Effect of the cation size disorder on charge ordering in rare-earth manganates

P. V. Vanitha, P. N. Santhosh, R. S. Singh, and C. N. R. Rao*

Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur P.O.,

Bangalore 560 064, India

J. P. Attfield

Department of Chemistry, University of Cambridge, Cambridge, CB21EW, United Kingdom

(Received 29 October 1998)

The effect of disorder arising from the mismatch between the average sizes of the *A*-site cations in the rare-earth manganates, $L_0 \epsilon A_0$, MnO_3 (L = rare earth, A = alkaline earth), on their charge-ordering behavior has been investigated. Measurements on two series of manganates with a fixed average cation radius, $\langle r_A \rangle$, of 1.17 and 1.24 Å, reveal that the charge-ordering transition temperature, T_{CO} , is not very sensitive to the size mismatch unlike ferromagnetic T_C or metal-insulator transition data. Furthermore, T_{CO} is not affected greatly by the orthorhombic lattice distortion. The observed decrease in T_{CO} with increase in $\langle r_A \rangle$ is consistent with a quadratic dependence upon $(r_A^0 - \langle r_A \rangle)$ where $r_A^0 = 1.13$ Å. [S0163-1829(99)02218-3]

Two of the important features of the rare-earth manganates, $L_{1-x}A_xMnO_3$ (*L*=rare-earth; *A*=alkaline earth), are the ferromagnetic metallic and the charge-ordered states exhibited by them.^{1,2} The ferromagnetic Curie temperature T_C around which an insulator-metal transition occurs in these manganates has been shown to be sensitive to the mismatch in the sizes of the *A*-site cations.^{3–5} While the T_c and the insulator-metal transition temperature T_M increase with the increase in the average size of the *A*-site cation $\langle r_A \rangle$, the value saturates at high $\langle r_A \rangle$ values probably because many of these manganates have *A*-site cations with a large size mismatch.⁶ In order to account for the effects due to the strain arising from the size mismatch of the *A*-site cations on T_C or T_M , Rodriguez-Martinez and Attfield^{3,4} employed the variance in the distribution of $\langle r_A \rangle$. The variance σ^2 is defined by

$$
\sigma^2 = \sum x_i r_i^2 - \langle r_A \rangle^2,\tag{1}
$$

where x_i is the fractional occupancy of A site ions and r_i is the corresponding ionic radii. Rodriguez-Martinez and Attfield^{3,4} as well as Damay *et al.*⁵ have studied several series of manganates of the type $L_{1-x}A_xMnO_3$ for fixed values of $\langle r_A \rangle$ and have found a linear relation between T_C and σ^2 , with the T_c decreasing with the increase in σ^2 . Since the charge-ordering behavior of the rare-earth manganates is very sensitive to $\langle r_A \rangle$,^{2,7} we considered it important to quantify how the charge-ordering transition temperature T_{CO} depends on the size mismatch between the *A*-site cations. For this purpose, we have studied charge-ordering in several manganates of the type $L_{0.5}A_{0.5}MnO_3$. In order to understand the dependence of T_{CO} on σ^2 , we have determined T_{CO} in two series of manganates with fixed $\langle r_A \rangle$ values of 1.24 and 1.17 Å, albeit in a few members of each series, because of the difficulty in realizing compositions which permit reliable measurements.

Polycrystalline samples of manganates of the composition $L_{0.5-x} L_x^{\prime} A_{0.5-y} A_y^{\prime} M nO_3$ with $\langle r_A \rangle = 1.24$ and 1.17 Å, as well as several manganates of the type $L_{0.5}A_{0.5}MnO_3$ with variable $\langle r_A \rangle$ were prepared by the ceramic route by heating stoichiometric quantities of the respective rare-earth oxide, $Mn₃O₄$ and the carbonates of the alkaline-earth elements. The final sintering temperature in the preparations was 1400 °C. The Mn^{4+} content in all the compositions was close to 50% as determined by redox titrations.

The manganates with an $\langle r_A \rangle$ of 1.24 Å studied by us are akin to Nd_0 , Sr_0 , MnO_3 exhibiting distinct ferromagnetic and the charge-ordering transitions both in the magnetization and

FIG. 1. Temperature variation of (a) the magnetization M of the $L_{0.5}A_{0.5}MnO_3$ series with a fixed $\langle r_A \rangle$ of 1.24 Å and (b) of 1/*M* of the manganates of the series with a fixed $\langle r_A \rangle$ of 1.17 Å. T_{CO} is shown by an arrow.

FIG. 2. Variation of the charge-ordering transition temperature T_{CO} with σ^2 in the $L_{0.5}A_{0.5}MnO_3$ series with (a) $\langle r_A \rangle = 1.17$ Å and (b) $\langle r_A \rangle$ =1.24 Å. Filled circles, triangles, and squares are from magnetic measurements and the corresponding open symbols are from resistivity measurements.

resistivity data. We have employed both the measurements to obtain T_{CO} values for these compositions. The T_{CO} data for manganates with $\langle r_A \rangle = 1.17 \text{ Å}$ were obtained from the minima in the inverse magnetization-temperature plots as well as from the maxima in $d(\ln \rho)/dT^{-1}$ plots. In Fig. 1, we show the typical magnetic behavior of the manganates with $\langle r_A \rangle$ = 1.24 and 1.17 Å. The method employed to determine

FIG. 3. A plot of T_{CO} values against $\langle r_A \rangle$ in $L_{0.5}A_{0.5}MnO_3$.

FIG. 4. Variation of T_{CO} with the orthorhombic lattice distortion index, %*D*. Filled circles are from magnetic measurements and the corresponding open circles are from resistivity measurements.

 $T_{\rm CO}$ is also indicated in the figure. In the other $L_{0.5}A_{0.5}M_{10}O_3$ compositions with variable $\langle r_A \rangle$, T_{CO} values were obtained from the magnetization data.

In Fig. 2(a), we have shown the variation of $T_{\rm CO}$ with σ^2 of the $L_{0.5}A_{0.5}MnO_3$ series with $\langle r_A \rangle = 1.17$ Å. In Fig. 2(b), we have plotted the ferromagnetic T_C as well as T_{CO} values of the manganate series with $\langle r_A \rangle = 1.24$ Å against σ^2 . Although we could properly characterize the charge-ordered states only in a few members of each series, the data show discernible trends. The T_{CO} values from electrical resistivity data generally tend to be somewhat lower than those from magnetization data. In the $\langle r_A \rangle$ = 1.17 Å series, the T_{CO} values up to a σ^2 of 0.0006 \AA^2 , obtained from both the magnetization and electrical resistivity data, give a slope, p_1 $=$ 32 000 \pm 3000 K Å⁻². This slope is comparable to that obtained in the metal-insulator transition data in earlier studies.^{3–5} For higher values of σ^2 , there is no statistically significant dependence of T_{CO} on σ^2 in the manganates of the $\langle r_A \rangle$ = 1.17 Å series. Within the accuracy of our measurements, the $T_{\text{CO}} - \sigma^2$ slope is less than 4000 K Å⁻² when $\sigma^2 \ge 0.0006 \text{ Å}^2$. In effect therefore, for moderate and high values of σ^2 , T_{CO} appears to be essentially independent of σ^2 . This may be because there may be no long-range orbital ordering when $\langle r_A \rangle$ =1.17 Å for $\sigma^2 \ge 0.0006 \text{ Å}^2$, suggesting that below this value of σ^2 the dependence of T_{CO} on σ^2 reflects the effect of cation size mismatch on the long-range structural distortion at T_{CO} . This could also make the transition rather broad as found in the many manganates with $\langle r_A \rangle$ =1.17 Å [see Fig. 1(b)]. Similarly, there is no significant dependence of T_{CO} on σ^2 in the manganates with $\langle r_A \rangle$ $=1.24$ Å, unlike the ferromagnetic T_c values in these materials $[Fig. 2(b)].$

For the insulator-metal transition in the manganates, it has been proposed^{3,4} that

$$
T_M^0 = T_M^* - p_2(r_A^0 - \langle r_A \rangle)^2, \tag{2}
$$

where p_2 is analogous to p_1 , the value of r_A^0 corresponds to that of the ideal perovskite having maximum T_M^0 value and a perovskite tolerance factor of 1. Oxygen atom displacements proportional to $(r_A^0 - \langle r_A \rangle)$ lead to suppression of T_M^0 through a changing strain energy.⁸ Unlike in metal-insulator

$$
\%D = 1/3(\sum |a_i - a'|/a_i) \times 100,\tag{3}
$$

transitions, it is difficult to fix the ideal value of $\langle r_A \rangle$ for the charge-ordered state. Experimentally, the variation of T_{CO} with $\langle r_A \rangle$ suggests that the charge-ordered state is favored for small $\langle r_A \rangle$, $\frac{2}{3}$ as the bending of the Mn-O-Mn bond angle and the associated distortion of the $MnO₆$ octahedra facilitate the localization of separate Mn^{3+} and Mn^{4+} states. If we take the value of r_A^0 to be the minimum observed value of $\langle r_A \rangle$ $=1.127$ Å, we can describe the T_{CO} data by using an expression similar to (2) . The variation of T_{CO} seems to be best described by the curve given in Fig. 3 with $T_{\text{CO}}^* = 260 \text{ K}$ and p_2 =6900 K Å⁻².

We have explored the relationship between T_{CO} and the orthorhombic lattice distortion index, which is strongly dependent on $\langle r_A \rangle$ or $(r_A^0 - \langle r_A \rangle)^2$. The lattice distortion index, %*D*, is defined as

- ¹ A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).
- ²C. N. R. Rao and A. K. Cheetham, Adv. Mater. **9**, 1009 (1997).
- 3L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B **54**, R15 622 (1996).
- 4L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B **58**, 2426 (1998).
- ⁵F. Damay, C. Martin, A. Maignan, and B. Raveau, J. Appl. Phys.

where $a' = (a \times b \times c/\sqrt{2})^{1/3}$. In Fig. 4, we have plotted the experimental T_{CO} values obtained for all the manganates studied by us against %*D*. We see that T_{CO} does not vary much, particularly when the distortion is high; the dependence of T_{CO} appears to be significant at best for small values of %*D*.

In conclusion, the present study indicates that the chargeordering transition in the rare-earth manganates is not very sensitive to the mismatch between the sizes of the *A*-site cations or to the orthorhombic lattice distortion arising from the small cation size. The decrease in the charge-ordering transition temperature at high $\langle r_A \rangle$ (Refs. 2 and 7) is consistent with the observed quadratic dependence upon (r_A^0) $-\langle r_A \rangle$) where $r_A^0 \approx 1.13$ Å.

82, 6181 (1997).

- 6R. Mahesh, R. Mahendiran, A. K. Raychaudhuri, and C. N. R. Rao, J. Solid State Chem. **120**, 204 (1995).
- 7A. Arulraj, P. N. Santhosh, A. Guha, A. K. Raychaudhuri, N. Kumar, and C. N. R. Rao, J. Phys.: Condens. Matter **10**, 8497 $(1998).$
- ⁸ J. P. Attfield, Chem. Mater. **10**, 3239 (1998).

^{*}Electronic address: cnrrao@jncasr.ac.in