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Summary 
Chemical or physical interactions among the molecular species in living cells define their 

intricate functioning. Thermodynamics and kinetics are used to understand how feasible 

these biological processes are and how fast they happen. Kinetic modeling is a well 

established framework. Here in chapter 1, we talk about some of fundamental and regularly 

used models to develop our understanding toward biological system and their behavior. 

Stochastic, deterministic and Michaelis-Menten models which will be used in the other 

chapters of this thesis. 

One of the biggest problems while treating a HIV patient through anti retroviral therapy is 

the unpredictable latency of the virus, which leaves the drugs ineffective. Previous studies 

have shown that TAT protein plays a positive role in deciding virus’ active and latency 

state. In chapter 2, we studied the active-latent cycle of HIV virus through the cooperativity 

of TAT protein in feedback circuit. Our simulations shows, greater the cooperativity 

(stronger promoter) higher the chances of the virus going in latency state and staying in 

latency state for longer time. This observation is interesting for comparing the latency 

across HIV subtypes. 

In living cells, in addition to the covalently bonded polymers such as proteins or DNA, 

there are other polymers that form dynamically, purely by non-covalent associations. The 

polymerization is driven mainly by ATP, ADP, GTP, without which the polymer may 

become thermodynamically unstable. Polymerization can thus be controlled by changing 

the availability of, for example, ATP in the solution. In Chapter 3 we study fuel driven 

association, dissociation phenomenon and how their structural properties can be controlled 

using biofuels like ATP, ADP. 
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Chapter -1 

 

Introduction 

 
1.01 Chemical Kinetics for Biological systems 

 

Living cells embody complex interaction networks with a millieu of reactions among the 

large numbers and types of molecules. Several distinguishing characteristics of living 

systems are that they are far from equilibrium, are inherently multi-component, with several  

important species, many of which are in low copy numbers. Chemical reactions are the 

backbone to the functioning of living cells. From basic reactions such as the synthesis of 

ATP from glucose to the synthesis of proteins or replication of DNA, most the important 

phenomena are chemically driven. Diffusion of the molecules, physical or chemical 

interactions among them and the timescales of the processes regulate the functioning of the 

system. Understanding, the mechanism behind these functions, is necessary both for 

learning about the basic biology and for research in areas like drug discovery, 

biotechnology. We illustrate examples of the necessity for understanding reactions in a few 

biological phenomena below -  

Unicellular organisms such as E. coli show an interesting phenomenon called chemotaxis.  

On average, they drift towards nutrients (chemoattractants) or away from toxins 

(chemorepellents). But this drift evolves out of a biased random walk, in which, if 

conditions appear favorable, based on the density of the nutrient molecules that are sensed 

by the bacterium and the random change in direction (tumble) will be delayed. This biased 

random walk eventually leads bacteria to chemoattractant. While this phenomenon may be 

described as a bacterial ‘strategy’, the decision making is driven by sensing molecules in 

low copy numbers. The mechanisms of nutrient sensing by (un)binding, the timescales over 

which chemical modifications such as methylation that follow it last to constitute a 

memory, and the mechanisms by which the signals drive the motor proteins are all 

inherently molecular in nature. Developing a molecular understanding of any of these steps, 

and understanding how fast biological systems respond and adapt to environmental 

changes[1][2][3] requires modelling the phenomenon and following the kinetics of the 

different processes. 



 

2 
 

There are several aspects of the formation of patterns in developmental biology that hinge 

on the gradients of chemicals, commonly known as morphogens. Morphogen gradients 

guide the chemical species to diffuse and react, eventually generating patterns required for 

cell differentiation. Alan Turing explained these self-regulating pattern systems in 1952[4] 

by using the reaction-diffusion (RD) model during the development of plants and animals. 

Dynamic patterns in strips of fish (Pomacanthus imperator) arising from the interactions 

between pigments in fish skin, were one of the first observations which were also predicted 

by the RD model. The patterns on zebrafish were explained by RD models much later in 

2009[5][6].  

At the microscopic level, the interaction between molecules like protein, nucleic acids, 

DNA, RNA defines the functioning of the cell. In such systems, low concentrations of the 

molecular species give rise to thermal fluctuation in the system (gene transcription, 

signalling). To understand such a system, one needs models which are an intrinsically 

random, with predictable average properties. Stochastic models are used to study gene 

regulatory circuits in cells[7], to explain stochastic stepping motors observed in myosin, 

kinesin on F-tubulin and microtubules which hydrolyse ATP molecules, etc.  

Development of drugs for infectious or non-infectious diseases is extremely challenging -

from the design of molecules which can bind their enzymatic targets to planning their 

controlled release. Binding kinetics of the drugs to the enzymatic targets and their affinities 

tell us about the efficacy of the drugs against blocking the access to their critical enzymes 

in pathogens and in quantifying their role as antibiotics [8]. Different drugs and therapies 

are being developed to cure cancer. Developing efficient treatment strategies require 

deterministic and stochastic models to describe the growth of cancer cells and the effect of 

therapies on their growth. Cancer starts with localized tumour growth, and may metastasize 

by spreading to other regions in the body through the bloodstream. Some of the models 

compare how effective are different therapies are to treat cancer cells and the rate at which 

tumour spread under the influence of different therapies and drugs[9][10]. The utility of 

chemical reaction models, with Michaelis Menten kinetics[11], is very important for 

understanding the hydrolysis of cellulose to glucose in the conversion of lignocellulosic 

biomass (dry plant waste) to biofuel[12]. 

Kinetic modelling is needed in several instances such as adaptive bacterial metabolism, 

kinetics of enzymes, chemical reactions inside cells especially in individual compartments. 
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Enzymes enhance all these essential reactions rates in a biological system. Kinetic study of 

these reaction tells us about the thermodynamic state of a system like what is driving these 

reactions, in which direction reactions will proceeding. Another example of the importance 

of kinetic study in a biological system is for drug development and discovery. It tells how 

long drug will bind to the enzyme and what will be the rate of its release under a different 

condition such as pH, temperature.  

Thus whether it is for understanding basic cell biology biology or for the development of 

drugs and strategies for disease treatment, there is a very significant role to understanding 

the key chemical species that are involved, modeling their physical or chemical interactions 

and quantifying their biological effects. 

1.02 Kinetic modelling 

To understand the feasibility or progress of reaction pre-knowledge of thermodynamics and 

kinetics is required. The field of chemical kinetics originated in the second half of the 

nineteenth century from the work of several pioneering scientists such as Arrhenius and 

Van't Hoff. Thermodynamics tells us the direction in which reaction proceeds with a 

change in energy and entropy, and explains about driving force for a reaction. Processes 

which are favored thermodynamically occur spontaneously (∆G<0). Kinetics is more 

detailed, it tells us about the conditions under which processes happen and at which rates. 

Thermodynamic relations can be derived from the kinetics. Kinetic theories and models 

evolved from unimolecular to describing interactions in multicomponent reactions. With 

initial conditions of the system and these differential equations, the evolution of spatial and 

temporal patterns of the different molecular species can be defined.  

Law of mass action: The most fundamental kinetic models are based on the law of mass 

action in which the rate of the reaction is proportional to the activities of chemical reacting 

species.  

Michaelis-Menten Model: Most chemical reactions have high activation energy and in 

living systems enzymes act as catalysts and accelerate the reactions by many orders of 

magnitude by stabilizing the products or transition state. However, as with any catalyst, the 

enzymes themselves remain unaltered after the reaction. Thus, new approaches were 

required to eliminate explicit dependence of the enzymes from the mass action models. 

These phenomena were first modelled in 1913 by Leonor Michaelis, and Maud Menten 

(known as Michaelis-Menten model) while studying hydrolysis of sucrose into glucose and 

fructose. In this model, enzyme binds to the substrate to form complex product and further 
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to the product and release enzyme-free again for binding another substrate. In the overall 

reaction of the substrate (S) binding to enzyme (E) and eventually forming product (P) via 

the intermediate (ES),  

𝑆 + 𝐸- ⇌ 𝐸𝑆 → 𝑃 + 𝐸 

under the assumptions that the initial concentration of the product is zero, and the 

concentration of intermediate complex reaches steady state, an effective reaction rate for 

the product 

𝑑[𝑃]

𝑑𝑡
= -

𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑚 + [𝑆]
 

k1,k2,k3 are forward, reverse and the final rate of reaction and Vmax is the maximum 

velocity of reaction given as 𝑉𝑚𝑎𝑥  = k3E; Km = k1/(k2+k3) is the Michaelis-Menten 

constant. 

Hill equation model. Hill equation was first developed by A. V. Hill in 1910 to describe 

the equilibrium relation between oxygen and haemoglobin. Hill equation is a model for the 

cooperative binding of multiple ligands on the receptor to produce the product. This model 

is extensively used to analyse drug receptor relationship and enzyme activity.  

𝑛𝑆 + 𝐸- ⇌ 𝑛𝑆𝐸 → 𝑛𝑃 + 𝐸 

 

𝑑[𝑃]

𝑑𝑡
=

𝑉max[𝑆]
𝑛

𝐾𝑚
𝑛 + [𝑆]𝑛

 

Michaelis-Menten model is a special case of the Hill model with n=1.  

These mathematical models such as these have been used over a century for successfully 

modelling the kinetics of chemical reactions. The differential equations with multiple 

components have been routinely solved for the specific initial conditions, in different 

condition like pressure, temperature and presence of catalysts/enzymes.  

Deterministic Models: Solving the coupled differential equations for the chemical kinetics 

in most conditions are fairly straight forward. A solution of these differential equations 

gives a trajectory at the systems level. Due to their predictability, or rather lack of any 

random components, the predictions of these models are smooth, continuous and have no 

noisy signatures in them. They may be easily mapped to the ensemble level measurements. 

Deterministic models are efficient in terms of computational power and time. Although 

depending upon the initial conditions, and some times sensitivity to them, different chaotic 

patterns can emerge. However, the nature of the modeling requirements have changed 
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especially past 2 decades. As more intricate experiments at the single molecule level or low 

copy number level started revealing interesting phenomena, newer approaches were 

required to model and perform computations. 

Reaction-diffusion model: Most of the standard reaction and mass action models assume 

the system is well mixed and all components homogenously spread across the reaction 

medium. However this is not true especially in living systems, where the molecules may 

be synthesized at one place and reaction happens elsewhere. The spatial drift of these 

species is mostly spontaneous, driven by diffusion. When either the numbers of molecules 

are low or the timescale of diffusivity is comparable or slower than the reactions, it becomes 

important to simultaneously consider both the diffusion and the reaction. These are 

typically modeled using a Reaction-Diffusion (RD) formalism simultaneously studying 

both the effects. The spatial distribution of the molecules and their reaction kinetics is 

extremely important in several biological reactions, pattern formation, etc. In 1952 Alan 

Turing proposed this model to describe the pattern formation in a natural system using this 

model. This model shows the pattern formed by oscillating chemical reactions and diffusion 

in the system.  

Stochastic Models: Much of the standard reaction modeling and rate constants relies on 

having Avagadro number of molecules. When the number of molecules are fewer, it 

becomes important to make a distinction about whether a pair of molecules reacted or not 

rather than remain with the probability that the reaction occurred. For example, in many 

cellular processes such as gene expression, with a single DNA and very few promoter 

molecules, the outcomes are expected to be stochastic. Exactly under the same conditions 

the gene may or may not get expressed in different cells, or it may happen at a very different 

timescale.  

This inherent difference resulting in spiky outputs with integral increments in the number 

of output molecules are modeled stochastically. In stochastic models, kinetics of the system 

is studied on the probability-based selection of event, among a multitude of options. 

Randomly events are chosen from a system based on concentrations and the rates of 

reaction. This random selection of events from the system takes care of fluctuation 

observed in the system. Because of the intrinsic random nature of the model, every 

repetition of the calculation gives a different trajectory with the same kinetic parameters, 

which is not the case with the deterministic model. On the otherhand a stochastic models 

recognize the fact that all reactions are not happening continuously when the numbers are 

low but there are certain reaction events, separated by long times with no reaction. 



 

6 
 

Stochastic models require more computational time as compared to the deterministic 

model.  

Molecular dynamics: One may wonder if the methods of solving differential equations 

may be too much behind advanced computational methods such as Molecular Dynamics  

(MD). MD is a standard computational technique to study the time evolution of the 

molecular system at the atomic level. The interatomic interaction potentials between 

bonded and non-bonded atoms are defined. The forces on atoms arising from these forces, 

and their time trajectory when they have an average thermal energy are studied using 

numerical algorithms using Newtonian mechanics. MD simulations are commonly used for 

studying proteins, lipid membranes, nucleotides and their interactions among themselves 

or with other molecules. MD can be used for a virtual in silico screening of the drug 

candidates for a rational design of antibiotics, for example. Large scale computational 

resources are employed to model atom level details of how interactions happen and the 

mechanisms that drive biological phenomena can be unravelled. Since these methods deal 

with low copy numbers as well, the results are stochastic. While classical MD itself does 

not lead to bond formation or breaking, it can be effectively combined with quantum 

mechanical calculations in hybrid formulations known as QM/MM to address this short 

coming. In a sense MD or QM/MM appears to address all the factors that need to factored 

into modelling. However the extremely fine level of details that are included in MD making 

the study of large systems or for longer times forbiddingly expensive in computations. Most 

state-of-the-art computations reach a few microns in size, and a few microseconds in 

simulation time. This limitation leaves a huge gap in addressing most systems-level 

biological phenomena.  

1.03 Focus of the thesis 

Chemical reations in homogenous, heterogenous, at low copy numbers and with poor 

diffusivity are extremely important for understanding some of the critical processes like 

gene expression, pattern formation in living systems. As newer experimental challenges 

appear with extremely fine level of detail and knowledge of living cells, newer models 

which can capture these phenomena are required. This requires an incorporation of all the 

relevant details, computation of the effects, comparison with the experiments for gaining 

an understanding into the functioning of living cells. 

Although some of the tools of chemical kinetics appear to be older than a century, it is clear 

that a different way of treating them, with low molecular concentrations is extremely 

relevant today to understand some of the cutting edge experiments.  
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In this thesis, we demonstrate modeling and computation in two such studies - one in 

understanding one of the critical steps in the disease biology of HIV and another for 

understanding how driven self-assembly may be controlled. 
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Chapter-2 

 

 Understanding the origins of latency in HIV 

 

2.01 Introduction 

Human immunodeficiency virus type 1 (HIV-1) is a pandemic that affects millions of 

people worldwide. Despite its incredible genetic diversity[1,2] antiretroviral therapies (ART) 

have been successful in suppressing HIV[3,4] to undetectable levels. However, the treatment 

has to be continued for life as interrupting ART leads to a rebound. One major obstacle to 

a complete treatment of HIV has thus been the presence of a latent reservoir[5-10] of infected 

cells, which may get reactivated. In fact, upon infection of CD4+ T cells, HIV stochastically 

goes into either the active or the latent state. Conceptually the onset of latency and re-

activation may be driven by the environmental cues or by autonomous programs[11]. 

Genetic noise is a common phenomenon[12] resulting in different phenotypes from identical 

genetic constitution, and the role of stochastic noise with low copy numbers of the different 

species was studied[11]. It is now established that the factors underlying the viral latency 

and reactivation are hardwired in HIV[13,14] and can be independent of the activity of the 

host cell.  

 

Further, at the molecular level, the role played by TAT positive-feedback circuitry in 

reactivation as well as in enabling and sustaining latency has been clearly demonstrated 

using a minimal synthetic circuit in which HIV TAT amplifies the expression from HIV 

LTR[13]. TAT is recruited to the HIV promoter by binding to TAR, a stem-loop RNA 

encoded by the viral mRNAs. The phosphorylation of a variety of proteins within the 

elongating transcription complex, follow as a consequence of this interaction between TAT 

and TAR. Computational models were developed analogous to the two-state transcription 

models[15,16] studied earlier. These computational models could demonstrate the decoupling 

of HIV activity from the cellular state[13] as well as studied the reactivation from the latent 

state[14]. The latter study also discussed the role of the TAT self-cooperativity in 

reactivation from latency, with different Hill coefficients H. However, the available data 
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did not necessitate or support the possibility of a variable H. While the TAT positive-

feedback was identified to be an important factor, the role of the strength of self-

cooperativity in the establishment, sustenance of latency and reactivation from it in 

synthetic constructs or in naturally occuring viral variants was not studied. 

 

In this work, we use combined computational models to study the two-step effect of how 

the promoter strength influences the degree of self-cooperativity, which inturn affects the 

viral latency. Our motivation for the studying effects of the promoter strength was two-

fold: having the promoter strength as a tunable parameter may allow one to observe newer 

patterns in latency characteristics as well as to relate these learnings to infer the differences 

in the latency of the different HIV subtypes. HIV subtype C with a global prevalence of 

about 50% commonly found in Africa, India and parts of China is characteristically 

different from the well studied HIV subtype B which found in the infections in America 

and Europe. A notable difference between the two subtypes, among several other factors, 

is the presence of a strong promoter in subtype C (3- or 4-NF B binding units, compared 

to the 2 in HIV subtype B)[17]. Intriguingly, despite this strong promoter HIV subtype C 

stays more latent compared to subtype B. In our exploration of the effect of promoter 

strength, we find interesting and seemingly paradoxical results of the stronger promoter 

leading to early and longer, which we interpret using the computational model. 

 

2.02 Model  

 

 

 

Figure 2.1 A schematic of how the gene expression of HIV TAT protein occurs is shown. The 

schematic is adapted from Razooky et al. [14]. GFP is to track the host cell activity. HIV is integrated 

into the host genome, and TAT expression is supposed to be representative of the complete HIV 

transcription. Further details of the gene expression can be inferred from the description of the 

equations given below. 
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The circuit that represents the gene-expression and positive feedback in TAT expression is 

shown in Figure 2.1. Biochemical reactions and rates of reactions were taken from 

Razooky[14]. They were adapted by adding dimerisation of TAT molecules, as well as 

adding a self-cooperative TAT based viral expression. The equations are given below.  

 

LTR → LTR + mRNA                                                   kbasal= 1e-5 

LTR + TAT → LTR + TAT + mRNA                           ktransact 

mRNA → TAT                                                               kTAT= 0.00132 

mRNA → GFP                                                                kGFP= 0.5 

TAT + TAT → TAT_TAT                                             kdimer= 0.1188x1e-3 

mRNA → x                                                                     kmRNA_decay = 4.8x1e-5 

TAT → x                                                                         kTAT_decay= 4.3x1e-5 

GFP → x                                                                         kGFP_decay= 0.301x1e-5 

TAT_TAT→ x                                                                kTAT_TAT=4.3x1e-5 

 

In the above set of reactions, the first reaction represents transcription from LTR (Long 

terminal repeats) promoter to form mRNA at the base rate. The second reaction represents 

an enhanced transcription rate (greater than base rate) from LTR due to positive feedback 

from TAT (Trans-Activator of Transcription) protein. Reaction three represent the 

translation of mRNA; information encoded in mRNA is decoded by the ribosome to form 

a specific protein. In the third reaction, we assume that one mRNA is translated to one TAT 

protein and it decays as translation finishes. The fourth reaction is same as of the third 

reaction, instead of TAT protein GFP protein is produced by decoding mRNA. GFP protein 

is used to mark cells and identify which cells are active and which are inactive. The fifth 

reaction represents the oligomerisation (dimerisation) of TAT molecule, or this TAT 

molecule may be useful for some other function in the cell, but it does not help in the 

transcription process of the cell. Last four reactions in the system shows the degradation of 

mRNA, TAT, GFP, TAT_TAT molecules in the cell. Transcription rate for a cooperative 

model of HIV was calculated using the Hill equation. Initial velocity for transcription was 

kept constant to calculate the transcription rate for different cooperative (Hill coefficient) 

values in the cell. 
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𝑘𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡 =
𝑎

𝐾𝑚𝐻 + 𝑇𝐴𝑇𝐻
 

 

Where a is the maximum velocity of reaction and Km is Michaelis- Menten constant and 

H is Hill coefficient.  

 

TAT molecule binds with a promoter and gives mRNA and TAT; again free TAT molecule 

can bind to the promoter; this cycle is positive feedback cycle[14]. TAT positive feedback 

rate was calculated using the Hill coefficient model[21]. By using the Hill coefficient (H) to 

the feedback cycle. There can be more than one site possible on promoter for TAT binding 

and activating promoter to produce mRNA. H=0 means there is no site for TAT to bind on 

the promoter, production of mRNA is only because of the basal rate. H=1 means one TAT 

molecule can bind to the promoter and enhance the production rate of mRNA production. 

For H=2, two TAT molecules with the promoter and increases the rate of production of 

mRNA. 

 

𝑑[𝑇𝐴𝑇]

𝑑𝑡
=

𝑉max[𝑇𝐴𝑇]
𝐻

𝑘𝑚𝑇𝐴𝑇 + [𝑇𝐴𝑇]𝐻
 

 

We derived the co-operativity parameters H=1 and H=2 for the case of 3 or 4 NFB 

promoter sites from the experimental data provided to us by the group of our experimental 

collaborator Prof. R. Udaykumar [S. Chakraborty, PhD Thesis, JNCASR]. Stochastic 

simulation of chemical reaction (Gillespie Stochastic Simulation Algorithm) is used to 

model the biochemical system of HIV. 

 

TAT molecule binds with a promoter and gives mRNA and TAT, again TAT molecule 

can bind to promoter this cycle is positive feedback cycle [14]. TAT positive feedback rate 

was calculated using the Michaelis - Menten model[21]. By using the Hill coefficient (H) 

to the feedback cycle. There can be more than one site possible on promoter for TAT 

binding and activating promoter to produce mRNA. H=0 means there is no site for TAT 

to bind on the promoter, production of mRNA is only because of the basal rate. H=1 

means one TAT molecule can bind to the promoter and enhance the production rate of 

mRNA production. For H=2, two TAT molecule binds with the promoter and increases 

the rate of production of mRNA. 



 

13 
 

2.03 Simulation 

 

Gillspie algorithm: Since the copy numbers involved in the gene expression are 

extremely low, the modelling of  host cell activation and HIV expression was performed 

as a stochastic model using Gillespie Algorithm[20][22]. Some of the details are as follows. 

 

In this system, the N number of chemical species of each type are uniformly distributed in 

fixed volume V at any time t. These N species can interact through M specified channels 

of chemical reactions at a constant temperature. Quantity propensity function is calculated 

for each reaction αi, and total propensity function is α0=∑αi. 

 

a) Generate two uniformly distributed between zero and – one to make a decision on 

which reaction will happen and the other for when it will happen 

b) Calculate the time for the next reaction to take place at (t + τ) using random 

number r1. Where                                 

𝜏 = (1/𝛼0) ∗ ln(
1

𝑟1
) 

 

c) The chemical reaction is selected from a random number and propensity function 

αi/α0<r2<αi+1/α0. 

d)  Species molecular number following this reaction are updated at time t + τ.  

e) Iterate 

 

2.04 Results 

 

Cycling between active and latent states: Stochastic simulation was performed to check 

for the bi-stable state of the virus with a positive feedback cycle as there is low reactant 

concentration. An initial number of TAT molecules were taken 5, the number of GFP was 

25000 and number of Promoter was 1 and rest all species were initially zero (concentration 

adopted from Razooky et al. [14])
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In the absence of a dimerization term, the TAT concentration monotonously increased, 

regardless of the promoter strength without showing any signs of latency (data not shown).  

TAT molecule is also found in dimer form and is non-transcriptional[18].  We added a 

dimerisation of TAT molecule term in the previous set of equations to consider the 

transformation of transcriptional TAT molecule to non-transcriptional TAT molecules 

inside the cell. The rate of dimerisation of TAT is assumed to be about ten times slower 

than the rate of formation of TAT from mRNA. Simulation of the biochemical reaction was 

done with the additional reaction of dimerisation of TAT molecule for Hill coefficient 

H=1,2 and 3. H=0 was not considered because for H=0 there will be no cooperativity from 

TAT molecules toward LTR promoter. Adding dimerization resulted in the HIV activity 

cycling between latent to active states as shown in Figure 2.2 

 

 

Figure 2.2 Cycling in TAT levels was observed after adding dimerisation of TAT. The number of 

TAT molecules are less than cutoff then the virus is in latency state (sleep state) if the number of 

TAT molecules is greater than cutoff than it is the inactive state. 

 

After considering non-transactivating TAT molecules in the system, the noisy nature of 

graph shows bi-stable states of the virus, which can be defined by considering ‘x’ number 

of  TAT molecules as a cut-off for two states. If the number of TAT molecules is greater 

than ‘x’ then the virus is an active state; otherwise, it is in latency (inactive or sleep) state. 

Here also we observe more production of TAT molecules for higher cooperativity. We can 

see that the virus goes in longer latency cycle for higher cooperativity (strong promoter) 
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system. The maximum value for TAT molecules in a cell for H=1 is 13 while for H=2 is 

28.  

Effect of cooperativity on latency state: Normalised time distribution of latency state 

was plotted for Hill coefficient H = 1 and 2. Chances of finding a virus in long latency 

decreases as latency time increases for both strong (H=2) and weak (H=1) promoter. 

 

 

Figure 2.3 Normalized time distribution of latency state H=1(Red) and H=2(Green) for a different 

set of parameters. The cut-off for the virus to be in latency state is two TAT molecules. Samples 

were recorded for 60 days.  

 

 
 

Figure 2.4 Normalized time distribution of latency state of H=1(Red) and H=2(Green) for the 

different set of parameters, five TAT molecules as a cut-off for the virus for latency state. The 

sample was recorded for 60 days. 

 

From Figures 2.3 and 2.4, longer latency state period for virus hiving strong promoter 

(H=2) is more as compared to the virus having weak promoter (H=1) with two TAT 

molecules as a threshold for switching from latency to active state. It can be seen that for 

the strong promoter (H=2) results in many more long-lived latency states than a weak 
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promoter (H=1). With a five TAT molecules threshold, and within the simulated data, there 

is not much difference in latency state for strong (H=1) and weak (H=2) promoter(from 

Figure 5). 

 

 

 

Figure 2.5  Normalized time distribution of latency state for cut-off as two TAT molecules. 5000 

number of samples were taken for distribution. The sample was run recorded for 15 days. 

 

 
 
 

Figure 2.6  Normalized time distribution latency state for cut-off as five TAT molecules. 5000 

number of samples were taken for distribution. Samples were recorded for 15 days. 

 

For two TAT molecules as a cut-off for latency state, for H=2, long latency states are 

observed as compared to H=1, while for five TAT molecules as a cut-off for latency state 

there is no difference in latency state for H=1 and H=2 which shows that five TAT 

molecules as a cut-off for latency are not a good parameter. 
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Figure 2.7 Normalized molecules (respect to the maximum value) with time. These two graph shows 

how GFP, transactivating TAT, and non-Transactivating TAT molecules changes as the virus goes 

to latency. Left graph is for H=1, and the right graph is for H=3. 

 

From Figure 2.7, Graph on the left side shows that all the transactivating  TAT molecules 

go to zero as virus goes to latency state, and GFP and non-transactivating TAT molecule 

growth becomes negative (net GFP and non-transactivating molecules starts decaying). 

Left graph is for H=1, and the right graph is for H=3 cooperativity. 

 

 

 
Figure 2.8 Growth of GFP molecule is plotted for self co-operative value H=1,2 and 3. 

 

From Figure 2.8, Left side graph shows growth of GFP molecules when co-operativity is 

H=1. H=1 virus goes in the latency cycle after 65000 seconds (18 hrs approx.). Centre 

Graph shows growth when co-operativity is H=2. For H=2 virus goes in latency state after 

around 40,000 seconds (11 hrs approx.). Right side graph shows the growth of the molecule 

when co-operativity is H=3. For H=3, the virus goes to latency after around 15,000 seconds 

(4 hrs approx.). For Higher co-operativity virus goes in latency state faster. Peaks in the 

above graph show how many times a virus came to an active state. For higher co-operativity 

(H=3) it goes in longer latency state as compared to low co-operativity (H=2 and 1). 
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Figure 2.9 Number of active cells present at a different time is plotted for cooperativity H=1,2,3. 

Left side is from our simulations right side has been adapted from the PhD thesis [23] of S. 

Chakraborty, MBGU, JNCASR. Simulations show similar qualitative pattern of an early onset of 

latency with strong promoters. 

 

To study how the promoter strength of the virus helps it to go in fast latency. A Hundred 

cells sample was taken for studying the cooperative effect of latency cycle of the virus. Fig-

10 shows the variation of a number of the active cell with time for different cooperativity. 

Initially, all virus cells were taken in an active state for all cooperative parameters (H=1,2 

and 3). Left side image is predicted the behaviour of promoter strength on latency cycle 

and the right image is experimentally observed the behaviour of latent cells. In 

Experimentally observed results weak, medium and strong promoters are represented as 

0,1 (weak),2 (medium) and 3,4 (strong) whereas in computational model promoter strength 

are represented by cooperativity 1, 2 and 3 represent weak, medium and strong promoters. 

The number of active cells presents in the system at any point of time decrease 

exponentially with increase in time. For weak promoter (H=1), fall in active cell quantity 

is slow as compared to the decrease in active cell number for the medium and strong 

promoter. From here, we can conclude that stronger the promoter in HIV, faster it will go 

to latency state from active state. 
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Figure 2.10 Comparison of the spontaneous reactivation in (A) our simulations (B) experiments 

(adapted from S. Chakraborty, PhD Thesis[23], MBGU, JNCASR) 

To study how often latent cells becomes active, and the effect of promoter strength on the 

latency period of the cell. Again sample of hundred cells was taken which were in latency 

state to check the promoter strength effect on latency cycle. Figure 2.10 shows the 

number of cells active at a point of time. At time t0 all cells are in latency state and as 

time increases 

cells come out of latency and some of them again go back to latency. Left graph is 

experimentally observed the behaviour of cells which shows cells with weak promoter 

come out of latency state in a large amount as compared to cells with strong promoters. 

This experimental observation is verified by the computational model of HIV (described 

above). The computational model simulation shows lower cooperativity higher the chances 

of the virus to come out of latency state and higher the cooperativity lower are a change for 

the virus to come out of latency state. 

 

 

 
Figure 2.11 Hill coefficient curves calculated from the results our simulations, for H=1,2,3. It was 

reassuring to see the Hill coefficients H=1,2 were recovered.  

 

Figure 2.11 is a plot of the velocity of GFP molecule with a number of GFP molecule. 

Velocity is calculated as a change in GFP molecules amount with time. Hill coefficient is 
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fitted on the velocity versus a number of molecules graph. Fitted value for hill coefficient 

was found to be 1, 2.66 and 2.57 for H=1,2 and 3. 

 

 

Figure 2.12 Schematic of the competing factors. The two major factors for maintaining the levels of 

transactivating Tat are its loss due to dimerization and its formation due to cooperativity. The dotted 

line separates the regions where the cooperativity plays opposite roles. When Tat exceeds or falls 

below this threshold, H=3 switches from being the dominant to the lagging factor. 

 

Analyzing the theoretical model, a two step association was made, one of the promoter 

strength with the self-cooperativity, and second of the self-cooperativity with the latency.  

Interestingly the overall stochastic modeling we used captures these differences in latency. 

We tried to decipher how the cooperativity contributes to latency. Two critical aspects of 

our mathematical model were the self-cooperative Tat production and the dimerization of 

Tat. The balance between these positive and negative factors contributes towards the 

availability of monomeric Tat which provides a positive feedback for further Tat 

production.  We schematically compare these positive and negative factors in Figure 2.12. 

We notice a qualitatively different behavior between the rate of Tat production below and 

above a certain Tat concentration (shown in dotted line), with the rate of self-cooperative 

Tat production higher for H=1 below the threshold and for H=3 above the threshold. Thus, 

at low Tat concentrations near latency, the self-cooperativity plays a counter productive 

role and tends to maintain the latency. At higher concentrations of Tat, the rate of 

disappearance of Tat due to dimerization also accelerates as the square of the Tat 

concentration and thus the self-cooperativity becomes self-limiting. Evidence for the 

dimerization of Tat has been reported earlier[4], and we employed it in this model. However, 
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the interpretation of the mathematical model which captures the effects of cooperativity on 

latency could be different. Unfolding or degradation of Tat, or its secretion into cytoplasm 

are all factors which have a first order dependence on the Tat concentration. Hence all these 

effects can be combined into a net rate of loss of Tat which is first order in its concentration. 

However, a second order effect allows the possibility of the rate of disapperance of 

monomeric Tat to be lower than that due to self-cooperativity at low concentrations and 

eventually leading to a crossover in the behavior. This second order effect had been 

interpreted as the dimerization in this work, however it is not restrictive. 

  

2.05 Conclusion 

 

Establishment of latency and differences between the subtypes have been elusive. Here we 

could demonstrate that with dimerisation, TAT can result in stable cycling between the 

latent and active states. Further, the present work also suggests that the self-cooperativity 

level seems to promote the existence of long-lived latency states, in certain kinetic 

parameter space.  
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Chapter-3 

 

Fuel driven self-assembly and its modulation 

 

 
3.01 Introduction 

 

Polymer science is a field that studies the kinetic formation and degradation of polymers 

from monomers, their statistical and mechanical properties. The field of polymerisation 

reaction engineering continues to grow in prominence as the use of polymers in daily life 

is increasing. Polymerisation is a process in which monomer units linked by chemical 

reaction or interaction (like covalent bonds) to form long-chain structures. There are two 

rudimentary classes in which polymers divided synthetic polymers and biological 

polymers. Synthetic polymers originating from petroleum products or designed by 

engineers or scientists such as PVC, nylon, Teflon are well known. Biological polymers 

exist in nature and can be extracted from living systems. Carbohydrates, proteins, nucleic 

acids, lipids, rubber, silk are some of the naturally occurring polymers.  

 

Different from these polymers are other naturally occurring structures such as 

microtubules, which are formed by non-covalent interactions among monomers. The non-

covalent bond allows the polymerization to be externally modulated by changing factors 

which either favor or disfavor the formation of these self-assembled polymers. Inspired by 

these, scientists are interested in dynamical polymerization, where the monomers are not 

covalently bonded, but rather are held together because of dynamic non-covalent bonds. 

These polymers are known as supramolecular polymers. Studies on controlled and 

dynamical self-assembly are important for engineering, synthetic biology in addition to 

gaining basic understanding into biological systems. Structural control and complexity of 

polymer plays an important role in their functioning[1] (electronics, biomedical devices). 

Structural control in polymers is achieved by control radical polymerisation method 

(CPR)[2]. In biological systems this structural control or reorganisation is usually achieved 

by fuel like ATP, ADP, GTP[3]. Tuning the ATP and ADP levels in the solution affects the 

polymerization state.  
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The underlying mechanisms of polymerization may be explained by isodesmic or 

cooperative models[6][7]. In isodesmic model, addition of monomer on the stack is governed 

by a single equilibrium constant, whereas in cooperative model two equilibrium constants 

one for nucleation and other for elongation of the polymer[6][7] are required. After formation 

of the critical size of nucleus forms, elongation of the polymer will take place on the 

nucleus. Stochastic or deterministic models may be used depending on the context in which 

the fuel or monomeric units are limited or are in abundance.  

 

Inspired by biological systems, there have been several recent experimental studies which 

controlled and tuned the temporal structure of the supramolecular assembly with fuels like 

ATP, ADP[4],[5] etc. Molecules like naphthalene diimide (NDPA) with receptor Zinc(II) 

dipicolylethylenediamine which binds to the phosphate group of ATP or ADP to form one 

dimensional (1-D) self-assembly. These self-assembled systems are formed because of π-

π interaction, hydrophobic interaction due to phosphate group between base units. The 

system is highly dynamic. With a change of ATP or ADP concentration in solution, 

structural changes in the assembly can be fueled and realized. NDPA forms a helical 

structure when it binds to ATP or ADP, with minor differences. When ATP binds to NDPA, 

it forms a right-handed helical NDPA-ATP assembly ((P)-NDPA-ATP), and ADP bound 

NDPA forms a left-handed helical NDPA-ADP assembly ((M)-NDPA-ADP)[4]. The 

change in the orientation of the helix with ATP or ADP was observed in the CD spectra. 

Right-hand helix gives positive signature CD spectrum, and left-hand helix gives negative 

signature CD spectra[4][8]. 

 

The degree of polymerization and length of the self-assembled structures depends on the 

availability of the fuel, and the duration for which it is available. While the self-assembly 

with NDPA has already been reported[4], we study the kinetic aspects of it to see how the 

theoretical knowledge can be useful for having a control on the polymerization, for example 

by modulating the duration and intensity of the ATP availability. This part of the work has 

two goals – to quantify the availability of ATP in a solution by using coupled reactions 

which generate it and to understand how it affects the polymerization.  

 

3.02 Model 

We model the ATP driven self-assembly in two steps. We first model the coupled reactions 

that generate or consume ATP to create the appropriate circumstances for self-assembly. 
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We then couple the equations for the self-assembly with this ATP generation. ATP-ADP 

concentration in a system can be controlled using coupled enzymatic reactions. Creatine 

kinase and hexokinase are proteins classified as transferase enzymes. Creatine kinase 

(CK)[9] and hexokinase (HK) are two enzymes catalytic are used to control ATP-ADP 

concentration. Creatine kinase enzyme reaction is a reversible reaction; it converts ADP to 

ATP by taking phosphate group from phosphocreatine. This enzyme reaction is present in 

mitochondria where ATP is generated from phosphocreatine (PCr) through taking a 

phosphate group from PCr[9]. Conversion of creatine (Cr) to phosphocreatine (PCr) by 

utilising one phosphate group from adenosine triphosphate (ATP) and releasing adenosine 

diphosphate is observed in muscles tissues, brain tissue. 

 

𝑃𝐶𝑟 + 𝐴𝐷𝑃 + 𝐶𝐾- ⇌ 𝐶𝑟 + 𝐴𝑇𝑃 + 𝐶𝐾 

 

Hexokinase is an enzyme that phosphorylates six carbon glucose to hexose phosphate by 

transferring a phosphate group from ATP to glucose and resulting in ADP as a waste 

product[10]. Phosphorylation of glucose is the first step for the conversion of glucose to 

pyruvate. This reaction helps to trap glucose inside the cell due to the negative charge on 

the phosphate group and helps in metabolising glucose. 

 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐴𝑇𝑃 + 𝐻𝐾- ⇌ 𝐺6𝑃 + 𝐴𝐷𝑃 +𝐻𝐾 

 

These two enzyme driven reversible reactions can each be modeled by Michaelis-Menten 

and coupled to understanding how depending on the ATP or ADP that is required for a 

certain self-assembly, the starting conditions may be tuned. 

 

Simple Michaelis-Menten model for the enzymatic reactions 

In the case of enzyme catalysis, the reaction rate increases by order of magnitude. Substrate 

interacts with enzyme and binds to its active site to form an enzyme-substrate complex. 

This complex degrades into the product and regenerates enzyme for further reaction. The 

Michaelis-Menten model first explained this phenomenon. 

𝑆 + 𝐸 ⇌ 𝐸𝑆 → 𝑃 + 𝐸 

kf and kr reaction rates in the forward and reverse directions. k0 is the final rate of reaction 

from complex to the product. This step is the rate-limiting step[11]. 
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Applying the law of mass action on the above reaction. 

𝑑[𝑆]

𝑑𝑡
= −𝑘𝑓[𝐸][𝑆] + 𝑘𝑟[𝐸𝑆] 

𝑑[𝐸]

𝑑𝑡
= −𝑘𝑓[𝐸][𝑆] + (𝑘𝑟 + 𝑘0)[𝐸𝑆] 

𝑑[𝐸𝑆]

𝑑𝑡
= 𝑘𝑓[𝐸][𝑆] − (𝑘𝑟 + 𝑘0)[𝐸𝑆] 

𝑑[𝑃]

𝑑𝑡
= 𝑘0[𝐸𝑆] 

 

We assume that the concentration of the substrate is much higher than the enzyme, which 

is usually the case. Under that assumption, ES complex reaches steady state very fast and 

will remain constant until a significant amount of substrate is consumed. Therefore we can 

assume ES complex concentration to be a constant. 

 

𝑑[𝐸𝑆]

𝑑𝑡
= 0 

 

which gives  [𝐸𝑆] = 𝑘𝑓[𝐸][𝑆]/(𝑘𝑟 + 𝑘0). Since the total amount of enzyme, complexed 

and uncomplexed, is constant, we represent it as  

 

Et=E0+ES, where E0 is free enzyme at any point of time and ES is the complexed form. 

 

Solving for the above equations we get 

  

𝑑[𝑃]

𝑑𝑡
=

𝑘0[𝐸𝑡][𝑆]

𝑘𝑟 + 𝑘0
𝑘𝑓

+ [𝑆]
 

 

Where k0[Et] is maximum velocity Vmax and 
𝑘𝑟+𝑘0

𝑘𝑓
 is Michaelis-Menten constant Km. 

 

𝑉 =
𝑉𝑚𝑎𝑥[𝑆]

𝑘𝑚 + [𝑆]
 

 

V is the velocity of reaction at any time. 
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Bi-substrate Michaelis-Menten model for Creatine kinase (CK) 

While demonstrated above the general principles of how a single substrate bound to 

enzyme is catalyzed, as it can be seen, the reactions using the creatinine and hexokinases 

involve two substrates that need to be bound to the enzyme before the reaction can 

happen.  

 

𝑃𝐶𝑟 + 𝐴𝐷𝑃 + 𝐶𝐾 ⇋ 𝐶𝑟 + 𝐴𝑇𝑃 + 𝐶𝐾 

 

Conceptually there are rates associated with the binding of the substrates, depending on 

whether they bind first or second. The schematic in Figure 3.1 shows the list of all 

possibilities, where the order of binding of the two substrates can change as can the order 

of the release of the two products. 

 

 

 

Figure 3.1 The figure illustrates the schematic the four different options in which the intermediate complex 

may be formed or get unbound depending on the order in which the two substrates can get bound or get 

released. The notations used for the different molecular species are explained in the text below. The figure 

has been adapted from Morrison etal ref 13.  

 

Creatine kinase reaction can be modelled using random Bi-Bi model for the Michaelis-

Menten equation. In the schematic given above A, B, P, Q and E represent ADP, 

phosphocreatine, creatine, ATP and enzyme. Conversion of EAB and EPQ is the rate 
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determining step, and other steps reach rapid equilibrium. EAP and EBQ do not form in 

this set of coupled chemical reactions. 

Kia, Kib, Kip, Kiq are dissociation constants for enzyme and reactant A, B, P, Q. 

 

𝑘𝑖𝑎 =
[𝐸][𝐴]

[𝐸𝐴]
           [𝐸𝐴] =

[𝐸][𝐴]

𝑘𝑖𝑎
 

𝑘𝑖𝑏 =
[𝐸][𝐵]

[𝐸𝐵]
           [𝐸𝐵] =

[𝐸][𝐵]

𝑘𝑖𝑏
 

𝑘𝑖𝑝 =
[𝐸][𝑃]

[𝐸𝑃]
            [𝐸𝑃] =

[𝐸][𝑃]

𝑘𝑖𝑝
 

𝑘𝑖𝑞 =
[𝐸][𝑄]

[𝐸𝑄]
            [𝐸𝑄] =

[𝐸][𝑄]

𝑘𝑖𝑞
 

 

Ka, Kb, Kp, Kq are dissociation constants for the enzyme intermediate EA, EB, EP, EQ 

and reactant B, A, Q, P. 

 

𝑘𝑏 =
[𝐸𝐴][𝐵]

[𝐸𝐴𝐵]
           [𝐸𝐴𝐵] =

[𝐸𝐴][𝐵]

𝑘𝑏
      

𝑘𝑎 =
[𝐸𝐵][𝐴]

[𝐸𝐴𝐵]
           [𝐸𝐴𝐵] =

[𝐸𝐵][𝐴]

𝑘𝑎
 

𝑘𝑝 =
[𝐸𝑄][𝑃]

[𝐸𝑃𝑄]
           [𝐸𝑃𝑄] =

[𝐸𝑄][𝑃]

𝑘𝑝
 

𝑘𝑞 =
[𝐸𝑃][𝑄]

[𝐸𝑃𝑄]
           [𝐸𝑃𝑄] =

[𝐸𝑃][𝑄]

𝑘𝑞
 

 

Substituting values of EA, EB, EP, EQ in the above equations 

[𝐸𝐴𝐵] = [𝐸][𝐴][𝐵]/𝑘𝑎𝑘𝑖𝑏                    [𝐸𝐴𝐵] = [𝐸][𝐴][𝐵]/𝑘𝑖𝑎𝑘𝑏  

 

[𝐸𝑃𝑄] = [𝐸][𝑃][𝑄]/𝑘𝑖𝑞𝑘𝑝                    [𝐸𝑃𝑄] = [𝐸][𝑃][𝑄]/𝑘𝑞𝑘𝑖𝑝 

 

Assuming that KaKib = KiaKb and KpKiq = KipKq are equal since [EAB] and [EPQ] complex 

can form in two ways. The velocity of the reaction is the rate of change of reactant or 

product. The velocity of reaction in forward and reverse directions can be expressed as 

𝑉𝑓 = 𝑘𝑓[𝐸𝐴𝐵] where kf is the conversion of [EAB] complex to the product and 𝑉𝑟 =

𝑘𝑟[𝐸𝑃𝑄]. The net reaction velocity is a difference of a forward and reverse velocities.  
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Assuming Et is the total amount of enzyme present in the system in all forms, 

[Et]=[E]+[EA]+[EB]+[EP]+[EQ]+[EAB]+[EPQ], the velocity of reaction from total 

enzyme can be given as  

𝑉 =
𝑘1[𝐸𝑡][𝐸𝐴𝐵]

[𝐸𝑡]
 

 

k1[E] is the maximum velocity of the reaction in the forward direction. 

𝑉 =
𝑉𝑚𝑎𝑥𝑓[𝐸𝐴𝐵]

[𝐸𝑡]
 

The ratio of [EAB] to [Et] can be calculated using the above equations.  

 

[𝐸𝐴𝐵]

[𝐸𝑡]
=

[𝐸𝐴𝐵]

[𝐸] + [𝐸𝐴] + [𝐸𝐵] + [𝐸𝑃] + [𝐸𝑄] + [𝐸𝐴𝐵] + [𝐸𝑃𝑄]
 

 

Substituting value of [EAB],[EPQ],[EA],[EB],[EP],[EQ]. 

 

[𝐸𝐴𝐵]

[𝐸𝑡]
=

[𝐸][𝐴][𝐵]

[𝐸] + [𝐸𝐴] + [𝐸𝐵] + [𝐸𝑃] + [𝐸𝑄] + [𝐸𝐴𝐵] + [𝐸𝑃𝑄]
 

 

[𝐸𝐴𝐵]

[𝐸𝑡]
=

[𝐴][𝐵]

𝑘𝑖𝑎𝑘𝑏 + 𝑘𝑏[𝐴] + 𝑘𝑎[𝐵] + [𝐴][𝐵] +
𝑘𝑖𝑎𝑘𝑏[𝑃]
𝑘𝑖𝑝

+
𝑘𝑖𝑎𝑘𝑏[𝑄]

𝑘𝑖𝑞
+
𝑘𝑖𝑎𝑘𝑏[𝑃][𝑄]

𝑘𝑝𝑘𝑖𝑞

 

 

Now velocity of reaction in the forward direction can be written as  

 

𝑉𝑓 =
𝑉𝑚𝑎𝑥𝑓[𝐴][𝐵]

𝑘𝑖𝑎𝑘𝑏 + 𝑘𝑏[𝐴] + 𝑘𝑎[𝐵] + [𝐴][𝐵] +
𝑘𝑖𝑎𝑘𝑏[𝑃]
𝑘𝑖𝑝

+
𝑘𝑖𝑎𝑘𝑏[𝑄]

𝑘𝑖𝑞
+
𝑘𝑖𝑎𝑘𝑏[𝑃][𝑄]

𝑘𝑝𝑘𝑖𝑞

 

 

Similarly, velocity for the backward reaction will be 

 

𝑉𝑟 =
𝑉𝑚𝑎𝑥𝑟[𝑃][𝑄]𝑘𝑖𝑎𝑘𝑏/𝑘𝑝𝑘𝑖𝑞

𝑘𝑖𝑎𝑘𝑏 + 𝑘𝑏[𝐴] + 𝑘𝑎[𝐵] + [𝐴][𝐵] +
𝑘𝑖𝑎𝑘𝑏[𝑃]
𝑘𝑖𝑝

+
𝑘𝑖𝑎𝑘𝑏[𝑄]

𝑘𝑖𝑞
+
𝑘𝑖𝑎𝑘𝑏[𝑃][𝑄]

𝑘𝑝𝑘𝑖𝑞

 

 

Net velocity of reaction for creatine kinase Enzymatic reaction will be 𝑉 = 𝑉𝑓 − 𝑉𝑟 



 

32 
 

 

𝑉 =

𝑉𝑚𝑎𝑥𝑓[𝐴][𝐵] −
𝑉𝑚𝑎𝑥𝑟[𝑃][𝑄]𝑘𝑖𝑎𝑘𝑏

𝑘𝑝𝑘𝑖𝑞

𝑘𝑖𝑎𝑘𝑏 + 𝑘𝑏[𝐴] + 𝑘𝑎[𝐵] + [𝐴][𝐵] +
𝑘𝑖𝑎𝑘𝑏[𝑃]

𝑘𝑖𝑝
+
𝑘𝑖𝑎𝑘𝑏[𝑄]

𝑘𝑖𝑞
+
𝑘𝑖𝑎𝑘𝑏[𝑃][𝑄]

𝑘𝑝𝑘𝑖𝑞

 

 

Bi-substrate Michaelis-Menten model for Hexokinase (HK) 

 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐴𝑇𝑃 ⇋ 𝐴𝐷𝑃 + 𝐺6𝑃 

 

 

 

Figure 3.2. A schematic of the bi-substrate reaction mechanism involving hexokinase, adapted from C Tsai 

ref 14. The notation for each of the species is given below. 

 

Conversion of glucose to glucose-6-phosphate happens in the presence of Hexokinase 

enzyme. ATP or Glucose can bind to the enzyme to form complex intermediate product 

simultaneously. Binding substrate for hexokinase reaction can be represented by A (ATP), 

B (Glucose) and Enzyme by E. Both the substrates A and B can bind to enzyme E. 

Hexokinase reaction can be modelled using random Bi-Bi model for Michaelis-Menten 

equation. Where both substrates can bind to the enzyme simultaneously. Kia, Kib are 

dissociation constant for enzyme E and reactant Aand B.Ka and Kb are dissociation constant 

for Enzyme intermediate EA and EB and reactant A and B. 
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𝑘𝑖𝑎 =
[𝐸][𝐴]

[𝐸𝐴]
              [𝐸𝐴] =

[𝐸][𝐴]

𝑘𝑖𝑎
 

𝑘𝑖𝑏 =
[𝐸][𝐵]

[𝐸𝐵]
              [𝐸𝐵] =

[𝐸][𝐵]

𝑘𝑖𝑏
 

𝑘𝑎 =
[𝐸𝐵][𝐴]

[𝐸𝐴𝐵]
             [𝐸𝐴𝐵] =

[𝐸𝐵][𝐴]

𝑘𝑎
 

𝑘𝑏 =
[𝐸𝐴][𝐵]

[𝐸𝐴𝐵]
              [𝐸𝐴𝐵] =

[𝐸𝐴][𝐵]

𝑘𝑏
 

[𝐸𝐴𝐵] =
[𝐸][𝐴][𝐵]

𝑘𝑎𝑘𝑖𝑏
      [𝐸𝐴𝐵] =

[𝐸][𝐴][𝐵]

𝑘𝑖𝑎𝑘𝑏
 

 

The velocity of the reaction is the rate of change of reactant or product which can be 

represented as 𝑉 = 𝑘𝑓[𝐸𝐴𝐵]. [EAB] is an intermediate step of hexokinase reaction. 

Conversion of [EAB] to the product is rate limiting step of reactithe on. Other enzyme 

intermideate steps reaches equilibrium or steady state rapidly. Assuming KiaKb=KibKa, the 

intermediate complex [EAB] can be reached from two paths, and both having the same 

probability. Multiplying and dividing velocity expression by total Enzyme concentration. 

 

𝑉 =
𝑘𝑓[𝐸𝐴𝐵][𝐸𝑡]

[𝐸𝑡]
 

 

Kf[Et] is the maximum velocity for reaction. 

 

𝑑[𝐴]

𝑑𝑡
= 𝑉 =

𝑉𝑚𝑎𝑥[𝐸𝐴𝐵]

[𝐸𝑡]
 

 

The concentration of total enzyme in the system is the sum of all free enzyme molecules, 

bind to a single substrate and with two substrates (an intermediate complex). 

[Et]=[E]+[EA]+[EB]+[EAB] 

 

[𝐸𝐴𝐵]

[𝐸𝑡]
=

[𝐸𝐴𝐵]

[𝐸] + [𝐸𝐴] + [𝐸𝐵] + [𝐸𝐴𝐵]
 

 

Substituting values for [EA],[EB],[EAB] in above equation. 

 



 

34 
 

[𝐸𝐴𝐵]

[𝐸𝑡]
=

[𝐸][𝐴][𝐵]
𝑘𝑖𝑎𝑘𝑏

[𝐸] +
[𝐸][𝐴]
𝑘𝑖𝑎

+
[𝐸][𝐵]
𝑘𝑖𝑏

+
[𝐸][𝐴][𝐵]
𝑘𝑖𝑎𝑘𝑏

 

 

[𝐸𝐴𝐵]

[𝐸𝑡]
=

[𝐴][𝐵]

𝑘𝑖𝑎𝑘𝑏 + 𝑘𝑏[𝐴] + 𝑘𝑎[𝐵] + [𝐴][𝐵]
 

 

Substituting the value of [EAB]/[Et] in the expression of velocity expression 

 

𝑑[𝑃]

𝑑𝑡
= 𝑉 =

𝑉𝑚𝑎𝑥[𝐴][𝐵]

𝑘𝑖𝑎𝑘𝑏 + 𝑘𝑏[𝐴] + 𝑘𝑎[𝐵] + [𝐴][𝐵]
 

 

Polymerization model 

A cooperative nucleation elongation model for polymerisation, in which the rate of 

nucleation and elongation are different, was used in this study. According to this 

assumption, the formation of nuclei is not thermodynamically favourable. After reaching 

critical nucleus, elongation of the polymer takes place by addition of monomeric units to 

the nuclei[12]. 

𝑍1 + 𝑍1 ⇌ 𝑍2 

𝑍2 + 𝑍1 ⇌ 𝑍3 

. 

𝑍𝑖−1 + 𝑍1 ⇌ 𝑍𝑖+1 

. 

𝑍𝑛 + 𝑍1 ⇌ 𝑍𝑛+1 

In this polymerization model noted above, first reaction is the nucleation step (Z2) with the 

addition of two monomers (Z1), followed by elongation steps. The rate of formation of 

nucleation is small as compared to elongation. The ordinary differential equation for above 

mention nucleation and elongation of the polymer  

𝑑𝑍1
𝑑𝑡

= 𝑎𝑛𝑍1 ∑𝑍𝑖

𝑁−1

𝑖=1

+ 𝑏𝑛∑𝑍𝑖

𝑁

𝑖=2

 

𝑑𝑍2
𝑑𝑡

= 𝑎𝑛𝑍1
2 − 𝑎𝑍1𝑍2 − 𝑏𝑛𝑍2 + 𝑏𝑍3 

𝑑𝑍𝑖
𝑑𝑡

= 𝑎𝑍1(𝑍𝑖−1 − 𝑍𝑖) + 𝑏(𝑍𝑖+1 − 𝑍𝑖) 
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𝑑𝑍𝑛
𝑑𝑡

= 𝑎𝑍1𝑍𝑛−1 − 𝑏𝑍𝑛 

an and bn represents nucleus association and dissociation rate in the polymerisation 

reaction. Elongation association and dissociation rate are represented by a and b. Zi is the 

concentration of polymer of length i monomeric units 

Coupled ATP generation and polymerization 

Fuel driven selfassembly of NDPA polymer modelling was done using a deterministic 

model since the reactions were performed in bulk quantities. Hexokinase and creatine 

kinase reaction will control the concentration of ATP and ADP. ATP-ADP will get 

associated with NDPA molecule to form monomeric units and can follow further 

polymerisation steps. 

 

𝑃𝐶𝑟 + 𝐴𝐷𝑃 ⇋ 𝐶𝑟 + 𝐴𝑇𝑃 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐴𝑇𝑃 ⇋ 𝐴𝐷𝑃 + 𝐺6𝑃 

𝑁𝐷𝑃𝐴+ 𝐴𝑇𝑃 ⇋ 𝑁𝐷𝑃𝐴 − 𝐴𝑇𝑃(𝑍1) 

𝑁𝐷𝑃𝐴+ 𝐴𝐷𝑃 ⇋ 𝑁𝐷𝑃𝐴 − 𝐴𝐷𝑃(𝑍1) 

𝑍1 + 𝑍1 ⇌ 𝑍2 

𝑍2 + 𝑍1 ⇌ 𝑍3 

. 

𝑍𝑖−1 + 𝑍1 ⇌ 𝑍𝑖+1 

. 

𝑍𝑛 + 𝑍1 ⇌ 𝑍𝑛+1 

 

NDPA-ATP or NDPA-ADP molecules units behaves as monomeric units. The 

polymerization rates depend on the concentration of ATP. For the purpose of this work, we 

derived the initial conditions (Table 3.1) and rates from the experimental work (Table 3.2). 

 

3.03 Results 

Controllable ATP pulses: ATP/ADP binds to NDPA to form polymer stacks and acts as 

fuel for the formation of the polymer. Availability of ATP/ATP defines the configurable 

orientation of polymer helix and switching between ATP and ADP changes the orientation 

of the polymer. Hexokinase transfers one phosphate from ATP molecule to glucose and 

converts ATP to ADP. Conversion of ATP to ADP and binding to NDPA molecule changes 

the configuration of polymer stack from right helix to left helix. Creatine kinase transfers a 
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phosphate to ADP to form ATP from phosphorylation. Because of the opposing factors 

from hexokinase and creatine kinase enzymes, a pulse of ATP is generated which lasts with 

a certain intensity over a period of time. The intensity and duration of the pulse can be 

tuned and to achieve a control on polymerization as can be seen from Figure 3.3. 

 

Species Concentration 

(mM) 

Species Concentration 

(mM) 

Hexokinase Enzyme 0.8 Glucose 30.0 

Creatine kinase Enzyme 2.0 Glucose-6-P 0.0 

NDPA 0.05 PCr 0.15 

ADP 0.075 Cr 0.0 

ATP 0.00   

 

Table 3. 1. Initial concentration of chemical species that were adopted from [4]. 

 

Rate constant Value  Rate constant Value 

v1 0.408 kp 6.1 

v2 0.222 kip 15.6 

v3 0.24928 kq 0.48 

ka 0.05 kiq 1.2 

kia 0.17 kha 0.1044 

kb 2.9 khia 0.5956 

kib 8.6 khb 0.0497 

kIa 0.17 kIb 20.6 

 

Table 3.2.  Rate constants for  Michaelis-Menten equation are adopted from [13],[14].  
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 Figure 3.3 Variation of ATP concentration with (A) a change in Glucose concentration. (B) with a change 

in PCr concentration. The intensity and duration of these ATP pulses can be inferred from these graphs. 

 

As initial concentration of glucose varies from 5mM to 30mM, the rate of conversion of 

ATP to ADP did not change. From Figure 3.3A we conclude that all available hexokinase 

enzyme in the system is occupied by glucose already at low concentration like 5mM. 

From the ATP pulses shown in Figure 3.3, the intensity and duration of the pulses were 

inferred. with the idea that these two parameters can be used to simultaneously tune the 

polymer length and time for which it remains intact. To modulate the lifetime of ATP in 

the solution, we need to optimise the concentration of PCr and Glucose in the system to 

have ATP in desire amount and for desired time. A dependence of the ATP pulse 

intensity on a simultaneous variation of glucose and PCr is shown in Figure 3.4. There is 

no or insignificant change in ATP concentration with an increase in glucose concentration 

at any concentration of PCr. Production of ATP increases with increase in PCr 

concentration in solution irrespective of Glucose concentration. 
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Figure 3.4 A variation of maximum ATP concentration obtained in the pulse with a simultaneous change in 

Glucose and PCr concentrations. 

 

 

 

 

    

Figure 3.5. A variation of ATP concentration in the absence and presence of a simultaneous polymer 

formation which affects its concentration. The un-normalized (A) and normalized (B) graphs to illustrate a 

small shift in the peak position, but without any other significant differences. 

 

Controlling polymerization 

 As initially all NDPA molecules will bind with ADP molecules to form monomers and 

then monomers will aggregate to form polymers or stack. Change in ADP or ATP 

concentration will have a direct effect on the polymer configuration. As the binding 

affinity of NDPA molecule with ATP is more as compared to ADP[8]. 
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In the polymerisation of NDPA-ADP monomer, some of free ADP molecules will be 

converted to ATP molecule by transferring Phosphate group to ADP. This change in ATP 

concentration is more when there is no polymerization and low when ADP is bind to NDPA 

molecule (Figure 3.5). The rate of conversion of ADP to ATP is more when there is no 

polymerization is taking place and low when polymers are forming and dynamic. 

 

Using these pulses of ATP, length and rate of polymerization (Figure 3.6) can be controlled. 

NDPA binds with ADP to form monomer and monomers get the stack to form a polymer. 

Distribution of NDPA-ADP polymer is an asymmetric gaussian distribution. With the 

increase in time monomers are being consumed to increase the length of polymer and more 

monomers are formed. This polymerisation process increases the mean length of polymer 

distribution with an increase in time. 

 

 

Figure 3.6 NDPA-ADP polymer length distribution at different time points during the simulation.  

 

3.04 Conclusion 

We have performed detailed calculations mapping the ATP production from the coupled 

enzymatic reactions. Tuning the concentrations of the different molecular species allowed 

a variable intensity and pulse of ATP, which can be coupled with the self-assembly 

NDPA-ADP and NDPA-ATP polymers. Helicity of polymer can be changed with control 

change in ATP or ADP concentration, which in turn was controlled by PCr or glucose. 
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Future perspectives 

 
In this thesis we explored the role of chemical kinetics in biological or biomimetic systems. 

Chemical kinetics typically comes across as a very established field, that may not be of 

much relevance in the current research literature. However, as we could show with the two 

examples in this work, a requirement to understand infection cycles of a difficult to treat 

disease like HIV or to controlled fuel driven self-assembly are contemporary experimental 

challenges with potential implications in health and in bioengineering respectively. 

Addressing these concerns required a through understanding of the conditions, 

development of the minimal models which capture the systems level effects, computing the 

consequences and interpreting them. Some of the obvious conceptual extensions of these, 

each of which will require a newer understanding of the respective systems are the 

understanding of latency in other infections such as by mycobacterium tuberculosis and a 

controlled generation of spatio-temporal patterns arising from fuel driven self-assembly. 

These are some of the immediate challenges we look forward to. 

 


