 4.2) depending on the temperature and pressure

conditions [4, 5]. At ambient conditions, GeSe has the orthorhombic structure similar

to that of SnSe, which shows an unprecedented zT in the single-crystal form owing to

ultralow thermal conductivity [6]. Recently, by using first-principles density functional

calculations, Hao et al. predicted the high thermoelectric performance in GeSe through

carrier engineering [7]. However, the orthorhombic GeSe is experimentally found to be a

p-type semiconductor with poor thermoelectric performance [8]. Recently, Huang et al. [4]

have been able to stabilize the p-type rhombohedral GeSe by alloying it with AgSbSe2,

which showed a zT of 0.86 at 710K in GeAg0.2Sb0.2Se1.4. They have achieved a low

κL of 0.9Wm−1K−1, which is, however, still higher than the theoretical κmin of GeSe

(0.4Wm−1K−1) [8]a. The room-temperature orthorhombic GeSe undergoes to a first-

order structural transition to a face-centered cubic (FCC) structure (Figure 4.2) at 920

K [9]. This cubic phase of GeSe is unstable at ambient conditions because of the presence

of several imaginary vibration modes in its phonon dispersion. Theoretical calculations,

however, indicate that the application of external pressure of 7 GPa would lead to the

stabilization of the cubic phase [5]. The high-symmetry cubic phases are in general much

sought-after for high-performance thermoelectrics as they possess degenerate electronic

band valleys. Therefore, the stabilization of cubic GeSe is worthwhile for improving its
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thermoelectric performance.

Herein, Prof. Kanishka Biswas’s group � demonstrate the experimental realization

of high temperature and high-pressure cubic rock-salt phase of GeSe at ambient con-

ditions by alloying with AgBiSe2 (0.30≤x≤0.50). Importantly, they found that cubic

(GeSe)1−x(AgBiSe2)x exhibits n-type conduction in the 300–723 K range, which is ex-

tremely rare in germanium chalcogenide based thermoelectrics. Cubic (GeSe)1−x(AgBiSe2)

possesses an ultralow lattice thermal conductivity (κL) of 0.43– 0.7Wm−1K−1 in the

300–723 K range. Solid solution mixing of AgBiSe2 with GeSe enhances the entropy

and consequently leads to the stabilization of the cubic phase of GeSe at ambient con-

ditions. The band gap of orthorhombic GeSe (1.1 eV) decreases to 0.05 eV with the

initial formation of the rhombohedral (GeSe)1−x(AgBiSe2)x phase (x=0.1), and there-

after slightly increases to a value in the 0.3–0.4 eV range in cubic (GeSe)1−x(AgBiSe2)x

(0.30≤x≤0.50). The combination of this ultralow κL, high Seebeck coefficient, and nar-

row band gap generates a promising thermoelectric figure of merit zT of 0.45 at 677 K

in n-type (GeSe)0.50(AgBiSe2)0.50. Our DFT calculations aim to verify the evolution of

band gap with respect to alloying concentration in (GeSe)1−x(AgBiSe2)x and also the

n-type character of cubic phase of (GeSe)1− x(AgBiSe2)x with (0.35≤x≤0.50).

4.2 Computational Details and Crystal Structure

We use density functional theoretical (DFT) methods as implemented in QUANTUM

ESPRESSO (QE) code [10]. We used a generalised gradient approximation (GGA) [11]

to the exchange-correlation energy functional as parametrized by Perdew, Burke, and

Ernzerhof (PBE) [12]. To describe the interactions between valence electrons and ions

we used Projected Augmented–Wave (PAW) potentials. Electronic wave functions and

charge density were represented in plane wave basis sets truncated with cut-off energies

of 45 Ry and 360 Ry respectively. The discontinuity in occupation numbers of electronic

states was smeared using a Fermi-Dirac distribution function with broadening of kBT

�New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064.
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Figure 4.1: A possible phase diagram of the GeSe−AgBiSe2 system based on temperature-
dependent PXRD and DSC data(a). The evolution of the experimental band gap of GeSe
with increasing AgBiSe2 concentration in (GeSe)1−x(AgBiSe2)x .

= 0.003 Ry. We determined electronic structure of GeSe, (GeSe)0.9(AgBiSe2)0.1 and

(GeSe)0.6(AgBiSe2)0.4 at their optimized lattice parameters. GeSe crystallizes in three

different structures: orthorhombic (Pnma), rhombohedral (R-3m) and cubic phases (Fm-

3m) depending on the pressure and temperature conditions [13,14]. At ambient conditions,

GeSe stabilizes in the orthorhombic phase containing eight atoms in the unit cell, and we

consider this phase in our theoretical analysis. Integrations over Brillouin Zone (BZ) were

sampled on a uniform 8×8×8 mesh of k-points. Electronic spectrum was determined at

Bloch vectors along high symmetry lines (Γ - X - S - Y - Γ - Z - U - R - T - Z - Y - T -

U - X - S) in the Brillouin zone. (GeSe)0.9(AgBiSe2)0.1 exists in the rhombohedral phase

and to simulate the desired concentration a 2×2×1 supercell was considered. Electronic

spectrum was determined at Bloch vectors along high symmetry lines (Γ - M - K - Γ - A - L

- H - A - L - M - K - H) in the Brillouin zone of rhombohedral lattice. With further increase

in concentration of AgBiSe2, an FCC phase is stabilized. (GeSe)0.6(AgBiSe2)0.4 exists

in the cubic structure consisting of 8 atoms in the unit cell. To simulate this composition,

a 2×1×1 supercell was considered, and Brillouin Zone (BZ) integrations were sampled

on a uniform 10×12×12 mesh of k-points. Electronic spectrum was determined at Bloch
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vectors along high symmetry lines (Γ - X - M - Γ - Z - R - A – Z) in the Brillouin zone

of FCC lattice. We compared electronic structures with and without spin-orbit coupling

(SOC) using fully relativistic and scalar relativistic potentials respectively.

Figure 4.2: Crystal structure of different phases of GeSe: orthorhombic (O), rhombohedral
(R), and cubic (C). Ge Yellow, Se blue; Ag red, Bi cyan

4.3 Results and Discussion

Experimentally, it is known that orthorhombic GeSe, gradually transforms to face-centred

cubic structure via an intermediate rhombohedral phase when alloyed with AgBiSe2.

To study the evolution of band gap with respect to alloying concentration, we cal-

culate electronic band structure at three concentrations: pure GeSe (orthorhombic),

(GeSe)0.9(AgBiSe2)0.1 (rhombohedral) and (GeSe)0.6(AgBiSe2)0.4 (cubic). Our opti-

mized lattice parameters for pristine GeSe in the orthorhombic structure (Pnma) are

a=11.10 Å, b=3.88 Å, c=4.47 Å, which agree with the typical GGA errors with experi-

mental lattice parameters (a=10.92 Å, b=3.87 Å, c=4.41 Å). The theoretical band gap

of GeSe in the orthorhombic structure is 0.93 eV, irrespective of the inclusion of the

spin-orbit coupling in calculations (as shown in Figure 4.4a). Band gap estimated here



66 Chapter 4.

is slightly lower than the experimental band gap of 1.1 eV, which is typical of DFT

calculations of gaps.

Figure 4.3: Electronic structure of eight atoms FCC (1×1×1) (a) (GeSe)0.6(AgBiSe2)0.4

and (b) offcentered structure calculated with (black color lines) and without (red color
lines) the inclusion of spinorbit interaction (SOI). Zoomed version of electronic structure
of cubic (GeSe)0.60(AgBiSe2)0.40 (1×1×2, 16 atoms) at (c) M point and (d) A point
which clearly shows conduction band minima and valence band maxima don’t cross each
other.

Our estimates of lattice parameters of (GeSe)0.9(AgBiSe2)0.1 in the rhombohedral

structure are a=b=3.92 Å and c=10.29 Å, which agree well with experimental values of

a=b=3.98 Å and c=10.17 Å. We find that the band gap of GeSe decreases with AgBiSe2

alloying, consistent with the trend observed in experimental measurements using diffuse

reflectance spectroscopy. Our estimates of the band gap of (GeSe)0.9(AgBiSe2)0.1 is ∼

0.05 eV, when spin-orbit coupling is included smaller than the estimate of ∼ 0.2 eV

obtained from calculations without spin orbit coupling in our analysis.

(GeSe)1−x(AgBiSe2)x with x=0.4 exists in the cubic phase (Fm-3m) with experimen-

tal lattice parameters a=b=c=5.76 Å and the optimized lattice parameters obtained here
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are a=b=5.77 Å and c=11.58 Å (for the 1×1×2 supercell). In the current experimental

work, the observed band gap slightly increases and stays about 0.3-0.4 eV in the cubic

phase when the concentration of AgBiSe2 increases above x > 0.1. Electronic structures

of the 8 atoms FCC unit cell calculated with and without SOC reveal vanishing band gaps

with overlapping bands at the fermi level (see Figure 4.3a). To get a more accurate esti-

mate of band gap theoretically, we investigated the role of structural distortions in cubic

phase. We determined the extent of off-centring by introducing displacements in Bi atom

along the <111> direction. The relaxation of the structure results in large off-centring

with values shown in the Table 1.

Along x direction Along y direction Along z direction
Å Å Å

Ge 0.17 0.08 0.06
Ag 0.19 0.24 0.19
Bi 0.03 0.02 0.03
Ge 0.06 0.08 0.17
Se 0.01 0.18 0.03
Se 0.14 0.03 0.14
Se 0.03 0.03 0.05
Se 0.11 0.04 0.02

Table 4.1: Off-centring displacements of atoms in the cubic structure of
(GeSe)0.6(AgBiSe2)0.4 obtained after relaxation of the structure.

Electronic structure of the relaxed structure calculated without SOC has a band gap

of 0 eV whereas we find weakly overlapping bands at R point and the fermi level after

effects of SOC are included (as shown in Figure 4.3b). We simulated chemical disorder in

the system with a 1x1x2 supercell. Electronic structure calculated with this supercell of

(GeSe)0.6(AgBiSe2)0.4, without including spin-orbit interaction reveals overlapping bands

at the fermi level and a band gap of 0 eV when spin-orbit coupling is included (as shown

in Figure 4.4c).

For better understanding of the electronic properties, we examined the projected den-

sity of states (PDOS). In pure GeSe, we find that valence band (VB) is contributed

mostly by Se-p orbitals, and weakly by Ge-s and Ge-p orbitals. Its conduction band (CB)
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Figure 4.4: Electronic band structure of a) orthorhombic GeSe, b) rhombohedral, and c)
cubic (GeSe)0.90(AgBiSe2)0.10 and (GeSe)0.60(AgBiSe2)0.40 respectively with (black lines)
and without(red lines) the inclusion of spin–orbit coupling (SOC).

is contributed by Ge-p orbitals. In the rhombohedral phase, contributions to valence

band are dominated by Se-p, Ge-s and Ge-p orbitals as was seen in pure GeSe, while the

CB is contributed by Ge-p orbitals and weakly by Bi-p and Se-p orbitals. In the cubic

phase, contributions of Ge-s and Ge-p orbitals to the VB vanishes and Bi-p, Se-p and

Ge-p orbitals contribute to the CB. The density of states of (GeSe)1−x(AgBiSe2)x with x

= 0, 0.1 and 0.4 are shown in Figure 4.5a), 4.5b) and 4.5c) respectively. Ge-chalcogenide

based thermoelectric materials are generally p-type semiconductors owing to intrinsic Ge

vacancies, and so far, the pristine orthorhombic GeSe seems to be no exception to this.

However, the cubic (GeSe)1−x(AgBiSe2)x (0.35 < x < 0.50) show negative S values in-

dicating a n-type conduction. The n-type carrier conduction is also in agreement with

the negative sign of Hall coefficients. Bi3+ substitution in place of Ge2+ acts as a donor
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dopant and increases the n-type carrier concentration which is also evident from the pro-

jected density of states (PDOS) analysis. While, the contribution of the Ge p-orbital is

significant in the formation of the conduction band (CB) edge of orthorhombic and rhom-

bohedral GeSe, the contribution of Bi p-orbital considerably increases and Ge p vanishes

in the CB edge of cubic phase.

Figure 4.5: Electronic density of states (DOS) and projected density of states
(PDOS) of (a) GeSe (orthorhombic), (b) (GeSe)0.9(AgBiSe2)0.1 (rhombohedral) and (c)
(GeSe)0.6(AgBiSe2)0.4 (cubic) calculated with inclusion of the spin-orbit coupling.

4.4 Conclusion

In summary, using first-principles calculations within density functional theory, we repro-

duce the trend in the evolution of band gap of (GeSe)1−x(AgBiSe2)x with increasing x.
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The gap in the cubic structure stabilized at large x is strongly influenced by the chemical

disorder in occupation of Bi, Ag and Ge at the cationic site. The anomalous closing and

opening of the band gap of GeSe with increasing AgBiSe2 concentration is due to the

influence of positive (rhombohedral phase) and negative (cubic phase) chemical pressure.

Interestingly, cubic (GeSe)1−x(AgBiSe2)x possess n-type conduction with reasonable high

carrier concentration, which is rare in Ge-chalcogenides based thermoelectrics.
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Chapter 5

Phonon signatures of multiple

topological quantum phase

transitions in compressed TlBiS2
*

5.1 Introduction

Topological insulators (TI) are a new kind of electronic state of matter possessing spin

polarized conducting states at their surface and insulating states in its bulk. The existence

of time reversal symmetry protects the topological surface states against non-magnetic

impurities or defects [1]. TI have potential application in spintronics and quantum com-

putation devices and also offers the essential platform to realize quantum particles like

Majorana Fermions in condensed matter systems [1]. At first, theoretical prediction of

TI were made in HgTe/CdTe quantum wells (two dimensional (2D)) [2] with subsequent

experimental observations [3]. Soon after this discovery, bulk 3D TI materials (various

strong SOC systems) were predicted theoretically [4] and confirmed using angle resolved

photo emission spectroscopy (ARPES) at an ambient conditions [5–7]. Interestingly, some

narrow band gap materials (at ambient conditions) with strong SOC have ability to be

*Manuscript based on this work under review in Phys. Rev. B: V. Rajaji, Raagya Arora, Saurav Ch.
Sarma, B. Joseph, Umesh V. Waghmare, Sebastian C. Peter, and Chandrabhas Narayana
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tuned into a topological insulator by external strain [8, 9]. The non-adiabatic process in-

volving the transformation of normal bulk insulator into a topological insulator is termed

as the topological quantum phase transition (TQPT). The topological invariant quantity

Z2 characterizes the changes in the electronic state of the system (Z2 = 0 trivial insulator

and Z2 = 1 non-trivial insulator) [1,10] during TQPT. Z2 is the product of parities at the

time reversal invariant momenta (TRIM) points of the Brillouin zone (BZ) of the system.

In general, strain can be applied to the system either by chemical (doping or substitution)

or physical methods (lattice compression). The physical route being cleaner (no atomic

scale chemical inhomogeneities) is more appropriate in comparison to the chemical route

which induces chemical disorder (inhomogeneities) in the system.

Another interesting class of materials are called as topological crystalline insulators

(TCI) [11,12], where the gapless surface states are protected by mirror symmetry. These

materials are different from topological insulators (TI) in which the time reversal symme-

try protects the surface states and hence the protection of surface states for TCI perseveres

even when time-reversal symmetry is broken. The presence of mirror symmetry in the

crystal structure of a material results in the presence of planes in the BZ that are mir-

ror symmetric. Therefore, mirror symmetry protected Dirac cones arise in the surface

electronic structure. TCIs are characterized by a non-zero mirror Chern number. The in-

dividual Chern numbers C+i and C−i are defined on a mirror-invariant plane. The mirror

Chern number [11] defined as nM = (C+i −C−i)/2 can be used as a topological invariant

for TCI. A TCI supports an even number of Dirac cones and band inversions in sharp

contrast to a TI characterized by odd number of band inversions. The first TCI phase

experimental [13] observation was made in SnTe, which were earlier theoretically [14]

predicted.

The narrow band gap tetradymite semiconductors Bi2Se3 (band gap Eg = 0.30 eV),

Bi2Se3 (Eg = 0.12 eV) and Sb2Te3 (Eg = 0.28 eV) crystallize in rhombohedral struc-

ture (space group SG: R3̄m) and are 3D TI at ambient conditions with surface states

consisting of a single Dirac cone at the Γ point of the BZ [4–7]. In the tetradymite
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semiconductors family, the Bi2Se3 is having the larger band gap (Eg ∼ 1 eV) and lesser

SOC strength than remaining members (Bi2Se3, Bi2Te3, and Sb2Te3). There are no

topologically non-trivial states present at ambient conditions in Sb2Se3. It is well known

that the thermodynamic parameter pressure P can tune the strength of the SOC and

also the band gap. Interestingly, hydrostatic pressure induced band inversion with par-

ity change at Γ point in the Sb2Se3 compound has been theoretically predicted [15] and

then subsequently phonon anomalies are noticed at ∼ 2.5 GPa [16]. Similarly, thallium

based III-V-VI2 ternary chalcogenides T lBiSe2 (Eg = 0.28 eV) and T lBiTe2 (Eg = 0.11

eV) crystallize in rhombohedral structure (SG: R3̄m) and are 3D TI at ambient condi-

tions [17]. In this family, T lBiS2 (Eg = 0.42 eV) is having relatively higher band gap

and lesser SOC than T lBiSe2 and T lBiTe2 compounds. Under the application of exter-

nal strain, the TQPT is theoretically predicted in the T lBiS2 system [18]. The above

two examples (tetradymite semiconductors and thallium based III-V-VI2 ternary chalco-

genides) illustrate the interplay between the crystal symmetry, band gap, and spin orbit

coupling. In other words, when the compound of 3D TI family shares the same crystal

and electronic structure, but lacks the band gap and SOC, and then pressure can serve

as an ideal external tool to induce the band inversion in it.

Thallium based III-V-VI2 ternary chalcogenide T lBiS2 is the narrow band gap semi-

conducting material and has significant interest on the aspect of thermoelectric and topo-

logical properties under different conditions [18]. Even though T lBiS2 share the same

crystal structure (SG: R3̄m) as tetradymite compounds (Bi2Se3, Bi2Te3, and Sb2Te3),

there is a considerable difference exists between them. The tetradymite semiconductors

consist of quintuple layers stacking along the c axis, and each quintuple layers are sepa-

rated by weak Van der Waals type interactions and therefore it is a quasi 2D nature. In

T lBiS2, each Tl (or Bi) layer is sandwiched between the two S layers. But, strong cou-

pling exists between the two layers and makes it intrinsically 3D natures [18,19]. Recently,

it is observed that the substitution of Se (x ∼ 0.5) at S site [T lBi(S1−xSex)2], leading

to the formation of a single Dirac cone at the Γ point [20]. Here, the substituted Se (i)



5.2 Computational Details and Crystal Structure 77

increases the effective SOC strength of T lBiS2 compound without changing the crystal

structure, and (ii) decreases the band gap. Consequently non-trivial topological phase

transition (Z2=1) is observed in [T lBi(S1−xSex)2] at ambient pressure. This interesting

chemical approach strongly stimulated us to perform the high pressure studies on T lBiS2.

Because, the substitution of Se is analogous to the externally applied pressure which can

also possibly tune the effective hybridization, the relative strength of the SOC, bandgap

and topological invariant Z2.

In this work, the pressure dependent structural and vibrational properties of the rhom-

bohedral phase of T lBiS2 compound were investigated using in situ synchrotron XRD and

Raman scattering measurements respectively by Prof. Chandrabhas Narayana’s group.�

Combined Raman and synchrotron XRD results indicate that the rhombohedral phase

shows the structural stability up to ∼ 4.0 GPa and beyond which the first-order structural

phase transition takes place. Further, two isostructural electronic transitions are observed

from phonon (Eg and A1g) anomalies at ∼ 0.5 GPa and ∼ 1.80 GPa and corroborated with

our first principle theoretical calculations to TQPT (Z2 =1) and TCI (nM =2) transitions

respectively. Finally, the significance of the obtained results is discussed in connection

with other known pressure induced topological materials.

5.2 Computational Details and Crystal Structure

Our first-principles theoretical calculations are based on density functional theory (DFT)

employing the Quantum ESPRESSO (QE) code [21]. We used a generalized gradient

approximation (GGA) [22] to the exchange-correlation energy functional as parametrized

by Perdew, Burke, and Ernzerhof (PBE) [23]. The projector augmented wave (PAW)

potentials [24] with valence configuration 4f 14 6s2 6p2 5d10, 4f 14 6s2 6p3 5d10 and 4d10

5s2 5p2 were adopted for Tl, Bi and S respectively. Electronic wave functions and charge

density were represented in plane wave basis sets truncated with cut-off energies of 55

�Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research,
Bangalore-560064.
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Ry and 550 Ry respectively. The discontinuity in occupation numbers of electronic states

was smeared using a Fermi-Dirac distribution function with broadening of kBT = 0.003

Ry and integrations over BZ were sampled on a uniform 6×6×6 mesh of k-points. In the

simulation of pressure-dependent properties, we used scalar-relativistic PAW potentials

to optimize the structure with respect to lattice constants and atomic coordinates. The

structure was optimized to minimize the enthalpy, H = E + PV at a given pressure.

Atomic coordinates of these optimized structures were used as the initial structure for

further optimization using fully-relativistic potentials. Effects of SOC were included in our

calculations of the electronic structure through the use of fully relativistic potentials [24],

while we used scalar-relativistic PAW potentials in the calculation of phonons. Electronic

spectrum was determined at Bloch vectors along high symmetry lines (Γ - L - Z - F -

Γ - Z) in the BZ. Lattice dynamical properties were determined using density functional

linear response (called as density functional perturbation theory [25]) as implemented in

the QE package [21]. To obtain phonon dispersion, dynamical matrices were obtained on

a 2×2×2 q-points grid in the BZ. We Fourier interpolated these dynamical matrices to

obtain the phonon dispersion along high symmetry lines (Γ - L - Z - F - Γ - Z) in the

BZ. To determine the bulk electronic topology of T lBiS2, we used Z2PACK code [26] to

determine the Z2 topological invariants and mirror Chern number (nM). This code uses

hybrid Wannier functions [27, 28] and employs the ideas of time reversal polarization in

the determination of the Z2 invariants.

We used first-principles calculations to simulate the rhombohedral phase (SG: R3̄m) of

T lBiS2 as a function of pressure. The structure is centrosymmetric with inversion centres

at both Tl and Bi atoms. Tl, Bi, and two S atoms are located at the (0.5, 0.5, 0.5), (0, 0,

0), (u, u, u) and (1-u, 1-u, 1-u) sites, respectively. Our estimates of the optimized lattice

constants of T lBiS2 are a = 7.74 Å and angle α = 31.03◦, which agree within the typical

GGA errors with experimental lattice parameters (a = 7.67 Å, α = 31.05◦) [30]. The

calculated internal parameter characterizing the positions of the S atoms is u = 0.261.
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Figure 5.1: Unit cell of the hexagonal (supercell) phase of T lBiS2 (violet, blue, and red
spheres represents the Tl, Bi, and S atoms repectively).

5.3 Results and Discussions

To understand the experimentally observed isostructural anomaly at ∼0.5 GPa and ∼1.8

GPa, we used first-principles calculations to simulate the rhombohedral phase (SG: R3̄m)

of T lBiS2 as a function of pressure.

5.3.1 Evolution of electronic structure

Electronic structure of T lBiS2 calculated including spin-orbit interaction at the optimized

lattice constants reveals a direct band gap of 0.10 eV. Band gap estimated here is slightly

lower than the experimental bandgap of 0.42 eV, which is typical of DFT calculations of

band gaps. The electronic structure of T lBiS2 exhibits valleys at the Γ and F points of the

Brillouin zone. The valence band maximum (VBM) at the Γ valley has a higher energy

than the VBM at the F valley [see Fig. 5.2(b)], whereas the conduction band minima

(CBM) at the Γ valley is lower in energy than the CBM at the F valley. The band gaps

estimated using optimized lattice constants (ambient pressure) at Γ and F points are 0.09

eV and 0.33 eV respectively [see Fig. 5.2(b)].

With increasing hydrostatic pressure, the CBM and VBM in both the valleys come

closer and cross each other resulting in inversion of bands. A close examination of the
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electronic structure reveals that the critical pressures ( P Γ
C and P F

C ) marking band in-

versions at the Γ and F points are different. With increasing hydrostatic pressure from

-1 GPa to 4 GPa, the energy gap at the Γ point first closes and then reopens at P ∼ 0

GPa, and a similar behaviour is found at F point with a critical pressure P∼ 3 GPa [see

Fig. 5.2(e)]. These values of critical pressures (P Γ
C and P F

C ) differ from previous calcula-

tions [31], primarily because of differences in estimated lattice constants due to different

pseudopotentials, and exchange correlation functionals. At the Γ point, the band inver-

sion occurs in between -0.5 and -0.3 GPa (i.e., -0.5 < P Γ
C < - 0.3 GPa, hence P Γ

C ∼ -0.4

GPa).

Inversion of bands is evident in the isosurfaces of charge densities [see Fig. 5.3(a)] asso-

ciated with VBM and CBM at -0.3 and -0.5 GPa. On the other hand since the band gap

separating the VBM and CBM at the F point is higher than the gap between them at the

Γ point a higher pressure is required for the band inversion to occur at F point. Examin-

ing the isosurfaces of charge densities associated with VBM and CBM at the F point [see

Fig. 5.3(b)] at 3.5 and 3.7 GPa, it is clear that band inversion at the F point occurs in

between 3.5 and 3.7 GPa (i.e., 3.5 < P F
C < 3.7 GPa, hence P F

C ∼ 3.6 GPa). Evolution of

electronic structure with hydrostatic pressure corroborates that T lBiS2 remains a direct

band gap semiconductor up to 4 GPa with bulk band gaps of 0.10, 0.17, 0.14, 0.03, 0.07

and 0.19 eV for pressures of 0, 1, 2, 3 and 4 GPa respectively. At pressure (P) ∼ 2 GPa

we observe a shift in the conduction band minimum and valence band maximum at the

Γ to those at the F point. With increasing hydrostatic pressure, the Fermi level [marked

with the dashed horizontal black line in Figs. 5.2(a) to 5.2(e)] does not cross the top

valence band and bottom conduction band indicating that T lBiS2 does not undergo a

semiconductor to metal phase transition. The robust semiconducting nature of T lBiS2 is

also established from the evolution of electronic density of states (DOS) with hydrostatic

pressure [see Fig. 5.4(c)].
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Figure 5.2: (a) – (f) Electronic structure of T lBiS2 are calculated with spin-orbit coupling
at different hydrostatic pressures (from -1 GPa to 4 GPa). Band inversion takes place at
the Γ and F points in the Brillouin zone as a function of pressure near PC = -0.4 GPa
and PC = 3.6 GPa, respectively.

5.3.2 Calculation of topological invariants

Bulk electronic topology of T lBiS2 was investigated as a function of pressure in order to

confirm its topological quantum phase transition (TQPT). A TQPT is typically indicated

by the crossing of valence and conduction bands at the critical pressures (P Γ
C and P F

C ).
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Figure 5.3: Isosurfaces of charge densities associated with valence band maxima (VBM)
and conduction band minima (CBM) before and after the band inversion at the Γ point
(a) and the F point (b) reveal that the band inversion at Γ takes place in between -0.3 GPa
and -0.5 GPa (i.e., -0.5 < PC < -0.3 GPa, hence PC ∼ -0.4 GPa at Γ point ), whereas
the band inversion at the F point occurs in between 3.5 and 3.7 GPa (i.e., 3.5 < PC <
3.7 GPa, PC ∼ 3.6 GPa at F point).

To verify the change in topology due to band inversion we determined the strong Z2 topo-

logical index using a robust, quantitative and exact method as employed in the Z2PACK

code [27]. The strong Z2 topological invariant (ν0) of T lBiS2 calculated at -0.5 GPa and
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Figure 5.4: Electronic structures of rhombohedral T lBiS2 around the Γ point (a) and the
F point (b) showing the band inversion between the top valence and lowest conduction
bands as a function of hydrostatic pressures. Band inversion takes place in the Brillouin
zone near PC = -0.4 GPa at Γ point and PC = 3.6 GPa at F point. Electronic density of
states of T lBiS2 calculated with spin-orbit coupling at different hydrostatic pressures (c).
Evolution of band gap with hydrostatic pressure at Γ and F points showing opening and
closing of gaps at the critical pressures (P Γ

C and P F
C ).

-0.3 GPa is ν0=0 (normal insulator) and ν0=1 (topological insulator) respectively. Thus

Z2 topological index confirms the change in electronic topology and establishes the non-

trivial band topology of T lBiS2 at pressures greater than P Γ
C ∼ -0.4 GPa. We find that

the topological invariants calculated at -1, 0, 1, 2, and 3 GPa (ν0 =0, ν0 =1, ν0 =1, ν0

=1 and ν0 =1 respectively), are consistent with the band inversion picture.

To probe the effect of second band inversion which occurs at F point on the electronic

topology we examined the Z2 topological invariant at 3.5 GPa and 3.7 GPa. T lBiS2

changes from a strong topological insulator at 3.5 GPa (ν0 =1) to a system with trivial

topology at 3.7 GPa (ν0 =0). Thus, the Z2 topological index based argument confirms a
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trivial phase resulting from even number of band inversions at the time-reversal invariant

momenta. The topological invariant Z2 calculated at 4, 5, 6, and 8 GPa are all ν0 =0,

hence revealing the topological trivial topology of T lBiS2 after the second critical pressure

P F
C ∼ 3.6 GPa.

The even number of band inversions is an indicator of the TCI phase. In our system,

the band gap closes and reopens with an even number of inversions between the two

extreme pressures (-0.4 GPa and 3.6 GPa). This implies that even though the phase

above 3.6 GPa cannot be a Z2 TI, we obtain a TCI phase driven by the mirror symmetry

of the hexagonal lattice. Hence we have calculated the mirror Chern number (nM) as a

function of pressure. The mirror Chern number (nM) of T lBiS2 calculated at 3.5 GPa

and 3.7 GPa is nM=1 and nM=2 (topological crystalline insulator) respectively. Thus nM

confirms the change in electronic topology and establishes the non-trivial band topology

of T lBiS2 with respect to TCI phase characterized by nM =2 at pressures greater than

3.6 GPa. In summary, ongoing from -0.5 GPa to -0.3 GPa the odd number of inversions

occurring at Γ point results in a change of Z2 topological invariant from 0 to 1. At

pressures greater than 3.6 GPa i.e. following the second band inversion a total even

number of inversions ( 3 from F and 1 from Γ) results in nM =2 and Z2 topological index

0. The comparison between invariant quantities Z2 and nM are shown in the Table III.

Pressure(GPa) Z2 Topological index Mirror Chern number (nM)
3.5 1 1
3.6 0 2

Table 5.1: Mirror Chern number (nM) and Z2 topological index of T lBiS2 calculated at
3.5 GPa and 3.7 GPa. The second band inversion at F around P Γ

C ∼ 3.6 GPa results in a
TCI phase characterized by nM and ν0=0 (trivial with respect to Z2 topological insulators

5.3.3 Vibrational Properties

Raman experiments show anomalies in the line widths of A1g and Eg mode at ∼0.5

GPa and ∼1.8 GPa indicating isostructural electronic transition in T lBiS2. In order to
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theoretically examine the changes in A1g and Eg mode we calculate the phonon frequencies

using linear response theory including the effects of electron phonon coupling (EPC). At 0

GPa the calculated frequencies 234 cm−1 and 200 cm−1 for A1g and Eg modes respectively

agree well with their experimental counterparts 242 cm−1 (A1g ) and 210 cm−1 (Eg). For

both A1g and Eg modes, the trend of its increasing frequency with pressure is captured

correctly by our calculations, and is consistent with experiments.

Figure 5.5: Phonon dispersion of T lBiS2 for theoretical lattice constant at 0 GPa (a).
At 0 GPa negative frequencies are not present in the system indicating a stable struc-
ture.(b)Experimental Raman spectrum of T lBiS2 at an ambient conditions, and (c) vi-
sualization of the atomic displacement patterns for the Eg and A1g modes obtained from
calculations.

We note that there are changes in slope (=dω/dP) of pressure dependence of both the

Raman active phonon modes at ∼3 GPa [see Fig. 5.6(a) and 5.6(b)]. Figure 5.6(c) and

5.6(d) shows that Eg mode couples more strongly with electrons than A1g mode. Though

Eg mode does not show any significant change in EPC with pressure the EPC of A1g mode
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shows a sharp fall at ∼ 3 GPa. The reduction of EPC can be a result of gap closing at ∼3.6

GPa, where we had found the band inversion. Thus, there is clear correlation between

changes in the slopes of Raman active modes as a function of pressure, and topological

quantum phase transitions obtained within the same theoretical framework.

Figure 5.6: Changes in the DFT calculated frequencies of Raman active, (a) Eg and (b)
A1g modes of T lBiS2 with pressure (from 0 GPa to 4 GPa). The changes in the electron
phonon coupling of these modes are shown in (c,d). There are changes in slope (=dω/dP)
of pressure dependence of both the Raman active phonon modes at ∼ 3 GPa.

5.4 Conclusions

As a function of pressure T lBiS2 exhibits two band inversions; first band inversion at Γ

point followed by the second one at F point. As a consequence there are changes in the

electronic topology of the system, confirmed with Z2 topological invariant calculated at

various pressures. We have attributed the two isostructural electronic transitions at 0.5
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GPa and 1.80 GPa respectively to the non-trivial TQPT (Z2 = 1) and TCI (nM = 2)

transitions based on our first principles theoretical calculations. Thus, our DFT calcula-

tions show that the observed anomalies in the FWHM of phonon modes are connected

with topological phase transitions at -0.4 GPa and 3.6 GPa.
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Chapter 6

Raman study of pressure induced

phase transitions in a topological

crystalline insulator SnTe and a

normal semiconductor SnSe*

6.1 Introduction

SnTe, a narrow band-gap IV-VI semiconductor with a band-gap of ∼0.2 eV at room

temperature [1], has stimulated intense interest due to being a topological Crystalline In-

sulator (TCI) [2]. Here the metallic surface states are protected by the mirror symmetry of

the crystal as compared to Z2 topological insulators where the surface states are protected

by the time-reversal symmetry [3]. TCIs have multiple surface states associated with par-

ticular crystal surfaces. Angle resolved photoemission spectra (ARPES) have confirmed

that SnTe has four Dirac cone surface states on {100}, {111} and {110} surfaces in the

first surface Brillouin zone [2, 4]. TCI’s are characterized by a ‘mirror chern’ number [5],

*Raman study of pressure induced phase transitions in a topological crystalline insulator SnTe and a
normal semiconductor SnSe: Sukanya Pal, Raagya Arora, Subhajit Roychowdhury, Kaniska Biswas, D.
V. S. Muthu, U. V. Waghmare, and A. K. Sood (Preprint available)
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a new topological invariant, associated with these surface states. SnTe is also a “negative

band gap” material whose ordering of conduction and valence band near the Fermi en-

ergy is inverted compared to normal semiconductors like PbTe [6–9]. This band inversion

takes place near the L points in the Brillouin zone where the valence band maximum has

L6
− symmetry and the conduction band minimum has L6

+ symmetry. Low temperature

Raman study has revealed a phase transition at Tc ∼105K from ambient Fm3̄m structure

to rhombohedral structure of space group R3m due to softening of a phonon mode [10]

arising from strong coupling between interband electronic transitions and the transverse

optic phonon. This structure transition is accompanied by a ferroelectric phase transi-

tion [11] and electrical transport shows a kink in the resistivity curve at the Tc [12]. The

Transition temperature depends on the carrier concentration in the sample, decreasing

with higher carrier density [13,14]. On further lowering the temperature, a second phase

transition occurs at 22K from rhombohedral to orthorhombic structure [15].

We now review the high pressure studies done so far on SnTe. Resistance gradually de-

creases as the pressure increases but at ∼1.8 GPa suddenly the resistance increases by 360

percentage and again gradually decreases a pressure is increased further. This transition

is also accompanied by a first order structural phase phase transition from sodium chloride

to orthorhombic crystal structure (space group Pnma) as revealed by x-ray diffraction [16].

But another First-principles calculations show that band-gap reduces to zero at 1.5 GPa

and then gradually opens up at higher pressures [17]. However, subsequent angle dis-

persive x-ray studies along with first principles structural calculations argued that SnTe

undergo a reversible phase transition from cubic Fm3̄m to the intermediate structures

(Pnma, Cmcm and GeS type structures) at 4.1 GPa and the transition to the final Pm3̄m

state begins at 18.1 GPa. The transitions at 4.1 GPa and 18.1 GPa are associated with

change in volume, indicating their first order nature [18]. Further first principle calcula-

tions showed that the high pressure (Pm3̄m) phase is superconducting, having a critical

temperature of ∼7.5K, which decreases with further increase of pressure [19].

SnSe is a p-type IV-VI semiconductor with an indirect band gap of∼0.9 eV and a direct
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band gap of ∼1.3 eV [20]. At ambient conditions it has a layered orthorhombic structure

with Pnma space group which can be viewed as distorted NaCl structure. Similar to

other IV-VI binary semiconductors like GeSe, SnS, GeS, SnSe has covalent interaction

between the atoms (with its three neighbors) within the layers. Each layer consists of zig-

zag double-layer planes of the tin and selenium atoms and these layers are separated by a

weak vander Waals force. The center of inversion lies in between the double layers [21,22].

High pressure has intense effect in crystallographic and electronic structures which

in turn effects the energy band gap of materials. Some of the earlier studies on the

high-pressure behaviors of SnSe are revisited here: One of the earliest dispersive x-ray

diffraction study showed that SnSe does not undergo any phase transition up to 34 GPa

[23]. Electrical resistivity study showed a dependency with pressure where the electrical

resistance decreased around 6.5 GPa indicating a change in energy gap of the material

[24]. A recent study using first-principles calculations suggests that SnSe transforms

from orthorhombic (Pnma) structure to orthorhombic (Cmcm) structure at ∼7 GPa

and remains in semiconducting state in the Cmcm phase indicating no pressure induced

electronic transitions at this pressure [25]. A recent synchrotron radiation study showed

that high-pressure phase of SnSe has an orthorhombic structure with Pbnm symmetry and

the transition takes place around 10.5 GPa [26]. Another study with electrical transport

measurements, first-principles calculations along with X-ray diffraction data, has shown

that SnSe undergoes an electronic transition from semiconducting to semimetallic state

around 12.6 GPa followed by an orthorhombic to monoclinic structural transition [27].

Thus it is clear that the effect of pressure on structural and electrical properties of

SnTe and SnSe has not been clearly understood till date and our aim in this paper is to

investigate the pressure induced phase transitions of these two semiconductors by Raman

scattering; in particular to look for the pressure dependence of Raman phonon frequencies

and their linewidths. Our results reveal a topological phase transition only for SnTe at

1.8 GPa and other two structural phase transitions around 6 and 12 GPa for both SnTe

and SnSe.
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6.2 Computational Methods

Our first-principles calculations are based on density functional theory (DFT) employing

the Quantum espresso [28] (QE) code. To treat the exchange and correlation energy

of electrons, we used a generalized gradient approximation (GGA) [29] with a functional

parametrized by Perdew, Burke, and Ernzerhof (PBE) [30]. The projector augmented

wave (PAW) potentials [31] with valence configuration 4d10 5s2 5p2, 4d10 5s2 5p4 and 3d10

4s2 4p4 4d−2 were adopted for Sn, Te and Se respectively.

Expansion of wave functions and charge density in plane wave basis set was truncated

with energy cut-off of 50 Ry and 500 Ry respectively. The discontinuity in occupation

numbers of the electronic states at the Fermi level was smeared with an energy width of

kBT = 0.005 Ry in the Fermi–Dirac distribution function. Face-centered cubic (Fm3̄m),

orthorhombic (Pnma, Pnma[GeS] type and Cmcm) and cubic (Pm3̄m) phases of SnTe

were theoretically analyzed to understand the experimentally observed pressure depen-

dent phase transitions. In calculations of cubic (Fm3̄m) structure of SnTe, the Brillouin

zone (BZ) integrations were sampled with a uniform mesh of 16Ö16Ö16 k points, while

for orthorhombic (Pnma and Cmcm) and cubic (Pm3̄m) unit cells, the Brillouin zone

(BZ) integrations were sampled with a uniform mesh of 8×8×8 and 8×10×10 k points

respectively.

To study the pressure dependent phase transitions in SnSe, its orthorhombic Pnma

and Cmcm structures were analyzed. For Pnma phase wave functions and charge density

were represented in plane wave basis sets truncated with cut-off energies of 45 Ry and

400 Ry respectively and fixed at 45 Ry and 360 Ry for Cmcm phase. The discontinuity

in occupation numbers of electronic states was smeared using a Fermi-Dirac distribution

function with broadening of kBT = 0.003 Ry. Brillouin Zone (BZ) integrations were

sampled on uniform 8×10×10 and 10×8×10 meshes of k-points for Pnma and Cmcm

structures respectively.

To determine pressure-dependent structure and phonon spectra we used scalar-relativistic

PAW potentials to optimize the structure with respect to lattice constants and atomic
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coordinates, through minimization of enthalpy, H = E + PV at a given pressure. Lattice

dynamical properties were calculated using self-consistent linear response theory within

DFT (known as density functional perturbation theory [33]) as implemented in the QE

distribution [28].

To obtain phonon dispersion of Fm3̄m phase of SnTe and Cmcm phase of SnSe, inter-

atomic force constant matrices were obtained at q-vectors on a 4×4×4 mesh and 2×1×1

meshes respectively, and dynamical matrices at an arbitrary q-vector were obtained using

Fourier interpolation. Effects of spin-orbit coupling (SOC) were included in our calcula-

tions of electronic structure through the use of fully relativistic [32] potentials.

To assess electronic topology of SnTe, we have used Z2Pack code [34] to determine

the Z2 topological invariant and the mirror chern mumber (nM). This involves use of

hybrid Wannier functions [35, 36] and employs the idea of time reversal polarization in

calculations of the Z2 invariants.

6.3 Results and Discussion

6.3.1 SnTe

SnTe, a narrow band-gap IV-VI semiconductor with a band-gap of 0.2 eV at room tem-

perature [37], has stimulated intense interest due to its non trivial topological Crystalline

Insulating (TCI) [38] nature. Its metallic surface states are protected by the mirror sym-

metry of the crystal as compared to Z2 topological insulators where the surface states

are protected by the time-reversal symmetry [39]. TCIs are characterized by a non-zero

mirror Chern number, with individual Chern numbers Ci and Ci defined on a mirror-

invariant plane. The mirror Chern number [40, 41] defined as nM = (C+i - C−i)/2 can

be used as a topological invariant of a TCI. A TCI supports an even number of Dirac

cones in its surface electronic structure and band inversions in sharp contrast to a Z2 TI

exhibiting odd number of band inversions. The first experimental [38] observation of TCI

phase was reported in SnTe, following a theoretical prediction [39].
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We now present theoretical calculations to understand its pressure dependent transi-

tions at P = 2 GPa, 4 GPa, 11 GPa and 18 GPa observed in experiments. Our estimates

of the optimized lattice constant of cubic (Fm3̄m) phase of SnTe is a= 6.37 Å, which is

within the typical errors of GGA calculations relative to the experiment [42] (a= 6.32

Å). Electronic structure of SnTe calculated with spin-orbit interaction at the optimized

lattice constants reveals a band gap of 0.015 eV, a bit underestimated with respect to its

experimental value [37] of 0.03 eV, which is typical of DFT estimates of band gaps. SnTe

is a ”negative” band gap material with inverted ordering of conduction and valence bands

in comparison with normal semiconductor like PbTe [43–46]. This band inversion takes

place near the L points in the Brillouin zone where the valence band maximum has L−6

symmetry and the conduction band minimum has L+
6 symmetry.

With increasing hydrostatic pressure, CBM and VBM at the L point move away from

each other and the band gap increases (See Fig. 6.1d). The band gap at L point increases

from 0.015 eV at 0 GPa to 0.4 eV at 5 GPa. A close examination of the electronic structure

near the L point (See Fig. 6.1a and 6.1b) reveals a crossing among the conduction bands

on moving from 0 GPa to 2 GPa. The band inversion at the L point between the CBM

and 2nd CBM is evident from the isosurfaces of charge densities (See Fig. 6.1e) associated

with these conduction bands evolving across the critical pressure. Such band inversion is

an indicator of electronic topological transition (ETT) in materials, and hence motivates

us to check the bulk electronic topology of SnTe. Symmetry analysis shows that parity

of the electronic wave functions at CBM and 2nd CBM are L+
6 and L−6 . To proceed with

the symmetry based arguments, we determined Z2 topological index using a robust and

more accurate method as implemented in the Z2Pack code. The calculated Z2 topological

invariant (ν0) of SnTe remains zero before and after the band inversion, confirming no

change in its electronic topology, and establishing the trivial band topology of SnTe with

respect to Z2. In SnTe, there could be changes in electronic topology with respect to TCI

phase, as SnTe is a topological crystalline insulator at ambient conditions. Therefore, we

study the evolution of the mirror Chern numbers (nM) as a function of pressure. The
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mirror Chern numbers (nM) of SnTe calculated at 0 GPa and 2 GPa are nM=2. Clearly,

nM=2 confirms robust non trivial TCI phase of SnTe at pressures greater than the critical

pressure.

To probe this further, we monitored effects of hydrostatic pressure on its zone center

Γ) point optical phonon modes. A compression of the unit cell leads to hardening of all

the three degenerate optical Γ15 modes (See Fig. 6.2a), as evident in the phonon density

of states (See Fig. 6.2e). Upon application of hydrostatic pressure, the Γ point instability

at ω ∼ -43 i cm−1 vanishes and a stable structure is obtained at P≥ 1 GPa exhibiting Γ

point optical mode frequency of 40 cm −1. Anomalous behaviour of this optical phonon

modes on moving from 0 GPa to 2 GPa (See Fig. 6.2c) corroborates the experimentally

observed changes in Raman spectra at 1.8 GPa. Concurrent anamolous evolution of the

electron phonon coupling with pressure across the critical pressure (See Fig. 6.2d) further

validates the subtle Raman changes observed at low pressure.

To investigate the pressure dependent structural phase transition to orthorhombic

(Pnma, Pnma [GeS type], Cmcm) phases, we estimated the changes in enthalpy (∆H)

of these structures and the cubic (Fm3̄m) structure relative to Pnma phase. Fig. 6.3

shows that the ∆H of the cubic structure with respect to orthorhombic (Pnma) phase

increases monotonically with pressure and attains a positive value at 5.8 GPa. Thus,

we predict a cubic (Fm3̄m) to orthorhombic (Pnma) structural phase transition at 5.8

GPa correlating with the experimentally observed Raman changes at 5 GPa. Further,

we find that the orthorhombic Pnma structure of SnTe remains stable up to 21 GPa.

To theoretically investigate the possibility of the experimentally observed 12 GPa phase

transition, electronic structures of orthorhombic Pnma and Pnma (GeS type) phases have

been calculated. Here, we examine the electronic properties of these polymorphs of SnTe

in the intermediate pressure range (See Fig. 6.4 and 6.5). At 6 GPa, electronic structure

shows that the overlap between the conduction and valence bands makes Pnma (GeS type)

structure metallic (See Fig. 6.5a), while Pnma is a zero band gap semiconductor (See Fig.

6.4a). With increasing hydrostatic pressure the band gap of the Pnma phase decreases in
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Figure 6.1: Electronic structure of cubic (Fm3̄m) phase of SnTe calculated with spin-
orbit coupling at (a) 0 GPa, (b) 2 GPa and (c) 4 GPa and variation in VBM and CBM
with pressure at the L point of the Brillouin zone (d). Isosurfaces of charge densities
(e) associated with electronic states at valence band maximum (VBM), conduction band
minimum (CBM) and 2nd conduction band minimum at L point below (a) and above
(b) the critical pressure revealing inversion of the lowest two conduction bands at this
transition.

magnitude (See Fig. 6.4b to 6.4f), and at P= 8 GPa the metallization of the Pnma phase

is achieved, through an indirect band gap closure along the XΓZ directions. In addition,
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Figure 6.2: Calculated phonon dispersion of the cubic (Fm3̄m) structure of SnTe at pres-
sures ranging from 0 GPa to 5 GPa (a), exhibiting imaginary phonon frequencies depicting
the instability of cubic structure at P = 0 GPa. One and two phonon density of states of
cubic SnTe at 0 GPa (b). Calculated frequency ω of the optical phonon (Γ15) at Γ point as
a function of pressure showing an anomaly at low pressures and its electron–phonon cou-
pling in (d). Evolution of one phonon DOS (e) and two phonon DOS (f) with hydrostatic
pressure ranging from 0 GPa to 3 GPa.

the VBM at T-point crosses the Fermi level at pressure of 11 GPa (See Fig. 6.4c). With

increasing hydrostatic pressure the enhanced metallic behaviour of Pnma phase is also

evident from the increased density of states at the Fermi level (See Fig. 6.4g.) Although

Pnma (GeS type) phase remains metallic throughout the range of intermediate pressures,
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Figure 6.3: Pressure dependent enthalpy (∆H) of cubic Fm3̄m, orthorhombic Pnma (GeS),
Cmcm and cubic Pm3̄m phases of SnTe relative to the orthorhombic Pnma phase

it shows enhanced density of states at the Fermi level with increasing pressures (See Fig.

6.5g). This is attributed to the additional contribution of valence bands along the UX

direction near EF and new valence bands crossing the Fermi level along XS direction at

∼ 13 GPa (See Fig. 6.5e).

However these electronic structure calculations are not sufficient to analyze the ex-

perimentally observed phase transition. To explore the 12 GPa phase transition further,

we analyze Γ point phonons of the orthorhombic Pnma and Pnma (GeS) structures were

studied. At 16 GPa, the Pnma (GeS) phase exhibits softer Γ point phonon modes than

those of Pnma phase (See Fig. 6.6). The observed evolution of Raman modes across

the transition pressure of 12 GPa also point to a similar trend. We therefore attribute

the experimentally observed Raman changes in SnTe at 12 GPa to the coexistence of

orthorhombic Pnma (GeS) and Pnma structures. The presence of Pnma (GeS) phase

above 12 GPa pressure thus results in lower frequency phonon modes. The difference

in enthapy of Pnma and Pnma (GeS) phases (See Fig. 6.3) decreases from 13 meV to

7 meV on moving from 8 GPa to 16 GPa hinting the possibility of their coexistense at

P> 12 GPa, correlating with experimentally observed Raman changes. To analyze the
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Figure 6.4: Electronic structure of the orthorhombic (Pnma) structure of SnTe at P = 6
GPa (a), 8 GPa (b), 11 GPa (c), 12 GPa (d), 13 GPa (e) and 16 GPa (f) calculated with
the inclusion of effects of the spin orbit coupling and corresponding electronic density of
states showing enhanced metallicity with increasing pressure (g).
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Figure 6.5: Electronic structure of the orthorhombic Pnma (GeS type) structure of SnTe
at P = 6 GPa (a), 8 GPa (b), 10 GPa (c), 12 GPa (d), 13 GPa (e) and 16 GPa (f)
calculated with the inclusion of spin-orbit coupling. Electronic density of states calculated
with spin-orbit coupling at different hydrostatic pressures (g).
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Figure 6.6: Frequencies of the zone centre (Γ) optical phonons of Pnma and Pnma (GeS
type) phases at 16 GPa showing notably softer optical phonon modes of Pnma (GeS) phase
in comparison to Pnma phase

pressure dependent phase transition from Pnma to cubic (Pm3̄m) phase, we obtained the

changes in enthalpy of these structures, and find a phase transition from orthorhombic

Pnma phase to cubic phase at 21 GPa (See Fig. 6.3).

6.3.2 SnSe

We now discuss our results on SnSe, where the experimentally observed Raman transi-

tions take place at pressures of 6.2 GPa and 12.9 GPa. Experimentally the changes in

pressure coefficients of mode frequencies (dw/dP) and disappearance or appearance of

new modes indicate possible transitions at high pressures. To understand the experimen-

tally observed pressure anomaly in SnSe, we used first-principles calculations to simulate

the orthorhombic Pnma and Cmcm phases of SnSe as a function of pressure. At ambi-

ent conditions SnSe has a layered orthorhombic crystal structure with Pnma space group

having eight atoms per unit cell and experimental lattice parameters [47] a=11.57 Å,

b=4.19 Å and c=4.46 Å. Our estimates of its lattice constant are a= 11.77 Å, b=4.22

Å and c=4.53 Å, which are within typical overestimation of GGA calculations compared

to their experimental values. Electronic structure of orthorhombic Pnma SnSe calculated

including spin-orbit interaction at the optimized lattice constants reveals an indirect band
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gap of 0.71 eV. Band gap estimated here is slightly lower than the experimental bandgap

of 0.90 eV [48], typical of DFT calculations of band gaps. Under compression, both VBM

and CBM gradually move towards the Fermi level, and the energy band gap reduces from

0.7 eV at 0 GPa to 0.1 eV at 6 GPa. (See Fig. 6.7a to 6.7e). Thus, Pnma phase of SnSe

undergoes a semiconductor-semimetallic phase transition at hydrostatic pressure of ∼ 6

GPa.

Figure 6.7: Electronic structure of the orthorhombic (Pnma) structure of SnSe at P = 0
GPa (a), 2 GPa (b), 3 GPa (c), 4 GPa (d), and 6 GPa (e) calculated with the inclusion
of effects of the spin-orbit coupling and corresponding electronic density of states showing
enhanced DOS at Fermi level with increasing pressure (f)

To investigate the pressure dependent structural phase transition to orthorombic
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(Cmcm) phase, we estimated changes in enthalpy (∆H) of the orhorhombic Cmcm phase

and the Pnma phase of SnSe. ∆H of the Pnma structure increases with pressure and

attains a positive value at 6.3 GPa (Fig. 6.8). At P=6.3 GPa, clearly our calculations

predict a structural phase transition from the Pnma to Cmcm structure correlating with

the experimentally observed Raman anomalies at 6 GPa.

Figure 6.8: Pressure dependent enthalpy (∆H) of the orthorhombic Pnma phase of SnTe
relative to the orthorhombic Cmcm phase, demonstrating a structural phase transition
from Pnma to Cmcm phase at P = 6.3 GPa

Our theoretical estimates of lattice parameters of Cmcm structure of SnSe are a = b

= 4.29 Å and c = 11.93 Å respectively, which compares well with experimental charac-

terization [49] (Cmcm: a, c = 4.31 Å, b = 11.70 Å). At 0 GPa, its electronic structure

(calculated including spin-orbit coupling) reveals well seperated valence bands and con-

duction bands across the gap of a 0.2 eV (See Fig. 6.9). With increasing hydrostatic

pressure, evolution of electronic structure reveals emergence of semi-metallic behaviour of

Cmcm phase of SnSe, with valence band maxima (VBM) and conduction band minima

(CBM) crossing each other at 7 GPa (See Fig. 6.9b). Thus with increasing hydrostatic

pressure (from 0 GPa to 7 GPa), Cmcm phase undergoes a insulator to semi-metal phase

transition accompanied by a structural phase transition from Pnma to Cmcm phase at

∼6.3 GPa. To probe the experimentally observed transition at 13 GPa, band structure
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Figure 6.9: Electronic structure of the orthorhombic (Cmcm) structure of SnSe at P = 0
GPa (a), 7 GPa (b), 8 GPa (c), 9 GPa (d), 12 GPa (e), 13 GPa (f) and 16 GPa (g)
calculated with the inclusion of spin-orbit coupling and corresponding electronic density of
states (h).
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and phonons for Cmcm phase of SnSe were calculated and examined closely. The Cmcm

phase shows enhanced density of states at the Fermi level with increasing hydrostatic pres-

sures (Fig. 5h). This is attributed to the additional contribution of conduction bands

Figure 6.10: Phonon dispersion of orthorhombic (Cmcm) structure of SnSe at P = 9 GPa
(a), 12 GPa (b) and 16 GPa (c) calculated along the XΓ direction.

at Fermi level with increasing hydrostatic pressure and new valence bands along ΓX di-

rection crossing the Fermi level at ∼12 GPa ( See Fig. 6.9e). Consequently, Cmcm phase

of SnSe undergoes a semi-metal to metal transition at ∼12 GPa. Examining the phonons

of Cmcm phase along the ΓX direction reveals an instability at 9 GPa (Fig. 6.10a). On

compression, the instability reduces and a stable structure exhibiting no imaginary fre-

quencies is obtained at 16 GPa (Fig. 6.10c). The transition observed in experiments at

12.9 GPa is thus identified as a semi-metal to metal transition (occuring at 12 GPa in our

calculations).
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6.4 Conclusions

Our DFT calculations show that the low pressure (1.8 GPa) Raman anomalies in SnTe are

most likely associated with band inversion occuring among conduction bands as a function

of pressure, though there is no change in the electronic topology of SnTe. The transition

at P = 5 GPa and 11 GPa in SnTe are associated with cubic (Fm3̄m) to orthorhombic

(Pnma) structural phase transition and the onset of coexistence of orthorhombic Pnma

and Pnma (GeS) phases respectively.

Our theoretical analyses of the experimentally observed Raman anomalies in SnSe at

6 GPa and 13 GPa shows that phase transition at 6 GPa is associated with a structural

phase transition from Pnma to Cmcm phase, and the transition at 13 GPa correlates with

semi-metal to metal transition.
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