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Prediction of reconstruction in heteroepitaxial systems using the Frenkel-Kontorova model
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Many heteroepitaxial metal-on-metal systems reconstruct into patterns of alternating domains of stacking
faults separated by partial misfit dislocations. Here, we use two approaches to investigate the question of whether
these can be predicted and controlled: (i) We map the system onto a one-dimensional Frenkel-Kontorova model,
and then obtain a simple criterion to determine whether or not the surface will reconstruct; this had earlier been
done for homoepitaxial systems, but is here generalized to the heteroepitaxial case. (ii) The two-dimensional
Frenkel-Kontorova model is solved numerically by performing quenched molecular dynamics simulations. The
necessary microscopic parameters are obtained by performing ab initio density functional theory calculations
on the unreconstructed systems. The systems considered are overlayers of Fe, Co, Pt, Ag, Au, and Pb on a
Ru(0001) substrate, as well as clean Ru(0001). The predictions of the two approaches agree with one another as
well as with experiment. Both the presence and periodicity of the reconstruction are very sensitive to the value
of “chemical potential” �. Accordingly, we suggest that � can be used to tune the periodicity so as to obtain a
desired nanotemplate for subsequent growth of self-organized nanostructures.
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I. INTRODUCTION

Residual stresses present at bulk-truncated solid surfaces
can be the driving forces for surface reconstruction, dislocation
formation, or alloying.1,2 In the case of clean metals, the
reduced coordination number of surface atoms induces a
tensile stress which favors a lower interatomic spacing as
compared to that of the bulk. It is well known that the surface
of Au(111) undergoes a herringbone reconstruction,3–5 and
that Pt(111) prefers to form an ordered dislocation network at
high temperatures6 or in the presence of a supersaturated Pt
vapor.7 In the case of heteroepitaxial systems, stress is induced
by lattice mismatch between the substrate and the overlayer.
Depending on the sign of this mismatch, stress relief can be
achieved by either an increase or a decrease in the atomic
density of overlayer atoms, relative to the substrate, leading
to a compressive or expansive reconstruction, respectively.
Different types of such reconstructions have been observed,
e.g., stripes, triangles, and rotated domains.8 Since these
patterned surfaces can be used as templates for the bottom-
up assembly of self-organized nanostructures, a need for
prediction of reconstruction, as well as control over it, has
emerged.

While ab initio density functional theory (DFT) calcula-
tions are perhaps the most reliable predictive theoretical tool
available today, these reconstructions typically have very large
unit cells, which makes the computational cost of treating
such systems with these methods generally prohibitive, though
there have been some recent successful attempts along these
lines.9 For this reason, as well as for gaining insight into
the operative physical mechanisms, it is useful to have
models (perhaps with some input from DFT) that can provide
guidelines toward predicting and controlling reconstructions of
this sort. Among various models that have been proposed,10 the
Frenkel-Kontorova (FK) model is one of the simplest and most
widely used.11–15 In addition to being less computationally
intensive than DFT calculations, the FK model can often
provide greater physical insight; it captures in a simple

way the different microscopic mechanisms at the origin of
surface reconstruction: interactions between surface atoms,
interactions between surface and substrate atoms, and the
cost in energy to change the density of the overlayer. For
clean surfaces, a combined effect of these three interactions
is represented by a dimensionless parameter R which maps
the two-dimensional character of surface reconstruction onto
a one-dimensional FK model.16 While this parameter has been
shown to work rather well for homoepitaxial systems,15,17

so far, heteroepitaxial systems have been studied instead
by quenched molecular dynamics (QMD) simulations of a
two-dimensional Hamiltonian.18–21

In this paper, we extend the discussion to the validity of R

as an indicator of reconstruction for heteroepitaxial systems.
For six different systems consisting of overlayer elements O

on a Ru(0001) substrate, we compare the behavior predicted
by the simple indicator R with results from experiment and
QMD simulations using a two-dimensional Frenkel-Kontorova
model.

II. ONE-DIMENSIONAL FRENKEL-KONTOROVA MODEL
AND THE R PARAMETER

The Frenkel-Kontorova model11 is a simple, analytically
solvable model that can be used to describe, for example,
the operative physics at the surface of a homoepitaxial
or heteroepitaxial system. The overlayer is described by a
one-dimensional chain of atoms connected to each other by
harmonic Hooke’s springs of natural bond length b and spring
constant μ. The substrate is modeled as a sine wave potential
of amplitude W and period a. Thus, there are two competing
periodicities in the system, a and b. Except in situations when
the wells of the substrate potential are either very shallow or
very deep compared to the stiffness of the springs, the stable
solutions of the system correspond to a periodic array of misfit
dislocations; in surface science terminology, these correspond
to a surface reconstruction.
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Of course, real surface systems are two-dimensional (2D).
Mansfield and Needs16 mapped such 2D surface systems onto
the one-dimensional (1D) FK model, and suggested that a
dimensionless parameter R, which involves a combination
of the surface energy, the surface stress, the stiffness of
nearest-neighbor bonds, the nearest-neighbor distance, and the
amplitude of the substrate potential, can serve as an indicator of
whether or not the surface would reconstruct. These quantities
can all be simply obtained from ab initio calculations.

In their original paper, Mansfield and Needs found that
R was not entirely reliable as a predictor of reconstruction;
in particular, it seemed to predict that the Au(111) surface
would not reconstruct, whereas it is well known that this
surface reconstructs. At the time of their work, it was not
clear whether this was because of the simplifying assumptions
made in mapping the surface system onto a 1D FK model,
or whether the ab initio numbers input into the evaluation of
R were at fault, since due to the limitations of computational
power then available, further approximations were made in the
numerical evaluation of the relevant quantities. Subsequently,
Crljen et al.17 and Pushpa and Narasimhan15 showed that R

does, in fact, work remarkably well as a predictor of whether
or not a number of (111) faces of face-centered-cubic (fcc)
metals will reconstruct. Thus, it appears that mapping the
two-dimensional surface system onto a 1D FK model works
well, at least for homoepitaxial systems.

We now generalize this to the case of heteroepitaxy. For the
case where an overlayer is deposited on the (111) surface of an
fcc metal, or the (0001) surface of an hcp metal, the formula
derived for the case of homoepitaxy15,16 can be modified as
follows:

R =
√

3πa
(
γi − 4

3σ
)

8
√

μW
; (1)

here a is the nearest-neighbor (NN) distance on the substrate,
μ is the spring constant for NN bonds between atoms in the
overlayer (in the presence of the substrate), σ is the surface
stress, γi is the interface energy (defined more precisely in the
next section), and W is the amplitude of the substrate potential.
This formula is identical to that for the homoepitaxial case,
except that the surface energy γ has been replaced by the
interface energy γi . If |R| < 1, the heteroepitaxial system will
remain stable against reconstruction; i.e., the overlayer atoms
will remain at pseudomorphic positions. However, if R < −1,
there will be a compressive reconstruction; i.e., the density of
overlayer atoms will be greater than the density of atoms in
the topmost substrate layer. In contrast, if R > 1, the system
will display an expansive reconstruction in which the density
of overlayer atoms will be reduced relative to the density of
atoms in the topmost substrate layer.

III. AB INITIO CALCULATIONS

In order to obtain input quantities for the 1D FK model
described above, as well as for the 2D FK model discussed
later below, we have performed ab initio calculations within
the framework of density functional theory. The systems we
have considered consist of an overlayer O on the Ru(0001)
substrate, where the overlayer O consists of atoms of one of
the elements Fe, Co, Pt, Ag, Au, and Pb. The NN distances of

bulk Fe and Co are less than that of bulk Ru, while those of bulk
Pt, Au, Ag, and Pb are larger; one would therefore expect that
the first two elements might possibly display a compressive
reconstruction, while the latter four could conceivably display
an expansive reconstruction. We have also considered the
homoepitaxial case of a clean Ru(0001) surface.

We have used the PWscf code of the QUANTUM-ESPRESSO

package22 which uses a plane-wave basis set together with
ultrasoft pseudopotentials.23 For the exchange-correlation
functional, we have used the generalized-gradient approxima-
tion of the Perdew-Burke-Ernzerhof form.24 Spin polarized
calculations are performed for those cases where the overlayer
atoms are magnetic, i.e., for Fe and Co on Ru(0001). The
plane-wave cutoff energies for wave functions and charge
densities are taken to be 20 Ry and 160 Ry, respectively.

We have used a supercell approach to model a surface
within periodic boundary conditions. Some calculations have
been performed using a supercell consisting of a slab with
six Ru layers stacked along the (0001) or z direction, and one
pseudomorphic O overlayer, as well as seven layers of vacuum,
which corresponds to a vacuum spacing of around 17.4 Å. The
overlayer and three adjacent Ru layers are allowed to relax
in the z (surface-normal) direction using Hellmann-Feynman
forces, whereas the three bottom Ru layers are kept fixed at
the bulk separation. Other calculations have been performed
using a supercell with a symmetric slab, consisting of six Ru
layers with an O overlayer deposited on both sides. We have
used an (8 × 8) Monkhorst-Pack k-point grid25 in the surface
Brillouin zone. Convergence is aided by making use of the
Methfessel-Paxton smearing technique,26 with the smearing
width set equal to 0.05 Ry.

The calculated value for a, the nearest-neighbor distance on
the Ru substrate, is 2.74 Å. This is close to the experimentally
reported value of 2.70 Å. In order to compute W , the amplitude
of the substrate potential, we have considered four lateral
positions of the overlayers relative to the substrate: at face-
centered-cubic (fcc), hexagonal-closed-packed (hcp), bridge,
and atop sites; all distances along z are then allowed to relax.
We note that when evaluating the energy at a bridge site, it is
important not to permit transverse relaxations—otherwise, the
system may relax to a minimum energy configuration rather
than the saddle point energy that is of interest to us. For all the
elements under study, we find that the atop site has the highest
energy, whereas either the fcc or the hcp site is the most favored
site. In particular, we find that for O = Au, Ag, or Pb, the
overlayer atoms preferentially occupy the fcc sites, whereas
for O = Fe, Co, or Pt, they prefer to sit at the hcp sites. For the
clean Ru(0001) surface, the topmost surface layer prefers to
continue the bulk stacking sequence and occupy the hcp site.
W is then given by the absolute energy difference between the
energy of the bridge site, VP , and the most favored site, Vmin;
i.e., W = |VP − Vmin|. In Table I, we list the results, from ab
initio calculations, for the relative stacking energies VA, VB ,
VC , and VP when the overlayer atoms occupy hcp, atop, fcc,
and bridge sites, respectively (the zero of energy has been set
as the lowest energy stacking position).

For obtaining the spring constant μ, we calculate the surface
stress not only when the substrate lattice constant is at a,
but also when the entire system is laterally compressed or
expanded. In order to do this, one has to subtract out the
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TABLE I. Stacking fault energies when the overlayer atoms O on
an O/Ru(0001) slab occupy different stacking sites, as obtained from
ab initio calculations. The relative energy has been calculated with
respect to the energy of the most favored site for that particular system.
Morse potential parameters obtained for the overlayer O/Ru(0001)
are given in the last three columns.

Overlayer Stacking Fault Morse Potential
Element Energies (meV) Parameters

VA VB VC VP A0 A1 b

O hcp atop fcc bridge (eV) (Å−1) (Å)

Ru 0.0 554.1 125.1 401.6 2.9005 1.185 2.70
Fe 0.0 541.4 55.9 79.8 1.4111 0.997 2.65
Co 0.0 563.6 88.1 217.6 1.0608 1.450 2.52
Pt 0.0 178.3 3.8 112.7 1.1061 1.656 2.78
Ag 4.9 268.6 0.0 58.3 0.5449 1.588 2.89
Au 7.3 195.9 0.0 54.1 0.7165 1.684 2.86
Pb 1.8 202.0 0.0 36.7 0.6706 1.336 3.26

contribution to the stress from substrate layers; this procedure
has been described by us in earlier work.27 One then fits the
results for the surface stress versus in-plane lattice constant
to obtain the NN interaction between overlayer atoms; we
assume that this has the form of a Morse potential, viz.,
V (r) = A0{1 − exp[−A1(r − b)]}2. We have tabulated values
of A0, A1, and b for the six systems considered here, in
Table I. The values listed here differ somewhat from those
used in our previous publication,27 because two slightly
different procedures were used in the two cases to extract
the parameters: In one case, the first interlayer distance was
relaxed at each in-plane lattice constant, while in the other, it
was held fixed at the value corresponding to the substrate
lattice constant; we believe that these two procedures (in
both of which the substrate and overlayer are compressed or
stretched together) constitute limiting approximations to the
“true” values desired,28 in which only the overlayer is stretched
or compressed. The latter types of calculations are difficult to
carry out because the overlayer then becomes incommensurate
with the substrate and the system thus becomes unamenable to
the kinds of calculations using periodic boundary conditions
that we carry out; we have estimated, using test calculations,
that the errors introduced by this alternative procedure are
small, of the order of a few % in the values of force constant
k and ∼0.02 Å in favored interatomic spacing b. The spring
constant μ is then given by 2A0A

2
1.

Finally, the interface energy γi is obtained, from calcula-
tions on a symmetric slab, as follows:

γi = Eslab − NOEO
bulk − NSES

bulk

2A
, (2)

where Eslab is the total energy of the slab containing N atoms
and having surface area A, and NO and NS are the number
of overlayer (O) and substrate (Ru) atoms respectively in the
slab supercell. EO

bulk and ES
bulk are the total energies per atom

of, respectively, the overlayer and the substrate, in their bulk
phases. Note that this interface energy γi includes not only the
“surface” energy contribution for the overlayer atoms, but also
the elastic contribution due to the overlayer having been either
stretched or compressed to the lattice constant of the substrate.

TABLE II. Results from ab initio calculations for the parameters
needed to evaluate the reconstruction criterion R, for the heteroepi-
taxial systems O/Ru(0001), and the value obtained for R, using these.
The interface energy γi , the surface stress σ , and spring constant μ

are in eV/Å2, and W , the amplitude of the substrate potential, is in
eV. R is dimensionless.

O γi σ μ W R

Ru 0.173 0.222 8.139 0.402 −0.05
Fe 0.196 0.139 2.801 0.080 0.04
Co 0.181 0.396 4.464 0.218 −0.66
Pt 0.100 −0.138 6.068 0.113 0.64
Ag 0.146 −0.371 2.748 0.058 2.99
Au 0.120 −0.424 4.064 0.054 2.73
Pb 0.380 −2.212 2.394 0.037 21.0

In Table II, we give our results, from ab initio calculations,
for the quantities γi , σ , μ, and W that are needed in order
to evaluate R, as well as the corresponding values obtained
for R. The convention used is that positive/negative values
represent tensile/compressive surface stresses. Note that a
simple eyeballing of any of these quantities in isolation is not
sufficient to predict whether or not an overlayer will remain
pseudomorphic. Thus, for example, the Co/Ru(0001) system
exhibits a rather large value of tensile surface stress σ and
relatively stiff springs, which might seem to suggest that this
system would be likely to reconstruct. However, this is offset
by the fact that the wells of the substrate potential are also
rather deep in this system—much more so than any of the other
heteroepitaxial systems considered here. These two factors are
in competition. For the homoepitaxial Ru(0001) system, the
first number in this table corresponds to the value of the surface
energy; it is in reasonable agreement with values obtained by
previous authors.29–32

Upon examining the values of R in Table II, we find that our
values suggest that monolayers of Fe, Co, and Pt on Ru(0001)
will not reconstruct, whereas those of Ag, Au, and Pb will
do so. Also, the clean Ru(0001) surface will not reconstruct.
These results are in accordance with experimental information
(where available). We discuss this at greater length in Sec. V
below. In the heteroepitaxial cases, based on the atomic-size
mismatch, one would expect a negative R for Fe and Co and a
positive R for the remaining elements. This is indeed the case,
except for Fe/Ru(0001) where R is, however, very close to
zero; the reason for the slight discrepancy is discussed further
below. For Pb/Ru(0001), the value of R is vary large and thus
the tendency toward reconstruction of this system is expected
to be strong. Also, given that the “atomic size” for surface
atoms is expected to be smaller at a metal surface than in the
bulk, one would expect to get a negative R for Ru(0001), which
is indeed the case.

Finally, we wish to calculate the cohesive energies for
the overlayer elements, as well as the adsorption energies of
adatoms on these heteroepitaxial systems. This is because, as
discussed further below, when the density of overlayer atoms
is changed, as happens when the overlayer reconstructs, the
most likely reservoir or sink for the additional or removed
overlayer atoms that are needed in order to change the density
are such adatoms. In order to calculate the energetics of such
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TABLE III. The adsorption energies of adatoms on the heteroepi-
taxial systems under study and cohesive energies for all the overlayer
elements.

Fe Co Pt Ag Au Pb

Ead (eV/atom) −4.02 −4.42 −3.75 −1.39 −1.43
Ec (eV) 5.28 5.54 5.72 2.51 2.98 2.93

adatoms, we consider a (3 × 3) O/Ru(0001) surface unit cell,
containing in addition a single O adatom. We then calculate
the adsorption energy for the adatom using

Ead = E(Oad/O/Ru(0001)) − E(O/Ru(0001)) − E(Oiso),

(3)

where E(Oad/O/Ru(0001)) is the total energy for the adatom
adsorbed on the O/Ru(0001) system, E(O/Ru(0001)) is
the total energy for the O/Ru(0001) system and E(Oiso) is
the energy of an isolated O atom in the vacuum. The cohesive
energy, Ec, is defined, as usual, as the difference between the
energy per atom in the gas phase, Eiso, and in the bulk phase,
Ebulk. The values for the adsorption energies and cohesive
energies for the systems under study are tabulated in Table III.
We were unable to obtain a stable adsorption geometry for a Pb
adatom adsorbed on a Pb monolayer on Ru(0001). The source
of this instability is presumably the higher compressive stress
in Pb/Ru(0001). For this reason, we do not present results for
Ead for Pb in Table III.

IV. 2D GENERALIZED FRENKEL-KONTOROVA MODEL:
QUENCHED MOLECULAR DYNAMICS SIMULATIONS

In this section, we wish to accomplish the following things:
We want to study the reconstruction of the system actually in

two dimensions (rather than in one dimension as was done
above), while using realistic forms of the substrate potential
as well as the interatomic potential between overlayer atoms.
Then, we want to see whether it is possible to switch the
system between reconstructive and unreconstructive behavior,
for example by tuning the chemical potential � (defined further
below); a similar effect can be achieved in electrochemical
situations by controlling the potential. We would also like
to see whether the values of � that fall within the range
where one can have some control over the reconstruction
seem to be in accordance with achievable values estimated
from our ab initio calculations. When reconstruction occurs,
we wish to obtain some estimate of the changes in density
achievable. In this, we are motivated by the fact that such
reconstructed heteroepitaxial systems can sometimes be used
as templates for the growth of self-organized nanostructures,
with the periodicity of the reconstruction determining the
repeat distance of the self-organization.

The system we wish to model consists of a 2D triangular
lattice of overlayer atoms placed upon a 2D substrate. As
for the 1D FK model, there are interactions VOO between
overlayer atoms, and VOS between the overlayer and substrate.
The Hamiltonian of the system is then given by

H =
∑

i

VOO(li) +
∑

j

VOS(rj ) +
∑

j

�, (4)

where i runs over all nearest-neighbor bonds of length li
between overlayer atoms, j runs over all overlayer atoms
at positions rj , and the last term is the contribution from
the chemical potential. VOO is given by the Morse potential
form described in the previous section. The substrate potential
VOS at arbitrary coordinates (x,y) is obtained by Fourier
interpolation between the values at the fcc, hcp, bridge, and
atop sites reported in Table I,12,15 and is given by

VOS(x,y) = VB + 3VP

4
+

(
2VB − VA − VC

9

){
cos

[
2π

a

(
x − y√

3

)]
+ cos

[
4π√

3a
y

]
+ cos

[
2π

a

(
x + y√

3

)]}

−
(

VC − VA

3
√

3

){
sin

[
2π

a

(
x − y√

3

)]
+ sin

[
4π√

3a
y

]
− sin

[
2π

a

(
x + y√

3

)]}

+
(

VB − 9VP + 4VA + 4VC

36

){
cos

[
4π

a
x

]
+ cos

[
2π

a
(x +

√
3y)

]
+ cos

[
2π

a
(−x +

√
3y)

]}
. (5)

In this paper, we will follow the general practice, in the
literature, of referring to � as the “chemical potential” term.
However, for the record, we note that, as has been pointed
out by Needs and Mansfield,16 � actually contains two terms,
one being the negative of the chemical potential of the particle
reservoir (sink), and the other accounting for the new bonds
that are formed (broken) as the extra atom is introduced into
(removed from) the surface. The Needs and Mansfield model
implicitly assumes, while deriving the formula for R, that
additional atoms which are required to increase the density
(for a compressive reconstruction) are obtained from the bulk
phase; however in an actual experimental situation they can,
for example, be obtained at lower energetic cost from adatoms;

this is even more true in the case of heteroepitaxy, where there
is no bulk phase of the overlayer present to act as a reservoir
of additional atoms. For expansive reconstructions, similar
arguments hold, with the role of reservoir being replaced by
that of a sink. Further below, we discuss how we obtain what
we believe to be appropriate values for �.

For simplicity, in this work, we restrict ourselves to studying
the case where the overlayer reconstructs by densification or
rarefaction along only one direction (as is generally observed
for reconstructions after deposition of a single monolayer of
an overlayer element); however, qualitatively similar behavior
is expected when other types of densification or rarefaction,
such as those that result in isotropic triangular patterns, are
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considered. We consider an (n × √
3) unit cell for which the

pseudomorphic configuration would correspond to this surface
unit cell containing 2n overlayer atoms. Upon compressive or
expansive reconstruction, this cell now contains an increased
[or reduced] number of (2n + 2) [or (2n − 2)] overlayer atoms.
We start with arbitrary initial positions for these 2n ± 2 atoms;
the Hamiltonian given in Eq. (4) is then optimized by moving
the positions of all the atoms in the unit cell, using a conjugate
gradient algorithm, until the lowest energy configuration has
been achieved. In order to give us some confidence that the
configuration obtained corresponds to the global minimum,
several different choices of initial positions are tried.

In order to see whether a reconstruction is favored or
not, one has to compare γrec(n), the surface energy for a
compressive reconstruction with overlayer density (n + 1)/n,
or an expansive reconstruction with overlayer density (n −
1)/n, with the surface energy γunrec of the unreconstructed
surface. So what we have to do is to evaluate

�γ (n) = Erec(n) − Eunrec(n)√
3na2

, (6)

where a is the NN distance of the substrate, and Erec(n) and
Eunrec(n) are the optimized energies obtained by minimizing
the Hamiltonian of Eq. (4) for an (n × √

3) surface cell
containing 2n ± 2 and 2n overlayer atoms respectively, where
the + sign corresponds to a compressive reconstruction, and
the − sign to an expansive reconstruction. Eunrec corresponds
to a case where the overlayer density is equal to the substrate
density, and the system therefore remains unreconstructed.
For the elements Ag, Au, Pb, and Pt (Fe and Co), expansive
(compressive) reconstruction is modeled.

Before we can go on to study whether or not the 2D
FK model predicts reconstruction for our systems, we have
to decide what values to take for �. Looking at the earlier
literature on heteroepitaxial systems, one does not find a clear
and unambiguous choice. Possible choices that have been
made earlier is to set � to be equal to the cohesive energy
per atom in a monolayer with bulk lattice spacing,18 or the
energy required to take a single adatom from its equilibrium
position on the surface,33 or set it to zero,21 or use a value
that is “handmade” in order to equal some results obtained by
ab initio and FK model calculations.13 In the case of surface
alloying of two elements on a third one,10 � has been replaced
by an energy of mixing, without taking into consideration the
physical origin of atomic reservoirs.

It is perhaps helpful if we recapitulate some earlier work
done in our group on the reconstruction of Pt(111),15 where we
first performed ab initio density functional theory calculations
to evaluate the bulk cohesive cohesive energy, the binding
energy of a kink atom at a step edge, and the binding energy
of an adatom on the flat surface. The corresponding values of
� were then found to be 0.68 eV, 0.69 eV, and −0.91 eV. In
other words, energetically, it was more or less equivalent to
consider that the extra atoms needed to increase the density
when the surface reconstructed came from either the bulk or
from kink sites; however, these atoms could be obtained at
much lower energetic cost when adatoms were present. This
can be understood in terms of the number of bonds that need to
be broken to detach an adatom versus a kink-site atom. A more
or less similar situation presumably holds in the heteroepitaxial

TABLE IV. Values of chemical potential: �b, as evaluated using
Eq. (8), and �ad , as evaluated using Eq. (9), for each overlayer system
are tabulated.

Fe Co Pt Ag Au Pb

�b (eV) 1.24 0.94 0.64 0.83 0.67 0.50
�ad (eV) −0.03 −0.18 −1.33 −0.29 −0.88

case; accordingly we estimate the values of � corresponding to
bulk atoms and adatoms as the two limiting cases, as described
below.

We consider first the situation where the particle reservoir
or sink consists of the “bulk.” We then note that one can obtain
the interface energy γi for the unreconstructed heteroepitaxial
system in two ways. One can obtain it from an ab initio
calculation using Eq. (2), as was done in Sec. III, resulting
in the values listed in the second column of Table II. However,
one can also obtain it from the FK model Hamiltonian. In that
case, one obtains

γi = 3E0 + �b√
3

2 a2
, (7)

where �b is the “bulk” chemical potential, and E0 is the elastic
energy stored in a NN bond in the unreconstructed overlayer,
which is given by E0 = A0{1 − exp[−A1(a − b)]}2. We then
obtain the chemical potential for the situation when extra atoms
are obtained from, or deposited into, the “bulk” as

�b =
√

3a2γi

2
− 3E0. (8)

The values of �b obtained in this way are listed in Table IV.
In Fig. 1, we show how �γ , the difference in surface energy

of the reconstructed and unreconstructed surfaces, varies with
�ρ, the change in density of the overlayer relative to the
substrate; note that we have chosen to use as the abscissa of
these graphs not n, but �ρ = ± 1

n
, which is positive (negative)

for compressive (expansive) reconstruction. These results have
been obtained by setting � = �b.

For the elements favoring reconstruction, �γ (n) is found
to be negative, and shows a minimum at a finite value of
n = n∗. For Ag, we find that (for � = �b) the energy cost
for reconstruction is minimum when there are 7 Ag atoms
on 8 Ru atoms, and the most favored change in density upon
reconstruction �ρmin = −12.5%. Similarly for Au, the cost is
minimum for 11 atoms on 12 Ru atoms and �ρmin ∼ −8.33%.
This indicates that Ag and Au would tend to reconstruct on a
Ru(0001) substrate. For Co, Fe, and Pt, �γ is positive, and
reconstruction is not favored. For Pb, a minimum is obtained
for 2 Pb atoms on 3 Ru atoms. We note that the gain in energy
upon reconstructing is one to two orders of magnitude larger
for this system than it is for Ag/Ru(0001) or Au/Ru(0001);
this is because of the very large tensile stress present in the
pseudomorphic Pb/Ru(0001) layer (see σPb in Table II). Note
also that there is a monotonic relationship between |R| and
|�ρmin|, since R serves as a measure of the tendency toward
reconstruction when � = �b.

The results presented in Fig. 1 were obtained with � = �b,
i.e., when the energy required to obtain an additional atom for
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FIG. 1. (Color online) �γ , the difference in surface energy per
unit area for the reconstructed and unreconstructed systems, as a
function of the change in density �ρ of the overlayer (relative to
the substrate), as obtained from optimizing a 2D FK model, with
all parameters obtained from ab initio calculations and with � set
equal to �b. (a) Au (circles) and Ag (squares) and (b) Pb reconstruct
expansively; (c) Pt and (d) Co (triangles) and Fe (squares) do not
reconstruct.

incorporation into the surface overlayer is positive. For the case
of homoepitaxial systems, it has previously been shown that
whether or not the surface reconstructs can depend upon the
value of �. For example, in the case of Pt(111),15 if the extra
atoms come from a reservoir of adatoms, � is negative and
(compressive) reconstruction is favored, whereas if the extra
atoms come from the bulk, � is positive and no reconstruction
occurs. So next, we estimate a value of � when the particle
sink or reservoir consists of O adatoms sitting on top of the
O/Ru(0001) system. In order to estimate the value of the
chemical potential in this case, we make use of the relation

�ad = �b − Ec − Ead. (9)

The values for �ad for all the systems under study except Pb
(see Sec. III) are given in Table IV. For other situations, where
the particle reservoir or sink consists of step edge atoms, we
can expect that � lies between the values of �ad and �b, e.g.,
for gold between −0.88 eV and 0.67 eV.

Next, we see how the reconstruction is affected on varying
the value of �. In Figs. 2–4, we show how �γ (n), or, rather,
�γ (�ρ), varies as the value of � is changed, for the six
systems considered in this paper. Note that changes in �

affect the ease of compressive and expansive reconstruction in
opposite ways. As � becomes more positive, for Fe/Ru(0001)
and Co/Ru(0001), it costs more energy to get extra atoms

FIG. 2. (Color online) The difference in surface energy between
the reconstructed and unreconstructed surfaces, as a function of the
change in density of the overlayer, relative to the substrate, for
(a) Au/Ru(0001) and (b) Ag/Ru(0001). The different curves cor-
respond to different values of “chemical potential” �. The lower
panels show the optimal values for the period of reconstruction (black
squares) and the decrease in density (red circles) for (c) Au and (d)
Ag. The dashed rectangles correspond to a range of experimentally
observed values of �ρmin.

for incorporation in the surface layer, and thus compressive
reconstruction becomes less favorable, and larger n and smaller
|�ρ| are favored. However, for Pt/Ru(0001), Ag/Ru(0001),
Au/Ru(0001), and Pb/Ru(0001), as � becomes more positive,
it costs less energy to give away atoms to the particle reservoir,
so expansive reconstruction becomes more favorable, and
smaller n and larger |�ρ| are favored.

As an example, consider Figs. 2(a) and 2(b), where we show
the results for Au/Ru(0001) and Ag/Ru(0001), respectively.
We see that for very negative values of �, �γ is positive and
does not display a minimum; i.e., perfect epitaxy is favored. As
� increases and approaches �ad , that is, −0.9 eV for gold and
−0.3 eV for Ag, an expansive reconstruction starts becoming
favored (with a very long period). As can be seen from the plots
at these respective � values, for Au/Ru(0001), �γ displays a
minimum at �ρmin = −3.12% corresponding to 31 atoms of
Au on 32 atoms of Ru; whereas for Ag/Ru(0001), a minimum
is observed at �ρmin = −5.88% corresponding to 16 atoms of
Ag on 17 atoms of Ru. As � becomes larger, n∗, the periodicity
of the reconstruction, decreases, while |�ρ| increases.

In Figs. 2(c) and 2(d), we show how �ρmin varies
with � for gold and silver, respectively. The width of
the dashed rectangles in these figures represents the range
of �ρ observed in scanning tunneling microscopy (STM)
experiments: Reported periodicities of the stripe width for
Ag/Ru(0001) include 4.3 nm34 and 3.8 nm,35 corresponding
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FIG. 3. (Color online) Controlling the surface reconstruction by
varying “chemical potential” �: change in surface energy (relative to
unreconstructed surface) as a function of decreased density in surface
layer (relative to the substrate layer) for (a) Pb/Ru(0001) and (b)
Pt/Ru(0001).

to values of n∗ = 16 and 14, respectively, and �ρ =
−6.25% and −7.14%, respectively. In our (unpublished) STM
experiments, on Ag/Ru(0001), we obtained a periodicity of
3.7 nm which corresponds to n∗ = 14 and �ρ = −7.14%.
Similarly for Au/Ru(0001), the reported periodicity is
6.8 nm35 corresponding to n∗ = 25 and �ρ = −4%; while
in our (unpublished) STM experiments, we observed a period-
icity of 4 nm which corresponds to n∗ = 15 and �ρ = −6.7%.
From an examination of the range of � corresponding to
the dashed rectangles in Figs. 2(c) and 2(d), we find, for
Au/Ru(0001), −0.5 eV < � < 0.25 eV, and for Ag/Ru(0001),
−0.24 eV < � < 0.09 eV. In other words, the physically
observed periodicities are consistent with our model and with
the values in Table IV.

In Fig. 3 we plot similar data for Pb/Ru(0001) and
Pt/Ru(0001), for which also we may expect to find expansive
reconstructions. Both systems behave quite differently from
Ag/Ru(0001) and Au/Ru(0001). For Pb/Ru(0001), we obtain
a sharp minimum, when � has values close to �b. For
an entire range of physically reasonable �, one obtains a
reconstruction. This is because of the huge elastic energy
stored in a pseudomorphic overlayer of Pb which can be
relieved by reconstruction. This observation is in accordance
with the large R value obtained by us for this system. We
do, however, note that the minimum in �γ for Pb/Ru(0001)
occurs in the regime of hugely reduced overlayer densities
(∼ − 33%), where it is not entirely clear that the FK model
is applicable, and therefore the actual reconstruction of the
system may differ from the one predicted by our simulations.
For Pt/Ru(0001), we find that perfect epitaxy is favored for
� = �b as well as for � = �ad . For � values greater than
1.2 eV, reconstruction starts becoming favored and we can
note that the optimal period and overlayer density vary rapidly
as a function of �.

The effect of variation of chemical potential for the
systems Co/Ru(0001) and Fe/Ru(0001) is shown in Figs. 4(a)
and 4(b) respectively. We find that the Co/Ru(0001) and
Fe/Ru(0001) systems do not reconstruct when � � 0 eV and
� � −1 eV respectively. For Co/Ru(0001), when � � �ad ,
�γ becomes negative, and also shows a minimum at a finite

FIG. 4. (Color online) Controlling the surface reconstruction by
varying “chemical potential” �: change in surface energy (relative
to unreconstructed surface) as a function of increased density in
surface layer (relative to the substrate layer) for (a) Co/Ru(0001) and
(b) Fe/Ru(0001).

value of n, suggesting that the system will reconstruct at
negative � values. Similarly for Fe/Ru(0001), we find a clear
minimum appearing in �γ (�ρ), suggesting that this system
will reconstruct at low negative values of �.

V. EVALUATION OF R AND COMPARISON
WITH EXPERIMENT

In Table II, we had listed the values of the parameter R,
obtained by mapping the 2D system onto a 1D FK model,
with all parameters obtained from our ab initio calculations. In
the second column of Table V, we have listed whether or not
the heteroepitaxial O/Ru(0001) system should reconstruct,
according to the prediction of the 1D FK model (using the
values of R from Table II). In the third column, we have stated
whether or not our quenched molecular dynamics simulations,
making use of the 2D FK model, predict that a reconstruction is
favorable for the system, for the particular case where � = �b

(which is the appropriate value for comparison with the 1D
Needs-Mansfield model). Note that the predictions of the 1D
and 2D models agree. In the last column of this table, we
have listed (where available) what the experimental evidence
is. In every single case, we find that both the simple 1D FK
model and the 2D FK model have indeed predicted correctly
whether or not the heteroepitaxial O/Ru(0001) system will
reconstruct. For Pb/Ru(0001), the Stranski-Krastanov growth
mechanism was observed,40 but no details of the structure are
mentioned. However, the system will almost certainly display
a reconstruction, given the huge lattice mismatch between Pb
and Ru. As discussed above, the appropriate value to choose
for � is debatable, and it is arguable that � = �b might not
be a particularly good choice. Perhaps more to the point,
at a slightly negative value of chemical potential which we
feel is more physical, since it lies somewhere between �b

and �ad , this qualitative behavior is unaltered; we argue that
this corresponds to the most likely experimental scenario. For
Ru(0001), we have not performed the 2D quenched molecular
dynamics simulations. However, our value of R predicts that
the surface will not reconstruct, which is in agreement with a
vast amount of experimental data.41,42
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TABLE V. Predictions from the 1D and 2D FK models for
whether or not the various O/Ru(0001) systems reconstruct. The
second column uses the values of R from Table II to predict whether
or not the system reconstructs. The third column states whether or not
the system reconstructs using the results obtained from the 2D FK
model (evaluated with � = �b), and the last column states whether
or not the overlayer reconstructs, based upon available experimental
information.

Element O 1D Pred. 2D Pred. Expt.

Fe No No No (Ref. 36)
Co No No No (Ref. 37)
Pt No No No (Ref. 38)
Ag Yes Yes Yes (Refs. 34,35,39)
Au Yes Yes Yes (Ref. 35)
Pb Yes Yes

It is worth discussing the validity and applicability of the
Frenkel-Kontorova model, in its various flavors. The simplest
form is the original 1D form, which also assumes that the
substrate potential is sinusoidal and the interatomic surface
bonds are harmonic. The parameter R is derived from this
(analytically soluble) form of the model. Now, as we can
see from Table I, for Fe/Ru(0001), along the zigzag line
connecting fcc, bridge, and hcp sites (which is the 1D line
to which the model is applied), the energy VC (which is a
local minimum) is almost equal to VP (the maximum along
this zigzag line) and therefore the assumption of a sinusoidal
substrate potential (which can be expected to be valid when
VP − VA � VC − VA) clearly does not hold. This may be
the reason why the value of R obtained for Fe/Ru(0001) is
(very slightly) positive rather than negative as is expected for a
compressive reconstruction. The other important assumption
in the 1D FK model is that the interaction between overlayer
atoms is harmonic, whereas we have found that it has instead a
Morse form. For displacements near the minimum b of the
Morse potential, it can be approximated by the harmonic
form. However, when b becomes very different from the
Ru nearest-neighbor distance, as is for example the case for

Pb/Ru(0001), this is no longer valid. Thus, the exact value
of R predicted for Pb/Ru(0001) perhaps does not have much
significance; however the prediction that Pb/Ru(0001) will
have a strong tendency to reconstruct almost certainly still
holds true. The form of the 2D FK model we have chosen
to solve for our FK model allows for differing minima at fcc
and hcp sites, and nonharmonic springs, and therefore the
predictions of this model are much more reliable. However,
again for the case of Pb/Ru(0001), the approximation made by
simultaneously compressing or stretching the overlayer and
substrate may lead to errors in the predicted periodicity of
reconstruction, though almost certainly not, we believe, to the
existence of the reconstruction itself.

To summarize: We have shown how to generalize the
definition of a dimensionless parameter R, already used for
pure surfaces, to the heteroepitaxial case and then shown
that R is a good tool to predict the surface reconstruction
in heteroepitaxial systems, based on ab initio calculations.
We have cross-checked these predictions with experiments
and quenched molecular simulations of the two-dimensional
Frenkel-Kontorova model. For several of the cases considered
here, we find that, as was the case for the Pt(111) system,15 it
should be possible to obtain a reconstruction whose periodicity
can be tuned by playing with the chemical potential. For
growth in ultra-high vacuum conditions, one should be able
to do this by tuning temperature, the metal deposition flux, or
an extra density of adatom clusters,43–45 while for chemical
growth situations one can tune the electrochemical potential
and concentration.46–48 These factors should enable one to
select a particular period for the reconstruction, which in turn
should enable one to obtain a nanotemplate with a required
repeat distance.
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