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Double-diffusive density stratified systems are well studied and have been shown
to display a rich variety of instability behaviour. However double-diffusive systems
where the inhomogeneities in solute concentration are manifested in terms of stratified
viscosity rather than density have been studied far less and, to the best of the authors’
knowledge, not in high-Reynolds-number shear flows. In a simple geometry, namely
the two-fluid channel flow of such a system, we find a new double-diffusive mode
of instability. The instability becomes stronger as the ratio of diffusivities of the two
scalars increases, even in a situation where the net Schmidt number decreases. The
double-diffusive mode is destabilized when the layer of viscosity stratification overlaps
with the critical layer of the perturbation.
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1. Introduction
The stability of miscible two-fluid flow has been extensively studied experimentally,

theoretically and numerically, primarily due to its relevance in practical applications
such as the transportation of crude oil in pipelines (Joseph et al. 1997). An
understanding of the stability of two-layer or multilayer flows is essential in chemical
industry, to determine, for example, the degree of mixing. In these flows, fluid
properties vary with position and time due to concentration variations of the multiple
species present. We are interested here in a system containing two diffusing species.
When the two species have sharply different rates of diffusion, unexpected dynamics
can be displayed. An extremely well-studied system of this type is that of a double-
diffusive (DD) fluid where the viscosity is constant but density depends on the
concentrations of both species (see, e.g., Turner 1974; Huppert 1971; May & Kelley
1997). Here one can have a rich array of instabilities when an equivalent single-
component (SC) system would be stable. The fingering instability is a commonly
quoted example of this type. This instability occurs when salt and temperature
concentrations are stratified in water such that we have warm, salty water lying
above cool, fresh water with density increasing in the direction of gravity, i.e. being
nominally ‘stably’ stratified. In contrast the consequences of viscosity being stratified
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rather than density have only been very sparingly explored. To the best of the authors’
knowledge, studies of this aspect are rather recent, and have focused on porous media
(e.g. Pritchard 2004, 2009), and chemically driven systems (Nagatsu et al. 2007;
Podgorski et al. 2007; Swernath & Pushpavanam 2007; Grosfils et al. 2009; Hejazi
et al. 2010). In the former, by conducting numerical simulations, Mishra et al. (2010)
found DD instability in a classically stable system of a more viscous fluid displacing a
less viscous fluid.

To the best of the authors’ knowledge, the stability of inertial flows of DD systems
with varying viscosity has not been studied before. We therefore study here the linear
stability of one of the simplest shear flows of a DD system, namely symmetric
three-layer pressure-driven flow through a two-dimensional channel, and find a DD
mode of instability. The layers close to the centreline and close to the wall contain
different constant-property fluids, and there is a mixed layer between the two where
the viscosity varies smoothly. The system may be taken to consist of a solvent
with two solutes dissolved in it, with one of them diffusing faster than the other.
Pure solvent would occupy the core region, for example, and a solution of known
concentrations of the two solutes would occupy the neighbourhood of the wall.

The equivalent SC system has been studied by several authors, e.g. Ranganathan
& Govindarajan (2001), Ern, Charru & Luchini (2003) and Malik & Hooper (2005).
Some salient earlier studies of related systems are those of Hinch (1984), Joseph et al.
(1997) and South & Hooper (1999). The results relevant to the present work may
be summarized as follows. At low to moderate Schmidt numbers, channel flow is
stabilized significantly when the viscosity decreases towards the wall and destabilized
when the near-wall fluid is more viscous than that at the core. At high Schmidt
numbers the existence of a mixed layer of fluid always leads to destabilization, which
increases with Schmidt number. As one would expect, these effects are accentuated
with an increase in viscosity contrast. These flows can become absolutely unstable
under certain parameter ranges, and the boundary between convective and absolute
instabilities has been delineated by Sahu et al. (2009). Pipe flow, on the other
hand can, when the viscosity contrast is very large, be destabilized even when the
less-viscous fluid is at the wall (Selvam et al. 2007). In a numerical study of pressure-
driven, non-isothermal miscible displacement of one fluid by another in a horizontal
channel, Sahu, Ding & Matar (2010) find that increase in viscous heating accelerates
the displacement of the resident fluid.

In an SC system, both stabilization and destabilization are far larger (see, e.g.,
Govindarajan, L’vov & Procaccia 2001) when the critical layer of the dominant
eigenmode, i.e. the layer where disturbance production is highest, overlaps with the
viscosity stratified layer. We find that such overlap makes the new DD mode of
instability stronger as well, and we distinguish this mode from the overlap mode of SC
systems.

2. Formulation
The linear stability analysis of pressure-driven three-layer flow of two miscible,

Newtonian and incompressible fluids of equal density and different viscosities in
a horizontal, planar channel is considered. The fluid in the channel core (fluid 1)
may be taken to be a pure solvent. The outer fluid (fluid 2) differs from the inner
in that it contains the same solvent, but has in it two solute species, F and S,
where F diffuses faster than S, at fixed concentrations. The ratio δ of the respective
diffusion rates Df and Ds is > 1 by definition. In between there is a mixed layer
of thickness q. Note that one of the ‘solutes’ could even be temperature, so we
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use the general term ‘scalar’ to describe them. We use the Cartesian coordinate
system where x and y denote the horizontal and vertical coordinates, respectively. The
channel walls, which are rigid and impermeable, are located at y = ±H. The flow
dynamics is governed by the continuity and Navier–Stokes equations, in addition to
two convection–diffusion equations for the two scalars. We assume an exponential
dependence on the concentration of the viscosity, µ:

µ= µ1 exp
[

Rs

(
S− S1

S2 − S1

)
+ Rf

(
F − F1

F2 − F1

)]
, (2.1)

where Rs(≡ (S2 − S1) d(lnµ)/dS) and Rf (≡ (F2 − F1) d(lnµ)/dF) are the log-mobility
ratios of the scalars S and F, respectively. The following scaling is employed to render
the governing equations dimensionless:

(x, y)= H(x̃, ỹ), (q, h)= H(q̃, h̃), t = H2

Q
t̃, (u, v)= Q

H
(ũ, ṽ), (2.2)

p= ρQ2

H2
p̃, µ= µ̃µ1, s̃= S− S1

S2 − S1
, f̃ = F − F1

F2 − F1
, (2.3)

where Q denotes the total volume flow rate per unit distance in the spanwise direction,
u ≡ (u, v) is the velocity vector, u and v being its components in the x and y
directions, respectively, ρ is the constant density, t is time and p denotes pressure. The
tildes here designate dimensionless quantities, but are dropped for convenience in the
dimensionless governing equations, given by

∇ · u= 0, (2.4)[
∂u

∂t
+ u ·∇u

]
=−∇p+ 1

Re
∇ · [µ(∇u+∇uT)], (2.5)

∂s

∂t
+ u ·∇s= 1

Pe
∇2s, (2.6)

∂f

∂t
+ u ·∇f = δ

Pe
∇2f , (2.7)

The Reynolds number is defined as Re ≡ ρQ/µ1, the Péclet number is defined based
on the slower diffusing species as Pe ≡ Q/Ds and Sc ≡ Pe/Re. The effective Schmidt
number of the faster diffusing fluid is Sc/δ.

2.1. Base state
The base state, about which linear stability characteristics will be analysed,
corresponds to a steady, parallel, fully developed flow. Base state quantities are
designated by uppercase letters, as in the case of U, V and P, which are the
streamwise and wall normal velocity components and pressure, respectively, and by
the subscript 0 for viscosity, s and f . Here V = 0, U is a function of y alone and P
is linear in x. A schematic of the system is shown in figure 1. Since the mixed layer
is diffusing very slowly, with a divergence angle scaling as Pe−1, we may consider
it, to a very good approximation, to be of constant thickness locally, and therefore
the flow as locally parallel. In an experiment, to obtain such a base state, one would
need a long channel, and a careful inlet design. For Sc� 1 momentum would diffuse
far sooner than concentration and over a long length of the channel we would have
profiles of the type shown in the figure, with a thin mixed layer. An identical profile
for both solutes, on the other hand, may not be easy to achieve, since the faster
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FIGURE 1. Schematic of the three-layer base state flow. The fluids 1 and 2 occupy the
channel core and the region adjacent to the channel walls, respectively. The two fluids
are separated by a mixed layer of uniform thickness q, with fluid 1 located in the region
−h 6 y 6 h.

diffusing fluid will have a correspondingly thicker mixed layer. Our primary objective
here is however to bring out the effect of different diffusivities on the disturbance
growth alone. To isolate this physics we prescribe identical mean concentration profiles
for the two solutes, and show that there is a new DD mode of instability even in this
case. We have made computations for a realistic thickness ratio as well (not shown)
and find the DD instability to be significantly enhanced. The two constant property
fluids are thus separated by a mixed layer of uniform thickness q, with fluid 1 located
in the region −h 6 y 6 h and fluid 2 in the region h+ q<| y |< 1.

For the base flow we prescribe a symmetry boundary condition across the centreline.
The scalars s0 and f0 are chosen to be fifth-order polynomials in the mixed layer, as
shown below, such that the concentrations are continuous up to the second derivative
at y= h and y= h+ q:

s0 = f0 = 0, 0 6 y 6 h, (2.8a)

s0 = f0 =
6∑

i=1

aiy
i−1, h 6 y 6 h+ q, (2.8b)

s0 = f0 = 1, h+ q 6 y 6 1, (2.8c)

where ai (i= 1, 6) are given by

a1 =−h3

q5
(6h2 + 15hq+ 10q2), a2 = 30h2

q5
(h+ q)2, (2.9a)

a3 =−30h

q5
(h+ q)(2h+ q), a4 = 10

q5
(6h2 + 6hq+ q2), (2.9b)

a5 =−15
q5
(2h+ q) and a6 = 6

q5
. (2.9c)

We have confirmed that other sufficiently smooth profiles will give results practically
indistinguishable from those presented here. Solving the steady, fully developed
version of (2.5), i.e.

Re

(
dP

dx

)
= d

dy

(
µ0

dU

dy

)
, (2.10)

subject to no-slip and no-flux conditions at the wall and the centreline of the channel,
respectively, we obtain the base state velocity profile, U(y). Here µ0 = e(Rss0+Rf f0). The
non-dimensional pressure gradient dP/dx is fixed by using

∫ 1
0 U dy= 1.
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FIGURE 2. Basic steady-state profiles of (a) viscosity (b) second derivative of the streamwise
velocity, for different values of Rf . The other parameters are chosen as h = 0.7, q = 0.1,
Re= 200 and Rs = 3.

Typical base state profiles of the viscosity and the second derivative of the
horizontal velocity component (U′′) are shown in figure 2(a,b), respectively, for
different Rf . For Rs = 3, the viscosity of fluid 2 is higher and lower as compared with
fluid 1 for Rf equal to −2.9 and −3.1, respectively; Rs =−Rf being a case when both
the fluids have the same viscosity. Therefore, with Rf = −2.9 we have destabilization,
while Rf = −3.1 gives a profile which may be denoted as ‘stably stratified’ with
respect to viscosity. An inspection of figure 2(b) reveals that the profile becomes
inflectional (undergoes U′′ = 0 at some point) for Rf = −2.9, indicating by Rayleigh’s
theorem that the flow is inviscidly unstable (Rayleigh 1880). In the present study our
primary interest is in the opposite case (e.g. Rf = −3.1) which is inviscidly stable in
the sense of Rayleigh, and where we expect the flow to be stabilized compared with a
constant viscosity fluid.

2.2. Linear stability analysis
We examine the temporal linear stability of the base flow given by (2.8)–(2.10) using
a normal modes analysis. In the standard way (see, e.g., Schmid & Henningson 2001)
flow variables are split into base state quantities and two-dimensional perturbations,
designated by a hat:

(u, v, p, s, f )(x, y, t)= (U(y), 0,P, s0(y), f0(y))+ (û, v̂, p̂, ŝ, f̂ )(y)ei(αx−ωt), (2.11)

such that a given mode is unstable if ωi > 0, stable if ωi < 0 and neutrally
stable if ωi = 0. Here i ≡ √−1, α and ω(≡ αc) are the wavenumber (real)
and frequency (complex) of the disturbance, respectively, wherein c is the phase
speed of the disturbance. In (2.11), the perturbation viscosity is given by µ̂ =
(∂µ0/∂s0)ŝ + (∂µ0/∂f0)f̂ . The amplitude of the velocity disturbances are then re-
expressed in terms of a streamfunction ((û, v̂) = (ψ ′,−iαψ)); the prime denotes
differentiation with respect to y. Substitution of (2.11) into (2.4)–(2.7), subtraction
of the base state equations, subsequent linearization and elimination of the pressure
perturbation yields the following linear stability equations (Drazin & Reid 1985;
Govindarajan 2004), where the hat notation is suppressed:

iαRe[(ψ ′′ − α2ψ)(U − c)− U′′ψ] = µ0

(
ψ iv − 2α2ψ ′′ + α4ψ

)
+ 2µ′0(ψ

′′′ − α2ψ ′)+ µ′′0(ψ ′′ + α2ψ)

+U′(µ′′ + α2µ)+ 2U′′µ′ + U′′′µ, (2.12)



534 K. C. Sahu and R. Govindarajan

iαPe[(U − c)s− ψs′0] = (s′′ − α2s), (2.13)

iαPe[(U − c)f − ψ f ′0] = δ(f ′′ − α2f ). (2.14)

Solutions of these equations are obtained subject to the boundary conditions

ψ = ψ ′ = s= f = 0 at y= 1, (2.15)

and

ψ ′ = ψ ′′′ = s′ = f ′ = 0 at y= 0 (sinuous mode), (2.16)

or

ψ = ψ ′′ = s= f = 0 at y= 0 (varicose mode). (2.17)

We found for the range of parameters considered that the sinuous mode is dominant
and therefore present results exclusively for this mode.

Equations (2.12)–(2.14) along with the boundary conditions (2.15)–(2.17) constitute
an eigenvalue problem which is discretized using Chebyshev spectral collocation
(Canuto et al. 1987) and solved using the public domain software, LAPACK. As
gradients are large in the mixed region, we require a large number of grid points in
this region. For this we use the stretching function (Govindarajan 2004)

yj = a

sinh(by0)
[sinh{(yc − y0)b} + sinh(by0)], (2.18)

where yj are the locations of the grid points, a is the midpoint of the mixed layer, yc is
a Chebyshev collocation point, defined as yc = 0.5 cos{[(π(j− 1)/(n− 1))] + 1}, where
n is the number of collocation points, taken to be 121 in this study,

y0 = 0.5
b

ln
[

1+ (eb − 1)a
1+ (e−b − 1)a

]
, (2.19)

and b is the degree of clustering. We have taken b = 8 which gives an accuracy of at
least five decimal places in the range of parameters used.

3. Results and discussion
We begin by ensuring that 121 collocation points are sufficient for obtaining

accurate eigenvalues. We also confirm that the neutral stability curve for a single
fluid channel flow, obtained by setting Rs = 0 and Rf = 0 in the present formulation,
agrees completely with the standard result. Based on the mass flux Q, our critical
Reynolds number, Recr, for this case is 3848.16, which is two-thirds of the more
commonly quoted value of 5772.2 based on the maximum velocity (Drazin & Reid
1985). As a stricter validation exercise, we repeat the computations of Govindarajan
(2004). For this we fix Rf = 0, so the component f drops out of the system and we
have a single solute in the annular region, with a mixed layer between y = h and
y = h + q, as in the earlier study. Sample results are shown in figure 3, which are
identical to figure 2 of Govindarajan (2004). The two codes have been developed
independently and the mean viscosity is taken to vary exponentially in the present
case, but is fitted by a fifth-order polynomial in the older paper. Note the three modes
of instability in the figure, the Tollmien–Schlichting (TS) mode on the bottom right,
the inflexional mode (I) on the top right and, more importantly, the relatively low
Reynolds number mode on the left which was termed the ‘overlap’ mode (O) to
denote the instability arising out of the overlap of the critical layer of the dominant
instability with the layer of varying viscosity. The critical layer may be described
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FIGURE 3. Stability boundaries for q= 0.1, Sc= 0, Rs = 0.1823 and Rf = 0. These figures
are in excellent agreement with Govindarajan (2004).

as follows: associated with a particular disturbance eigenmode is a critical location
yc at which the base flow velocity equals the phase speed (U = c at y = yc). In the
critical layer, of thickness ε ∼ Re−1/3 around yc, viscous effects are important at any
Reynolds number (Lin 1945), and in a region of thickness εc ∼ Pe−1/3 within it, solute
diffusion effects are important at any Péclet number. As mentioned above, most of the
disturbance kinetic energy is produced here. For this case yc = 0.7. It is seen that the
O mode does not exist when the mixed layer is located far away from the critical layer.
The O and I modes are seen to merge at h = 0.656, and at higher values of h appear
as one large region of instability.

In this configuration, viscosity increases towards the wall. It is well documented for
an SC fluid (e.g. Hinch 1984) that such a stratification is always destabilizing, whereas
a viscosity stratification with viscosity decreasing towards the wall at low Schmidt
numbers would typically be stabilizing. Note that for the range of parameters studied,
the O mode does not exist when the viscosity is stably stratified, i.e. lower at the wall
than at the core.

In figure 4(a), the DD system is compared with a SC system whose diffusivity is
the average of Ds and Df . There is no instability in SC. However there is a new
instability in the case of the DD system. A related study, shown in figure 4(b) is the
effect of varying the ratio, δ, of the diffusivity of the faster diffusive component to that
of the slower diffusing one. When δ = 1, we have effectively an SC system and we
see that the flow is stable. As δ increases, the Schmidt number of the faster diffusing
component decreases. From our experience with an SC system, we expect that the
reduced effective Schmidt number should result in a stabler flow. What we see in the
DD case is counter to these expectations. A decrease in δ actually results in instability.

Figure 5 makes several points. First, it is seen that the DD mode has an identity
distinct from the TS mode. More importantly, the DD mode is also distinct from the O
mode of an SC fluid. Note the sign change in viscosity stratification between figures 3
and 5. The O mode only appears when the more viscous fluid is close to the wall,
i.e. when the viscosity is unstably stratified, whereas the special feature of a DD mode
is that it destabilizes a ‘stably’ stratified flow. In figure 5 the corresponding stability
boundary for an SC fluid is also shown. It is clear that there is only a TS mode but no
DD mode of instability in that case. The mechanism for the instability in figure 5(a)
is broadly analogous to the fingering regime of gravity-driven DD convection. Here the
net stratification is stabilizing, with s destabilizing and f stabilizing. Consider a small
parcel of fluid displaced vertically. The resulting perturbation in f will diffuse away
faster, leaving the destabilizing effect of s, which causes the DD mode. Intuitively
less obvious is the existence of DD instability in figure 5(b), where f is destabilizing
and s stabilizing. Note that the unstable region, as well as the h range over which
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FIGURE 4. (a) Comparison of DD with SC stability. Curve C2, with Sc = 50, Rs = 3,
Rf = −3.1 and δ = 10 is for a DD system, while C1, with Sc = 9.09, Rs = −0.1, Rf = 0 and
δ = 1 is for an SC fluid. Lines with and without symbols correspond to variation of ωr and ωi
with wavenumber, respectively. (b) Effect of the relative diffusion rate δ on instability growth
rate, Sc= 50, Rs = 3 and Rf =−3.1. For both figures, h= 0.7, q= 0.1 and Re= 1000.
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FIGURE 5. Effect of the location h of the viscosity stratification, on the neutral stability
boundaries, for (a) Rs = 3 and Rf =−3.1 and (b) Rs =−3.1 and Rf = 3. The other parameters
are q = 0.1, Sc = 30 and δ = 10. The curves on the right are the neutral boundary for the TS
mode, while the closed curves are those of the DD mode. The dotted line shows the SC result.

it occurs is much smaller than in figure 5(a). This case is in broad analogy with the
diffusive regime in DD convection (Turner 1974). A displaced parcel would now tend
to return to its old position but, due to the diffusing away of the f perturbation and
the corresponding decrease in viscosity, would tend to overshoot its original location
resulting in an oscillatory instability. Figure 5 also demonstrates that an overlap of
the critical layer (located at yc ∼ 0.7) with the stratified layer is necessary for the DD
mode to be destabilized effectively.

Figure 6(a) extends our earlier finding that an increase in δ increases the growth rate
of the DD instability, to show that the unstable domain grows as well. An increase
in Schmidt number, as seen in figure 6(b) serves to decrease the critical Reynolds
number, as also happens in SC instability, but the unstable domain of DD shrinks
unlike in SC. At Sc = 0, we should not, and do not, have a DD instability. We have
discussed one typical value of Rs and Rf thus far. What happens when the viscosity
stratification is smaller? In figure 7(a) we show the critical Reynolds number when
Rs = 1, with the region above each curve being unstable. Here the DD mode does not
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Rf > −3 we see an unstable region to the right of the solid line, resulting from the overall
destabilizing viscosity stratification. We fix h= 0.7, q= 0.1 and Sc= 50.

go unstable, and stability is decided by the modified TS mode. When Rf =−1 we have
unstratified fluid, with an Recr = 3848.16 for any δ. Since the Schmidt number is high,
the TS mode is destabilized by a net viscosity stratification of either sign. Making the
system DD, i.e. increasing δ from 1 to 10, does not change the TS answer qualitatively.
However, when the overall viscosity stratification is increased, it is seen in figure 7(b)
that while the modified TS mode is still unaffected qualitatively, the new DD mode
appears over a range of Rf .

The viscosity perturbations, resulting from a combination of s and f , can have a
richer structure in a DD system, as seen in the sample set of eigenfunctions shown
in figure 8, and this provides the mechanism for more interesting dynamics. All of
the eigenfunctions peak in the vicinity of the stratified layer, which overlaps with the
critical layer of this mode. As δ is increased, we see that s is practically unaffected,
but f decreases in amplitude, allowing for s to dominate and thus DD instability to be
manifested in this ‘stably stratified’ system.

4. Conclusion
A DD instability driven by viscosity contrasts in shear flow has been shown to occur.

The DD system has been shown to be fundamentally different from the SC system
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in terms of its stability characteristics. In particular, unlike the SC instability, the DD
instability occurs in a flow that is nominally stably stratified in terms of viscosity. It
is well known that the Orr–Sommerfeld equation constitutes a singular perturbation
problem in a typical shear flow, with viscous effects having a large effect in the critical
layer. That the critical layer is also important in a viscosity-stratified flow and that a
viscosity stratification located here has a far larger effect than one located elsewhere
has been analysed in detail before (Govindarajan et al. 2001; Govindarajan 2004) and
we refrain from a repeat of that analysis here. We mention however that a hierarchy
of equations may be derived in the critical layer by expressing all variables as power
series in the small parameter ε, and the viscosity stratification in the critical layer may
be shown to contribute effects at a lower order than elsewhere, and this is evident in
the DD system as well. We have performed computations over a range of Reynolds
numbers and a variety of other parameters, but have presented only the essence here.
We conclude that DD behaviour due to viscosity variation is very interesting and needs
further attention.
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